WorldWideScience

Sample records for precious metal flows

  1. Methods for recovering precious metals from industrial waste

    Science.gov (United States)

    Canda, L.; Heput, T.; Ardelean, E.

    2016-02-01

    The accelerated rate of industrialization increases the demand for precious metals, while high quality natural resources are diminished quantitatively, with significant operating costs. Precious metals recovery can be successfully made from waste, considered to be secondary sources of raw material. In recent years, concerns and interest of researchers for more increasing efficient methods to recover these metals, taking into account the more severe environmental protection legislation. Precious metals are used in a wide range of applications, both in electronic and communications equipment, spacecraft and jet aircraft engines and for mobile phones or catalytic converters. The most commonly recovered precious metals are: gold from jewellery and electronics, silver from X- ray films and photographic emulsions, industrial applications (catalysts, batteries, glass/mirrors), jewellery; platinum group metals from catalytic converters, catalysts for the refining of crude oil, industrial catalysts, nitric acid manufacturing plant, the carbon-based catalyst, e-waste. An important aspect is the economic viability of recycling processes related to complex waste flows. Hydrometallurgical and pyrometallurgical routes are the most important ways of processing electrical and electronic equipment waste. The necessity of recovering precious metals has opened new opportunities for future research.

  2. Precious-metal-base advanced materials

    International Nuclear Information System (INIS)

    Nowicki, T.; Carbonnaux, C.

    1993-01-01

    Precious metals constitute also the base of several advanced materials used in the industry in hundreds of metric tons. Platinum alloys have been used as structural materials for equipments in the glass industry. The essential reason for this is the excellent resistance of platinum alloys to oxidation and electrolytical corrosion in molten glasses at temperatures as high as 1200-1500 C. The major drawback is a weak creep resistance. The unique way for significant improvement of platinum base materials creep resistance is a strengthening by an oxide dispersion (ODS). In the case of CLAL's patented ''Plativer'' materials, 0.05 wt% of Y 2 O 3 is incorporated within the alloy matrix by the flame spraying process. Further improvement of platinum base materials is related, in the authors opinion, to the development of precious metals base intermetallics. Another interesting applications of precious metals are silver base electrical contacts. They are in fact silver matrix composites containing varying amounts of well-dispersed particles of constituents such as CdO, SnO 2 , Ni, WC or C. In the case of such materials, particular properties are required and tested : resistance to arc erosion, resistance to welding and contact resistance. Many other technically fascinating precious metals base materials exist: brazing alloys for assembling metals, superconductors and ceramics; dental materials including magnetic biocompatible alloys; silver composites for superconductor wire jackets. The observation of current evolution indicates very clearly that precious metals cannot be replaced by common metals because of their unique characteristics due to their atomic level properties

  3. Investment in Precious Metals and Stocks

    Directory of Open Access Journals (Sweden)

    Zbyněk Revenda

    2016-08-01

    Full Text Available Investment in various assets is associated with returns and risks. Especially precious metals are considered profitable and safe. Our analysis for the United States in 2005 – Q2 2015 demonstrates that it is very questionable. In this period, which included the US financial crisis, precious metals were coupled with a greater price volatility and lower real income than was the case with stocks in the DJIA index. Even over a sufficiently long period, gold and silver were not a good store of value with positive real returns. Moreover, demand deposits were also more profitable than gold in the longer term after 1980. In the long run, contrary to the beliefs, precious metals may not to keep good value in the physical form or in the form of securities linked to the price development of these assets. Commemorative and historical coins with a  numismatic value are the most appropriate investment in precious metals. However, this investment is also associated with some risk.

  4. ANALYSIS OF INVESTMENT DIVERSIFICATION OF THE PRECIOUS METALS

    Directory of Open Access Journals (Sweden)

    Ivan I. Agafonov

    2013-01-01

    Full Text Available Analysis of the impact of investment portfolio of precious metals on its minimum risk with limited mean income is carried out based on the data from the beginning of 2009 to the July of 2013. Vector and matrix criteria of assessment of the effects of investment diversification at the precious metals market are offered.

  5. Chalcopyrite—bearer of a precious, non-precious metal

    Science.gov (United States)

    Kimball, Bryn E.

    2013-01-01

    The mineral chalcopyrite (CuFeS2) is the world's most abundant source of copper, a metal component in virtually every piece of electrical equipment. It is the main copper mineral in several different ore deposit types, the most important of which are porphyry deposits. Chalcopyrite is unstable at the Earth's surface, so it weathers from sulphide outcrops and mine waste piles, contributing acid and dissolved copper to what is known as acid rock drainage. If not prevented, dissolved copper from chalcopyrite weathering will be transported downstream, potentially harming ecosystems along the way. Pristine areas are becoming targets for future copper supply as we strive to meet ever-increasing demands for copper by developed and developing nations. Additionally, our uses for copper are expanding to include technology such as solar energy production. This has lead to the processing of increasingly lower grade ores, which is possible, in part, due to advances in bio-leaching (i.e. metal extraction catalysed by micro-organisms). Although copper is plentiful, it is still a nonrenewable resource. Future copper supply promises to fall short of demand and the volatility of the copper market may continue if we do not prioritize copper use and improve copper recycling and ore extraction efficiency.

  6. Annals of SAM meeting '96. National meeting on precious metals

    International Nuclear Information System (INIS)

    1996-01-01

    Works are presented at the SAM meeting '96 of the Argentine Materials Association. The papers can be grouped under the following main topics: physical metallurgy; ceramics; polymers; precious metals; extractive metallurgy; corrosion; powder metallurgy. refs., ills

  7. Dynamics of oil price, precious metal prices, and exchange rate

    International Nuclear Information System (INIS)

    Sari, Ramazan; Soytas, Ugur; Hammoudeh, Shawkat

    2010-01-01

    This study examines the co-movements and information transmission among the spot prices of four precious metals (gold, silver, platinum, and palladium), oil price, and the US dollar/euro exchange rate. We find evidence of a weak long-run equilibrium relationship but strong feedbacks in the short run. The spot precious metal markets respond significantly (but temporarily) to a shock in any of the prices of the other metal prices and the exchange rate. Furthermore, we discover some evidence of market overreactions in the palladium and platinum cases as well as in the exchange rate market. In conclusion, whether there are overreactions and re-adjustments or not, investors may diversify at least a portion of the risk away by investing in precious metals, oil, and the euro. Policy implications are provided. (author)

  8. Precious Metals Recovery from Electroplating Wastewater: A Review

    Science.gov (United States)

    Azmi, A. A.; Jai, J.; Zamanhuri, N. A.; Yahya, A.

    2018-05-01

    Metal bearing electroplating wastewater posts great health and environmental concerns, but could also provide opportunities for precious and valuable metal recovery, which can make the treatment process more cost-effective and sustainable. Current conventional electroplating wastewater treatment and metal recovery methods include chemical precipitation, coagulation and flocculation, ion exchange, membrane filtration, adsorption, electrochemical treatment and photocatalysis. However, these physico-chemical methods have several disadvantages such as high initial capital cost, high operational cost due to expensive chemical reagents and electricity supply, generation of metal complexes sludge which requires further treatment, ineffective in diluted and/or concentrated wastewater, low precious metal selectivity, and slow recovery process. On the other hand, metal bio-reduction assisted by bioactive phytochemical compounds extracted from plants and plant parts is a new found technology explored by several researchers in recent years aiming to recover precious and valuable metals from secondary sources mainly industrial wastewater by utilizing low-cost and eco-friendly biomaterials as reagents. Extract of plants contains polyphenolic compounds which have great antioxidant properties and reducing capacities, able to reduce metal ions into zerovalent metal atoms and stabilize the metal particles formed. This green bio-recovery method has a value added in their end products since the metals are recovered in nano-sized particles which are more valuable and have high commercial demand in other fields ranging from electrochemistry to medicine.

  9. World oil prices, precious metal prices and macroeconomy in Turkey

    International Nuclear Information System (INIS)

    Soytas, Ugur; Sari, Ramazan; Hammoudeh, Shawkat; Hacihasanoglu, Erk

    2009-01-01

    We examine the long- and short-run transmissions of information between the world oil price, Turkish interest rate, Turkish lira-US dollar exchange rate, and domestic spot gold and silver price. We find that the world oil price has no predictive power of the precious metal prices, the interest rate or the exchange rate market in Turkey. The results also show that the Turkish spot precious metals, exchange rate and bond markets do not also provide information that would help improve the forecasts of world oil prices in the long run. The findings suggest that domestic gold is also considered a safe haven in Turkey during devaluation of the Turkish lira, as it is globally. It is interesting to note that there does not seem to be any significant influence of developments in the world oil markets on Turkish markets in the short run either. However, transitory positive initial impacts of innovations in oil prices on gold and silver markets are observed. The short-run price transmissions between the world oil market and the Turkish precious metal markets have implications for policy makers in emerging markets and both local and global investors in the precious metals market and the oil market.

  10. Precious Metals-Exchange Rate Volatility Transmissions and Hedging Strategies

    NARCIS (Netherlands)

    S.M. Hammoudeh (Shawkat); Y. Yuan (Yuan); M.J. McAleer (Michael); M.A. Thompson (Mark)

    2009-01-01

    textabstractThis study examines the conditional volatility and correlation dependency and interdependency for the four major precious metals (that is, gold, silver, platinum and palladium), while accounting for geopolitics within a multivariate system. The implications of the estimated results for

  11. Precious Metals in Automotive Technology: An Unsolvable Depletion Problem?

    Directory of Open Access Journals (Sweden)

    Ugo Bardi

    2014-04-01

    Full Text Available Since the second half of the 20th century, various devices have been developed in order to reduce the emissions of harmful substances at the exhaust pipe of combustion engines. In the automotive field, the most diffuse and best known device of this kind is the “three way” catalytic converter for engines using the Otto cycle designed to abate the emissions of carbon monoxide, nitrogen oxides and unburnt hydrocarbons. These catalytic converters can function only by means of precious metals (mainly platinum, rhodium and palladium which exist in a limited supply in economically exploitable ores. The recent increase in prices of all mineral commodities is already making these converters significantly expensive and it is not impossible that the progressive depletion of precious metals will make them too expensive for the market of private cars. The present paper examines how this potential scarcity could affect the technology of road transportation worldwide. We argue that the supply of precious metals for automotive converters is not at risk in the short term, but that in the future it will not be possible to continue using this technology as a result of increasing prices generated by progressive depletion. Mitigation methods such as reducing the amounts of precious metals in catalysts, or recycling them can help but cannot be considered as a definitive solution. We argue that precious metal scarcity is a critical factor that may determine the future development of road transportation in the world. As the problem is basically unsolvable in the long run, we must explore new technologies for road transportation and we conclude that it is likely that the clean engine of the future will be electric and powered by batteries.

  12. 40 CFR 421.250 - Applicability: Description of the primary precious metals and mercury subcategory.

    Science.gov (United States)

    2010-07-01

    ... primary precious metals and mercury subcategory. 421.250 Section 421.250 Protection of Environment... POINT SOURCE CATEGORY Primary Precious Metals and Mercury Subcategory § 421.250 Applicability: Description of the primary precious metals and mercury subcategory. The provisions of this subpart are...

  13. 41 CFR 109-45.1003 - Recovery of silver from precious metals bearing materials.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Recovery of silver from precious metals bearing materials. 109-45.1003 Section 109-45.1003 Public Contracts and Property Management... of Precious Metals § 109-45.1003 Recovery of silver from precious metals bearing materials. The...

  14. Recovery of high purity precious metals from printed circuit boards

    International Nuclear Information System (INIS)

    Park, Young Jun; Fray, Derek J.

    2009-01-01

    Waste printed circuit boards (WPCB) have an inherent value because of the precious metal content. For an effective recycling of WPCB, it is essential to recover the precious metals. This paper reports a promising method to recover the precious metals. Aqua regia was used as a leachant and the ratio between metals and leachant was fixed at 1/20 (g/ml). Silver is relatively stable so the amount of about 98 wt.% of the input was recovered without an additional treatment. Palladium formed a red precipitate during dissolution, which were consisted of Pd(NH 4 ) 2 Cl 6 . The amount precipitated was 93 wt.% of the input palladium. A liquid-liquid extraction with toluene was used to extract gold selectively. Also, dodecanethiol and sodium borohydride solution were added to make gold nanoparticles. Gold of about 97 wt.% of the input was recovered as nanoparticles which was identified with a high-resolution transmission electron microscopy through selected area electron diffraction and nearest-neighbor lattice spacing.

  15. 48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.

    Science.gov (United States)

    2010-10-01

    ...-furnished silver is mandatory when the quantity required is one hundred troy ounces or more. The precious... quantity in whole troy ounces of precious metals required in the performance of this contract (including...

  16. Separation and Recovery of Precious Metals from Leach Liquors of Spent Electronic Wastes by Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi Hong; Wang, Lingyun; Lee, Man Seung [Mokpo National University, Mokpo (Korea, Republic of)

    2017-04-15

    Solvent extraction was employed to recover precious metals (Au (III), Pd (II) and Pt (IV)) from the leach solution of spent electronic wastes containing Cu (II), Cr (III) and Fe (III). First, pure Fe (III) and Au (III) were recovered by simultaneous extraction with Cyanex 923 followed by selective stripping with HCl and Na{sub 2}S{sub 2}O{sub 3}. Second, Pt (IV), Pd (II) and Cu (II) were extracted by Alamine 336 from the raffinate. After the removal of Cu (II) by stripping with weak HCl, Pd (II) and Pt (IV) were separately stripped by controlling the concentration of thiourea in the mixture with HCl. A process flow sheet for the separation of precious metals was proposed.

  17. The precious metal effect in high temperature corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Wit, J.H.W. de (Lab. for Materials Science, Delft Univ. of Technology (Netherlands)); Manen, P.A. van (Lab. for Materials Science, Delft Univ. of Technology (Netherlands))

    1994-01-01

    Additions of platinum and to a smaller extent rhodium, to aluminium oxide forming alloys are known to improve the high temperature corrosion resistance of the alloys. This effect is known as the ''precious metal effect''. The expensive Pt-additions are used because of the increased lifetime of turbine-vanes especially in marine environments. Only a limited number of coating systems is commercially available, as JML-1, LDC-2 and RT22. Normally Pt is deposited electrochemically or by a fused salt method. After deposition the high or low activity pack-cementation-process is applied to obtain a PtNiAl-coating. In this paper the effect of platinum on the oxidation mechanism is discussed by comparing the oxidation mechanism of [beta]-NiAl and Pt20Ni30Al50. This composition agrees with the average composition of a platinum modified aluminide coating. The alloys were oxidized at temperatures from 1000 to 1200 C. The growth of the oxide scale on the NiAl alloy proceeds both by aluminium and by oxygen diffusion through the scale resulting in growth within the scale. On Pt20Ni30Al50 the growth of the scale is limited to the oxide/gas interface due to a predominant aluminium transport through the scale. The morphology of the oxide scales did not show large differences. However, the extensive void formation at the [beta]-NiAl/oxide interface was not observed on the Pt20Ni30Al50 samples. The absence of voids at the interface and the reduction of growth stresses, as a result of the outward growth of the scale, are the two likely reasons for the improved oxide scale adherence and can thus be considered, to be two elements of the ''precious metal effect''. (orig.)

  18. Simplified process for leaching precious metals from fuel cell membrane electrode assemblies

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ

    2009-12-22

    The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.

  19. 40 CFR 413.20 - Applicability: Description of the electroplating of precious metals subcategory.

    Science.gov (United States)

    2010-07-01

    ... electroplating of precious metals subcategory. 413.20 Section 413.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY Electroplating of Precious Metals Subcategory § 413.20 Applicability: Description of the electroplating of...

  20. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.

    Science.gov (United States)

    Kim, Jiwhan; Kim, Hee-Eun; Lee, Hyunjoo

    2018-01-10

    Single-atom catalysts (SACs), in which metal atoms are dispersed on the support without forming nanoparticles, have been used for various heterogeneous reactions and most recently for electrochemical reactions. In this Minireview, recent examples of single-atom electrocatalysts used for the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and methanol oxidation reaction (MOR) are introduced. Many density functional theory (DFT) simulations have predicted that SACs may be effective for CO 2 reduction to methane or methanol production while suppressing H 2 evolution, and those cases are introduced here as well. Single atoms, mainly Pt single atoms, have been deposited on TiN or TiC nanoparticles, defective graphene nanosheets, N-doped covalent triazine frameworks, graphitic carbon nitride, S-doped zeolite-templated carbon, and Sb-doped SnO 2 surfaces. Scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and in situ infrared spectroscopy have been used to detect the single-atom structure and confirm the absence of nanoparticles. SACs have shown high mass activity, minimizing the use of precious metal, and unique selectivity distinct from nanoparticle catalysts owing to the absence of ensemble sites. Additional features that SACs should possess for effective electrochemical applications were also suggested. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Bio-extraction of precious metals from urban solid waste

    Science.gov (United States)

    Das, Subhabrata; Natarajan, Gayathri; Ting, Yen-Peng

    2017-01-01

    Reduced product lifecycle and increasing demand for electronic devices have resulted in the generation of huge volumes of electronic waste (e-waste). E-wastes contain high concentrations of toxic heavy metals, which have detrimental effects on health and the environment. However, e-wastes also contain significant concentrations of precious metals such as gold, silver and palladium, which can be a major driving force for recycling of urban waste. Cyanogenic bacteria such as Chromobacterium violaceum generate cyanide as a secondary metabolite which mobilizes gold into solution via a soluble gold-cyanide complex. However, compared to conventional technology for metal recovery, this approach is not effective, owing largely to the low concentration of lixiviants produced by the bacteria. To overcome the challenges of bioleaching of gold from e-waste, several strategies were adopted to enhance gold recovery rates. These included (i) pretreatment of e-waste to remove competing metal ions, (ii) mutation to adapt the bacteria to high pH environment, (iii) metabolic engineering to produce higher cyanide lixiviant, and (iv) spent medium leaching with adjusted initial pH. Compared to 7.1 % recovery by the wild type bacteria, these strategies achieved gold recoveries of 11.3%, 22.5%, 30% and 30% respectively at 0.5% w/v pulp density respectively. Bioleached gold was finally mineralized and precipitated as gold nanoparticles using the bacterium Delftia acidovorans. This study demonstrates the potential for enhancement of biocyanide production and gold recovery from electronic waste through different strategies, and extraction of solid gold from bioleached leachate.

  2. The Price Volatility of Precious Metals in Times of Economic and Geopolitical Crisis

    Directory of Open Access Journals (Sweden)

    Viorel Mionel

    2017-09-01

    Full Text Available People perceive gold, silver and platinum as jewellery and massive ingots, but their rarity and physicochemical properties recommend them as being suitable for a wide range of uses. The value of gold has led many states to diversify their economic portfolio by creating sovereign reserves. By buying massive amounts of gold, countries like China, Russia, India, Brazil and Turkey suggest that the purchase of precious metals is the best investment during the crisis. Research results show that the value of precious metals greatly increases at times of crisis because buying precious metals indemnifies states against international currency devaluation.

  3. Effective and Selective Recovery of Precious Metals by Thiourea Modified Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hsing-Lung Lien

    2013-05-01

    Full Text Available Adsorption of precious metals in acidic aqueous solutions using thiourea modified magnetic magnetite nanoparticle (MNP-Tu was examined. The MNP-Tu was synthesized, characterized and examined as a reusable adsorbent for the recovery of precious metals. The adsorption kinetics were well fitted with pseudo second-order equation while the adsorption isotherms were fitted with both Langmuir and Freundlich equations. The maximum adsorption capacity of precious metals for MNP-Tu determined by Langmuir model was 43.34, 118.46 and 111.58 mg/g for Pt(IV, Au(III and Pd(II, respectively at pH 2 and 25 °C. MNP-Tu has high adsorption selectivity towards precious metals even in the presence of competing ions (Cu(II at high concentrations. In addition, the MNP-Tu can be regenerated using an aqueous solution containing 0.7 M thiourea and 2% HCl where precious metals can be recovered in a concentrated form. It was found that the MNP-Tu undergoing seven consecutive adsorption-desorption cycles still retained the original adsorption capacity of precious metals. A reductive adsorption resulting in the formation of elemental gold and palladium at the surface of MNP-Tu was observed.

  4. One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction.

    Science.gov (United States)

    Yong, P; Liu, W; Zhang, Z; Beauregard, D; Johns, M L; Macaskie, L E

    2015-11-01

    For reduction of Cr(VI) the Pd-catalyst is excellent but costly. The objectives were to prove the robustness of a Serratia biofilm as a support for biogenic Pd-nanoparticles and to fabricate effective catalyst from precious metal waste. Nanoparticles (NPs) of palladium were immobilized on polyurethane reticulated foam and polypropylene supports via adhesive biofilm of a Serratia sp. The biofilm adhesion and cohesion strength were unaffected by palladization and catalytic biofilm integrity was also shown by magnetic resonance imaging. Biofilm-Pd and mixed precious metals on biofilm (biofilm-PM) reduced 5 mM Cr(VI) to Cr(III) when immobilized in a flow-through column reactor, at respective flow rates of 9 and 6 ml/h. The lower activity of the latter was attributed to fewer, larger, metal deposits on the bacteria. Activity was lost in each case at pH 7 but was restored by washing with 5 mM citrate solution or by exposure of columns to solution at pH 2, suggesting fouling by Cr(III) hydroxide product at neutral pH. A 'one pot' conversion of precious metal waste into new catalyst for waste decontamination was shown in a continuous flow system based on the use of Serratia biofilm to manufacture and support catalytic Pd-nanoparticles.

  5. Development of the production of lead and precious metals in Central Asia

    Directory of Open Access Journals (Sweden)

    Nikolić Branislav

    2014-01-01

    Full Text Available There were several rich deposits of polymetal ores of non-ferrous and precious metals in the region of Imperial Russia and the Soviet Union. Metallurgical production of these metals was developed even a thousand years ago and was in the top of the world at the beginning of the fourth quarter of the twentieth century. The disintegration of the Soviet Union and the change of government structures caused a reduction of metallurgical production, but there are all conditions to intensify and increase the production of non-ferrous and precious metals in Russia and other former Soviet republics, which are now middle-asian countries.

  6. Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Chia-Hsin [Institute of Environmental Engineering, National Chiao Tung University, 300 Hsinchu, Taiwan (China); Lien, Hsing-Lung, E-mail: lien.sam@nuk.edu.tw [Department of Civil and Environmental Engineering, National University of Kaohsiung, 811 Kaohsiung, Taiwan (China); Chung, Jung-Shing [Department of Civil and Environmental Engineering, National University of Kaohsiung, 811 Kaohsiung, Taiwan (China); Yeh, Hund-Der [Institute of Environmental Engineering, National Chiao Tung University, 300 Hsinchu, Taiwan (China)

    2017-01-15

    Highlights: • A reusable magnetic nano-adsorbent is prepared for precious metal adsorption. • The nano-adsorbent (MNP-G3) is synthesized by magnetic nanoparticles and dendrimer. • Higher valent ions show higher adsorption capacity by MNP-G3 suggesting complexation involved. • The pseudo second-order model best describe the adsorption kinetics. • MNP-G3 modified by EDTA significantly improve its adsorption ability for Ag(I). - Abstract: Magnetic nanoparticles modified by third-generation dendrimers (MNP-G3) and MNP-G3 further modified by ethylenediaminetetraacetic acid (EDTA) (MNP-G3-EDTA) were conducted to investigate their ability for recovery of precious metals (Pd(IV), Au(III), Pd(II) and Ag(I)) in water. Experiments were carried out using batch reactors for the studies of adsorption kinetics, adsorption isotherms, competitive adsorption and regeneration. The pseudo second-order model is the best-fit model among others suggesting that the adsorption of precious metals by MNP-G3 in water is a chemisorption process. Three adsorption isotherms namely Langmuir, Freundlich and Dubinin-Radushkevich isotherm were examined and the results showed the similarities and consistency of both linear and nonlinear analyses. Pd(IV) and Au(III) with higher valence exhibited relatively better adsorption efficiency than Pd(II) and Ag(I) with lower valence suggesting that the adsorption of precious metals by MNP-G3 is a function of valence. In the presence of the competing ion Zn(II), the adsorption efficiency of MNP-G3 for all four precious metals was declined significantly. The use of MNP-G3-EDTA revealed an increase in the adsorption efficiency for all four precious metals. However, the low selectivity of MNP-G3 towards precious metals was not enhanced by the modification of EDTA onto the MNP-G3. The regeneration of metal-laden MNP-G3 can be readily performed by using 1.0% HCl solution as a desorbent solution.

  7. Recovery of precious metals from waste materials by the method of flotation process

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2013-01-01

    Full Text Available The article presents the investigation results upon recovery of precious metals from electronics waste and used ceramic catalytic converters. Various frothing agents which generate stable and abundant foam as well as collectors and pH regulators have been used in the investigations. The tests were conducted with the use of laboratory flotation device.

  8. 78 FR 26289 - Guides for the Jewelry, Precious Metals, and Pewter Industries: Public Roundtable

    Science.gov (United States)

    2013-05-06

    ..., DC 20580. SUPPLEMENTARY INFORMATION: I. Introduction The FTC commenced its regulatory review of the.... Comments in two areas merit further exploration prior to making Commission proposals: (1) The marketing of... number. A. Marketing of Alloy Products Containing Precious Metals in Amounts Below Minimum Thresholds The...

  9. Urinary excretion of platinum from South African precious metals refinery workers.

    Science.gov (United States)

    Linde, Stephanus J L; Franken, Anja; du Plessis, Johannes L

    2018-03-30

    Urinary platinum (Pt) excretion is a reliable biomarker for occupational Pt exposure and has been previously reported for precious metals refinery workers in Europe but not for South Africa, the world's largest producer of Pt. This study aimed to quantify the urinary Pt excretion of South African precious metals refinery workers. Spot urine samples were collected from 40 workers (directly and indirectly exposed to Pt) at two South African precious metals refineries on three consecutive mornings prior to their shifts. Urine samples were analysed for Pt using inductively coupled plasma-mass spectrometry and were corrected for creatinine content. The urinary Pt excretion of workers did not differ significantly between sampling days. Urinary Pt excretions ranged from work area (P=0.0006; η 2 =0.567) and the number of years workers were employed at the refineries (P=0.003; η 2 =0.261) influenced their urinary Pt excretion according to effect size analyses. Directly exposed workers had significantly higher urinary Pt excretion compared with indirectly exposed workers (P=0.007). The urinary Pt excretion of South African precious metals refinery workers reported in this study is comparable with that of seven other studies conducted in precious metals refineries and automotive catalyst plants in Europe. The Pt body burden of workers is predominantly determined by their work area, years of employment in the refineries and whether they are directly or indirectly exposed to Pt. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Spark igniter having precious metal ground electrode inserts

    International Nuclear Information System (INIS)

    Ryan, N.A.

    1988-01-01

    This patent describes an igniter comprising a shell of a shell metal alloy which is resistant to spark erosion and corrosion, the shell having a firing end which terminates at its lower end in an annular ring, an insulator sealed within the metal shell and having a central bore and a surface extending inwardly toward the bore from the annular ring, a center electrode sealed within the bore of the insulator and having a firing end which is in spark gap relation with the annular ring of the shell and so positioned that a spark discharge between the firing end and the annular ring occurs along the inwardly extending surface of the insulator, and a plurality of oxidation and erosion resistant inserts, each of the inserts comprising a body of a metal selected from the group consisting of iridium, osmium, ruthenium, rhodium, platinum, and tungsten or an alloy or a ductile alloy of one of the foregoing metals, each of the bodies being embedded within a matching opening which extends from the exterior of the shell through the annular ring, being bonded to the shell

  11. The application of the inductively coupled plasma system to the simultaneous determination of precious metals

    International Nuclear Information System (INIS)

    Watson, A.E.; Russell, G.M.; Middleton, H.R.; Davenport, F.F.

    1983-01-01

    This report describes the development of a spectrochemical technique using excitation by an inducticely coupled plasma (ICP) source for the simultaneous determination of the precious metals (defined here as gold, silver, and all the platinum-group metals except osmium) in a wide variety of samples from a plant for the extraction and refining of platinum metal. The limits of detection for the analytes were determined in various acid and salt media and, under the conditions used, ranged from 20 to 100ng/l. The analytes were determined in the presence of a thousandfold excess of each of the other precious metals used as a matrix element. Some severe interferences were noted but were ascribed to spectral-line overlap or to contamination of the matrix material. Various dissolution techniques, based upon standard procedures applied in the precious-metals industry, were used, depending on the particular type of material treated. The spectrometer was calibrated by the use of solutions containing the analytes, sodium chloride, and acid, with scandium as the internal standard. The accuracy and precision of the technique, established by the analysis of many samples of each type, were found to be satisfactory when close attention was paid to detail in the preparation of the analytical solution. The relative standard deviation of the method ranges from 0,005 to 0,05, depending on the element being determined

  12. Precious Metals Supported on Alumina and Their Application for Catalytic Aqueous Phase Reforming of Glycerol

    Directory of Open Access Journals (Sweden)

    Kiky Corneliasari Sembiring

    2015-11-01

    Full Text Available The high cost of Pt based catalyst for aqueous phase reforming (APR reaction makes it advantageous to develop less cost of other metals for the same reaction. APR is hydrogen production process from biomass-derived source at mild condition near 500 K and firstly reported by Dumesic and co-worker. The use of hydrogen as environmentally friendly energy carrier has been massively encouraged over the last year. When hydrogen is used in fuel cell for power generation, it produces a little or no pollutants. The aim of this study is to study the effect of some precious metal catalysts for APR process. Due to investigation of metal catalysts for APR process, four precious metals (Cu, Co, Zn, Ni supported on γ-Al2O3 with 20% feeding amount have been successfully prepared by impregnation method. Those precious metals were identified as promising catalysts for APR. The catalysts were characterized by N2 physisorption at 77 K, X-Ray Diffraction (XRD and Fourier Transform-Infra Red (FT-IR. The catalytic performance was investigated at 523 K and autogenous pressure in a batch reactor with glycerol concentration of 10%. The gaseous hydrogen product was observed over the prepared catalysts by GC. It was found that performance of catalysts to yield the hydrogen product was summarized as follow Cu/γ-Al2O3 > Co/γ-Al2O3 > Zn/γ-Al2O3 > Ni/γ-Al2O3.

  13. The obtained of concentrates containing precious metals for pyrometallurgical processing

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2014-10-01

    Full Text Available In the presented study the flotation process has been proposed as a method of enrichment of silver-bearing jewellery waste. This method, traditionally used for the enrichment of non-ferrous metal ores, is based on differences in wettability between individual minerals. Flotation concentrate, enriched with Ag, was subjected to further processing by the pyrometallurgical method in order to produce silver from these wastes.

  14. The obtained of concentrates containing precious metals for pyrometallurgical processing

    OpenAIRE

    Oleksiak, B.; Siwiec, G.; Blacha-Grzechnik, A.; Wieczorek, J.

    2014-01-01

    In the presented study the flotation process has been proposed as a method of enrichment of silver-bearing jewellery waste. This method, traditionally used for the enrichment of non-ferrous metal ores, is based on differences in wettability between individual minerals. Flotation concentrate, enriched with Ag, was subjected to further processing by the pyrometallurgical method in order to produce silver from these wastes.

  15. Causal Relationship Between Islamic Bonds, Oil Price and Precious Metals: Evidence From Asia Pacific

    Directory of Open Access Journals (Sweden)

    Metadjer Widad

    2018-05-01

    Full Text Available Sukuk or Islamic bonds as new “Halal” securities had wildly expanded in Muslim and non-Muslim capital markets. So, this study aims to investigate the causal relationship between Islamic bonds (sukuk, oil and precious metals “silver and gold” prices in Asia pacific. This study used VAR model relying on daily data. The findings of Granger causality test and impulse-responses analysis results provide substantial evidence in favor of the relation between sukuk and the commodity market variables (oil, gold, and silver meanwhile and unlike many empirical studies, don’t we have found that oil doesn’t cause changes in precious metals prices. Therefore, the idea that Islamic financial markets provide diversification benefits and they are safe havens during oil crisis cannot be supported empirically.DOI: 10.15408/aiq.v10i2.7171

  16. GROWTH STRATEGIES OF MULTINATIONAL COMPANIES STUDY CASE: PRECIOUS METALS JEWELRY RETAIL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Raluca Daniela RIZEA

    2015-04-01

    Full Text Available The turbulent start of the new century has brought new challenges for firms, industries and countries. This paper investigates business and growth strategies of multinational companies within the precious metals jewelry retail industry. The main objective is to identify whether a company’s performance is determined by its growth strategy or not. The purposes for the research are: to understand what kind of business models and strategies global precious metals jewelry retailers pursue, what growth strategies global jewelry retailers pursue and if there is a link between a company’s growth strategy and its profitability. Least but not last, the findings are reviewed on their transferability to other industries. The findings regarding the business models and growth strategies pursued are that all of them are based on Porter’s generic strategies as well as internationalization and diversification but there is no specific preference given to any of the strategic elements.

  17. Return spillovers between white precious metal ETFs: The role of oil, gold, and global equity

    OpenAIRE

    Lau, Marco Chi Keung; Vigne, Samuel A.; Wang, Shixuan; Yarovaya, Larisa

    2017-01-01

    This paper investigates the relationship between white precious metals and gold, oil and global equity by means of spillovers and volatility transmission. Relying on the recently introduced ETFs, this study is the first to analyse return spillovers derived from an E-GARCH model and to take into account frequency dynamics to understand changes in connectedness across periods of time. Results uncover numerous channels of return transmission across the selected ETF markets over the last 10 years...

  18. Industrial biotemplating saves precious metals in catalysts; Industrielles Biotemplating zur Einsparung von Edelmetallen in Katalysatoren

    Energy Technology Data Exchange (ETDEWEB)

    Hofinger, Juergen; Roos, Steffen; Zirpel, Kevin; Wengrzik, Stefanie [Namos GmbH, Dresden (Germany)

    2009-07-15

    Modern molecular biology provides the tools to design surfaces on the nanometer scale. This opens the way to a breakthrough innovation, which can optimize many industrial processes. In a proof-of-concept study, scientists were able to successfully reduce the amount of precious metals required for a diesel oxidation catalyst. This was the first successful application, and right now the biotemplating technology awaits further development for other applications involving catalytic processes or specifically designed surfaces for industrial processes. (orig.)

  19. Effects of different production technologies on mechanical and metallurgical properties of precious metal denture alloys

    Science.gov (United States)

    Ferro, Paolo; Battaglia, Eleonora; Capuzzi, Stefano; Berto, Filippo

    2017-12-01

    Precious metal alloys can be supplied in traditional plate form or innovative drop form with high degree of purity. The aim of the present work is to evaluate the influence of precious metal alloy form on metallurgical and mechanical properties of the final dental products with particular reference to metal-ceramic bond strength and casting defects. A widely used alloy for denture was selected; its nominal composition was close to 55 wt% Pd - 34 wt% Ag - 6 wt% In - 3 wt% Sn. Specimens were produced starting from the alloy in both plate and drop forms. A specific test method was developed to obtain results that could be representative of the real conditions of use. In order to achieve further information about the adhesion behaviour and resistance, the fracture surfaces of the samples were observed using `Scanning Electron Microscopy (SEM)'. Moreover, material defects caused by the moulding process were studied. The form of the alloy before casting does not significantly influence the shear bond strength between the metal and the ceramic material (p-value=0,976); however, according to SEM images, products from drop form alloy show less solidification defects compared to products obtained with plate form alloy. This was attributed to the absence of polluting additives used in the production of drop form alloy. This study shows that the use of precious metal denture alloys supplied in drop form does not affect the metal-ceramic bond strength compared to alloys supplied in the traditional plate form. However, compared to the plate form, the drop form is found free of solidification defects, less expensive to produce and characterized by minor environmental impacts.

  20. Graphene layer encapsulated metal nanoparticles as a new type of non-precious metal catalysts for oxygen reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhong, Lijie; Jensen, Jens Oluf

    2016-01-01

    Cheap and efficient non-precious metal catalysts for oxygen reduction have been a focus of research in the field of low-temperature fuel cells. This review is devoted to a brief summary of the recent work on a new type of catalysts, i.e., the graphene layer encapsulated metal nanoparticles....... The discussion is focused on the synthesis, structure, mechanism, performance, and further research....

  1. A Study of the Impact of Power Supply Parameters on Metal Flow Velocity in the Channel of a Device for Washing out Precious Metals from of the Automotive Catalytic Converters

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2014-06-01

    Full Text Available Czas życia katalizatorów samochodowych jest ograniczony. Dzisiejsze przepisy środowiskowe wymagają aby były one poddawane procesowi recyklingu jako cenne źródło platynowców, AI2O3 i złomu stalowego. Metale szlachetne stosowane w tych urządzeniach pełnią funkcje katalityczne, naniesione są na ceramiczny lub metalowy nośnik. Artykuł ten dotyczy procesu odzyskiwania metali szlachetnych ze zużytych katalizatorów samochodowych przy wykorzystaniu metody metalu-zbieracza. W celu przyspieszenia procesu wymywania metali szlachetnych ze struktury kapilarnej katalizatora, przepływ ciekłego metalu-zbieracza zmuszony został przez pole elektromagnetyczne. W pracy przedstawiono wyniki modelowania mające na celu poprawę skuteczności przepływu ciekłego metalu przez nośniki katalizatora za pomocą urządzenia z podwójnym uzwojeniem. Przeanalizowano także różne sposoby zasilania urządzenia. Eksperyment obliczeniowy został zrealizowany jako słabosprzężona analiza pola elektromagnetycznego i pola przepływu.

  2. Development of Surface-Modified Polyacrylonitrile Fibers and Their Selective Sorption Behavior of Precious Metals

    Directory of Open Access Journals (Sweden)

    Areum Lim

    2016-11-01

    Full Text Available The purpose of this study was to design a powerful fibrous sorbent for recovering precious metals such as Pd(II and Pt(IV, and moreover for identifying its selectivity toward Pd(II or Pt(IV from a binary metal solution. For the development of the sorbent, polyacrylonitrile (PAN was selected as a model textile because its morphological property (i.e., thin fiber form is suitable for fast adsorption processes, and a high amount of PAN has been discharged from industrial textile factories. The PAN fiber was prepared by spinning a PAN–dimethylsulfoxide mixture into distilled water, and then its surface was activated through amidoximation so that the fiber surface could possess binding sites for Pd(II and Pt(IV. Afterwards, by Fourier-transform infrared (FT-IR and scanning electron microscopy (SEM analyses, it was confirmed that the amidoximation reaction successfully occurred. The surface-activated fiber, designated as PAN–oxime fiber, was used to adsorb and recover precious metals. In the experiment results, it was clearly observed that adsorption capacity of PAN–oxime fiber was significantly enhanced compared to the raw material form. Actually, the raw material does not have sorption capacity for the metals. In a comparison study with commercial sorbent (Amberjet™ 4200, it was found that adsorption capacity of PAN–oxime was rather lower than that of Amberjet™ 4200, however, in the aspects of sorption kinetics and metal selectivity, the new sorbent has much faster and better selectivity.

  3. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    Energy Technology Data Exchange (ETDEWEB)

    Morf, Leo S., E-mail: leo.morf@bd.zh.ch [Baudirektion Kanton Zürich, Amt für Abfall, Wasser, Energie und Luft, Zurich (Switzerland); Gloor, Rolf; Haag, Olaf [Bachema AG, Schlieren (Switzerland); Haupt, Melanie [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland); Skutan, Stefan [Bachema AG, Schlieren (Switzerland); Lorenzo, Fabian Di; Böni, Daniel [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland)

    2013-03-15

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  4. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    International Nuclear Information System (INIS)

    Morf, Leo S.; Gloor, Rolf; Haag, Olaf; Haupt, Melanie; Skutan, Stefan; Lorenzo, Fabian Di; Böni, Daniel

    2013-01-01

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  5. Procedure of Destructive Chemical Recovery of Precious Metals in Nitric Acid Production

    Directory of Open Access Journals (Sweden)

    Ljubičić, M.

    2012-07-01

    Full Text Available The heart of the nitric acid production process is the chemical reactor containing a platinum-based catalyst pack and an associated catchment system, which allows the ammonia oxidation reaction to take place efficiently. Under the severe operating conditions imposed by the high-pressure ammonia oxidation process, the catalyst gauzes experience progressive deterioration, as shown by the restricted surface of the catalyst wires, the loss of catalytic activity and the loss of catalytic materials. The higher the pressure of gaseous ammonia oxidation, the greater the loss of platinum group metals from the surface of the applied selective heterogeneous catalysts. Total losses for one batch over the whole period of using selective heterogeneous catalysts may account in the range from 20 to 40 % of the total installed quantity of precious metals. An important part of the platinum removed from the platinum-rhodium alloy wires can be recovered at the outlet of the reactor by means of palladium catchment gauzes. However, this catchment process, which is based on the great ability of palladium to alloy with platinum, is not 100 % effective and a fraction of the platinum and practically all of the rhodium lost by the catalyst wires, evades the catchment package and is then deposited in other parts of the plant, especially heat exchangers. From the above mentioned operating equipment, the retained mass of precious metals can be recovered by the technical procedure of non-destructive and destructive chemical solid-liquid extraction.Shown is the technical procedure of destructive chemical recovery of preheater and boiler for preheating and production of steam by applying sulfuric acid (w = 20 % and subsequent procedure of raffination of derived sludge, to the final recovery of precious metals. The technical procedure of destructive chemical recovery of precious metals from preheater and boiler for preheating and production of steam in nitric acid production is

  6. Precious metal assay analysis of fresh reforming catalyst by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    McElroy, F.C.; Mulhall, J.M.

    1991-01-01

    This paper reports that precious metal analysis of fresh reforming catalysts are typically performed by both the catalyst manufacturer and buyer to arrive at a financial settlement on the quantity of metal in each lot of commercial catalyst. Traditional assay methods involve a variety of fire assay or wet chemical acid digestion schemes coupled with gravimetric, colorimetic, or titrimetric measurement for precious metals. Methods must have sufficient precision and accuracy to afford interlaboratory agreement of within one half of one percent relative between the catalyst supplier and purchaser. To meet this requirement many laboratories rely on classical methods. Unfortunately these proceeders are labor intensive and time consuming. X-ray fluorescence has the inherent instrument precision to achieve typical intralaboratory precision of 0.5% RSD on a wide variety of elements and numerous sample types. We have developed an X-ray fluorescence method for the assay quality analysis of fresh reforming catalyst containing platinum, rhenium, and iridium. This method was applied to numerous samples over the past five years

  7. A Novel Designed Bioreactor for Recovering Precious Metals from Waste Printed Circuit Boards

    Science.gov (United States)

    Jujun, Ruan; Jie, Zheng; Jian, Hu; Zhang, Jianwen

    2015-01-01

    For recovering precious metals from waste printed circuit boards (PCBs), a novel hybrid technology including physical and biological methods was developed. It consisted of crushing, corona-electrostatic separation, and bioleaching. Bioleaching process is the focus of this paper. A novel bioreactor for bioleaching was designed. Bioleaching was carried out using Pseudomonas chlororaphis. Bioleaching experiments using mixed particles of Au and Cu were performed and leachate contained 0.006 mg/L, 2823 mg/L Au+ and Cu2+ respectively. It showed when Cu existed, the concentrations of Au were extremely small. This provided the feasibility to separate Cu from Au. The method of orthogonal experimental design was employed in the simulation bioleaching experiments. Experimental results showed the optimized parameters for separating Cu from Au particles were pH 7.0, temperature 22.5 °C, and rotation speed 80 r/min. Based on the optimized parameters obtained, the bioreactor was operated for recovering mixed Au and Cu particles. 88.1 wt.% of Cu and 76.6 wt.% of Au were recovered. The paper contributed important information to recover precious metals from waste PCBs. PMID:26316021

  8. About the composition and processing of precious metals from the Serbian medieval mines

    Directory of Open Access Journals (Sweden)

    Kovačević-Kojić Desanka

    2013-01-01

    Full Text Available Account Books of the Caboga (Kabužić Brothers 1426-1433 (Squarço - Reminder, Diary and Ledger from the Historical Archive of Dubrovnik provide new evidence about the high degree of treatment and composition of precious metals from the Serbian medieval mines. First of all, that the residue, after the purification of unprocessed into fine silver, was copper. Even the price of this process is listed. In the Squarço, in two items in a receipt from 1430, there is previously unknown data about auriferous silver (argento di glama, the composition of which, besides gold, also included copper, and the precisely determined shares of these metals per litre. Apart from the Account Books of the Caboga (Kabužić Brothers, other written sources and hitherto geological explorations have provided no clues regarding the presence of copper in the auriferous silver mines.

  9. Impurities determination in precious metals like rhodium, palladium and platinum by neutron activation without separation

    International Nuclear Information System (INIS)

    May, S.; Piccot, D.; Pinte, G.

    1978-01-01

    The possibilities of the method explored using an installation of gamma or X ray spectrometry of good performance. The irradiations were realized in the reactors EL.3 (flux approximately 6.10 12 n.cm -2 .s -1 ) and Osiris (flux > 10 14 n.cm -2 .s -1 ) of the CEN Saclay. In rhodium the presence of iridium limits the analysis possibilities. However gold, silver and platinum are easily determined, just as the other elements (As, Br, Cl, Co, Mn, Na, Sb). In platinum it is possible to determine the elements of long period, especially antimony, silver, cobalt, iridium, tantalum and zinc. As for palladium the principal impurities are gold, silver and ruthenium for what is of precious metals and particularly zinc among the other metals. For the three matrices considered the detection limits of a certain number of elements are indicated [fr

  10. Recovery and recycling of aluminum, copper, and precious metals from dismantled weapon components

    International Nuclear Information System (INIS)

    Gundiler, I.H.; Lutz, J.D.; Wheelis, W.T.

    1994-01-01

    Sandia National Laboratories (SNL) is tasked to support The Department of Energy in the dismantlement and disposal of SNL designed weapon components. These components are sealed in a potting compound, and contain heavy metals, explosive, radioactive, and toxic materials. SNL developed a process to identify and remove the hazardous sub-components utilizing real-time radiography and abrasive water-jet cutting. The components were then crushed, granulated, screened, and separated into an aluminum and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non-hazardous waste. New Mexico Bureau of Mines and Mineral Resources assisted SNL in investigation of size-reduction and separation technologies

  11. Analysis of precious metals at parts-per-billion levels in industrial applications

    International Nuclear Information System (INIS)

    Tickner, James; O'Dwyer, Joel; Roach, Greg; Smith, Michael; Van Haarlem, Yves

    2015-01-01

    Precious metals, including gold and the platinum group metals (notable Pt, Pd and Rh), are mined commercially at concentrations of a few parts-per-million and below. Mining and processing operations demand sensitive and rapid analysis at concentrations down to about 100 parts-per-billion (ppb). In this paper, we discuss two technologies being developed to meet this challenge: X-ray fluorescence (XRF) and gamma-activation analysis (GAA). We have designed on-stream XRF analysers capable of measuring targeted elements in slurries with precisions in the 35–70 ppb range. For the past two years, two on-stream analysers have been in continuous operation at a precious metals concentrator plant. The simultaneous measurement of feed and waste stream grades provides real-time information on metal recovery, allowing changes in operating conditions and plant upsets to be detected and corrected more rapidly. Separately, we have been developing GAA for the measurement of gold as a replacement for the traditional laboratory fire-assay process. High-energy Bremsstrahlung X-rays are used to excite gold via the 197 Au(γ,γ′) 197 Au-M reaction, and the gamma-rays released in the decay of the meta-state are then counted. We report on work to significantly improve accuracy and detection limits. - Highlights: • X-ray fluorescence analysis at sub-parts-per-million concentration in bulk materials. • Gamma activation analysis of gold at high accuracy and low concentrations. • Use of advanced Monte Carlo techniques to optimise radiation-based analysers. • Industrial application of XRF and GAA technologies for minerals processing.

  12. Annals of SAM meeting `96. National meeting on precious metals; Anales de las jornadas SAM `96. Encuentro nacional de metales preciosos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Works are presented at the SAM meeting `96 of the Argentine Materials Association. The papers can be grouped under the following main topics: physical metallurgy; ceramics; polymers; precious metals; extractive metallurgy; corrosion; powder metallurgy. refs., ills.

  13. On the composition and processing of precious metals mined in Medieval Serbia

    Directory of Open Access Journals (Sweden)

    Kovačević-Kojić Desanka

    2014-01-01

    Full Text Available Accounting books of the Caboga (Kabužić brothers 1426-1433 (Squarço/Reminder, Journal and Main Ledger kept at the Historical Archives of Dubrovnik provide new evidence for the composition and advanced levels of processing of precious metals from Serbian medieval mines. Notably, that the residue left after the process of obtaining fine silver was copper. Even the price of the refining process is specified. Two items of a transaction entered in the Squarço in 1430 contain some previously unknown data about auriferous silver (argento di glama. Besides gold, it also contained copper and, moreover, the ratio of the two per pound is specified. Apart from the Caboga brothers’ accounting books, neither the other written sources nor geological research have provided any indication about the presence of copper in the auriferous silver mines.

  14. Precious metal-bearing epithermal deposits in western Patagonia (NE Lago Fontana region), Argentina

    Science.gov (United States)

    Lanfranchini, Mabel Elena; Etcheverry, Ricardo Oscar; de Barrio, Raúl Ernesto; Recio Hernández, Clemente

    2013-04-01

    Precious metal-bearing quartz veins occur at the northeastern sector of the Lago Fontana region in southwestern Argentina, within the context of the Andean continental magmatic arc environment. The deposits and their associated alteration zones are spatially related to a Cretaceous calc-alkaline magmatism represented by silicic dikes and hypabyssal intrusions, and hosted by a Late Jurassic to Cretaceous volcano-sedimentary sequence. The veins and related veinlets crop out discontinuously, in general terms in a NW-SE belt. The primary vein mineral assemblage is composed mostly of pyrite ± galena ± chalcopyrite > hematite ± arsenopyrite in silica gangue minerals. Chemical analyses of grab samples from selected quartz veins show as much as 5.7 ppm Au and 224 ppm Ag, as well as elevated Pb, Cu, and Zn. Hydrothermal fluids caused an innermost silicification and adularia-sericite alteration assemblage, and an external propylitic halo. Sulfur isotope values measured for sulfides (δSS from -1.90 to +1.56‰), and oxygen and hydrogen isotopes measured on quartz crystals and extracted primary fluid inclusion waters (δOO = -2.85 to +5.40‰; δDO = -106.0 to -103.4‰) indicate that mineralization probably formed from magmatic fluids, which were mixed with meteoric waters. Also, fluid inclusion data from quartz veins point out that these fluids had low salinity (1.7-4.2 wt% NaCl equiv.), and temperatures of homogenization between 180 and 325 °C. Mineralogical, petrographic and geochemical features for mineralized surface exposures indicate a typical adularia-sericite, low sulfidation epithermal system in the Lago Fontana area that represents a promising target for further exploration programs.

  15. Ethanol tolerant precious metal free cathode catalyst for alkaline direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Grimmer, Ilena; Zorn, Paul; Weinberger, Stephan; Grimmer, Christoph; Pichler, Birgit; Cermenek, Bernd; Gebetsroither, Florian; Schenk, Alexander; Mautner, Franz-Andreas

    2017-01-01

    Highlights: • Selective ORR catalysts are presented for alkaline direct ethanol fuel cells. • Perovskite based cathode catalysts show high tolerance toward ethanol. • A membrane-free alkaline direct ethanol fuel cell is presented. - Abstract: La 0.7 Sr 0.3 (Fe 0.2 Co 0.8 )O 3 and La 0.7 Sr 0.3 MnO 3 −based cathode catalysts are synthesized by the sol-gel method. These perovskite cathode catalysts are tested in half cell configuration and compared to MnO 2 as reference material in alkaline direct ethanol fuel cells (ADEFCs). The best performing cathode is tested in single cell setup using a standard carbon supported Pt 0.4 Ru 0.2 based anode. A backside Luggin capillary is used in order to register the anode potential during all measurements. Characteristic processes of the electrodes are investigated using electrochemical impedance spectroscopy. Physical characterizations of the perovskite based cathode catalysts are performed with a scanning electron microscope (SEM) and by X-ray diffraction showing phase pure materials. In half cell setup, La 0.7 Sr 0.3 MnO 3 shows the highest tolerance toward ethanol with a performance of 614 mA cm −2 at 0.65 V vs. RHE in 6 M KOH and 1 M EtOH at RT. This catalyst outperforms the state-of-the-art precious metal-free MnO 2 catalyst in presence of ethanol. In fuel cell setup, the peak power density is 27.6 mW cm −2 at a cell voltage of 0.345 V and a cathode potential of 0.873 V vs. RHE.

  16. Geology mineralogy, structure and texture of Agh-Otagh base- precious metal mineralization (North Takab

    Directory of Open Access Journals (Sweden)

    Nahid Rahmati

    2017-07-01

    Full Text Available The Agh-Otagh mineralization area in the north of Takab, was formed within the andesistic tuffaceous rocks of the Oligo- Miocene age. Mineralization include polymetallic (Cu-Pb-Zn-Au-Ag quartz veins and silicified zones, which occurred as breccia and vein- veinlets with comb, cockade and disseminated textures. Chalcopyrite, pyrite, galena and sphalerite are common ore minerals. Alteration zones consist of silicification, sericitization, argillitic, propelitic and carbonatization. Cu-Au mineralization is associated with silicification and sericitization. Analytical results of the samples from the ore- bearing quartz veins and the silicified zones indicate that the highest grade for Au is 664 ppb (ave.181 ppb. The highest and the average grades for Ag, Cu, Pb, and Zn are 120 ppm (300 ppm, 1.3 % (0.38 %, 5.5 % (0.06 % and 4.5 % (0.28 %, respectively. The investigations indicate that the Agh-Otagh mineralization was formed in four stages. In the first stage or the pre-mineralization stage, the host rock, as a result of hydrothermal process, underwent brecciation and some quartz veins and siliceous cap were formed. In the second stage or the mineralization stage the sulfide minerals formed within the quartz veins and silicification zones developed at the third stage, some unmineralized quartz, barite and carbonate vein- veinlets crosscut the previous stages. The last stage of mineralization related to supergene processes. Based on geological, mineralogical, alteration, structural and textural evidences, the Agh-Otagh base- precious metal mineralization is similar to the medium sulfidation epithermal deposits.

  17. Isotope exchange reaction of tritium on precious metal catalyst based on cation-exchanged mordenite for blanket tritium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Precious metal catalyst based on cation-exchanged mordenite was prepared. • Isotope exchange reaction between H{sub 2} and HTO on the catalyst was investigated. • The order of entire reaction is not clear, but it is the first-order reaction as for HTO. • Effect of exchanged cation may appear as the difference of the surface area of catalyst. - Abstract: It is known that the chemical forms of tritium released from a ceramic breeder blanket are hydrogen form and water form. To recover tritiated water vapor, adoption of dryer that is packed column of synthetic zeolite has been proposed. On the other hand, synthetic zeolite is often used as a support of precious metal catalyst. Such catalysts usually have a capability of hydrogen isotope exchange between gas and water vapor. If this catalyst is used to dryer, the dryer may obtain a preferable function for tritium recovery by isotopic exchange reaction. To assess such functions, reaction rate should be estimated. The results of water adsorption experiment on cation-exchanged mordenite-type zeolite suggested the possibility that state of adsorbed water varied by exchanged cation. So, in this work, precious metal catalyst based on cation-exchanged mordenite was prepared, and the reaction rate of chemical exchange between hydrogen and tritiated water was investigated under temperature range between 30 °C and 80 °C by the steady-state approximation. In the case of platinum on Na-mordenite, the reaction between gaseous hydrogen and tritiated water vapor was almost expressed as first-order reaction concerning tritiated water vapor concentration.

  18. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants--A review.

    Science.gov (United States)

    Akcil, Ata; Erust, Ceren; Gahan, Chandra Sekhar; Ozgun, Mehmet; Sahin, Merve; Tuncuk, Aysenur

    2015-11-01

    Waste generated by the electrical and electronic devices is huge concern worldwide. With decreasing life cycle of most electronic devices and unavailability of the suitable recycling technologies it is expected to have huge electronic and electrical wastes to be generated in the coming years. The environmental threats caused by the disposal and incineration of electronic waste starting from the atmosphere to the aquatic and terrestrial living system have raised high alerts and concerns on the gases produced (dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons) by thermal treatments and can cause serious health problems if the flue gas cleaning systems are not developed and implemented. Apart from that there can be also dissolution of heavy metals released to the ground water from the landfill sites. As all these electronic and electrical waste do posses richness in the metal values it would be worth recovering the metal content and protect the environmental from the pollution. Cyanide leaching has been a successful technology worldwide for the recovery of precious metals (especially Au and Ag) from ores/concentrates/waste materials. Nevertheless, cyanide is always preferred over others because of its potential to deliver high recovery with a cheaper cost. Cyanidation process also increases the additional work of effluent treatment prior to disposal. Several non-cyanide leaching processes have been developed considering toxic nature and handling problems of cyanide with non-toxic lixiviants such as thiourea, thiosulphate, aqua regia and iodine. Therefore, several recycling technologies have been developed using cyanide or non-cyanide leaching methods to recover precious and valuable metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A new approach to precious metals recovery from brown coals: Correlation of recovery efficacy with the mechanism of metal-humic interactions

    Science.gov (United States)

    Bratskaya, Svetlana Yu.; Volk, Alexandra S.; Ivanov, Vladimir V.; Ustinov, Alexander Yu.; Barinov, Nikolay N.; Avramenko, Valentin A.

    2009-06-01

    The presence of gold and platinum group elements (PGE) in low-rank brown coals around the world has promoted interest in the industrial exploitation of this alternative source of precious metals. However, due to low efficacy of the methods traditionally used for the processing of mineral ores, there exists a high demand for new strategies of precious metal recovery from refractory carbonaceous materials that could significantly increase the economic potential of gold- and PGE-bearing organic resources. Here we discuss the possibility of gold and PGE recovery from alkaline extracts of brown coals using the difference in colloidal stability of bulk organic matter and its fractions enriched with precious metals. This approach enables one to avoid complete oxidation or combustion of brown coals prior to gold recovery, to minimize organic content in gold concentrate, and to obtain a valuable by-product - humic extracts. Using gold-bearing brown coals from several deposits located in the South Far East of Russia, we show that up to 95% of gold can be transferred to alkaline extracts of humic acids (HA) and up to 85% of this gold can be recovered by centrifugation at pH 4.0-6.0, when only 5-15% of HA precipitated simultaneously. We have shown that the high efficacy of gold recovery can be attributed to the occurrence of fine-dispersed elemental gold particles stabilized by HA, which differ significantly in colloidal stability from the bulk organic matter and, thus, can be separated by centrifugation.

  20. Geology and hydrothermal alteration at the Madh adh Dhahab epithermal precious-metal deposit, Kingdom of Saudi Arabia

    Science.gov (United States)

    Doebrich, J.L.; LeAnderson, J.P.

    1984-01-01

    Mahd adh Dhahab is a late Precambrian epithermal gold-silver-base metal deposit located in the west-central part of the Arabian Shield. North-trending quartz veins containing base and precious metals cut an east-striking, north-dipping homoclinal sequence of volcanic, volcaniclastic, and epiclastic rocks of intermediate to felsic composition. Ore was localized where the veins cut competent, coarse-grained, fragmental units directly below incompetent and impermeable tuff units. The proximity of an epizonal rhyolite porphyry stock to these contacts also was important in localizing ore. Ore minerals include native gold and silver, gold-silver tellurides, chalcopyrite, sphalerite, and minor galena, and five stages of mineralization have been identified.

  1. Rapid Computer Aided Ligand Design and Screening of Precious Metal Extractants from TRUEX Raffinate with Experimental Validation

    International Nuclear Information System (INIS)

    Clark, Aurora Sue; Wall, Nathalie; Benny, Paul

    2015-01-01

    Rhodium is the most extensively used metal in catalytic applications; it occurs in mixed ores with platinum group metals (PGMs) in the earth's crust in low concentrations (0.4 - 10 ppb). It is resistant to aerial oxidation and insoluble in all acids, including aqua regia, making classical purification methods time-consuming and inefficient. To ensure adequate purity, several precipitation and dissolution steps are necessary during separation. Low abundance, high demand, and extensive processing make rhodium the most expensive of all PGMs. From alternative sources, rhodium is also produced in sufficient quantities (0.47 kg per ton initial heavy metal (tIHM)) during the fission of U-235 in nuclear reactors along with other PGMs (i.e. Ag, Pd, Ru). A typical power water reactor operating with UO 2 fuel after cooling can generate PGMs in quantities greater than found in the earth's crust (0.5-2 kg/tIHM). This currently untapped supply of PGMs has the potential to yield $5,000-30,000/tIHM. It is estimated that by the year 2030, the amount of rhodium generated in reactors could exceed natural reserves. Typical SNF processing removes the heavier lanthanides and actinides and can leave PGMs at ambient temperatures in aqueous acidic (Cl - or NO 3 - ; pH < 1) solutions at various activities. While the retrieval of these precious metals from SNF would minimize waste generation and improve resource utilization, it has been difficult to achieve thus far. Two general strategies have been utilized to extract Rh(III) from chloride media: ion pairing and coordination complexation. Ion pairing mechanisms have been studied primarily with the tertiary and quaternary amines. Additionally, mixed mechanism extractions have been observed in which ion pairing is the initial mechanism, and longer extraction equilibrium time generated coordination complexes. Very few coordination complexation extraction ligands have been studied. This project approached this problem through the

  2. Rapid Computer Aided Ligand Design and Screening of Precious Metal Extractants from TRUEX Raffinate with Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Aurora Sue [Washington State Univ., Pullman, WA (United States); Wall, Nathalie [Washington State Univ., Pullman, WA (United States); Benny, Paul [Washington State Univ., Pullman, WA (United States)

    2015-11-16

    Rhodium is the most extensively used metal in catalytic applications; it occurs in mixed ores with platinum group metals (PGMs) in the earth’s crust in low concentrations (0.4 - 10 ppb). It is resistant to aerial oxidation and insoluble in all acids, including aqua regia, making classical purification methods time-consuming and inefficient. To ensure adequate purity, several precipitation and dissolution steps are necessary during separation. Low abundance, high demand, and extensive processing make rhodium the most expensive of all PGMs. From alternative sources, rhodium is also produced in sufficient quantities (0.47 kg per ton initial heavy metal (tIHM)) during the fission of U-235 in nuclear reactors along with other PGMs (i.e., Ag, Pd, Ru). A typical power water reactor operating with UO2 fuel after cooling can generate PGMs in quantities greater than found in the earth’s crust (0.5-2 kg/tIHM). This currently untapped supply of PGMs has the potential to yield $5,000-30,000/tIHM. It is estimated that by the year 2030, the amount of rhodium generated in reactors could exceed natural reserves. Typical SNF processing removes the heavier lanthanides and actinides and can leave PGMs at ambient temperatures in aqueous acidic (Cl⁻ or NO3⁻; pH < 1) solutions at various activities. While the retrieval of these precious metals from SNF would minimize waste generation and improve resource utilization, it has been difficult to achieve thus far. Two general strategies have been utilized to extract Rh(III) from chloride media: ion pairing and coordination complexation. Ion pairing mechanisms have been studied primarily with the tertiary and quaternary amines. Additionally, mixed mechanism extractions have been observed in which ion pairing is the initial mechanism, and longer extraction equilibrium time generated coordination complexes. Very few coordination complexation extraction ligands have been studied. This project approached this problem

  3. Synthesis of self-supported non-precious metal catalysts for oxygen reduction reaction with preserved nanostructures from the polyaniline nanofiber precursor

    DEFF Research Database (Denmark)

    Hu, Yang; Zhao, Xiao; Huang, Yunjie

    2013-01-01

    Non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) are an active subject of recent research on proton exchange membrane fuel cells. In this study, we report a new approach to preparation of self-supported and nano-structured NPMCs using pre-prepared polyaniline (PANI...

  4. A rational repeating template method for synthesis of 2D hexagonally ordered mesoporous precious metals.

    Science.gov (United States)

    Takai, Azusa; Doi, Yoji; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2011-03-01

    A repeating template method is presented for the synthesis of mesoporous metals with 2D hexagonal mesostructures. First, a silica replica (i.e., silica nanorods arranged periodically) is prepared by using 2D hexagonally ordered mesoporous carbon as the template. After that, the obtained silica replica is used as the second template for the preparation of mesoporous ruthenium. After the ruthenium species are introduced into the silica replica, the ruthenium species are then reduced by a vapor-infiltration method by using the reducing agent dimethylamine borane. After the ruthenium deposition, the silica is chemically removed. Analysis by transmission and scanning electron microscopies, a nitrogen-adsorption-desorption isotherm, and small-angle X-ray scattering revealed that the mesoporous ruthenium had a 2D hexagonal mesostructure, although the mesostructural ordering is decreased compared to that of the original mesoporous carbon template. This method is widely applicable to other metal systems. By changing the metal species introduced into the silica replica, several mesoporous metals (palladium and platinum) can be synthesized. Ordered mesoporous ruthenium and palladium, which are not easily attainable by the soft-templating methods, can be prepared. This study has overcome the composition variation limitations of the soft-templating method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The Genesis of Precious and Base Metal Mineralization at the Miguel Auza Deposit, Zacatecas, Mexico

    Science.gov (United States)

    Findley, A. A.; Olivo, G. R.; Godin, L.

    2009-05-01

    The Miguel Auza mine located in Zacatecas State, Mexico, is a vein-type polymetallic epithermal deposit hosted in deformed argillite, siltstone and, greywacke of the Cretaceous Caracol Formation. Silver-rich base metal veins (0.2 m to >1.5 m wide) are spatially associated with the NE-striking, steeply SE- dipping (70-80°) Miguel Auza fault over a strike length of 1.6 km and a depth of 460 m. A 2 km2 monzonitic stock located in the proximity of the mineralized zones, has previously been interpreted as the source of the mineralizing fluids. Four distinct structural stages are correlated with hydrothermal mineral deposition: (I) The Pre-ore stage is characterized by normal faulting, fracturing of host rock, and rotation of bedding planes. This stage consists of quartz, illite, chlorite, +/- pyrite alteration of sedimentary wall rocks. (II) The Pyrite-vein stage is associated with reverse-sense reactivation of early normal faults, dilation of bedding planes/fractures, and deposition of generally barren calcite + pyrite veinlets. (III) The Main-ore stage is related to the development of reverse-fault- hosted massive sulphide veins. During this stage three phases of mineral deposition are recorded: early pyrite and arsenopyrite, intermediate chalcopyrite, pyrite, arsenopyrite, and base metals, and late base metals and Ag-bearing minerals. Associated gangue minerals during the main ore stage are quartz, muscovite, calcite and chlorite. (IV) The Post-ore stage involves late NW-SE striking block faulting, brecciation and calcite veining. Later supergene oxidation of veins led to deposition of Fe-oxides and hydroxides, commonly filling fractures or replacing early-formed sulphide assemblages. The various vein types display classic epithermal textures including open space filling, banding, comb quartz and brecciation. The Ag-bearing minerals comprise pyrargyrite [Ag3(Sb,As)S3], argentotennantite [(Cu,Ag)10(Zn,Fe)2(Sn,As)4S13], polybasite-pearceite [(Ag,Cu)16(Sb,As)2S11], and

  6. The determination of precious metals in geological samples by ICP - Mass Spectrometry

    International Nuclear Information System (INIS)

    Denoyer, E.; Ediger, R.; Hager, J.

    1989-01-01

    ICP - mass spectrometry with laser sampling has been used to determine gold directly in solid fire assay beads. A small portion of the lead bead is vaporized by Nd: YAG laser, and the resulting particulate material is passed by a flow of argon an ICP-mass spectrometer for quantitation of the gold content. Calibration with known geological materials gives linear calibration curves, and detection limits for gols are estimated to be 0.07 micrograms/gram in the original ore sample. The repeatability of the method is similar to that expected for traditional fire assay methods, and the analysis time for the solid lead bead is less than five minutes per sample. (author) [pt

  7. High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode.

    Science.gov (United States)

    Li, Qing; Wang, Tanyuan; Havas, Dana; Zhang, Hanguang; Xu, Ping; Han, Jiantao; Cho, Jaephil; Wu, Gang

    2016-11-01

    Direct methanol fuel cells (DMFCs) hold great promise for applications ranging from portable power for electronics to transportation. However, apart from the high costs, current Pt-based cathodes in DMFCs suffer significantly from performance loss due to severe methanol crossover from anode to cathode. The migrated methanol in cathodes tends to contaminate Pt active sites through yielding a mixed potential region resulting from oxygen reduction reaction and methanol oxidation reaction. Therefore, highly methanol-tolerant cathodes must be developed before DMFC technologies become viable. The newly developed reduced graphene oxide (rGO)-based Fe-N-C cathode exhibits high methanol tolerance and exceeds the performance of current Pt cathodes, as evidenced by both rotating disk electrode and DMFC tests. While the morphology of 2D rGO is largely preserved, the resulting Fe-N-rGO catalyst provides a more unique porous structure. DMFC tests with various methanol concentrations are systematically studied using the best performing Fe-N-rGO catalyst. At feed concentrations greater than 2.0 m, the obtained DMFC performance from the Fe-N-rGO cathode is found to start exceeding that of a Pt/C cathode. This work will open a new avenue to use nonprecious metal cathode for advanced DMFC technologies with increased performance and at significantly reduced cost.

  8. Transition-Metal-Controlled Inorganic Ligand-Supported Non-Precious Metal Catalysts for the Aerobic Oxidation of Amines to Imines.

    Science.gov (United States)

    Yu, Han; Zhai, Yongyan; Dai, Guoyong; Ru, Shi; Han, Sheng; Wei, Yongge

    2017-10-09

    Most state-of-art transition-metal catalysts usually require organic ligands, which are essential for controlling the reactivity and selectivity of reactions catalyzed by transition metals. However, organic ligands often suffer from severe problems including cost, toxicity, air/moisture sensitivity, and being commercially unavailable. Herein, we show a simple, mild, and efficient aerobic oxidation procedure of amines using inorganic ligand-supported non-precious metal catalysts 1, (NH 4 ) n [MMo 6 O 18 (OH) 6 ] (M=Cu 2+ ; Fe 3+ ; Co 3+ ; Ni 2+ ; Zn 2+ , n=3 or 4), synthesized by a simple one-step method in water at 100 °C, demonstrating that the catalytic activity and selectivity can be significantly improved by changing the central metal atom. In the presence of these catalysts, the catalytic oxidation of primary and secondary amines, as well as the coupling of alcohols and amines, can smoothly proceed to afford various imines with O 2 (1 atm) as the sole oxidant. In particular, the catalysts 1 have transition-metal ion core, and the planar arrangement of the six Mo VI centers at their highest oxidation states around the central heterometal can greatly enhance the Lewis acidity of catalytically active sites, and also enable the electrons in the center to delocalize onto the six edge-sharing MO 6 units, in the same way as ligands in traditional organometallic complexes. The versatility of this methodology maybe opens a path to catalytic oxidation through inorganic ligand-coordinated metal catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Linking precious metal enrichment and halogen cycling in mafic magmatic systems: insights from the Rum layered intrusion, NW Scotland

    Science.gov (United States)

    Kelly, A. P.; O'Driscoll, B.; Clay, P. L.; Burgess, R.

    2017-12-01

    Layered intrusions host the world's largest known concentrations of the platinum-group elements (PGE). Emphasis has been attached to the role of halogen-bearing fluids in concentrating the precious metals, but whether this occurs at the magmatic stage, or via subsequent metasomatism, is actively debated. One obstacle to progress has been the analytical difficulty of measuring low abundances of the halogens in the cumulate products of layered intrusions. To elucidate the importance of the halogens in facilitating PGE-mineralisation, as well as fingerprint halogen provenance and assess the importance of halogen cycling in mafic magma systems more generally, a suite of samples encompassing different stages of activity of the Palaeogene Rum layered intrusion was investigated. Halogen abundances were measured by neutron irradiation noble gas mass spectrometric analysis, permitting the detection of relatively low (ppm-ppb) abundances of Cl, Br and I in mg-sized samples. The samples include PGE-enriched chromite seams, various cumulates (e.g., peridotites), picrites (approximating the Rum parental magma), and pegmatites representing volatile-rich melts that circulated the intrusion at a late-stage in its solidification history. The new data reveal that PGE-bearing chromite seams contain relatively low Cl concentrations (2-3 ppm), with high molar ratios of Br/Cl and I/Cl (0.005 and 0.009, respectively). The picrites and cumulates have Br/Cl and I/Cl ratios close to sub-continental lithospheric mantle values of approximately 0.0013 and 0.00002, respectively, and thus likely reflect the Rum magma source region. A positive correlation between Cl and Br signifies comparable partitioning behaviour in all samples. However, I is more variable, displaying a positive correlation with Cl for more primitive samples (e.g. picrite and peridotite), and seemingly decoupling from Br and Cl in chromite seams and pegmatites. The relative enrichment of I over Cl in the chromite seams points

  10. On the relationship between the prices of oil and the precious metals: Revisiting with a multivariate regime-switching decision tree

    International Nuclear Information System (INIS)

    Charlot, Philippe; Marimoutou, Vêlayoudom

    2014-01-01

    This study examines the volatility and correlation and their relationships among the euro/US dollar exchange rates, the S and P500 equity indices, and the prices of WTI crude oil and the precious metals (gold, silver, and platinum) over the period 2005 to 2012. Our model links the univariate volatilities with the correlations via a hidden stochastic decision tree. The ensuing Hidden Markov Decision Tree (HMDT) model is in fact an extension of the Hidden Markov Model (HMM) introduced by Jordan et al. (1997). The architecture of this model is the opposite that of the classical deterministic approach based on a binary decision tree and, it allows a probabilistic vision of the relationship between univariate volatility and correlation. Our results are categorized into three groups, namely (1) exchange rates and oil, (2) S and P500 indices, and (3) precious metals. A switching dynamics is seen to characterize the volatilities, while, in the case of the correlations, the series switch from one regime to another, this movement touching a peak during the period of the Subprime crisis in the US, and again during the days following the Tohoku earthquake in Japan. Our findings show that the relationships between volatility and correlation are dependent upon the nature of the series considered, sometimes corresponding to those found in econometric studies, according to which correlation increases in bear markets, at other times differing from them. - Highlights: • This study examines the volatility and correlation and their relationships of precious metals and crude oil. • Our model links the univariate volatilities with the correlations via a hidden stochastic decision tree. • This model allows a probabilistic point of view of the relationship between univariate volatility and correlation. • Results show the relationships between volatility and correlation are dependent upon the nature of the series considered

  11. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells.

    Science.gov (United States)

    Huang, Jianjian; Zhu, Nengwu; Yang, Tingting; Zhang, Taiping; Wu, Pingxiao; Dang, Zhi

    2015-10-15

    Comparing with the precious metal catalysts, non-precious metal catalysts were preferred to use in microbial fuel cells (MFCs) due to the low cost and high oxygen reduction reaction (ORR) efficiency. In this study, the transmission electron microscope and X-ray diffraction as well as Raman investigation revealed that the prepared nanoscale NiO was attached on the surface of CNT. Cyclic voltammogram and rotating ring-disk electrode tests showed that the NiO/CNT composite catalyst had an apparent oxygen reduction peak and 3.5 electron transfer pathway was acquired under oxygen atmosphere. The catalyst performance was highly dependent on the percentage of NiO in the CNT nanocomposites. When 77% NiO/CNT nano-sized composite was applied as cathode catalyst in membrane free single-chamber air cathode MFC, a maximum power density of 670 mW/m(2) and 0.772 V of OCV was obtained. Moreover, the MFC with pure NiO (control) could not achieve more than 0.1 V. All findings suggested that NiO/CNT could be a potential cathode catalyst for ORR in MFCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A new model for simulating microbial cyanide production and optimizing the medium parameters for recovering precious metals from waste printed circuit boards.

    Science.gov (United States)

    Yuan, Zhihui; Ruan, Jujun; Li, Yaying; Qiu, Rongliang

    2018-04-10

    Bioleaching is a green recycling technology for recovering precious metals from waste printed circuit boards (WPCBs). However, this technology requires increasing cyanide production to obtain desirable recovery efficiency. Luria-Bertani medium (LB medium, containing tryptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L) was commonly used in bioleaching of precious metal. In this study, results showed that LB medium did not produce highest yield of cyanide. Under optimal culture conditions (25 °C, pH 7.5), the maximum cyanide yield of the optimized medium (containing tryptone 6 g/L and yeast extract 5 g/L) was 1.5 times as high as that of LB medium. In addition, kinetics and relationship of cell growth and cyanide production was studied. Data of cell growth fitted logistics model well. Allometric model was demonstrated effective in describing relationship between cell growth and cyanide production. By inserting logistics equation into allometric equation, we got a novel hybrid equation containing five parameters. Kinetic data for cyanide production were well fitted to the new model. Model parameters reflected both cell growth and cyanide production process. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. N, S co-doped carbon spheres with highly dispersed CoO as non-precious metal catalyst for oxygen reduction reaction

    Science.gov (United States)

    Chen, Linlin; Guo, Xingpeng; Zhang, Guoan

    2017-08-01

    It is still a great challenge in preparing non-precious metal catalysts with high activity and long-term stability to substitute for precious metal catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we report a novel and facile catalyst-N, S co-doped carbon spheres with highly dispersed CoO (CoO@NS-CSs), where biomass glucose spheres act as carbon precursor and H2S, NH3 derived from the decomposition of thiourea not only provide N, S sources but also can etch carbon spheres to produce nanoporous structure. CoO@NS-CSs catalyst exhibits excellent ORR activity with a high onset potential of 0.946 V vs. RHE (reversible hydrogen electrode) and a half-wave potential of 0.821 V vs. RHE through a four-electron pathway in alkaline solution, which is comparable to commercial Pt/C catalyst (onset potential: 0.926 V vs. RHE, half-wave potential: 0.827 V vs. RHE). Furthermore, both the long-term stability and methanol-tolerance of CoO@NS-CSs catalyst are superior to those of commercial Pt/C catalyst. The excellent ORR performance of CoO@NS-CSs catalyst can be attributed to its micro-mesopore structure, high specific surface area (667 m2 g-1), and highly dispersed CoO. This work manifests that the obtained CoO@NS-CSs catalyst is promising to be applied to fuel cells.

  14. Mineral Deposit Data for Epigenetic Base- and Precious-metal and Uranium-thorium Deposits in South-central and Southwestern Montana and Southern and Central Idaho

    Science.gov (United States)

    Klein, T.L.

    2004-01-01

    Metal deposits spatially associated with the Cretaceous Boulder and Idaho batholiths of southwestern Montana and southern and central Idaho have been exploited since the early 1860s. Au was first discovered in placer deposits; exploitation of vein deposits in bedrock soon followed. In 1865, high-grade Ag vein deposits were discovered and remained economically important until the 1890s. Early high-grade deposits of Au, Ag and Pb were found in the weathered portions of the veins systems. As mining progressed to deeper levels, Ag and Pb grades diminished. Exploration for and development of these vein deposits in this area have continued until the present. A majority of these base- and precious-metal vein deposits are classified as polymetallic veins (PMV) and polymetallic carbonate-replacement (PMR) deposits in this compilation. Porphyry Cu and Mo, epithermal (Au, Ag, Hg and Sb), base- and precious-metal and W skarn, W vein, and U and Th vein deposits are also common in this area. The world-class Butte Cu porphyry and the Butte high-sulfidation Cu vein deposits are in this study area. PMV and PMR deposits are the most numerous in the region and constitute about 85% of the deposit records compiled. Several types of syngenetic/diagenetic sulfide mineral deposits in rocks of the Belt Supergroup or their equivalents are common in the region and they have been the source of a substantial metal production over the last century. These syngenetic deposits and their metamorphosed/structurally remobilized equivalents were not included in this database; therefore, deposits in the Idaho portion of the Coeur d'Alene district and the Idaho Cobalt belt, for example, have not been included because many of them are believed to be of this type.

  15. A Phenomenological Study on the Synergistic Role of Precious Metals in the Steam Reforming of Logistic Fuels on Bimetal-Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Abdul-Majeed Azad

    2011-01-01

    Full Text Available Fuel processors are required to convert sulfur-laden logistic fuels into hydrogen-rich reformate and deliver to the fuel cell stack with little or no sulfur. Since sulfur poisons and deactivates the reforming catalyst, robust sulfur-tolerant catalysts ought to be developed. In this paper, the development, characterization and evaluation of a series of reforming catalysts containing two noble metals (with total metal loading not exceeding 1 weight percent supported on nanoscale ceria for the steam-reforming of kerosene is reported. Due to inherent synergy, a bimetallic catalyst is superior to its monometallic analog, for the same level of loading. The choice of noble metal combination in the bimetallic formulations plays a vital and meaningful role in their performance. Presence of ruthenium and/or rhodium in formulations containing palladium showed improved sulfur tolerance and significant enhancement in their catalytic activity and stability. Rhodium was responsible for higher hydrogen yields in the logistic fuel reformate. Duration of steady hydrogen production was higher in the case of RhPd (75 h than for RuPd (68 h; hydrogen generation was stable over the longest period (88 h with RuRh containing no Pd. A mechanistic correlation between the characteristic role of precious metals in the presence of each other is discussed.

  16. Retrieval of Au, Ag, Cu precious metals coupled with electric energy production via an unconventional coupled redox fuel cell reactor.

    Science.gov (United States)

    Zhang, Hui-Min; Fan, Zheng; Xu, Wei; Feng, Xiao; Wu, Zu-Cheng

    2017-09-15

    The recovery of heavy metals from aqueous solutions or e-wastes is of upmost importance. Retrieval of Au, Ag, and Cu with electricity generation through building an ethanol-metal coupled redox fuel cells (CRFCs) is demonstrated. The cell was uniquely assembled on PdNi/C anode the electro-oxidation of ethanol takes place to give electrons and then go through the external circuit reducing metal ions to metallic on the cathode, metals are recovered. Taking an example of removal of 100mgL -1 gold in 0.5M HAc-NaAc buffer solution as the catholyte, 2.0M ethanol in 1.0M alkaline solution as the anolyte, an open circuit voltage of 1.4V, more than 96% of gold removal efficiency in 20h, and equivalent energy production of 2.0kWhkg -1 of gold can be readily achieved in this system. When gold and copper ions coexist, it was confirmed that metallic Cu is formed on the cathodic electrode later than metallic Au formation by XPS analysis. Thus, this system can achieve step by step electrodeposition of gold and copper while the two metal ions coexisting. This work develops a new approach to retrieve valuable metals from aqueous solution or e-wastes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. FLIT: Flowing LIquid metal Torus

    Science.gov (United States)

    Kolemen, Egemen; Majeski, Richard; Maingi, Rajesh; Hvasta, Michael

    2017-10-01

    The design and construction of FLIT, Flowing LIquid Torus, at PPPL is presented. FLIT focuses on a liquid metal divertor system suitable for implementation and testing in present-day fusion systems, such as NSTX-U. It is designed as a proof-of-concept fast-flowing liquid metal divertor that can handle heat flux of 10 MW/m2 without an additional cooling system. The 72 cm wide by 107 cm tall torus system consisting of 12 rectangular coils that give 1 Tesla magnetic field in the center and it can operate for greater than 10 seconds at this field. Initially, 30 gallons Galinstan (Ga-In-Sn) will be recirculated using 6 jxB pumps and flow velocities of up to 10 m/s will be achieved on the fully annular divertor plate. FLIT is designed as a flexible machine that will allow experimental testing of various liquid metal injection techniques, study of flow instabilities, and their control in order to prove the feasibility of liquid metal divertor concept for fusion reactors. FLIT: Flowing LIquid metal Torus. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  18. Geology and geochemistry of epithermal precious metal vein systems in the intra-oceanic arcs of Palau and Yap, western Pacific

    Science.gov (United States)

    Rytuba, J.J.; Miller, W.R.

    1990-01-01

    The Palau and Yap arcs are part of an intra-oceanic island-arc-trench system which separates the Pacific and Philippine plates in the western Pacific Ocean. The 350-km-long Palau arc consists of over 200 islands while the 400-km-long Yap arc located to the north has only four major islands exposed. Four of the largest islands in Palau are composed primarily of early Eocene to mid-Miocene volcanic rocks and the four islands comprising Yap contain only Miocene volcanic rocks. Basalt and basaltic andesites of the Babelthuap Formation are the oldest volcanic rocks in Palau and are characterized by high MgO, Ni and Cr and low TiO2 and have a boninitic affinity. They form the central and southeastern parts of Babelthuap Island. Oligocene arc tholeiite flows having an age of 34-35.5 Ma comprise most of the three smaller volcanic islands in Palau and the western part of Babelthuap. The youngest volcanic rocks are dacitic intrusions having an age of 22.7-23.2 Ma. The Yap arc is unusual in that metamorphic rocks up to amphibolite grade form most of the islands. These are underlain by a melange composed of igneous and volcanic clasts as well as clasts from a dismembered copper-gold skarn deposit. Miocene volcanic rocks consisting of flows and volcaniclastic deposits overlie the melange and metamorphic complex. An epithermal precious-metal vein system hosted by flows and flow breccias of the Babelthuap Formation occurs in an area 1.5 km by 1 km on the southeast side of Babelthuap Island. Over 50 veins and mineralized breccias ranging up to 2 m in width and having a strike length up to 500 m contain from trace to 13.0 ppm gold. The veins consist of quartz with varying amounts of sulfides and iron oxides after sulfides and the mineralized breccias consist of brecciated country rock cemented by quartz and iron oxides after sulfides. The veins and mineralized breccias generally dip within 15?? of vertical and have two preferred orientations, north-northwest and north

  19. Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans.

    Science.gov (United States)

    Creamer, Neil J; Baxter-Plant, Victoria S; Henderson, John; Potter, M; Macaskie, Lynne E

    2006-09-01

    Biomass of Desulfovibrio desulfuricans was used to recover Au(III) as Au(0) from test solutions and from waste electronic scrap leachate. Au(0) was precipitated extracellularly by a different mechanism from the biodeposition of Pd(0). The presence of Cu(2+) ( approximately 2000 mg/l) in the leachate inhibited the hydrogenase-mediated removal of Pd(II) but pre-palladisation of the cells in the absence of added Cu(2+) facilitated removal of Pd(II) from the leachate and more than 95% of the Pd(II) was removed autocatalytically from a test solution supplemented with Cu(II) and Pd(II). Metal recovery was demonstrated in a gas-lift electrobioreactor with electrochemically generated hydrogen, followed by precipitation of recovered metal under gravity. A 3-stage bioseparation process for the recovery of Au(III), Pd(II) and Cu(II) is proposed.

  20. Recovery of copper and precious metals from chalcopyrite low grade ores - choice between flotation or microorganisms leaching

    OpenAIRE

    Krstev, Boris; Golomeov, Blagoj; Konzulov, Gerasim; Gocev, Zivko

    1998-01-01

    The conventional flotation technologies cannot provide fair results when to applied to very low grade ores or to "refractory" ores. This class include intimate and nonuniform mineral associations, with partialy oxidized minerals and high secondary mineral content and also high soluble salt content, pre-activated minerals because of the excessive permeability of the deposit and of the intense circulation of waters with heavy metal ions etc. Bacterial oxidation as a means to the recovery of met...

  1. Liquid metal Flow Meter - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  2. Risk management of precious metals

    NARCIS (Netherlands)

    S.M. Hammoudeh (Shawkat); F. Malik (Farooq); M.J. McAleer (Michael)

    2010-01-01

    textabstractThis paper examines volatility and correlation dynamics in price returns of gold, silver, platinum and palladium, and explores the corresponding risk management implications for market risk and hedging. Value-at-Risk (VaR) is used to analyze the downside market risk associated with

  3. Lattice Boltzmann Pore-Scale Investigation of Coupled Physical-electrochemical Processes in C/Pt and Non-Precious Metal Cathode Catalyst Layers in Proton Exchange Membrane Fuel Cells

    International Nuclear Information System (INIS)

    Chen, Li; Wu, Gang; Holby, Edward F; Zelenay, Piotr; Tao, Wen-Quan; Kang, Qinjun

    2015-01-01

    Highlights: • Nanoscale structures of catalyst layer are reconstructed. • Pore-scale simulation is performed to predict macroscopic transport properties. • Reactive transport in catalyst layer with non-precious metal and Pt catalysts is studied. • Mesopores rather than micropores are required to enhance mass transport. - Abstract: High-resolution porous structures of catalyst layers (CLs) including non-precious metal catalysts (NPMCs) or Pt for proton exchange membrane fuel cells are reconstructed using the quartet structure generation set. The nanoscale structures are analyzed in terms of pore size distribution, specific surface area, and phase connectivity. Pore-scale simulation methods based on the lattice Boltzmann method are developed to predict the macroscopic transport properties in CLs. The non-uniform distribution of ionomer in CL generates more tortuous pathways for reactant transport, greatly reducing the effective diffusivity. The tortuosity of CLs is much higher than that adopted by the Bruggeman equation. Knudsen diffusion plays a significant role in oxygen diffusion and significantly reduces the effective diffusivity. Reactive transport inside the CLs is also investigated. Although the reactive surface area of the non-precious metal catalyst (NPMC) CL is much higher than that of the Pt CL, the oxygen reaction rate is lower in the NPMC CL due to the much lower reaction rate coefficient. Although pores of a few nanometers in size can increase the number of reactive sites in NPMC CLs, they contribute little to enhance the mass transport. Mesopores, which are a few tens of nanometers or larger in size, are shown to be required in order to increase the mass transport rate

  4. A metal-free organic-inorganic aqueous flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Huskinson, B; Marshak, MP; Suh, C; Er, S; Gerhardt, MR; Galvin, CJ; Chen, XD; Aspuru-Guzik, A; Gordon, RG; Aziz, MJ

    2014-01-08

    As the fraction of electricity generation from intermittent renewable sources-such as solar or wind-grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output(1,2). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form(3-5). Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts(6,7). Here we describe a class of energy storage materials that exploits the favourable chemical and electro-chemical properties of a family of molecules known as quinones. The example we demonstrate is ametal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br-2/Br- redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals(8). This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of p-aromatic redox-active organic molecules instead of redox-active metals

  5. Enzyme leaching of surficial geochemical samples for detecting hydromorphic trace-element anomalies associated with precious-metal mineralized bedrock buried beneath glacial overburden in northern Minnesota

    Science.gov (United States)

    Clark, Robert J.; Meier, A.L.; Riddle, G.; ,

    1990-01-01

    One objective of the International Falls and Roseau, Minnesota, CUSMAP projects was to develop a means of conducting regional-scale geochemical surveys in areas where bedrock is buried beneath complex glacially derived overburden. Partial analysis of B-horizon soils offered hope for detecting subtle hydromorphic trace-element dispersion patterns. An enzyme-based partial leach selectively removes metals from oxide coatings on the surfaces of soil materials without attacking their matrix. Most trace-element concentrations in the resulting solutions are in the part-per-trillion to low part-per-billion range, necessitating determinations by inductively coupled plasma/mass spectrometry. The resulting data show greater contrasts for many trace elements than with other techniques tested. Spatially, many trace metal anomalies are locally discontinuous, but anomalous trends within larger areas are apparent. In many instances, the source for an anomaly seems to be either basal till or bedrock. Ground water flow is probably the most important mechanism for transporting metals toward the surface, although ionic diffusion, electrochemical gradients, and capillary action may play a role in anomaly dispersal. Sample sites near the Rainy Lake-Seine River fault zone, a regional shear zone, often have anomalous concentrations of a variety of metals, commonly including Zn and/or one or more metals which substitute for Zn in sphalerite (Cd, Ge, Ga, and Sn). Shifts in background concentrations of Bi, Sb, and As show a trend across the area indicating a possible regional zoning of lode-Au mineralization. Soil anomalies of Ag, Co, and Tl parallel basement structures, suggesting areas that may have potential for Cobalt/Thunder Baytype silver viens. An area around Baudette, Minnesota, which is underlain by quartz-chlorite-carbonate-altered shear zones, is anomalous in Ag, As, Bi, Co, Mo, Te, Tl, and W. Anomalies of Ag, As, Bi, Te, and W tend to follow the fault zones, suggesting potential

  6. Sinuous Flow in Cutting of Metals

    Science.gov (United States)

    Yeung, Ho; Viswanathan, Koushik; Udupa, Anirudh; Mahato, Anirban; Chandrasekar, Srinivasan

    2017-11-01

    Using in situ high-speed imaging, we unveil details of a highly unsteady plastic flow mode in the cutting of annealed and highly strain-hardening metals. This mesoscopic flow mode, termed sinuous flow, is characterized by repeated material folding, large rotation, and energy dissipation. Sinuous flow effects a very large shape transformation, with local strains of ten or more, and results in a characteristic mushroomlike surface morphology that is quite distinct from the well-known morphologies of metal-cutting chips. Importantly, the attributes of this unsteady flow are also fundamentally different from other well-established unsteady plastic flows in large-strain deformation, like adiabatic shear bands. The nucleation and development of sinuous flow, its dependence on material properties, and its manifestation across material systems are demonstrated. Plastic buckling and grain-scale heterogeneity are found to play key roles in triggering this flow at surfaces. Implications for modeling and understanding flow stability in large-strain plastic deformation, surface quality, and preparation of near-strain-free surfaces by cutting are discussed. The results point to the inadequacy of the widely used shear-zone models, even for ductile metals.

  7. Non-Precious Bimetallic Catalysts for Selective Dehydrogenation of an Organic Chemical Hydride System

    KAUST Repository

    Shaikh Ali, Anaam

    2015-07-06

    Methylcyclohexane (MCH)-Toluene (TOL) chemical hydride cycles as a hydrogen carrier system is successful with the selective dehydrogenation reaction of MCH to TOL, which has been achieved only using precious Pt-based catalysts. Herein, we report improved selectivity using non-precious metal nickel-based bimetallic catalysts, where the second metal occupies the unselective step sites.

  8. Critical and precious materials consumption and requirement in wind energy system in the EU 27

    International Nuclear Information System (INIS)

    Kim, Junbeum; Guillaume, Bertrand; Chung, Jinwook; Hwang, Yongwoo

    2015-01-01

    Graphical abstract: Critical and precious materials requirement in the wind energy system in the EU 27 by 2020. - Highlights: • The critical and precious materials consumption were calculated in wind energy system in the EU 27. • The future requirement of critical and precious materials was estimated in the EU 27 by 2020. • Fluorspar, silver, magnesium, indium, gold and tantalum are the mainly used and required materials. • This research approach could be applied to other industrial sectors as well as other renewable technology. - Abstract: Critical materials as well as rare earth elements and precious metals such as platinum, gold and silver are used significantly for computer hard disk drives, mobile phones, hybrid electric vehicles, batteries, renewable energy system and many other applications. It is therefore important to quantify and estimate both current stocks and flows of such materials, as well as future requirement for industries and economies. In this study, which is focused on wind energy system in the European Union (EU) 27, the current consumption and future requirement of critical and precious materials were calculated and estimated using the wind power production dataset from ecoinvent and data from National Renewable Energy Action Plan (NREAP). It is shown that fluorspar has been the most consumed material to date, and will probably be the most required material in the future. Among other critical and valuable materials, the main materials used for current wind energy system are silver, magnesium, indium, gold and tantalum. These materials will also be required significantly by 2020 for the wind energy system in the EU 27. It is argued that these results should be connected to the future energy and material policy and management

  9. Liquid metal flow measurement by neutron radiography

    International Nuclear Information System (INIS)

    Takenaka, N.; Ono, A.; Matsubayashi, M.; Tsuruno, A.

    1996-01-01

    Visualization of a liquid metal flow and image processing methods to measure the vector field are carried out by real-time neutron radiography. The JRR-3M real-time thermal neutron radiography facility in the Japan Atomic Energy Research Institute was used. Lead-bismuth eutectic was used as a working fluid. Particles made from a gold-cadmium intermetallic compound (AuCd 3 ) were used as the tracer for the visualization. The flow vector field was obtained by image processing methods. It was shown that the liquid metal flow vector field was obtainable by real-time neutron radiography when the attenuation of neutron rays due to the liquid metal was less than l/e and the particle size of the tracer was larger than one image element size digitized for the image processing. (orig.)

  10. Flow balancing in liquid metal blankets

    International Nuclear Information System (INIS)

    Tillack, M.S.; Morley, N.B.

    1995-01-01

    Non-uniform flow distribution between parallel channels is one of the most serious concerns for self-cooled liquid metal blankets with electrically insulated walls. We show that uncertainties in flow distribution can be dramatically reduced by relatively simple design modifications. Several design features which impose flow uniformity by electrically coupling parallel channels are surveyed. Basic mechanisms for ''flow balancing'' are described, and a particular self-regulating concept using discrete passive electrodes is proposed for the US ITER advanced blanket concept. Scoping calculations suggest that this simple technique can be very powerful in equalizing the flow, even with massive insulator failures in individual channels. More detailed analyses and experimental verification will be required to demonstrate this concept for ITER. (orig.)

  11. Metal Flow in Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2006-01-01

    The plastic deformation field in Friction Stir Welding (FSW) is compared to that in metal cutting. A shear surface around the FSW tool analogous to the metal cutting shear plane is identified and comprises the basis of the "rotating plug" flow field model and the "wiping" model of tool interaction with weld metal. Within the context of these models: The FSW shear rate is estimated to be comparable to metal cutting shear rates. The effect of tool geometry on the FSW shear surface is discussed and related to published torque measurements. Various FS W structural features are explained, including a difference in structure of bimetallic welds when alloys on the advancing and retreating sides of the weld seam are exchanged. The joining mechanism and critical parameters of the FSW process are made clear.

  12. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Branko N. Popov

    2009-02-20

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  13. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Branko N. Popov

    2009-03-03

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  14. Mineralogy of the epithermal precious and base metal deposit Banská Hodruša at the Rozália Mine (Slovakia)

    Science.gov (United States)

    Kubač, Alexander; Chovan, Martin; Koděra, Peter; Kyle, J. Richard; Žitňan, Peter; Lexa, Jaroslav; Vojtko, Rastislav

    2018-03-01

    The Au-Ag-Pb-Zn-Cu epithermal deposit Banská Hodruša of intermediate-sulphidation type is located in the Middle Miocene Štiavnica stratovolcano on the inner side of the Carpathian arc in Slovakia. This deposit represents an unusual subhorizontal multi-stage vein system, related to processes of underground cauldron subsidence and exhumation of a subvolcanic granodiorite pluton. Veins are developed on a low-angle normal shear zone, possibly representing a detachment zone in andesitic wall rocks that formed during emplacement and exhumation of the granodiorite pluton. The deposit consists of two parts, separated by a thick sill of quartz-diorite porphyry. The eastern part is currently mined, and the western part has already been depleted. The Banská Hodruša mineralization was formed during four stages: (1) low-grade silicified breccia at subhorizontal structures at the base of the deposit; (2) stockwork of steep veins with rhodonite-rhodochrosite, quartz-sulphide-carbonate and quartz-gold assemblages; (3) thin quartz-gold veins with medium dip in tension cracks inside the shear zone and complementary detachment hosted quartz-base metals-gold veins; (4) Post-ore veins. Gold and electrum (920-730) occur as intergrowths with base metal sulphides or hosted in quartz and carbonates, accompanied by Au-Ag tellurides (hessite, petzite). Rare Te-polybasite and Cu-cervelleite result from re-equilibration of early Te-bearing minerals during cooling. Sulphide minerals include low Fe sphalerite ( 1.25 wt%), galena, chalcopyrite, and pyrite. The wall rock alteration is represented mostly by adularia, illite, chlorite, quartz, calcite and pyrite. Precipitation of gold, Au-Ag tellurides, Mn-bearing minerals and adularia resulted from boiling of fluids due to hydraulic fracturing, as well as opening of dilatational structures within the shear zone.

  15. Liquid metal coolant flow rate regulation

    International Nuclear Information System (INIS)

    Vitkovskij, I.V.; Glukhikh, V.A.; Kirillov, I.R.; Smirnov, A.M.

    1981-01-01

    Some aspects of fast reactor and experimental bench operation related to liquid metal flow rate regulation are considered. Requirements to the devices for the flow rate regulation are formulated. A new type of these devices namely magnetohydrodynamic (MHD) throttles is described. Structural peculiarities of MHD throttles of different types are described as well. It is noted that the MHD throttles with a screw channel have the best energy mass indices. On the basis of the comparison of the MHD throttles with mechanical valves it is concluded that the MHD throttles described are useful for regulating the flow rates of any working media. Smoothness and accuracy of the flow rate regulation by the throttles are determined by the electric control circuit and may be practically anyone. The total coefficient of hydraulic losses in the throttle channel in the absence of a magnetic field is ten and more times lesser than in completely open mechanical valve. Electromagnetic time constant of the MHD throttles does not exceed several tenths of a second [ru

  16. Substantiation of the hydrodynamic disintegration of hydraulic fluid’s mineral component of high-clay sand in precious metals placers

    Directory of Open Access Journals (Sweden)

    N.P. Khrunina

    2018-03-01

    Full Text Available General regularities and theoretical approaches determining hydroimpulsive effects on the mineral component of the hydraulic fluid are analyzed, with reference to the disintegration of high-clay sands of gold-bearing placers. Theoretical conclusions on the hydrodynamic effect on the solid component of the hydraulic fluid give insight into emerging processes in multicomponent media under hydrodynamic influences initiated by various sources of physical and mechanical influence. It is noted that the theoretical justification of the structurally complex hydrodynamic effect on the hydraulic fluid with the formation of phenomena arising from the collision of solid components with each other and obstacles includes the consideration of changes in such force characteristics as speed, pressure, flow power, and also changes in design parameters and characteristics of the environment. A conceptual approach is given to the theoretical substantiation of the disintegration of the hydraulic fluid’s mineral component using the example of the proposed installation. Calculation of economic indicators for the use of a hydrodynamic generator in comparison with processes based on known technologies has shown significant advantages of using the proposed installation, which can increase productivity and quality production indicators.

  17. Stocks, Flows, and Distribution of Critical Metals in Embedded Electronics in Passenger Vehicles.

    Science.gov (United States)

    Restrepo, Eliette; Løvik, Amund N; Wäger, Patrick; Widmer, Rolf; Lonka, Radek; Müller, Daniel B

    2017-02-07

    One of the major applications of critical metals (CMs) is in electrical and electronic equipment (EEE), which is increasingly embedded in other products, notably passenger vehicles. However, recycling strategies for future CM quantities in end-of-life vehicles (ELVs) are poorly understood, mainly due to a limited understating of the complexity of automotive embedded EEE. We introduce a harmonization of the network structure of automotive electronics that enables a comprehensive quantification of CMs in all embedded EEE in a vehicle. This network is combined with a material flow analysis along the vehicle lifecycle in Switzerland to quantify the stocks and flows of Ag, Au, Pd, Ru, Dy, La, Nd, and Co in automotive embedded EEE. In vehicles in use, we calculated 5 -2 +3 t precious metals in controllers embedded in all vehicle types and 220 -60 +90 t rare earth elements (REE); found mainly in five electric motors: alternator, starter, radiator-fan and electronic power steering motor embedded in conventional passenger vehicles and drive motor/generator embedded in hybrid and electric vehicles. Dismantling these devices before ELV shredding, as well as postshredder treatment of automobile shredder residue may increase the recovery of CMs from ELVs. Environmental and economic implications of such recycling strategies must be considered.

  18. Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation.

    Science.gov (United States)

    Behnamfard, Ali; Salarirad, Mohammad Mehdi; Veglio, Francesco

    2013-11-01

    A novel hydrometallurgical process was proposed for selective recovery of Cu, Ag, Au and Pd from waste printed circuit boards (PCBs). More than 99% of copper content was dissolved by using two consecutive sulfuric acid leaching steps in the presence of H2O2 as oxidizing agents. The solid residue of 2nd leaching step was treated by acidic thiourea in the presence of ferric iron as oxidizing agent and 85.76% Au and 71.36% Ag dissolution was achieved. The precipitation of Au and Ag from acidic thiourea leachate was investigated by using different amounts of sodium borohydride (SBH) as a reducing agent. The leaching of Pd and remained gold from the solid reside of 3rd leaching step was performed in NaClO-HCl-H2O2 leaching system and the effect of different parameters was investigated. The leaching of Pd and specially Au increased by increasing the NaClO concentration up to 10V% and any further increasing the NaClO concentration has a negligible effect. The leaching of Pd and Au increased by increasing the HCl concentration from 2.5 to 5M. The leaching of Pd and Au were endothermic and raising the temperature had a positive effect on leaching efficiency. The kinetics of Pd leaching was quite fast and after 30min complete leaching of Pd was achieved, while the leaching of Au need a longer contact time. The best conditions for leaching of Pd and Au in NaClO-HCl-H2O2 leaching system were determined to be 5M HCl, 1V% H2O2, 10V% NaClO at 336K for 3h with a solid/liquid ratio of 1/10. 100% of Pd and Au of what was in the chloride leachate were precipitated by using 2g/L SBH. Finally, a process flow sheet for the recovery of Cu, Ag, Au and Pd from PCB was proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Capillary Flow of Liquid Metals in Brazing

    Science.gov (United States)

    Dehsara, Mohammad

    Capillary flow is driven or controlled by capillary forces, exerted at the triple line where the fluid phases meet the solid boundary. Phase field (PF) models naturally accommodate diffusive triple line motion with variable contact angle, thus allowing for the no-slip boundary condition without the stress singularities. Moreover, they are uniquely suited for modeling of topological discontinuities which often arise during capillary flows. In this study, we consider diffusive triple line motion within two PF models: the compositionally compressible (CC) and the incompressible (IC) models. We derive the IC model as a systematic approximation to the CC model, based on a suitable choice of continuum velocity field. The CC model, applied to the fluids of dissimilar mass densities, exhibits a computational instability at the triple line. The IC model perfectly represents the analytic equilibria. We develop the parameter identification procedure and show that the triple line kinetics can be well represented by the IC model's diffusive boundary condition. The IC model is first tested by benchmarking the phase-field and experimental kinetics of water, and silicone oil spreading over the glass plates in which two systems do not interact with the substrate. Then, two high-temperature physical settings involving spreading of the molten Al-Si alloy: one over a rough wetting substrate, the other over a non-wetting substrate are modeled in a T-joint structure which is a typical geometric configuration for many brazing and soldering applications. Surface roughness directly influences the spreading of the molten metal by causing break-ups of the liquid film and trapping the liquid away from the joint. In the early stages of capillary flow over non-wetting surface, the melting and flow are concurrent, so that the kinetics of wetting is strongly affected by the variations in effective viscosity of the partially molten metal. We define adequate time-dependent functions for the

  20. Heat transfer characteristics of alkali metals flowing across tube banks

    International Nuclear Information System (INIS)

    Sugiyama, K.; Ishiguro, R.; Kojima, Y.; Kanaoka, H.

    2004-01-01

    For the purpose of getting heat transfer coefficients of alkali metals flowing across tube banks at an acceptable level, we propose to use an inviscid-irrotational flow model, which is based on our flow visualization experiment. We show that the heat transfer coefficients obtained for the condition where only the test rod is heated in tube banks considerably differ from those obtained for the condition where all the rods are heated, because of interference between thick thermal boundary layers of alkali metals. We also confirm that the analytical values obtained by this flow model are in a reasonable agreement with experimental values. (author)

  1. Flow visualization through metal enclosures with neutron radiography

    International Nuclear Information System (INIS)

    Cimbala, J.M.; Sathianathan, D.; Cosgrove, S.A.

    1989-01-01

    Many practical fluid flow problems involve flow inside metal shrouds (valves, combustors, boilers, turbomachinery, etc.) where visual access is not available. For flows under extreme pressure or heat, glass or transparent plastic can not be used; a flow visualization technique which permits visualization through metal containers is needed in these cases. Since neutrons can penetrate metal casings, neutron radiography has been developed for application to fluid flow visualization. This technique involves imaging of neutron opaque tracer materials, such as solid or fluid particles or streaklines, as they convect in neutron transparent ambient fluids. Surface flow visualization is also possible by using neutron opaque tufts. An extension of the surface tuft technique has also been developed, enabling the visualization of flow a patterns away from solid surfaces. This paper presents a summary of the various flow visualization techniques developed in the authors' laboratory, along with examples which illustrate how these techniques may be applied to practical fluid flow problems. These include flow over a circular cylinder, the recirculation pattern formed by a jet exhausting into a tank, and the flow pattern inside a rotating automotive torque converter

  2. Mechanisms of current flow in metal-semiconductor ohmic contacts

    International Nuclear Information System (INIS)

    Blank, T. V.; Gol'dberg, Yu. A.

    2007-01-01

    Published data on the properties of metal-semiconductor ohmic contacts and mechanisms of current flow in these contacts (thermionic emission, field emission, thermal-field emission, and also current flow through metal shunts) are reviewed. Theoretical dependences of the resistance of an ohmic contact on temperature and the charge-carrier concentration in a semiconductor were compared with experimental data on ohmic contacts to II-VI semiconductors (ZnSe, ZnO), III-V semiconductors (GaN, AlN, InN, GaAs, GaP, InP), Group IV semiconductors (SiC, diamond), and alloys of these semiconductors. In ohmic contacts based on lightly doped semiconductors, the main mechanism of current flow is thermionic emission with the metal-semiconductor potential barrier height equal to 0.1-0.2 eV. In ohmic contacts based on heavily doped semiconductors, the current flow is effected owing to the field emission, while the metal-semiconductor potential barrier height is equal to 0.3-0.5 eV. In alloyed In contacts to GaP and GaN, a mechanism of current flow that is not characteristic of Schottky diodes (current flow through metal shunts formed by deposition of metal atoms onto dislocations or other imperfections in semiconductors) is observed

  3. Environmental challenges of anthropogenic metals flows and cycles

    DEFF Research Database (Denmark)

    van der Voet, Ester; Salminen, Reijo; Eckelman, Matthew

    This report from the UNEP-hosted International Resource Panel, Environmental Risk and Challenges of Anthropogenic Metals Flows and Cycles, gives a clear picture of the potential environmental impacts of metals at different stages of the life-cycle while linking with other areas of resource use...

  4. Fluid Flow Behaviour under Different Gases and Flow Rate during Gas Metal Arc Welding

    OpenAIRE

    Jaison Peter

    2013-01-01

    Gas metal arc welding (GMAW) is a highly efficient and fast process for fabricating high quality weld. High quality welds are fabricated by proper selection of consumable includes gas and filler metals. The optimum flow rate of gas will ensure the proper quality of weld. In this project, a fluid flow behavior of different flow rate is modeled and the change quality will be studied.

  5. What Can We Learn in Electrocatalysis, from Nanoparticulated Precious and/or Non-Precious Catalytic Centers Interacting with Their Support?

    Directory of Open Access Journals (Sweden)

    Juan Manuel Mora-Hernández

    2016-09-01

    Full Text Available This review is devoted to discussing the state of the art in the relevant aspects of the synthesis of novel precious and non-precious electrocatalysts. It covers the production of Pt- and Pd-based electrocatalysts synthesized by the carbonyl chemical route, the synthesis description for the preparation of the most catalytically active transition metal chalcogenides, then the employment of free-surfactants synthesis routes to produce non-precious electrocatalysts. A compilation of the best precious electrocatalysts to perform the hydrogen oxidation reaction (HOR is described; a section is devoted to the synthesis and electrocatalytic evaluation of non-precious materials which can be used to perform the HOR in alkaline medium. Apropos the oxygen reduction reaction (ORR, the synthesis and modification of the supports is also discussed as well, aiming at describing the state of the art to improve kinetics of low temperature fuel cell reactions via the hybridization process of the catalytic center with a variety of carbon-based, and ceramic-carbon supports. Last, but not least, the review covers the experimental half-cells results in a micro-fuel cell platform obtained in our laboratory, and by other workers, analyzing the history of the first micro-fuel cell systems and their tailoring throughout the time bestowing to the design and operating conditions.

  6. Mechanical annealing in the flow of supercooled metallic liquid

    International Nuclear Information System (INIS)

    Zhang, Meng; Dai, Lan Hong; Liu, Lin

    2014-01-01

    Flow induced structural evolution in a supercooled metallic liquid Vit106a (Zr 58.5 Cu 15.6 Al 10.3 Ni 12.8 Nb 2.8 , at. %) was investigated via uni-axial compression combined with differential scanning calorimeter (DSC). Compression tests at strain rates covering the transition from Newtonian flow to non-Newtonian flow and at the same strain rate 2 × 10 −1 s −1 to different strains were performed at the end of glass transition (T g-end  = 703 K). The relaxation enthalpies measured by DSC indicate that the samples underwent non-Newtonian flow contain more free volume than the thermally annealed sample (703 K, 4 min), while the samples underwent Newtonian flow contain less, namely, the free volume of supercooled metallic liquids increases in non-Newtonian flow, while decreases in Newtonian flow. The oscillated variation of the relaxation enthalpies of the samples deformed at the same strain rate 2 × 10 −1 s −1 to different strains confirms that the decrease of free volume was caused by flow stress, i.e., “mechanical annealing.” Micro-hardness tests were also performed to show a similar structural evolution tendency. Based on the obtained results, the stress-temperature scaling in the glass transition of metallic glasses are supported experimentally, as stress plays a role similar to temperature in the creation and annihilation of free volume. In addition, a widening perspective angle on the glass transition of metallic glasses by exploring the 3-dimensional stress-temperature-enthalpy phase diagram is presented. The implications of the observed mechanical annealing effect on the amorphous structure and the work-hardening mechanism of metallic glasses are elucidated based on atomic level stress model

  7. Non-precious electrocatalysts for polymer electrolyte fuel cell cathode

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.; Chung, H.T.; Zelenay, P. [Los Alamos National Laboratory, Los Alamos, NM (United States). Materials Physics and Applications

    2009-07-01

    This study investigated the feasibility of reducing the high cost of polymer electrolyte fuel cell stacks by using non-precious catalysts for the oxygen reduction reaction (ORR). Most research interest has focused on ORR catalysts based on heat-treated precursors of transition metals, nitrogen and carbon. While initial ORR activity of such catalysts has improved in recent years, it is not sufficient for automotive use. The long-term stability of these catalysts is also insufficient. The activity and durability of the catalysts must be improved significantly in order to overcome these limitations. In addition, innovative electrode structures must be developed to allow for operation with thick catalyst layers. The ORR reaction mechanism must also be well understood in terms of the active reaction site. This presentation summarized non-precious ORR catalysis research at Los Alamos, with particular focus on catalysts obtained by heat treatment of polymers (such as polyaniline) on high-surface-area carbon in the presence of transition metals, cobalt and iron. These heat-treated catalysts achieve respectable ORR activity and improved stability in both aqueous and polymer electrolytes. Electrochemical and non-electrochemical techniques such as XPS, XANES and XAFS were used to examine the source of ORR activity of these heat-treated catalysts.

  8. Liquid metal flow control by DC electromagnetic pumps

    International Nuclear Information System (INIS)

    Borges, Eduardo Madeira; Braz Filho, Francisco Antonio; Guimaraes, Lamartine Nogueira Frutuoso

    2006-01-01

    The cooling system of high-density thermal power requires fluids of high thermal conductivity, such as liquid metals. Electromagnetic pumps can be used to liquid metal fluid flow control in cooling circuits. The operation of electromagnetic pumps used to flow control is based on Lorentz force. This force can be achieved by magnetic field and electric current interaction, controlled by external independent power supplies. This work presents the electromagnetic pump operational principles, the IEAv development scheme and the BEMC-1 simulation code. The theoretical results of BEMC-1 simulation are compared to electromagnetic pump operation experimental data, validating the BEMC-1 code. This code is used to evaluate the DC electromagnetic pump performance applied to Mercury flow control and others liquid metal such as Sodium, Lead and Bismuth, used in nuclear fast reactors. (author)

  9. Analysis of archaeological precious stones from Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Šmit, Ž. [Facully of Mathematics and Physics, University of Ljubljana (Slovenia); Fajfar, H. [Jožef Stefan Institute, Ljubljana (Slovenia); Jeršsek, M. [Slovenian Museum of Natural History, Ljubljana (Slovenia); Knific, T. [National Museum of Slovenia, Ljubljana (Slovenia); Kržic, A. [Higher Vocational Centre, Sezana (Slovenia); Lux, J. [Institute for the Protection of Cultural Heritage of Slovenia, Ljubljana (Slovenia)

    2013-07-01

    Full text: Precious stones have been attractive pieces of jewelry since ancient times. However, due to the limited sources of origin, the quality of applied items mainly depended on long-range commercial relations, but also on fashion. In Antiquity and Late Antiquity, stones much used and sought for were emeralds and garnets. In Slovenia, emeralds are typically related to the early Roman period and are incorporated in the finds of gold jewelry from the graves. Emerald is generally beryl colored by admixture of chromium, though green colors can also be due to admixtures of iron or vanadium. Garnets were increasingly used by various nations of the People Migration period, and mounted in gilded silver or gold objects by 'cloisonne' or 'en cabochon' techniques. In Slovenia, numerous jewelry items containing garnets were found in the graves and in post-Roman fortified settlements. Geologically, according to the admixtures of metal ions, the garnets are divided into several species, while the most common among archaeological finds are almandines and pyropes and their intermediate types. It is also common to divide garnets into five groups, the first two originating from India, the third from Ceylon and the fifth from Czech Republic. The measurements involved presumed emeralds from Roman jewelry finds in Slovenia and comparative samples of beryl from Siberia and Habachtal in Austria. The analysis determined the coloring ions and showed relations between particular stones. For garnets, ten samples from brooches, earrings and rings were selected for the analysis on the basis of previous micro Raman examination. The analysis was performed by a combined PIXE-PIGE technique using proton beam in air. The light elements of Na, Mg, AI were determined according to the emitted gamma rays, while X-rays were used for the elements heavier than silicon. Two X-ray spectra were measured in each measuring point, soft and hard X-ray; the latter was obtained using an

  10. Analysis of archaeological precious stones from Slovenia

    International Nuclear Information System (INIS)

    Šmit, Ž.; Fajfar, H.; Jeršsek, M.; Knific, T.; Kržic, A.; Lux, J.

    2013-01-01

    Full text: Precious stones have been attractive pieces of jewelry since ancient times. However, due to the limited sources of origin, the quality of applied items mainly depended on long-range commercial relations, but also on fashion. In Antiquity and Late Antiquity, stones much used and sought for were emeralds and garnets. In Slovenia, emeralds are typically related to the early Roman period and are incorporated in the finds of gold jewelry from the graves. Emerald is generally beryl colored by admixture of chromium, though green colors can also be due to admixtures of iron or vanadium. Garnets were increasingly used by various nations of the People Migration period, and mounted in gilded silver or gold objects by 'cloisonne' or 'en cabochon' techniques. In Slovenia, numerous jewelry items containing garnets were found in the graves and in post-Roman fortified settlements. Geologically, according to the admixtures of metal ions, the garnets are divided into several species, while the most common among archaeological finds are almandines and pyropes and their intermediate types. It is also common to divide garnets into five groups, the first two originating from India, the third from Ceylon and the fifth from Czech Republic. The measurements involved presumed emeralds from Roman jewelry finds in Slovenia and comparative samples of beryl from Siberia and Habachtal in Austria. The analysis determined the coloring ions and showed relations between particular stones. For garnets, ten samples from brooches, earrings and rings were selected for the analysis on the basis of previous micro Raman examination. The analysis was performed by a combined PIXE-PIGE technique using proton beam in air. The light elements of Na, Mg, AI were determined according to the emitted gamma rays, while X-rays were used for the elements heavier than silicon. Two X-ray spectra were measured in each measuring point, soft and hard X-ray; the latter was obtained using an

  11. Metal flows of the circumgalactic medium, and the metal budget in galactic haloes

    Science.gov (United States)

    Muratov, Alexander L.; Kereš, Dušan; Faucher-Giguère, Claude-André; Hopkins, Philip F.; Ma, Xiangcheng; Anglés-Alcázar, Daniel; Chan, T. K.; Torrey, Paul; Hafen, Zachary H.; Quataert, Eliot; Murray, Norman

    2017-07-01

    We present an analysis of the flow of metals through the circumgalactic medium (CGM) in the Feedback in Realistic Environments (FIRE) simulations of galaxy formation, ranging from isolated dwarfs to L* galaxies. We find that nearly all metals produced in high-redshift galaxies are carried out in winds that reach 0.25Rvir. When measured at 0.25Rvir the metallicity of outflows is slightly higher than the interstellar medium (ISM) metallicity. Many metals thus reside in the CGM. Cooling and recycling from this reservoir determine the metal budget in the ISM. The outflowing metal flux decreases by a factor of ˜2-5 between 0.25Rvir and Rvir. Furthermore, outflow metallicity is typically lower at Rvir owing to dilution of the remaining outflow by metal-poor material swept up from the CGM. The inflow metallicity at Rvir is generally low, but outflow and inflow metallicities are similar in the inner halo. At low redshift, massive galaxies no longer generate outflows that reach the CGM, causing a divergence in CGM and ISM metallicity. Dwarf galaxies continue to generate outflows, although they preferentially retain metal ejecta. In all but the least massive galaxy considered, a majority of the metals are within the halo at z = 0. We measure the fraction of metals in CGM, ISM and stars, and quantify the thermal state of CGM metals in each halo. The total amount of metals in the low-redshift CGM of two simulated L* galaxies is consistent with estimates from the Cosmic Origin Spectrograph haloes survey, while for the other two it appears to be lower.

  12. Combustion of metal agglomerates in a solid rocket core flow

    Science.gov (United States)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  13. The Administration of Tibetan Precious Pills

    Science.gov (United States)

    Czaja, Olaf

    2016-01-01

    Precious pills represent a special kind of Tibetan drug that once was, and still is, highly sought after by Tibetan, Chinese, and Mongolian patients. Such pills are generally taken as a potent prophylactic remedy, and can be used to cure various diseases. The present study seeks to discuss the dispensation and efficacy of precious pills according to the presentations of historical Tibetan medical scholars. Several treatises dealing with these instructions will be analysed, thereby revealing their underlying concepts, and highlighting their points of both general consensus and disagreement. The analysis of these detailed instructions will reveal the fact that these precious pills were not merely given to a patient but, in order to ensure their full efficacy, involved an elaborate regimen concerning three chronological periods: (1) the time of preparation, (2) the time of dispensation, and (3) the time after dispensation. Thus the present study surveys not only the ritual empowerment of drugs in Tibetan medicine, but also the importance of social relationships between doctors and patients in Tibetan medical history. PMID:27980504

  14. Revealing flow behaviors of metallic glass based on activation of flow units

    Energy Technology Data Exchange (ETDEWEB)

    Ge, T. P.; Wang, W. H.; Bai, H. Y., E-mail: hybai@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-05-28

    Atomic level flow plays a critical role in the mechanical behavior of metallic glass (MG) while the connection between the flow and the heterogeneous microstructure of the glass remains unclear. We describe the heterogeneity of MGs as the elastic matrix with “inclusions” of nano-scale liquid-like flow units, and the plastic flow behavior of MGs is considered to be accommodated by the flow units. We show that the model can explain the various deformation behaviors, the transformation from inhomogeneous deformation to homogeneous flow upon strain rate or temperature, and the deformation map in MGs, which might provide insights into the flow mechanisms in glasses and inspiration for improving the plasticity of MGs.

  15. Dual-plane ultrasound flow measurements in liquid metals

    International Nuclear Information System (INIS)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Czarske, Jürgen; Räbiger, Dirk; Franke, Sven; Eckert, Sven

    2013-01-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies. (paper)

  16. Dual-plane ultrasound flow measurements in liquid metals

    Science.gov (United States)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen

    2013-05-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.

  17. Surface flow in severe plastic deformation of metals by sliding

    International Nuclear Information System (INIS)

    Mahato, A; Yeung, H; Chandrasekar, S; Guo, Y

    2014-01-01

    An in situ study of flow in severe plastic deformation (SPD) of surfaces by sliding is described. The model system – a hard wedge sliding against a metal surface – is representative of surface conditioning processes typical of manufacturing, and sliding wear. By combining high speed imaging and image analysis, important characteristics of unconstrained plastic flow inherent to this system are highlighted. These characteristics include development of large plastic strains on the surface and in the subsurface by laminar type flow, unusual fluid-like flow with vortex formation and surface folding, and defect and particle generation. Preferred conditions, as well as undesirable regimes, for surface SPD are demarcated. Implications for surface conditioning in manufacturing, modeling of surface deformation and wear are discussed

  18. Local microstructure and flow stress in deformed metals

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Nielsen, Chris Valentin

    2017-01-01

    The microstructure and flow stress of metals are related through many well-known strength-structure relationships based on structural parameters, where grain size and dislocation density are examples. In heterogeneous structures, the local stress and strain are important as they will affect...... the bulk properties. A microstructural method is presented which allows the local stress in a deformed metal to be estimated based on microstructural parameters determined by an EBSD analysis. These parameters are the average spacing of deformation introduced boundaries and the fraction of high angle...... boundaries. The method is demonstrated for two heterogeneous structures: (i) a gradient (sub)surface structure in steel deformed by shot peening; (ii) a heterogeneous structure introduced by friction between a tool and a workpiece of aluminum. Flow stress data are calculated based on the microstructural...

  19. Flow-induced elastic anisotropy of metallic glasses

    International Nuclear Information System (INIS)

    Sun, Y.H.; Concustell, A.; Carpenter, M.A.; Qiao, J.C.; Rayment, A.W.; Greer, A.L.

    2016-01-01

    As-cast bulk metallic glasses are isotropic, but anisotropy can be induced by thermomechanical treatments. For example, the diffraction halo in the structure function S(Q) observed in transmission becomes elliptical (rather than circular) after creep in uniaxial tension or compression. Published studies associate this with frozen-in anelastic strain and bond-orientational anisotropy. Results so far are inconsistent on whether viscoplastic flow of metallic glasses can induce anisotropy. Preliminary diffraction data suggest that the anisotropy, if any, is very low, while measurements of the elastic properties suggest that there is induced anisotropy, opposite in sign to that due to anelastic strain. We study three bulk metallic glasses, Ce 65 Al 10 Cu 20 Co 5 , La 55 Ni 10 Al 35 , and Pd 40 Ni 30 Cu 10 P 20 . By using resonant ultrasound spectroscopy to determine the full elasticity tensor, the effects of relaxation and rejuvenation can be reliably separated from uniaxial anisotropy (of either sign). The effects of viscoplastic flow in tension are reported for the first time. We find that viscoplastic flow of bulk metallic glasses, particularly in tension, can induce significant anisotropy that is distinct from that associated with frozen-in anelastic strain. The conditions for inducing such anisotropy are explored in terms of the Weissenberg number (ratio of relaxation times for primary relaxation and for shear strain rate). There is a clear need for further work to characterize the structural origins of flow-induced anisotropy and to explore the prospects for improved mechanical and other properties through induced anisotropy.

  20. Tibetan Precious Pills as Therapeutics and Rejuvenating Longevity Tonics

    Directory of Open Access Journals (Sweden)

    Barbara Gerke

    2017-12-01

    Full Text Available Tibetan precious pills are frequently attributed with a variety of efficacies, from “magical” powers, prevention of poisoning and infectious diseases, protection from harmful spirits and exposure to diseases while travelling, to rejuvenating and prolonging life through clearing the senses and promoting strength and vigor. They are prescribed as strong medicines for severe diseases, but are also advertised as rejuvenating tonics for the healthy. This paper explores the rejuvenating qualities attributed to precious pills in terms of how they are currently advertised, how rejuvenation is and has been explained in Tibetan works on precious pills, and how Tibetan physicians understand these attributes. How do these domains interact and refer to each other? I compare aspects of rejuvenation in precious pill formulas with contemporary presentations of precious pills online and on published leaflets given out to patients in India and elsewhere. In Tibetan medical texts certain precious pills that contain the complex and processed mercury-sulfide ash called tsotel in addition to a large variety of other medicinal substances are presented as “precious pills” or rinchen rilbu, and only some of those are said to have rejuvenating effects on the body; most are primarily prescribed for specific diseases. The practice of giving precious pills to the healthy emerges more prominently in eighteenth to nineteenth century manuals on administering precious pills (Czaja 2015, which parallels the establishment of influential medical and monastic networks that promoted the making of tsotel and precious pills. I argue that precious pills have more recently widened their specific therapeutic target beyond that of medicine into becoming popular pills for rejuvenation, even if they do not contain tsotel, as part of pharmaceutical commodification. I also show how presentations of precious pills as “rejuvenating” are deeply linked to their availability.

  1. Regulation of liquid metal coolant flow rate in experimental loops

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Laptev, G.I.

    1987-01-01

    The possibility to use the VRT-2, RPA-T and R 133 analog temperature regulators for the automated regulation of liquid metal flow rate in the experimental loops for investigations on sodium and sodium-potassium alloy technology is considered. The RPA-T device is shown to be the most convenient one; it is characterized by the following parameters: measuring modulus transfer coefficient is 500; the range of regulating modulus proportionality factor variation - 0.3 - 50; the range of the regulating modulus intergrating time constant variation - 5 - 500 s

  2. Flow characteristics of metallic powder grains for additive manufacturing

    Directory of Open Access Journals (Sweden)

    Peters Bernhard

    2017-01-01

    Full Text Available Directed energy deposition technologies for additive manufacturing such as laser selective melting (SLM or electron beam melting (EBM is a fast growing technique mainly due to its flexibility in product design. However, the process is a complex interaction of multi-physics on multiple length scales that are still not entirely understood. A particular challenging task are the flow characteristics of metallic powder ejected as jets from a nozzle and shielded by an inert turbulent gas flow. Therefore, the objective is to describe numerically the complex interaction between turbulent flow and powder grains. In order to include both several physical processes and length scales an Euler-Lagrange technology is applied. Within this framework powder is treated by the Discrete-Element-Method, while gas flow is described by Euler approaches as found in classical Computational Fluid Dynamics (CFD. The described method succeeded in delivering more accuracy and consistency than a standard approach based on the volume averaging technique and therefore, is suited for the solution of problems within an engineering framework.

  3. Magnetohydrodynamic pressure drop and flow balancing of liquid metal flow in a prototypic fusion blanket manifold

    Science.gov (United States)

    Rhodes, Tyler J.; Smolentsev, Sergey; Abdou, Mohamed

    2018-05-01

    Understanding magnetohydrodynamic (MHD) phenomena associated with the flow of electrically conducting fluids in complex geometry ducts subject to a strong magnetic field is required to effectively design liquid metal (LM) blankets for fusion reactors. Particularly, accurately predicting the 3D MHD pressure drop and flow distribution is important. To investigate these topics, we simulate a LM MHD flow through an electrically non-conducting prototypic manifold for a wide range of flow and geometry parameters using a 3D MHD solver, HyPerComp incompressible MHD solver for arbitrary geometry. The reference manifold geometry consists of a rectangular feeding duct which suddenly expands such that the duct thickness in the magnetic field direction abruptly increases by a factor rexp. Downstream of the sudden expansion, the LM is distributed into several parallel channels. As a first step in qualifying the flow, a magnitude of the curl of the induced Lorentz force was used to distinguish between inviscid, irrotational core flows and boundary and internal shear layers where inertia and/or viscous forces are important. Scaling laws have been obtained which characterize the 3D MHD pressure drop and flow balancing as a function of the flow parameters and the manifold geometry. Associated Hartmann and Reynolds numbers in the computations were ˜103 and ˜101-103, respectively, while rexp was varied from 4 to 12. An accurate model for the pressure drop was developed for the first time for inertial-electromagnetic and viscous-electromagnetic regimes based on 96 computed cases. Analysis shows that flow balance can be improved by lengthening the distance between the manifold inlet and the entrances of the parallel channels by utilizing the effect of flow transitioning to a quasi-two-dimensional state in the expansion region of the manifold.

  4. Measurement of Liquid-Metal Two-Phase Flow with a Dynamic Neutron Radiography

    International Nuclear Information System (INIS)

    Cha, J. E.; Lim, I. C.; Kim, H. R.; Kim, C. M.; Nam, H. Y.; Saito, Y.

    2005-01-01

    The dynamic neutron radiography(DNR) has complementary characteristics to X-ray radiography and is suitable to visualization and measurement of a multi-phase flow research in a metallic duct and liquid metal flow. The flow-field information of liquid metal system is very important for the safety analysis of fast breeder reactor and the design of the spallation target of accelerator driven system. A DNR technique was applied to visualize the flow field in the gas-liquid metal two-phase flow with the HANARO-beam facility. The lead bismuth eutectic and the nitrogen gas were used to construct the two-phase flow field in the natural circulation U-channel. The two-phase flow images in the riser were taken at various combinations of the liquid flow and gas flow with high frame-rate neutron radiography at 1000 fps

  5. Flow induced vibrations in liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    1989-01-01

    Flow induced vibrations are well known phenomena in industry. Engineers have to estimate their destructive effects on structures. In the nuclear industry, flow induced vibrations are assessed early in the design process, and the results are incorporated in the design procedures. In many cases, model testing is used to supplement the design process to ensure that detrimental behaviour due to flow induced vibrations will not occur in the component in question. While these procedures attempt to minimize the probability of adverse performance of the various components, there is a problem in the extrapolation of analytical design techniques and/or model testing to actual plant operation. Therefore, sodium tests or vibrational measurements of components in the reactor system are used to provide additional assurance. This report is a general survey of experimental and calculational methods in this area of structural mechanics. The report is addressed to specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors. 92 refs, 90 figs, 8 tabs

  6. On (weakly precious rings associated to central polynomials

    Directory of Open Access Journals (Sweden)

    Hani A. Khashan

    2018-04-01

    Full Text Available Let R be an associative ring with identity and let g(x be a fixed polynomial over the center of R. We define R to be (weakly g(x-precious if for every element a∈R, there are a zero s of g(x, a unit u and a nilpotent b such that (a=±s+u+b a=s+u+b. In this paper, we investigate many examples and properties of (weakly g(x-precious rings. If a and b are in the center of R with b-a is a unit, we give a characterizations for (weakly (x-a(x-b-precious rings in terms of (weakly precious rings. In particular, we prove that if 2 is a unit, then a ring is precious if and only it is weakly precious. Finally, for n∈ℕ, we study (weakly (xⁿ-x-precious rings and clarify some of their properties.

  7. Exploring liquid metal plasma facing component (PFC) concepts-Liquid metal film flow behavior under fusion relevant magnetic fields

    International Nuclear Information System (INIS)

    Narula, M.; Abdou, M.A.; Ying, A.; Morley, N.B.; Ni, M.; Miraghaie, R.; Burris, J.

    2006-01-01

    The use of fast moving liquid metal streams or 'liquid walls' as a plasma contact surface is a very attractive option and has been looked upon with considerable interest over the past several years, both by the plasma physics and fusion engineering programs. Flowing liquid walls provide an ever replenishing contact surface to the plasma, leading to very effective particle pumping and surface heat flux removal. A key feasibility issue for flowing liquid metal plasma facing component (PFC) systems, pertains to their magnetohydrodynamic (MHD) behavior under the spatially varying magnetic field environment, typical of a fusion device. MHD forces hinder the development of a smooth and controllable liquid metal flow needed for PFC applications. The present study builds up on the ongoing research effort at UCLA, directed towards providing qualitative and quantitative data on liquid metal free surface flow behavior under fusion relevant magnetic fields

  8. Continuous Polyol Synthesis of Metal and Metal Oxide Nanoparticles Using a Segmented Flow Tubular Reactor (SFTR

    Directory of Open Access Journals (Sweden)

    Andrea Testino

    2015-06-01

    Full Text Available Over the last years a new type of tubular plug flow reactor, the segmented flow tubular reactor (SFTR, has proven its versatility and robustness through the water-based synthesis of precipitates as varied as CaCO3, BaTiO3, Mn(1−xNixC2O4·2H2O, YBa oxalates, copper oxalate, ZnS, ZnO, iron oxides, and TiO2 produced with a high powder quality (phase composition, particle size, and shape and high reproducibility. The SFTR has been developed to overcome the classical problems of powder production scale-up from batch processes, which are mainly linked with mass and heat transfer. Recently, the SFTR concept has been further developed and applied for the synthesis of metals, metal oxides, and salts in form of nano- or micro-particles in organic solvents. This has been done by increasing the working temperature and modifying the particle carrying solvent. In this paper we summarize the experimental results for four materials prepared according to the polyol synthesis route combined with the SFTR. CeO2, Ni, Ag, and Ca3(PO42 nanoparticles (NPs can be obtained with a production rate of about 1–10 g per h. The production was carried out for several hours with constant product quality. These findings further corroborate the reliability and versatility of the SFTR for high throughput powder production.

  9. Plasma-chemical production of metal-polypyrrole-catalysts for the reduction of oxygen in fuel cells. Precious-metal-free catalysts for fuel cells.; Plasmachemische Erzeugung von Metall-Polypyrrol-Katalysatoren fuer die Sauerstoffreduktion in Brennstoffzellen. Edelmetallfreie Katalysatoren fuer Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Christian

    2013-07-01

    This thesis is about the production of non noble metal catalysts for the oxygen reduction reaction in fuel cells. Therefore, a novel dual plasma process is developed, constructed and the so-produced films are analysed by various electrochemical (CV, RDE and RRDE) and structural methods (SEM, EDX, IR, XPS, conductivity, XRD, NEXAFS, EXAFS and TEM). It is shown, that by doing this, non noble metal catalysts could be produced without the need of a high temperature treatment. Furthermore, the catalytic activity obtained is superior to that of chemically produced metal-polypyrrole films.

  10. Metal droplet erosion and shielding plasma layer under plasma flows typical of transient processes in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Martynenko, Yu. V., E-mail: Martynenko-YV@nrcki.ru [National Research Nuclear University “MEPhI” (Russian Federation)

    2017-03-15

    It is shown that the shielding plasma layer and metal droplet erosion in tokamaks are closely interrelated, because shielding plasma forms from the evaporated metal droplets, while droplet erosion is caused by the shielding plasma flow over the melted metal surface. Analysis of experimental data and theoretical models of these processes is presented.

  11. Damage mechanisms and metallic materials development in multiphase flow

    International Nuclear Information System (INIS)

    Zheng, Yugui; Liu, Wei; Yao, Zhiming; Ke, Wei

    2002-01-01

    The investigation on the synergistic effects among corrosion, slurry erosion and cavitation erosion has special significance for hydraulic turbines operated in Yangtze River and Yellow River where the high concentration solid particles exist in water. Two typical metallic materials i.e. Cr-Mn-N stainless steel and Ni-Ti shapememory-alloy, and two typical materials used for hydraulic turbines 20SiMn and 0Cr13Ni5Mo as compared materials were selected in order to investigate the roles of work-hardening ability and martensitic transformation as well as pseudoelastics in damage mechanism in multiphase flow. Both modified rotating disk rig and ultrasonic vibration facility were used to simulate the possible damage mechanism of materials in multiphase flow. The effects of corrosion on cavitation erosion were investigated through adding 3wt% NaCl. The degradation mechanism was analyzed by electrochemical test, SEM observation, hardness and roughness measurement. The results showed that there was a strong synergistic interaction among electrochemical corrosion, slurry erosion and cavitation erosion for 20SiMn in liquid-solid two-phase medium. In contrast, corrosion played little role for 0Cr13Ni5Mo. Cr-Mn-N stainless steel with high Mn content showed better resistance to cavitation erosion and slurry erosion than 0Cr13Ni5Mo, which was mainly due to its good work-hardening ability as well as strain-induced martensite transformation. The cavitation micro-cracks for Cr-Mn-N stainless steel were parallel to the specimen surface in contrast with 0Cr13Ni5Mo whose micro-cracks were perpendicular to the surface. Ni-Ti alloy with pseudoelasticity showed excellent resistance to combined interaction of cavitation erosion and slurry erosion

  12. Assessment of Electromagnetic Stirrer Agitated Liquid Metal Flows by Dynamic Neutron Radiography

    Science.gov (United States)

    Ščepanskis, Mihails; Sarma, Mārtiņš; Vontobel, Peter; Trtik, Pavel; Thomsen, Knud; Jakovičs, Andris; Beinerts, Toms

    2017-04-01

    This paper presents qualitative and quantitative characterization of two-phase liquid metal flows agitated by the stirrer on rotating permanent magnets. The stirrer was designed to fulfill various eddy flows, which may have different rates of solid particle entrapment from the liquid surface and their homogenization. The flow was characterized by visualization of the tailored tracer particles by means of dynamic neutron radiography, an experimental method well suited for liquid metal flows due to low opacity of some metals for neutrons. The rather high temporal resolution of the image acquisition (32 Hz image acquisition rate) allows for the quantitative investigation of the flows up to 30 cm/s using neutron particle image velocimetry. In situ visualization of the two-phase liquid metal flow is also demonstrated.

  13. Processing precious metals in a top-blown rotary converter

    Science.gov (United States)

    Whellock, John G.; Matousek, Jan W.

    1990-09-01

    Copper-nickel/platinum-palladium flotation concentrates produced by the Stillwater Mining Company were smelted and refined in an integrated pilot plant consisting of a submerged-arc electric furnace and top-blown rotary converter. The conversion of high-iron electric furnace mattes was achieved with apparent oxygen efficiencies in excess of 100 percent. Platinum and palladium recoveries averaged 99 percent, and copper and nickel recoveries were 94 percent.

  14. Hydrogen production from bio-fuels using precious metal catalysts

    Science.gov (United States)

    Pasel, Joachim; Wohlrab, Sebastian; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef

    2017-11-01

    Fuel cell systems with integrated autothermal reforming unit require active and robust catalysts for H2 production. Thus, an experimental screening of catalysts for autothermal reforming of commercial biodiesel fuel was performed. Catalysts consisted of a monolithic cordierite substrate, an oxide support (γ-Al2O3) and Pt, Ru, Ni, PtRh and PtRu as active phase. Experiments were run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. Fresh and aged catalysts were characterized by temperature programmed methods and thermogravimetry to find correlations with catalytic activity and stability.

  15. Hydrogen production from bio-fuels using precious metal catalysts

    Directory of Open Access Journals (Sweden)

    Pasel Joachim

    2017-01-01

    Full Text Available Fuel cell systems with integrated autothermal reforming unit require active and robust catalysts for H2 production. Thus, an experimental screening of catalysts for autothermal reforming of commercial biodiesel fuel was performed. Catalysts consisted of a monolithic cordierite substrate, an oxide support (γ-Al2O3 and Pt, Ru, Ni, PtRh and PtRu as active phase. Experiments were run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. Fresh and aged catalysts were characterized by temperature programmed methods and thermogravimetry to find correlations with catalytic activity and stability.

  16. Manganese nodules as a possible source of precious metals

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.

    CURRENT SCIE NCE, VOL. 87, NO. 3, 10 AUGUST 2004 are needed. This loss of land would be compensated b y rise in productivity in yet under - utilized areas owing to inad e quate availability of water. The projected cost of the scheme would... of kilometres in length and reaping the benefits of such endea v ours since time immemorial. Using f a vourable topography and availability of water, many rivers have been stretched through canals over the length and breadth of the nation. But for this...

  17. GOLD NANOPARTICLES: A REVIVAL IN PRECIOUS METAL ADMINISTRATION TO PATIENTS

    Science.gov (United States)

    Thakor, AS; Jokerst, J; Zaveleta, C; Massoud, TF; Gambhir, SS

    2011-01-01

    Gold has been used as a therapeutic agent to treat a wide variety of rheumatic diseases including psoriatic arthritis, juvenile arthritis and discoid lupus erythematosus. Although the use of gold has been largely superseded by newer drugs, gold nanoparticles are being used effectively in laboratory based clinical diagnostic methods whilst concurrently showing great promise in vivo either as a diagnostic imaging agent or a therapeutic agent. For these reasons, gold nanoparticles are therefore well placed to enter mainstream clinical practice in the near future. Hence, the present review summarizes the chemistry, pharmacokinetics, bio-distribution, metabolism and toxicity of bulk gold in humans based on decades of clinical observation and experiments in which gold was used to treat patients with rheumatoid arthritis. The beneficial attributes of gold nanoparticles, such as their ease of synthesis, functionalization and shape control are also highlighted demonstrating why gold nanoparticles are an attractive target for further development and optimization. The importance of controlling the size and shape of gold nanoparticles to minimize any potential toxic side effects is also discussed. PMID:21846107

  18. Urban Metal Flows - A Case Study of Stockholm. Review and Conclusions

    International Nuclear Information System (INIS)

    Bergbaeck, B.; Johansson, K.; Mohlander, U.

    2001-01-01

    Metals have rapidly accumulated in the anthroposphere, especially in urban areas, indicating possible environmental and resource problems. Here, Stockholm City was chosen for a case study of urban metal flows, i.e. metal inflow to, metals in the stock of,and metal outflow from the anthroposphere to the biosphere. The metal stock of Stockholm is large and still growing. The large amounts of metals in the solid waste fraction totally dominate the outflow from the city. For major parts of the stock, the emissions from goods in use are negligible. There are, however,goods applications corresponding to significant emissions: e.g. the traffic sector (Cu, Zn, Cr, Ni, Pb), the tapwater system (Cu), roofs/fronts or other metal surfaces (Cu, Zn). Today's known metal flows from the anthroposphere of Stockholm to the biosphere and sewage sludge are quantitatively dominated by Zn(34 ton y -1 ) and Cu (14 ton y -1 ). Historical and present emissions have resulted in high metal concentrations in sediments (especially Cd, Hg and Pb, but also Cu and Zn), groundwater (Cu, Hg) and in soils (Hg, Cu, Pb). At present the annual median concentrations are below the Swedish limits for metals in sewage sludge, even if the safety margins are small for Cd, Hg and to some extent Cu. The flows of Cu and Zn to Stockholm soils are high with a significant accumulation indicating an environmental impact in a longer time perspective.High levels of metals in surface sediments in the water environments reflects an ongoing input where these metals are transported from known (Cu, Zn) and or partly unknown (Cd, Hg, Pb) sources. In future urban areas, monitoring of metal flows must be performed both in the anthroposphere and the biospherein order to have a pro active approach to urban environmental problems and to get prompt answers to measures taken

  19. Investigation of bacterial adherence to a non-precious alloy with radiolabeling method

    International Nuclear Information System (INIS)

    Sonugelen, M.; Iyiyapici Destan, U.; Oeztuerk, B.; Yurt Lambrecht, F.

    2006-01-01

    The objective of this study was to investigate the bacterial adherence to a non-precious alloy with radiolabeling method. S. mutans, E. coliand C. albicanswere labeled with 99m Tc by using stannous chloride and their radiolabeling yields were calculated. After the labeling procedure, metal disks (3 mm x 10 mm) were treated with microorganisms. The amount of labeled microorganisms adhered on metal surfaces was determined by activity measurements. The labeling yields for S. mutans, E. coliand C. albicanswere 69.95 ± 7.58%, 78.84 ± 0.44% and 79.71 ± 10.17%, respectively. The mean values for adherence for S. mutans, E. coliand C. albicans on metal samples were 7.02 ± 2.18%, 0.96 ± 0.49% and 8.80 ± 8.24%, respectively. The radiolabeling method could be considered as safe and precise for determining the adherence of microorganisms. (author)

  20. Stability of surface plastic flow in large strain deformation of metals

    Science.gov (United States)

    Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan

    We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.

  1. Toxic metals in WEEE: Characterization and substance flow analysis in waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Sakanakura, Hirofumi; Terazono, Atsushi

    2013-10-01

    Waste electrical and electronic equipment (WEEE) has received extensive attention as a secondary source of metals. Because WEEE also contains toxic substances such as heavy metals, appropriate management of these substances is important in the recycling and treatment of WEEE. As a basis for discussion toward better management of WEEE, this study characterizes various types of WEEE in terms of toxic metal contents. The fate of various metals contained in WEEE, including toxic metals, was also investigated in actual waste treatment processes. Cathode-ray tube televisions showed the highest concentration and the largest total amount of toxic metals such as Ba, Pb, and Sb, so appropriate recycling and disposal of these televisions would greatly contribute to better management of toxic metals in WEEE. A future challenge is the management of toxic metals in mid-sized items such as audio/visual and ICT equipment because even though the concentrations were not high in these items, the total amount of toxic metals contained in them is not negligible. In the case of Japan, such mid-sized WEEE items as well as small electronic items are subject to municipal solid waste treatment. A case study showed that a landfill was the main destination of toxic metals contained in those items in the current treatment systems. The case study also showed that changes in the flows of toxic metals will occur when treatment processes are modified to emphasize resource recovery. Because the flow changes might lead to an increase in the amount of toxic metals released to the environment, the flows of toxic metals and the materials targeted for resource recovery should be considered simultaneously. - Highlights: ► Appropriate management of toxic metals contained in WEEE is important during recycling and treatment of WEEE. ► CRT TVs contain large amount of toxic metals with high concentration and thus appropriate management is highly important. ► Mid-sized equipment is a future target for

  2. Contact-free measurement of the flow field of a liquid metal inside a closed container

    OpenAIRE

    Heinicke Christiane

    2014-01-01

    The measurement of flow velocities inside metal melts is particularly challenging. Due to the high temperatures of the melts it is impossible to employ measurement techniques that require either mechanical contact with the melt or are only adaptable to translucent fluids. In the past years a number of electromagnetic techniques have been developed that allows a contact-free measurement of volume flows. One of these techniques is the so-called Lorentz Force Velocimetry (LFV) in which the metal...

  3. Heavy metal accumulation in a flow restricted, tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Balachandran, K.K.; Laluraj, C.M.; Nair, M.; Joseph, T.; Sheeba, P.; Venugopal, P.

    Levels of heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn), organic carbon content and textural characteristics in the surficial sediments of Cochin estuary (SW coast of India) and adjacent coast are presented. Anthropogenic inputs from...

  4. International workshop on measuring techniques for liquid metal flows (MTLM). Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, G; Eckert, S [eds.

    1999-11-01

    The international workshop on 'Measuring techniques in liquid metal flows' (MTLM workshop) was organised in frame of the Dresden 'Innovationskolleg Magnetofluiddynamik'. The subject of the MTLM workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of n0n-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available tomonitor and to control flow processes in real industrial facilities. The objectives of the MTLM workshop were to: Review of existing information on a available techniques and experiences about the use in liquid metal flows, initiate a discussion between developers and potential users with respect to the actual need of information about the flow structure as well as the capabilities of existing and developing measuring techniques. Explore opportunities for co-operative R and D projects to expedite new developments and results, to share expertise and resources. (orig.)

  5. International workshop on measuring techniques for liquid metal flows (MTLM). Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, G.; Eckert, S. [eds.

    1999-11-01

    The international workshop on 'Measuring techniques in liquid metal flows' (MTLM workshop) was organised in frame of the Dresden 'Innovationskolleg Magnetofluiddynamik'. The subject of the MTLM workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of n0n-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available tomonitor and to control flow processes in real industrial facilities. The objectives of the MTLM workshop were to: Review of existing information on a available techniques and experiences about the use in liquid metal flows, initiate a discussion between developers and potential users with respect to the actual need of information about the flow structure as well as the capabilities of existing and developing measuring techniques. Explore opportunities for co-operative R and D projects to expedite new developments and results, to share expertise and resources. (orig.)

  6. Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-06-08

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of {approx}82% and a specific discharge energy density similar to aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  7. Anthraquinone with tailored structure for a nonaqueous metal-organic redox flow battery.

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-07-07

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of ~82% and a specific discharge energy density similar to those of aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  8. Flow patterns from metallic vascular endoprostheses: in vitro results

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Huelsbeck, S.; Grimm, J.; Jahnke, T.; Haeselbarth, G.; Heller, M. [Dept. of Radiology, University Hospital, Kiel (Germany)

    2001-05-01

    The aim of this study was to determine flow characteristics and pressure gradients of different balloon- and self-expandable stents in an in vitro flow-model. Seven vascular stents (Bridge, Cragg, Memotherm, Palmaz PS 784, Sinus, Symphony, Wallstent), equal in length (60 mm) and diameter (10 mm), were deployed in a closed flow model. The inner diameter of the tube measured 9 mm. Flow at 1.5 and 6 l/min was applied. Flow patterns were visualized by anionic particles illuminated with two helium-neon lasers. Late laminary flow characteristics and pre- /post-stent pressure gradients were determined in either expanded stent, 25 and 50 % tube stenosis. Stent implantation induced a decrease of laminary flow when compared with an unstented tube with and without concentric 25 % stenosis (p < 0.01) at all flow rates and an increase of pressure gradients when compared with an unstented tube for a flow rate of 6 l/min and all stenoses (p < 0.01). At 1.5 l/min most stents revealed no significant change of pressure gradient, the highest gradient measured 4.0 mmHg. Sinus permitted maximum (expanded: 82.1 % and 76.9 % at 25 % stenosis at 1.5 l/min; p < 0.01) and Palmaz minimum of laminary flow at all flow rates and stenoses (70.2 and 52.4 % at 25 % stenosis at 1.5 l/min; p < 0.01). At 6 l/min, when completely expanded, Sinus is equal to Bridge and Memotherm; in 25 % stenosis Sinus is equal to Bridge, Memotherm, and additionally to Cragg and Wall. None of the endoprostheses revealed laminary flow at 50 % stenosis. Inadequate stent deployment bears the risk of creating less laminary flow and pressure gradients. Since flow disturbances and pressure gradients may influence neointimal hyperplasia, stent design and completeness of stent expansion are important factors regarding the appearance of thrombus formation and postinterventional restenosis. (orig.)

  9. Flow-accelerated corrosion characteristics of galvanically coupled dissimilar metals

    International Nuclear Information System (INIS)

    Choi, Yoon Seok; Kim, Jnng Gu

    2001-01-01

    Flow accelerated galvanic corrosion characteristics of a carbon steel coupled to stainless steel were investigated in deaerated alkaline-chloride solutions as a function of flow velocities, pH and temperatures. The electrochemical properties of specimens were investigated by potentiodynamic test and galvanic corrosion test using RCE(Rotating Cylinder Electrode). Carbon steel showed active behavior in the deaerated alkaline-chloride solution. The galvanic current density of carbon steel increased with increasing flow velocity and temperature, but decreased with increasing pH. Flow velocity had a small effect on the galvanic current density at 25 deg. C, whereas the flow velocity increased galvanic current density significantly at 50 .deg. C and 75 .deg. C. This might be due to the increased solubility of magnetite at the higher temperatures

  10. Transition from steady to periodic liquid-metal magnetohydrodynamic flow in a sliding electrical contact

    Science.gov (United States)

    Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1993-09-01

    In homopolar motors and generators, large dc electric currents pass through the sliding electrical contacts between rotating copper disks (rotors) and static copper surfaces shrouding the rotor tips (stators). A liquid metal in the small radial gap between the rotor tip and concentric stator surface can provide a low-resistance, low-drag electrical contact. Since there is a strong magnetic field in the region of the electrical contacts, there are large electromagnetic body forces on the liquid metal. The primary, azimuthal motion consists of simple Couette flow, plus an electromagnetically driven flow with large extremes of the azimuthal velocity near the rotor corners. The secondary flow involves the radial and axial velocity components, is driven by the centrifugal force associated with the primary flow, and is opposed by the electromagnetic body force, so that the circulation varies inversely as the square of the magnetic-field strength. Three flow regimes are identified as the angular velocity Ω of the rotor is increased. For small Ω, the primary flow is decoupled from the secondary flow. As Ω increases, the secondary flow begins to convect the azimuthal-velocity peaks radially outward, which in turn changes the centrifugal force driving the secondary flow. At some critical value of Ω, the flow becomes periodic through the coupling of the primary and secondary flows. The azimuthal-velocity peaks begin to move radially in and out with an accompanying oscillation in the secondary-flow strength.

  11. Vibration-accelerated activation of flow units in a Pd-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ning, E-mail: hslining@mail.hust.edu.cn [School of Materials Science and Engineering, and State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Ze [Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072 (China); Wang, Xinyun [School of Materials Science and Engineering, and State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Meng [Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632 (China)

    2017-04-24

    Controlled activation of flow units and in-situ characterization of mechanical properties in metallic glasses are facing challenges thus far. Here, vibrational loading is introduced through nanoscale dynamic mechanical analysis technique to probe vibration-accelerated atomic level flow that plays a crucial role in the mechanical behavior of metallic glasses. The intriguing finding is that high vibrational frequency induces deep indentation depth, prominent pop-in events on load–depth curves and low storage modulus, exhibiting a vibration-facilitated activation of flow units in Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} metallic glass. Theoretical analysis revealed that vibration-moderated activation time-scale accelerate the activation of flow units and responsible for the above scenario.

  12. The questions of liquid metal two-phase flow modelling in the FBR core channels

    International Nuclear Information System (INIS)

    Martsiniouk, D.Ye.; Sorokin, A.P.

    2000-01-01

    The two-fluid model representation for calculations of two-phase flow characteristics in the FBR fuel pin bundles with liquid metal cooling is presented and analysed. Two conservation equations systems of the mass, momentum and energy have been written for each phase. Components accounted the mass-, momentum- and heat transfer throughout the interface occur in the macro-field equations after the averaging procedure realisation. The pattern map and correlations for two-fluid model in vertical liquid metal flows are presented. The description of processes interphase mass- and heat exchange and interphase friction is determined by the two-phase flow regime. The opportunity of the liquid metal two-phase flow regime definition is analysed. (author)

  13. High-energy-density, aqueous, metal-polyiodide redox flow batteries

    Science.gov (United States)

    Li, Bin; Nie, Zimin; Wang, Wei; Liu, Jun; Sprenkle, Vincent L.

    2017-08-29

    Improved metal-based redox flow batteries (RFBs) can utilize a metal and a divalent cation of the metal (M.sup.2+) as an active redox couple for a first electrode and electrolyte, respectively, in a first half-cell. For example, the metal can be Zn. The RFBs can also utilize a second electrolyte having I.sup.-, anions of I.sub.x (for x.gtoreq.3), or both in an aqueous solution, wherein the I.sup.- and the anions of I.sub.x (for x.gtoreq.3) compose an active redox couple in a second half-cell.

  14. Effect of electromagnetic coupling on MHD flow in the manifold of fusion liquid metal blanket

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Meng, Zi; Feng, Jingchao; He, Qingyun

    2014-10-15

    In fusion liquid metal (LM) blanket, magnetohydrodynamics (MHD) effects will dominate the flow patterns and the heat transfer characteristics of the liquid metal flow. Manifold is a key component in LM blanket in charge of distributing or collecting the liquid metal coolant. In this region, the complex three dimensional MHD phenomena will be occurred, and the velocity, pressure and flow rate distributions may be dramatically influenced. One important aspect is the electromagnetic coupling effect resulting from an exchange of electric currents between two neighboring fluid domains that can lead to modifications of flow distribution and pressure drop compared to that in electrical separated channels. Understanding the electromagnetic coupling effect in manifold is necessary to optimize the liquid metal blanket design. In this work, a numerical study was carried out to investigate the effect of electromagnetic coupling on MHD flow in a manifold region. The typical manifold geometry in LM blanket was considered, a rectangular supply duct entering a rectangular expansion area, finally feeding into 3 rectangular parallel channels. This paper investigated the effect of electromagnetic coupling on MHD flow in a manifold region. Different electromagnetic coupling modes with different combinations of electrical conductivity of walls were studied numerically. The flow distribution and pressure drop of these modes have been evaluated.

  15. Liquid metal flows in insulating elements of self-cooled blankets

    International Nuclear Information System (INIS)

    Molokov, S.

    1995-01-01

    Liquid metal flows in insulating rectangular ducts in strong magnetic fields are considered with reference to poloidal concepts of self-cooled blankets. Although the major part of the flow in poloidal blanket concepts is close to being fully developed, manifolds, expansions, contractions, elbows, etc., which are necessary elements in blanket designs, cause three-dimensional effects. The present investigation demonstrates the flow pattern in basic insulating geometries for actual and more advanced liquid metal blanket concepts and discusses the ways to avoid pressure losses caused by flow redistribution. Flows in several geometries, such as symmetric and non-symmetric 180 turns with and without manifolds, sharp and linear expansions with and without manifolds, etc., have been considered. They demonstrate the attractiveness of poloidal concepts of liquid metal blankets, since they guarantee uniform conditions for heat transfer. If changes in the duct cross-section occur in the plane perpendicular to the magnetic field (ideally a coolant should always flow in the radial-poloidal plane), the disturbances are local and the slug velocity profile is reached roughly at a distance equivalent to one duct width from the manifolds, expansions, etc. The effects of inertia in these flows are unimportant for the determination of the pressure drop and velocity profiles in the core of the flow but may favour heat transfer characteristics via instabilities and strongly anisotropic turbulence. (orig.)

  16. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    Science.gov (United States)

    Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.

    2018-01-01

    Plasma-facing components (PFC’s) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC’s can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC’s and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.

  17. Three-dimensional MHD [magnetohydrodynamic] flows in rectangular ducts of liquid-metal-cooled blankets

    International Nuclear Information System (INIS)

    Hua, T.Q.; Walker, J.S.; Picologlou, B.F.; Reed, C.B.

    1988-07-01

    Magnetohydrodynamic flows of liquid metals in rectangular ducts with thin conducting walls in the presence of strong nonuniform transverse magnetic fields are examined. The interaction parameter and Hartmann number are assumed to be large, whereas the magnetic Reynolds number is assumed to be small. Under these assumptions, viscous and inertial effects are confined in very thin boundary layers adjacent to the walls. A significant fraction of the fluid flow is concentrated in the boundary layers adjacent to the side walls which are parallel to the magnetic field. This paper describes the analysis and numerical methods for obtaining 3-D solutions for flow parameters outside these layers, without solving explicitly for the layers themselves. Numerical solutions are presented for cases which are relevant to the flows of liquid metals in fusion reactor blankets. Experimental results obtained from the ALEX experiments at Argonne National Laboratory are used to validate the numerical code. In general, the agreement is excellent. 5 refs., 14 figs

  18. On Parameters Affecting Metal Flow and Friction in the Double Cup Extrusion Test

    DEFF Research Database (Denmark)

    Tan, Xincai; Bay, Niels; Zhang, Wenqi

    1998-01-01

    in numerical simulations often involve strain hardening because friction is expressed as a function of the flow stress or the flow shear stress. The double cup extrusion test is considered to be one of the process tests for determination of friction. In this test, varying heights of the upper and lower cups...... model with constant absolute value excluding the influence of strain hardening on friction was adopted in FEM simulations, in order to more clearly study the individual influence of strain hardening and friction on the metal flow (upper and lower cup height ratio) without interference between the two...... parameters. The predicted results show a good agreement with the experimental data. The influence of material strain hardening. friction and tool geometry on the metal flow in the test has been investigated. By comparisons of the cup height ratio as a function of the punch travel estimated by experiments...

  19. Gallium-Based Room-Temperature Liquid Metals: Actuation and Manipulation of Droplets and Flows

    Directory of Open Access Journals (Sweden)

    Leily Majidi

    2017-08-01

    Full Text Available Gallium-based room-temperature liquid metals possess extremely valuable properties, such as low toxicity, low vapor pressure, and high thermal and electrical conductivity enabling them to become suitable substitutes for mercury and beyond in wide range of applications. When exposed to air, a native oxide layer forms on the surface of gallium-based liquid metals which mechanically stabilizes the liquid. By removing or reconstructing the oxide skin, shape and state of liquid metal droplets and flows can be manipulated/actuated desirably. This can occur manually or in the presence/absence of a magnetic/electric field. These methods lead to numerous useful applications such as soft electronics, reconfigurable devices, and soft robots. In this mini-review, we summarize the most recent progresses achieved on liquid metal droplet generation and actuation of gallium-based liquid metals with/without an external force.

  20. Flow analysis of metals in a municipal solid waste management system

    International Nuclear Information System (INIS)

    Jung, C.H.; Matsuto, T.; Tanaka, N.

    2006-01-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small

  1. Thermodynamic characteristics of viscous flow activation in aqueous solutions of alkali metal iodides

    International Nuclear Information System (INIS)

    Renskij, I.A.; Rudnitskaya, A.A.; Fialkov, Yu.A.

    2003-01-01

    The Gibbs activation energy of the viscous flow of the alkali metal iodides aqueous solutions MI (M = Li, Na, K, Cs) and from its temperature dependence - the enthalpy and entropy of this process are calculated by the Eyring modified equation. The kinetic compensation effects, related to the viscous flow of the unbound water and to the ion-hydrate complexes are established. The relative contribution of the enthalpy and entropy constituents for these solution components is analyzed [ru

  2. Liquid metal flow in a finite-length cylinder with a rotating magnetic field

    International Nuclear Information System (INIS)

    Gelfgat, Yu.M.; Gorbunov, L.A.; Kolevzon, V.

    1993-01-01

    A liquid metal flow induced by a rotating magnetic field in a cylindrical container of finite height was investigated experimentally. It was demonstrated that the flow in a rotating magnetic field is similar to geophysical flows: the fluid rotates uniformly with depth and the Ekman layer exists at the container bottom. Near the vertical wall the flow is depicted in the form of a confined jet whose thickness determines the instability onset in a rotating magnetic field. It was shown that the critical Reynolds number can be found by using the jet velocity u 0 for Re cr =u 2 0 /ν∂u/∂r. The effect of frequency of a magnetic field on the fluid flow was also studied. An approximate theoretical model is presented for describing the fluid flow in a uniform rotating magnetic field. (orig.)

  3. Investigation of low-frequency-oscillating water flow in metal foam with 10 pores per inch

    Science.gov (United States)

    Bağcı, Ö.; Arbak, A.; De Paepe, M.; Dukhan, N.

    2018-01-01

    In this study, oscillating water flow in metal foam with open cells is investigated experimentally. The metal foam sample has a porosity of 88% and 10 pores. The water was oscillated in the test section with three frequencies between 0.116 Hz and 0.348 Hz, which are considered low for water oscillation, and three flow displacements ranging between 74.35 mm and 111.53 mm. The combinations of frequencies of displacements were studied for their impacts of dimensional and non-dimensional pressure loss quantities. To this purpose, friction factor was correlated as a function of kinetic Reynolds number. The same metal foam sample was studied by exposing it to steady-state water flow to investigate its permeability and drag coefficient in low-velocity flow regimes. The friction factor distribution for oscillating flow was found to be over that found for steady state. The outcomes of the study are important for studying heat transfer under the same flow conditions.

  4. 31 CFR 103.140 - Anti-money laundering programs for dealers in precious metals, precious stones, or jewels.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Anti-money laundering programs for... FOREIGN TRANSACTIONS Anti-Money Laundering Programs Anti-Money Laundering Programs § 103.140 Anti-money...) Anti-money laundering program requirement. (1) Each dealer shall develop and implement a written anti...

  5. Slip-line field analysis of metal flow during two dimensional forging

    International Nuclear Information System (INIS)

    Fenton, R.G.; Khataan, H.A.

    1981-01-01

    A method of computation and a computer software package were developed for solving problems of two dimensional plastic flow between symmetrical dies of any specified shape. The load required to initiate plastic flow, the stress and velocity distributions in the plastic region of the metal, and the pressure distribution acting on the die are determined. The method can be used to solve any symmetrical plane strain flow problem regardless of the complexity of the die. The accurate solution obtained by this efficient method can provide valuable help to forging die designers. (Author) [pt

  6. Numerical modelling of microscopic lubricant flow in sheet metal forming. Application to plane strip drawing

    DEFF Research Database (Denmark)

    Carretta, Y.; Boman, R.; Bech, Jakob Ilsted

    2017-01-01

    This paper presents a numerical investigation of microscopic lubricant flows from the cavities to the plateaus of the surface roughness of metal sheets during forming processes. This phenomenon, called micro-plasto-hydrodynamic (MPH) lubrication, was observed experimentally in various situations...

  7. Nusselt number for turbulent flow of liquid metal in circular ducts

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1982-07-01

    The forced convection heat transfer in turbulent flow of liquid metals in ducts, is analyzed. An analogy between moment and heat at wall surface, is developed for determining one heat transfer coeficient in friction of friction coeficient. (E.G.) [pt

  8. Semi-empirical model for heat transfer coefficient in liquid metal turbulent flow

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1982-01-01

    The heat transfer by forced convection in a metal liquid turbulent flow for circular ducts is analyzed. An analogy between the momentum and heat in the wall surface, is determined, aiming to determine an expression for heat transfer coefficient in function of the friction coefficient. (E.G.) [pt

  9. Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures

    Science.gov (United States)

    Johnson, L. D.

    1967-01-01

    Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.

  10. Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linfa; Lai, Xinmin; Liu, Dong' an; Hu, Peng [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); Ni, Jun [Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-03-15

    Bipolar plate is one of the most important and costliest components of polymer electrolyte membrane (PEM) fuel cells. Micro-hydroforming is a promising process to reduce the manufacturing cost of PEM fuel cell bipolar plates made of metal sheets. As for hydroformed bipolar plates, the main defect is the rupture because of the thinning of metal sheet during the forming process. The flow channel section decides whether high quality hydroformed bipolar plates can be successively achieved or not. Meanwhile, it is also the key factor that is related with the reaction efficiency of the fuel cell stacks. In order to obtain the optimum flow channel section design prior the experimental campaign, some key geometric dimensions (channel depth, channel width, rib width and transition radius) of flow channel section, which are related with both reaction efficiency and formability, are extracted and parameterized as the design variables. By design of experiments (DOE) methods and an adoptive simulated annealing (ASA) optimization method, an optimization model of flow channel section design for hydroformed metal bipolar plate is proposed. Optimization results show that the optimum dimension values for channel depth, channel width, rib width and transition radius are 0.5, 1.0, 1. 6 and 0.5 mm, respectively with the highest reaction efficiency (79%) and the acceptable formability (1.0). Consequently, their use would lead to improved fuel cell efficiency for low cost hydroformed metal bipolar plates. (author)

  11. Simplified computational simulation of liquid metal behaviour in turbulent flow with heat transfer

    International Nuclear Information System (INIS)

    Costa, E.B. da.

    1992-09-01

    The present work selected the available bibliography equations and empirical relationships to the development of a computer code to obtain the turbulent velocity and temperature profiles in liquid metal tube flow with heat generation. The computer code is applied to a standard problem and the results are considered satisfactory, at least from the viewpoint of qualitative behaviour. (author). 50 refs, 21 figs, 3 tabs

  12. Free surface modeling of contacting solid metal flows employing the ALE formulation

    NARCIS (Netherlands)

    van der Stelt, A.A.; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko; Huetink, Han; Merklein, M.; Hagenah, H.

    2012-01-01

    In this paper, a numerical problem with contacting solid metal flows is presented and solved with an arbitrary Lagrangian-Eulerian (ALE) finite element method. The problem consists of two domains which mechanically interact with each other. For this simulation a new free surface boundary condition

  13. Fully developed liquid-metal flow in multiple rectangular ducts in a strong uniform magnetic field

    International Nuclear Information System (INIS)

    Molokov, S.

    1993-01-01

    Fully developed liquid-metal flow in a straight rectangular duct with thin conducting walls is investigated. The duct is divided into a number of rectangular channels by electrically conducting dividing walls. A strong uniform magnetic field is applied parallel to the outer side walls and dividing walls and perpendicular to the top and the bottom walls. The analysis of the flow is performed by means of matched asymptotics at large values of the Hartmann number M. The asymptotic solution obtained is valid for arbitrary wall conductance ratio of the side walls and dividing walls, provided the top and bottom walls are much better conductors than the Hartmann layers. The influence of the Hartmann number, wall conductance ratio, number of channels and duct geometry on pressure losses and flow distribution is investigated. If the Hartmann number is high, the volume flux is carried by the core, occupying the bulk of the fluid and by thin layers with thickness of order M -1/2 . In some of the layers, however, the flow is reversed. As the number of channels increases the flow in the channels close to the centre approaches a Hartmann-type flow with no jets at the side walls. Estimation of pressure-drop increase in radial ducts of a self-cooled liquid-metal blanket with respect to flow in a single duct with walls of the same wall conductance ratio gives an upper limit of 30%. (author). 13 refs., 10 figs., 1 tab

  14. Study on surface wave characteristics of free surface flow of liquid metal lithium for IFMIF

    International Nuclear Information System (INIS)

    Hoashi, Eiji; Sugiura, Hirokazu; Yoshihashi-Suzuki, Sachiko; Yamaoka, Nobuo; Horiike, Hiroshi; Kanemura, Takuji; Kondo, Hiroo

    2011-01-01

    The international fusion materials irradiation facility (IFMIF) presents an intense neutron source to develop fusion reactor materials. The free surface flow of a liquid metal Lithium (Li) is planned as a target irradiated by two deuteron beams to generate intense neutrons and it is thus important to obtain knowledge of the surface wave characteristic for the safety and the efficiency of system in the IFMIF. We have been studying on surface wave characteristics experimentally using the liquid metal Li circulation facility at Osaka University and numerically using computational fluid dynamics (CFD) code, FLUENT. This paper reports the results of the surface fluctuation, the wave height and the surface velocity in the free surface flow of the liquid metal Li examined experimentally and numerically. In the experiment, an electro-contact probe apparatus was used to obtain the surface fluctuation and the wave height, and a high speed video was used to measure the surface velocity. We resulted in knowledge of the surface wave growth mechanism. On the other hand, a CFD simulation was also conducted to obtain information on the relation of the free surface with the inner flow. In the simulation, the model included from a two-staged contraction nozzle to a flow channel with a free surface flow region and simulation results were compared with the experimental data. (author)

  15. NUMERICAL SIMULATION OF METAL MELT FLOWS IN MOLD CAVITY WITH CERAMIC POROUS MEDIA

    Directory of Open Access Journals (Sweden)

    Changchun Dong

    2016-05-01

    Full Text Available Process modeling of metal melt flow in porous media plays an important role in casting of metal matrix composites. In this work, a mathematical model of the metal melt flow in preform ceramic particles was used to simulate the flow behavior in a mold cavity. The effects of fluid viscosity and permeability (mainly affected by porosity of ceramic preforms on the flow behavior were analyzed. The results indicate that ceramic porous media have a significant effect on the flow behavior by contributing to a low filling velocity and sharp pressure drop in the cavity. The pressure drop has a linear relationship with the fluid velocity, and a nonlinear relationship with porosity. When the porosity is relatively small, the pressure drop is extremely large. When porosity exceeds a certain value, the pressure drop is independent of porosity. The relationship between viscosity and porosity is described, and it is shown that the critical porosity changes when the viscosity of the melt changes. However, due to the limited viscosity change, the critical porosity changes by less than 0.043.

  16. Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    Science.gov (United States)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  17. Continuous metal scavenging and coupling to one-pot copper-catalyzed azide-alkyne cycloaddition click reaction in flow

    NARCIS (Netherlands)

    Vural - Gursel, Dr. Iris; Aldiansyah, Ferry; Wang, Qi; Noël, Timothy; Hessel, Volker

    2015-01-01

    Increasing usage of catalytic chemistry calls for efficient removal of metal traces. This paper describes the development and optimization of a scavenger-based extraction in flow to remove metal catalysts. It enables liquid-liquid extraction with slug flow and phase separation with a porous

  18. Plastic flow produced by single ion impacts on metals

    International Nuclear Information System (INIS)

    Birtcher, R. C.

    1998-01-01

    Single ion impacts have been observed using in situ transmission electron microscopy and video recording with a time resolution of 33 milliseconds. Gold was irradiated at 50 K and room temperature. Single ion impacts produce holes, modify existing holes, and extrude material into the initial specimen hole and holes formed by other ion impacts. The same behavior is observed at both temperatures. At both temperatures, ion impacts result in craters and ejected material. Ion impacts produce more small craters than large ones for all ion masses, while heavier mass ions produce more and larger craters than lighter mass ions. This comparison is affected by the ion energy. As the energy of an ion is increased, the probability for deposition near the surface decreases and fewer craters are formed. For a given ion mass, crater production depends on the probability for displacement cascade production in the near surface region. Crater and holes are stable at room temperature, however, ion impacts near an existing crater may cause flow of material into the crater either reshaping or annihilating it. Holes and craters result from the explosive outflow of material from the molten zone of near-surface cascades. The outflow may take the form of molten material, a solid lid or an ejected particle. The surface is a major perturbation on displacement cascades resulting from ion impacts

  19. Combined Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow

    Science.gov (United States)

    Zürner, Till; Vogt, Tobias; Resagk, Christian; Eckert, Sven; Schumacher, Jörg

    2017-11-01

    We report experimental studies on turbulent vertical convection flow in the liquid metal alloy gallium-indium-tin. Flow measurements were conducted by a combined use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry (UDV). It is known that the forced convection flow in a duct generates a force on the LLFV magnet system, that grows proportional to the flow velocity. We show that for the slower flow of natural convection LLFV retains this linear dependence in the range of micronewtons. Furthermore experimental results on the scaling of heat and momentum transport with the thermal driving are presented. The results cover a range of Rayleigh numbers 3 ×105 Deutsche Forschungsgemeinschaft under Grant No. GRK 1567.

  20. Time-dependent liquid metal flows with free convection and free surfaces

    International Nuclear Information System (INIS)

    McClelland, M.A.

    1990-11-01

    A finite element analysis is given for time-dependent liquid metal flows with free convection and free surfaces. Consideration is given to a two-dimensional shallow trough with vertical walls maintained at different temperatures. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, pressure, temperature, and interface position. The time integration method is performed using the Trapezoid Rule with step-size control. The Galerkin method is employed to reduce the problem to a set of nonlinear algebraic equations which are solved with the Newton-Raphson method. Calculations are performed for conditions relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0.015, and Grashof numbers are in the transition region between laminar and turbulent flow. The results reveal the effects of flow intensity, surface-tension gradients, and mesh and time-step refinement

  1. Contact-free measurement of the flow field of a liquid metal inside a closed container

    Directory of Open Access Journals (Sweden)

    Heinicke Christiane

    2014-03-01

    Full Text Available The measurement of flow velocities inside metal melts is particularly challenging. Due to the high temperatures of the melts it is impossible to employ measurement techniques that require either mechanical contact with the melt or are only adaptable to translucent fluids. In the past years a number of electromagnetic techniques have been developed that allows a contact-free measurement of volume flows. One of these techniques is the so-called Lorentz Force Velocimetry (LFV in which the metal flow is exposed to an external, permanent magnetic field. The interaction between the metal and the magnet not only leads to a force on the fluid, but also on the magnet. The force can be measured and is proportional to the velocity of the melt. Moreover, by using a small permanent magnet it is possible to resolve spatial structures inside the flow.We will demonstrate this using a model experiment that has been investigated with different reference techniques previously. The experimental setup is a cylindrical vessel filled with a eutectic alloy which is liquid at room temperature. The liquid metal can be set into motion by means of a propeller at the top of the liquid. Depending on the direction of rotation of the propeller, the flow inside the vessel takes on different states. Beside the vessel, we place a Lorentz Force Flowmeter (LFF equipped with a small permanent magnet. By measuring the force on the magnet at different positions and different rotation speeds, we demonstrate that we can qualitatively and quantitatively reconstruct the flow field inside the vessel.

  2. Liquid metal magnetohydrodynamic flows in manifolds of dual coolant lead lithium blankets

    Energy Technology Data Exchange (ETDEWEB)

    Mistrangelo, C., E-mail: chiara.mistrangelo@kit.edu; Bühler, L.

    2014-10-15

    Highlights: • MHD flows in model geometries of DCLL blanket manifolds. • Study of velocity, pressure distributions and flow partitioning in parallel ducts. • Flow partitioning affected by 3D MHD pressure drop and velocity distribution in the expanding zone. • Reduced pressure drop in a continuous expansion compared to a sudden expansion. - Abstract: An attractive blanket concept for a fusion reactor is the dual coolant lead lithium (DCLL) blanket where reduced activation steel is used as structural material and a lead lithium alloy serves both to produce tritium and to remove the heat in the breeder zone. Helium is employed to cool the first wall and the blanket structure. Some critical issues for the feasibility of this blanket concept are related to complex induced electric currents and 3D magnetohydrodynamic (MHD) phenomena that occur in distributing and collecting liquid metal manifolds. They can result in large pressure drop and undesirable flow imbalance in parallel poloidal ducts forming blanket modules. In the present paper liquid metal MHD flows are studied for different design options of a DCLL blanket manifold with the aim of identifying possible sources of flow imbalance and to predict velocity and pressure distributions.

  3. Modelling Methods of Magnetohydrodynamic Phenomena Occurring in a Channel of the Device Used to Wash Out the Spent Automotive Catalyst by a Liquid Metal

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-06-01

    Full Text Available The recovery of precious metals is necessary for environmental and economic reasons. Spent catalysts from automotive industry containing precious metals are very attractive recyclable material as the devices have to be periodically renovated and eventually replaced. This paper presents the method of removing platinum from the spent catalytic converters applying lead as a collector metal in a device used to wash out by using mangetohydrodynamic stirrer. The article includes the description of the methods used for modeling of magnetohydrodynamic phenomena (coupled analysis of the electromagnetic, temperature and flow fields occurring in this particular device. The paper describes the general phenomena and ways of coupling the various physical fields for this type of calculation. The basic computational techniques with a discussion of their advantages and disadvantages are presented.

  4. Recycling Potentials of Critical Metals-Analyzing Secondary Flows from Selected Applications

    Directory of Open Access Journals (Sweden)

    Till Zimmermann

    2014-03-01

    Full Text Available Metal mobilization in general, as well as the number of metals used in products to increase performance and provide sometimes unique functionalities, has increased steadily in the past decades. Materials, such as indium, gallium, platinum group metals (PGM, and rare earths (RE, are used ever more frequently in high-tech applications and their criticality as a function of economic importance and supply risks has been highlighted in various studies. Nevertheless, recycling rates are often below one percent. Against this background, secondary flows of critical metals from three different end-of-life products up to 2020 are modeled and losses along the products’ end-of-life (EOL chain are identified. Two established applications of PGM and RE–industrial catalysts and thermal barrier coatings–and CIGS photovoltaic cells as a relatively new product have been analyzed. In addition to a quantification of future EOL flows, the analysis showed that a relatively well working recycling system exists for PGM-bearing catalysts, while a complete loss of critical metals occurs for the other applications. The reasons include a lack of economic incentives, technologically caused material dissipation and other technological challenges.

  5. Viscous surface flow induced on Ti-based bulk metallic glass by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kun [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Zheng [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072 (China); Li, Fengjiang [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei, Bingchen, E-mail: weibc@imech.ac.cn [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-12-30

    Highlights: • Obvious smoothing and roughening phases on the Ti-based MG surface resulted, which correspond respectively to the normal and off-normal incidence angles. • Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough surface. • The irradiation-induced viscosity of MG is about 4×10{sup 12} Pa·s, which accords with the theoretical prediction for metallic glasses close to glass transition temperature. • Surface-confined viscous flow plays a dominant quantitative role, which is due to radiation-induced softening of the low-viscosity surface layer. - Abstract: Ti-based bulk metallic glass was irradiated by a 20 MeV Cl{sup 4+} ion beam under liquid-nitrogen cooling, which produced remarkable surface smoothing and roughening that respectively correspond to normal and off-normal incidence angles of irradiation. Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough glass surface. In terms of mechanism, irradiation-induced viscosity agrees with the theoretical prediction for metallic glasses near glass transition temperature. Here, a model is introduced, based on relaxation of confined viscous flow with a thin liquid-like layer, that explains both surface smoothing and ripple formation. This study demonstrates that bulk metallic glass has high morphological instability and low viscosity under ion irradiation, which assets can pave new paths for metallic glass applications.

  6. Liquid-metal pin-fin pressure drop by correlation in cross flow

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.; Assoufid, L.

    1994-01-01

    The pin-fin configuration is widely used as a heat transfer enhancement method in high-heat-flux applications. Recently, the pin-fin design with liquid-metal coolant was also applied to synchrotron-radiation beamline devices. This paper investigates the pressure drop in a pin-post design beamline mirror with liquid gallium as the coolant. Because the pin-post configuration is a relatively new concept, information in literature about pin-post mirrors or crystals is rare, and information about the pressure drop in pin-post mirrors with liquid metal as the coolant is even more sparse. Due to this the authors considered the cross flow in cylinder-array geometry, which is very similar to that of the pin-post, to examine the pressure drop correlation with liquid metals over pin fins. The cross flow of fluid with various fluid characteristics or properties through a tube bank was studied so that the results can be scaled to the pin-fin geometry with liquid metal as the coolant. Study lead to two major variables to influence the pressure drop: fluid properties, viscosity and density, and the relative length of the posts. Correlation of the pressure drop between long and short posts and the prediction of the pressure drop of liquid metal in the pin-post mirror and comparison with an existing experiment are addressed

  7. Measurements of time-dependent liquid-metal magnetohydrodynamic flows in a flat rectangular duct

    International Nuclear Information System (INIS)

    Buehler, L.; Horanyi, S.

    2009-01-01

    In the helium-cooled lead lithium (HCLL) blanket, which has been chosen as a reference concept for a liquid-metal breeding blanket to be tested in ITER, the heat is removed by helium cooled plates aligned with the strong toroidal magnetic field that confines the fusion plasma. The liquid breeder lead lithium circulates through gaps of rectangular cross-section between the cooling plates to transport the generated tritium towards external extraction facilities. Under the action of the strong magnetic field, liquid metal flows in conducting rectangular ducts exhibit jet-like velocity profiles in the thin boundary layers near the side walls, which are parallel to the magnetic field like the cooling plates in HCLL blankets. The velocity in these side layers may exceed several times the mean velocity in the duct and it is known that these layers become unstable for sufficiently high Reynolds numbers. The present paper summarizes experimental results for such unstable time-dependent flows in strong magnetic fields, which have been obtained in the MEKKA liquid metal laboratory of the Forschungszentrum Karlsruhe. In particular, spatial and temporal scales of perturbation patterns are identified. The results suggest that the flow between cooling plates in a HCLL blanket is laminar and stable. The observed time-dependent flow behavior appears at larger velocities so that the present results are more relevant for applications in dual coolant concepts where high-velocity jets have been predicted along side walls.

  8. Optimization of the uniformity of a metal flow during continuous extrusion by the Conform method

    Science.gov (United States)

    Lyubanova, A. Sh.; Gorokhov, Yu. V.; Solopko, I. V.; Ziborov, A. Yu.

    2010-03-01

    The scheme of plastic deformation of a billet in a container is considered as part of continuous extrusion by the Conform method. A mathematical model of the motion of a viscoplastic Bingham liquid is used to determine the metal velocity distribution in the plastic-deformation zone. As a result, the optimum angle between the longitudinal axes of the die and container is estimated. This angle is found to be one of the main factors affecting the nonuniformity of deformation when a metal flows into the die. The calculated results are compared to experimental data.

  9. Magnetic liquid metal two-phase flow research. Phase 1. Final report

    International Nuclear Information System (INIS)

    Graves, R.D.

    1983-04-01

    The Phase I research demonstrates the feasibility of the magnetic liquid metal (MLM) two-phase flow concept. A dispersion analysis is presented based on a complete set of two-phase-flow equations augmented to include stresses due to magnetic polarization of the fluid. The analysis shows that the stability of the MLM two-phase flow is determined by the magnetic Mach number, the slip ratio, geometry of the flow relative to the applied magnetic field, and by the voidage dependence of the interfacial forces. Results of a set of experiments concerned with magnetic effects on the dynamics of single bubble motion in an aqueous-based, viscous, conducting magnetic fluid are presented. Predictions in the theoretical literature are qualitatively verified using a bench-top experimental apparatus. In particular, applied magnetic fields are seen to lead to reduced bubble size at fixed generating orifice pressure

  10. High-energy redox-flow batteries with hybrid metal foam electrodes.

    Science.gov (United States)

    Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun

    2014-07-09

    A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.

  11. Inductive flow meter for measuring the speed of flow and gas volume contained in a flow of liquid metal

    International Nuclear Information System (INIS)

    Mueller, S.

    1980-01-01

    The speed of flow of the sodium is measured in two closely adjacent flow crossections using pairs of electrodes in the field of two disc-shaped permanent magnets made of AlNiCo 450, by means of measurements of running time of speed fluctuations. The result of the measurement is independent of the temperature of the sensor and the temperature of the sodium. The same arrangement makes it possible to determine the proportion by volume of the fission gas in sodium with a limiting freequency of several kHz. (DG) [de

  12. Numerical Simulation of Multiphase Magnetohydrodynamic Flow and Deformation of Electrolyte-Metal Interface in Aluminum Electrolysis Cells

    Science.gov (United States)

    Hua, Jinsong; Rudshaug, Magne; Droste, Christian; Jorgensen, Robert; Giskeodegard, Nils-Haavard

    2018-06-01

    A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath-metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath-metal interface is tracked directly in the simulation, and the condition of constant anode-cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath-metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath-metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.

  13. Regulation of the flow rate of liquid-metal coolants on experimental stands

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Laptev, G.I.

    1988-01-01

    Systems for automatic regulation of the flow rate of alkali metals, based on the series ENIV, VIN, and TsLIN three-phase electromagnetic pumps with a pumping rate of 0.5-200 m 3 per hour, were evaluated. The stability of each system was investigated by the method of undamped oscillations. The possibility of employing the analog temperature regulators VRT-2, RPA-T, and R113 was assessed. The functions performed by the most suitable automatic regulation unit, the RPA-T, were described. The limiting period of flow rate oscillations with a maximum gain of the RPA-T in alkali metal regulation systems equaled about 0.5 sec and the minimum integration time of the RPA-T was an order of magnitude longer than the optimal interval. Use of the systems on experimental stands enabled raising the quality of the studies and expanding the zone of servicing of the facilities by the same personnel

  14. Decoding flow unit evolution upon annealing from fracture morphology in metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gao, M., E-mail: gaomeng10@hotmail.com; Cao, X.F.; Ding, D.W.; Wang, B.B.; Wang, W.H., E-mail: whw@iphy.ac.cn

    2017-02-16

    The intrinsic correlation between the fracture morphology evolution and the structural heterogeneity of flow units in a typical Zr{sub 52.5}Ti{sub 5}Cu{sub 17.9}Ni{sub 14.6}Al{sub 10} (vit105) metallic glass (MG) upon annealing was investigated. By systematically tuning the annealing time at temperature below the glass transition temperature, a series of dimple-like fracture morphology were obtained, which is the unique fingerprint-like pattern for every annealing state. Based on the structural relaxation model of flow units, the evolution of the typical dimple sizes, the largest and smallest dimple size, with annealing were well fitted. Then the evolution of flow unit density was estimated from the fracture morphology evolution, which displays the same evolution trend with that measured from thermal relaxation. A stochastic dynamic model considering the interaction of activated flow units was proposed to analyze the effect of the initial flow unit density and the flow unit interaction intensity on the dynamic evolution of dimple distribution. Our work may provide a novel scheme to investigate the structural fingerprint information on flow units from fracture morphology, and enlighten the microscopic structural origin of the ductile-to-brittle transition during structural relaxation in MGs.

  15. Dynamic Flow-through Methods for Metal Fractionation in Environmental Solid Samples

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald; Petersen, Roongrat

    occurring processes always take place under dynamic conditions, recent trends have been focused on the development of alternative flow-through dynamic methods aimed at mimicking environmental events more correctly than their classical extraction counterparts. In this lecture particular emphasis is paid......Accummulation of metal ions in different compartments of the biosphere and their possible mobilization under changing environmental conditions induce a pertubation of the ecosystem and may cause adverse health effects. Nowadays, it is widely recognized that the information on total content...... the ecotoxicological significance of metal ions in solid environmental samples. The background of end-over-end fractionation for releasing metal species bound to particular soil phases is initially discussed, its relevant features and limitations being thoroughly described. However, taking into account that naturally...

  16. Electromagnetic device for confining a liquid metal and regulating the flow rate

    International Nuclear Information System (INIS)

    Garnier, Marcel; Moreau, R.J.

    1977-01-01

    The description is given of a device for confining a liquid metal jet, characterized in that it comprises in combination, at the jet outlet nozzle, (a) means for producing a high pressure in the jet composed of a coil around the nozzle and located on its outlet, in combination with facilities for passing a high frequency alternating current through the coil and (b) means for suppressing this high pressure. It is stated that this device has many uses, particularly for allowing the use of a relatively large diameter orifice, hence not subject to the risk of clogging, in order to produce a jet with a relatively small diameter. This invention particularly concerns the application of this device for regulating a flow of liquid metal at an outlet orifice located at the lower end of a receptacle containing this liquid metal [fr

  17. Research on geometrical model and mechanism for metal deformation based on plastic flow

    International Nuclear Information System (INIS)

    An, H P; Li, X; Rui, Z Y

    2015-01-01

    Starting with general conditions of metal plastic deformation, it analyses the relation between the percentage spread and geometric parameters of a forming body with typical machining process are studied. A geometrical model of deforming metal is set up according to the characteristic of a flowing metal particle. Starting from experimental results, the effect of technological parameters and friction between workpiece and dies on plastic deformation of a material were studied and a slippage deformation model of mass points within the material was proposed. Finally, the computing methods for strain and deformation energy and temperature rise are derived from homogeneous deformation. The results can be used to select technical parameters and compute physical quantities such as strain, deformation energy, and temperature rise. (paper)

  18. Histological Examination of Precious Corals from the Ryukyu Archipelago

    Directory of Open Access Journals (Sweden)

    Masanori Nonaka

    2012-01-01

    Full Text Available In this paper we examined the histology of three commercially valuable species of precious corals (Paracorallium japonicum, Corallium elatius, and C. konojoi from the Ryukyu Archipelago. In order to observe their inner structure, samples were thin sectioned and examined with a digital light microscope. Colonies of C. konojoi had thicker coenenchyme and larger autozooids than those of C. elatius and P. japonicum. The sclerites of the three species tended to be concentrated in the outer layers of coenenchyme. The gastric cavities of autozooids of all three species were found to be relatively empty. Some symbiotic polychates were observed in the axis of P. japonicum. As well, a zoanthid (Corallizoanthus tsukaharai was often observed living on the coenenchyme surface of P. japonicum. It is hoped our observations will provide a good foundation of future study of Japanese Coralliidae corals.

  19. Fluid Flow and Mixing Induced by AC Continuous Electrowetting of Liquid Metal Droplet

    Directory of Open Access Journals (Sweden)

    Qingming Hu

    2017-04-01

    Full Text Available In this work, we proposed a novel design of a microfluidic mixer utilizing the amplified Marangoni chaotic advection induced by alternating current (AC continuous electrowetting of a metal droplet situated in electrolyte solution, due to the linear and quadratic voltage-dependence of flow velocity at small or large voltages, respectively. Unlike previous researchers exploiting the unidirectional surface stress with direct current (DC bias at droplet/medium interface for pumping of electrolytes where the resulting flow rate is linearly proportional to the field intensity, dominance of another kind of dipolar flow pattern caused by local Marangoni stress at the drop surface in a sufficiently intense AC electric field is demonstrated by both theoretical analysis and experimental observation, which exhibits a quadratic growth trend as a function of the applied voltage. The dipolar shear stress merely appears at larger voltages and greatly enhances the mixing performance by inducing chaotic advection between the neighboring laminar flow. The mixer design developed herein, on the basis of amplified Marangoni chaotic advection around a liquid metal droplet at larger AC voltages, has great potential for chemical reaction and microelectromechanical systems (MEMS actuator applications because of generating high-throughput and excellent mixing performance at the same time.

  20. Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    Science.gov (United States)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2004-01-01

    In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  1. Point dipole as a magnetic obstacle in liquid metal duct flow

    Science.gov (United States)

    Tympel, Saskia; Boeck, Thomas; Krasnov, Dmitry; Schumacher, Jörg

    2011-11-01

    Lorentz force velocimetry is a new contactless technique to measure the velocities of hot and agressive conductiong liquids. The measurement of the Lorentz force on the magnet is highly sensitive to the velocity profile that is influenced by the magnetic field. Thus the knowlegde of the flow transformation and the influence of an inhomogeneous local magnetic field on liquid metal flow is essential for obtaining velocity information from the measured forces. We consider liquid metal flow in a square duct with electrically insulating walls under the influence of a magnetic point dipole using three-dimensional direct numerical simulations with a finite-difference method. The dipole acts as a magnetic obstacle. A wide range of parameters affects the created wake. In this canonical setting, we study the modification of the flow for different Hartmann and Reynolds numbers. We observe a strong dependence of the magnetic obstacle effect and the corresponding Lorentz force on the orientation of the dipole as well as on its position. The authors acknowledge the support of the Deutsche Forschungsgemeinschaft.

  2. Performance analysis of a membrane humidifier containing porous metal foam as flow distributor in a PEM fuel cell system

    International Nuclear Information System (INIS)

    Afshari, Ebrahim; Baharlou Houreh, Nasser

    2014-01-01

    Highlights: • Three metal foam configurations for the membrane humidifier are introduced. • The performances of the humidifiers containing metal foam are investigated. • A 3D CFD model is developed to compare the introduced humidifiers with one another. • Using metal foam at dry side has no positive effect on the humidifier performance. - Abstract: Using metal foam as flow distributor in membrane humidifier for proton exchange membrane (PEM) fuel cell system has some unique characteristics like more water transfer, low manufacturing complexity and low cost compared to the conventional flow channel plate. Metal foam can be applied at wet side or dry side or both sides of a humidifier. The three-dimensional CFD models are developed to investigate the performance of the above mentioned meanwhile compare them with the conventional humidifier. This model consists of a set of coupled equations including conservations of mass, momentum, species and energy for all regions of the humidifier. The results indicate that with the metal foam installed at wet side and both sides, water recovery ratio and dew point at dry side outlet are more than that of the conventional humidifier, indicating a better humidifier performance; while using metal foam at dry side has no positive effect on humidifier performance. At dry side mass flow rates higher than 10 mgr/s pressure drop in humidifier containing metal foam at wet side is lower than that of the conventional humidifier. As the mass flow rate increases from 9 to 15 mgr/s humidifier containing metal foam at wet side has better performance, while at mass flow rates lower than 9 mgr/s, the humidifier containing metal foam at both sides has better performance. At dry side inlet temperatures lower than 303 K, humidifier containing metal foam at wet side has better performance and at temperatures higher than 303 K, humidifier containing metal foam at both sides has better performance

  3. Metal release behavior of surface oxidized stainless steels into flowing high temperature pure water

    International Nuclear Information System (INIS)

    Fujiwara, Kazuo; Tomari, Haruo; Nakayama, Takenori; Shimogori, Kazutoshi; Ishigure, Kenkichi; Matsuura, Chihiro; Fujita, Norihiko; Ono, Shoichi.

    1987-01-01

    In order to clarify the effect of oxidation treatment of Type 304 SS on the inhibition of metal release into high temperature pure water, metal release rate of individual alloying element into flowing deionized water containing 50 ppb dissolved oxygen was measured as the function of exposure time on representative specimens oxidized in air and steam. The behavior of metal release was also discussed in relation to the structure of surface films. Among the alloying elements the amount of Fe ion, Cr ion and Fe crud in high temperature pure water tended to saturate with the exposure time and that of Ni ion and Co ion tended to increase monotonously with the exposure time for all specimens tested. And the treatment of steam-oxidation was the most effective to decrease the metal release of alloying elements and the treatment by air-oxidation also decreased the metal release. These tendencies were confirmed to correlate well with the structure of the surface films as it was in the results in the static autoclave test. (author)

  4. Performance model of metallic concentric tube recuperator with counter flow arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Harshdeep [HIET, Department of Mechanical Engineering, Ghaziabad, Uttar Pradesh (India); Kumar, Anoop; Goel, Varun [NIT, Department of Mechanical Engineering, Hamirpur, Himachal Pradesh (India)

    2010-03-15

    A performance model for counter flow arrangement in concentric tube recuperator that can be used to utilize the waste heat in the temperature range of 900-1,400 C is presented. The arrangement consists of metallic tubular inner and outer concentric shell with a small annular gap between two concentric shells. Flue gases pass through the inner shell while air passes through the annular gap in the reverse direction (counter flow arrangement). The height of the recuperator is divided into elements and an energy balance is performed on each elemental height. Results give necessary information about surface, gas and air temperature distribution, and the influence of operating conditions on recuperator performance. The recuperative effectiveness is found to be increased with increasing inlet gas temperature and decreased with increasing fuel flow rate. The present model accounts for all heat transfer processes pertinent to a counterflow radiation recuperator and provide a valuable tool for performance considerations. (orig.)

  5. Liquid-metal flow in a rectangular duct with a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Walker, J.S.

    1986-04-01

    This paper treats liquid-metal flow in rectangular ducts with thin conducting walls. A transverse magnetic field changes from a uniform strength upstream to a weaker uniform strength downstream. The Hartmann number and the interaction parameter are assumed to be large, while the magnetic Reynolds number is assumed to be small. If the magnetic field changes gradually over a long duct length, the velocity and pressure are nearly uniform in each cross section and the flow differs slightly from locally fully developed flow. If the magnetic field changes more abruptly over a shorter duct length, the velocity and pressure are much larger near the walls parallel to the magnetic field than in the central part of duct. Solutions for the pressure drops due to the magnetic field change are presented

  6. Visualization of two-phase flow in metallic pipes using neutron radiographic technique

    International Nuclear Information System (INIS)

    Luiz, L.C.; Crispim, V.R.

    2007-01-01

    The study of two-phase flow is a matter of great interest both for the engineering and oil industries. The production of oil and natural gas involves the transportation of fluids in their liquid and gaseous states, respectively, to the processing plant for refinement. The forecasting of two-phase flow in oil pipes is of the utmost important yet an extremely difficult task. With the development of the electronic imaging system, installed in J-9 irradiation channel of the IEN/CNEN Argonauta Reactor, it is possible to visualize the different types of two phase air-water flows in small-diameter metallic pipes. After developing the captured image the liquid-gas drift flux correlation as well as the void fraction in relation to the injected air outflow for a fixed water outflow can be obtained. (author)

  7. An investigation of flow properties of metal matrix composites suspensions for injection molding

    International Nuclear Information System (INIS)

    Ahmad, F.; Bevis, M.J.

    1997-01-01

    Flow properties of metal matrix composites suspensions have significant effects on the fibre orientation during mould filling. The results presented in this paper relate to the flow properties of aluminium powder and glass fibres compounded into a sacrificial thermoplastics binder. For this purpose, a range of aluminium compounds and aluminium composite suspensions were investigated over a wide shear rate range expected to occur during injection mould process. Aluminium composites wee prepared by substituting glass fibres for aluminium in aluminium compound. Aluminium composite containing a maximum critical volume fraction of fibres which did not exhibit an increase n viscosity was determined. The effect of temperature on the flow behaviour of aluminium composite was also investigated. (author)

  8. Influences of viscous losses and end effects on liquid metal flow in electromagnetic pumps

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Seo, Joon Ho; Hong, Sang Hee; Cho, Su won; Nam, Ho Yun; Cho, Man

    1996-01-01

    Analyses of the viscous and end effects on electromagnetic (EM) pumps of annular linear induction type for the sodium coolant circulation in Liquid Metal Fast Breeder Reactors have been carried out based on the MHD laminar flow analysis and the electromagnetic field theory. A one-dimensional MHD analysis for the liquid metal flowing through an annular channel has been performed on the basis of a simplified model of equivalent current sheets instead of three-phase currents in the discrete primary windings. The calculations show that the developed pressure difference resulted from electromagnetic and viscous forces in the liquid metal is expressed in terms of the slip, and that the viscous loss effects are negligible compared with electromagnetic driving forces except in the low-slip region where the pumps operate with very high flow velocities comparable with the synchronous velocity of the electromagnetic fields, which is not applicable to the practical EM pumps. A two-dimensional electromagnetic field analysis based on an equivalent current sheet model has found the vector potentials in closed form by means of the Fourier transform method. The resultant magnetic fields and driving forces exerted on the liquid metal reveal that the end effects due to finiteness of the pump length are formidable. In addition, a two-dimensional numerical analysis for vector potentials has been performed by the SOR iterative method on a realistic EM pump model with discretely-distributed currents in the primary windings. The numerical computations for the distributions of magnetic fields and developed pressure differences along the pump axial length also show considerable end effects at both inlet and outlet ends, especially at high flow velocities. Calculations of each magnetic force contribution indicate that the end effects are originated from the magnetic force caused by the induced current (υxB) generated by the liquid metal movement across the magnetic field rather than the one

  9. Metal flow of a tailor-welded blank in deep drawing process

    Science.gov (United States)

    Yan, Qi; Guo, Ruiquan

    2005-01-01

    Tailor welded blanks were used in the automotive industry to consolidate parts, reduce weight, and increase safety. In recent years, this technology was developing rapidly in China. In Chinese car models, tailor welded blanks had been applied in a lot of automobile parts such as rail, door inner, bumper, floor panel, etc. Concerns on the properties of tailor welded blanks had become more and more important for automobile industry. A lot of research had shown that the strength of the welded seam was higher than that of the base metal, such that the weld failure in the aspect of strength was not a critical issue. However, formability of tailor welded blanks in the stamping process was complex. Among them, the metal flow of tailor welded blanks in the stamping process must be investigated thoroughly in order to reduce the scrap rate during the stamping process in automobile factories. In this paper, the behavior of metal flow for tailor welded blanks made by the laser welding process with two types of different thickness combinations were studied in the deep drawing process. Simulations and experiment verification of the movement of weld line for tailor welded blanks were discussed in detail. Results showed that the control on the movement of welded seam during stamping process by taking some measures in the aspect of blank holder was effective.

  10. Effects of flow regime and flooding on heavy metal availability in sediment and soil of a dynamic river system

    NARCIS (Netherlands)

    Poot, A.; Gillissen, F.; Koelmans, A.A.

    2007-01-01

    The acid volatile sulphide (AVS) and simultaneously extracted metals (¿SEM) method is increasingly used for risk assessment of toxic metals. In this study, we assessed spatial and temporal variations of AVS and ¿SEM in river sediments and floodplain soils, addressing influence of flow regime and

  11. Homogeneous viscous flow behavior of a Cu–Zr based bulk metallic glass composites

    International Nuclear Information System (INIS)

    Zhang, X.Y.; Yuan, Z.Z.; Feng, X.L.; Cui, L.Z.; Li, D.X.

    2015-01-01

    In this paper, Cu 40 Zr 44 Ag 8 Al 8 bulk metallic glass composites (BMGCs) consisting of various volume fraction of nanocrystals embedded in the amorphous matrix was synthesized by controlled annealing treatment of an as-cast BMGCs. The high temperature compression behaviors of the BMGCs were characterized in the supercooled liquid region. Results show that the flow stresses keep increasing after an initial decrease with extension of the annealing time. With annealing the values of activation volume V act is determined to be increasing from 283.6216 Ǻ 3 to 305.553 Ǻ 3 , suggesting that the jump of atoms is a cooperative process during the high-temperature deformation. Flow behavior of the BMGCs annealed for less than 8 min transform from Newtonian to non-Newtonian dependant on the stain rate and can be successively fitted by the visco-plasticity model. Fitting results indicate that deformation behaviors of these samples are governed by homogeneous flow of the amorphous matrix and indeed determined by the viscosities in the Newtonian flow stage. However, the BMGCs annealed for 8 min exhibit a non-Newtonian flow over the entire compression process and fail to be fitted by the visco-plasticity model. Micrographs of the sample reflect an impinged structure, indicating that high temperature deformation behavior of the BMGCs with high volume fractions of particles is indeed controlled by that of a backbone of particles

  12. Effect of thermodiffusion on the fluid flow, heat transfer, and solidification of molten metal alloys

    Directory of Open Access Journals (Sweden)

    E. Jafar-Salehi

    2016-03-01

    Full Text Available In this paper, a transient Finite Element (FE method has been employed to solve the transport equations to investigate the heat transfer and fluid flow and the effect of thermodiffusion on vertical solidification of a binary molten metal alloy, forming a rod. The binary system considered in this study is SnBi composed of 65% Sn and 35% Bi subjected to bottom cooling. It is found that the flow of molten metal at the boundary of the mushy region plays an important role in the shape and geometry of the zone. The presence of thermodiffusion shows considerable difference in the composition of the solidified rod, compared with the one without considering the effect of thermodiffusion. Thermodiffusion also causes a faster solidification and a more uniform concentration distribution. The results of this study may be extended to similar binary and multicomponent systems in which a temperature gradient exists and the Soret coefficient is large enough so as to affect the fluid flow and concentration of the species.

  13. Numerical simulation of turbulent liquid metal flows in plane channels and annuli

    International Nuclear Information System (INIS)

    Groetzbach, G.

    1980-06-01

    The method of direct numerical simulation is used to study heat transfer and statistical data for fully developed turbulent liquid metal flows in plane channels and annuli. Subgrid scale models using one transport equation account for the high wave-number turbulence not resolved by the finite difference grid. A special subgrid-scale heat flux model is deduced together with an approximative theory to calculate all model coefficients. This model can be applied on the total Peclet number range of technical liquid metal flows. Especially it can be used for very small Peclet numbers, where the results are independent on model parameters. A verification of the numerical results for liquid sodium and mercury flows is undertaken by the Nusselt number in plane channels and radial temperature and eddy conductivity profiles for annuli. The numerically determined Nusselt numbers for annuli indicate that many empirical correlations overestimate the influence of the ratio of radii. The numerical results for the eddy conductivity profiles may be used to remove these problems. The statistical properties of the simulated temperature fluctuations are within the wide scatter-band of experimental data. The numerical results give reasonable heat flux correlation coefficients which depend only weakly on the problem marking parameters. (orig.) [de

  14. Non-Newtonian plastic flow of a Ni-Si-B metallic glass at low stresses

    International Nuclear Information System (INIS)

    Csach, K.; Fursova, Y.V.; Khonik, V.A.; Ocelik, V.

    1998-01-01

    The problem of the rheological behavior of metallic glasses (MGs) is quite important both from theoretical and practical viewpoints. Early experiments carried out on MGs at temperatures T > 300 K using low shear stress levels revealed plastic flow to be Newtonian while measurements at relative high shear stresses (more than 200 to 400 MPa, depending on temperature, thermal prehistory of samples and chemical composition) indicated a non-linear behavior with 1 < m < 12. Numerous investigations performed later both on as-cast and relaxed MGs of various chemical compositions using a number of testing methods (tensile creep, tensile and bend stress relaxation) showed that a transition from Newtonian behavior at low stresses to a non-linear flow at high stresses was observed. At present, such a situation is considered to be generally accepted. The authors performed precise creep measurements of a Ni-Si-B metallic glass. The results obtained indicate that plastic flow in this case at low tensile stress (12 le σ le 307 MPa) is clearly non-Newtonian and, consequently, the viscosity is stress dependent

  15. Mimicking Catalytic Properties of Precious Metals by Using Common Metal Nanostructured Particles

    Science.gov (United States)

    2011-12-19

    Professor Renzo Rosei Consorzio per la Fisica Department of Physics Strada Costiera 11 Trieste, Italy 34151 EOARD Grant 10-3060...3060 Grant 10-3060 61102F Prof Renzo Rosei Consorzio per la Fisica Department of Physics Strada Costiera 11 Trieste, Italy 34151 N/A European Office...Physics Department, University of Trieste, Trieste, Italy and Consorzio per la Fisica , Trieste, Italy 1. Project motivation and Synopsis of

  16. Release of metal ions from fixed orthodontic appliance: an in vitro study in continuous flow system.

    Science.gov (United States)

    Mikulewicz, Marcin; Chojnacka, Katarzyna; Wołowiec, Paulina

    2014-01-01

    To evaluate the release of metal ions from fixed orthodontic appliances. A new system for in vitro testing of dental materials was constructed and consisted of a thermostatic glass reactor that enabled immersion of the studied material. Experimental conditions reflected the human oral cavity, with a temperature of 37°C and a saliva flow rate of 0.5mL/min. The simulated fixed orthodontic appliance made of stainless steel was evaluated. Sampling was performed at several time points during the 28-day study, and the metal ion concentration was determined by inductively coupled plasma optical emission spectrometry. The total mass of released metal ions from the appliance during 4 weeks of the experiment was as follows nickel 18.7 μg, chromium 5.47 μg, copper 31.3 μg. The estimated doses of nickel, chromium, and copper determined by extrapolation of experimental data released during the treatment period were far below the toxic dose to humans. This shows that orthodontic treatment might not be a significant source of exposure to these metal ions.

  17. Risk analysis on heavy metal contamination in sediments of rivers flowing into Nansi Lake.

    Science.gov (United States)

    Cao, Qingqing; Song, Ying; Zhang, Yiran; Wang, Renqing; Liu, Jian

    2017-12-01

    In order to understand the risk of heavy metals in sediments of the rivers flowing into Nansi Lake, 36 surface sediments were sampled from six rivers and seven heavy metals (Cr, Cu, Ni, Zn, As, Pb, and Cd) were determined. Potential ecological risk index (RI) of the six rivers showed significant differences: Xinxue River, Jiehe River, and Guangfu River were at medium potential risk, whereas the risk of Chengguo River was the lowest. Jiehe River, Xuesha River, and Jiangji River were meeting the medium potential risk at river mouths. Geo-accumulation index (I geo ) of the seven heavy metals revealed that the contamination of Cu and Cd was more serious than most other metals in the studied areas, whereas Cr in most sites of our study was not polluted. Moreover, correlation cluster analysis demonstrated that the contamination of Cu, Ni, and Zn in six rivers was mainly caused by local emissions, whereas that of As, Pb, and Cd might come from the external inputs in different forms. Consequently, the contamination of Cu and Cd and the potential risk in Xinxue River, Jiehe River, and Guangfu River as well as the local emissions should be given more attention to safeguard the water quality of Nansi Lake and the East Route Project of South to North Water Transfer.

  18. Freezing controlled penetration of molten metals flowing through stainless steel tubes

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Spencer, B.W.; Vetter, D.L.; Wesel, R.H.

    1985-01-01

    The freezing controlled penetration potential of molten metals flowing within stainless steel structure is important to the safety assessment of hypothetical severe accidents in liquid metal reactors. A series of scoping experiments has been performed in which molten stainless steel and nickel at various initial temperatures and driving pressures were injected downward and upward into 6.4 and 3.3 mm ID stainless steel tubes filled with argon gas and initially at room temperature. In all tests, there was no evidence that the solid tube wall was wetted by the molten metals. The penetration phenomena are markedly different for downward versus upward injections. The dependency upon tube orientation is explained in terms of the absence of wetting. Complete plugs were formed in all experiments halting the continued injection of melt. Calculations with a fluid dynamics/heat transfer computer code show that the injected masses limited by plugging are consistent with freezing through the growth of a stable solidified layer (crust) of metal upon the solid tube wall. 23 refs., 5 figs., 2 tabs

  19. MHD and heat transfer benchmark problems for liquid metal flow in rectangular ducts

    International Nuclear Information System (INIS)

    Sidorenkov, S.I.; Hua, T.Q.; Araseki, H.

    1994-01-01

    Liquid metal cooling systems of a self-cooled blanket in a tokamak reactor will likely include channels of rectangular cross section where liquid metal is circulated in the presence of strong magnetic fields. MHD pressure drop, velocity distribution and heat transfer characteristics are important issues in the engineering design considerations. Computer codes for the reliable solution of three-dimensional MHD flow problems are needed for fusion relevant conditions. Argonne National Laboratory and The Efremov Institute have jointly defined several benchmark problems for code validation. The problems, described in this paper, are based on two series of rectangular duct experiments conducted at ANL; one of the series is a joint ANL/Efremov experiment. The geometries consist of variation of aspect ratio and wall thickness (thus wall conductance ratio). The transverse magnetic fields are uniform and nonuniform in the axial direction

  20. Overview of flow studies for recycling metal commodities in the United States

    Science.gov (United States)

    Sibley, Scott F.

    2011-01-01

    Metal supply consists of primary material from a mining operation and secondary material, which is composed of new and old scrap. Recycling, which is the use of secondary material, can contribute significantly to metal production, sometimes accounting for more than 50 percent of raw material supply. From 2001 to 2011, U.S. Geological Survey (USGS) scientists studied 26 metals to ascertain the status and magnitude of their recycling industries. The results were published in chapters A-Z of USGS Circular 1196, entitled, "Flow Studies for Recycling Metal Commodities in the United States." These metals were aluminum (chapter W), antimony (Q), beryllium (P), cadmium (O), chromium (C), cobalt (M), columbium (niobium) (I), copper (X), germanium (V), gold (A), iron and steel (G), lead (F), magnesium (E), manganese (H), mercury (U), molybdenum (L), nickel (Z), platinum (B), selenium (T), silver (N), tantalum (J), tin (K), titanium (Y), tungsten (R), vanadium (S), and zinc (D). Each metal commodity was assigned to a single year: chapters A-M have recycling data for 1998; chapters N-R and U-W have data for 2000, and chapters S, T, and X-Z have data for 2004. This 27th chapter of Circular 1196 is called AA; it includes salient data from each study described in chapters A-Z, along with an analysis of overall trends of metals recycling in the United States during 1998 through 2004 and additional up-to-date reviews of selected metal recycling industries from 1991 through 2008. In the United States for these metals in 1998, 2000, and 2004 (each metal commodity assigned to a single year), 84 million metric tons (Mt) of old scrap was generated. Unrecovered old scrap totaled 43 Mt (about 51 percent of old scrap generated, OSG), old scrap consumed was 38 Mt (about 45 percent of OSG), and net old scrap exports were 3.3 Mt (about 4 percent of OSG). Therefore, there was significant potential for increased recovery from scrap. The total old scrap supply was 88 Mt, and the overall new

  1. Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks

    Science.gov (United States)

    Rubio-Martinez, Marta; Batten, Michael P.; Polyzos, Anastasios; Carey, Keri-Constanti; Mardel, James I.; Lim, Kok-Seng; Hill, Matthew R.

    2014-01-01

    Further deployment of Metal-Organic Frameworks in applied settings requires their ready preparation at scale. Expansion of typical batch processes can lead to unsuccessful or low quality synthesis for some systems. Here we report how continuous flow chemistry can be adapted as a versatile route to a range of MOFs, by emulating conditions of lab-scale batch synthesis. This delivers ready synthesis of three different MOFs, with surface areas that closely match theoretical maxima, with production rates of 60 g/h at extremely high space-time yields. PMID:24962145

  2. Liquid metal flow in a large-radius elbow with a uniform magnetic fluid

    International Nuclear Information System (INIS)

    Moon, T.J.; Walker, J.S.

    1988-07-01

    This paper treats the liquid-metal flow in an elbow between two straight, rectangular ducts. There is a uniform magnetic field in the plane of the elbow. The duct has thin, electrically conducting walls. The Hartmann number and the interaction parameter are assumed to be large, while the magnetic Reynolds number is assumed to be small. Solutions for the velocity at each cross section of the elbow and for the pressure drop due to three-dimensional effects are presented. 10 refs., 5 figs

  3. Atomistic Origin of Rate-Dependent Serrated Plastic Flow in Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Yao YG

    2008-01-01

    Full Text Available Abstract Nanoindentation simulations on a binary metallic glass were performed under various strain rates by using molecular dynamics. The rate-dependent serrated plastic flow was clearly observed, and the spatiotemporal behavior of its underlying irreversible atomic rearrangement was probed. Our findings clearly validate that the serration is a temporally inhomogeneous characteristic of such rearrangements and not directly dependent on the resultant shear-banding spatiality. The unique spatiotemporal distribution of shear banding during nanoindentation is highlighted in terms of the potential energy landscape (PEL theory.

  4. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Rossoll, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)], E-mail: andreas.rossoll@epfl.ch; Weber, L. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Bourke, M.A.M. [Los Alamos National Laboratory (LANL), LANSCE-12, P.O. Box 1663, MS H805, Los Alamos, NM 87545 (United States); Dunand, D.C. [Northwestern University, Department of Materials Science and Engineering, Evanston, IL 60208 (United States); Mortensen, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)

    2008-10-15

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments.

  5. Amplification of hot electron flow by the surface plasmon effect on metal–insulator–metal nanodiodes

    International Nuclear Information System (INIS)

    Lee, Changhwan; Nedrygailov, Ievgen I; Keun Lee, Young; Lee, Hyosun; Young Park, Jeong; Ahn, Changui; Jeon, Seokwoo

    2015-01-01

    Au–TiO_2–Ti nanodiodes with a metal–insulator–metal structure were used to probe hot electron flows generated upon photon absorption. Hot electrons, generated when light is absorbed in the Au electrode of the nanodiode, can travel across the TiO_2, leading to a photocurrent. Here, we demonstrate amplification of the hot electron flow by (1) localized surface plasmon resonance on plasmonic nanostructures fabricated by annealing the Au–TiO_2–Ti nanodiodes, and (2) reducing the thickness of the TiO_2. We show a correlation between changes in the morphology of the Au electrodes caused by annealing and amplification of the photocurrent. Based on the exponential dependence of the photocurrent on TiO_2 thickness, the transport mechanism for the hot electrons across the nanodiodes is proposed. (paper)

  6. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    International Nuclear Information System (INIS)

    Mueller, R.; Rossoll, A.; Weber, L.; Bourke, M.A.M.; Dunand, D.C.; Mortensen, A.

    2008-01-01

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments

  7. Investigation of heat transfer in liquid-metal flows under fusion-reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Poddubnyi, I. I., E-mail: poddubnyyii@nikiet.ru [Joint Stock Company Dollezhal Research and Development Institute of Power Engineering (JSC NIKIET) (Russian Federation); Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, V. G.; Sviridov, E. V. [Russian Academy of Science, Joint Institute of High Temperatures (Russian Federation); Leshukov, A. Yu. [Joint Stock Company Dollezhal Research and Development Institute of Power Engineering (JSC NIKIET) (Russian Federation); Aleskovskiy, K. V. [National Research University Moscow Power Engineering Institute (MPEI) (Russian Federation); Obukhov, D. M. [Joint Stock Company Efremov Institute of Electrophysical Apparatus (Russian Federation)

    2016-12-15

    The effect discovered in studying a downward liquid-metal flow in vertical pipe and in a channel of rectangular cross section in, respectively, a transverse and a coplanar magnetic field is analyzed. In test blanket modules (TBM), which are prototypes of a blanket for a demonstration fusion reactor (DEMO) and which are intended for experimental investigations at the International Thermonuclear Experimental Reactor (ITER), liquid metals are assumed to fulfil simultaneously the functions of (i) a tritium breeder, (ii) a coolant, and (iii) neutron moderator and multiplier. This approach to testing experimentally design solutions is motivated by plans to employ, in the majority of the currently developed DEMO blanket projects, liquid metals pumped through pipes and/or rectangular channels in a transvers magnetic field. At the present time, experiments that would directly simulate liquid-metal flows under conditions of ITER TBM and/or DEMO blanket operation (irradiation with thermonuclear neutrons, a cyclic temperature regime, and a magnetic-field strength of about 4 to 10 T) are not implementable for want of equipment that could reproduce simultaneously the aforementioned effects exerted by thermonuclear plasmas. This is the reason why use is made of an iterative approach to experimentally estimating the performance of design solutions for liquid-metal channels via simulating one or simultaneously two of the aforementioned factors. Therefore, the investigations reported in the present article are of considerable topical interest. The respective experiments were performed on the basis of the mercury magneto hydrodynamic (MHD) loop that is included in the structure of the MPEI—JIHT MHD experimental facility. Temperature fields were measured under conditions of two- and one-sided heating, and data on averaged-temperature fields, distributions of the wall temperature, and statistical fluctuation features were obtained. A substantial effect of counter thermo gravitational

  8. Behaviour of heavy metals during the thermal conversion of sawdust in an entrained flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Klensch, S.; Reimert, R. [Engler-Bunte-Inst., Bereich Gas, Erdoel und Kohle, Univ. Karlsruhe, Karlsruhe (Germany)

    1999-07-01

    Since its utilization is nearly CO{sub 2}-neutral, biomass represents a major alternative energy carrier in comparison with fossil fuels in CO{sub 2} reduction scenarios frequently discussed. Decentral generation of power and heat in medium sized plants could develop as a preferred application in future. During thermal conversion (gasification and combustion) of biomass the inorganic matter including the heavy metals will be found in the solid residues, i. e. slags and ashes, and in very low concentrations in the product gas (fuel or flue gas). The ashes should be returned to the forests and the agricultural areas respectively to avoid the use of industrial fertilizers. However, for this purpose the heavy metal concentrations of ashes may not exceed specific limit values, otherwise the returned ashes can lead to harmful effects on the ecological system. In awareness of this problem, in Austria some limit values for the concentrations of Cd, Cr, Cu, Ni, Pb and Zn in returned ashes are valid since 1997. No danger for the environment can be expected by slags containing heavy metals. The heavy metals are fixed environmentally neutral in the glass matrix as has been proven for coal and for residue gasification many times. Dividing the total of the residues into such two streams (returned ash and slag) avoids the disposal of the ashes. The heavy metal behaviour during the thermal conversion of sawdust was investigated in a bench scale plant. In essence, the plant consists of an entrained flow reactor (length of reaction zone: 2,500 mm; inner diameter: 70 mm) and a candle barrier filter with 6 rigid ceramic filter elements (DIA-Schumalith 10-20). The biomass flow rate is as high as 6 kg/h and the operating pressure is about 0.12 MPa. Experimental results show the influences of the conversion temperature (1100 - 1300 C), of the dedusting temperature (350 - 800 C), and of the gas atmosphere (reducing, oxidising) on the heavy metal concentrations of the slag and of the fly

  9. Identification of dominant flow structures in rapidly rotating convection of liquid metals using Dynamic Mode Decomposition

    Science.gov (United States)

    Horn, S.; Schmid, P. J.; Aurnou, J. M.

    2016-12-01

    The Earth's metal core acts as a dynamo whose efficiency in generating and maintaining the magnetic field is essentially determined by the rotation rate and the convective motions occurring in its outer liquid part. For the description of the primary physics in the outer core the idealized system of rotating Rayleigh-Bénard convection is often invoked, with the majority of studies considering only working fluids with Prandtl numbers of Pr ≳ 1. However, liquid metals are characterized by distinctly smaller Prandtl numbers which in turn result in an inherently different type of convection. Here, we will present results from direct numerical simulations of rapidly rotating convection in a fluid with Pr ≈ 0.025 in cylindrical containers and Ekman numbers as low as 5 × 10-6. In this system, the Coriolis force is the source of two types of inertial modes, the so-called wall modes, that also exist at moderate Prandtl numbers, and cylinder-filling oscillatory modes, that are a unique feature of small Prandtl number convection. The obtained flow fields were analyzed using the Dynamic Mode Decomposition (DMD). This technique allows to extract and identify the structures that govern the dynamics of the system as well as their corresponding frequencies. We have investigated both the regime where the flow is purely oscillatory and the regime where wall modes and oscillatory modes co-exist. In the purely oscillatory regime, high and low frequency oscillatory modes characterize the flow. When both types of modes are present, the DMD reveals that the wall-attached modes dominate the flow dynamics. They precess with a relatively low frequency in retrograde direction. Nonetheless, also in this case, high frequency oscillations have a significant contribution.

  10. Analysis of heavy metal flow in the river Przemsza, Katowice region, using macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Lewander, M.

    1995-06-01

    The river Przemsza, in southern Poland, was investigated with the aim to determine the flow of Cd, Pb and Zn between the submerged macrophytes Potamogeton pectinatus and Myriophyllum verticillatum, sediment and water, and to find out if a pollution gradient was present along the investigated part of the river. In order to determine the uptake of heavy metals from water and sediment macrophytes were planted in pots along the river, in unpolluted and polluted sediment during six weeks in the summer of 1993. After harvesting the plants were dried, wet digested and analysed by atomic absorption spectrophotometry. Parallel in situ experiments and outdoor experiments in sealed jars were performed. No significant decreased pollution gradient in the sediment or the macrophytes content could be detected. However, the water concentration of Zn decreased slightly along the gradient and in both experiments Pb concentration in the water also decreased. The concentrations of metals in the plants and sediments were probably depending on local stream conditions as well as increasing organic content. The study suggests that the macrophytes took up metals both from water and sediment. The unpolluted sediment accumulated Pb and Zn in both experiments, while Cd was accumulated in the in situ experiment. Metal concentration in the polluted sediment decreased during the study period, either due to plant uptake or loss to the water. Metals lost from the polluted sediment to the water were taken up by the plant shoots. Lead mainly accumulated in the roots while Zn accumulated in the plant shoots, and Cd was distributed almost equally between shoots and roots. 18 refs, 2 figs, 6 tabs

  11. Ideal flow theory for the double - shearing model as a basis for metal forming design

    Science.gov (United States)

    Alexandrov, S.; Trung, N. T.

    2018-02-01

    In the case of Tresca’ solids (i.e. solids obeying the Tresca yield criterion and its associated flow rule) ideal flows have been defined elsewhere as solenoidal smooth deformations in which an eigenvector field associated everywhere with the greatest principal stress (and strain rate) is fixed in the material. Under such conditions all material elements undergo paths of minimum plastic work, a condition which is often advantageous for metal forming processes. Therefore, the ideal flow theory is used as the basis of a procedure for the preliminary design of such processes. The present paper extends the theory of stationary planar ideal flow to pressure dependent materials obeying the double shearing model and the double slip and rotation model. It is shown that the original problem of plasticity reduces to a purely geometric problem. The corresponding system of equations is hyperbolic. The characteristic relations are integrated in elementary functions. In regions where one family of characteristics is straight, mapping between the principal lines and Cartesian coordinates is determined by linear ordinary differential equations. An illustrative example is provided.

  12. Flow of liquid metals with a transversely applied magnetic field, (8)

    International Nuclear Information System (INIS)

    Arai, Shigeki; Tomita, Yukio; Sudou, Kouzou

    1977-01-01

    As one of the researches of liquid metal flow in transversely applied magnetic field concerning the flow in MHD pipes, the influences of the electrical property of channel side walls, aspect ratio, Reynolds number and Hartmann number on laminar and transition flows investigated experimentally are reported in this paper. Mercury flowed in the rectangular ducts, one of which was made with four insulated walls, and another with insulated top and bottom walls and two conductive side walls, with the aspect ratio varying from 8 to 1/8, in the region of relatively low Hartmann number and Reynolds number. The facility, procedure and results of the experiment are explained, and many experimental curves showing the relations among pipe friction coefficient, Hartmann number, Reynolds number, aspect ratio and the property of walls are given. The experimental results show that the Hartmann effect and the aspect ratio effect are evident as the magnetic field is intensified, but the influence by the electric property of walls is little, and three shapes of the curves representing the relation of friction coefficient and Reynolds number are confirmed by this experiment. (auth.)

  13. Numerical simulation of liquid-metal-flows in radial-toroidal-radial bends

    International Nuclear Information System (INIS)

    Molokov, S.; Buehler, L.

    1993-09-01

    Magnetohydrodynamic flows in a U-bend and right-angle bend are considered with reference to the radial-toroidal-radial concept of a self-cooled liquid-metal blanket. The ducts composing bends have rectangular cross-section. The applied magnetic field is aligned with the toroidal duct and perpendicular to the radial ones. At high Hartmann number the flow region is divided into cores and boundary layers of different types. The magnetohydrodynamic equations are reduced to a system of partial differential equations governing wall electric potentials and the core pressure. The system is solved numerically by two different methods. The first method is iterative with iteration between wall potential and the core pressure. The second method is a general one for the solution of the core flow equations in curvilinear coordinates generated by channel geometry and magnetic field orientation. Results obtained are in good agreement. They show, that the 3D-pressure drop of MHD flows in a U-bend is not a critical issue for blanket applications. (orig./HP) [de

  14. Numerical analysis of liquid metal MHD flows through circular pipes based on a fully developed modeling

    International Nuclear Information System (INIS)

    Zhang, Xiujie; Pan, Chuanjie; Xu, Zengyu

    2013-01-01

    Highlights: ► 2D MHD code based on a fully developed modeling is developed and validated by Samad analytical results. ► The results of MHD effect of liquid metal through circular pipes at high Hartmann numbers are given. ► M type velocity profile is observed for MHD circular pipe flow at high wall conductance ratio condition. ► Non-uniform wall electrical conductivity leads to high jet velocity in Robert layers. -- Abstract: Magnetohydrodynamics (MHD) laminar flows through circular pipes are studied in this paper by numerical simulation under the conditions of Hartmann numbers from 18 to 10000. The code is developed based on a fully developed modeling and validated by Samad's analytical solution and Chang's asymptotic results. After the code validation, numerical simulation is extended to high Hartmann number for MHD circular pipe flows with conducting walls, and numerical results such as velocity distribution and MHD pressure gradient are obtained. Typical M-type velocity is observed but there is not such a big velocity jet as that of MHD rectangular duct flows even under the conditions of high Hartmann numbers and big wall conductance ratio. The over speed region in Robert layers becomes smaller when Hartmann numbers increase. When Hartmann number is fixed and wall conductance ratios change, the dimensionless velocity is through one point which is in agreement with Samad's results, the locus of maximum value of velocity jet is same and effects of wall conductance ratio only on the maximum value of velocity jet. In case of Robert walls are treated as insulating and Hartmann walls as conducting for circular pipe MHD flows, there is big velocity jet like as MHD rectangular duct flows of Hunt's case 2

  15. Korea advanced liquid metal reactor development - Development of measuring techniques of the sodium two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moo Hwan; Cha, Jae Eun [Pohang University of Science and Technology, Pohang (Korea)

    2000-04-01

    The technology which models and measures the behavior of bubble in liquid sodium is very important to insure the safety of the liquid metal reactor. In this research, we designed/ manufactured each part and loop of experimental facility for sodium two phase flow, and applied a few possible methods, measured characteristic of two phase flow such as bubbly flow. A air-water loop similar to sodium loop on each measuring condition was designed/manufactured. This air-water loop was utilized to acquire many informations which were necessary in designing the two phase flow of sodium and manufacturing experimental facility. Before the manufacture of a electromagnetic flow meter for sodium, the experiment using each electromagnetic flow mete was developed and the air-water loop was performed to understand flow characteristics. Experiments for observing the signal characteristics of flow were performed by flowing two phase mixture into the electromagnetic flow mete. From these experiments, the electromagnetic flow meter was designed and constructed by virtual electrode, its signal processing circuit and micro electro magnet. It was developed to be applicable to low conductivity fluid very successfully. By this experiment with the electromagnetic flow meter, we observed that the flow signal was very different according to void fraction in two phase flow and that probability density function which was made by statistical signal treatment is also different according to flow patterns. From this result, we confirmed that the electromagnetic flow meter could be used to understand the parameters of two phase flow of sodium. By this study, the experimental facility for two phase flow of sodium was constricted. Also the new electromagnetic flow meter was designed/manufactured, and experimental apparatus for two phase flow of air-water. Finally, this study will be a basic tool for measurement of two phase flow of sodium. As the fundamental technique for the applications of sodium at

  16. Exploratory studies of flowing liquid metal divertor options for fusion-relevant magnetic fields in the MTOR facility

    International Nuclear Information System (INIS)

    Ying, A.Y.; Abdou, M.A.; Morley, N.; Sketchley, T.; Woolley, R.; Burris, J.; Kaita, R.; Fogarty, P.; Huang, H.; Lao, X.; Narula, M.; Smolentsev, S.; Ulrickson, M.

    2004-01-01

    This paper reports on experimental findings on liquid metal (LM) free surface flows crossing complex magnetic fields. The experiments involve jet and film flows using GaInSn and are conducted at the UCLA MTOR facility. The goal of this study is to understand the magnetohydrodynamics (MHD) features associated with such a free surface flow in a fusion-relevant magnetic field environment, and determine what LM free surface flow option is most suitable for lithium divertor particle pumping and surface heat removal applications in a near-term experimental plasma device, such as NSTX. Experimental findings indicate that a steady transverse magnetic field, even with gradients typical of NSTX outer divertor conditions, stabilizes a LM jet flow--reducing turbulent disturbances and delaying jet breakup. Important insights into the MHD behavior of liquid metal films under NSTX-like environments are also presented. It is possible to establish an uphill liquid metal film flow on a conducting substrate, although the MHD drag experienced by the flow could be strong and cause the flow to pile-up under simulated NSTX magnetic field conditions. The magnetic field changes the turbulent film flow so that wave structures range from 2D column-type surface disturbances at regions of high magnetic field, to ordinary hydrodynamic turbulence wave structures at regions of low field strength at the outboard. Plans for future work are also presented

  17. Trace elements in precious and common opals using neutron activation analysis

    International Nuclear Information System (INIS)

    McOrist, G.D.; Smallwood, A.

    1997-01-01

    Neutron activation analysis (NAA) was used to determine the concentration of trace elements in 44 precious and 52 common opals sampled from a number of recognised fields within Australia. The purpose of this study was to determine if precious and common opals of the same colour and location have the same or a different trace element profile. Similar numbers of black, white and grey samples were studied in each case. In most cases, common opals had a significantly higher concentration of certain trace elements when compared with precious opals. (author)

  18. Rare earth and precious elements in the urban sewage sludge and lake surface sediments under anthropogenic influence in the Republic of Benin.

    Science.gov (United States)

    Yessoufou, Arouna; Ifon, Binessi Edouard; Suanon, Fidèle; Dimon, Biaou; Sun, Qian; Dedjiho, Comlan Achille; Mama, Daouda; Yu, Chang-Ping

    2017-11-09

    Nowadays, sewage sludge and water bodies are subjected to heavy pollution due to rapid population growth and urbanization. Heavy metal pollution represents one of the main challenges threatening our environment and the ecosystem. The present work aims to evaluate the contamination state of the sewage sludge and lake sediments in the Republic of Benin. Twenty metallic elements including 15 rare earth elements (Eu, Sb, Cs, Nd, Pr, Gd, La, Ce, Tb, Sm, Dy, Ho, Eu, Yb, and Lu) and five precious elements (Ag, Au, Pd, Pt, and Ru) were investigated using inductive plasma-mass spectrometry. Results showed broad range concentrations of the elements. Ce, La, and Nd were present in both sediments and sewage sludge at concentrations ranging 5.80-41.30 mg/kg dry matter (DM), 3.23-15.60 mg/kg DM, and 2.74-19.26 mg/kg DM, respectively. Pr, Sm, Gd, Tb, Dy, Eu, Er, Yb, Cs, Ho, and Tm concentrations were lower (0.02-5.94 mg/kg DM). Among precious elements, Ag was detected at the highest concentration in all sites (0.43-4.72 mg/kg DM), followed by Pd (0.20-0.57 mg/kg DM) and Au (0.01-0.57 mg/kg DM). Ru and Pt concentrations were sewage sludge. This revealed a growing anthropogenic input which was also implied by principal component analysis. The evaluation of pollution loading index (PLI) indicated a moderate to strong contamination (0.12 ≤ PLI ≤ 0.58; 37 ≤ PLI ≤ 114, respectively, for rare earth elements and precious elements), while the degree of contamination indicated a moderate polymetallic contamination for rare earth elements and significant contamination for precious elements.

  19. Pyritic ash-flow tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Castor, S.B.; Tingley, J.V.; Bonham, H.F. Jr.

    1994-01-01

    The Yucca Mountain site is underlain by a 1,500-m-thick Miocene volcanic sequence that comprises part of the southwestern Nevada volcanic field. Rocks of this sequence, which consists mainly of ash-flow tuff sheets with minor flows and bedded tuff, host precious metal mineralization in several areas as near as 10 km from the site. In two such areas, the Bullfrog and Bare Mountain mining districts, production and reserves total over 60 t gold and 150 t silver. Evidence of similar precious metal mineralization at the Yucca Mountain site may lead to mining or exploratory drilling in the future, compromising the security of the repository. The authors believe that most of the pyrite encountered by drilling at Yucca Mountain was introduced as pyroclastic ejecta, rather than by in situ hydrothermal activity. Pyritic ejecta in ash-flow tuff are not reported in the literature, but there is no reason to believe that the Yucca Mountain occurrence is unique. The pyritic ejecta are considered by us to be part of a preexisting hydrothermal system that was partially or wholly destroyed during eruption of the tuff units. Because it was introduced as ejecta in tuff units that occur at depths of about 1,000 m, such pyrite does not constitute evidence of shallow mineralization at the proposed repository site; however, the pyrite may be evidence for mineralization deep beneath Yucca Mountain or as much as tens of kilometers from it

  20. Experiments and numerical modeling of fast flowing liquid metal thin films under spatially varying magnetic field conditions

    Science.gov (United States)

    Narula, Manmeet Singh

    Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the

  1. Liquid metal heat transfer in heat exchangers under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, Hiroyasu

    2015-01-01

    The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)

  2. Characteristics of a plasma flow field produced by a metal array bridge foil explosion

    Science.gov (United States)

    Junying, WU; Long, WANG; Yase, LI; Lijun, YANG; Manzoor, SULTAN; Lang, CHEN

    2018-07-01

    To improve the energy utilization efficiency of metal bridge foil explosion, and increase the function range of plasmas, array bridge foil explosion experiments with different structures were performed. A Schlieren photographic measurement system with a double-pulse laser source was used to observe the flow field of a bridge foil explosion. The evolution laws of plasmas and shock waves generated by array bridge foil explosions of different structures were analyzed and compared. A multi-phase flow calculation model was established to simulate the electrical exploding process of a metal bridge foil. The plasma equation of state was determined by considering the effect of the changing number of particles and Coulomb interaction on the pressure and internal energy. The ionization degree of the plasma was calculated via the Saha–Eggert equation assuming conditions of local thermal equilibrium. The exploding process of array bridge foils was simulated, and the superposition processes of plasma beams were analyzed. The variation and distribution laws of the density, temperature, pressure, and other important parameters were obtained. The results show that the array bridge foil has a larger plasma jet diameter than the single bridge foil for an equal total area of the bridge foil. We also found that the temperature, pressure, and density of the plasma jet’s center region sharply increase because of the superposition of plasma beams.

  3. Initial liquid metal magnetohydrodynamic thin film flow experiments in the MeGA-loop facility at UCLA

    International Nuclear Information System (INIS)

    Morley, N.B.; Gaizer, A.A.; Tillack, M.S.; Abdou, M.A.

    1995-01-01

    Free surface thin film flows of liquid metal were investigated experimentally in the presence of a coplanar magnetic field. This investigation was performed in a new magnetohydrodynamic (MHD) flow facility, the MeGA-loop, utilizing a low melting temperature lead-bismuth alloy as the working metal. Owing to the relatively low magnetic field produced by the present field coil system, the ordinary hydrodynamic and low MHD interaction regimes only were investigated. At the high flow speeds necessary for self cooling, the importance of a well designed and constructed channel becomes obvious. Partial MHD drag, increasing the film height, is observed as Haβ 2 becomes greater than unity. MHD laminarization of the turbulent film flows is observed when Haβ/Re>0.002, but fully laminar flow was not reached. Suggestions for facility upgrades to achieve greater MHD interaction are presented in the context of these initial results. (orig.)

  4. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    International Nuclear Information System (INIS)

    Hunsbedt, A.; Boardman, C.E.

    1993-01-01

    A dual passive cooling system for liquid metal cooled nuclear fission reactors is described, comprising the combination of: a reactor vessel for containing a pool of liquid metal coolant with a core of heat generating fissionable fuel substantially submerged therein, a side wall of the reactor vessel forming an innermost first partition; a containment vessel substantially surrounding the reactor vessel in spaced apart relation having a side wall forming a second partition; a first baffle cylinder substantially encircling the containment vessel in spaced apart relation having an encircling wall forming a third partition; a guard vessel substantially surrounding the containment vessel and first baffle cylinder in spaced apart relation having a side wall forming a forth partition; a sliding seal at the top of the guard vessel edge to isolate the dual cooling system air streams; a second baffle cylinder substantially encircling the guard vessel in spaced part relationship having an encircling wan forming a fifth partition; a concrete silo substantially surrounding the guard vessel and the second baffle cylinder in spaced apart relation providing a sixth partition; a first fluid coolant circulating flow course open to the ambient atmosphere for circulating air coolant comprising at lent one down comer duct having an opening to the atmosphere in an upper area thereof and making fluid communication with the space between the guard vessel and the first baffle cylinder and at least one riser duct having an opening to the atmosphere in the upper area thereof and making fluid communication with the space between the first baffle cylinder and the containment vessel whereby cooling fluid air can flow from the atmosphere down through the down comer duct and space between the forth and third partitions and up through the space between the third and second partition and the riser duct then out into the atmosphere; and a second fluid coolant circulating flow

  5. Development of a discriminatory biocompatibility testing model for non-precious dental casting alloys.

    LENUS (Irish Health Repository)

    McGinley, Emma Louise

    2011-12-01

    To develop an enhanced, reproducible and discriminatory biocompatibility testing model for non-precious dental casting alloys, prepared to a clinically relevant surface finishing condition, using TR146 oral keratinocyte cells.

  6. Non-Precious Bimetallic Catalysts for Selective Dehydrogenation of an Organic Chemical Hydride System

    KAUST Repository

    Shaikh Ali, Anaam; Jedidi, Abdesslem; Cavallo, Luigi; Takanabe, Kazuhiro

    2015-01-01

    Methylcyclohexane (MCH)-Toluene (TOL) chemical hydride cycles as a hydrogen carrier system is successful with the selective dehydrogenation reaction of MCH to TOL, which has been achieved only using precious Pt-based catalysts. Herein, we report

  7. Metal-Free Aqueous Flow Battery with Novel Ultrafiltered Lignin as Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Alolika [Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, 334 Snell Engineering, Boston, Massachusetts 02115, United States; Hamel, Jonathan [Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, 334 Snell Engineering, Boston, Massachusetts 02115, United States; Katahira, Rui [National Renewable Energy Laboratory, Denver West Parkway, Golden, Colorado 80401, United States; Zhu, Hongli [Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, 334 Snell Engineering, Boston, Massachusetts 02115, United States

    2018-03-05

    As the number of generation sources from intermittent renewable technologies on the electric grid increases, the need for large-scale energy storage devices is becoming essential to ensure grid stability. Flow batteries offer numerous advantages over conventional sealed batteries for grid storage. In this work, for the first time, we investigated lignin, the second most abundant wood derived biopolymer, as an anolyte for the aqueous flow battery. Lignosulfonate, a water-soluble derivative of lignin, is environmentally benign, low cost and abundant as it is obtained from the byproduct of paper and biofuel manufacturing. The lignosulfonate utilizes the redox chemistry of quinone to store energy and undergoes a reversible redox reaction. Here, we paired lignosulfonate with Br2/Br-, and the full cell runs efficiently with high power density. Also, the large and complex molecular structure of lignin considerably reduces the electrolytic crossover, which ensures very high capacity retention. The flowcell was able to achieve current densities of up to 20 mA/cm2 and charge polarization resistance of 15 ohm cm2. This technology presents a unique opportunity for a low-cost, metal-free flow battery capable of large-scale sustainable energy storage.

  8. Materials flow analysis of neodymium, status of rare earth metal in the Republic of Korea.

    Science.gov (United States)

    Swain, Basudev; Kang, Leeseung; Mishra, Chinmayee; Ahn, JoongWoo; Hong, Hyun Seon

    2015-11-01

    Materials flow analysis of neodymium, status of rare earth elements (REEs) in the Republic of Korea has been investigated. Information from various resources like the Korean Ministry of Environment, Korea international trade association, United Nations Commodity Trade Statistics Database and from individual industry were collected and analyzed for materials flow analysis of neodymium. Demand of neodymium in the Republic of Korea for the year 2010 was 409.5 tons out of which the majority of neodymium, i.e., 68.41% was consumed by domestic electronics industry followed by medical appliances manufacturing (13.36%). The Republic Korea is one of the biggest consumer and leading exporter of these industrial products, absolutely depends on import of neodymium, as the country is lacking natural resources. The Republic of Korea has imported 325.9 tons of neodymium permanent magnet and 79.5 tons of neodymium containing equipment parts mainly for electronics, medical appliances, and heavy/light vehicles manufacturing industry. Out of which 95.4 tons of neodymium permanent magnet get exported as an intermediate product and 140.6 tons of neodymium in the form of consumable products get exported. Worldwide the neodymium is at the high end of supply chain critical metal because of increasing demand, scarcity and irreplaceable for technological application. To bring back the neodymium to supply stream the recycling of end of life neodymium-bearing waste can be a feasible option. Out of total domestic consumption, only 21.9 tons of neodymium have been collected and subsequently recycled. From material flow analysis, the requirement for an efficient recycling system and element-wise material flow management for these REEs in the Republic of Korea were realized and recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A study on prediction of metal loss by flow-accelerated corrosion in the CANDU NPP secondary piping systems

    International Nuclear Information System (INIS)

    Shim, S. H.; Song, J. S.; Yoon, K. B.; Hwang, K. M.; Jin, T. E.; Lee, S. H.; Kim, W. S.

    2001-01-01

    Flow-Accelerated Corrosion(FAC) is a phenomenon that results in metal loss from piping, vessels, and equipment made of carbon steel. FAC occurs only under certain conditions of flow, chemistry, geometry, and material. Unfortunately, those conditions are in much of the high-energy piping in nuclear and fossil-fueled power plants. Also, for domestic NPP secondary pipings whose operating time become longer, more evidences of FAC have been reported. The authors are studying on FAC management using CHECWORKS, computer code developed by EPRI. This paper is on the prediction results of metal loss by FAC in the one of CANDU type NPP secondary piping systems

  10. Liquid-metal flow through a thin-walled elbow in a plane perpendicular to a uniform magnetic field

    International Nuclear Information System (INIS)

    Walker, J.S.

    1986-04-01

    This paper presents analytical solutions for the liquid-metal flow through two straight pipes connected by a smooth elbow with the same inside radius. The pipes and the elbow lie in a plane which is perpendicular to a uniform, applied magnetic field. The strength of the magnetic field is assumed to be sufficiently strong that inertial and viscous effects are negligible. This assumption is appropriate for the liquid-lithium flow in the blanket of a magnetic confinement fusion reactor, such as a tokamak. The pipes and the elbow have thin metal walls

  11. Measurements of the asymmetric dynamic sheath around a pulse biased sphere immersed in flowing metal plasma

    International Nuclear Information System (INIS)

    Wu Hongchen; Anders, Andre

    2008-01-01

    A long-probe technique was utilized to record the expansion and retreat of the dynamic sheath around a spherical substrate immersed in pulsed cathode arc metal plasma. Positively biased, long cylindrical probes were placed on the side and downstream of a negatively pulsed biased stainless steel sphere of 1 in. (25.4 mm) diameter. The amplitude and width of the negative high voltage pulses (HVPs) were 2 kV, 5 kV, 10 kV, and 2 μs, 4 μs, 10 μs, respectively. The variation of the probe (electron) current during the HVP is a direct measure for the sheath expansion and retreat. Maximum sheath sizes were determined for the different parameters of the HVP. The expected rarefaction zone behind the biased sphere (wake) due to the fast plasma flow was clearly established and quantified.

  12. Measurements of the asymmetric dynamic sheath around a pulse biased sphere immersed in flowing metal plasma

    Science.gov (United States)

    Wu, Hongchen; Anders, André

    2008-08-01

    A long-probe technique was utilized to record the expansion and retreat of the dynamic sheath around a spherical substrate immersed in pulsed cathode arc metal plasma. Positively biased, long cylindrical probes were placed on the side and downstream of a negatively pulsed biased stainless steel sphere of 1 in. (25.4 mm) diameter. The amplitude and width of the negative high voltage pulses (HVPs) were 2 kV, 5 kV, 10 kV, and 2 µs, 4 µs, 10 µs, respectively. The variation of the probe (electron) current during the HVP is a direct measure for the sheath expansion and retreat. Maximum sheath sizes were determined for the different parameters of the HVP. The expected rarefaction zone behind the biased sphere (wake) due to the fast plasma flow was clearly established and quantified.

  13. Experimental study of an electromagnetic flow meter for liquid metals based on torque measurement during pumping process

    International Nuclear Information System (INIS)

    Dubovikova, N; Kolesnikov, Y; Karcher, Ch

    2015-01-01

    This paper presents a detailed experimental study on an electromagnetic flow measurement technique to measure the flow rate of liquid metals. The experimental setup consists of a contactless electromagnetic pump with a torque sensor mounted on the pump shaft. The electromagnetic pump is composed of two rotating steel discs having embedded permanent magnets with alternating poles. The rotation of the discs creates a travelling sinusoidal magnetic field and eddy currents within the liquid metal. The metal is contained inside the duct located between the discs of the pump. The interaction of the magnetic field and the induced eddy currents generates an electromagnetic Lorentz force providing the pumping effect. The flow rate is proportional to this force. The torque sensor measures the moment of the discs due to the Lorentz force, which is converted to a flow rate value. We name the method Lorentz torque velocimetry (LTV). The full calibration procedure and experimental investigation of the LTV are described. The method can be used as a non-contact flow rate control technique for liquid metals. (paper)

  14. Analysis of material flow in metal forming processes by using computer simulation and experiment with model material

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dong Won

    1993-01-01

    The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behaviour in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method. (Author)

  15. Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Ding, Wei-Xu; Shen, Dong-Sheng, E-mail: shends@zju.edu.cn

    2013-10-15

    Highlights: • Cu, Zn, Pb, and Ni are enriched in bottom ash from WEEE dismantling residues. • The heavy metal residual fraction restricts transfer in the incinerator. • Pre-treatment to remove heavy metals from WEEE residues would reduce emissions. -- Abstract: The large amount of residues generated from dismantling waste electrical and electronic equipment (WEEE) results in a considerable environmental burden. We used material flow analysis to investigate heavy metal behavior in an incineration plant in China used exclusively to incinerate residues from WEEE dismantling. The heavy metals tested were enriched in the bottom and fly ashes after incineration. However, the contents of heavy metals in the bottom ash, fly ash and exhaust gas do not have a significant correlation with that of the input waste. The evaporation and recondensation behavior of heavy metals caused their contents to differ with air pollution control equipment because of the temperature difference during gas venting. Among the heavy metals tested, Cd had the strongest tendency to transfer during incineration (T{sub Cd} = 69.5%) because it had the lowest melting point, followed by Cu, Ni, Pb and Zn. The exchangeable and residual fractions of heavy metals increased substantially in the incineration products compared with that of the input residues. Although the mass of residues from WEEE dismantling can be reduced by 70% by incineration, the safe disposal of the metal-enriched bottom and fly ashes is still required.

  16. Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling

    International Nuclear Information System (INIS)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Ding, Wei-Xu; Shen, Dong-Sheng

    2013-01-01

    Highlights: • Cu, Zn, Pb, and Ni are enriched in bottom ash from WEEE dismantling residues. • The heavy metal residual fraction restricts transfer in the incinerator. • Pre-treatment to remove heavy metals from WEEE residues would reduce emissions. -- Abstract: The large amount of residues generated from dismantling waste electrical and electronic equipment (WEEE) results in a considerable environmental burden. We used material flow analysis to investigate heavy metal behavior in an incineration plant in China used exclusively to incinerate residues from WEEE dismantling. The heavy metals tested were enriched in the bottom and fly ashes after incineration. However, the contents of heavy metals in the bottom ash, fly ash and exhaust gas do not have a significant correlation with that of the input waste. The evaporation and recondensation behavior of heavy metals caused their contents to differ with air pollution control equipment because of the temperature difference during gas venting. Among the heavy metals tested, Cd had the strongest tendency to transfer during incineration (T Cd = 69.5%) because it had the lowest melting point, followed by Cu, Ni, Pb and Zn. The exchangeable and residual fractions of heavy metals increased substantially in the incineration products compared with that of the input residues. Although the mass of residues from WEEE dismantling can be reduced by 70% by incineration, the safe disposal of the metal-enriched bottom and fly ashes is still required

  17. Analysis of gas-liquid metal two-phase flows using a reactor safety analysis code SIMMER-III

    International Nuclear Information System (INIS)

    Suzuki, Tohru; Tobita, Yoshiharu; Kondo, Satoru; Saito, Yasushi; Mishima, Kaichiro

    2003-01-01

    SIMMER-III, a safety analysis code for liquid-metal fast reactors (LMFRs), includes a momentum exchange model based on conventional correlations for ordinary gas-liquid flows, such as an air-water system. From the viewpoint of safety evaluation of core disruptive accidents (CDAs) in LMFRs, we need to confirm that the code can predict the two-phase flow behaviors with high liquid-to-gas density ratios formed during a CDA. In the present study, the momentum exchange model of SIMMER-III was assessed and improved using experimental data of two-phase flows containing liquid metal, on which fundamental information, such as bubble shapes, void fractions and velocity fields, has been lacking. It was found that the original SIMMER-III can suitably represent high liquid-to-gas density ratio flows including ellipsoidal bubbles as seen in lower gas fluxes. In addition, the employment of Kataoka-Ishii's correlation has improved the accuracy of SIMMER-III for gas-liquid metal flows with cap-shape bubbles as identified in higher gas fluxes. Moreover, a new procedure, in which an appropriate drag coefficient can be automatically selected according to bubble shape, was developed. Through this work, the reliability and the precision of SIMMER-III have been much raised with regard to bubbly flows for various liquid-to-gas density ratios

  18. Rapid response sensor to monitor the temperature and flow of liquid metals

    International Nuclear Information System (INIS)

    McCann, J.D.

    1980-01-01

    Two forms of a sensor capable of simultaneously monitoring the temperature and flow of liquid metal coolants within a reactor are described. They operate by measuring the coupling impedances between the sensor and the surrounding electrically conductive coolant. Since the system utilises electrical rather than thermal properties, the response to perturbations is rapid, typically displaying the changed conditions within a few milliseconds. The first form of the sensor was designed to operate whilst protected by a thick walled service tube positioned in the reactor coolant. Providing bends in the tube had a radius greater than 70 cm, the sensor could be removed for inspection and maintenance if necessary. The second sensor was fitted inside a streamlined NaK proof capsule. This was inserted directly into the coolant outlet stream of a fuel pin assembly in the Dounreay Fast Reactor. In this form the sensor successfully monitored flow, entrained gas and temperature excursions during the final operating cycle of D.F.R. (author)

  19. Numerical Investigation of magnetohydrodynamic flow through Sudden expansion pipes in Liquid Metal Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jingchao; He, Qingyun; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Ye, Minyou

    2016-11-01

    In fusion liquid metal blanket, sudden expansions and sudden contractions are very common geometries. Changing of the cross-section causes 3-D magnetohydrodynamic (MHD) effects, which will affect the flow pattern, current distribution and pressure drop. In this paper the numerical code based on OpenFOAM platform developed by University of Science and Technology of China was used to investigate and optimize the sudden expansion pipe. The code has been validated by the recommended benchmark cases including Shercliff, Hunt, ALEX experiments (rectangular duct and round pipe) and KIT experiment cases. The obtained numerical results agreed well with those of all the benchmark cases. Previous and valuable analytical and experimental works have been done by L. Buhler, et. el. Based on these works, in the present paper, further investigation of different expansion lengths between the upstream pipe and downstream pipe at high Hartmann number and Reynolds number were conducted. Besides, different expansion ratios with a specific expansion length were conducted. The numerical results showed that with the increasing of expansion length, the 3D MHD effects gradually weakened. Especially, the 3D pressure drop decreases with the increasing of expansion length. Whereas, the expansion ratio factor shows no obvious influences on the total MHD pressure drop but greatly influence the local pressure distribution. These numerical simulations can be used to evaluate the MHD flow inside the expansion and contraction pipes.

  20. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials.

    Science.gov (United States)

    Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias; Hager, Martin D; Schubert, Ulrich S

    2017-01-16

    Research on redox-flow batteries (RFBs) is currently experiencing a significant upturn, stimulated by the growing need to store increasing quantities of sustainably generated electrical energy. RFBs are promising candidates for the creation of smart grids, particularly when combined with photovoltaics and wind farms. To achieve the goal of "green", safe, and cost-efficient energy storage, research has shifted from metal-based materials to organic active materials in recent years. This Review presents an overview of various flow-battery systems. Relevant studies concerning their history are discussed as well as their development over the last few years from the classical inorganic, to organic/inorganic, to RFBs with organic redox-active cathode and anode materials. Available technologies are analyzed in terms of their technical, economic, and environmental aspects; the advantages and limitations of these systems are also discussed. Further technological challenges and prospective research possibilities are highlighted. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Ni-BaTiO3-Based Base-Metal Electrode (BME) Ceramic Capacitors for Space Applications

    Science.gov (United States)

    Liu, Donhang; Fetter, Lula; Meinhold, Bruce

    2015-01-01

    A multi-layer ceramic capacitor (MLCC) is a high-temperature (1350C typical) co-fired ceramic monolithic that is composed of many layers of alternately stacked oxide-based dielectric and internal metal electrodes. To make the dielectric layers insulating and the metal electrode layers conducting, only highly oxidation-resistant precious metals, such as platinum, palladium, and silver, can be used for the co-firing of insulating MLCCs in a regular air atmosphere. MLCCs made with precious metals as internal electrodes and terminations are called precious-metal electrode (PME) capacitors. Currently, all military and space-level applications only address the use of PME capacitors.

  2. Survey of studies on the flow and heat transfer of two-component, two-phase flow of liquid metal in magnetic field

    International Nuclear Information System (INIS)

    Kumamaru, Hiroshige

    1980-01-01

    Brief review of the studies on the flow and heat transfer of two-component, two-phase flow of liquid metal in magnetic field is presented. R.J. Thome measured the distribution of void rate, slip ratio and pressure loss for the two-phase flow of NaK-N 2 under vertical magnetic field. The void rate distribution became even and the slip ratio increased with the increasing magnetic field. The experimental results of pressure loss was compared with the calculation by an equation derived from the homogeneous flow model. R.G. Owen et al. made the analytical studies of the MHD friction loss of two phase flow. Michiyoshi et al. made experimental studies on the hydrodynamic local properties of Hg-Ar two-phase flow of slug region in a vertically ascending tube under magnetic field, and Kimi et al. also made studies on the heat transfer of Hg-Ar flow under magnetic field. Saito et al. measured the slip ratio and pressure loss of NaK-N 2 flow. As a whole, it can be said that the average void rate decreases, and its distribution becomes even under magnetic field. The slip ratio increases, and the friction loss factor becomes nearly one. It was hard to make clear the heat transfer characteristics. (Kato, T.)

  3. Formation of a vortex flow at the laser cutting of sheet metal with low pressure of assisting gas

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, O B; Yudin, P V; Zaitsev, A V [Khristianovich' s Institute of Theoretical and Applied Mechanics, Russian Academy of Sciences, Siberian Branch, Novosibirsk (Russian Federation)], E-mail: kovalev@itam.nsc.ru

    2008-08-07

    Specific features of subsonic jet gas flows in narrow channels geometrically similar to the laser cut are studied experimentally and theoretically. Such flows are visualized by a technique based on prior application of a viscous liquid film onto the side walls of the channel made of transparent glass. The gas flow inside the channel induces a liquid flow on the glass wall in the form of extremely small filaments, which coincide with the streamlines of the gas flow. Filming of these filaments by a CCD camera allows one to capture the specific features of these gas-dynamic flows. Mathematical modelling of the dynamics of a viscous compressible heat-conducting gas was performed by solving full three-dimensional Navier-Stokes equations. Numerical calculations and experiments reveal vortex structures in the flow at the entrance and exit of the channel, which may directly affect the surface quality in real gas-laser cutting of metals. The largest vortex, which arises at the channel exit, collects and accumulates the liquid flowing down the channel walls. Jet flows are generated by sonic nozzles with conical or cylindrical exit sections or by a double coaxial nozzle. The double nozzle includes the central conical nozzle and the side concentric nozzle, which allows additional side injection of the gas to be organized. The study with the double nozzle shows that the vortices disappear as the pressure in the external nozzle is increased, and a stable vortex-free attached gas flow is formed.

  4. Biohydrometallurgical methods for metals recovery from waste materials

    OpenAIRE

    J. Willner; J. Kadukova; A. Fornalczyk; M. Saternus

    2015-01-01

    The article draws attention to recently conducted research of bacterial leaching of metals from various polymetallic waste. These wastes are the carriers of valuable metals: base metals, precious and platinum group metals (e.g. electronic waste, spent catalysts) or rare earth elements.

  5. Biohydrometallurgical methods for metals recovery from waste materials

    Directory of Open Access Journals (Sweden)

    J. Willner

    2015-01-01

    Full Text Available The article draws attention to recently conducted research of bacterial leaching of metals from various polymetallic waste. These wastes are the carriers of valuable metals: base metals, precious and platinum group metals (e.g. electronic waste, spent catalysts or rare earth elements.

  6. Design and Development of a Continuous-Flow Countercurrent Metal Extraction System to Remove Heavy Metals from Contaminated Soils

    National Research Council Canada - National Science Library

    Neale, Christopher M. U

    1997-01-01

    .... The research focused on eight contaminated soils from Army installations and the metal extraction capabilities of eight extracting agents including HNO3, HCI, fluorosilicic acid, citric acid, EDTA, DTPA, NTA, and NaOH...

  7. Charge-flow structures as polymeric early-warning fire alarm devices. M.S. Thesis; [metal oxide semiconductors

    Science.gov (United States)

    Sechen, C. M.; Senturia, S. D.

    1977-01-01

    The charge-flow transistor (CFT) and its applications for fire detection and gas sensing were investigated. The utility of various thin film polymers as possible sensing materials was determined. One polymer, PAPA, showed promise as a relative humidity sensor; two others, PFI and PSB, were found to be particularly suitable for fire detection. The behavior of the charge-flow capacitor, which is basically a parallel-plate capacitor with a polymer-filled gap in the metallic tip electrode, was successfully modeled as an RC transmission line. Prototype charge-flow transistors were fabricated and tested. The effective threshold voltage of this metal oxide semiconductor was found to be dependent on whether surface or bulk conduction in the thin film was dominant. Fire tests with a PFI-coated CFT indicate good sensitivity to smouldering fires.

  8. Analysis of Precious Stones Deposited in Various Rock Samples of Mogok Region by energy dispersive X-ray Fluorescence Spectrometry

    International Nuclear Information System (INIS)

    Kyi Kyi San; Soe Lwin; Win Win Thar; Sein Htoon

    2004-06-01

    The analysis of precious stones deposited in various rock samples of Mogok region were investigated by the energy dispersive x-ray fluorescence technique. The x-ray machine with Rh target was used to excite the characteristic x-ray from the sample. X-rays emitted from the sample were measured by a high resolution, cooled Si (Li) detector. The calibration was made by the measurement of minerals which composed in each kind of precious stones. The kind of precious stone deposited in the rocks sample was determined by the measurement of minerals from the rock samples compared with those obtained from each kind of precious stones

  9. Liquid metal flows in manifolds and expansions of insulating rectangular ducts in the plane perpendicular to a strong magnetic field

    International Nuclear Information System (INIS)

    Molokov, S.

    1994-01-01

    It is demonstrated the flow pattern in basic insulating 3-D geometries for the actual and for more advanced liquid-metal blanket concepts and discussed the ways to avoid pressure losses caused by flow redistribution. Flows in several geometries, such as symmetric and non-symmetric 180 turns with and without manifolds, sharp elbows, sharp and linear expansions with and without manifolds, T-junction, etc., have been calculated. They demonstrate high reliability of poloidal concepts of liquid-metal blankets, since they guarantee uniform conditions for heat transfer. If changes of the duct cross-section occur in the plane perpendicular to the magnetic field (ideally a coolant should flow always in the radial-poloidal plane) the disturbances are local and the slug velocity profile is reached roughly at the distance equivalent to one duct width from the manifolds, expansions, etc. The effects of inertia in these flows are unimportant for the determination of the pressure drop and mean velocity profiles in the core of the flow but may favour heat transfer characteristics via instabilities and strongly anisotropic turbulence. (orig./HP) [de

  10. Numerical and experimental modeling of liquid metal thin film flows in a quasi-coplanar magentic field

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Neil B. [Univ. of California, Los Angeles, CA (United States)

    1994-01-01

    Liquid metal film protection of plasma-facing surfaces in fusion reactors is proposed in an effort to counter the adverse effects of high heat and particle fluxes from the burning plasma. Concerns still exist about establishing the required flow in presence of strong magnetic fields and plasma momentum flux typical of a reactor environment. In this work, the flow behavior of the film is examined under such conditions. Analysis of MHD equations as they apply to liquid metal flows with a free surface in the fully-developed limit was undertaken. Solution yields data for velocity profiles and uniform film heights vs key design parameters (channel size, magnetic field magnitude/orientation, channel slope, wall conductivity). These results are compared to previous models to determine accuracy of simplifying assumptions, in particular Hartmann averaging of films along {rvec B}. Effect of a plasma momentum flux on the thin films is also analyzed. The plasma momentum is strong enough in the cases examined to seriously upset the film, especially for lighter elements like Li. Ga performed much better and its possible use is bolstered by calculations. In an experiment in the MeGA-loop MHD facility, coplanar, wide film flow was found to be little affected by the magnetic field due to the elongated nature of the film. Both MHD drag and partial laminarization are observed, supporting the fully- developed film model predictions of the onset of MHD drag and duct flow estimations for flow laminarization.

  11. Numerical and experimental modeling of liquid metal thin film flows in a quasi-coplanar magentic field

    International Nuclear Information System (INIS)

    Morley, N.B.

    1994-01-01

    Liquid metal film protection of plasma-facing surfaces in fusion reactors is proposed in an effort to counter the adverse effects of high heat and particle fluxes from the burning plasma. Concerns still exist about establishing the required flow in presence of strong magnetic fields and plasma momentum flux typical of a reactor environment. In this work, the flow behavior of the film is examined under such conditions. Analysis of MHD equations as they apply to liquid metal flows with a free surface in the fully-developed limit was undertaken. Solution yields data for velocity profiles and uniform film heights vs key design parameters (channel size, magnetic field magnitude/orientation, channel slope, wall conductivity). These results are compared to previous models to determine accuracy of simplifying assumptions, in particular Hartmann averaging of films along rvec B. Effect of a plasma momentum flux on the thin films is also analyzed. The plasma momentum is strong enough in the cases examined to seriously upset the film, especially for lighter elements like Li. Ga performed much better and its possible use is bolstered by calculations. In an experiment in the MeGA-loop MHD facility, coplanar, wide film flow was found to be little affected by the magnetic field due to the elongated nature of the film. Both MHD drag and partial laminarization are observed, supporting the fully- developed film model predictions of the onset of MHD drag and duct flow estimations for flow laminarization

  12. Gas flow rate and powder flow rate effect on properties of laser metal deposited Ti6Al4V

    CSIR Research Space (South Africa)

    Pityana, S

    2013-03-01

    Full Text Available . The powder flow rate and the gas flow rate were varied to study their effect on the physical, metallurgical and mechanical properties of the deposits. The physical properties studied are: the track width, the track height and the deposit weight...

  13. High-Speed Synchrotron X-ray Imaging Studies of the Ultrasound Shockwave and Enhanced Flow during Metal Solidification Processes

    Science.gov (United States)

    Tan, Dongyue; Lee, Tung Lik; Khong, Jia Chuan; Connolley, Thomas; Fezzaa, Kamel; Mi, Jiawei

    2015-07-01

    The highly dynamic behavior of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high-speed synchrotron X-ray imaging facilities housed, respectively, at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second revealed that ultrasonic bubble implosion in a liquid Bi-8 wt pctZn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 ~ 100 pct higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively.

  14. Flow measurement and thrust estimation of a vibrating ionic polymer metal composite

    International Nuclear Information System (INIS)

    Chae, Woojin; Cha, Youngsu; Peterson, Sean D; Porfiri, Maurizio

    2015-01-01

    Ionic polymer metal composites (IPMCs) are an emerging class of soft active materials that are finding growing application as underwater propulsors for miniature biomimetic swimmers. Understanding the hydrodynamics generated by an IPMC vibrating under water is central to the design of such biomimetic swimmers. In this paper, we propose the use of time-resolved particle image velocimetry to detail the fluid kinematics and kinetics in the vicinity of an IPMC vibrating along its fundamental structural mode. The reconstructed pressure field is ultimately used to estimate the thrust produced by the IPMC. The vibration frequency is systematically varied to elucidate the role of the Reynolds number on the flow physics and the thrust production. Experimental results indicate the formation and shedding of vortical structures from the IPMC tip during its vibration. Vorticity shedding is sustained by the pressure gradients along each side of the IPMC, which are most severe in the vicinity of the tip. The mean thrust is found to robustly increase with the Reynolds number, closely following a power law that has been derived from direct three-dimensional numerical simulations. A reduced order distributed model is proposed to describe IPMC underwater vibration and estimate thrust production, offering insight into the physics of underwater propulsion and aiding in the design of IPMC-based propulsors. (paper)

  15. Experimental study on flow characteristics of a vertically falling film flow of liquid metal NaK in a transverse magnetic field

    International Nuclear Information System (INIS)

    Li Fengchen; Serizawa, Akimi

    2004-01-01

    Experimental study was carried out on the characteristics of a vertically falling film flow of liquid metal sodium-potassium alloy (NaK-78) in a vertical square duct in the presence of a transverse magnetic field. The magnitude of the applied magnetic field was up to 0.7 T. The Reynolds number, defined by the hydraulic diameter based on the wetted perimeter length and the liquid average velocity, ranged from 8.0x10 3 to 3.0x10 4 . The free surfaces of the falling film flows in both a stainless steel and an acrylic resin channels were visualized. The instantaneous film thickness of the falling film flow in the acrylic resin channel was then measured by means of the ultrasonic transmission technique. Magnetohydrodynamic (MHD) effects on the characteristics of the falling film flow were investigated by the visualization and the statistical analysis of the measured film thickness. It was found that the falling liquid NaK film was thickened and the flow was stabilized remarkably by a strong transverse magnetic field. A bifurcation of the film was recovered by the applied magnetic field. The turbulence of the flow was substantially suppressed

  16. Potential hazards of particulate noble metal emissions from car exhaust catalysts. Gefaehrdungspotential von partikulaeren Edelmetallemissionen aus Automobilabgas-Katalysatoren

    Energy Technology Data Exchange (ETDEWEB)

    Stoeber, W.

    1985-01-01

    The aim of the present bibliographical study is to investigate into the possibility of health impairment by emissions of eroded and particulate precious metals of catalytic converters for motor-car exhaust gas. Connected therewith is a survey of environmental pollution so far caused by platinum metals and of their biological impact. The risk estimation relates solely to the data on emission obtained during normal operation; research work is still needed with respect to the chemical composition, the size distribution and the particle forms of the precious metals emitted. Besides, only limited data are available as to the environmental behaviour of the precious metals.

  17. Computational and experimental studies of the flow field near the beam entrance window of a liquid metal target

    International Nuclear Information System (INIS)

    Geža, Vadims; Milenković, Rade Ž.; Kapulla, Ralf; Dementjevs, Sergejs; Jakovičs, Andris; Wohlmuther, Michael

    2014-01-01

    Highlights: • Water model of liquid metal target for validation of CFD models was built. • PIV measurements showed flow features in the region near beam entrance window. • The zones with high turbulence kinetic energy were distinguished. • Reasonable agreement between modeling and PIV data was obtained. - Abstract: After the first world liquid metal target has been successfully operated at the SINQ facility at the Paul Scherrer Institut (PSI) for 6 months. The idea of having a reliable target with a bypass flow for cooling the beam entrance window, but with the bypass flow not driven by a separate pump, was examined within the project called LIMETS (Liquid Metal Target for SINQ). In designing of liquid metal targets, turbulence modelling is of high importance due to lack in methods for measuring the spatial distribution of flow and turbulence characteristics. In this study, validation of different turbulence models were performed in water model with hemispherical geometry using particle image velocimetry (PIV) technique. Two components of water flow velocity in plexiglas container with inner radius of 88 mm were measured in different cross sections, with the velocities varying from 1 to 10 m/s. Numerical calculations using large eddy simulation (LES) approach and Reynolds averaged Navier–Stokes (RANS) models were carried out to validate their applicability and study performance issues. Mean velocity and turbulence kinetic energy data were used for comparison of PIV and calculation results. Reasonable agreement was obtained for mean velocity data, with some discrepancies due to the limited length of the inlet tube. However, several discrepancies in turbulence characteristics were found in numerical results, especially in RANS model calculations

  18. Nanoindentation study on the characteristic of shear transformation zone in a Pd-based bulk metallic glass during serrated flow

    Science.gov (United States)

    Liao, G. K.; Long, Z. L.; Zhao, M. S. Z.; Peng, L.; Chai, W.; Ping, Z. H.

    2018-04-01

    This paper presents the research on the evolution of shear transformation zone (STZ) in a Pd-based bulk metallic glass (BMG) during serrated flow under nanoindentation. A novel method of estimating the STZ volume through statistical analysis of the serrated flow behavior was proposed for the first time. Based on the proposed method, the STZ volume of the studied BMG at various peak loads have been systematically investigated. The results indicate that the measured STZ volumes are in good agreement with that documented in literature, and the STZ size exhibits an increasing trend during indentation. Moreover, the correlation between the serrated flow dynamics and the STZ activation has also been evaluated. It is found that the STZ activation can promote the formation of self-organized critical (SOC) state during serrated flow.

  19. An induction-based magnetohydrodynamic 3D code for finite magnetic Reynolds number liquid-metal flows in fusion blankets

    International Nuclear Information System (INIS)

    Kawczynski, Charlie; Smolentsev, Sergey; Abdou, Mohamed

    2016-01-01

    Highlights: • A new induction-based magnetohydrodynamic code was developed using a finite difference method. • The code was benchmarked against purely hydrodynamic and MHD flows for low and finite magnetic Reynolds number. • Possible applications of the new code include liquid-metal MHD flows in the breeder blanket during unsteady events in the plasma. - Abstract: Most numerical analysis performed in the past for MHD flows in liquid-metal blankets were based on the assumption of low magnetic Reynolds number and involved numerical codes that utilized electric potential as the main electromagnetic variable. One limitation of this approach is that such codes cannot be applied to truly unsteady processes, for example, MHD flows of liquid-metal breeder/coolant during unsteady events in plasma, such as major plasma disruptions, edge-localized modes and vertical displacements, when changes in plasmas occur at millisecond timescales. Our newly developed code MOONS (Magnetohydrodynamic Object-Oriented Numerical Solver) uses the magnetic field as the main electromagnetic variable to relax the limitations of the low magnetic Reynolds number approximation for more realistic fusion reactor environments. The new code, written in Fortran, implements a 3D finite-difference method and is capable of simulating multi-material domains. The constrained transport method was implemented to evolve the magnetic field in time and assure that the magnetic field remains solenoidal within machine accuracy at every time step. Various verification tests have been performed including purely hydrodynamic flows and MHD flows at low and finite magnetic Reynolds numbers. Test results have demonstrated very good accuracy against known analytic solutions and other numerical data.

  20. An induction-based magnetohydrodynamic 3D code for finite magnetic Reynolds number liquid-metal flows in fusion blankets

    Energy Technology Data Exchange (ETDEWEB)

    Kawczynski, Charlie; Smolentsev, Sergey, E-mail: sergey@fusion.ucla.edu; Abdou, Mohamed

    2016-11-01

    Highlights: • A new induction-based magnetohydrodynamic code was developed using a finite difference method. • The code was benchmarked against purely hydrodynamic and MHD flows for low and finite magnetic Reynolds number. • Possible applications of the new code include liquid-metal MHD flows in the breeder blanket during unsteady events in the plasma. - Abstract: Most numerical analysis performed in the past for MHD flows in liquid-metal blankets were based on the assumption of low magnetic Reynolds number and involved numerical codes that utilized electric potential as the main electromagnetic variable. One limitation of this approach is that such codes cannot be applied to truly unsteady processes, for example, MHD flows of liquid-metal breeder/coolant during unsteady events in plasma, such as major plasma disruptions, edge-localized modes and vertical displacements, when changes in plasmas occur at millisecond timescales. Our newly developed code MOONS (Magnetohydrodynamic Object-Oriented Numerical Solver) uses the magnetic field as the main electromagnetic variable to relax the limitations of the low magnetic Reynolds number approximation for more realistic fusion reactor environments. The new code, written in Fortran, implements a 3D finite-difference method and is capable of simulating multi-material domains. The constrained transport method was implemented to evolve the magnetic field in time and assure that the magnetic field remains solenoidal within machine accuracy at every time step. Various verification tests have been performed including purely hydrodynamic flows and MHD flows at low and finite magnetic Reynolds numbers. Test results have demonstrated very good accuracy against known analytic solutions and other numerical data.

  1. Metallurgical recovery of metals from electronic waste: A review

    International Nuclear Information System (INIS)

    Cui Jirang; Zhang Lifeng

    2008-01-01

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the

  2. Metallurgical recovery of metals from electronic waste: A review

    Energy Technology Data Exchange (ETDEWEB)

    Cui Jirang [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Alfred Getz vei 2, N-7491 Trondheim (Norway)], E-mail: Jirang.Cui@material.ntnu.no; Zhang Lifeng [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Alfred Getz vei 2, N-7491 Trondheim (Norway)], E-mail: zhanglife@mst.edu

    2008-10-30

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the

  3. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria.

    Science.gov (United States)

    Mustapha, Hassana Ibrahim; van Bruggen, J J A; Lens, P N L

    2018-01-02

    This study examined the performance of pilot-scale vertical subsurface flow constructed wetlands (VSF-CWs) planted with three indigenous plants, i.e. Typha latifolia, Cyperus alternifolius, and Cynodon dactylon, in removing heavy metals from secondary treated refinery wastewater under tropical conditions. The T. latifolia-planted VSF-CW had the best heavy metal removal performance, followed by the Cyperus alternifolius-planted VSF-CW and then the Cynodon dactylon-planted VSF-CW. The data indicated that Cu, Cr, Zn, Pb, Cd, and Fe were accumulated in the plants at all the three VSF-CWs. However, the accumulation of the heavy metals in the plants accounted for only a rather small fraction (0.09-16%) of the overall heavy metal removal by the wetlands. The plant roots accumulated the highest amount of heavy metals, followed by the leaves, and then the stem. Cr and Fe were mainly retained in the roots of T. latifolia, Cyperus alternifolius, and Cynodon dactylon (TF < 1), meaning that Cr and Fe were only partially transported to the leaves of these plants. This study showed that VSF-CWs planted with T. latifolia, Cyperus Alternifolius, and Cynodon dactylon can be used for the large-scale removal of heavy metals from secondary refinery wastewater.

  4. Metal temperature monitoring in corrosive gases at high temperature and high thermal flows; Monitoreo de temperaturas de metal en gases corrosivos a alta temperatura y altos flujos termicos

    Energy Technology Data Exchange (ETDEWEB)

    Huerta Espino, Mario; Martinez Flores, Marco Antonio; Martinez Villafane, Alberto; Porcayo Calderon, Jesus; Gomez Guzman, Roberto; Reyes Cervantes, Fernando [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    The direct measurement of metal temperatures during operation in superheater, reheater, and water wall tubes in zones exposed to high thermal flows is of great interest for the operation and analysis of the correct functioning of a steam generator. The operation temperature measurement of these zones differs very much of the monitored temperature in headers in the dead chamber, since the temperature measured in this zone is the steam temperature that does not reflect the one detected in the gas zone. For this reason, the thermocouples implant in gas zones will detect the real metal temperature and the incidence that some operation variables might have on it (Martinez et al., (1990). [Espanol] La medicion directa de temperaturas de metal durante operacion en tubos de sobrecalentador, recalentador y pared de agua en zonas expuestas a altos flujos termicos es de gran interes para la operacion y analisis del buen funcionamiento de un generador de vapor. La medicion de la temperatura de operacion de estas zonas, difiere mucho de la temperatura monitoreada en cabezales en zona de camara muerta, ya que la temperatura registrada en esta zona es la de vapor que no es un reflejo de la detectada en zona de gases. Por esta razon, la implantacion de termopares en zona de gases detectara la temperatura de metal real y la incidencia que algunas variables de operacion tengan sobre esta (Martinez et al., 1990).

  5. Metal temperature monitoring in corrosive gases at high temperature and high thermal flows; Monitoreo de temperaturas de metal en gases corrosivos a alta temperatura y altos flujos termicos

    Energy Technology Data Exchange (ETDEWEB)

    Huerta Espino, Mario; Martinez Flores, Marco Antonio; Martinez Villafane, Alberto; Porcayo Calderon, Jesus; Gomez Guzman, Roberto; Reyes Cervantes, Fernando [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    The direct measurement of metal temperatures during operation in superheater, reheater, and water wall tubes in zones exposed to high thermal flows is of great interest for the operation and analysis of the correct functioning of a steam generator. The operation temperature measurement of these zones differs very much of the monitored temperature in headers in the dead chamber, since the temperature measured in this zone is the steam temperature that does not reflect the one detected in the gas zone. For this reason, the thermocouples implant in gas zones will detect the real metal temperature and the incidence that some operation variables might have on it (Martinez et al., (1990). [Espanol] La medicion directa de temperaturas de metal durante operacion en tubos de sobrecalentador, recalentador y pared de agua en zonas expuestas a altos flujos termicos es de gran interes para la operacion y analisis del buen funcionamiento de un generador de vapor. La medicion de la temperatura de operacion de estas zonas, difiere mucho de la temperatura monitoreada en cabezales en zona de camara muerta, ya que la temperatura registrada en esta zona es la de vapor que no es un reflejo de la detectada en zona de gases. Por esta razon, la implantacion de termopares en zona de gases detectara la temperatura de metal real y la incidencia que algunas variables de operacion tengan sobre esta (Martinez et al., 1990).

  6. Characterization of binding and mobility of metals and xenobiotics in continuous flow and soil biosystems

    International Nuclear Information System (INIS)

    Sunovska, A.

    2016-01-01

    The main aim of the dissertation thesis was to contribute to development of analytical tools and approaches application in characterization of binding and mobility of heavy metals and organic compounds (xenobiotics) in continuous flow and soil biosystems. Within the solution of this aim, a wide range of analytical methods (gamma-spectrometry, UV-VIS spectrophotometry, AAS, X-ray fluorescence spectrometry, ion chromatography, and stripping volt-amperometry) and approaches (mathematical modelling - methods of nonlinear regression and in silico prediction modelling; chemometrics and statistical analysis of the data; single-step extraction methods, and lysimetry) were applied. In the first step of thesis solution, alternative sorbents of biological origin (biomass of microalgae, freshwater mosses, and waste biomass of hop) were obtained and physico-chemically characterized mainly in order to prediction of sorption capacities of Cd and synthetic dyes thioflavine T (TT), malachite green (MG) or methylene blue (MB) removal from single component or binary aqueous solutions and under conditions of batch or continuous flow systems. For these purposes, mathematical models of adsorption isotherms and models originated from chromatographic separation methods by application of methods of nonlinear regression analysis were used. In the second part of the work, methods of multivariate analysis in the evaluation of processes of synthetic dyes TT and MB binding in terms of the finding of relationships between sorption-desorption variables describing the stability of the bond and parameters defining the physic-chemical properties of river sediments and the environment of real or model waters were applied. In the last part of the work, a special laboratory lysimeter system was designed and applied within the soil biosystem defined by: soil additive (SA) derived from sewage sludge representing the source of microelements Zn and Cu <-> agriculturally used soil <-> soil solution <-> root

  7. Characterization of binding and mobility of metals and xenobiotics in continuous flow and soil biosystems

    International Nuclear Information System (INIS)

    Sunovska, A.

    2016-01-01

    The main aim of the dissertation thesis was to contribute to development of analytical tools and approaches application in characterization of binding and mobility of heavy metals and organic compounds (xenobiotics) in continuous flow and soil biosystems. Within the solution of this aim, a wide range of analytical methods (gamma-spectrometry, UV-VIS spectrophotometry, AAS, X-ray fluorescence spectrometry, ion chromatography, and stripping volt-amperometry) and approaches (mathematical modelling - methods of nonlinear regression and in silico prediction modelling; chemometrics and statistical analysis of the data; single-step extraction methods, and lysimetry) were applied. In the first step of thesis solution, alternative sorbents of biological origin (biomass of microalgae, freshwater mosses, and waste biomass of hop) were obtained and physico-chemically characterized mainly in order to prediction of sorption capacities of Cd and synthetic dyes thioflavine T (TT), malachite green (MG) or methylene blue (MB) removal from single component or binary aqueous solutions and under conditions of batch or continuous flow systems. For these purposes, mathematical models of adsorption isotherms and models originated from chromatographic separation methods by application of methods of nonlinear regression analysis were used. In the second part of the work, methods of multivariate analysis in the evaluation of processes of synthetic dyes TT and MB binding in terms of the finding of relationships between sorption-desorption variables describing the stability of the bond and parameters defining the physic-chemical properties of river sediments and the environment of real or model waters were applied. In the last part of the work, a special laboratory lysimeter system was designed and applied within the soil biosystem defined by: soil additive (SA) derived from sewage sludge representing the source of microelements Zn and Cu agriculturally used soil soil solution root system of

  8. Thermal convection in a toroidal duct of a liquid metal blanket. Part II. Effect of axial mean flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan, E-mail: xuanz@umich.edu; Zikanov, Oleg

    2017-03-15

    Highlights: • 2D convection flow develops with internal heating and strong axial magnetic field. • The flow is strongly modified by the buoyancy force associated with growing T{sub m}. • Thermal convection is suppressed at high Gr. • High temperature difference between top and bottom walls is expected at high Gr. - Abstract: The work continues the exploration of the effect of thermal convection on flows in toroidal ducts of a liquid metal blanket. This time we consider the effect of the mean flow along the duct and of the associated heat transfer diverting the heat deposited by captured neutrons. Numerical simulations are conducted for a model system with two-dimensional (streamwise-uniform) fully developed flow, purely toroidal magnetic field, and perfectly electrically and thermally insulating walls. Realistically high Grashof (up to 10{sup 11}) and Reynolds (up to 10{sup 6}) numbers are used. It is found that the flow develops thermal convection in the transverse plane at moderate Grashof numbers. At large Grashof numbers, the flow is dominated by the top-bottom asymmetry of the streamwise velocity and stable stratification of temperature, which are caused by the buoyancy force due to the mean temperature growing along the duct. This leads to suppression of thermal convection, weak mixing, and substantial gradients of wall temperature. Further analysis based on more realistic models is suggested.

  9. Investigations on the enrichment behaviour of toxic heavy metals in the mass flows of a coal power station

    International Nuclear Information System (INIS)

    Biehusen, U.

    1980-01-01

    In the present work solid sample material from a coal power plant has been analyzed, and by means of establishing a mass balance and calculating enrichment factors the question of how the heavy-metals having entered the power plant via the coal are distributed over the individual mass flows leaving the plant has been explained. Radioactive substances that get into the plant with the uranium and thorium contained in the coal have been considered in the same way. (orig./EF) [de

  10. Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-05-20

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.

  11. 78 FR 32477 - ASA Gold and Precious Metals Limited; Notice of Application

    Science.gov (United States)

    2013-05-30

    ... strategy consistent with its current fundamental investment policy and to achieve its desired portfolio... approval of its shareholders, ASA replaced its fundamental investment policies that, among other things... SECURITIES AND EXCHANGE COMMISSION [Investment Company Act Release No. 30539; 812-13877] ASA Gold...

  12. The Study and Application of Hydrometallurgical Gold Leaching in the Analysis of Refractory Precious Metals

    Science.gov (United States)

    Yang, M.; Geng, X.; Wang, Y. L.; Li, D. X.

    2017-05-01

    Three orthogonal tests are separately designed for each hydrometallurgical gold leaching process to finding the optimum reaction conditions of melting gold and palladium in each process. Under the optimum condition, the determination amount of gold and palladium in aqua regia—hydrofluoric acid, Sodium thiosulfate, and potassium iodide reaches 2.87g/kg and 8.34 g/kg, 2.39g/kg and 8.12 g/kg, 2.51g/kg and 7.84g/kg. From the result, the content of gold and palladium using the leaching process of combining Aqua regia, hydrofluoric acid and hydrogen peroxide is relatively higher than the other processes. In addition, the experiment procedure of aqua regia digestion operates easily, using less equipment, and its period is short.

  13. Enterprise systems in financial sector - an application in precious metal trading forecasting

    Science.gov (United States)

    Chen, Xiaozhu; Fang, Yiwei

    2013-11-01

    The use of enterprise systems has become increasingly popular in the financial service industry. This paper discusses the applications of enterprise systems in the financial sectors and presents an application in gold price forecasting. We carefully examine the impacts of a few most widely assumed factors that have significant impact on the long-term gold price using statistical regression techniques. The analysis on our proposed linear regression mode indicates that the United States ultra scale of M2 money supply has been the most important catalyst for the rising price of gold, and the CRB index upward trend has also been the weighty factor for pushing up the gold price. In addition, the gold price has a low negative correlation with the Dow Jones Industrial Average, and low positive correlations with the US dollar index and the gold ETFs holdings.

  14. A Non-Precious Metal Promoting the Synthesis of 5-Hydroxymethylfurfural

    Directory of Open Access Journals (Sweden)

    Xinyuan Lu

    2017-11-01

    Full Text Available In this work, a new kind of catalyst was prepared for synthesis of 5-hydroxymethylfurfural. Copper ions were incorporated into manganese oxide octahedral molecular sieves (K-OMS-2. The catalysts Cu-K-OMS-2 were characterized by measuring FTIR spectra, scanning electron microscope images, X-ray diffraction patterns, and temperature-programmed desorption (TPD and temperature-programmed reduction (TPR profiles. Thermogravimetric analysis (TGA demonstrated that the stability of Cu-K-OMS-2 is almost the same as that of K-OMS-2. XRD patterns showed that introducing copper ions did not change the structure of K-OMS-2, but copper ions had an effect on the morphology of K-OMS-2 as illustrated by SEM images. TPD profiles demonstrated that both K-OMS-2 and Cu-K-OMS-2 possess basic and acidic sites, and Cu-K-OMS-2 has weak acidic sites. One-pot synthesis of 2,5-diformylfuran (DFF from fructose was investigated under the catalysis of Cu-K-OMS-2 together with a commercial catalyst Amberlyst 15. The effect of reaction time and temperature on the DFF yield was investigated, and reaction temperature had an effect on the DFF yield. The effect of atomic ratio of Cu to Mn of Cu-K-OMS-2 on the DFF yield was also investigated. The DFF yield was improved 34.7% by Cu-K-OMS-2 in comparison to K-OMS-2, indicating the promotion effect of copper on the DFF yield. Consecutive use of Cu-K-OMS-2 demonstrated that after 6 cycles, the loss of DFF yield was 6.3%, indicating a good reusability of Cu-K-OMS-2.

  15. 75 FR 81443 - Guides for the Jewelry, Precious Metals, and Pewter Industries

    Science.gov (United States)

    2010-12-28

    ... important to them they ``indicated that they would want to know `everything' about the platinum product... acknowledged that a qualified use of the word ``platinum'' could, in theory, address consumer confusion or...

  16. 76 FR 67793 - Notification of Expanded Pricing Grid for Precious Metals Products Containing Platinum and Gold...

    Science.gov (United States)

    2011-11-02

    ... in the Federal Register on January 6, 2009, outlining the new pricing methodology for numismatic... the gold numismatic products. Pricing of Numismatic Products Containing Gold Coins American American....00 \\1/4\\ oz 828.00 \\1/10\\ oz 345.50 4 coins 5,990.50 Pricing of Numismatic Products Containing...

  17. Design and construction of an impoundment for precious metal mill tailings

    International Nuclear Information System (INIS)

    Moldt, S.F.; Miller, R.G.; Johnson, K.

    1985-01-01

    An engineering study and design of impoundments for the disposal of mill tailings is presented. The site is located in central Nevada, and the mill will incorporate conventional flotation followed by a carbon-in-pulp cyanide process for extraction of gold from ore. Mill process waste will be generated as flotation tailings and cyanide residue. Permeable site soils and environmental considerations required the prevention of infiltration of cyanide residue leachate into the subgrade. Geochemical modeling of flotation tailings indicated the potential for high concentration of iron and nickel to be present in the flotation tailings leachate. On-site soils were optimized for use in construction of the separate flotation tailings and cyanide residue impoundments. Embankments were constructed on compacted on-site sandy gravels. The cyanide residue impoundment was designed using a four-layer liner, utilizing all on-site soils and chemical soil additives. The liner consists of a leachate collection system over a low-permeability layer, which in turn is underlain by a leak detection drainage blanket and a low permeability subliner. The geochemical modeling performed in the analysis indicated that placement of a thin layer of oxidized surface soils, high in soluble sulfates, on the bottom of the flotation tailings impoundment would be sufficient to react with tailings leachate and cause precipitation of ferric oxide and the associated removal of nickel, permitting flotation tailings leachate to dilute acceptably with natural groundwater

  18. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, John P. [Univ. of Texas-Dallas, Richardson, TX (United States). Dept. of Chemistry

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H2/CO2 selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO2-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H2/CO2 selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux and selectivity at 300 °C, which is comparable to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  19. Challenge of non-precious metal oxide-based cathode for polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Akimitsu; Matsuzawa, Koichi; Mitsushima, Shigenori; Ota, Ken-ichiro [Yokohama National Univ. (Japan)

    2010-07-01

    The partially oxidized TaC{sub 0.58}N{sub 0.42} was investigated as non-platinum cathode for PEFC. In order to quantify the degree of oxidation, the degree of oxidation (DOO) was defined using the XRD peaks of Ta-CN and Ta{sub 2}O{sub 5}. The onset potential for the oxidation reduction reaction (ORR) had high value, that is, 0.9 V vs. RHE (reversible hydrogen electrode), at higher oxidation state of the TaC{sub 0.58}N{sub 0.42}. We found that the partial oxidation of TaC{sub 0.58}N{sub 0.42} was greatly useful to enhance the catalytic activity for the ORR. The volcano plot of the ionization potential vs. the E{sub ORR} suggested that there was a suitable interaction between the surface of the partially oxidized TaC{sub 0.58}N{sub 0.42} and oxygen. (orig.)

  20. Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids

    International Nuclear Information System (INIS)

    Wang Weihua

    2011-01-01

    We study the similarity and correlations between relaxations and plastic deformation in metallic glasses (MGs) and MG-forming liquids. It is shown that the microscope plastic events, the initiation and formation of shear bands, and the mechanical yield in MGs where the atomic sites are topologically unstable induced by applied stress, can be treated as the glass to supercooled liquid state transition induced by external shear stress. On the other hand, the glass transition, the primary and secondary relaxations, plastic deformation and yield can be attributed to the free volume increase induced flow, and the flow can be modeled as the activated hopping between the inherent states in the potential energy landscape. We then propose an extended elastic model to describe the flow based on the energy landscape theory. That is, the flow activation energy density is linear proportional to the instantaneous elastic moduli, and the activation energy density ρ E is determined to be a simple expression of ρ E =(10/11)G+(1/11)K. The model indicates that both shear and bulk moduli are critical parameters accounting for both the homogeneous and inhomogeneous flows in MGs and MG-forming liquids. The elastic model is experimentally certified. We show that the elastic perspectives offers a simple scenario for the flow in MGs and MG-forming liquids and are suggestive for understanding the glass transition, plastic deformation, and nature and characteristics of MGs

  1. Expandable and retractable self-rolled structures based on metal/polymer thin film for flow sensing

    Science.gov (United States)

    Zhu, Jianzhong; White, Carl; Saadat, Mehdi; Bart-Smith, Hilary

    2015-11-01

    Most aquatic animals such as fish rely heavily on their ability of detect and respond to ambient flows in order to explore and inhabit various habitats or survive predator-prey encounters. Fish utilize neuromasts in their skin surface and lateral lines in their bodies to align themselves while swimming upstream for migration, avoid obstacles, reduce locomotion cost, and detect flow variations caused by potential predators. In this study, a thin film MEMS sensor analogous to a fish neuromast has been designed for flow sensing. Residual stress arises in many thin film materials during processing. Metal and polymer thin film materials with a significant difference in elastic modular were chosen to form a multiple-layer structure. Upon releasing, the structure rolls into a tube due to mechanical property mismatch. The self-rolled tube can expand or retract, depending on the existence of external force such as flow. An embedded strain sensor detects the deformation of the tube and hence senses the ambient flow. Numerical simulations were conducted to optimize the structural design. Experiments were performed in a flow tank to quantify the performance of the sensor. This research is supported by the Office of Naval Research under the MURI Grant N00014-14-1-0533.

  2. Heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel and its application to a flow analytical system using flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mori, Masanobu; Suzuki, Toshinobu; Sugita, Tsuyoshi; Nagai, Daisuke; Hirayama, Kazuo; Onozato, Makoto; Itabashi, Hideyuki

    2014-01-01

    Highlights: • Calcium-alginate-modified dien-silica gel adsorbed multivalent metal ions. • Metal ions adsorbed on CaAD were eluted using low acidic concentrations. • Flow system with CaAD-packed column enriched metal concentrations up to 50-fold. - Abstract: This study aimed to evaluate the heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel (CaAD) and incorporate this biosorbent into a flow analytical system for heavy metal ions using flame atomic absorption spectrometry (FAAS). The biosorbent was synthesized by electrostatically coating calcium alginate onto diethylenetriamine (dien)-silica gel. Copper ion adsorption tests by a batch method showed that CaAD exhibited a higher adsorption rate compared with other biosorbents despite its low maximum adsorption capacity. Next, CaAD was packed into a 1 mL microcolumn, which was connected to a flow analytical system equipped with an FAAS instrument. The flow system quantitatively adsorbed heavy metals and enriched their concentrations. This quantitative adsorption was achieved for pH 3–4 solutions containing 1.0 × 10 −6 M of heavy metal ions at a flow rate of 5.0 mL min −1 . Furthermore, the metal ions were successfully desorbed from CaAD at low nitric acid concentrations (0.05–0.15 M) than from the polyaminecarboxylic acid chelating resin (Chelex 100). Therefore, CaAD may be considered as a biosorbent that quickly adsorbs and easily desorbs analyte metal ions. In addition, the flow system enhanced the concentrations of heavy metals such as Cu 2+ , Zn 2+ , and Pb 2+ by 50-fold. This new enrichment system successfully performed the separation and determination of Cu 2+ (5.0 × 10 −8 M) and Zn 2+ (5.7 × 10 −8 M) in a river water sample and Pb 2+ (3.8 × 10 −9 M) in a ground water sample

  3. Flow of liquid metals in curved channels under a transversely applied magnetic field, (3)

    International Nuclear Information System (INIS)

    Arai, Shigeki; Tomita, Yukio; Sudou, Kouzou.

    1979-01-01

    With the development of electromagnetic pumps in nuclear, metallurgical and casting industries, investigations of not only laminar flow but also transient and turbulent flows in magnetohydrodynamic (MHD) channels are the matters of much concern. However, it is no exaggeration to say that there was no investigation of transient and turbulent flows in curved MHD channels. In this report, the influences of Reynolds number, Hartmann number, radius of curvature and aspect ratio on the coefficient of friction in transient and turbulent flow channels are discussed. In transient flow region, the curve representing the product of the coefficient of channel friction in curved channels and Reynolds number has no clear transition point in the flow of comparatively small Hartmann number. However, as the intensity of magnetic field is increased, the curve transfers to the transition due to the effect of suppressing secondary flow, and if the magnetic field is further increased, it was found that it approached the crisis-free type transition. In turbulent flow region, the coefficient of channel friction can be expressed approximately by the empirical equation given first in this report. Also the effect of magnetic field on the turbulent flow in curved channels can be explained by using Hartmann effect, turbulence suppression effect, and the effect of suppressing secondary flow based on Lorentz's force. (Wakatsuki, Y.)

  4. Turbulent heat mixing of a heavy liquid metal flow in the MEGAPIE target geometry-The heated jet experiment

    International Nuclear Information System (INIS)

    Stieglitz, Robert; Daubner, Markus; Batta, A.; Lefhalm, C.-H.

    2007-01-01

    The MEGAPIE target installed at the Paul-Scherrer Institute is an example of a spallation target using eutectic liquid lead-bismuth (Pb 45 Bi 55 ) both as coolant and neutron source. An adequate cooling of the target requires a conditioning of the flow, which is realized by a main flow transported in an annular gap downwards, u-turned at a hemispherical shell into a cylindrical riser tube. In order to avoid a stagnation point close to the lowest part of the shell a jet flow is superimposed to the main flow, which is directed towards to the stagnation point and flows tangentially along the shell. The heated jet experiment conducted in the THEADES loop of the KALLA laboratory is nearly 1:1 representation of the lower part of the MEGAPIE target. It is aimed to study the cooling capability of this specific geometry in dependence on the flow rate ratio (Q main /Q jet ) of the main flow (Q main ) to the jet flow (Q jet ). Here, a heated jet is injected into a cold main flow at MEGAPIE relevant flow rate ratios. The liquid metal experiment is accompanied by a water experiment in almost the same geometry to study the momentum field as well as a three-dimensional turbulent numerical fluid dynamic simulation (CFD). Besides a detailed study of the envisaged nominal operation of the MEGAPIE target with Q main /Q jet = 15 deviations from this mode are investigated in the range from 7.5 ≤ Q main /Q jet ≤ 20 in order to give an estimate on the safe operational threshold of the target. The experiment shows that, the flow pattern establishing in this specific design and the turbulence intensity distribution essentially depends on the flow rate ratio (Q main /Q jet ). All Q main /Q jet -ratios investigated exhibit an unstable time dependent behavior. The MEGAPIE design is highly sensitive against changes of this ratio. Mainly three completely different flow patterns were identified. A sufficient cooling of the lower target shell, however, is only ensured if Q main /Q jet ≤ 12

  5. Analysis of liquid metal MHD flow in multiple adjacent ducts using an iterative method to solve the core flow equations

    International Nuclear Information System (INIS)

    McCarthy, K.A.; Abdou, M.A.

    1991-01-01

    A computationally fast and efficient method for analyzing MHD flow at high Hartmann number and interaction parameter is presented and used to analyze a multiple duct geometry. This type of geometry is of practical interest in fusion applications. Because the Hartmann number and interaction parameter are generally large in fusion applications, the inertial and viscous terms in the Navier-Stokes equation can often be neglected in the core flow region, making this equation linear. In addition, because the magnetic fields in a fusion reactor vary slowly and the magnetic Reynolds number is small, the induced magnetic field can be neglected. The resulting equations representing core flow have certain characteristics which make it possible to reduce them to two dimensional without losing the three dimensional characteristics. The method which has been developed is an 'iterative' method. A velocity profile is assumed, then Ohm's law and the current conservation equation are combined and used to solve for the potential distribution in a plane in the fluid, and in a surface in the duct wall. The potential variation along magnetic field lines is checked, and if necessary, the velocities are adjusted. This procedure is repeated until the potentials along field lines vary to within a specified error. The analysis of the multiple duct geometry shows the importance of global effects. The results of two basic cases are presented. In the first, the average velocity in each duct is the same, but the wall conductance ratios of the walls perpendicular to the magnetic field vary from duct to duct. The total pressure drop in the electrically connected ducts was greater than or equal to the total pressure drop in the same ducts electrically isolated. In addition, the velocity profile in the ducts can be significantly affected by the presence of neighboring ducts. (orig./AH)

  6. High-power spallation target using a heavy liquid metal free surface flow

    International Nuclear Information System (INIS)

    Litfin, K.; Fetzer, J.R.; Batta, A.; Class, A.G.; Wetzel, Th.

    2015-01-01

    A prototype of a heavy liquid metal free surface target as proposed for the multi-purpose hybrid research reactor for high-tech applications in Mol, Belgium, has been set up and experimentally investigated at the Karlsruhe Liquid Metal Laboratory. A stable operation was demonstrated in a wide range of operating conditions and the surface shape was detected and compared with numerical pre-calculations employing Star-CD. Results show a very good agreement of experiment and numerical predictions which is an essential input for other windowless target designs like the META:LIC target for the European Spallation Source. (author)

  7. Flow and Fracture of Bulk Metallic Glass Alloys and their Composites

    International Nuclear Information System (INIS)

    Flores, K M; Suh, D; Howell, R; Asoka-Kumar, P; Dauskardt, R H

    2001-01-01

    The fracture and plastic deformation mechanisms of a Zr-Ti-Ni-Cu-Be bulk metallic glass and a composite utilizing a crystalline reinforcement phase are reviewed. The relationship between stress state, free volume and shear band formation are discussed. Positron annihilation techniques were used to confirm the predicted increase in free volume after plastic straining. Strain localization and failure were examined for a wide range of stress states. Finally, methods for toughening metallic glasses are considered. Significant increases in toughness are demonstrated for a composite bulk metallic glass containing a ductile second phase which stabilizes shear band formation and distributes plastic deformation

  8. Validation of ANSYS CFX for gas and liquid metal flows with conjugate heat transfer within the European project THINS

    Energy Technology Data Exchange (ETDEWEB)

    Papukchiev, A., E-mail: angel.papukchiev@grs.de; Buchholz, S.

    2017-02-15

    Highlights: • ANSYS CFX is validated for gas and liquid metal flows. • L-STAR and TALL-3D experiments are simulated. • Complex flow and heat transfer phenomena are modelled. • Conjugate heat transfer has to be considered in CFD analyses. - Abstract: Within the FP7 European project THINS (Thermal Hydraulics of Innovative Nuclear Systems), numerical tools for the simulation of the thermal-hydraulics of next generation rector systems were developed, applied and validated for innovative coolants. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH participated in THINS with activities related to the development and validation of computational fluid dynamics (CFD) and coupled System Thermal Hydraulics (STH) – CFD codes. High quality measurements from the L-STAR and TALL-3D experiments were used to assess the numerical results. Two-equation eddy viscosity and scale resolving turbulence models were used in the validation process of ANSYS CFX for gas and liquid metal flows with conjugate heat transfer. This paper provides a brief overview on the main results achieved at GRS within the project.

  9. Fabrication of a polyvinylidene difluoride fiber with a metal core and its application as directional air flow sensor

    Science.gov (United States)

    Bian, Yixiang; Liu, Rongrong; Hui, Shen

    2016-09-01

    We fabricated a sensitive air flow detector that mimic the sensing mechanism found at the tail of some insects. [see Y. Yang, A. Klein, H. Bleckmann and C. Liu, Appl. Phys. Lett. 99(2) (2011); J. J. Heys, T. Gedeon, B. C. Knott and Y. Kim, J. Biomech. 41(5), 977 (2008); J. Tao and X. Yu, Smart Mat. Struct. 21(11) (2012)]. Our bionic airflow sensor uses a polyvinylidene difluoride (PVDF) microfiber with a molybdenum core which we produced with the hot extrusion tensile method. The surface of the fiber is partially coated with conductive silver adhesive that serve as surface electrodes. A third electrode, the metal core is used to polarize polyvinylidene difluoride (PVDF) under the surface electrodes. The cantilever beam structure of the prepared symmetric electrodes of metal core piezoelectric fiber (SMPF) is used as the artificial hair airflow sensor. The surface electrodes are used to measure output voltage. Our theoretical and experimental results show that the SMPF responds fast to air flow changes, the output charge has an exponential correlation with airflow velocity and a cosine relation with the direction of airflow. Our bionic airflow sensor with directional sensing ability can also measure air flow amplitude. [see H. Droogendijk, R. G. P. Sanders and G. J. M. Krijnen, New J. Phys. 15 (2013)]. By using two surface electrodes, our sensing circuit further improves sensitivity.

  10. Immersed transient eddy current flow metering: a calibration-free velocity measurement technique for liquid metals

    Science.gov (United States)

    Krauter, N.; Stefani, F.

    2017-10-01

    Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation.

  11. Immersed transient eddy current flow metering: a calibration-free velocity measurement technique for liquid metals

    International Nuclear Information System (INIS)

    Krauter, N; Stefani, F

    2017-01-01

    Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation. (paper)

  12. Dynamic flow-through approaches for metal fractionation in environmentally relevant solid samples

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald; Chomchoei, Roongrat

    2005-01-01

    generations of flow-injection analysis. Special attention is also paid to a novel, robust, non-invasive approach for on-site continuous sampling of soil solutions, capitalizing on flow-through microdialysis, which presents itself as an appealing complementary approach to the conventional lysimeter experiments...

  13. Two-way coupled simulation of a flow laden with metallic particulates in overexpanded TIC nozzle

    International Nuclear Information System (INIS)

    Moshfegh, Abouzar; Shams, Mehrzad; Ebrahimi, Reza; Farnia, Mohammad Ali

    2009-01-01

    A simulation of non-reacting dilute gas-solid flow in a truncated ideal contour nozzle with consideration of external stream interactions is performed. The Eulerian-Lagrangian approach involving a two-way momentum and thermal coupling between gas and particles phases is also adopted. Of interests are to investigate the effects of particles diameter and mass flow fraction on the flow pattern, Mach number, pressure and temperature contours and their distributions along the nozzle centerline and wall. The main goal is to determine the separation point quantitatively when the particles characteristics change. Particles sample trajectories are illustrated throughout the flow field and a qualitative discussion on the way that physical properties of the nozzle exit flow and particles trajectories oscillate is prepared. The existence of solid particulates delays the separation prominently in the cases studied. The bigger particles and the higher particles mass flow fractions respectively advance and delay the separation occurrence. The particles trajectories oscillate when they expose to the crisscrossing (or diamond-shape) shock waves generated outside the nozzle to approach the exit jet conditions to the ambient. The simulation code is validated and verified, respectively, against a one-phase 2D convergent-divergent nozzle flow and a two-phase Jet Propulsion Laboratory nozzle flow, and acceptable agreements are achieved.

  14. The Administration of Tibetan Precious Pills: Efficacy in Historical and Ritual Contexts.

    Science.gov (United States)

    Czaja, Olaf

    2015-01-01

    Precious pills represent a special kind of Tibetan drug that once was, and still is, highly sought after by Tibetan, Chinese, and Mongolian patients. Such pills are generally taken as a potent prophylactic remedy, and can be used to cure various diseases. The present study seeks to discuss the dispensation and efficacy of precious pills according to the presentations of historical Tibetan medical scholars. Several treatises dealing with these instructions will be analysed, thereby revealing their underlying concepts, and highlighting their points of both general consensus and disagreement. The analysis of these detailed instructions will reveal the fact that these precious pills were not merely given to a patient but, in order to ensure their full efficacy, involved an elaborate regimen concerning three chronological periods: (1) the time of preparation, (2) the time of dispensation, and (3) the time after dispensation. Thus the present study surveys not only the ritual empowerment of drugs in Tibetan medicine, but also the importance of social relationships between doctors and patients in Tibetan medical history.

  15. Metals analysis for emission spectroscopic in the incandescent discharge operated with continuous flow of He to atmospheric pressure

    International Nuclear Information System (INIS)

    Alzate Londono, Hugo

    1990-01-01

    By means of a small power source a glow discharge in generated with he flowing at atmospheric pressure. Into a device situated to some distance from the discharge an aqueous sample of a metallic ion is injected. The device is then gradually moved to the discharge for producing solvent vaporization, charring, atomization, excitation and finally atomic emission of the sample. By emission spectrophotometer the following elements were analyzed: Ag, Cd, Cr, Cu, Hg, K, Na, Pb and Zn. For every one the useful range and the detection limit were established after founding the best operation conditions for the discharge

  16. Development and computational simulation of thermoelectric electromagnetic pumps for controlling the fluid flow in liquid metal cooled space nuclear reactors

    International Nuclear Information System (INIS)

    Borges, E.M.

    1991-01-01

    Thermoelectric Electromagnetic (TEEM) Pumps can be used for controlling the fluid flow in the primary and secondary circuits of liquid metal cooled space nuclear reactor. In order to simulate and to evaluate the pumps performance, in steady-state, the computer program BEMTE has been developed to study the main operational parameters and to determine the system actuation point, for a given reactor operating power. The results for each stage of the program were satisfactory, compared to experimental data. The program shows to be adequate for the design and simulating of direct current electromagnetic pumps. (author)

  17. Code development for analysis of MHD pressure drop reduction in a liquid metal blanket using insulation technique based on a fully developed flow model

    International Nuclear Information System (INIS)

    Smolentsev, Sergey; Morley, Neil; Abdou, Mohamed

    2005-01-01

    The paper presents details of a new numerical code for analysis of a fully developed MHD flow in a channel of a liquid metal blanket using various insulation techniques. The code has specially been designed for channels with a 'sandwich' structure of several materials with different physical properties. The code includes a finite-volume formulation, automatically generated Hartmann number sensitive meshes, and effective convergence acceleration technique. Tests performed at Ha ∼ 10 4 have showed very good accuracy. As an illustration, two blanket flows have been considered: Pb-17Li flow in a channel with a silicon carbide flow channel insert, and Li flow in a channel with insulating coating

  18. Canonical Models of Geophysical and Astrophysical Flows: Turbulent Convection Experiments in Liquid Metals

    Directory of Open Access Journals (Sweden)

    Adolfo Ribeiro

    2015-03-01

    Full Text Available Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not carried out using fluids properties that mimic the essential properties of liquid metals and plasmas (e.g., using fluids with thermal Prandtl numbers Pr < 1 and magnetic Prandtl numbers Pm ≪ 1. Metal dynamo simulations should become possible, though, within the next decade. In order then to understand the turbulent convection phenomena occurring in geophysical or astrophysical fluids and next-generation numerical models thereof, we present here canonical, end-member examples of thermally-driven convection in liquid gallium, first with no magnetic field or rotation present, then with the inclusion of a background magnetic field and then in a rotating system (without an imposed magnetic field. In doing so, we demonstrate the essential behaviors of convecting liquid metals that are necessary for building, as well as benchmarking, accurate, robust models of magnetohydrodynamic processes in Pm ≪  Pr < 1 geophysical and astrophysical systems. Our study results also show strong agreement between laboratory and numerical experiments, demonstrating that high resolution numerical simulations can be made capable of modeling the liquid metal convective turbulence needed in accurate next-generation dynamo models.

  19. Flutter analysis of hybrid metal-composite low aspect ratio trapezoidal wings in supersonic flow

    Directory of Open Access Journals (Sweden)

    Shokrollahi Saeed

    2017-02-01

    Full Text Available An effective 3D supersonic Mach box approach in combination with non-classical hybrid metal-composite plate theory has been used to investigate flutter boundaries of trapezoidal low aspect ratio wings. The wing structure is composed of two main components including aluminum material (in-board section and laminated composite material (out-board section. A global Ritz method is used with simple polynomials being employed as the trial functions. The most important objective of the present research is to study the effect of composite to metal proportion of hybrid wing structure on flutter boundaries in low supersonic regime. In addition, the effect of some important geometrical parameters such as sweep angle, taper ratio and aspect ratio on flutter boundaries were studied. The results obtained by present approach for special cases like pure metallic wings and results for high supersonic regime based on piston theory show a good agreement with those obtained by other investigators.

  20. Analysis of Metal Flow Behavior and Residual Stress Formation of Complex Functional Profiles under High-Speed Cold Roll-Beating

    Directory of Open Access Journals (Sweden)

    Fengkui Cui

    2018-01-01

    Full Text Available To obtain a good surface layer performance of the complex functional profile during the high-speed cold roll-beating forming process, this paper analyzed the metal plastic flow and residual stress-formed mechanism by using a theoretical model of the metal flow and residual stress generation. By using simulation software, the cold roll-beating forming process of a spline shaft was simulated and analyzed. The metal flow and residual stress formation law in the motion were researched. In a practical experiment, the changes in the grains in the spline tooth profile section and the residual stress distribution on the tooth profile were studied. A microcorrespondence relationship was established between the metal plastic flow and the residual stress generation. The conclusions indicate that the rate at which the metal flow decreases changes gradually at different metal layers. The residual stress value is directly related to the plastic flow difference. As the roll-beating speed increases, the uneven degree of plastic deformation at the workpiece surface increases, and the residual stress in the tooth profile is generally greater. At the same roll-beating speed, the rate change trend of the metal flow decreases gradually from the surface to the inner layer and from the dedendum to the addendum. The residual stress distribution on the surface of the tooth profile decreases from the dedendum to the addendum. These findings provide a basis and guidance for the controlled use of residual stress, obtaining better surface layer quality in the high-speed cold roll-beating process of the complex functional profile.

  1. Liquid-Metal/Water Direct Contact Heat Exchange: Flow Visualization, Flow Stability, and Heat Transfer Using Real-Time X-Ray Imaging

    International Nuclear Information System (INIS)

    Abdulla, Sherif H.; Liu Xin; Anderson, Mark H.; Bonazza, Riccardo; Corradini, Michael L.; Cho, Dae; Page, Richard

    2005-01-01

    Advanced reactor system designs are being considered with liquid-metal cooling connected to a steam power cycle. In addition, current reactor safety systems are considering auxiliary cooling schemes that assure ex-vessel debris coolability utilizing direct water injection into molten material pools to achieve core quenching and eventual coolability. The phenomenon common in both applications is direct contact heat exchange. The current study focuses on detailed measurements of liquid-metal/water direct contact heat exchange that is directly applicable to improvements in effective heat transfer in devices that are being considered for both of these purposes.In this study, a test facility was designed at the University of Wisconsin-Madison to map the operating range of liquid-metal/water direct contact heat exchange. The test section (184-cm height, 45.75-cm width, and 10-cm depth) is a rectangular slice of a larger heat exchange device. This apparatus was used not only to provide measurements of integral thermal performance (i.e., volumetric heat transfer coefficient), but also local heat transfer coefficients in a bubbly flow regime with X-ray imaging based on measured parameters such as bubble formation time, bubble rise velocity, and bubble diameters.To determine these local heat transfer coefficients, a complete methodology of the X-ray radiography for two-phase flow measurement has been developed. With this methodology, a high-energy X-ray imaging system is optimized for our heat exchange experiments. With this real-time, large-area, high-energy X-ray imaging system, the two-phase flow was quantitatively visualized. An efficient image processing strategy was developed by combining several optimal digital image-processing algorithms into a software computational tool written in MATLAB called T-XIP. Time-dependent heat transfer-related variables such as bubble volumes and velocities, were determined. Finally, an error analysis associated with these measurements

  2. New Alkali Metal Flow Battery for Terrestrial and Aerospace Energy Storage Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — This seedling task is to develop new lithium-based flow batteries that will provide several fold improvements in specific energy, cost, simplicity and lifetimes,...

  3. Numerical simulation of the heat transfer at cooling a high-temperature metal cylinder by a flow of a gas-liquid medium

    Science.gov (United States)

    Makarov, S. S.; Lipanov, A. M.; Karpov, A. I.

    2017-10-01

    The numerical modeling results for the heat transfer during cooling a metal cylinder by a gas-liquid medium flow in an annular channel are presented. The results are obtained on the basis of the mathematical model of the conjugate heat transfer of the gas-liquid flow and the metal cylinder in a two-dimensional nonstationary formulation accounting for the axisymmetry of the cooling medium flow relative to the cylinder longitudinal axis. To solve the system of differential equations the control volume approach is used. The flow field parameters are calculated by the SIMPLE algorithm. To solve iteratively the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. The results of the numerical simulation are verified by comparing the results of the numerical simulation with the results of the field experiment. The calculation results for the heat transfer parameters at cooling the high-temperature metal cylinder by the gas-liquid flow are obtained with accounting for evaporation. The values of the rate of cooling the cylinder by the laminar flow of the cooling medium are determined. The temperature change intensity for the metal cylinder is analyzed depending on the initial velocity of the liquid flow and the time of the cooling process.

  4. Precious Love

    Institute of Scientific and Technical Information of China (English)

    范舒扬

    2007-01-01

    <正>As I hit my adolescence,I began to care about my weight and I didn’t eat properly to e- vade getting fat and sometimes even didn’t have supper,let alone snacks.I did this for over two months.Even though I lived in school most of the time,my parents could figure out that I was on a diet.

  5. Numerical study of metal foam heat sinks under uniform impinging flow

    International Nuclear Information System (INIS)

    Andreozzi, A; Bianco, N; Iasiello, M; Naso, V

    2017-01-01

    The ever-increasing demand for performance improvement and miniaturization of electronics has led to a significant generation of waste heat that must be dissipated to ensure a reliable device operation. The miniaturization of the components complicates this task. In fact, reducing the heat transfer area, at the same required heat rate, it is necessary to increase the heat flux, so that the materials operate in a temperature range suitable to its proper functioning. Traditional heat sinks are no longer capable of dissipating the generated heat and innovative approaches are needed to address the emerging thermal management challenges. Recently, heat transfer in open-cell metal foams under an impinging jet has received attention due to the considerable heat transfer potential of combining two cooling technologies: impinging jet and porous medium. This paper presents a numerical study on Finned Metal Foam (FMF) and Metal Foam (MF) heat sinks under impinging air jet cooling. The analysis is carried out by means of the commercial software COMSOL Multiphysics®. The purpose is to analyze the thermal performance of the metal foam heat sink, finned or not, varying its geometric parameters. Results are presented in terms of predicted dissipated heat rate, convective heat transfer coefficient and pressure losses. (paper)

  6. Visualization and measurement of liquid velocity field of gas-liquid metal two-phase flow using neutron radiography

    International Nuclear Information System (INIS)

    Saito, Yasushi; Suzuki, Tohru; Matsubayashi, Masahito

    2000-01-01

    In a core melt accident of a fast breeder reactor, a possibility of re-criticality is anticipated in the molten fuel-steel mixture pool. One of the mechanisms to suppress the re-criticality is the boiling of steel in the molten fuel-steel mixture pool because of the negative void reactivity effect. To evaluate the reactivity change due to boiling, it is necessary to know the characteristics of gas-liquid two-phase flow in the molten fuel-steel mixture pool. For this purpose, boiling bubbles in a molten fuel-steel mixture pool were simulated by adiabatic gas bubbles in a liquid metal pool to study the basic characteristics of gas-liquid metal two-phase mixture. Visualization of the two-phase mixture and measurements of liquid phase velocity and void fraction were conducted by using neutron radiography and image processing techniques. From these measurements, the basic characteristics of gas-liquid metal two-phase mixture were clarified. (author)

  7. The flow stress of high-purity refractory body-centred cubic metals and its modification by atomic defects

    International Nuclear Information System (INIS)

    Seeger, A.

    1995-01-01

    The strong temperature and strain-rate dependence of the flow stress of high-purity refractory body-centred cubic metals has been shown to be an intrinsic property and is usually ascribed to a high Peierls barrier of a o left angle 111 right angle /2 screw dislocations. These barriers are overcome by the formation of kink pairs on the screw dislocations. The paper reports on recent, very complete flow-stress data on ultra-high purity Mo crystals obtained by two different experimental techniques and covering the temperature range 4 K to 460 K. The results are in accord with earlier work of Brunner and Diehl on α-Fe, who showed that below the so-called knee temperature, T K , three regimes in the temperature variation of the flow-stress should be distinguished. Two of them are fully accounted for by the same glide mechanism, namely elementary glide steps on {211} planes. The so-called upper bend separating these two regimes in an inherent feature of the theory of kink-pair formation and does not indicate a change in the glide mechanism. There is, however, strong evidence that the so-called lower bend, separating the range of {211} elementary glide steps from the low-temperature flow-stress regime, is due to a change in the glide mechanism. It is argued that at the lower bend the screw-dislocation cores undergo a ''first-order phase transition'' from a low-temperature configuration that allows glide of a given screw dislocation on any of its three {110} glide planes to a high-temperature configuration that can glide only on one definite {211} plane. Between T K and the lower-bend temperature, T, bcc metals may show the unique phenomena of alloy and irradiation softening. With regard to the latter phenomenon, Brunner and Diehl distinguish between ''primary'' and ''secondary'' softening. It is shown that alloy softening and the ''secondary irradiation softening'' of bcc metals may be explained by an ''overheating'' of the phase transition in the dislocation core. (orig./WL)

  8. A study on the flow-accelerated corrosion characteristics of galvanically coupled dissimilar metals

    International Nuclear Information System (INIS)

    Choi, Yoon Seok; Kim, Jung Gu

    2002-01-01

    The flow-accelerated corrosion characteristics of a carbon steel(CS) coupled to stainless steel(SS) were investigated in deaerated alkaline-chloride solutions with velocities (0, 0.2, 0.4 and 0.6 m/s), pH (8, 9 and 10) and temperatures (25, 50 and 75 .deg. C). The electrochemical properties of specimens were investigated by potentiodynamic test and galvanic corrosion test using RCE (Rotating Cylinder Electrode). CS did not show passive behavior while SS show passive behavior in the alkaline-chloride solution. Galvanic corrosion tests were conducted as a function of flow velocities, pH and temperature. The galvanic current density increases with increasing flow velocity and temperature, but decreased with increasing pH. Flow velocity had a small effect on the galvanic current density at 25 .deg. C, whereas the flow velocity increased galvanic current density significantly at 50 and 75 .deg. C. This might be due to the increased solubility of magnetite at the higher temperature

  9. Heat transfer of liquid-metal magnetohydrodynamic flow with internal heat generation

    International Nuclear Information System (INIS)

    Kumamaru, Hiroshige; Kurita, Kazuhisa; Kodama, Satoshi

    2000-01-01

    Numerical calculations on heat transfer of a magnetohydrodynamic (MHD) flow with internal heat generation in a rectangular channel have been performed for the cases of very-large Hartmann numbers, finite wall conductivities and small aspect ratio (i.e. small length ratios of the channel side perpendicular to the applied magnetic field and the side parallel to the field), simulating typical conditions for a fusion-reactor blanket. The Nusselt numbers of the MHD flow in rectangular channels with aspect ratios of 1/10 to 1/40 for Hartmann numbers of ∼5 x 10 5 become ∼10 times higher than those for the corresponding flow under no magnetic field. The Nusselt number becomes higher as the internal heat generation rate increases as far as the heat generation rates in a fusion reactor blanket are considered. (author)

  10. Transient Magnetohydrodynamic Liquid-Metal Flows in a Rectangular Channel with a Moving Conducting Wall

    Science.gov (United States)

    1988-05-01

    use of liquid metals for current collectors in homopolar motors and generators has led to the design of machines of superior performance. The steady...In some applications of homopolar generators it becomes necessary not only to start and stop the machines but also to operate them under oscillating...conditions. This could be the case in an application where a homopolar generator behaves as an extremely high energy capacitor. Therefore, one is

  11. Subsurface flow wetlands for the removal of arsenic and metals from contaminated water

    OpenAIRE

    Lizama Allende, Katherine

    2017-01-01

    The presence of arsenic (As) in aquatic environments is a worldwide concern due to its toxicity and chronic effects. In many cases, the choice of treatment technologies is limited due to the isolated location of the water source and the high cost of conventional treatment technologies. In addition, other pollutants are often found alongside As, such as iron (Fe) and boron (B). Constructed wetlands have shown capability to remove As and metals. However, few experimental studies have been under...

  12. Using NIF to Test Theories of High-Pressure, High-Rate Plastic Flow in Metals

    Science.gov (United States)

    Rudd, Robert E.; Arsenlis, A.; Cavallo, R. M.; Huntington, C. M.; McNaney, J. M.; Park, H. S.; Powell, P.; Prisbrey, S. T.; Remington, B. A.; Swift, D.; Wehrenberg, C. E.; Yang, L.

    2017-10-01

    Precisely controlled plasmas are playing key roles both as pump and probe in experiments to understand the strength of solid metals at high energy density (HED) conditions. In concert with theoretical advances, these experiments have enabled a predictive capability to model material strength at Mbar pressures and high strain rates. Here we describe multiscale strength models developed for tantalum starting with atomic bonding and extending up through the mobility of individual dislocations, the evolution of dislocation networks and so on until the ultimate material response at the scale of an experiment. Experiments at the National Ignition Facility (NIF) probe strength in metals ramp compressed to 1-8 Mbar. The model is able to predict 1 Mbar experiments without adjustable parameters. The combination of experiment and theory has shown that solid metals can behave significantly differently at HED conditions. We also describe recent studies of lead compressed to 3-5 Mbar. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.

  13. Microstructural evolution and homogeneous viscous flow behavior of a Cu–Zr based bulk metallic glass composites

    International Nuclear Information System (INIS)

    Zhang, X.Y.; Yuan, Z.Z.; Li, D.X.

    2014-01-01

    Highlights: • Stress–strain behaviors of the BMGCs are strain rate and temperature dependent. • Micro-crystals are compressed to concave polygon in shape and align in line. • Nano-crystals nuclear and aggregate during high temperature deformation. • Deformation behavior is governed by homogeneous flow of the amorphous matrix. - Abstract: The high temperature compression behavior of Cu 40 Zr 44 Ag 8 Al 8 rods with 6 mm in diameter was investigated and compared with the literature data. Microstructure of the as-cast rods were characterized by X-ray diffraction, scanning electron microscopy and high resolution transmission electron microscope in the composites state with microscale Al 3 Zr particles embedded in the amorphous matrix. Deformation results show that the stress–strain behaviors of the bulk metallic glass composites (BMGCs) are strain rate and temperature dependent. In addition, SEM observations reveal that the initially spherical and randomly distributed microscale particles in the amorphous matrix deform to concave polygon in shape and align perpendicular to the load direction during the compression. Meanwhile nano-crystals precipitate continuously from the matrix and aggregate during deformation. Rheological analysis show that the BMGCs exhibit a transition from Newtonian to non-Newtonian in flow behavior dependent on the stain rate. Particles in the amorphous matrix have reinforcement effect on the BMGCs, but the deformation behavior is still dominated by the homogeneous flow of the amorphous matrix phase

  14. Influence of oxygen flow rate on metal-insulator transition of vanadium oxide thin films grown by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xu; Liu, Xinkun; Li, Haizhu; Huang, Mingju [Henan University, Key Lab of Informational Opto-Electronical Materials and Apparatus, School of Physics and Electronics, Kaifeng (China); Zhang, Angran [South China Normal University, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, Guangzhou (China)

    2017-03-15

    High-quality vanadium oxide (VO{sub 2}) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO{sub 2} has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO{sub 2} thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm. (orig.)

  15. Method for extracting copper, silver and related metals

    Science.gov (United States)

    Moyer, Bruce A.; McDowell, W. J.

    1990-01-01

    A process for selectively extracting precious metals such as silver and gold concurrent with copper extraction from aqueous solutions containing the same. The process utilizes tetrathiamacrocycles and high molecular weight organic acids that exhibit a synergistic relationship when complexing with certain metal ions thereby removing them from ore leach solutions.

  16. Mathematical modeling of turbulent stratified flows. Application of liquid metal fast breeders

    Energy Technology Data Exchange (ETDEWEB)

    Villand, M; Grand, D [CEA-Service des Transferts Thermiques, Grenoble (France)

    1983-07-01

    Mathematical model of turbulent stratified flow was proposed under the following assumptions: Newtonian fluid; incompressible fluid; coupling between temperature and momentum fields according to Boussinesq approximation; two-dimensional invariance for translation or rotation; coordinates cartesian or curvilinear. Solutions obtained by the proposed method are presented.

  17. Time to propagate green building construction concept for saving precious resources sustainable development

    International Nuclear Information System (INIS)

    Ali, Z.

    2005-01-01

    At present, we are constructing houses and buildings without giving any consideration to consumption of resources at the time of construction and consumption of resources for the use of such houses or buildings. ; Although green is our color but we are doing little about green building. Time has now come to propagate Green Building Construction Concepts in order to save our precious resources. The paper deals with dire need of awareness about conservation of water, conservation of energy, use of local materials, use of natural materials, etc. (author)

  18. Exploiting flow Injection and sequential injection schemes for trace metal determinations by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    Determination of low or trace-level amounts of metals by electrothermal atomic absorption spectrometry (ETAAS) often requires the use of suitable preconcentration and/or separation procedures in order to attain the necessary sensitivity and selectivity. Such schemes are advantageously executed...... by superior performance and versatility. In fact, two approaches are conceivable: The analyte-loaded ion-exchange beads might either be transported directly into the graphite tube where they are pyrolized and the measurand is atomized and quantified; or the loaded beads can be eluted and the eluate forwarded...

  19. Material and Energy Flows Associated with Select Metals in GREET 2. Molybdenum, Platinum, Zinc, Nickel, Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, John L. [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this work, we analyzed the material and energy consumption from mining to production of molybdenum, platinum, zinc, and nickel. We also analyzed the production of solar- and semiconductor-grade silicon. We described new additions to and expansions of the data in GREET 2. In some cases, we used operating permits and sustainability reports to estimate the material and energy flows for molybdenum, platinum, and nickel, while for zinc and silicon we relied on information provided in the literature.

  20. “Slowing” and “Narrowing” the Flow of Metals for Consumer Goods: Evaluating Opportunities and Barriers

    Directory of Open Access Journals (Sweden)

    Elsa Dominish

    2018-04-01

    Full Text Available Metal resources are essential materials for many consumer products, including vehicles and a wide array of electrical and electronic goods. These metal resources often cause adverse social and environmental impacts from their extraction, supply and disposal, and it is therefore important to increase the sustainability of their production and use. A broad range of strategies and actions to improve the sustainability of resources are increasingly being discussed within the evolving concept of the circular economy. This paper uses this lens to evaluate the opportunities and barriers to improve the sustainability of metals in consumer products in Australia, with a focus on strategies that “slow” and “narrow” material flow loops. We have drawn on Allwood’s characterisation of material efficiency strategies, as they have the potential to reduce the total demand for metals. These strategies target the distribution, sale, and use of products, which have received less research attention compared to the sustainability of mining, production, and recycling, yet it is vitally important for changing patterns of consumption in a circular economy. Specifically, we have considered the strategies of product longevity (life extension, intensity of use, repair, and resale, remanufacturing, component reuse, and using less material for the same product or service (digitisation, servicisation, and light-weighting. Within the Australian context, this paper identifies the strategies that have the greatest opportunity to increase material efficiency for metal-containing products (such as mobility, household appliances, and personal electronics, by evaluating current implementation of these strategies and identifying the material, economic, and social barriers to and opportunities for expanding these strategies. We find that many of these strategies have been successfully implemented for mobility, while applying these strategies to personal electronics remains

  1. Metal contamination budget at the river basin scale: an original Flux-Flow Analysis (F2A for the Seine River

    Directory of Open Access Journals (Sweden)

    L. Lestel

    2007-11-01

    Full Text Available Material flow analysis and environmental contamination analysis are merged into a Flux-Flow analysis (F2A as illustrated for the metal circulation in the Seine River catchment. F2A combines about 30 metal flows in the anthroposphere (14 million people and/or metal fluxes in the environment (atmosphere, soils, and aquatic system originating from two dozens of sources. The nature and quality of data is very heterogeneous going from downscaled national economic statistics to upscaled daily environmental surveys.

    A triple integration is performed: space integration over the catchment (65 000 km2, time integration for the 1950–2000 trend analysed at 5 year resolution, and a conceptual integration resulting in two F2A indicators.

    Despite the various data sources an average metal circulation is established for the 1994–2003 period and illustrated for zinc: (i metal circulation in the anthroposphere is now two orders of magnitude higher than river outputs, (ii long term metal storage, and their potential leaks, in soils, wastedumps and structures is also orders of magnitude higher than present river fluxes. Trend analysis is made through two F2A indicators, the per capita excess load at the river outlet and the leakage ratio (excess fluxes/metal demand. From 1950 to 2000, they both show a ten fold improvement of metal recycling while the metal demand has increased by 2.5 to 5 for Cd, Cu, Cr, Pb and Zn, and the population by 50%.

  2. Various sizes of sliding event bursts in the plastic flow of metallic glasses based on a spatiotemporal dynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jingli, E-mail: renjl@zzu.edu.cn, E-mail: g.wang@shu.edu.cn; Chen, Cun [School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001 (China); Wang, Gang, E-mail: renjl@zzu.edu.cn, E-mail: g.wang@shu.edu.cn [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Cheung, Wing-Sum [Department of Mathematics, The University of HongKong, HongKong (China); Sun, Baoan; Mattern, Norbert [IFW-dresden, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany); Siegmund, Stefan [Department of Mathematics, TU Dresden, D-01062 Dresden (Germany); Eckert, Jürgen [IFW-dresden, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany); Institute of Materials Science, TU Dresden, D-01062 Dresden (Germany)

    2014-07-21

    This paper presents a spatiotemporal dynamic model based on the interaction between multiple shear bands in the plastic flow of metallic glasses during compressive deformation. Various sizes of sliding events burst in the plastic deformation as the generation of different scales of shear branches occurred; microscopic creep events and delocalized sliding events were analyzed based on the established model. This paper discusses the spatially uniform solutions and traveling wave solution. The phase space of the spatially uniform system applied in this study reflected the chaotic state of the system at a lower strain rate. Moreover, numerical simulation showed that the microscopic creep events were manifested at a lower strain rate, whereas the delocalized sliding events were manifested at a higher strain rate.

  3. Changes of the corrosion potential of iron in stagnation and flow conditions and their relationship with metal release.

    Science.gov (United States)

    Fabbricino, Massimiliano; Korshin, Gregory V

    2014-10-01

    This study examined the behavior of corrosion potential (Ecorr) of iron exposed to drinking water during episodes of stagnation and flow. These measurements showed that during stagnation episodes, Ecorr values decrease prominently and consistently. This decrease is initially rapid but it becomes slower as the stagnation time increases. During flow episodes, the Ecorr values increase and reach a quasi-steady state. Experiments with varying concentrations of dissolved oxygen showed that the decrease of Ecorr values characteristic for stagnation is likely to be associated with the consumption of dissolved oxygen by the exposed metal. The corrosion potential of iron and its changes during stagnation were sensitive to the concentrations of sulfate and chloride ions. Measurements of iron release showed that both the absolute values of Ecorr measured prior to or after stagnation episodes were well correlated with the logarithms of concentrations of total iron. The slope of this dependence showed that the observed correlations between Ecorr values and Fe concentrations corresponded to the coupling between the oxidant consumption and changes of Fe redox status. These results demonstrate that in situ Ecorr measurements can be a sensitive method with which to ascertain effects of hydrodynamic conditions and short-term variations of water chemistry on metal release and corrosion in drinking water. This approach is valuable practically because Ecorr measurements are precise, can be carried out in situ with any desired time resolution, do not affect the state of exposed surface in any extent and can be carried out with readily available equipment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effect of metallic walls on dynamos generated by laminar boundary-driven flow in a spherical domain.

    Science.gov (United States)

    Guervilly, Céline; Wood, Toby S; Brummell, Nicholas H

    2013-11-01

    We present a numerical study of dynamo action in a conducting fluid encased in a metallic spherical shell. Motions in the fluid are driven by differential rotation of the outer metallic shell, which we refer to as "the wall." The two hemispheres of the wall are held in counter-rotation, producing a steady, axisymmetric interior flow consisting of differential rotation and a two-cell meridional circulation with radial inflow in the equatorial plane. From previous studies, this type of flow is known to maintain a stationary equatorial dipole by dynamo action if the magnetic Reynolds number is larger than about 300 and if the outer boundary is electrically insulating. We vary independently the thickness, electrical conductivity, and magnetic permeability of the wall to determine their effect on the dynamo action. The main results are the following: (a) Increasing the conductivity of the wall hinders the dynamo by allowing eddy currents within the wall, which are induced by the relative motion of the equatorial dipole field and the wall. This processes can be viewed as a skin effect or, equivalently, as the tearing apart of the dipole by the differential rotation of the wall, to which the field lines are anchored by high conductivity. (b) Increasing the magnetic permeability of the wall favors dynamo action by constraining the magnetic field lines in the fluid to be normal to the wall, thereby decoupling the fluid from any induction in the wall. (c) Decreasing the wall thickness limits the amplitude of the eddy currents, and is therefore favorable for dynamo action, provided that the wall is thinner than the skin depth. We explicitly demonstrate these effects of the wall properties on the dynamo field by deriving an effective boundary condition in the limit of vanishing wall thickness.

  5. Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria.

    Science.gov (United States)

    Ju, Xiaohui; Igarashi, Kensuke; Miyashita, Shin-Ichi; Mitsuhashi, Hiroaki; Inagaki, Kazumi; Fujii, Shin-Ichiro; Sawada, Hitomi; Kuwabara, Tomohiko; Minoda, Ayumi

    2016-07-01

    The demand for precious metals has increased in recent years. However, low concentrations of precious metals dissolved in wastewater are yet to be recovered because of high operation costs and technical problems. The unicellular red alga, Galdieria sulphuraria, efficiently absorbs precious metals through biosorption. In this study, over 90% of gold and palladium could be selectively recovered from aqua regia-based metal wastewater by using G. sulphuraria. These metals were eluted from the cells into ammonium solutions containing 0.2M ammonium salts without other contaminating metals. The use of G. sulphuraria is an eco-friendly and cost-effective way of recovering low concentrations of gold and palladium discarded in metal wastewater. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. FLOW INJECTION ANALYSIS SYSTEM COUPLED WITH ICP-EOS FOR DETERMINATION OF SOME METALLIC ELEMENTS IN DRINKING WATER

    Directory of Open Access Journals (Sweden)

    Cristina Dinu

    2009-06-01

    Full Text Available The European Drinking Water Directive (98/83/EC, transposed in Romanian Legislation as Low 458/2002, amended by Low 311/2004, imposes the limit of concentration for metallic elements in water intended for human consumption. The toxic metals arsenic and selenium are among these elements and the limit value is 10 μg/L. In the paper there are presented the working conditions for determination of As and Se from drinking water using modern techniques based on the fl ow injection-hydride generation with the inductively coupled plasma atomic emission spectrometry (FIAS-ICP-EOS. The analyses were performed on Optima 5300 DV Perkin Elmer equipment with FIAS 400 Flow Injection System, Perkin Elmer type. For the hydride generation two types of solution were used: 10% (v/v HCl as a carrier solution and 0.2 % NaBH4 in 0.05%NaOH solution as a reducing agent [1]. The treatment step of the samples and standard solutions consisted in reducing with mixed solutions of KI and ascorbic acid in acidic condition (HCl for As and only with HCl and high temperature for Se [2,3]. The paper contains the characteristic parameters of the methods, such as: low detection limit, quantifi cation limit, repeatability, precision, recovery, which were evaluated using Certifi ed Reference Materials for each element.

  7. Silicosis prevalence and risk factors in semi-precious stone mining in Brazil.

    Science.gov (United States)

    Souza, Tamires P; Watte, Guilherme; Gusso, Alaíde M; Souza, Rafaela; Moreira, José da S; Knorst, Marli M

    2017-06-01

    Underground mining generates large amounts of dust and exposes workers to silica. This study aims to determine the prevalence and predictor factors for the development of silicosis among semi-precious-stone mineworkers in southern Brazil working in a self-administered cooperative. In a cross-sectional study of 348 current workers and retirees, demographic data, medical, and occupational history were collected through an interview performed by a nurse and medical record review. Risk factor associations were studied by Poisson multivariate regression. The overall prevalence of silicosis was 37%, while in current miners it was 28%. Several risk factors for silicosis were identified in the univariate analysis. Inadequate ventilation in the underground galleries combined with dry drilling, duration of silica exposure, and (inversely) education remained significant in the multivariate analysis (P < 0.05). This study is unusual in studying semi-precious stone mineworkers in a self-administered worker cooperative with limited resources. The prevalence of silicosis was very high. A number of recommendations are made-including technical support for worker cooperatives, surveillance of silica exposure and silicosis, exposure reduction measures, and benefits allowing impaired miners to leave the industry. © 2017 Wiley Periodicals, Inc.

  8. Experimental and numerical investigation of liquid-metal free-surface flows in spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Batta, A., E-mail: batta@kit.edu [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Class, A.G.; Litfin, K.; Wetzel, Th. [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Moreau, V.; Massidda, L. [CRS4 Centre for Advanced Studies, Research and Development in Sardinia, Polaris, Edificio 1, 09010 Pula, CA (Italy); Thomas, S.; Lakehal, D. [ASCOMP GmbH Zurich, Zurich (Switzerland); Angeli, D.; Losi, G. [DIEF – Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Mooney, K.G. [University of Massachusetts Amherst, Department of Mechanical and Industrial Engineering, Amherst (United States); Van Tichelen, K. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium)

    2015-08-15

    Highlights: • Experimental study of free surface for lead bismuth eutectic target. • Numerical investigation of free surface of a liquid metal target. • Advanced free surface modelling. - Abstract: Accelerator Driven Systems (ADS) are extensively investigated for the transmutation of high-level nuclear waste within many worldwide research programs. The first advanced design of an ADS system is currently developed in SCK• CEN, Mol, Belgium: the Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA). Many European research programs support the design of MYRRHA. In the framework of the Euratom project ‘Thermal Hydraulics of Innovative nuclear Systems (THINS)’ a liquid-metal free-surface experiment is performed at the Karlsruhe Liquid Metal Laboratory (KALLA) of Karlsruhe Institute of Technology (KIT). The experiment investigates a full-scale model of the concentric free-surface spallation target of MYRRHA using Lead Bismuth Eutectic (LBE) as coolant. In parallel, numerical free surface models are developed and tested which are reviewed in the article. A volume-of-fluid method, a moving mesh model, a free surface model combining the Level-Set method with Large-Eddy Simulation model and a smoothed-particle hydrodynamics approach are investigated. Verification of the tested models is based on the experimental results obtained within the THINS project and on previous water experiments performed at the University Catholic de Louvain (UCL) within the Euratom project ‘EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in Accelerator Driven System (EUROTRANS)’. The design of the target enables a high fluid velocity and a stable surface at the beam entry. The purpose of this paper is to present an overview of both experimental and numerical results obtained for free surface target characterization. Without entering in technical details, the status, the major achievements and lessons for the future with respect to

  9. Titanium recycling in the United States in 2004, chap. Y of Sibley, S.F., ed., Flow studies for recycling metal commodities in the United States

    Science.gov (United States)

    Goonan, Thomas G.

    2010-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the titanium metal fraction of the titanium economy, which generates and uses titanium metal scrap in its operations. Data for 2004 were selected to demonstrate the titanium flows associated with these operations. This report includes a description of titanium metal supply and demand in the United States to illustrate the extent of titanium recycling and to identify recycling trends. In 2004, U.S. apparent consumption of titanium metal (contained in various titanium-bearing products) was 45,000 metric tons (t) of titanium, which was distributed as follows: 25,000 t of titanium recovered as new scrap, 9,000 t of titanium as titanium metal and titanium alloy products delivered to the U.S. titanium products reservoir, 7,000 t of titanium consumed by steelmaking and other industries, and 4,000 t of titanium contained in unwrought and wrought products exported. Titanium recycling is concentrated within the titanium metals sector of the total titanium market. The titanium market is otherwise dominated by pigment (titanium oxide) products, which generate dissipative losses instead of recyclable scrap. In 2004, scrap (predominantly new scrap) was the source of roughly 54 percent of the titanium metal content of U.S.-produced titanium metal products.

  10. Visualization and measurement of gas-liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Saito, Y.; Hibiki, T.; Mishima, K.; Nishihara, H.; Yamamoto, A.; Kanda, K.; Tobita, Y.; Konishi, K.; Matsubayashi, M.

    1998-01-01

    In a core melt accident of a fast breeder reactor there is a possibility of boiling of fuel-steel mixture in the containment pool. In relation to safety evaluation on severe accident, it is indispensable to evaluate the recriticality of melted core. Gas-liquid two-phase flow with a large density difference is formed due to the boiling of fuel-steel mixture. Although the large density difference may affect the basic characteristics of two-phase flow, little work has been performed so far on two-phase flow with large density difference has not been performed well. In this study, visualization and void fraction measurement of gas-liquid metal two-phase flow were performed by using neutron radiography. The effect of the large density difference between gas and liquid phases on the basic flow characteristics of two-phase flow was clarified. (author)

  11. Single phase flow pressure drop and heat transfer in rectangular metallic microchannels

    International Nuclear Information System (INIS)

    Sahar, Amirah M.; Özdemir, Mehmed R.; Fayyadh, Ekhlas M.; Wissink, Jan; Mahmoud, Mohamed M.; Karayiannis, Tassos G.

    2016-01-01

    Numerical simulations were performed using Fluent 14.5 to investigate single phase flow and conjugate heat transfer in copper rectangular microchannels. Two different configurations were simulated: (1) single channel with hydraulic diameter of 0.561 mm and (2) multichannel configuration consisting of inlet and outlet manifolds and 25 channels with hydraulic diameter of 0.409 mm. In the single channel configuration, four numerical models were investigated namely, 2D thin-wall, 3D thin-wall (heated from the bottom), 3D thin-wall (three side heated) and 3D full conjugate models. In the multichannel configuration, only 3D full conjugate model was used. The simulation results of the single channel configuration were validated using experimental data of water as a test fluid while the results of the multichannel configuration were validated using experimental data of R134a refrigerant. In the multichannel configuration, flow distribution among the channels was also investigated. The 3D thin-wall model simulation was conducted at thermal boundary conditions similar to those assumed in the experimental data reduction (uniform heat flux) and showed excellent agreement with the experimental data. However, the results of the 3D full conjugate model demonstrated that there is a significant conjugate effect and the heat flux is not uniformly distributed along the channel resulting in significant deviation compared to the experimental data (more than 50%). Also, the results demonstrated that there is a significant difference between the 3D thin-wall and full conjugate models. The simulation of the multichannel configuration with an inlet manifold having gradual decrease in cross sectional area achieved very reasonable uniform flow distribution among the channels which will provide uniform heat transfer rates across the base of the microchannels.

  12. A theoretical study on the mechanism of hydrogen evolution on non-precious partially oxidized nickel-based heterostructures for fuel cells.

    Science.gov (United States)

    Pan, Xinju; Zhou, Gang

    2018-03-28

    It is desirable, yet challenging, to utilize non-precious metals instead of noble-metals as efficient catalysts in the renewable energy manufacturing industry. Using first principles calculations, we study the structural characteristics of partially oxidized nickel-based nanoheterostructures (NiO/Ni NHSs), and the interfacial effects on hydrogen evolution. The origin of the enhanced hydrogen evolution performance is discussed at the microscopic level. This study identifies two types of active sites of the exposed Ni surface available for the hydrogen evolution reaction (HER). One is the hcp-hollow sites near the perimeter boundary that exhibit a more excellent HER performance than platinum (Pt), and the other the second nearest neighbor fcc-hollow sites away from the boundary that exhibit a similar performance to Pt. The interfacial effects result from the competitive charge transfer between NiO and Ni surfaces in NHSs, and enhance the reactivity of NiO/Ni NHSs by shifting the d-states of surface atoms down in energy. The illumination of the mechanism would be helpful for the design of more efficient and cheap transition metal-based catalysts.

  13. Effect of gas flow on the selective area growth of gallium nitride via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Kasarla, K. R.; Korakakis, D.

    2007-08-01

    The effect of gas flow on the selective area growth (SAG) of gallium nitride (GaN) grown via metal organic vapor phase epitaxy (MOVPE) has been investigated. In this study, the SAG of GaN was carried out on a silicon dioxide striped pattern along the GaN direction. SAG was initiated with the striped pattern oriented parallel and normal to the incoming gas flow in a horizontal reactor. The orientation of the pattern did not impact cross section of the structure after re-growth as both orientations resulted in similar trapezoidal structures bounded by the (0 0 0 1) and {1 1 2¯ n} facets ( n≈1.7-2.2). However, the growth rates were shown to depend on the orientation of the pattern as the normally oriented samples exhibited enhanced vertical and cross-sectional growth rates compared to the parallel oriented samples. All growths occurred under identical conditions and therefore the difference in growth rates must be attributed to a difference in mass transport of species.

  14. Metal-Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries.

    Science.gov (United States)

    Li, Bin; Liu, Jian; Nie, Zimin; Wang, Wei; Reed, David; Liu, Jun; McGrail, Pete; Sprenkle, Vincent

    2016-07-13

    The new aqueous zinc-polyiodide redox flow battery (RFB) system with highly soluble active materials as well as ambipolar and bifunctional designs demonstrated significantly enhanced energy density, which shows great potential to reduce RFB cost. However, the poor kinetic reversibility and electrochemical activity of the redox reaction of I3(-)/I(-) couples on graphite felts (GFs) electrode can result in low energy efficiency. Two nanoporous metal-organic frameworks (MOFs), MIL-125-NH2 and UiO-66-CH3, that have high surface areas when introduced to GF surfaces accelerated the I3(-)/I(-) redox reaction. The flow cell with MOF-modified GFs serving as a positive electrode showed higher energy efficiency than the pristine GFs; increases of about 6.4% and 2.7% occurred at the current density of 30 mA/cm(2) for MIL-125-NH2 and UiO-66-CH3, respectively. Moreover, UiO-66-CH3 is more promising due to its excellent chemical stability in the weakly acidic electrolyte. This letter highlights a way for MOFs to be used in the field of RFBs.

  15. Recycling of spent noble metal catalysts with emphasis on pyrometallurgical processing

    Energy Technology Data Exchange (ETDEWEB)

    Hagelueken, C. [Degussa Huels AG, Hanau (Germany)

    1999-09-01

    Precious metal catalysts for catalytic Naphta Reforming, Isomerization, Hydrogenation and other chemical and petrochemical processes are valuable assets for oil refineries and chemical companies. At the end of the service life of a reactor load of catalyst, the efficient and reliable recovery of the precious metals contained in the catalyst is of paramount importance. More than 150 years of technological advances at Degussa-Huels have resulted in refining methods for all kinds of precious metal containing materials which guarantee an optimum technical yield of the precious metals included. The refining of catalysts today is one of the important activities in the precious metals business unit. In the state-of-the-art precious metal refinery at Hanau in the centre of Germany, a wide variety of processes for the recovery of all precious metals is offered. These processes include accurate preparation, sampling and analysis as well as both wet-chemical and pyrometallurgical recovery techniques. Special emphasis in this presentation is laid on the advantages of pyrometallurgical processes for certain kinds of catalysts. To avoid any risks during transport, sampling and treatment of the spent catalyst, all parties involved in the recycling chain strictly have to follow the relevant safety regulations. Under its commitment to 'Responsible Care' standard procedures have been developed which include pre-shipment samples, safety data sheets/questionnaires and inspection of spent catalysts. These measures not only support a safe and environmentally sound catalyst recycling but also enable to determine the most suitable and economic recovery process - for the benefit of the customer. (orig.)

  16. Heavy Metal Contamination in the Surface Layer of Bottom Sediments in a Flow-Through Lake: A Case Study of Lake Symsar in Northern Poland

    Directory of Open Access Journals (Sweden)

    Angela Kuriata-Potasznik

    2016-08-01

    Full Text Available River-lake systems most often behave as hydrographic units, which undergo complex interactions, especially in the contact zone. One such interaction pertains to the role of a river in the dispersal of trace elements carried into and out of a lake. In this study, we aimed to assess the impact of rivers on the accumulation of heavy metals in bottom sediments of natural lakes comprised in postglacial river-lake systems. The results showed that a river flowing through a lake is a key factor responsible for the input of the majority of available fraction of heavy metals (Zn, Mn, Cd and Ni into the water body and for their accumulation along the flow of river water in the lake. The origin of other accumulated elements were the linear and point sources in catchments. In turn, the Pb content was associated with the location of roads in the direct catchment, while the sediment structure (especially size of fraction and density could have affected the accumulation of Cr and Zn, which indicated correlations between these metals and fine fraction. Our results suggest that lakes act as filters and contribute to the self-purification of water that flows through them. As a result, the content of most metals in lake sediments showed a decrease by approx. 75% between the upstream (inflow and downstream (outflow sections. The increased content of two metals only, such as chromium and cadmium (higher by 2.0 and 2.5 times, respectively, after passing through the lake, was due to the correlation of the metals with fine sand. Both the content and distribution pattern of heavy metals in lake sediments are indicative of the natural response of aquatic ecosystems to environmental stressors, such as pollutant import with river water or climate change. The complex elements creating the water ecosystem of each lake can counteract stress by temporarily removing pollutants such as toxic metals form circulation and depositing them mostly around the delta.

  17. Mathematical Modeling of the Concentrated Energy Flow Effect on Metallic Materials

    Directory of Open Access Journals (Sweden)

    Sergey Konovalov

    2016-12-01

    Full Text Available Numerous processes take place in materials under the action of concentrated energy flows. The most important ones include heating together with the temperature misdistribution throughout the depth, probable vaporization on the surface layer, melting to a definite depth, and hydrodynamic flotation; generation of thermo-elastic waves; dissolution of heterogeneous matrix particles; and formation of nanolayers. The heat-based model is presented in an enthalpy statement involving changes in the boundary conditions, which makes it possible to consider melting and vaporization on the material surface. As a result, a linear dependence of penetration depth vs. energy density has been derived. The model of thermo-elastic wave generation is based on the system of equations on the uncoupled one-dimensional problem of dynamic thermo-elasticity for a layer with the finite thickness. This problem was solved analytically by the symbolic method. It has been revealed for the first time that the generated stress pulse comprises tension and compression zones, which are caused by increases and decreases in temperature on the boundary. The dissolution of alloying elements is modeled on the example of a titanium-carbon system in the process of electron beam action. The mathematical model is proposed to describe it, and a procedure is suggested to solve the problem of carbon distribution in titanium carbide and liquid titanium-carbide solution in terms of the state diagram and temperature changes caused by phase transitions. Carbon concentration vs. spatial values were calculated for various points of time at diverse initial temperatures of the cell. The dependence of carbon particle dissolution on initial temperature and radius of the particle were derived. A hydrodynamic model based on the evolution of Kelvin-Helmholtz instability in shear viscous flows has been proposed to specify the formation of nanostructures in materials subjected to the action of concentrated

  18. Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials

    Science.gov (United States)

    Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias; Hager, Martin D.

    2016-01-01

    Abstract Research on redox‐flow batteries (RFBs) is currently experiencing a significant upturn, stimulated by the growing need to store increasing quantities of sustainably generated electrical energy. RFBs are promising candidates for the creation of smart grids, particularly when combined with photovoltaics and wind farms. To achieve the goal of “green”, safe, and cost‐efficient energy storage, research has shifted from metal‐based materials to organic active materials in recent years. This Review presents an overview of various flow‐battery systems. Relevant studies concerning their history are discussed as well as their development over the last few years from the classical inorganic, to organic/inorganic, to RFBs with organic redox‐active cathode and anode materials. Available technologies are analyzed in terms of their technical, economic, and environmental aspects; the advantages and limitations of these systems are also discussed. Further technological challenges and prospective research possibilities are highlighted. PMID:28070964

  19. Benchmark exercise for fluid flow simulations in a liquid metal fast reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Merzari, E., E-mail: emerzari@anl.gov [Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States); Fischer, P. [Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States); Yuan, H. [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL (United States); Van Tichelen, K.; Keijers, S. [SCK-CEN, Boeretang 200, Mol (Belgium); De Ridder, J.; Degroote, J.; Vierendeels, J. [Ghent University, Ghent (Belgium); Doolaard, H.; Gopala, V.R.; Roelofs, F. [NRG, Petten (Netherlands)

    2016-03-15

    Highlights: • A EUROTAM-US INERI consortium has performed a benchmark exercise related to fast reactor assembly simulations. • LES calculations for a wire-wrapped rod bundle are compared with RANS calculations. • Results show good agreement for velocity and cross flows. - Abstract: As part of a U.S. Department of Energy International Nuclear Energy Research Initiative (I-NERI), Argonne National Laboratory (Argonne) is collaborating with the Dutch Nuclear Research and consultancy Group (NRG), the Belgian Nuclear Research Centre (SCK·CEN), and Ghent University (UGent) in Belgium to perform and compare a series of fuel-pin-bundle calculations representative of a fast reactor core. A wire-wrapped fuel bundle is a complex configuration for which little data is available for verification and validation of new simulation tools. UGent and NRG performed their simulations with commercially available computational fluid dynamics (CFD) codes. The high-fidelity Argonne large-eddy simulations were performed with Nek5000, used for CFD in the Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) suite. SHARP is a versatile tool that is being developed to model the core of a wide variety of reactor types under various scenarios. It is intended both to serve as a surrogate for physical experiments and to provide insight into experimental results. Comparison of the results obtained by the different participants with the reference Nek5000 results shows good agreement, especially for the cross-flow data. The comparison also helps highlight issues with current modeling approaches. The results of the study will be valuable in the design and licensing process of MYRRHA, a flexible fast research reactor under design at SCK·CEN that features wire-wrapped fuel bundles cooled by lead-bismuth eutectic.

  20. Habitat Evaluation Procedures (HEP) Report; Precious Lands Wildlife Management Area, Technical Report 2000-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Kozusko, Shana

    2003-12-01

    The Nez Perce Tribe (NPT) currently manages a 15,325 acre parcel of land known as the Precious Lands Wildlife Management Area that was purchased as mitigation for losses incurred by construction of the four lower Snake River dams. The Management Area is located in northern Wallowa County, Oregon and southern Asotin County, Washington (Figure 1). It is divided into three management parcels--the Buford parcel is located on Buford Creek and straddles the WA-OR state line, and the Tamarack and Basin parcels are contiguous to each other and located between the Joseph Creek and Cottonwood Creek drainages in Wallowa County, OR. The project was developed under the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L. 96-501), with funding from the Bonneville Power Administration (BPA). The acreage protected under this contract will be credited to BPA as habitat permanently dedicated to wildlife and wildlife mitigation. A modeling strategy known as Habitat Evaluation Procedure (HEP) was developed by the U.S. Fish and Wildlife Service and adopted by BPA as a habitat equivalency accounting system. Nine wildlife species models were used to evaluate distinct cover type features and provide a measure of habitat quality. Models measure a wide range of life requisite variables for each species and monitor overall trends in vegetation community health and diversity. One product of HEP is an evaluation of habitat quality expressed in Habitat Units (HUs). This HU accounting system is used to determine the amount of credit BPA receives for mitigation lands. After construction of the four lower Snake River dams, a HEP loss assessment was conducted to determine how many Habitat Units were inundated behind the dams. Twelve target species were used in that evaluation: Canada goose, mallard, river otter, downy woodpecker, song sparrow, yellow warbler, marsh wren, western meadowlark, chukar, ring-necked pheasant, California quail, and mule deer. The U.S. Army Corp of

  1. Interaction of ozone with plastic and metallic materials in a dynamic flow system

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P; Wartburg, A F

    1961-01-01

    The loss of ozone in the p.p.h.m. range after passing through or over various plastic and metallic substances has been investigated. The materials used include Teflon, glass, stainless steel, aluminium, polyethylene and polyvinyl tubing, Mylar film, and aluminium foil. Unused Teflon passes ozone without loss. Glass tubing, after a short exposure to ozone, passes ozone without loss. Stainless steel tubing, aluminum tubing or foil and Mylar film must be exposed to ozone in the p.p.h.m. range for several hours before 90% or more of the ozone initially present can be passed through or over these materials. More rapid conditioning to ozone can be achieved by several five to fifteen-minute exposures to about 10 p.p.m. of ozone. Polyethylene and Nalgon tubing even after many hours of exposure to ozone will pass only 75 to 80% of the ozone initially present in the gas stream. Some types of polyvinyl tubing are unsatisfactory for use with ozone irrespective of the amount of exposure to ozone. Flowrates below 1000 c/sup 3//min. will increase losses of ozone. Except for Teflon and glass, materials should not be used in ozone analysis under any circumstances at low flowrates until they are thoroughly conditioned. Results obtained with stainless steel, aluminium and polyethylene indicate that conditioning to ozone once obtained will persist for at least two weeks.

  2. Molecular Basis for Electron Flow Within Metal-and Electrode-Reducing Biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Daniel R. [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-11-01

    Electrochemical, spectral, genetic, and biochemical techniques were developed to reveal that a diverse suite of redox proteins and structural macromolecules outside the cell work together to move electrons long distances between Geobacter cells to metals and electrodes. In this project, we greatly expanded the known participants in the electron transfer pathway of Geobacter. For example, in addition to well-studied pili, polysaccharides contribute to anchoring, different cytochromes are required under different conditions, strategies change with redox potential, and the localization of these components can change depending on where cells are located in a biofilm. By inventing new electrodes compatible with real-time spectral measurements, we were able to visualize the redox status of biofilms in action, leading to a hypothesis that long-distance electron transfer is ultimately limiting in these systems and redox potentials change within biofilms. The goals of this project were met, as we were able to 1) identify new elements crucial to the expression, assembly and function of the extracellular electron transfer phenotype 2) expand spectral and electrochemical techniques to define the mechanism and route of electron transfer through the matrix, and 3) combine this knowledge to build the next generation of genetic tools for study of this complex process.

  3. On the relation between the ratio of energy of vaporization to activation energy for flow and physical properties of liquid metals

    International Nuclear Information System (INIS)

    Dutt, N.V.K.; Ravikumar, Y.V.L.; Prasad, D.H.L.

    1993-01-01

    A relation between the ratio of energy of vaporization (Esub(vap) to the activation energy for flow (Esub(vis)) and the ratio of melting point (T m ) to the critical temperature (T c ) has been developed for liquid metals, and is shown to be superior to the examinations from Eyring theory. (author). 12 refs

  4. Simplified computational simulation of liquid metal behaviour in turbulent flow with heat transfer; Simulacao computacional simplificada do comportamento de metais liquidos em escoamento turbulento com transferencia de calor

    Energy Technology Data Exchange (ETDEWEB)

    Costa, E.B. da

    1992-09-01

    The present work selected the available bibliography equations and empirical relationships to the development of a computer code to obtain the turbulent velocity and temperature profiles in liquid metal tube flow with heat generation. The computer code is applied to a standard problem and the results are considered satisfactory, at least from the viewpoint of qualitative behaviour. (author). 50 refs, 21 figs, 3 tabs.

  5. Chaotic state to self-organized critical state transition of serrated flow dynamics during brittle-to-ductile transition in metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Wang, W. H.; Bai, H. Y., E-mail: hybai@aphy.iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, B. A. [Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon (Hong Kong)

    2016-02-07

    We study serrated flow dynamics during brittle-to-ductile transition induced by tuning the sample aspect ratio in a Zr-based metallic glass. The statistical analysis reveals that the serrated flow dynamics transforms from a chaotic state characterized by Gaussian-distribution serrations corresponding to stick-slip motion of randomly generated and uncorrelated single shear band and brittle behavior, into a self-organized critical state featured by intermittent scale-free distribution of shear avalanches corresponding to a collective motion of multiple shear bands and ductile behavior. The correlation found between serrated flow dynamics and plastic deformation might shed light on the plastic deformation dynamic and mechanism in metallic glasses.

  6. Investigating the synthesis of ligated metal clusters in solution using a flow reactor and electrospray ionization mass spectrometry.

    Science.gov (United States)

    Olivares, Astrid; Laskin, Julia; Johnson, Grant E

    2014-09-18

    The scalable synthesis of ligated subnanometer metal clusters containing an exact number of atoms is of interest due to the highly size-dependent catalytic, electronic, and optical properties of these species. While significant research has been conducted on the batch preparation of clusters through reduction synthesis in solution, the processes of metal complex reduction as well as cluster nucleation, growth, and postreduction etching are still not well understood. Herein, we demonstrate a prototype temperature-controlled flow reactor for qualitatively studying cluster formation in solution at steady-state conditions. Employing this technique, methanol solutions of a chloro(triphenylphosphine)gold precursor, 1,4-bis(diphenylphosphino)butane capping ligand, and borane-tert-butylamine reducing agent were combined in a mixing tee and introduced into a heated capillary with a known length. In this manner, the temperature dependence of the relative abundance of different ionic reactants, intermediates, and products synthesized in real time was characterized qualitatively using online mass spectrometry. A wide distribution of doubly and triply charged cationic gold clusters was observed as well as smaller singly charged organometallic complexes. The results demonstrate that temperature plays a crucial role in determining the relative population of cationic gold clusters and, in general, that higher temperature promotes the formation of doubly charged clusters and singly charged organometallic complexes while reducing the abundance of triply charged species. Moreover, the distribution of clusters observed at elevated temperatures is found to be consistent with that obtained at longer reaction times at room temperature, thereby demonstrating that heating may be used to access cluster distributions characteristic of different stages of batch reduction synthesis in solution.

  7. Supply and demand of some critical metals and present status of their recycling in WEEE.

    Science.gov (United States)

    Zhang, Shengen; Ding, Yunji; Liu, Bo; Chang, Chein-Chi

    2017-07-01

    New development and technological innovations make electrical and electronic equipment (EEE) more functional by using an increasing number of metals, particularly the critical metals (e.g. rare and precious metals) with specialized properties. As millions of people in emerging economies adopt a modern lifestyle, the demand for critical metals is soaring. However, the increasing demand causes the crisis of their supply because of their simple deficiency in the Earth's crust or geopolitical constraints which might create political issues for their supply. This paper focuses on the sustainable supply of typical critical metals (indium, rare earth elements (REEs), lithium, cobalt and precious metals) through recycling waste electrical and electronic equipment (WEEE). To illuminate this issue, the production, consumption, expected future demand, current recycling situation of critical metals, WEEE management and their recycling have been reviewed. We find that the demand of indium, REEs, lithium and cobalt in EEE will continuously increasing, while precious metals are decreasing because of new substitutions with less or even without precious metals. Although the generation of WEEE in 2014 was about 41.9 million tons (Mt), just about 15% (6.5 Mt) was treated environmentally. The inefficient collection of WEEE is the main obstacle to relieving the supply risk of critical metals. Furthermore, due to the widespread use in low concentrations, such as indium, their recycling is not just technological problem, but economic feasibility is. Finally, relevant recommendations are point out to address these issues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    Science.gov (United States)

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.

  9. Role of riverine colloids in macronutrient and metal partitioning and transport, along an upland–lowland land-use continuum, under low-flow conditions

    International Nuclear Information System (INIS)

    Jarvie, H.P.; Neal, C.; Rowland, A.P.; Neal, M.; Morris, P.N.; Lead, J.R.; Lawlor, A.J.; Woods, C.; Vincent, C.; Guyatt, H.; Hockenhull, K.

    2012-01-01

    An assessment is made of the role of riverine colloids in macronutrient (nitrogen, phosphorus and carbon), metal and trace element partitioning and transport, for five rivers in the Ribble and Wyre catchments in north-western England, under baseflow/near-baseflow conditions. Cross-flow ultrafiltration was used to separate colloidal ( 1 kDa) and truly dissolved ( 0.45 μm, suspended) fractions. Of these operationally-defined fractions measured, colloids were generally more important for both macronutrient and metal transport in the upland than in the lowland rivers. The results suggest that organic moieties in truly dissolved form from sewage effluent may have a greater capacity to chelate metals. Organic-rich colloids in the upland moorlands and metal oxide colloidal precipitates in the industrial rivers had a higher capacity for binding metals than the colloidal fractions in the urban and agricultural lowland rivers. Aggregation of these colloids may provide an important mechanism for formation of larger suspended particulates, accounting for a higher degree of metal enrichment in the acid-available particulate fractions of the upland moorland and lowland industrial rivers, than in the lowland agricultural and urban rivers. This mechanism of transfer of contaminants to larger aggregates via colloidal intermediates, known as ‘colloidal pumping’ may also provide a mechanism for particulate P formation and the high proportion of P being transported in the particulate fraction in the uplands. The cross-flow ultrafiltration data also allowed refinement of partition coefficients, by accounting for colloids within the solids phase and replacing the filtered (< 0.45 μm) fraction with the truly dissolved (< 1 kDa) concentrations. These provided a clearer description of the controls on metal and P partitioning along the upland-lowland continuum. -- Highlights: ► Using cross-flow ultrafiltration, we assess the role of colloids in macronutrient and metal partitioning

  10. Life Is Precious: Views of Adolescents and Their Mothers on Methods to Reduce Suicidal Behavior in Latinas

    Science.gov (United States)

    Humensky, Jennifer L.; Gil, Rosa M.; Mazzula, Silvia; Diaz, Samantha; Lewis-Fernández, Roberto

    2017-01-01

    Life is Precious (LIP) was developed to help reduce suicidal behavior in Latina adolescents. As part of an external evaluation of the LIP program, we conducted focus groups with adolescent participants and mothers to learn whether participants and families believe that the activities of LIP address risks for suicidal behavior. Four focus groups…

  11. Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal-Organic Frameworks for Batch and Flow Reactions.

    Science.gov (United States)

    Chen, Xu; Jiang, Hong; Hou, Bang; Gong, Wei; Liu, Yan; Cui, Yong

    2017-09-27

    A key challenge in heterogeneous catalysis is the design and synthesis of heterogeneous catalysts featuring high catalytic activity, selectivity, and recyclability. Here we demonstrate that high-performance heterogeneous asymmetric catalysts can be engineered from a metal-organic framework (MOF) platform by using a ligand design strategy. Three porous chiral MOFs with the framework formula [Mn 2 L(H 2 O) 2 ] are prepared from enantiopure phosphono-carboxylate ligands of 1,1'-biphenol that are functionalized with 3,5-bis(trifluoromethyl)-, bismethyl-, and bisfluoro-phenyl substituents at the 3,3'-position. For the first time, we show that not only chemical stability but also catalytic activity and stereoselectivity of the MOFs can be tuned by modifying the ligand structures. Particularly, the MOF incorporated with -CF 3 groups on the pore walls exhibits enhanced tolerance to water, weak acid, and base compared with the MOFs with -F and -Me groups. Under both batch and flow reaction systems, the CF 3 -containing MOF demonstrated excellent reactivity, selectivity, and recyclability, affording high yields and enantioselectivities for alkylations of indoles and pyrrole with a range of ketoesters or nitroalkenes. In contrast, the corresponding homogeneous catalysts gave low enantioselectivity in catalyzing the tested reactions.

  12. Imbalance of the liquid-metal flow and heat extraction in a manifold with sub-channels having locally different eletric conductivity

    International Nuclear Information System (INIS)

    Luo, Yang; Wen, Meimei; Kim, Chang Nyung; Yang, Shangjing

    2017-01-01

    In this study, the characteristics of liquid metal (LM) magnetohydrodynamic (MHD) flow and convective heat transfer in a manifold with three sub-channels having locally different electric conductivity are investigated with the use of commercial code CFX, allowing an imbalance in flow rate among the sub-channels, which can be used for intensive cooling of the region with higher heat load in the blanket. In a manifold with co-flow multiple sub-channels, the electrical current can cross the fluid regions and channel walls, thus influencing the flow distribution in each sub-channel. In the present study, cases with various arrangements of the electric conductivity in different parts of the channel walls are investigated, yielding different distributions of the current and fluid flow in different cases. Here, the mechanism governing the imbalance in mass flow rate among the sub-channels is discussed. The interdependency of the fluid velocity, current and electric potential of LM MHD flows in the three sub-channels are analyzed in detail. The results show that, in the sub-channel surrounded by the walls with lower electric conductivity, higher axial velocity and superior heat extraction can be obtained, with an effective cooling associated with higher velocity, where the higher velocity is closely related to the distribution of the electromotive component of the current in the flow field.

  13. Imbalance of the liquid-metal flow and heat extraction in a manifold with sub-channels having locally different eletric conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yang; Wen, Meimei [Department of Mechanical Engineering, Graduate School, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of); Kim, Chang Nyung, E-mail: cnkim@khu.ac.kr [Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of); Yang, Shangjing [Department of Mechanical Engineering, Graduate School, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of)

    2017-04-15

    In this study, the characteristics of liquid metal (LM) magnetohydrodynamic (MHD) flow and convective heat transfer in a manifold with three sub-channels having locally different electric conductivity are investigated with the use of commercial code CFX, allowing an imbalance in flow rate among the sub-channels, which can be used for intensive cooling of the region with higher heat load in the blanket. In a manifold with co-flow multiple sub-channels, the electrical current can cross the fluid regions and channel walls, thus influencing the flow distribution in each sub-channel. In the present study, cases with various arrangements of the electric conductivity in different parts of the channel walls are investigated, yielding different distributions of the current and fluid flow in different cases. Here, the mechanism governing the imbalance in mass flow rate among the sub-channels is discussed. The interdependency of the fluid velocity, current and electric potential of LM MHD flows in the three sub-channels are analyzed in detail. The results show that, in the sub-channel surrounded by the walls with lower electric conductivity, higher axial velocity and superior heat extraction can be obtained, with an effective cooling associated with higher velocity, where the higher velocity is closely related to the distribution of the electromotive component of the current in the flow field.

  14. Elemental analyses of goundwater: demonstrated advantage of low-flow sampling and trace-metal clean techniques over standard techniques

    Science.gov (United States)

    Creasey, C. L.; Flegal, A. R.

    The combined use of both (1) low-flow purging and sampling and (2) trace-metal clean techniques provides more representative measurements of trace-element concentrations in groundwater than results derived with standard techniques. The use of low-flow purging and sampling provides relatively undisturbed groundwater samples that are more representative of in situ conditions, and the use of trace-element clean techniques limits the inadvertent introduction of contaminants during sampling, storage, and analysis. When these techniques are applied, resultant trace-element concentrations are likely to be markedly lower than results based on standard sampling techniques. In a comparison of data derived from contaminated and control groundwater wells at a site in California, USA, trace-element concentrations from this study were 2-1000 times lower than those determined by the conventional techniques used in sampling of the same wells prior to (5months) and subsequent to (1month) the collections for this study. Specifically, the cadmium and chromium concentrations derived using standard sampling techniques exceed the California Maximum Contaminant Levels (MCL), whereas in this investigation concentrations of both of those elements are substantially below their MCLs. Consequently, the combined use of low-flow and trace-metal clean techniques may preclude erroneous reports of trace-element contamination in groundwater. Résumé L'utilisation simultanée de la purge et de l'échantillonnage à faible débit et des techniques sans traces de métaux permet d'obtenir des mesures de concentrations en éléments en traces dans les eaux souterraines plus représentatives que les résultats fournis par les techniques classiques. L'utilisation de la purge et de l'échantillonnage à faible débit donne des échantillons d'eau souterraine relativement peu perturbés qui sont plus représentatifs des conditions in situ, et le recours aux techniques sans éléments en traces limite l

  15. Discharge on boiling in a channel: effect of channel geometry on the performance characteristics of determining metals in a liquid flow by atomic emission spectrometry

    International Nuclear Information System (INIS)

    Zuev, B.K.; Yagov, V.V.; Grachev, A.S.

    2006-01-01

    Discharge on boiling in a channel was studied as a new atomization and excitation source for spectrochemical analysis in a flow of electrolyte solutions. The discharge arises between the liquid walls of a vapor lock formed in the channel of a dielectric membrane because of the rapid Joule heating of the liquid in the channel. The effect of channel geometry on the reproducibility of the integrated light intensity was studied. The background radiation spectrum was measured over the range 220-900 nm, and the possibility of determining alkali and alkaline earth metals in a flow was studied. The parameters of linear calibration equations and the detection limits for these metals are given [ru

  16. A case in support of implementing innovative bio-processes in the metal mining industry

    NARCIS (Netherlands)

    Sanchez Andrea, I.; Stams, A.J.M.; Weijma, J.; Gonzalez Contreras, P.A.; Dijkman, H.; Rozendal, R.A.; Johnson, D.B.

    2016-01-01

    The metal mining industry faces many large challenges in future years, among which is the increasing need to process low-grade ores as accessible higher grade ores become depleted. This is against a backdrop of increasing global demands for base and precious metals, and rare earth elements.

  17. Separating and recycling metals from mixed metallic particles of crushed electronic wastes by vacuum metallurgy.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2009-09-15

    During the treatment of electronic wastes, a crushing process is usually used to strip metals from various base plates. Several methods have been applied to separate metals from nonmetals. However, mixed metallic particles obtained from these processes are still a mixture of various metals, including some toxic heavy metals such as lead and cadmium. With emphasis on recovering copper and other precious metals, there have hitherto been no satisfactory methods to recover these toxic metals. In this paper, the criterion of separating metals from mixed metallic particles by vacuum metallurgy is built. The results show that the metals with high vapor pressure have been almost recovered completely, leading to a considerable reduction of environmental pollution. In addition, the purity of copper in mixed particles has been improved from about 80 wt % to over 98 wt %.

  18. The electrochemical behaviour of various non-precious Ni and Co based alloys in artificial saliva

    Directory of Open Access Journals (Sweden)

    Mareci D.

    2005-07-01

    Full Text Available Five non-precious Ni-Co based alloys were analyzed with respect to their corrosion behaviour. The correlation between the amount of the elements Cr, Mo, V and the corrosion behaviour, expressed by the PREN (pitting resistance equivalent number index in the case of the allied steels, was extended for Ni-Cr and Co-Cr dental alloys characterization. Open circuit potential, corrosion current densities, as a measure of the corrosion rate, and main parameters of the corrosion process were evaluated from linear and cyclic polarization curves, for five Ni-Cr or Co-Cr alloys in an Afnor type artificial saliva. The maintenance times of the alloy in the corrosive medium influence the corrosion rate; the corrosion current values decrease with the maintenance time due to their passivation in solution. The microscopic analysis of the alloy surfaces shows that this passivation in solution does not modify the corrosion type. The alloys with PREN 32.9 are susceptible of localized corrosion.

  19. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability

    Science.gov (United States)

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N.; Singh, Devendra P.

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet. PMID:27148218

  20. [Rapid multi-elemental analysis on four precious Tibetan medicines based on LIBS technique].

    Science.gov (United States)

    Liu, Xiao-na; Shi, Xin-yuan; Jia, Shuai-yun; Zhao, Na; Wu, Zhi-sheng; Qiao, Yan-jiang

    2015-06-01

    The laser-induced breakdown spectroscopy (LIBS) was applied to perform a qualitative elementary analysis on four precious Tibetan medicines, i. e. Renqing Mangjue, Renqing Changjue, 25-herb coral pills and 25-herb pearl pills. The specific spectra of the four Tibetan medicines were established. In the experiment, Nd: YAG and 1 064 nm-baseband pulse laser were adopted to collect the spectra. A laser beam focused on the surface of the samples to generate plasma. Its spectral signal was detected by using spectrograph. Based on the National Institute of Standard and Technology (NIST) database, LIBS spectral lines were indentified. The four Tibetan medicines mainly included Ca, Na, K, Mg and other elements and C-N molecular band. Specifically, Fe was detected in Renqing Changjue and 25-herb pearl pills; heavy mental elements Hg and Cu were shown in Renqing Mangjue and Renqing Changjue; Ag was found in Renqing Changjue. The results demonstrated that LIBS is a reliable and rapid multi-element analysis on the four Tibetan medicines. With Real-time, rapid and nondestructive advantages, LIBS has a wide application prospect in the element analysis on ethnic medicines.

  1. PREMATH: a Precious-Material Holdup Estimator for unit operations and chemical processes

    International Nuclear Information System (INIS)

    Krichinsky, A.M.; Bruns, D.D.

    1982-01-01

    A computer program, PREMATH (Precious Material Holdup Estimator), has been developed to permit inventory estimation in vessels involved in unit operations and chemical processes. This program has been implemented in an operating nuclear fuel processing plant. PREMATH's purpose is to provide steady-state composition estimates for material residing in process vessels until representative samples can be obtained and chemical analyses can be performed. Since these compositions are used for inventory estimation, the results are determined for and cataloged in container-oriented files. The estimated compositions represent material collected in applicable vessels - including consideration for material previously acknowledged in these vessels. The program utilizes process measurements and simple material balance models to estimate material holdups and distribution within unit operations. During simulated run testing, PREMATH-estimated inventories typically produced material balances within 7% of the associated measured material balances for uranium and within 16% of the associated, measured material balances for thorium (a less valuable material than uranium) during steady-state process operation

  2. Challenges of metal recycling and an international covenant as possible instrument of a globally extended producer responsibility.

    Science.gov (United States)

    Wilts, Hennning; Bringezu, Stefan; Bleischwitz, Raimund; Lucas, Rainer; Wittmer, Dominic

    2011-09-01

    As illustrated by the case studies of end-of-life vehicles and waste electric and electronic equipment, the approach of an extended producer responsibility is undermined by the exports of used and waste products. This fact causes severe deficits regarding circular flows, especially of critical raw materials such as platinum group metals. With regard to global recycling there seems to be a responsibility gap which leads somehow to open ends of waste flows and a loss or down-cycling of potential secondary resources. Existing product-orientated extended producer responsibility (EPR) approaches with mass-based recycling quotas do not create adequate incentives to supply waste materials containing precious metals to a high-quality recycling and should be amended by aspects of a material stewardship. The paper analyses incentive effects on EPR for the mentioned product groups and metals, resulting from existing regulations in Germany. It develops a proposal for an international covenant on metal recycling as a policy instrument for a governance-oriented framework to initiate systemic innovations along the complete value chain taking into account product group- and resource group-specific aspects on different spatial levels. It aims at the effective implementation of a central idea of EPR, the transition of a waste regime still focusing on safe disposal towards a sustainable management of resources for the complete lifecycle of products.

  3. Visualization and measurement of gas-liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.; Saito, Y.; Nishihara, H.; Tobita, Y.; Konishi, K.; Matsubayashi, M.

    1999-01-01

    In a core melt accident of a fast breeder reactor, there is a possibility of boiling of the fuel-steel mixture in the containment pool. In relation to safety evaluation on severe accident, it is indispensable to evaluate the possibility of re-criticality of melted core. Gas-liquid two-phase flow with a large liquid-to-gas density ratio is formed due to the boiling of fuel-steel mixture. Although it is anticipated that the large density ratio may affect the basic characteristics of two-phase flow, little work has been performed so far on two-phase flow with a large liquid-to-gas density ratio. In this study, visualization and void fraction measurement of gas-liquid metal two-phase flow were performed by using neutron radiography and image processing techniques. Then, the effect of large density difference between gas and liquid phases on the basic flow characteristics of two-phase flow was clarified

  4. Ornamental Stones and Gemstones: The limits of heritage stone designation: The case for and against Australian Precious Opal

    Science.gov (United States)

    Cooper, Barry

    2015-04-01

    When the international designation of natural stone types was first mooted in 2007, stones that were utilised in building and construction were the primary focus of attention. However following public discussion it soon became apparent that sculptural stones, stone used for utilitarian purposes such as millstones, as well as archaeological materials including stones used by early man could all be positively assessed as a potential Global Heritage Stone Resource (GHSR). Over the past 2 years it has been realised there is also a range of ornamental and semi-precious stones that may also be considered in the same international context. Examples in this respect include Imperial Porphyry sourced from Egypt that was much prized in the ancient world and "Derbyshire Blue John" a variety of fluorspar from central England that was used for vases, chalices, urns, candle sticks, jars, bowls door, jewellery and fire-place surrounds, especially in the 18th and 19th centuries. It is at this point that rock materials, sometimes used as gemstones, impinge on the domain of typical heritage stones. In Australia, the gemstone most identifiable with the country is precious opal formed by sedimentary processes in the Great Artesian Basin. In this paper the question is asked whether "Australian Precious Opal" could be or should be considered as a heritage stone of international significance. Immediately Australian Precious Opal satisfies several GHSR criteria including historic use for more than 50 years and wide-ranging utilisation for prestige jewellery around the world. It is also recognised as a cultural icon including association with national identity in Australia as it is legally defined as Australia's "National Gemstone" as well as being the "Gemstone Emblem" for the State of South Australia. Opal continues to be mined. Designation of Australian Precious Opal as a Global Heritage Stone Resource would likely involve formal international recognition of Australian opal in the

  5. Role of riverine colloids in macronutrient and metal partitioning and transport, along an upland-lowland land-use continuum, under low-flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jarvie, H.P., E-mail: hpj@ceh.ac.uk [Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, OX10 8BB (United Kingdom); Neal, C. [Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, OX10 8BB (United Kingdom); Rowland, A.P. [Centre for Ecology and Hydrology, Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Neal, M.; Morris, P.N. [Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, OX10 8BB (United Kingdom); Lead, J.R. [School of Geography, Earth and Environmental Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Lawlor, A.J.; Woods, C.; Vincent, C.; Guyatt, H.; Hockenhull, K. [Centre for Ecology and Hydrology, Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2012-09-15

    An assessment is made of the role of riverine colloids in macronutrient (nitrogen, phosphorus and carbon), metal and trace element partitioning and transport, for five rivers in the Ribble and Wyre catchments in north-western England, under baseflow/near-baseflow conditions. Cross-flow ultrafiltration was used to separate colloidal (< 0.45 Micro-Sign m > 1 kDa) and truly dissolved (< 1 kDa) fractions from river water. Clear patterns were observed, along the upland-lowland land use continuum, in the partitioning and transport of macronutrients and metals between the colloidal, truly dissolved and acid-available particulate (> 0.45 {mu}m, suspended) fractions. Of these operationally-defined fractions measured, colloids were generally more important for both macronutrient and metal transport in the upland than in the lowland rivers. The results suggest that organic moieties in truly dissolved form from sewage effluent may have a greater capacity to chelate metals. Organic-rich colloids in the upland moorlands and metal oxide colloidal precipitates in the industrial rivers had a higher capacity for binding metals than the colloidal fractions in the urban and agricultural lowland rivers. Aggregation of these colloids may provide an important mechanism for formation of larger suspended particulates, accounting for a higher degree of metal enrichment in the acid-available particulate fractions of the upland moorland and lowland industrial rivers, than in the lowland agricultural and urban rivers. This mechanism of transfer of contaminants to larger aggregates via colloidal intermediates, known as 'colloidal pumping' may also provide a mechanism for particulate P formation and the high proportion of P being transported in the particulate fraction in the uplands. The cross-flow ultrafiltration data also allowed refinement of partition coefficients, by accounting for colloids within the solids phase and replacing the filtered (< 0.45 {mu}m) fraction with the truly

  6. Convective heat transfer the molten metal pool heated from below and cooled by two-phase flow

    International Nuclear Information System (INIS)

    Cho, J. S.; Suh, K. Y.; Chung, C. H.; Park, R. J.; Kim, S. B.

    1998-01-01

    During a hypothetical servere accident in the nuclear power plant, a molten core material may form stratified fluid layers. These layers may be composed of high temperature molten debris pool and water coolant in the lower plenum of the reactor vessel or in the reactor cavity. This study is concerned with the experimental test and numerical analysis on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. This work examines the crust formation and the heat transfer characteristics of the molten metal pool immersed in the boiling coolant. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. The simulant molten pool material is tin (Sn) with the melting temperature of 232 .deg. C. Demineralized water is used as the working coolant. Tests were performed under the condition of the bottom surface heating in the test section and the forced convection of the coolant being injected onto the molten metal pool. The constant temperature and constant heat flux conditions are adopted for the bottom heating. The test parameters included the heated bottom surface temperature of the molten metal pool, the input power to the heated bottom surface of the test section, and the coolant injection rate. Numerical analyses were simultaneously performed in a two-dimensional rectangular domain of the molten metal pool to check on the measured data. The numerical program has been developed using the enthalpy method, the finite volume method and the SIMPLER algorithm. The experimental results of the heat transfer show general agreement with the calculated values. In this study, the relationship between the Nusselt number and Rayleigh number in the molten metal pool region was estimated and compared with the dry experiment without coolant nor solidification of the molten metal pool, and with the crust formation experiment with subcooled coolant, and against other correlations. In the experiments, the

  7. Cyanobacteria: A precious bio-resource in agriculture, ecosystem and environmental sustainability

    Directory of Open Access Journals (Sweden)

    Jay Shankar eSingh

    2016-04-01

    Full Text Available Keeping in view the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters, generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, syngas and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.

  8. A Modified Eyring Equation for Modeling Yield and Flow Stresses of Metals at Strain Rates Ranging from 10−5 to 5 × 104 s−1

    Directory of Open Access Journals (Sweden)

    Ramzi Othman

    2015-01-01

    Full Text Available In several industrial applications, metallic structures are facing impact loads. Therefore, there is an important need for developing constitutive equations which take into account the strain rate sensitivity of their mechanical properties. The Johnson-Cook equation was widely used to model the strain rate sensitivity of metals. However, it implies that the yield and flow stresses are linearly increasing in terms of the logarithm of strain rate. This is only true up to a threshold strain rate. In this work, a three-constant constitutive equation, assuming an apparent activation volume which decreases as the strain rate increases, is applied here for some metals. It is shown that this equation fits well the experimental yield and flow stresses for a very wide range of strain rates, including quasi-static, high, and very high strain rates (from 10−5 to 5 × 104 s−1. This is the first time that a constitutive equation is showed to be able to fit the yield stress over a so large strain rate range while using only three material constants.

  9. Evaluation of the x-ray fluorescence method of precious metal plating thickness measurements. Technological spinoff report

    International Nuclear Information System (INIS)

    Carson, J.S.; Hearn, N.K.; Pettie, C.B.

    1975-09-01

    It is shown that gold and silver plating thickness measurements made using an x-ray spectrograph could be closely correlated with thicknesses measured from sectional samples. Good correlations were also shown for single overlays of gold over silver when each layer was less than 0.0003 inch thick

  10. Underwater tracking of a moving dipole source using an artificial lateral line: algorithm and experimental validation with ionic polymer–metal composite flow sensors

    International Nuclear Information System (INIS)

    Abdulsadda, Ahmad T; Tan, Xiaobo

    2013-01-01

    Motivated by the lateral line system of fish, arrays of flow sensors have been proposed as a new sensing modality for underwater robots. Existing studies on such artificial lateral lines (ALLs) have been mostly focused on the localization of a fixed underwater vibrating sphere (dipole source). In this paper we examine the problem of tracking a moving dipole source using an ALL system. Based on an analytical model for the moving dipole-generated flow field, we formulate a nonlinear estimation problem that aims to minimize the error between the measured and model-predicted magnitudes of flow velocities at the sensor sites, which is subsequently solved with the Gauss–Newton scheme. A sliding discrete Fourier transform (SDFT) algorithm is proposed to efficiently compute the evolving signal magnitudes based on the flow velocity measurements. Simulation indicates that it is adequate and more computationally efficient to use only the signal magnitudes corresponding to the dipole vibration frequency. Finally, experiments conducted with an artificial lateral line consisting of six ionic polymer–metal composite (IPMC) flow sensors demonstrate that the proposed scheme is able to simultaneously locate the moving dipole and estimate its vibration amplitude and traveling speed with small errors. (paper)

  11. 16 CFR 23.24 - Misuse of the words “real,” “genuine,” “natural,” “precious,” etc.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Misuse of the words âreal,â âgenuine,â ânatural,â âprecious,â etc. 23.24 Section 23.24 Commercial Practices FEDERAL TRADE COMMISSION GUIDES AND... the words “real,” “genuine,” “natural,” “precious,” etc. It is unfair or deceptive to use the word...

  12. Heaters to simulate fuel pins for heat transfer tests in single-phase liquid-metal-flow

    International Nuclear Information System (INIS)

    Casal, V.; Graf, E.; Hartmann, W.

    1976-09-01

    The development of heaters for thermal simulation of the fuel elements of liquid metal cooled fast breeder reactors (SNR) is reported. Beginning with the experimental demands various heating methods are discussed for thermodynamic investigations of the heat transfer in liquid metals. Then a preferred heater rod is derived to simulate the fuel pins of a SNR. Finally it is reported on the fabrication and the operation practice. (orig.) [de

  13. DEVELOPMENT OF THE REFERENCE MATERIALS PRODUCTION BRANCH IN THE JOINT STOCK COMPANY "THE GULIDOV KRASNOYARSK NON-FERROUS METALS PLANT"

    Directory of Open Access Journals (Sweden)

    K. A. Shatnykh

    2015-01-01

    Full Text Available The article deals with the development of the branch for the reference materials production in the Joint Stock Company "The Gulidov Krasnoyarsk Non-Ferrous Metals Plant" (JSC "Krastsvetmet". Here the most important workings for reference materials including the work for the London precious metal exchange, current and future works are stated.

  14. Recovery of Seamount Precious Coral Beds From Heavy Trawling Disturbance with Links to Carbonate Chemistry Changes

    Science.gov (United States)

    Roark, E. B.; Baco-Taylor, A.; Morgan, N. B.; Shamberger, K.; Miller, K.; Brooks, J.

    2016-12-01

    Increasing anthropogenic impacts in the deep sea make studies of resilience and recovery time critical, with deep-sea hard-substrate habitats and large-scale disturbances having received little attention. Seamount hard-substrate habitats in particular are thought to have low resilience due to the slow growth rates and recruitment limitations of key structure-forming taxa. Seamounts of the far Northwestern Hawaiian Islands and Emperor Chain have had some of the heaviest trawl impacts in the world, from both fish and precious coral fisheries, and include sites that are still trawled and recovering ones that have been protected since establishment of the EEZ in 1977. To test the hypothesis of low resilience we compare these impacted seamounts to untrawled sites. We used the AUV Sentry in 2014 and 2015 to image nine features (three per "treatment") and analyze for substrate and visible megafauna. Sites in the "still trawled" treatment were characterized by extensive areas of bare substrate with abundant trawl scars. Sites in the "recovering" and "never trawled" locations had abundant megafauna in hard substrate areas. Initial comparisons of transects at 700m depth for three sites indicate that Yuryaku in the "still trawled" treatment had lower diversity and abundance of megafauna compared to the "recovering" and "never trawled" locations with a dominance of sea urchins. The "recovering" and "never trawled" sites were dominated by cnidarians, fishes, and echinoderms, but differed in dominant species, diversity, abundances and occurrence of dead coral skeletons. These preliminary results suggest that the recovering sites have not returned to a pre-impact community type in the 38 years since they were trawled. The megafauna distribution, in particular that of deep-sea corals, was compared to environmental water column variables at the study sites across the Northwestern Hawaiian Islands. Deep-sea corals with calcium carbonate skeletons were found living below the

  15. Feasibility of asymmetric flow field-flow fractionation coupled to ICP-MS for the characterization of wear metal particles and metalloproteins in biofluids from hip replacement patients

    DEFF Research Database (Denmark)

    Löschner, Katrin; Harrington, Chris F.; Kearney, Jacque-Lucca

    2015-01-01

    or other elements, but the current analytical methods used to investigate the processes involved do not provide sufficient information to understand the size or composition of the wear particles generated in vivo. In this qualitative feasibility study, asymmetric flow field-flow fractionation (AF4) coupled...... to ICP-MS was used to confirm the metal–protein associations in the serum samples. Off-line single particle ICP-MS (spICP-MS) analysis was used to confirm the approximate size distribution indicated by AF4 of the wear particles in hip aspirates. In the serum samples, AF4–ICP-MS suggested that Cr...... unidentified compounds; AEC analysis confirmed the Cr results and the association of Co with Alb and a second compound. Enzymatic digestion of the hip aspirate sample, followed by separation using AF4 with detection by UV absorption (280 nm), multi-angle light scattering and ICP-MS, suggested that the sizes...

  16. Influence of polycrystalline silicon layer on flow through «metal — p-Si» contact

    Directory of Open Access Journals (Sweden)

    Smyntyna V. A.

    2011-11-01

    Full Text Available Based on the results of investigations of charge transport in the "metal — p-Si" contacts with different thickness of polycrystalline p-Si layer the mechanisms of charge transport through such structures are shown. It is established that with increasing thickness of the layer of polycrystalline p-Si current transport mechanism changes from a double injection into the drift-diffusion. This change is due to an increase in the drift current component in the space charge zone of "metal — p-Si" contact, which arises as a result of increased surface density of scattering barriers, which are localized at the boundaries of neighboring silicon polycrystals.

  17. Highly effective synthesis of a cobalt(ii) metal-organic coordination polymer by using continuous flow chemistry.

    Science.gov (United States)

    Gong, Chunhua; Zhang, Junyong; Zeng, Xianghua; Xie, Jingli

    2016-12-20

    The coordination polymer [Co 2 L 4 (H 2 O) 2 ]·CH 3 CN·H 2 O (HL = (E)-2-[2-(4-chlorophenyl)vinyl]-8-hydroxyquinoline) has been achieved with 95% yield by using an Asia flow synthesis system (chip reactor). Compared with the conventional batch-type methods such as diffusion, reflux and solvothermal reactions, higher yielding reactions carried out in a flow reactor have demonstrated that this technique is a powerful strategy to obtain coordination compounds.

  18. Three-dimensional granular model of semi-solid metallic alloys undergoing solidification: Fluid flow and localization of feeding

    International Nuclear Information System (INIS)

    Sistaninia, M.; Phillion, A.B.; Drezet, J.-M.; Rappaz, M.

    2012-01-01

    A three-dimensional (3-D) granular model which simulates fluid flow within solidifying alloys with a globular microstructure, such as that found in grain refined Al alloys, is presented. The model geometry within a representative volume element (RVE) consists of a set of prismatic triangular elements representing the intergranular liquid channels. The pressure field within the liquid channels is calculated using a finite elements (FEs) method assuming a Poiseuille flow within each channel and flow conservation at triple lines. The fluid flow is induced by solidification shrinkage and openings at grain boundaries due to deformation of the coherent solid. The granular model predictions are validated against bulk data calculated with averaging techniques. The results show that a fluid flow simulation of globular semi-solid materials is able to reproduce both a map of the 3-D intergranular pressure and the localization of feeding within the mushy zone. A new hot cracking sensitivity coefficient is then proposed. Based on a mass balance performed over a solidifying isothermal volume element, this coefficient accounts for tensile deformation of the semi-solid domain and for the induced intergranular liquid feeding. The fluid flow model is then used to calculate the pressure drop in the mushy zone during the direct chill casting of aluminum alloy billets. The predicted pressure demonstrates that deep in the mushy zone where the permeability is low the local pressure can be significantly lower than the pressure predicted by averaging techniques.

  19. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    Science.gov (United States)

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Annual trace-metal load estimates and flow-weighted concentrations of cadmium, lead, and zinc in the Spokane River basin, Idaho and Washington, 1999-2004

    Science.gov (United States)

    Donato, Mary M.

    2006-01-01

    Streamflow and trace-metal concentration data collected at 10 locations in the Spokane River basin of northern Idaho and eastern Washington during 1999-2004 were used as input for the U.S. Geological Survey software, LOADEST, to estimate annual loads and mean flow-weighted concentrations of total and dissolved cadmium, lead, and zinc. Cadmium composed less than 1 percent of the total metal load at all stations; lead constituted from 6 to 42 percent of the total load at stations upstream from Coeur d'Alene Lake and from 2 to 4 percent at stations downstream of the lake. Zinc composed more than 90 percent of the total metal load at 6 of the 10 stations examined in this study. Trace-metal loads were lowest at the station on Pine Creek below Amy Gulch, where the mean annual total cadmium load for 1999-2004 was 39 kilograms per year (kg/yr), the mean estimated total lead load was about 1,700 kg/yr, and the mean annual total zinc load was 14,000 kg/yr. The trace-metal loads at stations on North Fork Coeur d'Alene River at Enaville, Ninemile Creek, and Canyon Creek also were relatively low. Trace-metal loads were highest at the station at Coeur d'Alene River near Harrison. The mean annual total cadmium load was 3,400 kg/yr, the mean total lead load was 240,000 kg/yr, and the mean total zinc load was 510,000 kg/yr for 1999-2004. Trace-metal loads at the station at South Fork Coeur d'Alene River near Pinehurst and the three stations on the Spokane River downstream of Coeur d'Alene Lake also were relatively high. Differences in metal loads, particularly lead, between stations upstream and downstream of Coeur d'Alene Lake likely are due to trapping and retention of metals in lakebed sediments. LOADEST software was used to estimate loads for water years 1999-2001 for many of the same sites discussed in this report. Overall, results from this study and those from a previous study are in good agreement. Observed differences between the two studies are attributable to streamflow

  1. Possibilities Of Metals Extracton From Spent Metallic Automotive Catalytic Converters By Using Biometallurgical Method

    Directory of Open Access Journals (Sweden)

    Willner J.

    2015-09-01

    Full Text Available The main task of automotive catalytic converters is reducing the amount of harmful components of exhaust gases. Metallic catalytic converters are an alternative to standard ceramic catalytic converters. Metallic carriers are usually made from FeCrAl steel, which is covered by a layer of Precious Group Metals (PGMs acting as a catalyst. There are many methods used for recovery of platinum from ceramic carriers in the world, but the issue of platinum and other metals recovery from metallic carriers is poorly described. The article presents results of preliminary experiments of metals biooxidation (Fe, Cr and Al from spent catalytic converters with metallic carrier, using bacteria of the Acidithiobacillus genus.

  2. Validation of numerical solvers for liquid metal flow in a complex geometry in the presence of a strong magnetic field

    Science.gov (United States)

    Patel, Anita; Pulugundla, Gautam; Smolentsev, Sergey; Abdou, Mohamed; Bhattacharyay, Rajendraprasad

    2018-04-01

    Following the magnetohydrodynamic (MHD) code validation and verification proposal by Smolentsev et al. (Fusion Eng Des 100:65-72, 2015), we perform code to code and code to experiment comparisons between two computational solvers, FLUIDYN and HIMAG, which are presently considered as two of the prospective CFD tools for fusion blanket applications. In such applications, an electrically conducting breeder/coolant circulates in the blanket ducts in the presence of a strong plasma-confining magnetic field at high Hartmann numbers, it{Ha} (it{Ha}^2 is the ratio between electromagnetic and viscous forces) and high interaction parameters, it{N} (it{N} is the ratio of electromagnetic to inertial forces). The main objective of this paper is to provide the scientific and engineering community with common references to assist fusion researchers in the selection of adequate computational means to be used for blanket design and analysis. As an initial validation case, the two codes are applied to the classic problem of a laminar fully developed MHD flows in a rectangular duct. Both codes demonstrate a very good agreement with the analytical solution for it{Ha} up to 15, 000. To address the capabilities of the two codes to properly resolve complex geometry flows, we consider a case of three-dimensional developing MHD flow in a geometry comprising of a series of interconnected electrically conducting rectangular ducts. The computed electric potential distributions for two flows (Case A) it{Ha}=515, it{N}=3.2 and (Case B) it{Ha}=2059, it{N}=63.8 are in very good agreement with the experimental data, while the comparisons for the MHD pressure drop are still unsatisfactory. To better interpret the observed differences, the obtained numerical data are analyzed against earlier theoretical and experimental studies for flows that involve changes in the relative orientation between the flow and the magnetic field.

  3. Environmental analysis of heavy metal deposition in a flow-restricted tropical estuary and its adjacent shelf

    Digital Repository Service at National Institute of Oceanography (India)

    Balachandran, K.K.; Laluraj, C.M.; Martin, G.D.; Srinivas, K.; Venugopal, P.

    103m3.d-1, CPCB, 1996). The major polluting industries in the region include fertilizer plant, oil refinery, rare earth processing plant, minerals and rutiles plant, zinc smelter plant, insecticide factory and organic chemical plant. Reclamations... bodies can promote coagulation or co-precipitation of metals under the varying ionic (salinity) condition (Antonio and Prego, 2004). Studies elsewhere have shown that oxides of Fe+3 are bio-available through bacterial mineralization and hence, could...

  4. Real-time algorithm for the measurement of liquid metal coolant flow velocity with correlated thermal signals

    International Nuclear Information System (INIS)

    Moazzeni, Taleb; Jiang, Yingtao; Ma, Jian; Li, Ning

    2009-01-01

    One flow meter was developed especially for the environment of high irradiation, pressure, and temperature. The transit time of natural random temperature fluctuation in process, for example nuclear reactor, can be obtained based on the cross-correlation method, which has already been shown that it is capable in situations where no other flow meter can be used. Thereby, the flow rate can be derived in pipe flow if the area of cross-section is known. In practice, the evaluation of the integrals over the measurement time in cross-correlation method will lead errors caused by peak detection from flat cross correlation coefficient distribution or additional peaks. One Auto-Adaptive Impulse Response Function estimation is introduced and significantly narrower peak will be obtained. Fiber optic sensors are advantageous for temperature measurements in the reactor pressure vessels. However, the corrosive coolant (as liquid lead/lead alloy or molten salt coolant) is a barrier of the optic sensor in such application. Thermocouple with grounded stainless steel shielding material would have same life time with structure material in reactor, although thermocouple has relatively slow response. The degradation due to corrosion/erosion will not introduce measurement error or necessary calibration, because only the correlation between signals is taken into consideration during measurements. Experiments conducted in a testing hydraulic facility approved the considerable improvement of accuracy by this new algorithm using thermocouple temperature sensors. (author)

  5. Liquid-metal MHD flow in a duct whose cross section changes from a rectangle to a trapezoid, with applications in fusion blanket designs

    International Nuclear Information System (INIS)

    Walker, J.S.

    1986-04-01

    This paper treats the liquid-metal MHD flow in a semi-infinite rectangular duct and a semi-infinite trapezoidal duct, which are connected by a finite-length transition duct. There is a strong, transverse, uniform magnetic field. The walls parallel to the magnetic field (sides) remain parallel, while the walls intersecting the magnetic field are twisted in the transition duct to provide the change in cross sectional shape. The left side has a constant height, while the height of the right side increases or decreases in the transition duct. This geometry gives a skewed velocity profile with a high velocity near the left side, provided the right side is relatively thick. All walls are thin and electrically conducting, but the sides are considerably thicker than the other walls. The application is to fusion-reactor blankets in which a high velocity near the first wall (separating the plasma chamber from the coolant) improves the thermal performance. Junctions of different ducts with walls parallel to the magnetic field are treated for the first time. In expansions, contractions and other geometric transition ducts, as well as in straight ducts with axially varying magnetic fields, the fluid flow and electric currents are concentrated in boundary layers adjacent to the sides and in the side. At a junction with a straight duct with a uniform magnetic field, the flow and current must transfer from the boundary layers adn sides to the core regions. These transfers at junctions play a key role in any three-dimensional flow

  6. Liquid-metal MHD flow in a duct whose cross section changes from a rectangle to a trapezoid, with applications in fusion blanket designs

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.S.

    1986-04-01

    This paper treats the liquid-metal MHD flow in a semi-infinite rectangular duct and a semi-infinite trapezoidal duct, which are connected by a finite-length transition duct. There is a strong, transverse, uniform magnetic field. The walls parallel to the magnetic field (sides) remain parallel, while the walls intersecting the magnetic field are twisted in the transition duct to provide the change in cross sectional shape. The left side has a constant height, while the height of the right side increases or decreases in the transition duct. This geometry gives a skewed velocity profile with a high velocity near the left side, provided the right side is relatively thick. All walls are thin and electrically conducting, but the sides are considerably thicker than the other walls. The application is to fusion-reactor blankets in which a high velocity near the first wall (separating the plasma chamber from the coolant) improves the thermal performance. Junctions of different ducts with walls parallel to the magnetic field are treated for the first time. In expansions, contractions and other geometric transition ducts, as well as in straight ducts with axially varying magnetic fields, the fluid flow and electric currents are concentrated in boundary layers adjacent to the sides and in the side. At a junction with a straight duct with a uniform magnetic field, the flow and current must transfer from the boundary layers adn sides to the core regions. These transfers at junctions play a key role in any three-dimensional flow.

  7. Magnetohydrodynamic liquid metal flow in arbitrary three-dimensional geometries in strong, non-uniform magnetic fields

    International Nuclear Information System (INIS)

    Buehler, L.

    1993-02-01

    Inductionless magnetohydrodynamic (MHD) flows at high Hartmann numbers are calculated by splitting the whole flow region into an inviscid core and into very thin boundary layers near channel walls. The momentum equations are linearized for high interaction parameters by neglecting inertial terms. These assumptions allow considerable simplifications of the governing equations in all subregions. In the core the general 3D equations are reduced to 2D equations by an analytical integration. The boundary conditions at channel walls are satisfied by the solution of boundary layer equations, leading to 2D equations for charge conservation in the layer. The interior of every arbitrary shaped channel is mapped by a coordinate transformation to a standard volume. The coupled 2D equations are solved numerically on the surface of this standard volume. (orig.)

  8. Investigation of the Influence of Hydrocyclone Geometric and Flow Parameters on Its Performance Using CFD

    Directory of Open Access Journals (Sweden)

    Oboetswe Seraga Motsamai

    2010-01-01

    Full Text Available Effectiveness and efficiency of hydro-cyclone separators are highly dependent on their geometrical parameters and flow characteristics. Performance of the hydro-cyclone can, therefore, be improved by modifying the geometrical parameters or flow characteristics. The mining and chemical industries are faced with problems of separating ore-rich stones from the nonore-rich stones. Due to this problem a certain amount of precious metals is lost to the dumping sites. Plant managers try to solve these problems by stockpiling what could be useless stones, so that they can be reprocessed in the future. Reprocessing is not a sustainable approach, because the reprocessed material would give lower yield as compared to the production costs. Particulate separation in a hydro-cyclone has been investigated in this paper, by using computational fluid dynamics. The paper investigated the influence of various flow and geometric parameters on particulate separation. Optimal parameters for efficient separation have been determined for the density of fluid, diameter of the spigot, and diameter of the vortex finder. The principal contribution of this paper is that key parameters for design optimization of the hydro-cyclone have been investigated.

  9. Measurement and analysis of turbulent liquid metal flow in a high-power spallation neutron source-EURISOL

    CERN Document Server

    Samec, K; Blumenfeld, L; Kharoua, C; Dementjevs, S; Milenkovic, R Z

    2011-01-01

    The European Isotope Separation On-Line (EURISOL) design study completed in 2009 examined means of producing exotic nuclei for fundamental research. One of the critical components identified in the study was a high-power neutron spallation source in which a target material is impacted by a proton beam producing neutrons by a process known as spallation. Due to the high heat power deposition, liquid metal, in this case mercury, is the only viable choice as target material. Complex issues arise from the use of liquid metal. It is characterised by an unusually low Prandtl number and a higher thermal expansivity than conventional fluids. The turbulence structure in LM is thereby affected and still an object of intense research, hampered in part by measurement difficulties. The use of Computational Fluid Dynamics (CFD) allowed a satisfactory design for the neutron source to be found rapidly with little iteration. However it was feared that the development of the boundary layer and associated turbulence would not b...

  10. Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries

    Science.gov (United States)

    Jiang, H. R.; Shyy, W.; Wu, M. C.; Wei, L.; Zhao, T. S.

    2017-10-01

    The potential of B4C as a metal-free catalyst for vanadium redox reactions is investigated by first-principles calculations. Results show that the central carbon atom of B4C can act as a highly active reaction site for redox reactions, due primarily to the abundant unpaired electrons around it. The catalytic effect is then verified experimentally by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests, both of which demonstrate that B4C nanoparticles can enhance the kinetics for both V2+/V3+ and VO2+/VO2+ redox reactions, indicating a bi-functional effect. The B4C-nanoparticle-modified graphite felt electrodes are finally prepared and tested in vanadium redox flow batteries (VRFBs). It is shown that the batteries with the prepared electrodes exhibit energy efficiencies of 88.9% and 80.0% at the current densities of 80 and 160 mA cm-2, which are 16.6% and 18.8% higher than those with the original graphite felt electrodes. With a further increase in current densities to 240 and 320 mA cm-2, the batteries can still maintain energy efficiencies of 72.0% and 63.8%, respectively. All these results show that the B4C-nanoparticle-modified graphite felt electrode outperforms existing metal-free catalyst modified electrodes, and thus can be promising electrodes for VRFBs.

  11. Mixed-Metal, Structural, and Substitution Effects of Polyoxometalates on Electrochemical Behavior in a Redox Flow Battery

    International Nuclear Information System (INIS)

    Pratt, Harry D.; Pratt, William R.; Fang, Xikui; Hudak, Nicholas S.; Anderson, Travis M.

    2014-01-01

    Graphical abstract: - Highlights: • Testing of a flow battery with polyoxometalates. • Coulombic efficiency of 83% for an iron-based compound. • Both size and charge density influence battery performance. - Abstract: A pair of redox flow batteries containing polyoxometalates was tested as part of an ongoing program in stationary energy storage. The iron-containing dimer, (SiFe 3 W 9 (OH) 3 O 34 ) 2 (OH) 3 11− , cycled between (SiFe 3 W 9 (OH) 3 O 34 ) 2 (OH) 3 11− /(SiFe 3 W 9 (OH) 3 O 34 ) 2 (OH) 3 14− and (SiFe 3 W 9 (OH) 3 O 34 ) 2 (OH) 3 17− /(SiFe 3 W 9 (OH) 3 O 34 ) 2 (OH) 3 14− for the positive and negative electrode, respectively. This compound demonstrated a coulombic efficiency of 83% after 20 cycles with an electrochemical yield (measured discharge capacity as a percentage of theoretical capacity) of 55%. Cyclic voltammetry on the Lindqvist ion, cis-V 2 W 4 O 19 4− , showed quasi-reversible vanadium electrochemistry, but tungsten reduction was mostly irreversible. In a flow cell configuration, cis-V 2 W 4 O 19 4− had a coulombic efficiency of 45% (for a two-electron process) and an electrochemical yield of 16% after 20 cycles. The poor performance of cis-V 2 W 4 O 19 4− was attributed primarily to its higher charge density. Collectively, the results showed that both polyoxometalate size and charge density are both important parameters to consider in battery material performance

  12. Graphitic Layer Encapsulated Iron Based Non‐precious Catalysts for the Oxygen Reduction Reaction

    DEFF Research Database (Denmark)

    Zhong, Lijie

    consisting of uniform metallic nanoparticles encapsulated in graphitic layers. The thesis work is conducted aiming at three major objectives: further optimization of the pyrolysis to achieve improved performance of catalysts, investigation of the complex Fe-containing components, and exploration...... of the nitrogen functionalities. Two anions in the electrolyte are used to probe the iron containing active sites towards the ORR, cyanide (CN-) in alkaline and thiocyanate (SCN-) in acidic medium, which seem supporting the above conclusions. These findings provide new insights to the encapsulation structure...

  13. Cost-effective flow injection amperometric system with metal nanoparticle loaded carbon nanotube modified screen printed carbon electrode for sensitive determination of hydrogen peroxide.

    Science.gov (United States)

    Reanpang, Preeyaporn; Themsirimongkon, Suwaphid; Saipanya, Surin; Chailapakul, Orawon; Jakmunee, Jaroon

    2015-11-01

    Various metal nanoparticles (NPs) decorated on carbon nanotube (CNT) was modified on the home-made screen printed carbon electrode (SPCE) in order to enhances sensitivity of hydrogen peroxide (H2O2) determination. The simple casting method was used for the electrode modification. The monometallic and bimetallic NPs modified electrodes were investigated for their electrochemical properties for H2O2 reduction. The Pd-CNT/SPCE is appropriated to measure the H2O2 reduction at a potential of -0.3 V, then this modified electrode was incorporated with a home-made flow through cell and applied in a simple flow injection amperometry (FI-Amp). Some parameters influencing the resulted modified electrode and the FI-Amp system were studied. The proposed detection system was able to detect H2O2 in the range of 0.1-1.0 mM, with detection limit of 20 µM. Relative standard deviation for 100 replicated injections of 0.6 mM H2O2 was 2.3%. The reproducibility of 6 electrodes preparing in 3 different lots was 8.2%. It was demonstrated for determination of H2O2 in disinfectant, hair colorant and milk samples. Recoveries in the range of 90-109% were observed. The developed system provided high stability, good repeatability, high sample throughput and low reagent consumption. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Corrosion and flow resistance of metal filter elements used in the cleanup of syngas from the Transport Gasifier at the Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Dahlin; E. Carl Landham; Xiaofeng Guan [Southern Research Institute, Wilsonville, AL (United States). Power Systems Development Facility

    2008-07-01

    At the Power Systems Development Facility (PSDF), a variety of filter elements and failsafes are being tested for the cleanup of coal-generated syngas from the Kellogg Brown and Root (KBR) Transport Gasifier. Thus far, no evidence of corrosion or plugging has been found in the HR-160 failsafes or sinterned metal fiber elements. However, a progressive corrosion and increase in pressure drop has been noted in the iron aluminide elements. The corrosion was first detected as reddish-brown spots of iron oxide after about 2,000 to 3,000 hours of syngas exposure. As the corrosion progressed, the spots of iron oxide merged to form a continuous scale after about 5,000 to 5,500 hours of exposure. With additional exposure, a black scale containing iron sulfide also appeared, and localized areas of sulfidation and plugging were noted in element cross sections. These effects have not resulted in any significant reduction in tensile strength, but a gradual increase in the clean element pressure drop has been noted. Flow test results suggest that there is an interaction between the corroded filter surface and the dustcake that effectively increases the residual cake flow resistance and baseline pressure drop. 10 refs., 14 figs., 1 tab.

  15. Economic aspects of metals recover

    Science.gov (United States)

    Wieczorek, Daria; Kwaśniewska, Dobrawa

    2018-03-01

    One of the modern economy models is circular economy in which wastes should be considered as resource and used in an efficient and sustainable way. This also concerns to metals included in scraps. However, the need for metal recovery from waste is not only the result of the latest economic trends but also the result of large and constantly changing demand for metals. Shrinking natural sources of metals, concentrations of ores in small number of countries in the world and resulting from this dependence on import, geopolitical situation, new technologies demands are only a few most important determinants that have been changing the structure of the metal market over years. In this chapter, authors focused on the presentation of economic aspects of metal recovery from various sources. The chapter presents the characteristic of metal market elements (supply, demand and price) and changes that took place over decades, underlining the structure of precious and highly desirable metal market elements. Balance between the demand and supply ensures price stability and rationalizes inflation. However, growing demand on many means that secure supply chains, such as recycling and material recovery, are essential to ensure continuity in the supply chain and guarantee unrestricted technological progress and innovation. The data included in this chapter presents also the concentration of different metals and group of metals in wastes pointing that recycling of waste can become one of the possibilities of acquiring missing and critical metals. Metal-laden wastes include a few groups: waste electrical and electronic equipments, catalysts of different application, introduced on chemical, petrochemical or automotive market, galvanic wastes and wastewaters. The profitability assessment of recycling processes is very complicated. Nevertheless cited data shows that profitability of recovery depends on the metal analyzed and the type of waste. It must be underline that an optimized

  16. RELAP/SCDAPSIM/MOD4.0 modification for transient accident scenario of Test Blanket Modules in ITER involving helium flows into heavy liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J.; Pérez, M.; Mas de les Valls, E.; Batet, L.; Sandeep, T.; Chaudhari, V.; Reventós, F.

    2015-07-01

    The Institute for Plasma Research (IPR), India, is currently involved in the design and development of its Test Blanket Module (TBM) for testing in ITER (International Thermo nuclear Experimental Reactor). The Indian TBM concept is a Lead-Lithium cooled Ceramic Breeder (LLCB), which utilizes lead-lithium eutectic alloy (LLE) as tritium breeder, neutron multiplier and coolant. The first wall facing the plasma is cooled by helium gas. In preparation of the regulatory safety files of ITER-TBM, a number of off-normal event sequences have been postulated. Thermal hydraulic safety analyses of the TBM system will be carried out with the system code RELAP/SCDAPSIM/MOD4.0 which was initially designed to predict the behavior of light water reactor systems during normal and accidental conditions. In order to analyze some of the postulated off-normal events, there is the need to simulate the mixing of Helium and Lead-Lithium fluids. The Technical University of Catalonia is cooperating with IPR to implement the necessary changes in the code to allow for the mixing of helium and liquid metal. In the present study, the RELAP/SCDAPSIM/MOD4 two-phase flow 6-equations structure has been modified to allow for the mixture of LLE in the liquid phase with dry Helium in the gas phase. Practically obtaining a two-fluid 6-equation model where each fluid is simulated with a set of energy, mass and momentum balance equations. A preliminary flow regime map for LLE and helium flow has been developed on the basis of numerical simulations with the OpenFOAM CFD toolkit. The new code modifications have been verified for vertical and horizontal configurations. (Author)

  17. Using geoelectrochemical technique to extract uranium and other metals

    International Nuclear Information System (INIS)

    Gao Yulong

    1990-10-01

    The geoelectrochemical extraction technique, which is a direct deep exploring method, is one of the geoelectrochemical exploring methods. It is developed recently to explore basic metals, precious metals, rare metals and some nonmetal mineral products. It is also a combination of electrical surveying and geochemical surveying. This method is more useful in the seeking of gold ore deposit. The principle and technique of this method and the results in seeking gold, uranium, lead, nickel and tin ore deposits are introduced. The equipment and instruments used in this method are also given

  18. Metal recovery from high-grade WEEE

    DEFF Research Database (Denmark)

    Bigum, Marianne; Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2012-01-01

    . The modeled metallurgical treatment facility included a Kaldo plant, a converter aisle, an anode refinery and a precious metal refinery. The metallurgic treatment showed significant environmental savings when credited the environmental load from avoided production of the same amount of metals by mining...... and refining of ore. The resource recovery per tonne of high-grade WEEE ranged from 2 g of palladium to 386 kg of iron. Quantified in terms of person-equivalents the recovery of palladium, gold, silver, nickel and copper constituted the major environmental benefit of the recovery of metals from WEEE....... These benefits are most likely underestimated in the model, since we did not find adequate data to include all the burdens from mining and refining of ore; burdens that are avoided when metals are recovered from WEEE. The processes connected to the pre-treatment of WEEE were found to have little environmental...

  19. A Personalised, Sensor-Based Smart Phone Intervention for Physical Activity and Diet – PRECIOUS N-of-1 Trial

    Directory of Open Access Journals (Sweden)

    Johanna Nurmi

    2015-10-01

    Full Text Available Background: There is an urgent need for interventions which can effectively change behaviours, in order to prevent and reduce the impact of costly chronic conditions such as Type 2 diabetes and cardiovascular diseases (WHO, 2014. Smartphones offer a platform for cost-effective and broad implementation, and at the same time, via real-time tracking and sensor data, offer unprecedented possibilities for personalising interventions (Jovanov & Milenkovic, 2011. While a great number of health-related applications exist already, the content of these is rarely based on behaviour change theory, and, consequently, evidence for the effectiveness of digital behaviour change applications is minimal (Webb, Joseph, Yardley, & Michie, 2010. Even when health-related applications are theory-based, users will likely not achieve behavioural changes if they do not engage with the applications. This lack of engagement is supported by statistics: a quarter of downloaded apps were only used once (Leger, 2011. A major challenge of health care research is therefore the identification of personal treatment response, and factors which mitigate engagement and effectiveness within individuals. To address these issues, our research group, an EU-funded multi-disciplinary consortium has developed the PREventitive Care Infrastructure based On Ubiquitous Sensing (PRECIOUS mobile application. This app targets behavioural changes in physical activity, diet, and stress, and includes both motivational and action components for each. The service design draws from evidence-based techniques in self-determination theory (SDT, Deci & Ryan, 2000, motivational interviewing (MI, Miller & Rollnick, 2002, and social cognitive theories (e.g. Schwarzer, 2008, to enhance engagement with the process of behaviour change. Through integrating sensor data, self-reported responses, and self-monitoring records, the system provides each user with a dynamic, personalised trajectory through the app

  20. Hollow-fiber flow field-flow fractionation and multi-angle light scattering investigation of the size, shape and metal-release of silver nanoparticles in aqueous medium for nano-risk assessment.

    Science.gov (United States)

    Marassi, Valentina; Casolari, Sonia; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Panzavolta, Silvia; Tofail, Syed A M; Ortelli, Simona; Delpivo, Camilla; Blosi, Magda; Costa, Anna Luisa

    2015-03-15

    Due to the increased use of silver nanoparticles in industrial scale manufacturing, consumer products and nanomedicine reliable measurements of properties such as the size, shape and distribution of these nano particles in aqueous medium is critical. These properties indeed affect both functional properties and biological impacts especially in quantifying associated risks and identifying suitable risk-mediation strategies. The feasibility of on-line coupling of a fractionation technique such as hollow-fiber flow field flow fractionation (HF5) with a light scattering technique such as MALS (multi-angle light scattering) is investigated here for this purpose. Data obtained from such a fractionation technique and its combination thereof with MALS have been compared with those from more conventional but often complementary techniques e.g. transmission electron microscopy, dynamic light scattering, atomic absorption spectroscopy, and X-ray fluorescence. The combination of fractionation and multi angle light scattering techniques have been found to offer an ideal, hyphenated methodology for a simultaneous size-separation and characterization of silver nanoparticles. The hydrodynamic radii determined by fractionation techniques can be conveniently correlated to the mean average diameters determined by multi angle light scattering and reliable information on particle morphology in aqueous dispersion has been obtained. The ability to separate silver (Ag(+)) ions from silver nanoparticles (AgNPs) via membrane filtration during size analysis is an added advantage in obtaining quantitative insights to its risk potential. Most importantly, the methodology developed in this article can potentially be extended to similar characterization of metal-based nanoparticles when studying their functional effectiveness and hazard potential. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum.

    Directory of Open Access Journals (Sweden)

    Federica Costantini

    Full Text Available While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58-118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.

  2. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum.

    Science.gov (United States)

    Costantini, Federica; Carlesi, Lorenzo; Abbiati, Marco

    2013-01-01

    While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58-118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.

  3. Investigation of iron(III) reduction and trace metal interferences in the determination of dissolved iron in seawater using flow injection with luminol chemiluminescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Ussher, Simon J. [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Milne, Angela [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Department of Oceanography, Florida State University, Tallahassee, FL 32306-4320 (United States); Landing, William M. [Department of Oceanography, Florida State University, Tallahassee, FL 32306-4320 (United States); Attiq-ur-Rehman, Kakar [Department of Chemistry, University of Balochistan, Quetta (Pakistan); Seguret, Marie J.M.; Holland, Toby [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Achterberg, Eric P. [National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH (United Kingdom); Nabi, Abdul [Department of Chemistry, University of Balochistan, Quetta (Pakistan); Worsfold, Paul J., E-mail: pworsfold@plymouth.ac.uk [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-10-12

    A detailed investigation into the performance of two flow injection-chemiluminescence (FI-CL) manifolds (with and without a preconcentration column) for the determination of sub-nanomolar dissolved iron (Fe(II) + Fe(III)), following the reduction of Fe(III) by sulphite, in seawater is described. Kinetic experiments were conducted to examine the efficiency of reduction of inorganic Fe(III) with sulphite under different conditions and a rigorous study of the potential interference caused by other transition metals present in seawater was conducted. Using 100 {mu}M concentrations of sulphite a reduction time of 4 h was sufficient to quantitatively reduce Fe(III) in seawater. Under optimal conditions, cobalt(II) and vanadium(IV)/(III) were the major positive interferences and strategies for their removal are reported. Specifically, cobalt(II) was masked by the addition of dimethylglyoxime to the luminol solution and vanadium(IV) was removed by passing the sample through an 8-hydroxyquinoline column in a low pH carrier stream. Manganese(II) also interfered by suppression of the CL response but this was not significant at typical open ocean concentrations.

  4. A comparison of the electrochemical recovery of palladium using a parallel flat plate flow-by reactor and a rotating cylinder electrode reactor

    International Nuclear Information System (INIS)

    Terrazas-Rodriguez, J.E.; Gutierrez-Granados, S.; Alatorre-Ordaz, M.A.; Ponce de Leon, C.; Walsh, F.C.

    2011-01-01

    The production of catalytic converters generates large amounts of waste water containing Pd 2+ , Rh 3+ and Nd 3+ ions. The electrochemical treatment of these solutions offers an economic and effective alternative to recover the precious metals in comparison with other traditional metal recovery technologies. The separation of palladium from this mixture of metal ions by catalytic deposition was carried out using a rotating cylinder electrode reactor (RCER) and a parallel plate reactor (FM01-LC) with the same cathode area (64 cm 2 ) and electrolyte volume (300 cm 3 ). The study was carried out at mean linear flow velocities of 1.27 -1 (120 e /v -1 (7390 2+ ions in the parallel plate electrode reactor was 35% while the recovery of 97% of Pd 2+ in the RCER was 62%. The volumetric energy consumption during the electrolysis was 0.56 kW h m -3 and 2.1 kW h m -3 for the RCER and the FM01-LC reactors, respectively. Using a three-dimensional stainless steel electrode in the FM01-LC laboratory reactor, 99% of palladium ions were recovered after 30 min of electrolysis while in the RCER, 120 min were necessary.

  5. Studies on rheological and leaching characteristics of heavy metals through selective additive in high concentration ash slurry.

    Science.gov (United States)

    Senapati, P K; Mohapatra, R; Pani, G K; Mishra, B K

    2012-08-30

    The generation and disposal level of thermal power plant ash in India is a challenging task. The conventional mode of dilute phase ash slurry (10-20% solids by weight) transport through pipelines being practiced in majority of these plants not only consumes huge amount of precious water and pumping energy but also causes serious environmental problem at the disposal site. The present study investigates the rheological and leaching characteristics of an Indian ash samples at high solids concentrations (>50% by weight) using sodium silicate as an additive. The flow behaviour of ash slurry in the concentration range of 50-60% by weight is described by a Bingham-plastic model. It was indicated that the addition of sodium silicate (0.2-0.6% of the total solids) could able to reduce both the slurry viscosity and the yield stress. The analysis of the ash samples for the presence of heavy metals such as Fe, Cd, Ni, Pb, Zn, Cu, Co, As and Hg were carried out following Hansen and Fisher procedure. The addition of sodium silicate affected the leaching characteristics of the ash samples over a period of 300 days resulting in the reduction of leaching of heavy metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Microbiological metal extraction processes

    International Nuclear Information System (INIS)

    Torma, A.E.

    1991-01-01

    Application of biotechnological principles in the mineral processing, especially in hydrometallurgy, has created new opportunities and challenges for these industries. During the 1950's and 60's, the mining wastes and unused complex mineral resources have been successfully treated in bacterial assisted heap and dump leaching processes for copper and uranium. The interest in bio-leaching processes is the consequence of economic advantages associated with these techniques. For example, copper can be produced from mining wastes for about 1/3 to 1/2 of the costs of copper production by the conventional smelting process from high-grade sulfide concentrates. The economic viability of bio leaching technology lead to its world wide acceptance by the extractive industries. During 1970's this technology grew into a more structured discipline called 'bio hydrometallurgy'. Currently, bio leaching techniques are ready to be used, in addition to copper and uranium, for the extraction of cobalt, nickel, zinc, precious metals and for the desulfurization of high-sulfur content pyritic coals. As a developing technology, the microbiological leaching of the less common and rare metals has yet to reach commercial maturity. However, the research in this area is very active. In addition, in a foreseeable future the biotechnological methods may be applied also for the treatment of high-grade ores and mineral concentrates using adapted native and/or genetically engineered microorganisms. (author)

  7. Understanding the differentiating impacts of the communication strategies of a high involvement service (investment advisory services) and a high involvement product (precious jewellery) on customer satisfaction and loyalty.

    OpenAIRE

    Gupta, Gauri

    2009-01-01

    While marketing literature has largely focused on high and low involvement purchases and the positive relationship between customer satisfaction and loyalty; the differentiating impacts of communication strategies for a high involvement service and a high involvement product on customer satisfaction and loyalty has received little academic attention. Consequently, this study examines the differentiating impacts of the communication strategies for investment advisory services and precious jewe...

  8. Chalcogenide metal centers for oxygen reduction reaction: Activity and tolerance

    International Nuclear Information System (INIS)

    Feng Yongjun; Gago, Aldo; Timperman, Laure; Alonso-Vante, Nicolas

    2011-01-01

    This mini-review summarizes materials design methods, oxygen reduction kinetics, tolerance to small organic molecules and fuel cell performance of chalcogenide metal catalysts, particularly, ruthenium (Ru x Se y ) and non-precious transition metals (M x X y : M = Co, Fe and Ni; X = Se and S). These non-platinum catalysts are potential alternatives to Pt-based catalysts because of their comparable catalytic activity (Ru x Se y ), low cost, high abundance and, in particular, a high tolerance to small organic molecules. Developing trends of synthesis methods, mechanism of oxygen reduction reaction and applications in direct alcohol fuel cells as well as the substrate effect are highlighted.

  9. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    OpenAIRE

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanof...

  10. Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers

    Energy Technology Data Exchange (ETDEWEB)

    Pacio, J., E-mail: julio.pacio@kit.edu; Daubner, M.; Fellmoser, F.; Litfin, K.; Wetzel, Th.

    2016-05-15

    Highlights: • A unique experiment with lead–bismuth eutectic (LBE) as working fluid was performed. • Detailed temperature measurements were implemented at three axial positions. • The experimental results present a good repeatability within the uncertainties. • Pressure drop results agree with water correlations, as expected. • The Nusselt number is well predicted by the most conservative correlation. - Abstract: An experimental campaign considering a 19-pin hexagonal rod bundle with wire spacers, cooled by forced-convective LBE was completed at the Karlsruhe Liquid Metal Laboratory (KALLA). In the frame of the European research project SEARCH (Safe Exploitation Related Chemistry for HLM Reactors, 2011–2015) the geometry and operating conditions of temperature, flow velocity and power density are representative of the fuel assemblies envisaged for the MYRRHA reactor. An extensive test matrix is evaluated, with 33 experimental runs covering a wide range of Reynolds (ca. 14 000–48 000) and Péclet (ca. 400–1500) numbers, as well as thermal powers (up to 295 kW) at 200 °C inlet temperature, indicating a good degree of reproducibility within the relatively small experimental uncertainties. Both the pressure drop and heat transfer performances are studied. When possible, a comparison with correlations available in the reviewed literature (namely, friction and heat transfer coefficients) is given. Furthermore, the detailed cross-sectional temperature distribution at three selected axial positions is obtained in the experiments and represents the main validation data for CFD. In non-dimensional terms, these profiles could be repeated at different operating conditions, for example hot and cold spots are consistently found at given locations.

  11. XRD, DRS, and SEM stundies of the effects of metal dopants (Pt and Au) on the structural and optical properties of TiO2

    CSIR Research Space (South Africa)

    Moloantoa, JR

    2011-07-01

    Full Text Available Au and Pt doped TiO2 nanocrystlas were prepared using the sol gel method. Diffuse Reflectance Spectroscopy (DRS) was used to study the characteristics of these precious metals and X-ray diffraction (XRD) with calculated lattice parameters was used...

  12. Assessment of heavy metal flows in animal husbandry and development of a stategy to reduce heavy metal inputs into agro-ecosystems by animal manures; Erfassung von Schwermetallstroemen in landwirtschaftlichen Tierproduktionsbetrieben und Erarbeitung einer Konzeption zur Verringerung der Schwermetalleintraege durch Wirtschaftsduenger tierischer Herkunft in Agraroekosysteme

    Energy Technology Data Exchange (ETDEWEB)

    Schultheiss, U.; Doehler, H.; Roth, U.; Eckel, H.; Goldbach, H.; Kuehnen, V.; Wilcke, W.; Uihlein, A.; Fruechtenicht, K.; Steffens, G.

    2004-07-01

    The overall objectives of the project were to assess heavy metal flows on livestock farms and to develop a strategy to reduce heavy metal inputs into animal manures. For the experiments 20 farms with animal husbandry in various regions of Germany were selected. On the farms the inputs and outputs of the elements copper and zinc, as well as lead, cadmium, chromium and nickel were balanced at the stable level. The effect of abatement measures was evaluated using a calculation tool for stable balances. It is shown, the main input pathways for heavy metals into animal manures are, apart from copper disinfectants, feeding stuffs and feed supplements. Home grown feeds are the major source of heavy metal input into the stable because they are fed in large quantities. However, the heavy metal content of the home grown feeds in particular of roughages for ruminants is low. Purchased feed stuffs (supplementary feeding stuffs and complete feeding stuffs) were found to have a higher content of heavy metals (due to supplementation with trace elements) compared to home grown feeds. Thus, pig and poultry husbandry rather than ruminant husbandry is susceptible to heavy metal accumulation of manures. Heavy metals are cycling within the farm which is of importance when discussing the environmental impact. The turnover within the farm can hardly be controlled by the farmer. Thus, effective strategies have to be targeted at the inputs, e. g. the purchased feed stuffs. A main option to reduce the heavy metal input is to lower the trace element concentrations in supplementary feed stuffs either by legislation of maximum threshold values (e. g. EG 1334/2003) or by volunteer agreements of the feed industry and agriculture. In addition, the absorption of copper and zinc by the animals should be improved using better absorbable trace element compounds and phytase. (orig.)

  13. Tensile flow behaviour of 2.25Cr-1Mo ferritic steel base metal an simulated heat affected zone structures of 2.25 Cr-1Mo weld joint

    International Nuclear Information System (INIS)

    Laha, K.; Chandravathi, K.S.; Rao, K.B.S.; Mannan, S. L.; Sastry, D.H.

    1999-01-01

    Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (σ = K 1 ε n1 ) at higher (>623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower ( 1 ε n1 + exp (K 2 + n 2 ε), was found to describe the flow curve. In general, the flow parameters n 1 , K 1 , n 2 and K 2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n 1 value increased and the K 1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of n 1 with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n 1 . (orig.)

  14. This Precious Heritage.

    Science.gov (United States)

    Heth, Charlotte

    1994-01-01

    Discusses the role of Native American music, dance, and song in religious ceremonies, cultural preservation, social occasions, and entertainment. Describes traditional musical forms and instruments used by Hawaiians and various American Indian and Alaska Native groups, as well as innovations and European-based adaptations in musical styles and…

  15. Liquid metal steam generator

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1975-01-01

    A liquid metal heated steam generator is described which in the event of a tube failure quickly exhausts out of the steam generator the products of the reaction between the water and the liquid metal. The steam is generated in a plurality of bayonet tubes which are heated by liquid metal flowing over them between an inner cylinder and an outer cylinder. The inner cylinder extends above the level of liquid metal but below the main tube sheet. A central pipe extends down into the inner cylinder with a centrifugal separator between it and the inner cylinder at its lower end and an involute deflector plate above the separator so that the products of a reaction between the liquid metal and the water will be deflected downwardly by the deflector plate and through the separator so that the liquid metal will flow outwardly and away from the central pipe through which the steam and gaseous reaction products are exhausted. (U.S.)

  16. Fluid flow control system

    International Nuclear Information System (INIS)

    Rion, Jacky.

    1982-01-01

    Fluid flow control system featuring a series of grids placed perpendicular to the fluid flow direction, characterized by the fact that it is formed of a stack of identical and continuous grids, each of which consists of identical meshes forming a flat lattice. The said meshes are offset from one grid to the next. This system applies in particular to flow control of the coolant flowing at the foot of an assembly of a liquid metal cooled nuclear reactor [fr

  17. Liquid metal monitor

    International Nuclear Information System (INIS)

    Caldwell-Nichols, C.J.; Roach, P.F.

    1982-01-01

    A liquid metal monitor of the by-pass plugging meter kind described in British Patent 1,308,466, is further provided with a pump arranged to oppose flow through a by-pass thereby to provide a constant pressure difference across an orifice and improve the sensitivity of the instrument. The monitor estimates the impurity content in a liquid metal stream. (author)

  18. Liquid Metal Transformers

    OpenAIRE

    Sheng, Lei; Zhang, Jie; Liu, Jing

    2014-01-01

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series...

  19. Computational study of heat transfer from the inner surface of a circular tube to force high temperature liquid metal flow in laminar and transition regions

    Science.gov (United States)

    Hata, K.; Fukuda, K.; Masuzaki, S.

    2018-03-01

    Heat transfer through forced convection from the inner surface of a circular tube to force the flow of liquid sodium in the laminar and transition regions were numerically analysed for two types of tube geometries (concentric annular and circular tubes) and two types of equivalent diameters (hydraulic and thermal equivalent diameters). The unsteady laminar three-dimensional basic equations for forced convection heat transfer caused by a step heat flux were numerically solved until a steady state is attained. The code of the parabolic hyperbolic or elliptic numerical integration code series (PHOENICS) was used for calculations by considering relevant temperature dependent thermo-physical properties. The concentric annular tube has a test tube with inner and outer diameters of 7.6 and 14.3 mm, respectively, has a heated length of 52 mm, and an L/d of 6.84. The two circular tubes have inner diameters of 6.7 and 19.3 mm with L/d of 7.76 and 2.69, respectively, and a heated length of 52 mm. The inlet liquid temperature, inlet liquid velocity, and surface heat flux were equally set for each test tube as T in ≅573 to 585 K, u in = 0.0852 to 1 m/s, and q = 2×105 to 2.5×106 W/m2, respectively. The increase in temperature from the leading edge of the heated section to the outlet of the circular tubes (with a hydraulic diameter of d H = 6.7 mm and a thermal equivalent diameter d te = 19.3 mm) was approximately 2.70 and 1.21 times as large as the corresponding values of the concentric annular tube with an inner diameter of 7.6 mm and an outer diameter of 14.3 mm, respectively. A quantity in the laminar and transition regions was suggested as the dominant variable involved in the forced convection heat transfer in the circular tube. The values of the local and average Nusselt numbers, Nu z and Nu av , respectively, for a concentric annular tube with d H = 6.7 mm and for a circular tube with d H = 6.7 mm were calculated to examine the effects of q, T in , and Pe on heat

  20. Solving geological and historical puzzles with advanced gemologic techniques: The Franco Dávila (1772 precious opal case

    Directory of Open Access Journals (Sweden)

    J. García-Guinea

    2016-11-01

    Full Text Available The large precious opal weighting 33 grams fitted in a silver jewel and exposed to visitors at the Museo Nacional de Ciencias Naturales (MNCN is well documented in: (i its own mounting (1772, (ii at the 775 document of the Archive of the MNCN and (iii the 395 specimen described in the of Pedro Franco Dávila catalogue. The X-ray diffractogram (XRD performed onto the opal block is very similar to other opals of volcanic origin containing varied amounts of cristobalite, tridymite and amorphous silica. The Raman spectrum shows a band peaked at 242, 343 and 416 cm-1 associated with O-Si-O stretching groups; other spectral band peaked at 780 and 819 cm-1 corresponding to vibration of symmetrical O-Si-O rings of 3 and 4 link members, plus other minor bands. The Raman spectrum is also very similar to those observed in Mexican opals of volcanic origin containing an spectral band of stretching nodes v1 (OH at 3233, 3393, 3511, 3628 cm-1 related to OH groups with hydrogen bonds of isolated silanol groups. The interferometric confocal dual microscope 3D (MCI3D, which is a nondestructive facility of high resolution and LED technology reveals the geometry of graver tools on the silver jewel and the computed tomography X-ray highlights the opal cutting as a squared princess type and silver chloride infillings of a crack probably caused by a shock on a corner. Under the scanning electron microscope we observed barite, sealed veins of silica rich in Mn and opal with high contents of Al and K which, along with the historical data, the piece can be attributed to the historical site of opals hosted in Slovakia andesite rocks, this data explains the optical light behavior in the cabochon. The silver jewel has large amounts of Hg and AgCl indicating amalgam method. In addition the natural AgS2 phases probably come from Nueva España (year 1772 in full production of silver in such time. The association of new analytical non-destructive techniques combines the

  1. Solving geological and historical puzzles with advanced gemologic techniques: The Franco Dávila (1772) precious opal case

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Guinea, J.; Gonzalez-Alcalde, J.; Furio, M.; Jorge, A.; Garrido, F.

    2016-07-01

    The large precious opal weighting 33 grams fitted in a silver jewel and exposed to visitors at the Museo Nacional de Ciencias Naturales (MNCN) is well documented in: (i) its own mounting (1772), (ii) at the 775 document of the Archive of the MNCN and (iii) the 395 specimen described in the of Pedro Franco Dávila catalogue. The X-ray diffractogram (XRD) performed onto the opal block is very similar to other opals of volcanic origin containing varied amounts of cristobalite, tridymite and amorphous silica. The Raman spectrum shows a band peaked at 242, 343 and 416 cm−1 associated with O-Si-O stretching groups; other spectral band peaked at 780 and 819 cm−1 corresponding to vibration of symmetrical O-Si-O rings of 3 and 4 link members, plus other minor bands. The Raman spectrum is also very similar to those observed in Mexican opals of volcanic origin containing an spectral band of stretching nodes ν1 (OH) at 3233, 3393, 3511, 3628 cm−1 related to OH groups with hydrogen bonds of isolated silanol groups. The interferometric confocal dual microscope 3D (MCI3D), which is a nondestructive facility of high resolution and LED technology reveals the geometry of graver tools on the silver jewel and the computed tomography X-ray highlights the opal cutting as a squared princess type and silver chloride infillings of a crack probably caused by a shock on a corner. Under the scanning electron microscope we observed barite, sealed veins of silica rich in Mn and opal with high contents of Al and K which, along with the historical data, the piece can be attributed to the historical site of opals hosted in Slovakia andesite rocks, this data explains the optical light behavior in the cabochon. The silver jewel has large amounts of Hg and AgCl indicating amalgam method. In addition the natural AgS2 phases probably come from Nueva España (year 1772) in full production of silver in such time. The association of new analytical non-destructive techniques combines the

  2. Water tube liquid metal control

    International Nuclear Information System (INIS)

    Campbell, J.W.E.

    1981-01-01

    An improved heat exchanger for use in liquid metal cooled nuclear power reactors is described in which the heat is transferred between the flow of liquid metal which is to be cooled and a forced flow of liquid which is wholly or partly evaporated. (U.K.)

  3. Glassy metals

    CERN Document Server

    Russew, Krassimir

    2016-01-01

    The topics discussed in this book focus on fundamental problems concerning the structural relaxation of amorphous metallic alloys, above all the possibility of studying it on the basis of viscous flow behavior and its relation to rheological anomalies, such as bend stress relaxation, thermal expansion, specific heat, density changes, and crystallization. Most relaxation studies deal with the relaxation changes of a single definite material property, and not with a wider spectrum of physical properties integrated into a common framework. This book shows that it is possible to describe these property changes on the basis of a more comprehensive theoretical understanding of their mechanism.

  4. Effect of scanning speed and powder flow rate on the evolving properties of laser metal deposited Ti-6Al-4V/Cu composites

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-01-01

    Full Text Available In laser metal deposition (LMD), good bonding between two similar or dissimilar materials can be achieved if the interrelationships between the processing parameters are well understood. LMD was conducted by varying the scanning speed and keeping...

  5. Polyionic polymers – heterogeneous media for metal nanoparticles as catalyst in Suzuki–Miyaura and Heck–Mizoroki reactions under flow conditions

    Directory of Open Access Journals (Sweden)

    Klaas Mennecke

    2009-05-01

    Full Text Available The preparation of monolithic polyionic supports which serve as efficient heterogeneous supports for palladium(0 nanoparticles is described. These functionalized polymers were incorporated inside a flow reactor and employed in Suzuki–Miyaura and Heck cross couplings under continuous flow conditions.

  6. Hydrogen evolution by a metal-free electrocatalyst

    KAUST Repository

    Zheng, Yao

    2014-04-28

    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics. © 2014 Macmillan Publishers Limited. All rights reserved.

  7. Achieving Simultaneous CO2 and H2 S Conversion via a Coupled Solar-Driven Electrochemical Approach on Non-Precious-Metal Catalysts.

    Science.gov (United States)

    Ma, Weiguang; Wang, Hong; Yu, Wei; Wang, Xiaomei; Xu, Zhiqiang; Zong, Xu; Li, Can

    2018-03-19

    Carbon dioxide (CO 2 ) and hydrogen sulfide (H 2 S) are generally concomitant with methane (CH 4 ) in natural gas and traditionally deemed useless or even harmful. Developing strategies that can simultaneously convert both CO 2 and H 2 S into value-added products is attractive; however it has not received enough attention. A solar-driven electrochemical process is demonstrated using graphene-encapsulated zinc oxide catalyst for CO 2 reduction and graphene catalyst for H 2 S oxidation mediated by EDTA-Fe 2+ /EDTA-Fe 3+ redox couples. The as-prepared solar-driven electrochemical system can realize the simultaneous conversion of CO 2 and H 2 S into carbon monoxide and elemental sulfur at near neutral conditions with high stability and selectivity. This conceptually provides an alternative avenue for the purification of natural gas with added economic and environmental benefits. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Precious metals in SDSS quasar spectra. II. Tracking the evolution of strong, 0.4 < z < 2.3 Mg II absorbers with thousands of systems

    International Nuclear Information System (INIS)

    Seyffert, Eduardo N.; Simcoe, Robert A.; Cooksey, Kathy L.; O'Meara, John M.; Kao, Melodie M.; Prochaska, J. Xavier

    2013-01-01

    We have performed an analysis of over 34,000 Mg II doublets at 0.36 < z < 2.29 in Sloan Digital Sky Survey (SDSS) Data Release 7 quasar spectra; the catalog, advanced data products, and tools for analysis are publicly available. The catalog was divided into 14 small redshift bins with roughly 2500 doublets in each and from Monte Carlo simulations, we estimate 50% completeness at rest equivalent width W r ≈ 0.8 Å. The equivalent width frequency distribution is described well by an exponential model at all redshifts, and the distribution becomes flatter with increasing redshift, i.e., there are more strong systems relative to weak ones. Direct comparison with previous SDSS Mg II surveys reveals that we recover at least 70% of the doublets in these other catalogs, in addition to detecting thousands of new systems. We discuss how these surveys came by their different results, which qualitatively agree but because of the very small uncertainties, differ by a statistically significant amount. The estimated physical cross section of Mg II-absorbing galaxy halos increased approximately threefold from z = 0.4 to z = 2.3, while the W r ≥ 1 Å absorber line density, dN MgII /dX, grew by roughly 45%. Finally, we explore the different evolution of various absorber populations—damped Lyα absorbers, Lyman limit systems, strong C IV absorbers, and strong and weaker Mg II systems—across cosmic time (0 < z < 6).

  9. PRECIOUS METALS IN SDSS QUASAR SPECTRA. I. TRACKING THE EVOLUTION OF STRONG, 1.5 < z < 4.5 C IV ABSORBERS WITH THOUSANDS OF SYSTEMS

    International Nuclear Information System (INIS)

    Cooksey, Kathy L.; Kao, Melodie M.; Simcoe, Robert A.; O'Meara, John M.; Prochaska, J. Xavier

    2013-01-01

    We have vastly increased the C IV statistics at intermediate redshift by surveying the thousands of quasars in the Sloan Digital Sky Survey (SDSS) Data-Release 7. We visually verified over 16,000 C IV systems with 1.46 r ≈ 0.6 Å. We analyzed the sample as a whole and in 10 small redshift bins with approximately 1500 doublets each. The equivalent width frequency distributions f(W r ) were well modeled by an exponential, with little evolution in shape. In contrast with previous studies that modeled the frequency distribution as a single power law, the fitted exponential gives a finite mass density for the C IV ions. The comoving line density dN CIV /dX evolved smoothly with redshift, increasing by a factor of 2.37 ± 0.09 from z = 4.55-1.96, then plateauing at dN CIV /dX∼0.34 for z = 1.96-1.46. Comparing our SDSS sample with z 5 (infrared) surveys, we see an approximately 10-fold increase in dN CIV /dX over z ≈ 6 → 0, for W r ≥ 0.6 Å. This suggests a monotonic and significant increase in the enrichment of gas outside galaxies over the 12 Gyr lifetime of the universe.

  10. Iron(II) phthalocyanine covalently functionalized graphene as a highly efficient non-precious-metal catalyst for the oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Liu, Ying; Wu, Yan-Ying; Lv, Guo-Jun; Pu, Tao; He, Xing-Quan; Cui, Li-Li

    2013-01-01

    Graphical abstract: The fabricated FePc-Gr catalyst for ORR exhibited high activity, favoring a direct 4-electron process, good stability and selectivity, all of which should be attributed to its high conductivity, the synergistic effect between FePc and graphene, as well as the formation of stable FePc-Gr composite through covalent bonding and π–π interaction. - Abstract: A novel iron(II) phthalocyanine covalently modified graphene (FePc-Gr) was synthesized by reduction of the product obtained through an amidation reaction between carboxyl-functionalized graphene oxide (CFGO) and iron(II) tetra-aminophthalocyanine (FeTAPc). The FePc-Gr hybird was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy (RS) and X-ray photoelectron spectroscopy (XPS), respectively. The electrocatalytic properties of FePc-Gr toward the oxygen reduction reaction (ORR) were evaluated using cyclic voltammetry (CV) and linear sweep voltammetry methods. The peak potential of the ORR on the FePc-Gr catalyst was found to be about −0.12 V vs. SCE in 0.1 M NaOH solution, which was 180 and 360 mV more positive than that on FeTAPc and bare GCE, respectively. The rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) measurements revealed that the ORR mechanism was nearly via a direct four-electron pathway to water on FePc-Gr. The current still remained 83.5% of its initial after chronoamperometric test for 10,000 s. Nevertheless, Pt/C catalyst only retained 40.5% of its initial current. The peak potential and peak current changed slightly when 3 M methanol was introduced. So the FePc-Gr composite catalyst for ORR exhibited high activity, good stability and methanol-tolerance, which could be used as a promising Pt-free catalyst for ORR in alkaline direct methanol fuel cell (DMFC)

  11. Achieving simultaneous CO{sub 2} and H{sub 2}S conversion via a coupled solar-driven electrochemical approach on non-precious-metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Weiguang; Yu, Wei; Zong, Xu; Li, Can [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian (China); Wang, Hong; Wang, Xiaomei; Xu, Zhiqiang [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian (China); University of Chinese Academy of Sciences, Beijing (China)

    2018-03-19

    Carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S) are generally concomitant with methane (CH{sub 4}) in natural gas and traditionally deemed useless or even harmful. Developing strategies that can simultaneously convert both CO{sub 2} and H{sub 2}S into value-added products is attractive; however it has not received enough attention. A solar-driven electrochemical process is demonstrated using graphene-encapsulated zinc oxide catalyst for CO{sub 2} reduction and graphene catalyst for H{sub 2}S oxidation mediated by EDTA-Fe{sup 2+}/EDTA-Fe{sup 3+} redox couples. The as-prepared solar-driven electrochemical system can realize the simultaneous conversion of CO{sub 2} and H{sub 2}S into carbon monoxide and elemental sulfur at near neutral conditions with high stability and selectivity. This conceptually provides an alternative avenue for the purification of natural gas with added economic and environmental benefits. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Trace level determination of precious metals in aqueous medium, U, Th and Zr based nuclear materials by ICP-AES and EDXRF - a comparative study

    International Nuclear Information System (INIS)

    Sengupta, Arijit; Thulasidas, S.K.; Natarajan, V.

    2015-01-01

    A comparative study was carried out to determine Ag, Au and Pt in aqueous samples, uranium, zirconium, and thorium based nuclear fuels and associated materials by CCD based ICP-AES and EDXRF. In ICP-AES, the spectral interference of U, Th, Zr matrices on trace level determination of Ag, Au and Pt were studied for different analytical lines of these analytes. The analytical performance of different lines including detection limits, sensitivity, linear dynamic range etc were studied both by ICP-AES and EDXRF. Though EDXRF technique was known its non destructive nature, the overall analytical performance of ICP-AES technique was found to be superior to EDXRF. Based on the spectral contribution from emission rich matrix elements and the analytical performance of different analytical lines of these analytes, a method was developed for direct determination of these analytes by ICP-AES without chemical separation. The method was validated with synthetic samples and compared with EDXRF technique and conventional ICP-AES technique where the major matrix was chemically separated using suitable organic phase containing selective ligands. The ICP-AES method for direct determination of analytes without chemical separation was found to be simple, less time consuming, without generation of organic waste with acceptable analytical performance

  13. Time-series product and substance flow analyses of end-of-life electrical and electronic equipment in China

    International Nuclear Information System (INIS)

    Habuer,; Nakatani, Jun; Moriguchi, Yuichi

    2014-01-01

    Highlights: • We estimate the possession and obsolescence of household appliances (HAs) in China. • Over 4.8–5.1 billion units of major HAs will be discarded in the next 20 years. • We calculate the amounts of substances contained in end-of-life (EoL) TV sets. • Less common metals will tend to decrease in content in generation of EoL TV sets. • Precious metals will tend to increase in content in EoL TV sets in 2015–2030. - Abstract: Given the amounts of end-of-life electrical and electronic equipment (EoL-EEE) being generated and their contents of both harmful and valuable materials, the EoL-EEE issue should be regarded not only as an emerging environmental problem but also as a resource management strategy in China. At present, in order to provide the basis for managing EoL-EEE at both product and substance levels in China, it is necessary to carry out a quantitative analysis on EoL-EEE and to determine how much of it will be generated and how much materials and substances it contains. In this study, the possession and obsolescence amounts of five types of household appliance (HA) including television (TV) sets and the amounts of substances contained in EoL TV sets were estimated using time-series product flow analysis (PFA) and substance flow analysis (SFA). The results of PFA indicated that the total possession amounts of those five types of HAs will exceed 3.1 billion units in 2030, which will be two times higher than those in 2010. In addition, it was estimated that cumulatively over 4.8–5.1 billion units of these five types of EoL HA would be obsoleted between 2010–2030. The results of SFA on TV sets indicated that the generated amounts of most of the less common metals and a part of common metals such as copper (Cu) would tend to decrease, whereas those of other common metals such as iron (Fe) as well as precious metals would tend to increase in EoL TV sets in 2015–2030. The results of this study provide a quantitative basis for helping

  14. Time-series product and substance flow analyses of end-of-life electrical and electronic equipment in China

    Energy Technology Data Exchange (ETDEWEB)

    Habuer,, E-mail: habuer@env.t.u-tokyo.ac.jp; Nakatani, Jun; Moriguchi, Yuichi

    2014-02-15

    Highlights: • We estimate the possession and obsolescence of household appliances (HAs) in China. • Over 4.8–5.1 billion units of major HAs will be discarded in the next 20 years. • We calculate the amounts of substances contained in end-of-life (EoL) TV sets. • Less common metals will tend to decrease in content in generation of EoL TV sets. • Precious metals will tend to increase in content in EoL TV sets in 2015–2030. - Abstract: Given the amounts of end-of-life electrical and electronic equipment (EoL-EEE) being generated and their contents of both harmful and valuable materials, the EoL-EEE issue should be regarded not only as an emerging environmental problem but also as a resource management strategy in China. At present, in order to provide the basis for managing EoL-EEE at both product and substance levels in China, it is necessary to carry out a quantitative analysis on EoL-EEE and to determine how much of it will be generated and how much materials and substances it contains. In this study, the possession and obsolescence amounts of five types of household appliance (HA) including television (TV) sets and the amounts of substances contained in EoL TV sets were estimated using time-series product flow analysis (PFA) and substance flow analysis (SFA). The results of PFA indicated that the total possession amounts of those five types of HAs will exceed 3.1 billion units in 2030, which will be two times higher than those in 2010. In addition, it was estimated that cumulatively over 4.8–5.1 billion units of these five types of EoL HA would be obsoleted between 2010–2030. The results of SFA on TV sets indicated that the generated amounts of most of the less common metals and a part of common metals such as copper (Cu) would tend to decrease, whereas those of other common metals such as iron (Fe) as well as precious metals would tend to increase in EoL TV sets in 2015–2030. The results of this study provide a quantitative basis for helping

  15. Neutron radiography for visualization of liquid metal processes: bubbly flow for CO2 free production of Hydrogen and solidification processes in EM field

    Science.gov (United States)

    Baake, E.; Fehling, T.; Musaeva, D.; Steinberg, T.

    2017-07-01

    The paper describes the results of two experimental investigations aimed to extend the abilities of a neutron radiography to visualize two-phase processes in the electromagnetically (EM) driven melt flow. In the first experiment the Argon bubbly flow in the molten Gallium - a simulation of the CO2 free production of Hydrogen process - was investigated and visualized. Abilities of EM stirring for control on the bubbles residence time in the melt were tested. The second experiment was directed to visualization of a solidification front formation under the influence of EM field. On the basis of the neutron shadow pictures the form of growing ingot, influenced by turbulent flows, was considered. In the both cases rotating permanent magnets were agitating the melt flow. The experimental results have shown that the neutron radiography can be successfully employed for obtaining the visual information about the described processes.

  16. On-line sample-pre-treatment schemes for trace-level determinations of metals by coupling flow injection or sequential injection with ICP-MS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2003-01-01

    a polytetrafluoroethylene (PTFE) knotted reactor (KR), solvent extraction-back extraction and hydride/vapor generation. It also addresses a novel, robust approach, whereby the protocol of SI-LOV-bead injection (BI) on-line separation and pre-concentration of ultra-trace levels of metals by a renewable microcolumn...

  17. Dissolution of Metal Supported Spent Auto Catalysts in Acids

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-03-01

    Full Text Available Metal supported auto catalysts, have been used in sports and racing cars initially, but nowadays their application systematically increases. In Metal Substrate (supported Converters (MSC, catalytic functions are performed by the Platinum Group Metals (PGM: Pt, Pd, Rh, similarly to the catalysts on ceramic carriers. The contents of these metals make that spent catalytic converters are valuable source of precious metals. All over the world there are many methods for the metals recovery from the ceramic carriers, however, the issue of platinum recovery from metal supported catalysts has not been studied sufficiently yet. The paper presents preliminary results of dissolution of spent automotive catalyst on a metal carrier by means of acids: H2SO4, HCl, HNO3, H3PO4. The main assumption of the research was the dissolution of base metals (Fe, Cr, Al from metallic carrier of catalyst, avoiding dissolution of PGMs. Dissolution was the most effective when concentrated hydrochloric acid, and 2M sulfuric acid (VI was used. It was observed that the dust, remaining after leaching, contained platinum in the level of 0.8% and 0.7%, respectively.

  18. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  19. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  20. Study of a brittle and precious medieval rose-window by means of the integration of GPR, stress wave tests and infrared thermography

    Science.gov (United States)

    Nuzzo, L.; Masini, N.; Rizzo, E.

    2009-04-01

    The correct management and restoration of architectural monuments of high cultural interest requires a comprehensive understanding of their status of preservation, the detection of the building features, the localization of damages and possibly the identification of their causes, nature and extent. To this aim, in recent times there is a growing interest on non-destructive and non-invasive geophysical methods as an invaluable tool for correlating spatially the information gained through destructive tests, which are restricted to a few locations of the investigated structure, and to optimize the choice of their position in order to minimize their impact on the monument structural stability. Moreover, the integration of the classical geophysical techniques with emerging surface and subsurface sensing techniques (acoustics, thermography) provides a suitable methodology for a multi-scale assessment of the monument state of preservation and its material and building components, which is vital for addressing maintenance and restoration issues. The present case study focuses on the application of Ground Penetrating Radar (GPR), infrared thermography (IRT), sonic and ultrasonic tests to analyze a 13th century precious rose window in Southern Italy, affected by widespread decay and instability problems. The Cathedral of Troia (Apulia, Italy) is the masterpiece of the Apulian Romanesque architecture. Its façade is adorned with an astonishing 6 m diameter rose window consisting of 11 twin columns, in various stone and reused marbles, connected to a central oculus and to a ring of trapezoidal elements decorated with arched ribworks. Between the twin columns there are 11 triangular carved panels with different and strongly symbolic geometrical patterns. According to visual inspection, mineralogical and petrographic studies, different materials have been used for the different architectural elements: fine grained limestone for the central oculus, medium-fine grained calcarenite

  1. West Florida continental shelf: a study of geothermal flows and other processes affecting radionuclides and trace metals. Final report, July 1, 1977-September 30, 1982

    International Nuclear Information System (INIS)

    Fanning, K.A.; Betzer, P.R.; Byrne, R.H.

    1982-01-01

    The characteristics and distribution of submarine geothermal springs along Florida's west coast were studied. The composition of the effluent, expressed as chlorinity ratios, indicates the source is normal seawater. Six springs have been definitely identified, occupying an 85 km 2 area off Fort Myers, Florida. The effluent is acidified, impoverished in magnesium and phosphate, and enriched in calcium, silica, Ra-226, Rn-222 and metals, and reduced compared to the parent seawater. 6 references, 5 figures, 2 tables

  2. Behaviour of heavy metals during the thermal conversion of sawdust in entrained flows; Verhalten von Schwermetallen bei der thermischen Umwandlung von Saegespaenen im Flugstrom

    Energy Technology Data Exchange (ETDEWEB)

    Reimert, R.; Klensch, S. [Karlsruhe Univ. (T.H.) (Germany). Engler-Bunte-Institut Bereich 1 - Gas, Erdoel und Kohle

    2000-07-01

    The behaviour of heavy metals during the thermal utilisation of sawdust was studied experimentally in a pilot-scale experimental plant at the Engler-Bunte Institute. The experiments served to determine the influence of reactor temperature (1050 -1300 C), dedusting temperature, and the nature of the gas atmosphere (reductive/oxidative) on the distribution of heavy metals contained in the sawdust over the product fractions slag, flue ash, and product gas. A calculation model was used to calculate the theoretical heavy metal concentrations in flue ash as a function of reactor temperature, dedusting temperature and gas atmosphere. [German] Am Engler-Bunte-Institut wurden experimentelle Untersuchungen zum Verhalten von Schwermetallen bei der thermischen Nutzung von Saegespaenen in einer halbtechnischen Versuchsanlage durchgefuehrt. Mit Hilfe der Versuche wurden die Einfluesse der Reaktortemperatur (1050-1300 C), der Entstaubungstemperatur (350-850 C) und der Gasatmosphaere (reduzierend/oxidierend) auf die Verteilung der in den Saegespaenen enthaltenen Schwermetalle auf die Produktfraktionen Schlacke, Flugasche und Produktgas bestimmt. Mit einem Berechnungsmodell wurden die theoretischen Schwermetallkonzentrationen in der Flugasche als Funktion der Reaktortemperatur, der Entstaubungstemperatur und der Gasatmosphaere berechnet. (orig.)

  3. Protecting health from metal exposures in drinking water.

    Science.gov (United States)

    Armour, Margaret-Ann

    2016-03-01

    Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater.

  4. Exploiting flow injection and sequential injection for trace metal determinations in conjunction with detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    and selectivity. Either in order to separate/preconcentrate the analyte material, or because of the presence of potentially interfering matrix constituents. Such pretreatments are advantageously performed in flow injection (FI) or sequential injection (SI) manifolds, where all appropriate unit operations can...

  5. A study of the convective flow as a function of external parameters in a high-pressure metal halide discharge lamp (HgDyI3)

    Science.gov (United States)

    Hajji, S.; HadjSalah, S.; Benhalima, A.; Charrada, K.; Zissis, G.

    2016-06-01

    This paper deals with the modelling of the convection processes in metal-halide lamp discharges (HgDyI3). For this, we realized a 3D model, a steady, direct current powered and time-depending model for the solution of conservation equations relative to mass, momentum, and energy. After validation, this model was applied to the study of the effect of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp. Indeed, the electric current, the atomic ratio (Hg/Dy), and the effect of the convective transport have been studied.

  6. Multipurpose sampler device for liquid metal

    International Nuclear Information System (INIS)

    Nelson, P.A.; Kolba, V.M.; Holmes, J.T.

    1975-01-01

    A device for collecting samples or examining a flow of liquid metal is provided for use with such as a liquid-metal-cooled nuclear reactor. The sampler device includes a casing surrounded by an external heater for establishing an upper isothermal zone and a lower zone for heating the entering liquid metal. One of various inserts is suspended into the isothermal zone where it is surrounded by a shroud tube for directing liquid-metal flow from the heating zone into the top of the insert. Discharge flow from the insert gravitates through a helically wound tube in heat exchange contact with entering liquid-metal flow within the heating zone. The inserts comprise an overflow cup with upper and lower freeze seals, a filter for removing particulate matter, and a fixture for maintaining various sample materials in equilibrium with liquid-metal flow. (U.S.)

  7. Heavy metals

    OpenAIRE

    Adriano, Domy; VANGRONSVELD, Jaco; Bolan, N.S.; Wenzel, W.W.

    2005-01-01

    - Sources of Metals in the Environment - Environmental Contamination - Retention and Dynamics of Metals in Soils - Adsorption - Complexation - Precipitation - Bioavailability–Natural Attenuation Interactions - Biological Response to Metals - Soil Remediation

  8. Bio-Reclamation of Strategic and Energy Critical Metals from Secondary Resources

    Directory of Open Access Journals (Sweden)

    Sadia Ilyas

    2017-06-01

    Full Text Available Metals with an average crustal abundance of <0.01 ppm, which are high in supply shortage due to soaring demand, can, under the excessive environmental risk and <1% recycling rate of their production, be termed as ‘critical’ in a limited geo-boundary. A global trend to the green energy and low carbon technologies with geopolitical scenario is challenging for the sustainable reclamation of these metals from secondary resources. Among the available processes, bio-reclamation can be a sustainable technique for extracting and concentrating these metals. Therefore, in the present paper, the potential reclamation of critical metals (including rare earth elements, precious metals, and a common nuclear fuel element, uranium via their interaction with microbe/s has been reviewed.

  9. Magnetohydrodynamic flow phenomena

    International Nuclear Information System (INIS)

    Gerbeth, G.; Mutschke, G.; Eckert, S.

    1995-01-01

    The MHD group of the Institute of Safety Research performs basic studies on fluid dynamics and heat/mass transfer in fluids, particularly for electrically conducting fluids (liquid metals) exposed to external magnetic fields (Magnetohydrodynamics - MHD). Such a contactless influence on transport phenomena is of principal importance for a variety of applied problems including safety and design aspects in liquid metal cooled fusion reactors, fast reactors, and chemical systems. Any electrically conducting flow can be influenced without any contact by means of an external electromagnetic field. This, of course, can change the known hydromechanically flow patterns considerably. In the following two examples of such magnetic field influence are presented. (orig.)

  10. Liquid metal cooled nuclear reactor

    International Nuclear Information System (INIS)

    Leigh, K.M.

    1980-01-01

    A liquid metal cooled nuclear reactor is described, wherein coolant is arranged to be flowed upwardly through a fuel assembly and having one or more baffles located above the coolant exit of the fuel assembly, the baffles being arranged so as to convert the upwardly directed motion of liquid metal coolant leaving the fuel assembly into a substantially horizontal motion. (author)

  11. Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window

    Science.gov (United States)

    Nuzzo, L.; Calia, A.; Liberatore, D.; Masini, N.; Rizzo, E.

    2010-04-01

    The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.

  12. 交错网格下MHD相容守恒格式的发展%Development of a consistent and conservative scheme on a staggered grid for liquid metal MHD flows

    Institute of Scientific and Technical Information of China (English)

    李俊峰; 倪明玖

    2011-01-01

    在低磁场雷诺数条件下,基于电势泊松方程,发展了交错网格下可以精确计算电流和洛伦兹力(电磁力)的相容守恒格式.采用压力为变量的原始变量法求解不可压缩Navier-Stokes方程,所计算的电流满足电荷守恒定律,所计算的电磁力满足动量守恒定律.对金属流体在Hartmann数50~5000范围内验证了格式的精确性.交错网格下相容守恒格式的发展为后续MHD稳定性分析、湍流的大涡模拟及直接数值模拟提供很好的选择.%A consistent and conservative scheme has been extended and developed on a staggered grid system for liquid metal MHD flow at a low magnetic Reynolds number by solving electrical potential Poisson equation based on the Ohm's law and the charge conservation law. The consistent scheme is used to ensure the calculated current density conserves the charge, and the divergence formula of the Lorentz force is used to ensure the momentum conservation. Simulation of liquid metal flows in a three-dimensional straight channel is conducted and compared with the analytical solutions from Shercliff's and Hunt's. The numerical results are in good agreement with analytical solutions for the Hartmann numbers from 50 to 5000. A fully conservative scheme on a staggered grid, which can conserve mass, momentum and kinetic energy and charge, is then developed with the central-symmetrical scheme for the convective term and the pressure term and with the consistent and conservative scheme for the calculation of the current density and the Lorentz force. A fully conservative scheme can be a good tool for numerical analysis of MHD flow instability, large eddy simulation (LES) and direct-numerical simulation (DNS) of MHD turbulence.

  13. Analysis of metals and phosphorus in biodiesel B100 from different feedstock using a Flow Blurring® multinebulizer in inductively coupled plasma-optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Avila Orozco, Francisco D. [Lab. FIA, Sección Química Analítica, INQUISUR (UNS-CONICET), Universidad Nacional del Sur, Avenida Alem 1253, B8000CPB, Bahía Blanca (Argentina); Kovachev, Nikolay; Aguirre Pastor, Miguel Ángel [Dpto. Química Analítica, Nutrición y Bromatología e Instituto Universitario de Materiales, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, Alicante (Spain); Domini, Claudia E.; Fernández Band, Beatriz S. [Lab. FIA, Sección Química Analítica, INQUISUR (UNS-CONICET), Universidad Nacional del Sur, Avenida Alem 1253, B8000CPB, Bahía Blanca (Argentina); Canals Hernández, Antonio, E-mail: a.canals@ua.es [Dpto. Química Analítica, Nutrición y Bromatología e Instituto Universitario de Materiales, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, Alicante (Spain)

    2014-05-01

    Highlights: • The elemental analysis of biodiesel by the proposed method is simple and fast. • Two-nozzles Flow Blurring® nebulizer allow to reduce the spectral interferences. • Two-nozzles Flow Blurring® nebulizer avoid the formation of carbon deposits. • The analysis may be carried out without any sample pretreatment. Abstract: A simple and fast method for determining the content of Na, K, Ca, Mg, P, and 20 heavy metals in biodiesel samples with inductively coupled plasma optical emission spectrometry (ICP OES) using a two-nozzle Flow Blurring® multinebulizer prototype and on-line internal standard calibration, are proposed. The biodiesel samples were produced from different feedstock such as sunflower, corn, soybean and grape seed oils, via a base catalyst transesterification. The analysis was carried out without any sample pretreatment. The standards and samples were introduced through one of the multinebulizer nozzles, while the aqueous solution containing yttrium as an internal standard was introduced through the second nozzle. Thus, the spectral interferences were compensated and the formation of carbon deposits on the ICP torch was prevented. The determination coefficients (R²) were greater than 0.99 for the studied analytes, in the range 0.21–14.75 mg kg⁻¹. Short-term and long-term precisions were estimated as relative standard deviation. These were acceptable, their values being lower than 10%. The LOQ for major components such as Ca, K, Mg, Na, and P, were within a range between 4.9 ng g⁻¹ for Mg (279.553 nm) and 531.1 ng g⁻¹ for Na (588.995 nm), and for the other 20 minor components they were within a range between 1.1 ng g⁻¹ for Ba (455.403 nm) and 2913.9 ng g⁻¹ for Pb (220.353 nm). Recovery values ranged between 95% and 106%.

  14. Modeling of Chromium (III) Removal from Heavy Metals Mixture Solutions in Continuous Flow Systems: A Comparative Study between BDST and Yoon -Nelson Models

    International Nuclear Information System (INIS)

    Ahmed, A.Z.

    2011-01-01

    The aim of this work is to study modeling of chromium (III) removal from aqueous solution using activated carbon as adsorbent. Studies have been conducted in a continuous fixed bed packed column under different operating conditions such as bed height, flow rate, fluid velocity and fixed adsorbent particle size. The Yoon Nelson model was applied to experimental data to predict the breakthrough curves by calculating the rate constant k and 50 % breakthrough time, θ. The Bed Depth Service Time (BDST) was applied to determine BDST constant K and the capacity of adsorbent, No. Results obtained from both models are compared with the experimental breakthrough curves and a satisfactory agreement was noticed. Therefore, the Yoon - Nelson and BDST models were found suitable for determining the parameters of the column design. The Y 000 - Nelson model was found more accurate in representing the system in comparison with the BDST model although it is less complicated than other models

  15. Analysis of metal ions migration to determine electro-osmotic flow for the in-situ cleanup of a tar-contaminated site

    KAUST Repository

    Lima, Ana T.

    2012-03-01

    An electro-osmosis experiment was set up on a former asphalt factory site, which is currently contaminated by tar, in Olst, the Netherlands. The main goal of this experiment was to remove polycyclic aromatic hydrocarbons (PAHs) from a contaminated clay layer by applying an electric gradient. But before calculating PAH removal, the direction and intensity of electro-osmosis have to be estimated. In field situations, tracers are used to get information about the water flow. In the present study, the inorganic elements concentration oscillations during electro-osmosis application are used as tracers. The experiment was set up in a clay layer, with the configuration 1m×1m×0.3m, at a depth of 4m below soil surface. Al, Ca, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Si, Ti and Zn concentrations were determined in 28 measurements and were performed during the experimental period of 159days. Then they were used in a first evaluation where auto and cross-correlations were analyzed to aid in the geochemical interpretation and select the most conservative elements. The second part of this study is devoted to estimate the migration of water based on the concentrations development of Cl - at the anode and Na + at the cathode. Electro-osmotic flow was estimated to be intense (2.9 -10 -9-2.18 -10 -8m -s -1) during the first 10 to 50days of experiment and to cease after this period. © 2012.

  16. Analysis of metal ions migration to determine electro-osmotic flow for the in-situ cleanup of a tar-contaminated site

    KAUST Repository

    Lima, Ana T.; Rodrigues, Paulo C.; Loch, J.P. Gustav

    2012-01-01

    An electro-osmosis experiment was set up on a former asphalt factory site, which is currently contaminated by tar, in Olst, the Netherlands. The main goal of this experiment was to remove polycyclic aromatic hydrocarbons (PAHs) from a contaminated clay layer by applying an electric gradient. But before calculating PAH removal, the direction and intensity of electro-osmosis have to be estimated. In field situations, tracers are used to get information about the water flow. In the present study, the inorganic elements concentration oscillations during electro-osmosis application are used as tracers. The experiment was set up in a clay layer, with the configuration 1m×1m×0.3m, at a depth of 4m below soil surface. Al, Ca, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Si, Ti and Zn concentrations were determined in 28 measurements and were performed during the experimental period of 159days. Then they were used in a first evaluation where auto and cross-correlations were analyzed to aid in the geochemical interpretation and select the most conservative elements. The second part of this study is devoted to estimate the migration of water based on the concentrations development of Cl - at the anode and Na + at the cathode. Electro-osmotic flow was estimated to be intense (2.9 -10 -9-2.18 -10 -8m -s -1) during the first 10 to 50days of experiment and to cease after this period. © 2012.

  17. Heating and structural disordering effects of the nonlinear viscous flow in a Zr55Al10Ni5Cu30 bulk metallic glass

    International Nuclear Information System (INIS)

    Kato, Hidemi; Inoue, Akihisa; Chen, H.S.

    2003-01-01

    The heat evolution of stress-induced structural disorder, ΔH s (ε), of a Zr 55 Al 10 Ni 5 Cu 30 bulk metallic glass (BMG) during compressive constant ram-velocity deformation at the glass transition region (T g =680 K) was deduced from in situ measurements of temperature change of the deforming sample. At the transition from the linear to nonlinear viscoelasticity, the behavior of viscosity change with strain, η(ε), is qualitatively consistent with the enthalpy evolution of the structural disordering, ΔH s (ε), but not with the temperature change, ΔT(ε). It is concluded that the initial softening deformation is due to the stress-induced structural disordering. The change in the nonlinearity, -log η-tilde ≡-log η /η N , is found to be proportional to the ΔH s and the slope of ΔH s (-log η-tilde) can be estimated to 400 J/mol, where η N is the Newtonian viscosity. On the other hand, the temperature raise, ΔT(ε), is pronouncedly delayed as compared with the η (ε) and ΔH s (ε) at the transition, but is determined by a product of stress and plastic strain-rate, σ·ε p , and is nearly proportional to it at the steady state. The slope of ΔT(σ·ε p ) can be estimated to 5.2x10 -2 K mol/W

  18. Bioleaching of metals from WEEE shredding dust.

    Science.gov (United States)

    Marra, Alessandra; Cesaro, Alessandra; Rene, Eldon R; Belgiorno, Vincenzo; Lens, Piet N L

    2018-03-15

    A bioleaching process developed in two separate steps was investigated for the recovery of base metals, precious metals and rare earth elements from dusts generated by Waste Electrical and Electronic Equipment (WEEE) shredding. In the first step, base metals were almost completely leached from the dust in 8 days by Acidithiobacillus thiooxidans (DSM 9463) that lowered the pH of the leaching solution from 3.5 to 1.0. During this step, cerium, europium and neodymium were mobilized at high percentages (>99%), whereas lanthanum and yttrium reached an extraction yield of 80%. In the second step, the cyanide producing Pseudomonas putida WSC361 mobilized 48% of gold within 3 h from the A. thiooxidans leached shredding dust. This work demonstrated the potential application of biohydrometallurgy for resource recovery from WEEE shredding dust, destined to landfill disposal, and its effectiveness in the extraction of valuable substances, including elements at high supply risk as rare earths. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. New metals

    International Nuclear Information System (INIS)

    Bergqvist, U.

    1983-12-01

    The aim of this report is to estimate the exposure to various metals and metal compounds and discuss the available information of the possible toxic effects of these metals and compounds. In the first section, some metals are defined as those with either a large or a fast increasing exposure to living organisms. The available information on toxicity is discussed in the second section. In the third section interesting metals are defined as compounds having a large exposure and an apparent insufficient knowledge of their possible toxic effects. Comments on each of these metals are also to be found in the third section. (G.B.)

  20. Hythane (H2 and CH4) production from unsaturated polyester resin wastewater contaminated by 1,4-dioxane and heavy metals via up-flow anaerobic self-separation gases reactor

    International Nuclear Information System (INIS)

    Mahmoud, Mohamed; Elreedy, Ahmed; Pascal, Peu; Sophie, Le Roux; Tawfik, Ahmed

    2017-01-01

    Highlights: • Bio-hythane production from polyester wastewater via UASG reactor was assessed. • Impacts of influent contamination by 1,4-dioxane and heavy metals were discussed. • Maximum volumetric H 2 and CH 4 productions of 0.12 and 1.06 L/L/d were achieved. • Significant drop in CH 4 production was resulted at OLR up to 1.07 ± 0.06 gCOD/L/d. • Bioenergy recovery through UASG economically achieved a net profit of 10,231 $/y. - Abstract: A long-term evaluation of hythane generation from unsaturated polyester resin wastewater contaminated by 1,4-dioxane and heavy metals was investigated in a continuous up-flow anaerobic self- separation gases (UASG) reactor inoculated with mixed culture. The reactor was operated at constant hydraulic retention time (HRT) of 96 h and different organic loading rates (OLRs) of 0.31 ± 0.04, 0.71 ± 0.08 and 1.07 ± 0.06 gCOD/L/d. Available data showed that volumetric hythane production rate was substantially increased from 0.093 ± 0.021 to 0.245 ± 0.016 L/L/d at increasing OLR from 0.31 ± 0.04 to 0.71 ± 0.08 gCOD/L/d. However, at OLR exceeding 1.07 ± 0.06 gCOD/L/d, it was dropped to 0.114 ± 0.016 L/L/d. The reactor achieved 1,4-dioxane removal efficiencies of 51.8 ± 2.8, 35.9 ± 1.6 and 26.3 ± 1.6% at initial 1,4-dioxane concentrations of 1.14 ± 0.28, 1.97 ± 0.41 and 4.21 ± 0.30 mg/L, respectively. Moreover, the effect and potential removal of the contaminated by heavy metals (i.e., Cu 2+ , Mn 2+ , Cr 3+ , Fe 3+ and Ni 2+ ) were highlighted. Kinetic modelling and microbial community dynamics were studied, according to each OLR, to carefully describe the UASG performance. The economic analysis showed a stable operation for the anaerobic digestion of unsaturated polyester resin wastewater using UASG, and the maximum net profit was achieved at OLR of 0.71 ± 0.08 gCOD/L/d.

  1. Stopped-flow studies of carbon dioxide hydration and bicarbonate dehydration in H2O and D2O. Acid-base and metal ion catalysis

    International Nuclear Information System (INIS)

    Pocker, Y.; Bjorkquist, D.W.

    1977-01-01

    The approach to equilibrium between carbon dioxide and bicarbonate has been followed by zero-order kinetics both from direction of CO 2 hydration and HCO 3 - dehydration. The rates are monitored at 25.0 0 C using stopped-flow indicator technique in H 2 O as well as D 2 O. The hydration of CO 2 is subject to catalysis by H 2 O (k 0 = 2.9 x 10 -2 s -1 ) and OH - (k/sub OH - / = 6.0 x 10 3 M -1 s -1 ). The value of 0.63 for the ratio k/sub OH - //k/sub OD - / is consistent with a mechanism utilizing a direct nucleophilic attack of OH - on CO 2 . In reverse direction HCO 3 - dehydration is catalyzed predominantly by H 3 O + (k/sub H 3 O + / 4.1 x 10 4 M -1 s -1 ) and to a much lesser degree by H 2 O (k 0 = 2 x 10 -4 s -1 ). The value of 0.56 for ratio k/sub H 3 O + //kD 3 O + / indicates that HCO 3 - may be protonated either in a preequilibrium step or in a rate-determining dehydration step. Both the hydration of CO 2 and the dehydration of bicarbonate are subject to general catalysis. For CO 2 , dibasic phosphate, a zinc imidazole complex, and a copper imidazole complex all enhanced the rate of hydration with respective rate coefficients of 3 x 10 -1 , 6.0, and 2.5 M -1 s -1 . For bicarbonate, monobasic phosphate catalyzed the rate of dehydration (k/sub H 2 PO 4 - / = 1 x 10 -1 M -1 s -1 ). Additionally in going from an ionic strength of 0.1 to 1.0 there was a negligible salt effect for the water-catalyzed hydration of CO 2 . However, the rate constant for the hydronium ion catalyzed dehydration of HCO 3 - was reduced from 4.1 x 10 4 M -1 s -1 to 2.3 x 10 4 M -1 s -1 for the same change in ionic strength. Finally the rate of CO 2 uptake by the complex Co(NH 3 ) 5 OH 2 3+ was followed spectrophotometrically both in H 2 O and D 2 O to determine the solvent isotope effect for a reaction known to involve a nucleophilic attack of a Co(III)-hydroxo complex on CO 2

  2. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas

    2014-06-26

    NOVELTY - The sensor has a microfluidic flow channel that is provided with an inlet port, an outlet port, and a detection chamber. The detection chamber is provided with a group of sensing electrodes (4) having a working electrode (8), a counter electrode (9), and a reference electrode (10). A flow sensor is configured to measure flow in the channel. A temperature sensor (6) is configured to measure temperature in the channel (3). An electrical connection is configured to connect the sensor to a sensing device. USE - Sensor for detecting metal such as toxic metal in sample such as clinical sample such as stool, saliva, sputum, bronchial lavage, urine, vaginal swab, nasal swab, biopsy, tissue, tears, breath, blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured for detection of metalsin samples. The sensor can provide the excellent solution for on-site metal detection, including heavy metal detection. The sensors can provide significant advantages in higher throughput, lower cost, at the same time being less labor intensive and less dependent on individual skills. The disposable design of the sensor, the enhanced reliability and repeatability of measurements can be obtained. The sensors can be widely applied in various industries. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a system for detecting metal in sample; and (2) a method for using sensor for detecting metal in sample. DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the sensor prototype. Channel (3) Sensing electrodes (4) Temperature sensor (6) Working electrode (8) Counter electrode (9) Reference electrode (10)

  3. An overview of metallic mineralization in the Pine Creek Geosyncline

    International Nuclear Information System (INIS)

    Needham, R.S.; Roarty, M.J.

    1980-01-01

    Although renowned for its relatively recently discovered large uranium deposits, the Pine Creek Geosyncline has a history of exploitation dating back to 1865, during which time 16 metals have been extracted. Uranium makes up 96.8 percent of the value of recorded production and reserves at present metal prices, lead 1.9 percent, gold and zinc 0.32 percent each, iron 0.2 percent, silver 0.2 percent and all other metals 0.3 percent. The Alligator Rivers Uranium Field accounts for 95 percent of the total value of recorded production and reserves, the Rum Jungle Uranium Field 4 percent, and all other areas 1 percent. Deposits range from stratiform through stratabound to vein-type. Most have undergone some degree of alteration or remobilisation, and extreme metasomatism in some masks clues to the earlier evolution of the deposits. Small vein-type hydrothermal deposits, clustered around intrusive granites, predominate. Other deposits can be sub-divided into those associated with the basement, those associated with the Masson and Cahill Formations, and those associated with the Gerowie Tuff, Koolpin, and Kapalga Formations. Many deposits have undergone supergene concentration near the surface, and some have been formed predominantly by this process. Uranium appears to have been mainly derived from Archaean source rocks, and base metals and some precious metals from volcanic exhalative sources. Main areas of potential are the Alligator Rivers region for uranium and possibly gold, and the central part of the geosyncline for base metals. (author)

  4. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  5. A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources

    International Nuclear Information System (INIS)

    Oguchi, Masahiro; Murakami, Shinsuke; Sakanakura, Hirofumi; Kida, Akiko; Kameya, Takashi

    2011-01-01

    Highlights: → End-of-life electrical and electronic equipment (EEE) as secondary metal resources. → The content and the total amount of metals in specific equipment are both important. → We categorized 21 EEE types from contents and total amounts of various metals. → Important equipment types as secondary resources were listed for each metal kind. → Collectability and possible collection systems of various EEE types were discussed. - Abstract: End-of-life electrical and electronic equipment (EEE) has recently received attention as a secondary source of metals. This study examined characteristics of end-of-life EEE as secondary metal resources to consider efficient collection and metal recovery systems according to the specific metals and types of EEE. We constructed an analogy between natural resource development and metal recovery from end-of-life EEE and found that metal content and total annual amount of metal contained in each type of end-of-life EEE should be considered in secondary resource development, as well as the collectability of the end-of-life products. We then categorized 21 EEE types into five groups and discussed their potential as secondary metal resources. Refrigerators, washing machines, air conditioners, and CRT TVs were evaluated as the most important sources of common metals, and personal computers, mobile phones, and video games were evaluated as the most important sources of precious metals. Several types of small digital equipment were also identified as important sources of precious metals; however, mid-size information and communication technology (ICT) equipment (e.g., printers and fax machines) and audio/video equipment were shown to be more important as a source of a variety of less common metals. The physical collectability of each type of EEE was roughly characterized by unit size and number of end-of-life products generated annually. Current collection systems in Japan were examined and potentially appropriate collection

  6. Collectors on illicit collecting: Higher loyalties and other techniques of neutralization in the unlawful collecting of rare and precious orchids and antiquities.

    Science.gov (United States)

    Mackenzie, Simon; Yates, Donna

    2016-08-01

    Trafficking natural objects and trafficking cultural objects have been treated separately both in regulatory policy and in criminological discussion. The former is generally taken to be 'wildlife crime' while the latter has come to be considered under the auspices of a debate on 'illicit art and antiquities'. In this article we study the narrative discourse of high-end collectors of orchids and antiquities. The illicit parts of these global trades are subject to this analytical divide between wildlife trafficking and art trafficking, and this has resulted in quite different regulatory structures for each of these markets. However, the trafficking routines, the types and levels of harm involved, and the supply-demand dynamics in the trafficking of orchids and antiquities are actually quite similar, and in this study we find those structural similarities reflected in substantial common ground in the way collectors talk about their role in each market. Collectors of rare and precious orchids and antiquities valorize their participation in markets that are known to be in quite considerable degree illicit, appealing to 'higher loyalties' such as preservation, appreciation of aesthetic beauty and cultural edification. These higher loyalties, along with other techniques of neutralization, deplete the force of law as a guide to appropriate action. We propose that the appeal to higher loyalties is difficult to categorize as a technique of neutralization in this study as it appears to be a motivational explanation for the collectors involved. The other classic techniques of neutralization are deflective, guilt and critique reducing narrative mechanisms, while higher loyalties drives illicit behaviour in collecting markets for orchids and antiquities in ways that go significantly beyond the normal definition of neutralization.

  7. Water: Too Precious to Waste.

    Science.gov (United States)

    National Geographic World, 1983

    1983-01-01

    Provides background information on many topics related to water. These include the water cycle, groundwater, fresh water, chemical wastes, water purification, river pollution, acid rain, and water conservation. Information is presented at an elementary level. (JM)

  8. Precious Jewels Preserved by digitization

    CERN Multimedia

    2006-01-01

    The User and Document Services Group of the IT Department (IT-UDS) has been digging through the archives and found some buried treasure. For 30 years all conferences and seminars taking place in CERN main auditorium, the largest lecture hall in Geneva for many years, were taped using analog format for audio recording. The IT-UDS Audio, Visual and Conferencing Services are currently digitising these jewels and making them available on the Internet.

  9. Challenges to achievement of metal sustainability in our high-tech society.

    Science.gov (United States)

    Izatt, Reed M; Izatt, Steven R; Bruening, Ronald L; Izatt, Neil E; Moyer, Bruce A

    2014-04-21

    Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling rates and improved processing of metals using conventional and green chemistry technologies. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low recycling rates of metals coupled with increasing demand for high-tech products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challenges to achieving metal sustainability, including projected use of urban mining, in present high-tech society are presented; health, environmental, and economic incentives for various government, industry, and public stakeholders to improve metal sustainability are discussed; a case for technical improvements, including use of molecular recognition, in selective metal separation technology, especially for metal recovery from dilute feed stocks is given; and global consequences of continuing on the present path are examined.

  10. Metallic nanomesh

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Sun, Tianyi; Guo, Chuanfei

    2018-02-20

    A transparent flexible nanomesh having at least one conductive element and sheet resistance less than 300.OMEGA./.quadrature. when stretched to a strain of 200% in at least one direction. The nanomesh is formed by depositing a sacrificial film, depositing, etching, and oxidizing a first metal layer on the film, etching the sacrificial film, depositing a second metal layer, and removing the first metal layer to form a nanomesh on the substrate.

  11. Nanodisturbances in deformed Gum Metal

    International Nuclear Information System (INIS)

    Gutkin, Mikhail Yu.; Ishizaki, Toshitaka; Kuramoto, Shigeru; Ovid'ko, Ilya A.

    2006-01-01

    Systematic experiments have been performed to characterize defect structures in deformed Gum Metal, a special titanium alloy with high strength, low Young's modulus, excellent cold workability and low resistance to shear in certain crystallographic planes. Results from high-resolution transmission electron microscopy characterization reveal nanodisturbances (planar nanoscopic areas of local shear) as typical elements of defect structures in deformed Gum Metal. A theoretical model is suggested describing nanodisturbances as nanoscale dipoles of non-conventional partial dislocations with arbitrary, non-quantized Burgers vectors. It is shown theoretically that the homogeneous generation of nanodisturbances is energetically favorable in Gum Metal, where they effectively carry plastic flow

  12. Possible evidence for metal accretion onto the surfaces of metal-poor main-sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Kohei; Yoshii, Yuzuru [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Beers, Timothy C. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Carollo, Daniela [Department of Physics and Astronomy, Macquarie University, Sydney, 2109 NSW (Australia); Lee, Young Sun, E-mail: khattori@ioa.s.u-tokyo.ac.jp [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-04-01

    The entire evolution of the Milky Way, including its mass-assembly and star-formation history, is imprinted onto the chemo-dynamical distribution function of its member stars, f(x, v, [X/H]), in the multi-dimensional phase space spanned by position, velocity, and elemental abundance ratios. In particular, the chemo-dynamical distribution functions for low-mass stars (e.g., G- or K-type dwarfs) are precious tracers of the earliest stages of the Milky Way's formation, since their main-sequence lifetimes approach or exceed the age of the universe. A basic tenet of essentially all previous analyses is that the stellar metallicity, usually parameterized as [Fe/H], is conserved over time for main-sequence stars (at least those that have not been polluted due to mass transfer from binary companions). If this holds true, any correlations between metallicity and kinematics for long-lived main-sequence stars of different masses, effective temperatures, or spectral types must strictly be the same, since they reflect the same mass-assembly and star-formation histories. By analyzing a sample of nearby metal-poor halo and thick-disk stars on the main sequence, taken from Data Release 8 of the Sloan Digital Sky Survey, we find that the median metallicity of G-type dwarfs is systematically higher (by about 0.2 dex) than that of K-type dwarfs having the same median rotational velocity about the Galactic center. If it can be confirmed, this finding may invalidate the long-accepted assumption that the atmospheric metallicities of long-lived stars are conserved over time.

  13. Li-ion battery recycling and cobalt flow analysis in Japan

    OpenAIRE

    Asari, Misuzu; Sakai, Shin-ichi

    2013-01-01

    Batteries sometimes contain precious or toxic substances (e.g. nickel, cobalt, lead, mercury, cadmium). However, the collection and recycling rate of small batteries were low in Japan. We focus on cobalt in lithium ion (Li-ion) batteries and conduct chemical analysis, questioner survey and flow analysis in Japan.Results of chemical analysis showed that the concentration of cobalt in Li-ion batteries was around 20% regardless of the year manufactured or the manufacturer. As a result of the con...

  14. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  15. Plasma metallization of refractory carbide powders

    International Nuclear Information System (INIS)

    Koroleva, E.B.; Klinskaya, N.A.; Rybalko, O.F.; Ugol'nikova, T.A.

    1986-01-01

    The effect of treatment conditions in plasma on properties of produced metallized powders of titanium, tungsten and chromium carbides with the main particle size of 40-80 μm is considered. It is shown that plasma treatment permits to produce metallized powders of carbide materials with the 40-80 μm particle size. The degree of metallization, spheroidization, chemical and phase composition of metallized carbide powders are controlled by dispersivity of the treated material, concentration of a metal component in the treated mixtures, rate of plasma flow and preliminary spheroidization procedure

  16. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  17. A case in support of implementing innovative bio-processes in the metal mining industry.

    Science.gov (United States)

    Sánchez-Andrea, Irene; Stams, Alfons J M; Weijma, Jan; Gonzalez Contreras, Paula; Dijkman, Henk; Rozendal, Rene A; Johnson, D Barrie

    2016-06-01

    The metal mining industry faces many large challenges in future years, among which is the increasing need to process low-grade ores as accessible higher grade ores become depleted. This is against a backdrop of increasing global demands for base and precious metals, and rare earth elements. Typically about 99% of solid material hauled to, and ground at, the land surface currently ends up as waste (rock dumps and mineral tailings). Exposure of these to air and water frequently leads to the formation of acidic, metal-contaminated run-off waters, referred to as acid mine drainage, which constitutes a severe threat to the environment. Formation of acid drainage is a natural phenomenon involving various species of lithotrophic (literally 'rock-eating') bacteria and archaea, which oxidize reduced forms of iron and/or sulfur. However, other microorganisms that reduce inorganic sulfur compounds can essentially reverse this process. These microorganisms can be applied on industrial scale to precipitate metals from industrial mineral leachates and acid mine drainage streams, resulting in a net improvement in metal recovery, while minimizing the amounts of leachable metals to the tailings storage dams. Here, we advocate that more extensive exploitation of microorganisms in metal mining operations could be an important way to green up the industry, reducing environmental risks and improving the efficiency and the economy of metal recovery. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha