WorldWideScience

Sample records for precast concrete paving

  1. Structural Precast Concrete Handbook

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly.......Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly....

  2. Gates Precast Concrete User Project Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roschli, Alex C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chesser, Phillip C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The primary objective of the project was to demonstrate the viability of using carbon fiber reinforced ABS plastic and the Big Area Additive Manufacturing (BAAM) technology to rapidly manufacture molds for the precast concrete industry.

  3. Performance evaluation of precast prestressed concrete pavement.

    Science.gov (United States)

    2007-11-01

    This report describes in detail an experimental investigation of an innovative precast prestressed concrete pavement (PPCP) system used to rehabilitate a 1,000 ft. section of interstate highway located on the northbound lanes of I-57 near Charleston,...

  4. 29 CFR 1926.704 - Requirements for precast concrete.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural framing...

  5. Humidity measurements in the precast concrete

    International Nuclear Information System (INIS)

    Hurez, M.

    1986-01-01

    The precast concrete industry manufactures requires a good knowledge and control of the humidity factor: during the manufacturing process, in order to regulate the water content of aggregates, or the fresh concrete workability: during the quality control of the product characteristics. The principles of measurements: conductivity, dielectric characteristics and neutron moisture meters are compared for cost, humidity range, accuracy, temperature dependence, interfering elements, density dependence, grain size and shape [fr

  6. Safety Assessment in Installation of Precast Concrete

    Directory of Open Access Journals (Sweden)

    Yashrri S.N.

    2014-03-01

    Full Text Available This study was carried out to identify the safety aspects and the level of safety during the installation process in construction sites. A questionnaire survey and interviews were done to provide data on safety requirements in precast concrete construction. All of the interviews and the research questionnaire survey were conducted among contractors that are registered as class 1 to class 7 with the Construction Industry Development Board (CIDB and class A to class G with Pusat Khidmat Kontraktor (PKK in Penang. Returned questionnaires were analysed with the use of simple percentages and the Likert Scale analysis method to identify safety aspects of precast construction. The results indicate that the safety aspect implemented by companies involved in the precast construction process is at a good level in the safety aspect during bracing, propping, welding and grouting processes and at a very good level of safety in general aspects and safety aspects during lifting processes.

  7. Evaluation of structural systems in precast concrete buildings by ...

    African Journals Online (AJOL)

    In general, the precast concrete is the type of concrete that constructing, casting and curing in the standard factory conditions with high quality and then it will be transported with proper equipments and then it will be installed in the final position. In fact, the precast concrete buildings are the combined of several types of ...

  8. Numerical Limit Analysis of Precast Concrete Structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen

    Precast concrete elements are widely used in the construction industry as they provide a number of advantages over the conventional in-situ cast concrete structures. Joints cast on the construction site are needed to connect the precast elements, which poses several challenges. Moreover, the curr...... problems are solved efficiently using state-of-the-art solvers. It is concluded that the framework and developed joint models have the potential to enable efficient design of precast concrete structures in the near future......., the current practice is to design the joints as the weakest part of the structure, which makes analysis of the ultimate limit state behaviour by general purpose software difficult and inaccurate. Manual methods of analysis based on limit analysis have been used for several decades. The methods provide...... of the ultimate limit state behaviour. This thesis introduces a framework based on finite element limit analysis, a numerical method based on the same extremum principles as the manual limit analysis. The framework allows for efficient analysis and design in a rigorous manner by use of mathematical optimisation...

  9. Study on Detailing Design of Precast Concrete Frame Structure

    Science.gov (United States)

    Lida, Tian; Liming, Li; Kang, Liu; Jiao, Geng; Ming, Li

    2018-03-01

    Taking a certain precast concrete frame structure as an example, this paper introduces the general procedures and key points in detailing design of emulative cast-in-place prefabricated structure from the aspects of structural scheme, precast element layout, shop drawing design and BIM 3D modelling. This paper gives a practical solution for the detailing design of precast concrete frame structure under structural design codes in China.

  10. Assessment of structural reliability of precast concrete buildings

    Directory of Open Access Journals (Sweden)

    Koyankin Alexandr

    2018-01-01

    Full Text Available Precast housing construction is currently being under rapid development, however, reliability of building structures made from precast reinforced concrete cannot be assessed rationally due to insufficient research data on that subject. In this regard, experimental and numerical studies were conducted to assess structural reliability of precast buildings as described in the given paper. Experimental studies of full-scale and model samples were conducted; numerical studies were held based on finite element models using “Lira” software. The objects under study included fragment of flooring of a building under construction, full-size fragment of flooring, full-scale models of precast cross-beams-to-columns joints and joints between hollow-core floor slabs and precast and cast-in-place cross-beams. Conducted research enabled to perform an objective assessment of structural reliability of precast buildings.

  11. Precast concrete pavement - systems and performance review

    Science.gov (United States)

    Novak, Josef; Kohoutková, Alena; Křístek, Vladimír; Vodička, Jan

    2017-09-01

    Long-term traffic restrictions belong to the key disadvantages of conventional cast-in-plane concrete pavements which have been used for technical structures such as roads, parking place and airfield pavements. As a consequence, the pressure is put on the development of such systems which have short construction time, low production costs, long-term durability, low maintenance requirements etc.. The paper presents the first step in the development of an entirely new precast concrete pavement (PCP) system applicable to airfield and highway pavements. The main objective of the review of PCP systems is to acquire a better understanding of the current systems and design methods used for transport infrastructure. There is lack of information on using PCP systems for the construction of entirely new pavements. To most extensive experience is dated back to the 20th century when hexagonal slab panels and system PAG were used in the Soviet Union for the military airfields. Since cast-in-situ pavements became more common, the systems based on precast concrete panels have been mainly utilized for the removal of damaged sections of existing structures including roads, highways etc.. Namely, it concerns Fort Miller Super Slab system, Michigan system, Uretek Stitch system and Kwik system. The presented review indicates several issues associated with the listed PCP systems and their applications to the repair and rehabilitation of existing structures. Among others, the type of manufacturing technology, particularly the position of slots for dowel bars, affects the durability and performance of the systems. Gathered information serve for the development of a new system for airfield and highway pavement construction.

  12. Evaluation of precast concrete slabs using a heavy vehicle simulator

    CSIR Research Space (South Africa)

    Kohler, E

    2008-10-01

    Full Text Available Precast slabs are considered an attractive pavement option for rehabilitation or reconstruction cases where traffic closures of less than eight hours are required. Benefits include long life expectancy of concrete cast in factory...

  13. Phase I development of an aesthetic, precast concrete bridge rail.

    Science.gov (United States)

    2012-02-01

    Precast concrete bridge rail systems offer several advantages over traditional cast-in-place rail designs, including reduced construction : time and costs, installation in a wide range of environmental conditions, easier maintenance and repair, impro...

  14. Heavy vehicle simulator testing on pre-cast concrete panels

    CSIR Research Space (South Africa)

    Du Plessis, L

    2007-07-01

    Full Text Available commonly found in California, pre-cast concrete slabs are considered to be a very suitable repair material for extending the service life of intermittently distressed concrete pavements. This is because of the long life expectancy of concrete slabs cast...

  15. Composite Behaviour of Steel Frames with Precast Concrete Infill Panels

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Hofmeyer, H.; Snijder, H.H.; B. Hoffmeister, xx; O. Hechler, xx

    2005-01-01

    This paper presents preliminary experimental and numerical results of an investigation into the composite behaviour of a steel frame with a precast concrete infill panel (S-PCP) subject to a lateral load. The steel-concrete connections consist of two plates connected with two bolts which are loaded

  16. Experimental report of precast prestressed concrete shear wall. Precast prestressed concrete taishinheki no jikken hokoku

    Energy Technology Data Exchange (ETDEWEB)

    Takada, K.; Komura, M.; Sakata, H.; Senoo, M. (Fudo Building Research Co. Ltd., Tokyo (Japan))

    1993-07-30

    The present report outlines the multi-story precast prestressed concrete earthquake-proof wall (PC shear wall system). The PC shear wall is a precast wall which internally contains the columns and beams as a unit. Therefore, the present system integrates the walls, columns and beams without beam-framing installation for the intermediate stories. It can simplify the concreting in site and ease the construction of building. For the system development, experiment was made on the deformation, sliding, yield strength and destruction state of the shear wall. Used were four types of test unit which are different in both reinforcement and connection methods. The test force was given by a hydraulically drawing jack. In the experiment, the four types were compared in destruction state, relation between load and deformation, yield strength, and strain of main column reinforcing bars and wall connection reinforcing bars. PC shear wall system-based design was studied from the experimental result. The shear wall in which there occurred both bending and shearing deformations was modeled by changing to a brace unit. Divided into bending deformation and shearing deformation, the deformation was calculated, which concluded that the shearing deformation dominates in the present system. 15 figs., 4 tabs.

  17. Analysis of steel frames with precast concrete infill panels

    NARCIS (Netherlands)

    Teeuwen, P.A; Kleinman, C.S.; Snijder, H.H.; Hofmeyer, H.; IABSE-AIPPC-IVBH, xx

    2008-01-01

    This paper presents experimental and numerical analyses of a new type of hybrid lateral load resisting structure. This structure consists of a steel frame with a discretely connected precast concrete infill panel with a window opening. The discrete connections are formed by structural bolts on the

  18. Durability of precast prestressed concrete piles in marine environment, part 2. Volume 1 : concrete.

    Science.gov (United States)

    2012-06-01

    The overall purpose of this research was to determine methods which may be applied : economically to mitigate corrosion of reinforcement in precast prestressed concrete piles in : Georgias marine environments. The research was divided into two par...

  19. Monolithic Concrete vs Precast Concrete for the Construction of Bridge by Th Cantilever Method

    Directory of Open Access Journals (Sweden)

    Morlova Dumitru Daniel

    2015-07-01

    Full Text Available In the article "Monolithic Concrete vs Precast Concrete for the Construction of Bridges by the Cantilever Method", there are approached a number of issues that come out in the design and execution of prestressed concrete bridge structures using the cantilever method.

  20. Self-Compacting Concrete in Precast Elements Industry

    Directory of Open Access Journals (Sweden)

    Corneliu Bob

    2005-01-01

    Full Text Available In this paper the authors present information about the Self-Compacting Concrete and experimental results regarding the use of them into precast element industry. This type of concrete does not require vibration for placing and compaction; it is able to flow under its own weight, completely filling formwork and achieving full compaction, even in the presence of congested reinforcement. The experimental programme has take into account two prestressed beams which were prefabricated and tested on a special stands. The beams of Self-Compacting Concrete with the length of 24 m were prepared at „Beton-Star” Kft, Kecsekenet, Hungary, and used at the CASCO, Satu-Mare.

  1. Precast Concrete Beam-to-Column Connection System

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Compared to conventional concrete constructions, precast concrete is a better option which is more cost-effective for production, transport, and erection when columns and beams can be fabricated independently. The BSF connection is a hidden beam and connection for gravity loads that eliminates the need for projecting column corbels. From a steel box cast into the concrete beam end, a sliding steel “knife” plate with a safety notch is cantilevered into a steel box that has been cast into the c...

  2. The Significance of Coordination for Industrialised Building System (IBS) Precast Concrete in Construction Industry

    OpenAIRE

    Fitri Othman Mohd Khairul; Wan Muhammad Wan Mohd Nurdden; Abd Hadi Nurulhudaya; Azman Mohd Azrai

    2017-01-01

    IBS precast concrete is construction system which is meant to improve the conventional construction process. However IBS precast concrete projects are suffering from serious problems such as cost overrun, delays and less quality of the end product. The absence of coordination is perceived as the reason for this issue. The purpose of this paper is to review the significance of coordination for IBS precast concrete in the construction industry. It if found that the fragmentation which occurs in...

  3. Recommendations for Longitudinal Post-Tensioning in Full-Depth Precast Concrete Bridge Deck Panels

    OpenAIRE

    Bowers, Susan Elizabeth

    2007-01-01

    Full-depth precast concrete panels offer an efficient alternative to traditional cast-in-place concrete for replacement or new construction of bridge decks. Research has shown that longitudinal post-tensioning helps keep the precast bridge deck in compression and avoid problems such as leaking, cracking, spalling, and subsequent rusting on the beams at the transverse panel joints. Current design recommendations suggest levels of initial compression for precast concrete decks in a very limit...

  4. Mud concrete paving block for pedestrian pavements

    Directory of Open Access Journals (Sweden)

    Chameera Udawattha

    2017-12-01

    This is an attempt to search for alternative eco-friendly earth paving material for public walkways with both the strength and durable properties of concrete while ensuring pedestrian comfort. Approaches were made to change the fine particle percentage while keeping the sand and gravel constant, once the optimum most practical mixture was known, the standard tests were done. The results obtained revealed that the proposed self-compacting block can be produced by using soil with less than 5% fine particles, 55% of 65% sand particles and 18% of 22% cement by weight together with the moisture content between 14% and 15%The tested mud concrete paving blocks were already used in practical application in Sri Lankan urban context.

  5. Construction of precast high performance concrete segmental bridges.

    OpenAIRE

    Ruiz Ripoll, Lidia

    2016-01-01

    The construction of both medium and long span precast concrete segmental bridges is widely spread throughout Spain. Usually, the segments have multiple-keyed epoxy joints, and are assembled by internal prestressing. Yet, there is a more recent type of bridge with dry joints and external prestressing. In these last ones, shear is transferred through physical support between keys and friction between faces of the compressed joint. This shear force is evaluated using friction coefficients from t...

  6. Racking shear resistance of steel frames with corner connected precast concrete infill panels

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Snijder, H.H.; Hofmeyer, H.

    2015-01-01

    When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on

  7. Precast concrete unit assessment through GPR survey and FDTD modelling

    Science.gov (United States)

    Campo, Davide

    2017-04-01

    Precast concrete elements are widely used within United Kingdom house building offering ease in assembly and added values as structural integrity, sound and thermal insulation; most common concrete components include walls, beams, floors, panels, lintels, stairs, etc. The lack of respect of the manufacturer instruction during assembling, however, may induce cracking and short/long term loss of bearing capacity. GPR is a well-established not destructive technique employed in the assessment of structural elements because of real-time imaging, quickness of data collecting and ability to discriminate finest structural details. In this work, GPR has been used to investigate two different precast elements: precast reinforced concrete planks constituting the roof slab of a school and precast wood-cement blocks with insulation material pre-fitted used to build a perimeter wall of a private building. Visible cracks affected both constructions. For the assessment surveys, a GSSI 2.0 GHz GPR antenna has been used because of the high resolution required and the small size of the antenna case (155 by 90 by 105mm) enabling scanning up to 45mm from any obstruction. Finite Difference Time Domain (FDTD) numerical modelling was also performed to build a scenario of the expected GPR signal response for a preliminary real-time interpretation and to help solve uncertainties due to complex reflection patterns: simulated radargrams were built using Reflex Software v. 8.2, reproducing the same GPR pulse used for the surveys in terms of wavelet, nominal frequency, sample frequency and time window. Model geometries were derived from the design projects available both for the planks and the blocks; the electromagnetic properties of the materials (concrete, reinforcing bars, air-filled void, insulation and wooden concrete) were inferred from both values reported in literature and a preliminary interpretation of radargrams where internal layer interfaces were clearly recognizable and

  8. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yixin [McGill Univ., Montreal, QC (Canada)

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  9. Durability of precast prestressed concrete piles in marine environment : reinforcement corrosion and mitigation - Part 1.

    Science.gov (United States)

    2011-06-01

    Research conducted in Part 1 has verified that precast prestressed concrete piles in : Georgias marine environment are deteriorating. The concrete is subjected to sulfate and : biological attack and the prestressed and nonprestressed reinforcement...

  10. Properties of Concrete Paving Blocks and Hollow Tiles with Recycled Aggregate from Construction and Demolition Wastes.

    Science.gov (United States)

    Rodríguez, Carlos; Miñano, Isabel; Aguilar, Miguel Ángel; Ortega, José Marcos; Parra, Carlos; Sánchez, Isidro

    2017-11-30

    In recent years there has been an increasing tendency to recycle the wastes generated by building companies in the construction industry, demolition wastes being the most important in terms of volume. The aim of this work is to study the possibility of using recycled aggregates from construction and demolition wastes in the preparation of precast non-structural concretes. To that purpose, two different percentages (15% and 30%) of natural aggregates were substituted by recycled aggregates in the manufacture of paving blocks and hollow tiles. Dosages used by the company have not been changed by the introduction of recycled aggregate. Precast elements have been tested by means of compressive and flexural strength, water absorption, density, abrasion, and slipping resistance. The results obtained show the possibility of using these wastes at an industrial scale, satisfying the requirements of the Spanish standards for these elements.

  11. Properties of Concrete Paving Blocks and Hollow Tiles with Recycled Aggregate from Construction and Demolition Wastes

    Directory of Open Access Journals (Sweden)

    Carlos Rodríguez

    2017-11-01

    Full Text Available In recent years there has been an increasing tendency to recycle the wastes generated by building companies in the construction industry, demolition wastes being the most important in terms of volume. The aim of this work is to study the possibility of using recycled aggregates from construction and demolition wastes in the preparation of precast non-structural concretes. To that purpose, two different percentages (15% and 30% of natural aggregates were substituted by recycled aggregates in the manufacture of paving blocks and hollow tiles. Dosages used by the company have not been changed by the introduction of recycled aggregate. Precast elements have been tested by means of compressive and flexural strength, water absorption, density, abrasion, and slipping resistance. The results obtained show the possibility of using these wastes at an industrial scale, satisfying the requirements of the Spanish standards for these elements.

  12. Rating precast prestressed concrete bridges for shear

    Science.gov (United States)

    2008-12-01

    Shear capacity of real-world prestressed concrete girders designed in the 1960s and 1970s is a concern because : AASHTO Standard Specifications (AASHTO-STD) employed the quarter-point rule for shear design, which is less : conservative for shea...

  13. Cost Effectiveness of Precast Reinforced Concrete Roof Slabs

    Science.gov (United States)

    Parskiy, N. D.; Molodtsov, M. V.; Molodtsova, V. E.

    2017-11-01

    Engineers always seek to free interior space from intermediate supporting elements. Nowadays plants, being at the forefront of technology, produce a new generation of exclusive patented prefabricated reinforced concrete elements with a high load-bearing capacity, excellent heat resistance characteristics combined with the aesthetics and beauty. It is a system of Seagull Gabbiano prestressed roof slabs for the spans of 12m - 40m. The article shows the advantages of the Seagull slabs over conventional precast reinforced concrete and metal roof trusses. It also gives the analysis of the technical and economic indices of design and construction of a building with the Seagull slabs depending on the size of spans to cover. The use of structural systems with increased spans allows for the modern buildings and structures of prefabricated reinforced concrete with enhanced functionality and aesthetics alongside with a wide range of planning solutions.

  14. Experimental Evaluation of the Failure of a Seismic Design Category - B Precast Concrete Beam-Column Connection System

    Science.gov (United States)

    2014-12-01

    Precast Concrete Beam - Column Connection ...ERDC TR-14-12 December 2014 Experimental Evaluation of the Failure of a Seismic Design Category – B Precast Concrete Beam - Column Connection ...systems in order to develop a methodology and obtain basic insight for predicting the brittle failure of precast beam - column connections under

  15. Characteristics of Recycled Concrete Aggregates from Precast Slab Block Buildings

    Science.gov (United States)

    Venkrbec, Václav; Nováková, Iveta; Henková, Svatava

    2017-10-01

    Precast slab block buildings (PSBB) typically and frequently occur in Central and Eastern Europe, as well as elsewhere in the world. Some of these buildings are currently used beyond their service life capacity. The utilization of recycled materials from these buildings with regard to applying the principles of sustainable construction and using recycled materials will probably be significant in the following years. Documentation from the manufacturing processes of prefabricated blocks for precast slab block buildings is not available, and also it is difficult to declare technological discipline during the construction of these buildings. Therefore, properties of recycled concrete aggregates (RCA) produced from construction and demolition waste (C&DW) of precast slab block buildings build between 1950s to 1990s are not sufficiently known. The demolition of these buildings is very rare today, but it can be assumed an increase in demolitions of these buildings in the future. The use of RCA in new concrete requires verification/testing of the geometrical and physical properties of RCA according to the EN 12 620+A1 standard. The aim of the contribution is to present a case study of the demolition of slab block building with emphasis on RCA usage. The paper presents the results of the tests according to European standards for determining selected geometrical and physical properties of the RCA. The paper describes and evaluates tests such as determination of particle size distribution - Sieve Analysis, content of fine particles, determination of density and water absorption. The results of the properties testing of RCA are compared with the properties of natural aggregate. The general boundary conditions of RCA particular tests are presented.

  16. The selection of disposition of precast concrete industrial building

    Directory of Open Access Journals (Sweden)

    Goleš Danica

    2014-01-01

    Full Text Available Design of precast concrete industrial building is a complex iterative procedure by which, from a set of known possible solutions, is found the one, that in optimal way meets the set requirements and limitations. By proper selection of the disposition of the building, number of possible solutions is reduced at an early stage of design. This paper presents the main requirements and limitations faced by the structure of precast concrete industrial building, as well as parameters that can be defined in dispositional solution: dimensions, orientation and position of the object, materials, structural system, geometric characteristics, foundation system, the way of decomposition of the structure to prefabricated elements, their bearings and connections, and others. Special emphasis is given to the proper selection of the parameters of disposition in function of set requirements and constraints. The work is intended for graduates and young engineers, to help them to properly systematize and apply the knowledge gained during education, and select the optimal dispositional solution the exact way.

  17. Lower bound element and submodel for modelling of joints between precast concrete panels

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2015-01-01

    In practice, precast concrete structures are designed using either analytical methods or linear finite element tools, and the in-situ cast joints between the precast panels are assessed using conservative empirical design formulas. This often leads to a suboptimal design, and local mechanisms ins....... The computational time and problem size of the joint element and detailed model will be discussed....

  18. Abrasion-resistant concrete mix designs for precast bridge deck panels.

    Science.gov (United States)

    2010-08-01

    The report documents laboratory investigations undertaken to develop high performance concrete (HPC) for precast and pre-stressed bridge deck components that would reduce the life-cycle cost of bridges by improving the studded tire wear (abrasion) re...

  19. Determination of entrance loss coefficients for pre-cast reinforced concrete box culverts.

    Science.gov (United States)

    2012-12-01

    There is an increased interest in constructing Pre-Cast (PC) Twin and Triple Reinforced Concrete Box (RCB) culverts : in Iowa due to the efficiency associated with their production in controlled environment and decrease of the construction : time at ...

  20. Precast, Prestressed Concrete Bent Caps : Volume 1, Preliminary Design Considerations and Experimental Test Program

    Science.gov (United States)

    2018-04-01

    Precast prestressed concrete bent caps may provide significant benefits by enabling accelerated construction of bridge substructures and improve longevity by reducing the propensity for cracking. The Texas Department of Transportation enables the use...

  1. Performance of IBS Precast Concrete Beam-Column Connections Under Earthquake Effects: A Literature Review

    OpenAIRE

    Patrick T.L. Yee; Azlan B. Adnan; Abdul K. Mirasa; Ahmad B.A. Rahman

    2011-01-01

    Problem statement: Despite demonstrating rather much benefits comparing to the conventional cast-in-place construction, the acceptance level of precast concrete building is still reportedly low in Malaysia. The implication imposed by stricter seismic design provisions would only worsen the matter. Approach: The main objective of this study was to identify the most appropriate type of beam-column connections to be introduced to precast concrete industry, particularly for re...

  2. The Significance of Coordination for Industrialised Building System (IBS Precast Concrete in Construction Industry

    Directory of Open Access Journals (Sweden)

    Fitri Othman Mohd Khairul

    2017-01-01

    Full Text Available IBS precast concrete is construction system which is meant to improve the conventional construction process. However IBS precast concrete projects are suffering from serious problems such as cost overrun, delays and less quality of the end product. The absence of coordination is perceived as the reason for this issue. The purpose of this paper is to review the significance of coordination for IBS precast concrete in the construction industry. It if found that the fragmentation which occurs in the construction industry requires continuity of coordination due to the construction activities are intertwined in nature. Coordination is designated to assist stakeholders in completing and complementing each other with the paramount focus of achieving the objective. Proper coordination is required in delivering the desired construction product at the ideal time, cost and quality. As for the findings, the significance of coordination for IBS precast concrete can be seen through the precast concrete construction phases which consist of planning; design; manufacturing; transportation and installation/construction. These phases are meant to complement construction process with the purpose to reduce issues of fragmentation and enhance IBS precast concrete project delivery.

  3. Precast concrete elements for accelerated bridge construction : laboratory testing of precast substructure components, Boone County bridge.

    Science.gov (United States)

    2009-01-01

    Vol. 1-1: In July 2006, construction began on an accelerated bridge project in Boone County, Iowa that was composed of precast substructure : elements and an innovative, precast deck panel system. The superstructure system consisted of full-depth dec...

  4. Flexural Behaviour of Precast Aerated Concrete Panel (PACP with Added Fibrous Material: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul Rahim Noor Hazlin

    2017-01-01

    Full Text Available The usage of precast aerated concrete panel as an IBS system has become the main alternative to conventional construction system. The usage of this panel system contributes to a sustainable and environmental friendly construction. This paper presents an overview of the precast aerated concrete panel with added fibrous material (PACP. PACP is fabricated from aerated foamed concrete with added Polypropylene fibers (PP. The influence of PP on the mechanical properties of PACP are studied and reviewed from previous research. The structural behaviour of precast concrete panel subjected to flexure load is also reviewed. It is found that PP has significant affects on the concrete mixture’s compressive stregth, tensile strength and flexural strength. It is also found that PP manage to control the crack propagation in the concrete panel.

  5. Seismic Performance and Modeling of Reinforced Concrete and Post-Tensioned Precast Concrete Shear Walls

    OpenAIRE

    Tanyeri, Ahmet Can

    2014-01-01

    Past earthquakes have shown examples of unsatisfactory performance of buildings using reinforced concrete structural walls as the primary lateral-force-resisting system. In the 1994 Northridge earthquake, examples can be found where walls possessed too much overstrength, leading to unintended failure of collectors and floor systems, including precast and post-tensioned construction. In the 2010 Maule Chile earthquake, many structural wall buildings sustained severe damage. Although Chilean de...

  6. Inelastic seismic response of precast concrete frames with constructed plastic hinges

    Science.gov (United States)

    Sucuoglu, H.

    1995-07-01

    A modified seismic design concept is introduced for precast concrete frames in which beam plastic hinges with reduced yield capacities are constructed away from the precast beam-column connections arranged at the column faces. Plastic hinge location and yield capacity are employed as the basic parameters of an analytical survey in which the inelastic dynamic responses of a conventional precast frame and its modified counterparts are calculated and compared under two earthquake excitations by using a general purpose computer program for dynamic analysis of inelastic frames (left bracket) 1, 2 (right bracket). An optimum design is obtained by providing plastic hinges on precast beams located at one depth away from the beam ends, in which primary (negative) bending moment yield capacities are reduced between one-third and one-quarter of the beam design end moments. With such plastic hinge configurations, precast beam-column connections at the column faces can be designed to remain elastic under strong earthquake excitations.

  7. Feasibility study of two-lift concrete paving : technical report.

    Science.gov (United States)

    2014-04-01

    Two-lift concrete paving (2LCP) involves placing two layers of concrete (wet-on-wet) instead of a single : homogeneous layer, as is typically done in the United States. 2LCP offers the opportunity to optimize the use of local : aggregates, recycled m...

  8. Composite action of steel frames and precast concrete infill panels with corner connections – Part 2 : finite element analysis

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Hofmeyer, H.; Snijder, H.H.; Liew, J.Y.R.; Lee, S.C.

    2012-01-01

    When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on

  9. Composite action of steel frames and precast concrete infill panels with corner connections – Part 1 : experiments

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Snijder, H.H.; Hofmeyer, H.; Liew, J.Y.R.; Lee, S.C.

    2012-01-01

    When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on

  10. Precast concrete sandwich panels subjected to impact loading

    Science.gov (United States)

    Runge, Matthew W.

    Precast concrete sandwich panels are a relatively new product in the construction industry. The design of these panels incorporates properties that allow for great resilience against temperature fluctuation as well as the very rapid and precise construction of facilities. The concrete sandwich panels investigated in this study represent the second generation of an ongoing research and development project. This second generation of panels have been engineered to construct midsized commercial buildings up to three stories in height as well as residential dwellings. The panels consist of a double-tee structural wythe, a foam core and a fascia wythe, joined by shear connectors. Structures constructed from these panels may be subjected to extreme loading including the effects of seismic and blast loading in addition to wind. The aim of this work was to investigate the behaviour of this particular sandwich panel when subjected to structural impact events. The experimental program consisted of fourteen concrete sandwich panels, five of which were considered full-sized specimens (2700 mm X 1200mm X 270 mm) and nine half-sized specimens (2700mm X 600mm X 270 mm) The panels were subjected to impact loads from a pendulum impact hammer where the total energy applied to the panels was varied by changing the mass of the hammer. The applied loads, displacements, accelerations, and strains at the mid-span of the panel as well as the reaction point forces were monitored during the impact. The behaviour of the panels was determined primarily from the experimental results. The applied loads at low energy levels that caused little to no residual deflection as well as the applied loads at high energy levels that represent catastrophic events and thus caused immediate failure were determined from an impact on the structural and the fascia wythes. Applied loads at intermediate energy levels representing extreme events were also used to determine whether or not the panels could withstand

  11. Precast concrete elements for accelerated bridge construction : laboratory testing, field testing, evaluation of a precast concrete bridge, Madison County bridge.

    Science.gov (United States)

    2009-01-01

    The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa : DOT Office of Bridges and Structures. Recognizing this a two-lane single-span precast box girder bridge was constructed ...

  12. Research Status on Reinforcement Connection Form of Precast Concrete Shear Wall Structure

    Science.gov (United States)

    Zhang, Zhuangnan; Zhang, Yan

    2018-03-01

    With the rapid development of Chinese economy and the speeding up the process of urbanization, housing industrialization has been paid more and more attention. And the fabricated structure has been widely used in China. The key of precast concrete shear wall structure is the connection of precast components. The reinforcement connection can directly affect the entirety performance and seismic behavior of the structure. Different reinforcement connections have a great impact on the overall behavior of the structure. By studying the characteristics of the reinforcement connection forms used in the vertical connection and horizontal connection of precast concrete shear wall, it can provide reference for the research and development of the reinforcement connection forms in the future.

  13. Seismic performance of interior precast concrete beam-column connections with T-section steel inserts under cyclic loading

    Science.gov (United States)

    Ketiyot, Rattapon; Hansapinyo, Chayanon

    2018-04-01

    An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core, under reversed cyclic loading. Six 2/3-scale interior beam-column subassemblies, one monolithic concrete specimen and five precast concrete specimens were tested. One precast specimen was a simple connection for a gravity load resistant design. Other precast specimens were developed with different attributes to improve their seismic performance. The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior. Failure of columns and joints could be prevented, and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends, close to the column faces. For the precast specimens, the splitting crack along the longitudinal lapped splice was a major failure. The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models. However, the dowel bars connected to the steel inserts were too short to develop a bond. The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.

  14. Layout Optimization Model for the Production Planning of Precast Concrete Building Components

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2018-05-01

    Full Text Available Precast concrete comprises the basic components of modular buildings. The efficiency of precast concrete building component production directly impacts the construction time and cost. In the processes of precast component production, mold setting has a significant influence on the production efficiency and cost, as well as reducing the resource consumption. However, the development of mold setting plans is left to the experience of production staff, with outcomes dependent on the quality of human skill and experience available. This can result in sub-optimal production efficiencies and resource wastage. Accordingly, in order to improve the efficiency of precast component production, this paper proposes an optimization model able to maximize the average utilization rate of pallets used during the molding process. The constraints considered were the order demand, the size of the pallet, layout methods, and the positional relationship of components. A heuristic algorithm was used to identify optimization solutions provided by the model. Through empirical analysis, and as exemplified in the case study, this research is significant in offering a prefabrication production planning model which improves pallet utilization rates, shortens component production time, reduces production costs, and improves the resource utilization. The results clearly demonstrate that the proposed method can facilitate the precast production plan providing strong practical implications for production planners.

  15. Three-dimensional submodel for modelling of joints in precast concrete structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2016-01-01

    The shear capacity of in-situ cast joints is crucial to the overall stability of precast concrete structures. The current design is based on empirical formulas, which account for neither the reinforcement layout of the joint nor the three-dimensional stress states present within the joint...

  16. Double-curved precast concrete elements : Research into technical viability of the flexible mould method

    NARCIS (Netherlands)

    Schipper, H.R.

    2015-01-01

    The production of precast, concrete elements with complex, double-curved geometry is expensive due to the high costcosts of the necessary moulds and the limited possibilities for mould reuse. Currently, CNC-milled foam moulds are the solution applied mostly in projects, offering good aesthetic

  17. Push-Pull interface connections in steel frames with precast concrete infill panels

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Snijder, H.H.; Hofmeyer, H.

    2012-01-01

    This paper presents experimental and finite element results of investigations into the stiffness and strength of three discrete interface connections between simple steel frames and precast concrete infill panels serving as lateral bracing. The ability of the connections to resist compression and

  18. Mechanical model for steel frames with discretely connected precast concrete infill panels with window openings

    NARCIS (Netherlands)

    Teeuwen, P.A.; Kleinman, C.S.; Snijder, H.H.

    2012-01-01

    This paper presents a mechanical model for a structure comprising of steel frames with discretely connected precast concrete infill panels having window openings, termed semi-integral infilled frames. The discrete panel-to-frame connections are realized by structural bolts acting under compression.

  19. Lateral behavior of steel frames with discretely connected precast concrete infill panels

    NARCIS (Netherlands)

    Teeuwen, P.A.

    2009-01-01

    As an alternative to the conventional structures for tall buildings, a hybrid lateral load resisting structure has been designed at Eindhoven University of Technology. It consists of discretely connected precast concrete panels with window openings in steel frames, and is a new application in

  20. Experimental Investigation of the Shear Resistance of Steel Frames with Precast Concrete Infill Panels

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Hofmeyer, H.; Snijder, H.H.

    2010-01-01

    At the Technische Universiteit Eindhoven a research program on composite construction is underway aiming at the development of design rules for steel frames with discretely connected precast concrete infill panels subject to in-plane horizontal loading. This paper presents experimental and finite

  1. Parameter study on infilled steel frames with discretely connected precast concrete panels

    NARCIS (Netherlands)

    Teeuwen, P.A.; Kleinman, C.S.; Snijder, H.H.; Hofmeyer, H.; Chan, S.L.

    2009-01-01

    This paper presents a parameter study on infilled steel frames with discretely connected precast concrete infill panels having window openings. In this study, finite element simulations were carried out to study the infilled frame performance by varying several parameters. A recently developed

  2. Selection of economic cross-section of precast reinforced concrete purlins

    Directory of Open Access Journals (Sweden)

    Goleš Danica

    2017-01-01

    Full Text Available The selection of the cross section of precast reinforced concrete (RC purlins is performed in the function of their span and load, while the spacing of these elements is chosen according to the bearing capacity and deformability of the roof cover. This paper presents an analysis of the consumption and price of the materials for the production of precast RC purlins of 6.0 m span for different spacing, shapes and dimensions of the cross section, aiming to achieve the minimum total cost of materials for production of the purlins of a two-bay hall, with meeting the requirements of resistance, service-ability and durability.

  3. A study on the behavior of beam-column connections in precast concrete structures: experimental analysis

    OpenAIRE

    Kataoka,M. N.; Ferreira,M. A.; El Debs,A. L. H. C.

    2012-01-01

    Due to the large increase in the use of precast concrete structures in multistory buildings, this work covers a study on the behavior of beam-column connection with emphasis on the continuity provided by the slab reinforcement. Two prototypes were tested, each one with a different detail of the continuity reinforcement distribution. In both connections, the steel area used on the concrete cover of the hollow core slab was the same, varying the amount of bars that passed through the column and...

  4. Durability of precast prestressed concrete piles in marine environment, part 2. Volume 2 : stainless steel prestressing strand and wire.

    Science.gov (United States)

    2012-06-01

    The overall purpose of this research was to determine methods which may be applied : economically to mitigate corrosion of reinforcement in precast prestressed concrete piles in : Georgias marine environments. The research was divided into two par...

  5. A new ductile moment-resisting connection for precast concrete frames in seismic regions: An experimental investigation

    OpenAIRE

    Parastesh, H.; Hajirasouliha, I.; Ramezani, R.

    2014-01-01

    A new ductile moment-resisting beam–column connection is developed for precast reinforced concrete (RC) frames in high seismic zones. The proposed connection provides good structural integrity in the connections and can reduce construction time by eliminating the need for formworks and welding, and minimizing cast-in-place concrete volume. A series of cyclic loading tests were carried out on six full-scale interior and exterior precast connections and two monolithic connections, all designed ...

  6. Development of a Skewed Pipe Shear Connector for Precast Concrete Structures.

    Science.gov (United States)

    Kim, Sang-Hyo; Choi, Jae-Gu; Park, Sejun; Lee, Hyunmin; Heo, And Won-Ho

    2017-05-13

    Joint connection methods, such as shear key and loop bar, improve the structural performance of precast concrete structures; consequently, there is usually decreased workability or constructional efficiency. This paper proposes a high-efficiency skewed pipe shear connector. To resist shear and pull-out forces, the proposed connectors are placed diagonally between precast concrete segments and a cast-in-place concrete joint part on a girder. Design variables (such as the pipe diameter, length, and insertion angle) have been examined to investigate the connection performance of the proposed connector. The results of our testing indicate that the skewed pipe shear connectors have 50% higher ductility and a 15% higher ratio of maximum load to yield strength as compared to the corresponding parameters of the loop bar. Finite element analysis was used for validation. The resulting validation indicates that, compared to the loop bar, the skewed pipe shear connector has a higher ultimate shear and pull-out resistance. These results indicate that the skewed pipe shear connector demonstrates more idealized behavior than the loop bar in precast concrete structures.

  7. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    Science.gov (United States)

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Advantage of using high strength self compacting concrete for precast product

    Science.gov (United States)

    Murdono, Ferryandy; Agustin, Winda; Soeprapto, Gambiro; Sunarso, Mukhlis

    2017-11-01

    According to the development in the world of construction, the need for precast concrete also increases. Now the day there are many products with narrow range reinforcement and difficult dimensions. The ordinary concrete is difficult to pour in a mold with narrow range reinforcement inside without vibrator because the concrete can't fill in the gaps between the bars. SCC (Self Compacting Concrete) is a concrete that precast concrete industry needs to. The using of SCC also supports the green construction through the cement reducing and reducing the use of vibrator that requires not less energy. This research is using EFNARC standard as a condition of admission SCC (filling ability, passing ability, segregation resistance), and performed well against the application of the product by the production of Railway Sleeper without using a vibrator. The results of this study, the LB-2 and LB-3 qualified as SCC and compressive strength is expected that greater than 70 MPa, as well as products quality, is equal to standard and can be mass produced with the efficiency of the price of concrete up to 11%.

  9. Influence of Connection Placement to the Behavior of Precast Concrete Exterior Beam-Column Joint

    OpenAIRE

    Elly Tjahjono; Heru Purnomo

    2010-01-01

    This paper presents an experimental study on the influence of connection placement to the behaviour of exterior beamcolumn joint of precast concrete structure under semi cyclic loading. Four half-scale beam-column specimens were investigated. Three beam-columns were jointed through connection that are placed in beam-column joint region and the forth is connected at the plastic hinge potensial region of the beam. Crack patterns, strength, stiffness and ductility of the test specimens have been...

  10. Improvement of Concrete Paving Blocks Properties by Mineral Additions

    Directory of Open Access Journals (Sweden)

    Aqeel Hatem Chkheiwer

    2017-03-01

    Full Text Available This research presents the results of experimental work on the various properties concrete paving blocks (CPB made with concrete containing different mineral additions.in this study, three types of mineral additions;Fly Ash (FA,Metakaolin (MK and Silica Fume (SF were used. Thirteen concretes mixes were cast at a water/binder ratio of 0.45 with 0, 5, 10,15and 20% cement replaced by either Fly ash,Metakaolin or Silica Fume. Theconcrete mixes were tested for slump, compressive strength, water absorption, and abrasion resistance.Metakaolin-contained concrete showed a better workability than fly ash and silica fume concrete. As the replacement level wasincreased, the 28-days compressive strength of the CPB containing MK increased similarly to that of the silica fume-containedCPB up to 20% replacement ratio. The replacement ratio of MK and SF from 5 to 20 % reduced water absorptionof CPB from5 to 19 than that of control mix. The increase in replacement ratio of MK andSF from 5 to 20 % leads to increasing abrasion resistance from 8 to 18% that of control mix

  11. A STUDY ABOUT TERRESTRIAL LASER SCANNING FOR RECONSTRUCTION OF PRECAST CONCRETE TO SUPPORT QLASSIC ASSESSMENT

    Directory of Open Access Journals (Sweden)

    M. A. Aziz

    2016-09-01

    Full Text Available Nowadays, terrestrial laser scanning shows the potential to improve construction productivity by measuring the objects changes using real-time applications. This paper presents the process of implementation of an efficient framework for precast concrete using terrestrial laser scanning that enables contractors to acquire accurate data and support Quality Assessment System in Construction (QLASSIC. Leica Scanstation C10, black/white target, Autodesk Revit and Cyclone software were used in this study. The results were compared with the dimensional of based model precast concrete given by the company as a reference with the AutoDesk Revit model from the terrestrial laser scanning data and conventional method (measuring tape. To support QLASSIC, the tolerance dimensions of cast in-situ & precast elements is +10mm / -5mm. The results showed that the root mean square error for a Revit model is 2.972mm while using measuring tape is 13.687mm. The accuracy showed that terrestrial laser scanning has an advantage in construction jobs to support QLASSIC.

  12. a Study about Terrestrial Laser Scanning for Reconstruction of Precast Concrete to Support Qlassic Assessment

    Science.gov (United States)

    Aziz, M. A.; Idris, K. M.; Majid, Z.; Ariff, M. F. M.; Yusoff, A. R.; Luh, L. C.; Abbas, M. A.; Chong, A. K.

    2016-09-01

    Nowadays, terrestrial laser scanning shows the potential to improve construction productivity by measuring the objects changes using real-time applications. This paper presents the process of implementation of an efficient framework for precast concrete using terrestrial laser scanning that enables contractors to acquire accurate data and support Quality Assessment System in Construction (QLASSIC). Leica Scanstation C10, black/white target, Autodesk Revit and Cyclone software were used in this study. The results were compared with the dimensional of based model precast concrete given by the company as a reference with the AutoDesk Revit model from the terrestrial laser scanning data and conventional method (measuring tape). To support QLASSIC, the tolerance dimensions of cast in-situ & precast elements is +10mm / -5mm. The results showed that the root mean square error for a Revit model is 2.972mm while using measuring tape is 13.687mm. The accuracy showed that terrestrial laser scanning has an advantage in construction jobs to support QLASSIC.

  13. Experimental investigations into in-plane stiffness and strength of steel frames with precast concrete infill panels

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Hofmeyer, H.; Snijder, H.H.; Richard Liew, J.; Choo, Y.S.

    2007-01-01

    At Eindhoven University of Technology a research program on composite construction is underway aiming at the development of design rules for steel frames with precast concrete infill panels subject to horizontal loading. In two projects, 3 by 3 m steel frames are infilled with concrete: solid

  14. Sound absorption and morphology characteristic of porous concrete paving blocks

    Science.gov (United States)

    Halim, N. H. Abd; Nor, H. Md; Ramadhansyah, P. J.; Mohamed, A.; Hassan, N. Abdul; Ibrahim, M. H. Wan; Ramli, N. I.; Nazri, F. Mohamed

    2017-11-01

    In this study, sound absorption and morphology characteristic of Porous Concrete Paving Blocks (PCPB) at different sizes of coarse aggregate were presented. Three different sizes of coarse aggregate were used; passing 10 mm retained 5 mm (as Control), passing 8 mm retained 5 mm (8 - 5) and passing 10 mm retained 8 mm (10 - 8). The sound absorption test was conducted through the impedance tube at different frequency. It was found that the size of coarse aggregate affects the level of absorption of the specimens. It also shows that PCPB 10 - 8 resulted in high sound absorption compared to the other blocks. On the other hand, microstructure morphology of PCPB shows a clearer version of existing micro-cracks and voids inside the specimens which affecting the results of sound absorption.

  15. Shake-table testing of a self-centering precast reinforced concrete frame with shear walls

    Science.gov (United States)

    Lu, Xilin; Yang, Boya; Zhao, Bin

    2018-04-01

    The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination of unbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.

  16. Design, development, and application of precast and prestressed concrete system for rigid pavement in Indonesia

    Science.gov (United States)

    Nurjaman, Hari; Faizal, Lutfi; Suaryana, Nyoman; Hariandja, Binsar; Gambiro, Purnomo, Wicaksono, Siswo

    2017-11-01

    The performance of highways in Indonesia until today is yet to be optimum. Flexible or rigid pavement construction generally do not reach designed service lives, either due to the fact that the construction do not meet specifications or unavoidable excessive load. Precast and prestressed concrete system has been applied since 2007, but unfortunately the application has not been optimum due to the fact that the construction method is not integrally carried out. This paper deals with a construction concept that developed in 2015-2017. The concept applies green construction based on integrated manufacture industry, starting from design, construction, function, maintenance and demolition. The concept is applied on the three highway sub-layers, i.e., sub grade, sub base, and surface, and drainage system. Sub grade improvement may use soil dislocation, chemical improvement or concrete matress. Sub base material uses foam mortar, which is material easy in quality control compared to conventional materials. Pavement material uses precast and prestressed concrete components with controlled quality, quickly function as flexible pavement, and moreover, may anticipate excessive loadings. Cost estimation is carried out integrated by life cycle cost: initial investment, obstruction while construction, and maintenance cost during operation. This innovation has passed tests in technical construction method aspects as well as construction work in 2015-2017, so it is available to support infrastructure construction acceleration which achieves quality demanded to date.

  17. Precast self-compacting concrete (PSCC) panel with added coir fiber: An overview

    Science.gov (United States)

    Afif Iman, Muhamad; Mohamad, Noridah; Samad, Abdul Aziz Abdul; Goh, W. I.; Othuman Mydin, M. A.; Afiq Tambichik, Muhamad; Bosro, Mohamad Zulhairi Mohd; Wirdawati, A.; Jamaluddin, N.

    2018-04-01

    Self-compacting concrete (SCC) is the alternative way to reduce construction time and improve the quality and strength of concrete. The panel system fabricated from SCC contribute to the IBS system that is sustainable and environmental friendly. The precast self-compacting concrete (PSCC) panel with added coir fiber will be overview in this paper. The properties of SCC and coir fiber are studied and reviewed from the previous researches. Finite element analysis is used to support the experimental results by conduction parametric simulation study on PSCC under flexure load. In general, it was found that coir fiber has a significant influence on the flexural load and crack propagation. Higher fiber incorporated in SCC resulted with higher ultimate load of PSCC.

  18. Beneficial reuse of precast concrete industry sludge to produce alkaline stabilized biosolids.

    Science.gov (United States)

    Gowda, C; Seth, R; Biswas, N

    2008-01-01

    The precast concrete industry generates waste called concrete sludge during routine mixer tank washing. It is highly alkaline and hazardous, and typically disposed of by landfilling. This study examined the stabilization of municipal sewage sludge using concrete sludge as an alkaline agent. Sewage sludge was amended with 10 to 40% of concrete sludge by wet weight, and 10 and 20% of lime by dry weight of the sludge mix. Mixes containing 30 and 40% of concrete sludge with 20% lime fulfilled the primary requirements of Category 1 and 2 (Canada) biosolids of maintaining a pH of 12 for at least 72 hours. The heavy metals were below Category 1 regulatory limits. The 40% concrete sludge mix was incubated at 52 degrees C for 12 of the 72 hours to achieve the Category 1 and 2 regulations of less than 1000 fecal coliform/g solids. The nutrient content of the biosolids was 8.2, 10 and 0.6 g/kg of nitrogen, phosphorus and potassium respectively. It can be used as a top soil or augmented with potassium for use as fertilizer. The study demonstrates that concrete sludge waste can be beneficially reused to produce biosolids, providing a long-term sustainable waste management solution for the concrete industry.

  19. Influence of Connection Placement to the Behavior of Precast Concrete Exterior Beam-Column Joint

    Directory of Open Access Journals (Sweden)

    Elly Tjahjono

    2010-10-01

    Full Text Available This paper presents an experimental study on the influence of connection placement to the behaviour of exterior beamcolumn joint of precast concrete structure under semi cyclic loading. Four half-scale beam-column specimens were investigated. Three beam-columns were jointed through connection that are placed in beam-column joint region and the forth is connected at the plastic hinge potensial region of the beam. Crack patterns, strength, stiffness and ductility of the test specimens have been evaluated. The test result indicated that all beam-column specimens show good ductility behavior.

  20. A study on the behavior of beam-column connections in precast concrete structures: experimental analysis

    Directory of Open Access Journals (Sweden)

    M. N. Kataoka

    Full Text Available Due to the large increase in the use of precast concrete structures in multistory buildings, this work covers a study on the behavior of beam-column connection with emphasis on the continuity provided by the slab reinforcement. Two prototypes were tested, each one with a different detail of the continuity reinforcement distribution. In both connections, the steel area used on the concrete cover of the hollow core slab was the same, varying the amount of bars that passed through the column and the ones that were placed adjacent to the column. The experimental results showed that the connection with bars adjacent to the column presented stiffness increase and a better cracking control. According to the classification the two tested connections can be considered semi-rigid.

  1. Cost optimization of load carrying thin-walled precast high performance concrete sandwich panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hansen, Sanne; Hulin, Thomas

    2015-01-01

    and HPCSP’s geometrical parameters as well as on material cost function in the HPCSP design. Cost functions are presented for High Performance Concrete (HPC), insulation layer, reinforcement and include labour-related costs. The present study reports the economic data corresponding to specific manufacturing......The paper describes a procedure to find the structurally and thermally efficient design of load-carrying thin-walled precast High Performance Concrete Sandwich Panels (HPCSP) with an optimal economical solution. A systematic optimization approach is based on the selection of material’s performances....... The solution of the optimization problem is performed in the computer package software Matlab® with SQPlab package and integrates the processes of HPCSP design, quantity take-off and cost estimation. The proposed optimization process outcomes in complex HPCSP design proposals to achieve minimum cost of HPCSP....

  2. Mechanical Performance Evaluation of Self-Compacting Concrete with Fine and Coarse Recycled Aggregates from the Precast Industry.

    Science.gov (United States)

    Santos, Sara A; da Silva, Pedro R; de Brito, Jorge

    2017-08-04

    This paper intends to evaluate the feasibility of reintroducing recycled concrete aggregates in the precast industry. The mechanical properties of self-compacting concrete (SCC) with incorporation of recycled aggregates (RA) (coarse recycled aggregates (CRA) and fine recycled aggregates (FRA)) from crushed precast elements were evaluated. The goal was to evaluate the ability of producing SCC with a minimum pre-established performance in terms of mechanical strength, incorporating variable ratios of RA (FRA/CRA%: 0/0%, 25/25%, 50/50%, 0/100% and 100/0%) produced from precast source concretes with similar target performances. This replication in SCC was made for two strength classes (45 MPa and 65 MPa), with the intention of obtaining as final result concrete with recycled aggregates whose characteristics are compatible with those of a SCC with natural aggregates in terms of workability and mechanical strength. The results enabled conclusions to be established regarding the SCC's produced with fine and coarse recycled aggregates from the precast industry, based on its mechanical properties. The properties studied are strongly affected by the type and content of recycled aggregates. The potential demonstrated, mainly in the hardened state, by the joint use of fine and coarse recycled aggregate is emphasized.

  3. Production of Curved Precast Concrete Elements for Shell Structures and Free-form Architecture using the Flexible Mould Method

    NARCIS (Netherlands)

    Schipper, H.R.; Grünewald, S.; Eigenraam, P.; Raghunath, P.; Kok, M.A.D.

    2014-01-01

    Free-form buildings tend to be expensive. By optimizing the production process, economical and well-performing precast concrete structures can be manufactured. In this paper, a method is presented that allows producing highly accurate double curved-elements without the need for milling two expensive

  4. Full-scale testing of infilled steel frames with precast concrete panels provided with a window opening

    NARCIS (Netherlands)

    Teeuwen, P.A; Kleinman, C.S.; Snijder, H.H.; Hofmeyer, H.

    2008-01-01

    As an alternative to conventional structures for tall buildings, a hybrid lateral load resisting building system has been designed, enabling the assembly of tall buildings directly from truck. It consists of steel frames with discretely connected precast concrete infill panels provided with a window

  5. Seismic behavior of two exterior beam-column connections made of normal-strength concrete developed for precast construction

    NARCIS (Netherlands)

    Yuksel, Ercan; Karadogan, H. Faruk; Bal, Ihsan Engin; Ilki, Alper; Bal, Ahmet; Inci, Pinar

    2015-01-01

    The lack of in-depth understanding of the seismic behavior and ductility of precast concrete structures makes it difficult to reach to ductility demand which could be exhibited during an earthquake. The limitations are mainly related to the beam-to-column connections as the main load transfer paths.

  6. Experiments and FE-model for a connection between steel frames and precast concrete infill panels (Stuttgart)

    NARCIS (Netherlands)

    Teeuwen, P.A; Kleinman, C.S.; Snijder, H.H.; Hofmeyer, H.; Eligehausen, R.; Fuchs, W.; Genesio, G.; Grosser, P.

    2007-01-01

    The paper presents experimental and FE results of investigations into the structural behaviour of a connection between steel frames and precast concrete infill panels, forming a recently developed lateral load resisting system. The discrete connections, being structural bolts on the column and beam

  7. Thermal Performance of Precast Concrete Sandwich Panel (PCSP) Design for Sustainable Built Environment

    Science.gov (United States)

    Ern, Peniel Ang Soon; Ling, Lim Mei; Kasim, Narimah; Hamid, Zuhairi Abd; Masrom, Md Asrul Nasid Bin

    2017-10-01

    Malaysia’s awareness of performance criteria in construction industry towards a sustainable built environment with the use of precast concrete sandwich panel (PCSP) system is applied in the building’s wall to study the structural behaviour. However, very limited studies are conducted on the thermal insulation of exterior and interior panels in PCSP design. In hot countries such as Malaysia, proper designs of panel are important to obtain better thermal insulation for building. This study is based on thermal performance of precast concrete sandwich panel design for sustainable built environment in Malaysia. In this research, three full specimens, which are control specimen (C), foamed concrete (FC) panels and concrete panels with added palm oil fuel ash (FC+ POFA), where FC and FC+POFA sandwiched with gypsum board (G) were produced to investigate their thermal performance. Temperature difference of exterior and interior surface of specimen was used as indicators of thermal-insulating performance of PCSP design. Heat transfer test by halogen lamp was carried out on three specimens where the exterior surface of specimens was exposed to the halogen lamp. The temperature reading of exterior and interior surface for three specimens were recorded with the help of thermocouple. Other factors also studied the workability, compressive strength and axial compressive strength of the specimens. This study has shown that FC + POFA specimen has the strength nearer to normal specimen (C + FC specimen). Meanwhile, the heat transfer results show that the FC+POFA has better thermal insulation performance compared to C and FC specimens with the highest temperature difference, 3.4°C compared to other specimens. The results from this research are useful to be implemented in construction due to its benefits such as reduction of energy consumption in air-conditioning, reduction of construction periods and eco-friendly materials.

  8. Cement-base bearing pads mortar for connections in the precast concrete: study of surface roughness

    Directory of Open Access Journals (Sweden)

    M. K. El Debs

    Full Text Available Bearing pads are used in precast concrete connections to avoid concentrated stresses in the contact area between the precast elements. In the present research, the bearing pads are Portland cement mortar with styrene-butadiene latex (SB, lightweight aggregate (expanded vermiculite-term and short fibers (polypropylene, glass and PVA, in order to obtain a material with low modulus of elasticity and high tenacity, compared with normal Portland cement mortar. The objective of this paper is to analyze the influence of surface roughness on the pads and test other types of polypropylene fibers. Tests were carried out to characterize the composite and test on bearing pads. Characterization tests show compressive strength of 41MPa and modulus of elasticity of 12.8GPa. The bearing pads tests present 30% reduction of stiffness in relation to a reference mortar. The bearing pads with roughness on both sides present a reduction up to 30% in stiffness and an increase in accumulated deformation of more than 120%, regarding bearing pads with both sides smooth.

  9. Cooling tower, construction method method therefor and precast prestressed concrete building units

    International Nuclear Information System (INIS)

    Lin, T.Y.; Yang, Y.C.

    1978-01-01

    A large, thin-shell cooling tower, a method for its erection, and novel precast units are described. Upon a foundation a series of angularly-extending columns is erected, and the columns are joined at their upper ends by a lower ring. Then a ribbed, waffle-like reinforced concrete wall is constructed to extend up from the lower ring and to provide a shell with a shape such as a hyperbolic paraboloid. The ribbed outer (or inner) surface strengthens the structure while enabling the thickness of the portions in between the ribs to be relatively thin. A series of vertically-spaced horizontal circumferential reinforcing bars or post-tensioning cables and a series of horizontally-spaced vertical or inclined bars or cables are included in the wall. The wall is preferably made up from a series of precast units that are of novel structure in themselves. At the top of the wall is an upper ring joining the various elements together

  10. Pseudo-dynamic tests on masonry residential buildings seismically retrofitted by precast steel reinforced concrete walls

    Science.gov (United States)

    Li, Wenfeng; Wang, Tao; Chen, Xi; Zhong, Xiang; Pan, Peng

    2017-07-01

    A retrofitting technology using precast steel reinforced concrete (PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests.

  11. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...... ropes that are pre-installed in wire boxes is presented along with test results on the shear strength of connections with double-wire boxes. It is shown that the plastic solution agrees well with both the obtained test results and results from previously conducted tests....

  12. Analysis of uplift loads of precast-concrete piles in porous soils

    Directory of Open Access Journals (Sweden)

    Stélio Maia Menezes

    2006-01-01

    Full Text Available This paper presents the analysis of uplift load tests in three precast-concrete piles carried out in a collapsible sandy soil. The piles with 12 meters (m length and 0.17 x 0.17 square meter (m2 cross section were instrumented with strain gauges, in order to know the load transfer in depth. Three tests performed in a slow maintained load way were conducted in a natural condition of moisture content soil. A fourth test was carried out after the previous soaking of the soil around the pile head. The tests were performed in the experimental research site at the Universidade Estadual Paulista “Júlio de Mesquita Filho” (Unesp. The results obtained were evaluated by analytical and empirical methods.

  13. Evaluation Analysis of the CO2 Emission and Absorption Life Cycle for Precast Concrete in Korea

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-07-01

    Full Text Available To comply with recent international trends and initiatives, and in order to help achieve sustainable development, Korea has established a greenhouse gas (GHG emission reduction target of 37% (851 million tons of the business as usual (BAU rate by 2030. Regarding environmentally-oriented standards such as the IGCC (International Green Construction Code, there are also rising demands for the assessment on CO2 emissions during the life cycle in accordance with ISO (International Standardization Organization’s Standard 14040. At present, precast concrete (PC engineering-related studies primarily cover structural and construction aspects, including improvement of structural performance in the joint, introduction of pre-stressed concrete and development of half PC. In the manufacture of PC, steam curing is mostly used for the early-strength development of concrete. In steam curing, a large amount of CO2 is produced, causing an environmental problem. Therefore, this study proposes a method to assess CO2 emissions (including absorption throughout the PC life cycle by using a life cycle assessment (LCA method. Using the proposed assessment method, CO2 emissions during the life cycle of a precast concrete girder (PCG were assessed. In addition, CO2 absorption was assessed against a PCG using conventional carbonation and CO2 absorption-related models. As a result, the CO2 emissions throughout the life cycle of the PCG were 1365.6 (kg-CO2/1 PCG. The CO2 emissions during the production of raw materials among the CO2 emissions throughout the life cycle of the PCG were 1390 (kg-CO2/1 PCG, accounting for a high portion to total CO2 emissions (nearly 90%. In contrast, the transportation and manufacture stages were 1% and 10%, respectively, having little effect on total CO2 emissions. Among the use of the PCG, CO2 absorption was mostly decided by the CO2 diffusion coefficient and the amount of CO2 absorption by cement paste. The CO2 absorption by carbonation

  14. Precast concrete elements for accelerated bridge construction : laboratory testing, field testing, and evaluation of a precast concrete bridge, Black Hawk County.

    Science.gov (United States)

    2009-01-01

    The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa : DOT Office of Bridges and Structures. Black Hawk County (BHC) has developed a precast modified beam-in-slab bridge (PMBI...

  15. Behaviour of partially composite precast concrete sandwich panels under flexural and axial loads

    Science.gov (United States)

    Tomlinson, Douglas George

    Precast concrete sandwich panels are commonly used on building exteriors. They are typically composed of two concrete wythes that surround rigid insulation. They are advantageous as they provide both structural and thermal resistance. The structural response of sandwich panels is heavily influenced by shear connectors that link the wythes together. This thesis presents a study on partially composite non-prestressed precast concrete wall panels. Nine flexure tests were conducted on a wall design incorporating 'floating' concrete studs and Glass Fibre Reinforced Polymer (GFRP) connectors. The studs encapsulate and stiffen the connectors, reducing shear deformations. Ultimate loads increased from 58 to 80% that of a composite section as the connectors' reinforcement ratio increased from 2.6 to 9.8%. This design was optimized by reinforcing the studs and integrating them with the structural wythe; new connectors composed of angled steel or Basalt-FRP (BFRP) were used. The load-slip response of the new connector design was studied through 38 double shear push-through tests using various connector diameters and insertion angles. Larger connectors were stronger but more likely to pull out. Seven flexure tests were conducted on the new wall design reinforced with different combinations of steel and BFRP connectors and reinforcement. Composite action varied from 50 to 90% depending on connector and reinforcement material. Following this study, the axial-bending interaction curves were established for the new wall design using both BFRP and steel connectors and reinforcement. Eight panels were axially loaded to predesignated loads then loaded in flexure to failure. A technique is presented to experimentally determine the effective centroid of partially composite sections. Beyond the tension and compression-controlled failure regions of the interaction curve, a third region was observed in between, governed by connector failure. Theoretical models were developed for the bond

  16. Development of Concrete Paving Blocks Prepared from Waste Materials without Portland Cement

    Directory of Open Access Journals (Sweden)

    Charin NAMARAK

    2018-02-01

    Full Text Available This experiment used three types of waste materials: calcium carbide residue, fly ash, and recycled concrete aggregate to develop concrete paving blocks. The blocks had calcium carbide residue and fly ash as a binder without ordinary Portland cement (OPC and combined with 100 % of recycled concrete aggregate. The concrete paving blocks were 10 × 10 × 20 cm and were formed using a pressure of 6 or 8 MPa. The binder-to-aggregate ratio was held constant at 1:3 by weight, while the water-to-binder ratios were 0.30, 0.35, and 0.40. The effects of the water-to-binder ratios and fineness of the binder on the compressive strength, flexural strength, abrasion resistance, and water absorption of the concrete paving blocks were determined and compared with those of TIS 827 and ASTM C1319 standards. The results revealed that by applying this procedure, we were able to produce an excellence concrete paving block without using OPC. The compressive strength of the concrete paving blocks made from these waste materials was 41.4 MPa at 28 days and increased to 45.3 MPa at 60 days. Therefore, these waste materials can be used as raw materials to manufacture concrete paving blocks without OPC that meet the requirements of 40 MPa and 35 MPa specified by the TIS 827 and ASTM C1319 standards, respectively.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17566

  17. High plastic concrete temperature specifications for paving mixtures.

    Science.gov (United States)

    2011-08-01

    This report documents a study performed for the Illinois Department of Transportation (IDOT) regarding : concrete roadway construction in hot weather. The main objective in this project is to develop improved : specifications and procedures with resp...

  18. Constraint-aware interior layout exploration for pre-cast concrete-based buildings

    KAUST Repository

    Liu, Han

    2013-05-03

    Creating desirable layouts of building interiors is a complex task as designers have to manually adhere to various local and global considerations arising from competing practical and design considerations. In this work, we present an interactive design tool to create desirable floorplans by computationally conforming to such design constraints. Specifically, we support three types of constraints: (i) functional constraints such as number of rooms, connectivity among the rooms, target room areas, etc.; (ii) design considerations such as user modifications and preferences, and (iii) fabrication constraints such as cost and convenience of manufacturing. Based on user specifications, our system automatically generates multiple floor layouts with associated 3D geometry that all satisfy the design specifications and constraints, thus exposing only the desirable family of interior layouts to the user. In this work, we focus on pre-cast concrete-based constructions, which lead to interesting discrete and continuous optimization possibilities. We test our framework on a range of complex real-world specifications and demonstrate the control and expressiveness of the exposed design space relieving the users of the task of manually adhering to non-local functional and fabrication constraints. © 2013 Springer-Verlag Berlin Heidelberg.

  19. Damage detection in concrete precast slabs: a quick assessment through modal tests

    Directory of Open Access Journals (Sweden)

    Leal Pimentel Roberto

    2015-01-01

    Full Text Available The use of modal tests for detecting damage in reinforced concrete precast slabs is evaluated. A set of eight slabs were tested, each belonging to flats constructed for residential use. Two groups of slabs were identified and, in each group, both cracked and uncracked slabs were found. This made it possible to compare the responses of the slabs when subjected to modal tests. The tests were carried out employing an instrumented hammer and heel drops as excitation sources. Responses were measured using an accelerometer. The lowest natural frequencies of the slabs could be identified and after filtering the results, plots indicating the variation of the lowest natural frequency versus the number of cycles of free decay were obtained for each slab. Such a plot is of more general use than the value of the natural frequency by itself, as it does not depend on slab configuration. It was observed that the cracked slabs presented a similar pattern of variation of the natural frequencies throughout the decay, being distinctive from the pattern observed for their uncracked counterparts. This provided evidence that a quick assessment of the structural condition of such slabs through the use of the tests were feasible.

  20. Viability of utilization of waste materials from ceramic products in precast concretes

    Directory of Open Access Journals (Sweden)

    Sánchez de Rojas, M. I.

    2001-12-01

    Full Text Available The recycled and re-valuation process of waste materials involves studies lead to a deep acknowledges of them, finding applications for their intended use. The waste materials from ceramic products can be recycled into the construction sector, as arid or pozzolanic materials. The current work deals with the incorporation of ceramic materials in these two different ways, checking the behaviour of the elaborated mortar by mean of laboratory tests. Also, tests are developed in factory, using these as components for precast concrete tiles.

    Todo proceso de reciclado y revalorización de residuos implica estudios encaminados a un conocimiento profundo de los mismos, de forma que se busquen aplicaciones concretas de uso. Los materiales de desecho procedentes de productos cerámicos pueden ser reciclados dentro del sector de la construcción, ya sea como áridos o como materiales puzolánicos. El presente trabajo aborda la incorporación de materiales cerámicos desde estas dos vertientes, comprobando, en cada caso, el comportamiento de los morteros elaborados mediante ensayos de laboratorio. También se llevan a cabo pruebas en fábrica, siendo utilizados como componentes en prefabricados de hormigón.

  1. Applicability of Various Load Test Interpretation Criteria in Measuring Driven Precast Concrete Pile Uplift Capacity

    Directory of Open Access Journals (Sweden)

    Maria Cecilia M. Marcos

    2018-04-01

    Full Text Available This paper presented a comprehensive analysis of load test interpretation criteria to determine their suitability to driven precast concrete (PC pile uplift capacity. A database was developed containing static pile load tests and utilized for the evaluation. The piles were round and square cross-sections under drained and undrained loading. To explore and compare their behavior, the stored data were categorized into four groups. In general, the trends of every criterion for the four groups were notably the same. In both drained and undrained loading, slightly larger interpreted capacities were demonstrated by square piles than by round piles. Moreover, round piles demonstrated more ductile load-displacement response than square piles especially in undrained loading. Statistical analyses presented that smaller values of displacements exhibited higher coefficient of variation. The drained and undrained tests were compared and results showed less variability in drained than undrained loading and capacity ratios (Qx/QCHIN in drained loading were slightly higher than in undrained loading. The interrelationship and applicability of these criteria as well as the design recommendations in terms of normalized capacity and displacement were given based on the analyses.

  2. Recycling power plant slag for use as aggregate in precast concrete components

    Directory of Open Access Journals (Sweden)

    Orna Carmona, M.

    2010-12-01

    Full Text Available The need to eliminate waste generates costs. When considering the preservation of the environment, the minimization of the consumption of natural resources and energy savings criteria, the need and advisability of studying the feasibility of waste re-use seems clear. However, waste re-use depends on whether they are economically competitive. Therefore, the aim of this study is to evaluate the possible use of slag from a steam power station as aggregate in the manufacture of concrete. This study included the determination of the physical, chemical and thermal properties of the material, comparing the results to those required by the Spanish structural concrete code (EHE in determining their acceptance or rejection as a concrete component. The ultimate aim of the research was to determine the highest slag content that could be added to concrete without modifying its strength or durability, with a view to obtaining savings in the manufacture of precast structures.

    La necesidad de eliminar residuos genera gastos. Considerando criterios de conservación ambiental, minimización del consumo de recursos naturales y ahorro de energía parece claro la necesidad y conveniencia de estudiar la viabilidad del uso de residuos. Sin embargo la utilización de residuos depende de que sean competitivos económicamente. Por tanto el propósito de esta investigación es evaluar el posible uso de las escorias de fondo de una central térmica como áridos para la fabricación de hormigón. En este estudio se incluye la determinación de características físicas, químicas y térmicas y se han comparado los resultados a los requeridos por la EHE para determinar su aceptación o rechazo como componente de un hormigón. El objetivo final de la investigación responde a la utilización de hormigón con el máximo contenido en escorias sin modificar las condiciones de resistencia y durabilidad, consiguiendo un ahorro económico en la fabricación de estructuras

  3. A method for the realization of complex concrete gridshell structures in pre-cast concrete

    DEFF Research Database (Denmark)

    Larsen, Niels Martin; Egholm Pedersen, Ole; Pigram, Dave

    2012-01-01

    concrete casting techniques, complex funicular structures can be constructed using prefabricated elements in a practical, affordable and materially efficient manner. A recent case study is examined, in which the methodology has been used to construct a pavilion. Custom written dynamic relaxation software...

  4. Nanoporous thin film additives to improve precast concrete construction of transportation facilities.

    Science.gov (United States)

    2011-12-01

    The national transportation network contains a significant number of highway and railway bridges. This research is intended to transform the use of precast/pre-stressed materials in the transportation infrastructure. Specifically it examines how nano...

  5. Analysis of the state of the art of precast concrete bridge substructure systems.

    Science.gov (United States)

    2013-10-01

    Precasting of bridge substructure components holds potential for accelerating the construction of bridges,reducing : impacts to the traveling public on routes adjacent to construction sites, improving bridge durability and hence service : life, and r...

  6. Self-consolidating concrete, applications for slip-form paving : phase II.

    Science.gov (United States)

    2011-05-01

    The goal of the project was to develop a new type of self-consolidating concrete (SCC) for slip-form paving to simplify construction and make smoother pavements. Developing the new SCC involved two phases: a feasibility study (Phase I sponsored by TP...

  7. A new concept of precast concrete retaining wall: from laboratory model to the in-situ tests

    Science.gov (United States)

    Bui, T. T.; Tran, H. V.; Limam, A.; Bost, M.; Bui, Q. B.; Robit, P.

    2018-04-01

    A new concept for the soil nail walls is here proposed and validated through experimental and numerical approaches. This process, based on the use of precast elements that are easier to install, is cheaper and more aesthetic than the classical methods, but the main advantage is reducing the cement consumption which conducts to divided carbon footprint by three. In order to characterize the structural capacity of this new process, this article present an investigation on two in-situ representative walls, one in shotcrete which is the old way of construction, and the other, consisting the precast reinforced concrete slabs, which is the new process. We thus have a demonstrator on a real scale, and perfectly representative, since the constructive modes, as well as the mechanical, thermal, and hydric loadings are the real ones associated with the environment in situ. Substantial instrumentation has been realized over a long period (nearly 2 years), enabling to follow the evolution of the displacements of each wall and the efforts in the anchor nails. To determine the bearing capacity of the constituent element of the precast nail wall, an experimental study coupled with a numerical simulation has been conducted in the laboratory on a single precast slab. This study allows the evaluation of the load associated to crack initiation and the bearing capacity associated to the ultimate state, at the scale of the constituent elements. Finally, in order to evaluate the behaviour of the two concepts of nail walls in the case of extreme solicitation, a dynamic loading induced by an explosion has been conducted on the site.

  8. SEISMIC PERFORMANCE OF A PRECAST REINFORCED CONCRETE WALL WITH CUT-OUT OPENING RETROFITTED USING CARBON FIBRE STRIPS

    Directory of Open Access Journals (Sweden)

    Fofiu M.

    2015-05-01

    Full Text Available The Precast Reinforced Concrete Wall Panel (PRCWP presented in this paper is part of an experimental study regarding the seismic performance of precast reinforced concrete wall panels, strengthening strategies and investigation on the weakening induced by modifying the opening in these elements due to architectural demands, change of function of buildings or other reasons. The element presented is 1:1.2 scale typical Reinforced Concrete Wall Panel with a window opening used in Romania, in which the opening was changed to a door opening due to comfort considerations. The specimen was subjected to cyclic loading with the lateral loads being applied in displacement control of 0.1% drift ratio. This simulates the shear behaviour of the element. After testing the unstrengthen element we proceed to retrofit it using Carbon Fibre Strips anchored with Carbon Fibre Mash. The purpose of the paper is to present the strengthening strategy and restore the initial load bearing capacity of the element or even increase it. The experimental results of strengthen and unstrengthen specimens will be presented.

  9. Design and experimental study on columns and beams connection in the precast prestressed concrete structure. Precast PC acchaku setsugo ni kansuru sekkeiho to jikkenteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, K. (Kurosawa Construction Co. Ltd., Tokyo (Japan))

    1993-07-30

    Design engineering and experimental study were made of precast PC clad connection. The clad connection method between the columns and beams is classified into bracket method, shearing key method, corbel method and reinforcing structure-jointing method, among which the corbel method is recommendable because of its simplicity without slip. The PC clad connection system is characterized by its possibility of structuring the continuous multi-rahmen structure, designing the highest strength concrete and easing the earthquake-proof design with a high toughness restoring force. The PC cable wiring method is classified into X-cross method and continuous method. The design of PC clad connection was experimentally proved by alternately loading the frame. Through the experiment, the interstory deformation angle, and stress behavior of the column and beam PC steel materials were made clear so that their destruction became able to be prevented. Also through the experiment, the interstory deformation angle and maximum column-shearing force were known at the yield point of beam, which had the frame-restoring force characteristics modeled by a trilinear elastoplastic type. 28 refs., 13 figs.

  10. ENERGY DEMANDS OF THE EXISTING COLLECTIVE BUILDINGS WITH BEARING STRUCTURE OF LARGE PRECAST CONCRETE PANELS FROM TIMISOARA

    Directory of Open Access Journals (Sweden)

    Pescari S.

    2015-05-01

    Full Text Available One of the targets of EU Directives on the energy performance of buildings is to reduce the energy consumption of the existing buildings by finding efficient solutions for thermal rehabilitation. In order to find the adequate solutions, the first step is to establish the current state of the buildings and to determine their actual energy consumption. The current paper aims to present the energy demands of the existing buildings with bearing structure of large precast concrete panels in the city of Timisoara. Timisoara is one of the most important cities in the west side of Romania, being on the third place in terms of size and economic development. The Census of Population and Housing of 2011 states that Timisoara has about 127841 private dwellings and 60 percent of them are collective buildings. Energy demand values of the existing buildings with bearing structure of large precast concrete panels in Timisoara, in their current condition, are higher than the accepted values provided in the Romanian normative, C107. The difference between these two values can reach up to 300 percent.

  11. Pseudodynamic tests on a full-scale 3-storey precast concrete building: Global response

    OpenAIRE

    Negro, Paolo; Bournas, Dionysios A.; Molina, Francisco J.

    2013-01-01

    In the framework of the SAFECAST Project, a full-scale three-storey precast building was subjected to a series of pseudodynamic (PsD) tests in the European Laboratory for Structural Assessment (ELSA). The mock-up was constructed in such a way that four different structural configurations could be investigated experimentally. Therefore, the behaviour of various parameters like the types of mechanical connections (traditional as well as innovative) and the presence or absence of shear walls alo...

  12. Optimization of the bending stiffness of beam-to-column and column-to-foundation connections in precast concrete structures

    Directory of Open Access Journals (Sweden)

    R. R. R. COSTA

    Full Text Available Abstract This work involved the structural optimization of precast concrete rigid frames with semi-rigid beam-to-column connections. To this end, several frames were simulated numerically using the Finite Element Method. Beams and columns were modeled using bar elements and their connections were modeled using spring elements, with variable bending stiffness. The objective function was based on the search of the least stiff connection able to ensure the global stability of the building. Lastly, a connection model with optimal stiffness was adopted to design the frame. Semi-rigid beam-to-column connections with a constraint factors of 0.33 sufficed to ensure the maximum allowable horizontal displacement and bending moment of the connection, with a global stability parameter of 1.12. This confirms that even connections with low constraints generate significant gains from the structural standpoint, without affecting construction and assembly-related aspects.

  13. User costs as one of main advantages of precast concrete application in highway construction

    Science.gov (United States)

    Tomek, Radan

    2017-09-01

    Road user cost primarily refer to the monetized components of road (re)construction impacts, such as the user delay costs, vehicle operating costs, crash costs and emission costs. Objective of this paper is to analyze and appraise the advantages and benefits of the innovative prefabrication approach in contrast to traditional cast-in-place construction method. The goal is to reduce these additional costs borne by motorists and the community at-large as a result of road construction activity to their minimum through application of the prefabrication. Assessing two basic possible approaches to highway infrastructure construction - casting the road pavements and structures either in place or precast off the site - it can be concluded that the initial capital investment costs do not vary much. Substantial differences can be recognized when comparing their life-cycle costs and an extent to which their construction process affects the public, environment and the local economy. Prefabrication of any structure component off-site offers major construction time and user cost savings in comparison with the traditional cast-in-place methods of construction. Precast prestressed road pavements’ technology and precasting bridges’ parts and elements offers dramatic increase in durability, while it also substantially decreases construction time and resulting user costs.

  14. Application of the Hybrid Simulation Method for the Full-Scale Precast Reinforced Concrete Shear Wall Structure

    Directory of Open Access Journals (Sweden)

    Zaixian Chen

    2018-02-01

    Full Text Available The hybrid simulation (HS testing method combines physical test and numerical simulation, and provides a viable alternative to evaluate the structural seismic performance. Most studies focused on the accuracy, stability and reliability of the HS method in the small-scale tests. It is a challenge to evaluate the seismic performance of a twelve-story pre-cast reinforced concrete shear-wall structure using this HS method which takes the full-scale bottom three-story structural model as the physical substructure and the elastic non-linear model as the numerical substructure. This paper employs an equivalent force control (EFC method with implicit integration algorithm to deal with the numerical integration of the equation of motion (EOM and the control of the loading device. Because of the arrangement of the test model, an elastic non-linear numerical model is used to simulate the numerical substructure. And non-subdivision strategy for the displacement inflection point of numerical substructure is used to easily realize the simulation of the numerical substructure and thus reduce the measured error. The parameters of the EFC method are calculated basing on analytical and numerical studies and used to the actual full-scale HS test. Finally, the accuracy and feasibility of the EFC-based HS method is verified experimentally through the substructure HS tests of the pre-cast reinforced concrete shear-wall structure model. And the testing results of the descending stage can be conveniently obtained from the EFC-based HS method.

  15. Strain monitoring of a newly developed precast concrete track for high speed railway traffic using embedded fiber optic sensors

    Science.gov (United States)

    Crail, Stephanie; Reichel, D.; Schreiner, U.; Lindner, E.; Habel, Wolfgang R.; Hofmann, Detlef; Basedau, Frank; Brandes, K.; Barner, A.; Ecke, Wolfgang; Schroeder, Kerstin

    2002-07-01

    In a German slab track system (Feste Fahrbahn FF, system Boegl) for speeds up to 300 km/h and more different fiber optic sensors have been embedded in several levels and locations of the track system. The track system consists of prestressed precast panels of steel fiber concrete which are supported by a cat-in-situ concrete or asphalt base course. The sensors are to measure the bond behavior or the stress transfer in the track system. For that, tiny fiber-optic sensors - fiber Fabry-Perot and Bragg grating sensors - have been embedded very near to the interface of the layers. Measurements were taken on a full scale test sample (slab track panel of 6.45 m length) as well as on a real high speed track. The paper describes the measurement task and discusses aspects with regard to sensor design and prefabrication of the sensor frames as well as the embedding procedure into the concrete track. Results from static and dynamic full scale tests carried out in the testing laboratory of BAM and from measurements on a track are given.

  16. Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges : technical summary report.

    Science.gov (United States)

    2004-03-01

    Most highway bridges are built as cast-in-place : reinforced concrete slabs and prestressed concrete : girders. The shear connectors on the top of the girders : assure composite action between the slabs and : girders. The design guidelines for bridge...

  17. Reuse of sludge from galvanotechnik industrial activity in the manufacture of concrete blocks for paving (PAVERS)

    International Nuclear Information System (INIS)

    Franco, J.M; Almeida, P.H.S.; Tavares, C.R.G.

    2014-01-01

    This study was to evaluate the interface replacing the cement by galvanic sludge (5-25%) in the production of concrete block paving analyzing the mechanical and microstructural effects of substitution. The results of the blocks produced with 5% of slude had values of compressive strength greater than 35 MPa and lower compared to the reference blocks with 28 days, the interface in cement paste by scanning electron microscopy (SEM) and x-ray diffraction (XRD) showed the presence of empty capillary arrays of crystalline ettringite (C6AS3H32) and calcium silicate (Ca2SiO4) responsible for the compressive strength and decrease the intensity of the peaks of quartz with respect to the reference blocks, revealing the promising applicability and feasibility of using waste electroplating in the construction industry. (author)

  18. Realisation of complex precast concrete structures through the integration of algorithmic design and novel fabrication techniques

    DEFF Research Database (Denmark)

    Larsen, Niels Martin; Egholm Pedersen, Ole; Pigram, Dave

    2012-01-01

    This paper describes a novel method for constructing complex concrete structures from small-scale individualized elements. The method was developed through the investigation of laser cutting, folding and concrete casting in PETG plastic sheets and funicular grid shell simulations as a generator o...

  19. Practical assessment of magnetic methods for corrosion detection in an adjacent precast, prestressed concrete box-beam bridge

    Science.gov (United States)

    Fernandes, Bertrand; Titus, Michael; Nims, Douglas Karl; Ghorbanpoor, Al; Devabhaktuni, Vijay Kumar

    2013-06-01

    Magnetic methods are progressing in the detection of corrosion in prestressing strands in adjacent precast, prestressed concrete box-beam bridges. This study is the first field trial of magnetic strand defect detection systems on an adjacent box-beam bridge. A bridge in Fayette County, Ohio, which was scheduled for demolition, was inspected. Damage to prestressed box-beams is often due to corrosion of the prestressing strands. The corroded strands show discontinuities and a reduced cross-sectional area. These changes, due to corrosion, are reflected in the magnetic signatures of the prestressing steel. Corrosion in the prestressing steel was detected using two magnetic methods, namely the 'magnetic flux leakage' (MFL) and the 'induced magnetic field'. The purpose of these tests was to demonstrate the ability of the magnetic methods to detect hidden corrosion in box-beams in the field and tackle the logistic problem of inspecting box-beams from the bottom. The inspections were validated by dissecting the bottom of the box-beams after the inspections. The results showed that the MFL method can detect hidden corrosion and strand breaks. Both magnetic field methods were also able to estimate corrosion by detecting the effective cross-sectional area of the strand in sections of the beams. Thus, it was shown that the magnetic methods can be used to predict hidden corrosion in prestressing strands of box-beams.

  20. Research on Anchorage Performance of Grouting Anchor Connection of Precast Concrete Structure

    Science.gov (United States)

    Wang, Donghui; Liu, Xudong; Wang, Sheng; Cao, Xixi

    2018-03-01

    The bonding of grouted anchor bars is one of the vertical connection forms of steel bars in fabricated concrete structures. The performance of grouted connection is mainly affected by the anchorage length and lap length of steel bars. The mechanisms of bond and anchorage between steel bar and concrete are analyzed, and the factors that influence the anchorage performance of steel bar are systematically summarized. Results show that the bond and anchorage performance of steel and concrete have been studied widely, but there are still shortcomings, and the connection forms need to be further improved.

  1. Connections in Precast Buildings using Ultra High-Strength Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard

    1995-01-01

    Ultra high-strength concrete adds new dimensions to the design of concrete structures. It is a brittle material but introducing fibres into the matrix changes the material into a highly ductile material. Furthermore, the fibre reinforcement increases the anchorage of traditional reinforcement bar...... and the fire resistance. Such a fibre reinforced ultra high-strength material has been used to develop a simple joint solution between slab elements in a column - slab building system....

  2. United States Air Force Research on Airfield Pavement Repairs Using Precast Portland Cement Concrete (PCC) Slabs (BRIEFING SLIDES)

    National Research Council Canada - National Science Library

    Saeed, Athar

    2008-01-01

    ...) slab repairs using precast PCC slab panels. AFRL is leading the technology development by critically reviewing the research conducted to date in this arena by the Air Force and the highway and civil aviation agencies and adopting...

  3. PHYSICAL AND CHEMICAL FUNDAMENTALS OF PROTECTION PROCESSES FOR SURFACE LAYER OF CONCRETE ROAD PAVING BY IMPREGNATING COMPOSITIONS

    Directory of Open Access Journals (Sweden)

    M. K. Pshembayev

    2017-01-01

    Full Text Available Construction of concrete road paving which was started in the 30-ies of the last century in the United States has proved its perspectiveness from the viewpoint of service life. In addition to that an analysis of road usage has shown that concrete paving is a deformation tendency due to some reasons and the tendency entails some difficulties in their repair after rather long operation. The deformations appear more intensively after 5-10-year road operational period. The following negative effects are practically unavoidable: micro-crack formation, scaling, deformation due to freezing of angular edges in concrete plates, destruction of deformation joints etc. The defects are characterized by rather large scope and they are present practically on all the roads. It is necessary to note the fact that a great number of the above-mentioned defects can be avoided on the condition that measures on strengthening surface layer of concrete paving will be undertaken in time. The measures presuppose application of impregnating method while using compositions that contain hydrophobisator and silicon dioxide sol. Industry-produced potassium methyl siliconate, oligomethyl hydride siliconate, tetraethoxysilane have been used as hydrophobisator and they form not easily soluble film on the surface of concrete pores which prevents penetration of water into concrete. Calcium hydrate being formed in the dissolution and hydrolysis process of cement clinker minerals is bound in hydrosilicates which are contained in the solution impregnated by silicon dioxide sol. These hydrosilicates culmatate concrete pores and strengthen its surface layer due to additional hard phase and according to chemical composition it is related to calcium hydrosilicates formed as a result of concrete hardening.

  4. PRE-CAST WALL PRODUCTS MADE FROM LIGHTWEIGHT CONCRETE FOR ENCLOSING STRUCTURES OF BUILDINGS

    Directory of Open Access Journals (Sweden)

    M. R. Hadgiev

    2014-01-01

    Full Text Available The paper is devoted to the actual problem waste dismantling of buildings and structures in the form of brick waste with reception the secondary fine and coarse aggregate and concrete based on them for the manufacture of small-piece wall products. 

  5. Contribution to assessing the stiffness reduction of structural elements in the global stability analysis of precast concrete multi-storey buildings

    Directory of Open Access Journals (Sweden)

    M. C. Marin

    Full Text Available This study deals with the reduction of the stiffness in precast concrete structural elements of multi-storey buildings to analyze global stability. Having reviewed the technical literature, this paper present indications of stiffness reduction in different codes, standards, and recommendations and compare these to the values found in the present study. The structural model analyzed in this study was constructed with finite elements using ANSYS® software. Physical Non-Linearity (PNL was considered in relation to the diagrams M x N x 1/r, and Geometric Non-Linearity (GNL was calculated following the Newton-Raphson method. Using a typical precast concrete structure with multiple floors and a semi-rigid beam-to-column connection, expressions for a stiffness reduction coefficient are presented. The main conclusions of the study are as follows: the reduction coefficients obtained from the diagram M x N x 1/r differ from standards that use a simplified consideration of PNL; the stiffness reduction coefficient for columns in the arrangements analyzed were approximately 0.5 to 0.6; and the variation of values found for stiffness reduction coefficient in concrete beams, which were subjected to the effects of creep with linear coefficients from 0 to 3, ranged from 0.45 to 0.2 for positive bending moments and 0.3 to 0.2 for negative bending moments.

  6. FLEXURAL CAPACITY OF THE PRECAST RC BEAM-COLUMN CONNECTION USING CFRP SHEET

    OpenAIRE

    Djamaluddin, Rudy; Rante, Harmonis; Irmawaty, Rita

    2016-01-01

    Precast concrete have advantages in quality and shorter construction time. The connection of a precast concrete structures is important for the successful construction. This paper presents an experimental investigation of the flexural capacity of the portal system beam-column connection of precast concrete using CFRP sheet. The study was conducted to develop a connection system using CFRP sheet on a precast concrete frame of a highway bridges. A series of specimens with parameter of CFRP shee...

  7. Potential use of sewage sludge ash (SSA as a cement replacement in precast concrete blocks

    Directory of Open Access Journals (Sweden)

    Pérez-Carrión, M.

    2014-03-01

    Full Text Available The present study explored the technological feasibility of re-using sewage sludge ash (SSA as a Portland cement replacement in commercially manufactured pre cast concrete blocks. The blocks analysed were made to the guidelines laid down in Spain’s National Plan for Waste Water Treatment Plant Sludge, 2001–2006, and European Union specifications (CE marking for such products. Performance was compared in three families of blocks, with 0, 10 and 20% SSA. The findings proved that SSA is apt for pre cast concrete block manufacture and that, in addition to the economic and environmental benefits afforded, its use would improve certain of the properties of conventional block.El objetivo de esta investigación es estudiar el uso potencial de las cenizas de lodos de depuradora (CLD, como sustitución del cemento Portland en bloques de hormigón prefabricados, de forma que se pueda lograr una revalorización de este material de desecho mediante este procedimiento. La metodología utilizada en este trabajo se rige por las directrices del Plan Nacional Español de Lodos de Aguas Residuales de 2001–2006, y por las exigencias del Consejo Europeo (marcado CE, que es obligatorio para este tipo de productos. Se han utilizado dos niveles de sustitución de cemento (10% y 20%, y todos los resultados han sido referidos a las muestras control. Los resultados obtenidos muestran que es posible utilizar una sustitución parcial del cemento por CLD, en la fabricación de bloques de hormigón prefabricados, y por lo tanto, se pueden conseguir beneficios económicos y ambientales, así como la mejora de una serie de propiedades.

  8. Mineral processing and characterization of coal waste to be used as fine aggregates for concrete paving blocks

    Directory of Open Access Journals (Sweden)

    C. R. Santos

    Full Text Available Commercial coal production in the southern region of Brazil has been occurring since the beginning of the twentieth century. Due to the geological characteristics of the region, large amounts of solid wastes are generated. The aim of this work was to evaluate the use of coal waste to produce concrete paving blocks. A procedure to process the coal waste with the purpose of reducing the sulfur content and changing the particle size distribution of the material to meet the specification of fine aggregates was developed. The methodology considered the following steps: (a sampling of a coal mining waste; (b gravity separation of the fraction with specific gravity between 2.4 and 2.8; (c comminution of the material and particle size analysis; (d technological characterization of the material and production of concrete paving blocks; and (e acidity generation prediction (environmental feasibility. The results showed that the coal waste considered in this work can be used to replace conventional sand as a fine aggregate for concrete paving blocks in a proportion of up to 50%. This practice can result in cleaner coal production and reduce the demand for exploitation of sand deposits.

  9. Study of potential advantages of pre-soaking on the properties of pre-cast concrete made with recycled coarse aggregate

    Directory of Open Access Journals (Sweden)

    Sánchez-Roldán, Z.

    2016-03-01

    Full Text Available Recycled aggregate (RA from construction and demolition waste is traditionally used for the manufacture of concrete for different applications. Due primarily to high water content required by RA, the quality of the concrete is determined by the amount of replacement RA. The aim of this study is to determine if RA pre-soaking enhances the properties of pre-cast concrete for street furniture, with low mechanical and structural requirements, in which 100% of the coarse fraction is replaced. The results of physical and mechanical tests performed on concrete specimens in which the RA was pre-soaked using five different methods applied are compared with a reference concrete sample and a concrete sample made with non-pre-soaked RA. The results show that non-pre-soaked RA offers improved physical-mechanical properties for pre-cast concrete, except for the workability; problems arising from poorer workability could be improved with the use of plasticizers, which can be easily included in the production process.El árido reciclado (AR procedente de residuos de construcción y demolición se utiliza tradicionalmente en la elaboración de hormigón para diferentes aplicaciones. Debido principalmente al mayor contenido en agua requerido por el AR, la calidad del hormigón está determinada por la cantidad de AR reemplazado. El objetivo de este estudio es determinar si el AR premojado mejora las propiedades del hormigón prefabricado para mobiliario urbano, con bajas exigencias mecánicas y estructurales, en el que se sustituye el 100% de la fracción gruesa. Los resultados de los ensayos físicos y mecánicos realizados sobre muestras de hormigón en las cuales el AR se ha premojado usando cinco métodos diferentes se han comparado con una muestra de hormigón de referencia y una muestra de hormigón fabricada con AR no premojado. Los resultados muestran que el AR no premojado proporciona propiedades físico-mecánicas mejoradas en el hormigón prefabricado

  10. Review of warm mix rubberized asphalt concrete : Towards a sustainable paving technology

    NARCIS (Netherlands)

    Wang, H.; Liu, X.; Apostolidis, P.; Scarpas, Athanasios

    2018-01-01

    In recent years, transportation agencies and the general public alike are demanding increased considerations of sustainability in transport infrastructure. Warm mix asphalt (WMA) is developed for reducing energy consumptions and emissions in asphalt paving industry. In addition, the use of

  11. Development of quiet and durable porous Portland cement concrete paving materials

    Science.gov (United States)

    2003-09-01

    This report outlines the systematic research effort conducted in order to develop and characterize Enhanced Porosity Concrete (EPC) to mitigate the problem of tire-road interaction noise. The basic tenet of this research is that carefully introduced ...

  12. Pseudodynamic tests on a full-scale 3-storey precast concrete building: Behavior of the mechanical connections and floor diaphragms

    OpenAIRE

    Bournas, Dionysios A.; Negro, Paolo; Molina, Francisco J.

    2013-01-01

    A full-scale three-storey precast building was tested under seismic conditions at the European Laboratory for Structural Assessment in the framework of the SAFECAST project. The unique research opportunity of testing a complete structural system was exploited to the maximum extent by subjecting the structure to a series of pseudodynamic (PsD) tests and by using four different structural layouts of the same mock-up, while 160 sensors were used to monitor the global and local response of each l...

  13. Performance-Based Specifications of Workability Characteristics of Prestressed, Precast Self-Consolidating Concrete-A North American Prospective.

    Science.gov (United States)

    Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Hwang, Soo-Duck; Han, Ning-Xu

    2014-03-27

    Adequate selection of material constituents and test methods are necessary for workability specifications and performance of hardened concrete. An experimental program was performed to evaluate the suitability of various test methods for workability assessment and to propose performance specifications of prestressed concrete. In total, 33 self-consolidating concrete (SCC) mixtures made with various mixture proportioning parameters, including maximum size and type of aggregate, type and content of binder, and w/cm were evaluated. Correlations among various test results used in evaluating the workability responses are established. It is recommended that SCC should have slump flow values of 635-760 mm. To ensure proper filling capacity greater than 80%, such concrete should have a passing ability that corresponds to L-box blocking ratio (h₂/h₁) ≥ 0.5, J-Ring flow of 570-685 mm, slump flow minus J-Ring flow diameter ≤75 mm. Moreover, Stable SCC should develop a column segregation index lower than 5%, and rate of settlement at 30 min of 0.27%/h for SCC proportioned with 12.5 or 9.5 mm MSA. It is recommended that SCC should have a plastic viscosity of 100-225 Pa·s and 100-400 Pa·s for concrete made with crushed aggregate and gravel, respectively, to ensure proper workability.

  14. Evaluation of continuity detail for precast prestressed girders.

    Science.gov (United States)

    2011-08-01

    The construction of highway bridges using precast prestressed concrete (PSC) girders is considered one of the most : economical construction alternatives because of the advantages they offer (e.g. reducing formwork and rapid construction). : Construc...

  15. Evaluation of continuity detail for precast prestressed girders : tech summary.

    Science.gov (United States)

    2011-08-01

    Building multi-simple span bridges using precast prestressed concrete girders is an easy construction. However, the existence of : expansion joints often leads to a host of problems in their vicinity due to drainage leaks. Furthermore, debris accumul...

  16. Seismic retrofit of spliced sleeve connections for precast bridge piers.

    Science.gov (United States)

    2017-03-01

    Grouted Splice Sleeve (GSS) connectors are being considered for connecting bridge columns, footings, and pier caps in Accelerated Bridge Construction (ABC). A repair technique for precast reinforced concrete bridge column-to-footing and column-to-pie...

  17. LIGHTWEIGHT SLAB CAST OVER PRECAST JOISTS

    Directory of Open Access Journals (Sweden)

    Koyankin Aleksandr Aleksandrovich

    2017-07-01

    Full Text Available Precast-monolithic house-building in domestic and world practice is a significant part in the mass construction. We propose a relatively large number of designs of precast-monolithic buildings, as well as its individual elements. Despite this, we cannot say that found the most effective constructive solutions able to satisfy the requirements of consumers (future residents and builders. On this basis, we developed quite effective, from the point of view of construction and further operation, a constructive solution of light weight precast-monolithic overlap. Some features offered are overlapping: smaller mass, compared with beams of heavy concrete; increased heat and sound insulation properties; optimal use of the structural properties of heavy and light precast monolithic concrete and longitudinal reinforcement, depending on the stage of construction. The author has carried out in this article the results of numerical studies the proposed design of precast-monolithic overlap, confirming its compliance with the requirements of 1st and 2nd group of limit States.

  18. PENGGUNAAN BLOCK SET CONNECTION (BSC PADA SAMBUNGAN ELEMEN BETON PRECAST

    Directory of Open Access Journals (Sweden)

    Jojon Suherman

    2012-08-01

    Full Text Available Application of block set connection (bsc in precast concrete element joints. Precast concrete technology is an alternative of reinforced concrete construction with the advantages of high quality and economical cost. However, precast concrete has not been widely used for seismic regions because of its weakness in the joints between precast concrete elements that are not ductile. The purpose of this research was to determine the ductility of precast concrete connections, which use a block set connection type (BSC. The design of beam column connection using the theory of full ductile that uses 2 specimen tests in a 1:1 scale, tested with cyclic loading and ana­lyzed for ductility, strength, stiffness, energy dissipation, and pattern collapse. The expe­rimental results obtained mean value of the ductility of μ = 6, the achievement of ductility value is greater than the ductility of the requirements in SNI 1726-2002 that is μ = 5.3. Therefore, block set connection type can be used to design buildings snaking precast concrete structures in seismic regions 5 and 6 (the area of high seismic risk. Penggunaan Block Set Connection (BSC pada Sambungan Elemen Beton Precast.  Teknologi beton precast merupakan alternatif pilihan dari konstruksi beton bertulang dengan keunggulan mutu yang tinggi dan biaya yang ekonomis. Namun demikian beton precast belum banyak digunakan untuk daerah gempa karena  mempunyai kelemahan pada sambungan antar elemen beton precast yang tidak daktail. Tujuan penelitian ini adalah mengetahui daktilitas sambungan beton precast, yang menggunakan tipe block set connection (BSC. Rancangan sambungan balok kolom menggunakan teori  full ductile  yang menggunakan 2 buah benda uji dalam skala 1:1, diuji dengan beban siklik dan dianalisis terhadap daktilitas, kekuatan, kekakuan, disipasi energi, dan pola keruntuhan. Hasil eksperimen diperoleh nilai daktilitas rerata μ = 6,  pencapaian nilai daktilitas  tersebut lebih besar dari

  19. Reflective Cracking between Precast Prestressed Box Girders

    Science.gov (United States)

    2017-06-30

    The adjacent precast prestressed concrete box-beam bridge is the bridge of choice for short and short-to-medium span bridges. This choice is because of the ease of construction, favorable span-to-depth ratios, aesthetic appeal, and high torsional sti...

  20. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  1. Seismic Performance of Precast Polystyrene RC Walls

    Directory of Open Access Journals (Sweden)

    Wibowo Ari

    2017-01-01

    Full Text Available Precast concrete structure such as precast wall is a concept that is growing rapidly these days. However, the earthquake resistance is believed to be one of its drawbacks. Additionally, the large weight of solid elements also increase the building weight significantly which consequently increase the earthquake base shear force as well. Therefore, investigation on the seismic performance of precast concrete wall has been carried out. Three RC wall specimens using wire mesh reinforcement and EPS (Extended Polystyrene System panel have been tested. This wall was designed as a structural wall that was capable in sustaining lateral loads (in-plane yet were lightweight to reduce the total weight of the building. Parameter observed was the ratio of height to width (aspect ratio of wall of 1.0, 1.5 and 2.0 respectively with the aim to study the behaviour of brittle to ductile transition of the wall. Incremental static load tests were conducted until reaching peak load and then followed by displacement control until failure. Several data were measured at every stage of loading comprising lateral load-displacement behaviour, ultimate strength and collapse mechanism. The outcomes showed that precast concrete walls with a steel wire and EPS panel filler provided considerably good resistance against lateral load.

  2. Splitting strength and abrasion resistance of concrete paving blocks as a function of dry bulk specific gravity and ultrasonic pulse velocity

    Directory of Open Access Journals (Sweden)

    Haktanir, T.

    2005-06-01

    Full Text Available Artificial Portland cement concrete paving blocks are widely used in many countries. These paving blocks come in a variety of designs with names such as "Interlocking" and "Italian Flower", and are manufactured with special machinery using rather high quality concrete having a compressive strength of about 50 MPa. Concrete blocks are employed instead of natural cobble stones for essentially economic reasons. The laboratoiy equipment required to measure paving block splitting strength and abrasion resistance, two of the chief properties to be tested in quality checks, is costly and the tests are time-consuming and labour-intensive. The present paper reports on a detailed experimental study performed to relate the splitting strength and abrasion resistance of concrete paving blocks to "dry bulk specific gravity" (DBSG and "ultrasonic pulse velocity" (UPV, respectively. Statistically significant regression equations describing the dependence of splitting strength on DBSG and abrasion resistance on UPV were obtained with data from random samples of material provided by seven different manufacturers.

    RESUMEN Los bloques para pavimentos (adoquines elaborados con hormigón se utilizan habitualmente en numerosos países. Estos bloques de pavimentación se diseñan de diversas formas, como por ejemplo "Entrelazado " ("Interlocking " o "Flor Italiana " ("Italian Flower"; se fabrican con maquinaria especial y con frecuencia se utiliza hormigón de la más alta calidad, con resistencia a la compresión de alrededor de 50 MPa. La razón de utilizar bloques de hormigón en lugar de bloques de piedra natural es básicamente económica. Los equipos de laboratorio necesarios para medir la resistencia a la compresión y a la abrasión -dos de las propiedades más importantes para determinar la calidad de los bloques en estudio- son costosos y los ensayos requieren tiempo y mano de obra considerables. En el presente trabajo se exponen ensayos experimentales

  3. TECHNOLOGY OF ERECTION OF PRECAST FRAME BUILDINGS AT NEGATIVE TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Afanas'ev Aleksandr Alekseevich

    2012-07-01

    The author has also analyzed the technology of grouting of precast structure joints at negative temperatures in the event of pre-heating of structural elements to be connected and the heating of the concrete mix with heating wires. The author has identified the range of rational heating modes for structural joints on the basis of the parameters of negative temperatures.

  4. Behavior of wet precast beam column connections under progressive collapse scenario: an experimental study

    Science.gov (United States)

    Nimse, Rohit B.; Joshi, Digesh D.; Patel, Paresh V.

    2014-12-01

    Progressive collapse denotes a failure of a major portion of a structure that has been initiated by failure of a relatively small part of the structure such as failure of any vertical load carrying element (typically columns). Failure of large part of any structure will results into substantial loss of human lives and natural resources. Therefore, it is important to prevent progressive collapse which is also known as disproportionate collapse. Nowadays, there is an increasing trend toward construction of buildings using precast concrete. In precast concrete construction, all the components of structures are produced in controlled environment and they are being transported to the site. At site such individual components are connected appropriately. Connections are the most critical elements of any precast structure, because in past major collapse of precast structure took place because of connection failure. In this study, behavior of three different 1/3rd scaled wet precast beam column connections under progressive collapse scenario are studied and its performance is compared with monolithic connection. Precast connections are constructed by adopting different connection detailing at the junction by considering reinforced concrete corbel for two specimens and steel billet for one specimen. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection and deflection measured along the span of the beam. From the results, it is observed that load carrying capacity and ductility of precast connections considered in this study are more than that of monolithic connections.

  5. Tensile Capacity of U-bar Loop Connections with Precast Fiber Reinforced Dowels

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes

    2016-01-01

    This paper describes an investigation of the tensile capacity of in-situ cast U-bar loop connections between precast concrete elements. The basic idea is to introduce a small precast cylindrical dowel of fiber reinforced mortar that fits into the bend diameter of the overlapping U...... that use of a precast fiber reinforced dowel performs at a slightly lower load level, as compared to a connection grouted solely with regular mortar and reinforced with the same amount of transverse reinforcement. However, the load-displacement response of specimens with a fiber reinforced dowel is closer......-bars. The remaining part of the connection is cast in-situ with a regular mortar, which then encapsulates the precast dowel. Different dowel configurations have been investigated, including the use of steel or synthetic fibers with or without lacer bars placed within the precast dowel. The experimental results show...

  6. Experimental research of slab cast over precast joists with prestressed reinforcement

    Directory of Open Access Journals (Sweden)

    Koyankin Aleksandr Aleksandrovich

    2016-03-01

    Full Text Available At the present time reinforced concrete is the main construction material in civil and industrial construction. Cast-in-place and precast construction is gradually becoming a more widespread type of house-building, but still there is a lack of data, including experimental data, which allows evaluating the stress and strain state of a construction of a slab cast over precast joists. Experimental research of stress and strain state of slab cast over precast joists with prestressed reinforcement was carried out. An experimental model of a fragment of a hybrid precast/cast-in-place building was produced and tested (reduction scale 1:6. The experimental investigations of slab cast over precast joists with prestressed reinforcement proved that the construction solution of the framework offered in the previous works of the authors possess good stiffness, crack-resistance and bearing capacity. It well fits for constructing the slabs of long spans in residential and public buildings.

  7. Self-Consolidating Concrete for Prestressed Bridge Girders : Research Brief

    Science.gov (United States)

    2017-08-01

    Self-consolidating concrete (SCC) is commonly used as an alternative to conventional concrete (CC) in precast, prestressed concrete (PSC) bridge girders. The high strength, highly workable mixture can flow through dense reinforcement to fill formwork...

  8. Perbandingan Kapasitas Sambungan Balok -Kolom Konvensional dan Pracetak Sistem Rigid Joint Precast (RJP) (Studi Kasus Gedung Rumah Susun Sederhana Sewa Pekanbaru)

    OpenAIRE

    Arrahman, Feri '; Djauhari, Zulfikar '; Yuniarto, Enno '

    2015-01-01

    Precast system is a system which offers quality controlled implementation, they are neat, fast and economical, thus included systems that fiil the criteria for green construction. Precast concrete construction has many advantages than conventional systems. The advantage of this system are, quality assured, fast and massal production, rapid development, environmentally friendly and tidy with good product quality. For buildings precast system have been researched, developed, applied and proven ...

  9. Recycled Concrete as Aggregate for Structural Concrete Production

    OpenAIRE

    Mirjana Malešev; Vlastimir Radonjanin; Snežana Marinković

    2010-01-01

    A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC) as a control concrete and two types of concrete made with natural fine and recycle...

  10. Modeling of two-storey precast school building using Ruaumoko 2D program

    Science.gov (United States)

    Hamid, N. H.; Tarmizi, L. H.; Ghani, K. D.

    2015-05-01

    The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm.

  11. Modeling of two-storey precast school building using Ruaumoko 2D program

    International Nuclear Information System (INIS)

    Hamid, N. H.; Tarmizi, L. H.; Ghani, K. D.

    2015-01-01

    The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm

  12. Modeling of two-storey precast school building using Ruaumoko 2D program

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, N. H.; Tarmizi, L. H.; Ghani, K. D. [Faculty of Civil Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2015-05-15

    The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm.

  13. Construction method with prestressed connection of precast prestressed concrete using composite slab with multi-round opening web. Bibai factory office building of Dopi Kensetsu Kogyo Co; Web bu ni renzoku enkei kaiko wo yusuru PC gosei yukaita wo mochiita PC kumitate koho. Dopi kensetsu kogyo (kabu) Bibai kojo jimushoto shinchiku koji

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, H.; Nakai, J.; Arai, S.; Toriya, T.

    1997-07-31

    This report summarizes the experimental result on the structural performance of precast prestressed concrete (PC) composite slab work, and a construction method with prestressed connection of PC. Although a double T type precast PC slab (DT board) is frequently used as buried form for slabs, it requires extremely complex bar arrangement and complicated works. The reinforcement method of supports using deformed hair pin type bars was thus devised which has a structural performance higher than that of the previous methods as well as simple bar arrangement and superior workability. For the reinforced DT board (DP slab) and the composite slab construction method using the DP slab, the structural safety and retained use environment were confirmed by structural performance test and construction test. The foundation and footing beam of the Bibai factory office building were constructed by the conventional method considering the construction method, while the column, beam and floor by this method using PCa members. The upper building frame was thus completed for as short as 23 days. 5 refs., 15 figs., 4 tabs.

  14. Performance of self-consolidating concrete in prestressed girders.

    Science.gov (United States)

    2010-04-01

    A structural investigation of self-consolidating concrete (SCC) in AASHTO Type I precast, : prestressed girders was performed. Six test girders were subjected to transfer length and : flexural testing. Three separate concrete mixtures, two girders pe...

  15. Replacement of Fine Aggregate by using Recyclable Materials in Paving Blocks

    Science.gov (United States)

    Koganti, Shyam Prakash; Hemanthraja, Kommineni; Sajja, Satish

    2017-08-01

    Cement concrete paving blocks are precast hard products complete out of cement concrete. The product is made in various sizes and shapes like square, round and rectangular blocks of different dimensions with designs for interlocking of adjacent tiles blocks. Several Research Works have been carried out in the past to study the possibility of utilizing waste materials and industrial byproducts in the manufacturing of paver blocks. Various industrial waste materials like quarry dust, glass powder, ceramic dust and coal dust are used as partial replacement of fine aggregate and assessed the strength parameters and compared the profit percentages after replacement with waste materials. Quarry dust can be replaced by 20% and beyond that the difference in strength is not much higher but considering cost we can replace upto 40% so that we can get a profit of almost 10%. Similarly we can replace glass powder and ceramic dust by 20% only beyond that there is decrement in strength and even with 20% replacement we can get 1.34 % and 2.42% of profit. Coal dust is not suitable for alternative material as fine aggregate as it reduces the strength.

  16. Time dependent variation of carrying capacity of prestressed precast beam

    Science.gov (United States)

    Le, Tuan D.; Konečný, Petr; Matečková, Pavlína

    2018-04-01

    The article deals with the evaluation of the precast concrete element time dependent carrying capacity. The variation of the resistance is inherited property of laboratory as well as in-situ members. Thus the specification of highest, yet possible, laboratory sample resistance is important with respect to evaluation of laboratory experiments based on the test machine loading capabilities. The ultimate capacity is evaluated through the bending moment resistance of a simply supported prestressed concrete beam. The probabilistic assessment is applied. Scatter of random variables of compressive strength of concrete and effective height of the cross section is considered. Monte Carlo simulation technique is used to investigate the performance of the cross section of the beam with changes of tendons’ positions and compressive strength of concrete.

  17. Numerical Limit Analysis of Precast Concrete Structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2016-01-01

    ; the framework is based on the theory of rigid-plasticity, and the resulting mathematical optimisation problem can be solved efficiently using modern algorithms. This paper gives a brief introduction to convex optimisation and numerical limit analysis. The mathematical formulation of lower bound load...

  18. Precast Pearl-Chain concrete arch bridges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2015-01-01

    A Pearl-Chain Bridge is a closed-spandrel arch bridge consisting of a number of straight pre-fabricated so called Super-Light Deck elements put together in an arch shape by post-tensioning cables. Several Pearl-Chain arches can be positioned adjacent to each other by a crane to achieve a bridge...... of a desired width. On top of the arch is a filling material to level out the surface of the above road. The filling only transfers vertical loads to the arch. The geometry and material properties of Super-Light Decks are presented, and we refer to several fullscale tests of Pearl-Chain arches where...... the technology was used. We also study other important components and details in the Pearl-Chain Bridge concept and review the effects of different types of loads. A theoretical case study of a circular 30 m span Pearl-Chain Bridge is presented showing the influence of a number of parameters: The number of post...

  19. Flexible Mould for Precast Concrete Elements

    DEFF Research Database (Denmark)

    Jepsen, Christian Raun; Kristensen, Mathias Kræmmergaard; Kirkegaard, Poul Henning

    2010-01-01

    The present paper describes the development of a digitally controlled mou Id that forms a double curved and fair surface directly from the digital CAD model. The primary motivation for the development of the mould is to reduce the cost of constructing double curved, cast elements for architecture...

  20. Reuse of sludge from galvanotechnik industrial activity in the manufacture of concrete blocks for paving (PAVERS); Reutilizacao de lodo proveniente de atividade galvanotecnica industrial na fabricacao de blocos de concreto para pavimentacao (PAVERS)

    Energy Technology Data Exchange (ETDEWEB)

    Franco, J.M; Almeida, P.H.S.; Tavares, C.R.G., E-mail: phsoal@yahoo.com.br [Universidade Estadual de Maringa (UEM), PR (Brazil). Departamento de Engenharia Quimica; Sgorlon, J.G. [Universidade Tecnologica Federal do Parana (UTFPR), Apucarana, PR (Brazil)

    2014-07-01

    This study was to evaluate the interface replacing the cement by galvanic sludge (5-25%) in the production of concrete block paving analyzing the mechanical and microstructural effects of substitution. The results of the blocks produced with 5% of slude had values of compressive strength greater than 35 MPa and lower compared to the reference blocks with 28 days, the interface in cement paste by scanning electron microscopy (SEM) and x-ray diffraction (XRD) showed the presence of empty capillary arrays of crystalline ettringite (C6AS3H32) and calcium silicate (Ca2SiO4) responsible for the compressive strength and decrease the intensity of the peaks of quartz with respect to the reference blocks, revealing the promising applicability and feasibility of using waste electroplating in the construction industry. (author)

  1. A Pilot Study On A Moment Carrying Beam-column Connection For Precast Structures

    OpenAIRE

    Kaplan, Vedat

    2010-01-01

    In this study, a moment carrying beam-column connection detail for precast structures has been investigated in the experimental and analytical manner. The 1/2 scaled beam-column test specimen is representing a real exterior precast connection detail. The cast-in-situ welded connection is applied at bottom face of the beams and additional re-bars and cast-in-situ concrete is introduced at the upper part of the beams. The experimental study is conducted in the form of varying beam top diplaceme...

  2. Effect of Diagonal Belt to the Moment Capacity of the Precast Beam-Column Joint using CFRP Sheet

    OpenAIRE

    Djamaluddin, Rudy

    2017-01-01

    The FRP sheet has been applied in many fields of civil engineering structures. The study on the application has been spread out involving of precast concrete structures, such as the application on the connection of beam and column of precast concrete structures. Since the strength of the CFRP sheet is depend on the bonding capacity, it is necessary to apply a vertical U-wrap belt on the main sheet to increase its bonding strength. However, it was reported that the vertical U-wrap belt may cau...

  3. Pervious Concrete

    OpenAIRE

    Torsvik, Øyvind André Hoff

    2012-01-01

    Pervious concrete is a material with a high degree of permeability but generally low strength. The material is primarily used for paving applications but has shown promise in many other areas of usage. This thesis investigates the properties of pervious concrete using normal Norwegian aggregates and practices. An overview of important factors when it comes to designing and producing pervious concrete is the result of this investigation. Several experiments have been performed in the concrete ...

  4. Application of self-consolidating concrete in bridge structures : final report.

    Science.gov (United States)

    2011-05-01

    The objectives of this research were to evaluate the feasibility and performance of self-consolidating concrete (SCC) made with local aggregates for use in cast-in-place and precast concrete applications and to develop draft specifications, acceptanc...

  5. EXPERIMENT AL AND THEORETICAL STUDY OF PRECAST ...

    African Journals Online (AJOL)

    EXPERIMENT AL AND THEORETICAL STUDY OF PRECAST BEAM-SLAB. CONSTRUCTION. Girma Zerayohannes and Adil Zekaria. Department of Civil Engineering. Addis Ababa University. ABSTRACT. The use of partially precast beam elements ivith shear connectors in slab construction relieves the requirement of ...

  6. Concrete

    DEFF Research Database (Denmark)

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities. Through tangible experiments the project...... specific for this to happen. And the knowledge and intention behind the drawing becomes specialised through the understanding of the fabrication processes and their affect on the materials.The structure Concrete is a result of a multi-angled kerf series in ash wood and a concrete base. The ash wood is cut...... using a 5-axis CNC router with a thin saw blade attached. The programming of the machining results in variations of kerfs that lets the ash wood twist into unique shapes.The shapes of the revolving ash ribbons continue into the concrete creating a cohesive shape. The form for the concrete itself is made...

  7. Experimental Study for Structural Behaviour of Precast Lightweight Panel (PLP) Under Flexural Load

    Science.gov (United States)

    Goh, W. I.; Mohamad, N.; Tay, Y. L.; Rahim, N. H. A.; Jhatial, A. A.; Samad, A. A. A.; Abdullah, R.

    2017-06-01

    Precast lightweight concrete slab is first fabricated in workshop or industrial before construction and then transported to site and installed by skilled labour. It can reduce construction time by minimizing user delay and time for cast-in-situ to increase workability and efficiency. is environmental friendly and helps in resource reduction. Although the foamed concrete has low compressive strength compared to normal weight concrete but it has excellent thermal insulation and sound absorption. It is environmental friendly and helps in resource reduction. To determine the material properties of foamed concrete, nine cubes and six cylindrical specimens were fabricated and the results were recorded. In this study, structural behaviour of precast lightweight panel (PLP) with dry density of 1800 kg/m3 was tested under flexural load. The results were recorded and analysed in terms of ultimate load, crack pattern, load-deflection profiles and strain distribution. Linear Voltage Displacement Transducers (LVDT) and strain gauges were used to determine the deflection and strain distribution of PLP. The theoretical and experimental ultimate load of PLP was analysed and recorded to be 70 and 62 kN respectively, having a difference of 12.9%. Based on the results, it can be observed that PLP can resist the adequate loading. Thus, it can be used in precast industry for construction purposes.

  8. Development of guidelines for transportation of long prestressed concrete girders.

    Science.gov (United States)

    2016-12-01

    This research study investigates the behavior of two long prestressed concrete girders during lifting and : transportation from the precast yard to the bridge site, with a particular focus on cracking concerns : during transport. Different response m...

  9. 0-6722 : spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2014-08-01

    The Texas Department of Transportation uses : precast prestressed concrete slab beam bridges for : shorter-span bridges of approximately 3050 ft in : length. Conventional slab beam bridges have slab : beams placed immediately adjacent to one anoth...

  10. Development of concrete mix proportions for minimizing/eliminating shrinkage cracks in slabs and high performance grouts : final report.

    Science.gov (United States)

    2017-02-01

    The two focus areas of this research address longstanding problems of (1) cracking of concrete slabs due to creep and shrinkage and (2) high performance compositions for grouting and joining precast concrete structural elements. Cracking of bridge de...

  11. Concrete

    OpenAIRE

    Kruse Aagaard, Anders

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities.Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion as an opportunity to connect th...

  12. Sustainable Concrete Technology

    Directory of Open Access Journals (Sweden)

    Sim J.

    2015-12-01

    Full Text Available The growing concern over global warming and significant ecological changes requires sustainable development in all fields of science and technology. Concrete not only consumes huge amount of energy and natural sources, but also emits large amount of CO2, mainly due to the production of cement. It is evident that such large amount of concrete production has put significant impact on the energy, resource, environment, and ecology of the society. Hence, how to develop the concrete technology in a sustainable way has become a significant issue. In this paper, some of Korean researches for sustainable development of concrete are presented. These are sustainable strengthening for deteriorated concrete structure, sustainable reinforcement of new concrete structure, sustainable concrete using recycled aggregate and supplementary cementing materials and finally application of each technique to precast concrete.

  13. Laboratory Testing of Precast Bridge Beck Panel Transverse Connections for Use in Accelerated Bridge Construction

    OpenAIRE

    Porter, Scott D.

    2009-01-01

    Precast concrete bridge deck panels have been used for decades to accelerate bridge construction. Cracking of the transverse connection between panels is a common problem that can damage deck overlays and cause connection leaking leading to corrosion of lower bridge elements. To better understand the behavior of bridge deck transverse female-to-female connections, shear and moment lab testing were performed at Utah State University for the Utah Department of Transportation. Two existing UDOT ...

  14. Research, Development and Application of High Performance Earthquake Resistant Precast System as Green Construction in Indonesia

    OpenAIRE

    Nurjaman Hari; Hariandja Binsar; Suprapto Gambiro; Faizal Lutfi; Sitepu Haerul

    2017-01-01

    Sustainable construction is a topic that emerges in the world construction as a response to climate change issue. Building construction stage is a stage in sustainable development. Construction concept that confirm to the concept is referred to as green construction. Precast concrete construction is a construction system that meets green construction criteria, because applies the usage of material and construction method that optimize energy consumption and minimize environment impact during ...

  15. Lightweight concrete modification factor for shear friction.

    Science.gov (United States)

    2013-10-01

    This report describes the results of a study initiated to examine the influence of concrete unit weight on the direct shear transfer across an interface of concretes cast at different times. This type of interface is common with structural precast co...

  16. Reusing Ceramic Tile Polishing Waste In Paving Block Manufacturing

    OpenAIRE

    Giordano Penteado; Carmenlucia Santos; de Carvalho; Eduardo Viviani; Cecche Lintz; Rosa Cristina

    2016-01-01

    Ceramic companies worldwide produce large amounts of polishing tile waste, which are piled up in the open air or disposed of in landfills. These wastes have such characteristics that make them potential substitutes for cement and sand in the manufacturing of concrete products. This paper investigates the use of ceramic tile polishing waste as a partial substitute for cement and sand in the manufacturer of concrete paving blocks. A concrete mix design was defined and then the sand was replaced...

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Concrete Industry

    NARCIS (Netherlands)

    Kermeli, Katerina; Worrell, E.; Masanet, Eric

    2011-01-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for about 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials

  18. Modelling the behaviour of steel fibre reinforced precast beam-to-column connection

    Science.gov (United States)

    Chai, C. E.; Sarbini, NN; Ibrahim, I. S.; Ma, C. K.; Tajol Anuar, M. Z.

    2017-11-01

    The numerical behaviour of steel fibre reinforced concrete (SFRC) corbels reinforced with different fibre volume ratio subjected to vertical incremental load is presented in this paper. Precast concrete structures had become popular in the construction field, which offer a faster, neater, safer, easier and cheaper construction work. The construction components are prefabricated in controlled environment under strict supervision before being erected on site. However, precast beam-column connections are prone to failure due to the brittle properties of concrete. Finite element analysis (FEA) is adopted due to the nonlinear behaviour of concrete and SFRC. The key objective of this research is to develop a reliable nonlinear FEA model to represent the behaviour of reinforced concrete corbel. The developed model is validated with experimental data from previous researches. Then, the validated FEA model is used to predict the behaviour of SFRC corbel reinforced with different fibre volume ratio by changing the material parameters. The results show that the addition of steel fibre (SF) increases the load carrying capacity, ductility, stiffness, and changed the failure mode of corbel from brittle bending-shear to flexural ductile. On the other hand, the increasing of SF volume ratio also leads to increased load carrying capacity, ductility, and stiffness of corbel.

  19. Photocatalyticpaving concrete

    OpenAIRE

    Lyapidevskaya Ol'ga Borisovna; Fraynt Mikhail Aleksandrovich

    2014-01-01

    Today bituminous concrete is a conventional paving material. Among its advantages one can name dustlessness and noiselessness, fine wear (up to 1 mm a year) and fine maintainability. As the main disadvantages of this material one can name high slipperiness under humidification, low durability and weather resistance. Besides that, during placement of the bituminous concrete a lot of different air pollutants are emitted, which are harmful for environment and human’s health (they are listed in t...

  20. Photocatalyticpaving concrete

    Directory of Open Access Journals (Sweden)

    Lyapidevskaya Ol'ga Borisovna

    2014-02-01

    Full Text Available Today bituminous concrete is a conventional paving material. Among its advantages one can name dustlessness and noiselessness, fine wear (up to 1 mm a year and fine maintainability. As the main disadvantages of this material one can name high slipperiness under humidification, low durability and weather resistance. Besides that, during placement of the bituminous concrete a lot of different air pollutants are emitted, which are harmful for environment and human’s health (they are listed in the paper according to the US Environmental Protection Agency materials. As an alternative, one can use cement-concrete pavement, which is in many ways more efficient than the bituminous concrete. It is proposed to enhance environmental performance of the cement-concrete pavement via usage of photocatalysis. The mechanism of different photocatalytic reactions is described in the paper, namely heterogeneous and homogeneous photocatalysis, photo-induces, photoactivated catalysis and catalytical photoreactions. It is pro-posed to use heterogeneous photocatalysis with titanium dioxide as a photocatalyst. The mechanism of photo oxidation of air contaminants, with the usage of titanium dioxide is2described. The paper sets problems, connected with the sensibilization of TiOto thevisible light (it is proposed to use titanium dioxide, doped with the atoms of certain elements to increase its sensibility to the visible light and with the development of a new photocatalytic paving concrete, which will meet the requirements, specified for paving in the climatic and traffic conditions of the Russian Federation.

  1. Advances in polymer concrete technology for cell house components

    International Nuclear Information System (INIS)

    Lynch, P.

    2000-01-01

    The cell house environment is very challenging with regard to protection of the concrete structure and components against the corrosive effects of acid. Coating technology using Epoxy, Vinyl Ester and Polyurethane Polymers is available, to provide the necessary chemical and heat resistance. However, producing suitable POLYMER CONCRETE technology for pre-cast components, especially tanks and cells requires not only the correct POLYMER selection, but also significant know-how in mineral aggregate technology to achieve the desired performance properties. Furthermore, the POLYMER CONCRETE technology must enable the pre-caster to manufacture the components in a simple one-step procedure. This paper outlines the important aspects in formulating POLYMER CONCRETE, the performance properties that can be achieved and the practical issues relating to the cost effective pre-casting of tanks and cells in particular. (author)

  2. Discussion on the installation checking method of precast composite floor slab with lattice girders

    Science.gov (United States)

    Chen, Li; Jin, Xing; Wang, Yahui; Zhou, Hele; Gu, Jianing

    2018-03-01

    Based on the installation checking requirements of China’s current standards and the international norms for prefabricated structural precast components, it proposed an installation checking method for precast composite floor slab with lattice girders. By taking an equivalent composite beam consisted of a single lattice girder and the precast concrete slab as the checking object, compression instability stress of upper chords and yield stress of slab distribution reinforcement at the maximum positive moment, tensile yield stress of upper chords, slab normal section normal compression stress and shear instability stress of diagonal bars at the maximum negative moment were checked. And the bending stress and deflection of support beams, strength and compression stability bearing capacity of the vertical support, shear bearing capacity of the bolt and compression bearing capacity of steel tube wall at the bolt were checked at the same time. Every different checking object was given a specific load value and load combination. Application of installation checking method was given and testified by example.

  3. Rotational Stiffness of Precast Beam-Column Connection using Finite Element Method

    Science.gov (United States)

    Hashim, N.; Agarwal, J.

    2018-04-01

    Current design practice in structural analysis is to assume the connection as pinned or rigid, however this cannot be relied upon for safety against collapse because during services the actual connection reacts differently where the connection has rotated in relevance. This situation may lead to different reactions and consequently affect design results and other frame responses. In precast concrete structures, connections play an important part in ensuring the safety of the whole structure. Thus, investigates on the actual connection behavior by construct the moment-rotation relationship is significant. Finite element (FE) method is chosen for modeling a 3-dimensional beam-column connection. The model is built in symmetry to reduce analysis time. Results demonstrate that precast billet connection is categorized as semi-rigid connection with Sini of 23,138kNm/rad. This is definitely different from the assumption of pinned or rigid connection used in design practice. Validation were made by comparing with mathematical equation and small differences were achieved that led to the conclusion where precast billet connection using FE method is acceptable.

  4. Finite element investigation of the prestressed jointed concrete ...

    African Journals Online (AJOL)

    Precast prestressed concrete pavement (PCP) technology is of recent origin, and the information on PCP performance is not available in literature. This research presents a finite-element analysis of the potential benefits of prestressing on the jointed concrete pavements (JCP). With using a 3-dimensional (3D) ...

  5. A numerical study on seismic response of self-centring precast segmental columns at different post-tensioning forces

    Directory of Open Access Journals (Sweden)

    Ehsan Nikbakht

    Full Text Available Precast bridge columns have shown increasing demand over the past few years due to the advantages of such columns when compared against conventional bridge columns, particularly due to the fact that precast bridge columns can be constructed off site and erected in a short period of time. The present study analytically investigates the behaviour of self-centring precast segmental bridge columns under nonlinear-static and pseudo-dynamic loading at different prestressing strand levels. Self-centring segmental columns are composed of prefabricated reinforced concrete segments which are connected by central post-tensioning (PT strands. The present study develops a three dimensional (3D nonlinear finite element model for hybrid post-tensioned precast segmental bridge columns. The model is subjected to constant axial loading and lateral reverse cyclic loading. The lateral force displacement results of the analysed columns show good agreement with the experimental response of the columns. Bonded post-tensioned segmental columns at 25%, 40% and 70% prestressing strand stress levels are analysed and compared with an emulative monolithic conventional column. The columns with a higher initial prestressing strand levels show greater initial stiffness and strength but show higher stiffness reduction at large drifts. In the time-history analysis, the column samples are subjected to different earthquake records to investigate the effect post-tensioning force levels on their lateral seismic response in low and higher seismicity zones. The results indicate that, for low seismicity zones, post-tensioned segmental columns with a higher initial stress level deflect lower lateral peak displacement. However, in higher seismicity zones, applying a high initial stress level should be avoided for precast segmental self-centring columns with low energy dissipation capacity.

  6. Recycled Concrete as Aggregate for Structural Concrete Production

    Directory of Open Access Journals (Sweden)

    Mirjana Malešev

    2010-04-01

    Full Text Available A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC as a control concrete and two types of concrete made with natural fine and recycled coarse aggregate (50% and 100% replacement of coarse recycled aggregate. Ninety-nine specimens were made for the testing of the basic properties of hardened concrete. Load testing of reinforced concrete beams made of the investigated concrete types is also presented in the paper. Regardless of the replacement ratio, recycled aggregate concrete (RAC had a satisfactory performance, which did not differ significantly from the performance of control concrete in this experimental research. However, for this to be fulfilled, it is necessary to use quality recycled concrete coarse aggregate and to follow the specific rules for design and production of this new concrete type.

  7. Post-tensioning and splicing of precast/prestressed bridge beams to extend spans

    Science.gov (United States)

    Collett, Brandon S.; Saliba, Joseph E.

    2002-06-01

    This paper explores the status and techniques of post-tensioning and splicing precast concrete I-beams in bridge applications. It will look at the current practices that have been used in the United States and comment on the advantages of these techniques. Representative projects are presented to demonstrate the application and success of specific methods used. To demonstrate the benefits of using post-tensioning and splicing to extend spans, multiple analysis of simple span post-tensioned I-beams were performed varying such characteristics as beam spacing, beam sections, beam depth and concrete strength. Tables were then developed to compare the maximum span length of a prestressed I-beam versus a one segment or a spliced three segment post-tensioned I-beam. The lateral stability of the beam during fabrication, transportation and erection is also examined and discussed. These tables are intended to aid designers and owners in preliminary project studies to determine if post-tensioning can be beneficial to their situation. AASHTO Standard Specifications(2) will be used as basic guidelines and specifications. In many cases, post-tensioning was found to extend the maximum span length of a typical 72-inch precast I-beam more than 40 feet over conventional prestress.

  8. Use of SCC in Prefabricated Concrete Elements

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Lauritsen, Ib

    2004-01-01

    This paper presents observations made on the use of self-compacting concrete for pre-cast elements at Byggebjerg Beton A/S during the last 3 years. The elements include L- and sandwich elements and are mainly produced for agriculture purposes. In general, the flow properties and air content...... of the concrete to achieve a good surface quality with a limited number of blowholes. For horizontal castings it is important to keep the concrete flowing to avoid casting joints. Blocking is avoided by using the right type of spacers and a maximum size aggregate of 8mm. However, if the concrete has to flow over...

  9. Design and Modeling of Structural Joints in Precast Concrete Structures

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild

    and in the onsite construction speed. The challenges appear in the on-site assembly phase, where structural integrity has to be ensured by in-situ cast connections in narrow zones. These connections are essential for the overall structural behavior and for this reason, strong and ductile connections...... is the orientation of the U-bar loops and the use of a double T-headed rebar in the overlapping area of the Ubars. The investigation covers several independent research topics, which in combination provides a broad knowledge of the behavior of keyed shear connections. As the first topic, the structural behavior...... the loop connection in such a way, that the tensile capacity is governed by yielding of the U-bars and not by a brittle failure of the grout. This is important in order to obtain a ductile response when the connection is loaded in shear. The main focus of the thesis is test and modeling of keyed shear...

  10. Construction-friendly ductile shear joints for precast concrete panels

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Fischer, Gregor

    2015-01-01

    . The solution is tested in a push-off experimental setup and the influence of important geometric parameters of the keyed shear joint is investigated. The first peak load carrying capacity is assessed using plasticity models, and the failure modes are identified by the use of digital image correlation...

  11. In-plane Shear Joint Capacity of Pracast Lightweight Aggregate Concrete Elements

    DEFF Research Database (Denmark)

    Larsen, Henning; Goltermann, Per; Scherfig, Søren

    1996-01-01

    The paper establishes and documents formulas for the in-plane shear capacity between precast elements of lightweight aggregate concrete with open structure. The joints investigated are rough or toothed and have all been precracked prior to the testing in order to obtain realistic test results....... The paper documents the shear force capacity for the joint strength between the most common joint types between precast LAC roof and floor elements used in Scandinavia....

  12. Comparison of the design rules for the end of the prestressed concrete double tee component between China and the United States

    Directory of Open Access Journals (Sweden)

    Meng Xian Hong

    2016-01-01

    Full Text Available Precast prestressed concrete double tee is an economic bearing component which can be made into a large span, large coverage area .From the angle of the design for the end of the precast prestressed concrete double tee component, flexure and axial tension in extended end, direct shear, diagonal tension at re-entrant corner, diagonal tension in extended end and the connection of the end of precast prestressed double tee component in China and the United States are compared. The comparative study provide the direction for the future development of China in the double tee,including strengthening the end reinforcement and increasing end connections.

  13. Rapid bridge construction technology : precast elements for substructures.

    Science.gov (United States)

    2011-06-01

    The goal of this research was to propose an alternate system of precast bridge substructures which can : substitute for conventional cast in place systems in Wisconsin to achieve accelerated construction. : Three types of abutment modules (hollow wal...

  14. Development of precast bridge deck overhang system : technical report.

    Science.gov (United States)

    2011-07-01

    The implementation of full-depth, precast overhang panel systems has the potential to improve constructability, : productivity, and make bridges more economical. Initial testing and analyses reported in the 0-6100-2 report resulted in : a design that...

  15. Determining the in situ concrete strength of existing structures for assessing their structural safety

    NARCIS (Netherlands)

    Steenbergen, R.D.J.M.; Vervuurt, A.H.J.M.

    2012-01-01

    EN 13791 applies when assessing the in situ compressive strength of structures and precast concrete components. According to the code itself, it may be adopted when doubt arises about the compressive strength of a concrete. For assessing the structural safety of existing structures, however, the

  16. Cathodic protection of concrete ground floor elements with mixed in chloride

    NARCIS (Netherlands)

    Schuten, G.; Leggedoor, J.; Polder, R.B.

    1999-01-01

    Corrosion of reinforcement in precast concrete ground floor elements containing mixed in chloride can cause considerable damage. This is a major problem in the Netherlands concerning a large number of privately owned houses. Conventional concrete repair is not acceptable because it does not provide

  17. Durable fiber reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Corinaldesi, V.; Moriconi, G.

    2004-01-01

    In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strains due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture

  18. Method for Bubbledeck Concrete Slab with Gaps

    Directory of Open Access Journals (Sweden)

    Sergiu Călin

    2009-01-01

    Full Text Available The composite slabs are made of BubbleDeck type slab elements with spherical gaps, poured in place on transversal and longitudinal directions. By introducing the gaps leads to a 30...50\\% lighter slab which reduces the loads on the columns, walls and foundations, and of course of the entire building. BubbleDeck slab elements are plates with ribs on two directions made of reinforced concrete or precast concrete with spherical shaped bubbles. These slab elements have a bottom and an upper concrete part connected with vertical ribs that go around the gaps.

  19. Seismic retrofit of spliced sleeve connections for precast bridge piers : research brief.

    Science.gov (United States)

    2017-03-01

    The rehabilitation method described in this paper concerns connections between precast columns and footings, and precast columns and pier caps. This research uses high-performance materials, including headed reinforcing bar, epoxy, nonshrink or expan...

  20. Two innovative solutions based on fibre concrete blocks designed for building substructure

    Science.gov (United States)

    Pazderka, J.; Hájek, P.

    2017-09-01

    Using of fibers in a high-strength concrete allows reduction of the dimensions of small precast concrete elements, which opens up new ways of solution for traditional construction details in buildings. The paper presents two innovative technical solutions for building substructure: The special shaped plinth block from fibre concrete and the fibre concrete elements for new technical solution of ventilated floor. The main advantages of plinth block from fibre concrete blocks (compared with standard plinth solutions) is: easier and faster assembly, higher durability and thanks to the air cavity between the vertical part of the block, the building substructure reduced moisture level of structures under the waterproofing layer and a comprehensive solution to the final surface of building plinth as well as the surface of adjacent terrain. The ventilated floor based on fibre concrete precast blocks is an attractive structural alternative for tackling the problem of increased moisture in masonry in older buildings, lacking a functional waterproof layer in the substructure.

  1. Comparison of compressive strength of paving block with a mixture of Sinabung ash and paving block with a mixture of lime

    Science.gov (United States)

    Hastuty, I. P.; Sembiringand Nursyamsi, I. S.

    2018-02-01

    Paving block is one of the material used as the top layer of road structure besides asphalt and concrete paving block is usually made of mixed material such as Portland cement or other adhesive material, water, and aggregate. People nowadays prefer paving block compared to other pavement such as concrete or asphalt. Their interest toward the use of paving block increase because paving block is an eco-friendly construction which is very useful in helping soil water conservation, can be done faster, has easier installation and maintenance, has a variety of shades that increase the aesthetic value, also costs cheaper than the other. Preparation of the specimens with a mixture of Sinabung ash and a mixture of Sinabung ash and lime are implemented with a mixture ratio of cement : sand : stone ash is 1: 2 : 3. The mixture is used as a substitute material by reducing the percentage amount of the weight of the cement with the composition ratio variation based on the comparative volume category of the paving block aggregate, i.e. 0%, 5%, 10%, 15%, 20%, and 25%. The result of this research shows that the maximum compressive strength value is 42.27 Mpa, it was obtained from a mixture of 10% lime with curing time 28 days. The maximum compressive strength value which is obtained from the mixture of sinabung ash is 41.60 Mpa, it was obtained from a mixture of 15% sinabung ash. From the use of these two materials, paving blocks produced are classified as paving blocks quality A and B (350 - 400 Mpa) in accordance to specification from SNI 03-0691-1996.

  2. Research note : field control of asphalt concrete paving mixtures.

    Science.gov (United States)

    1995-01-01

    The goal of this study was to develop information and evaluate new methods for controlling quality of the AC mixture in the mat. Specifically, this research project evaluated a gyratory compactor in the field laboratory to determine mix quality. Spec...

  3. QUALITY CONTROL IN PRECAST PRODUCTION A case study on Tunnel Segment Manufacture

    Directory of Open Access Journals (Sweden)

    Yee Weng Cheong

    2005-01-01

    Full Text Available Quality control forms an integral part of precast production. An efficient quality system is most critical in the mass production of precast components in any project. In this study, the quality control system implemented in a precast factory is discussed. The precast factory is set up for the manufacture of large quantity of tunnel segments under a contract. Processes in the precast manufacture are discussed with respect to the control procedures in the quality inspection plan. The standard tests involved, roles of inspectors and corrective actions on-site are highlighted. Critical issues pertaining to the productivity and quality of precast production are reviewed. These include the quality of staff and maintenance, which could potentially affect the efficiency of the quality system. Some considerations should also be given to improve the workflow and productivity of the plant.

  4. Introductory guide to garden paving

    CSIR Research Space (South Africa)

    Addis, B.J

    1980-01-01

    Full Text Available can be reused if necessary. 3 Disadvantages - c a n become weed infested if not regulady trafficked or maintained. CONCRETE FLAGSTONE PA VLVG Advan%= - offers an opportunity to create avariety of visual dffects with purpose made flagstones... and cured. CONSmUcnON EQUIPMENT The following may be required: measuring tape - of steel or good quality cloth; string - preferably a heavy nylon f&ing line; accurate spirit level; light straight edge (planed timber, for example, 70 mm x 20 mm x 3...

  5. Investigation on the Mechanisms Governing the Robustness of Self-Compacting Concrete at Paste Level

    NARCIS (Netherlands)

    van der Vurst, F; Lesage, Karel; Grunewald, S.; Vandewalle, Lucie; Vantomme, John; Schutter, G; Khayat, Kamal H.

    2016-01-01

    In spite of the many advantages, the use of self-compacting concrete
    (SCC) is currently widely limited to application in precast factories and sihiations
    in which external vibration would cause large difficulties. One of the main
    limitations is the higher sensitivity to small variations

  6. Post-tensioned Discrete Concrete Elements Developed For Free-form Construction

    DEFF Research Database (Denmark)

    Egholm Pedersen, Ole; Larsen, Niels Martin; Pigram, Dave

    2015-01-01

    This paper presents a method for the construction of non-uniform precast concrete shell structures from unique parts. A novel method of discontinuous post-tensioning is introduced which allows tension to be taken through the connections. This increases the formal possibilities of the system beyon...

  7. Assessment of concrete characteristics during the deliberate deformation of a flexible mould after casting

    NARCIS (Netherlands)

    Schipper, H.R.; Grunewald, S.; Troian, S.; Raghunath, P.; Schlangen, H.E.J.G.; Copuroglu, O.; Pecur, I.B.; Baricevic, A.; Stirmer, N; Bjegovic, D.

    2017-01-01

    Expensive CNC (computer numerical controlled)-milled formwork is required for the production of double-curved precast concrete elements for cladding or shell structures. The innovative flexible mould method for economically efficient and sustainable production of such elements, developed at Delft

  8. Study on reinforced lightweight coconut shell concrete beam behavior under flexure

    International Nuclear Information System (INIS)

    Gunasekaran, K.; Annadurai, R.; Kumar, P.S.

    2013-01-01

    Highlights: ► Use of coconut shell as aggregate in concrete. ► Behavior of coconut shell concrete under flexure. ► SEM images of cement, sand, coconut shell and coconut shell aggregate concrete. ► Coconut shell hollow blocks and precast slabs are used in practice. - Abstract: Coconut shell has been used as coarse aggregate in the production of concrete. The flexural behavior of reinforced concrete beam made with coconut shell is analyzed and compared with the normal control concrete. Twelve beams, six with coconut shell concrete and six with normal control concrete, were fabricated and tested. This study includes the moment capacity, deflection, cracking, ductility, corresponding strains in both compression and tension, and end rotation. It was found that the flexural behavior of coconut shell concrete is comparable to that of other lightweight concretes. The results of concrete compression strain and steel tension strain showed that coconut shell concrete is able to achieve its full strain capacity under flexural loadings. Under serviceability condition, deflection and cracking characteristics of coconut shell concrete are comparable with control concrete. However, the failure zones of coconut shell concrete were larger than for control concrete beams. The end rotations of the coconut shell concrete beams just prior to failure values are comparable to other lightweight concretes. Coconut shell concrete was used to produce hollow blocks and precast slab in 2007 and they are being subjected to some practical loading till today without any problems such as deflection, bending, cracks, and damages for the past five years

  9. Implementing GPS into Pave-IR.

    Science.gov (United States)

    2009-03-01

    To further enhance the capabilities of the Pave-IR thermal segregation detection system developed at the Texas Transportation Institute, researchers incorporated global positioning system (GPS) data collection into the thermal profiles. This GPS capa...

  10. How Concrete Is Concrete?

    Science.gov (United States)

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  11. Design and construction of a cable-stayed composite girder bridge with precast RC-slabs; Purekyasuto shohan gosei keta shachokoyo no sekkei to seko

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, K. [Tokyo Metropolitan Univ. (Japan). Faculty of Technology; Shimura, T.; Tachibana, Y.; Echigo, S. [Kawada Industries Inc., Tokyo (Japan)

    1995-09-20

    A report on design and execution of cable-stayed composite girder bridge with precast RC-slabs constructed first in Japan though in small scale was described. This bridge adopted steel slabs relatively low in slab height for main slab and with two boxes slab section, and was designed at an aim of being more economic and shorter in its working term in comparison with steel girder slab type, on a base of the design in a region allowable with the existing design standards. This bridge is mainly in accordance with the regulation on continuous bridge in the prescription of road bridge, and is designed for normal RC-girder selecting between girder supports to direction normal to bridge axis as usual without using specially strong concrete to the girder. And, in order to fill with the regulation on allowable tensile stress on considering effects of creep and drying shrinkage, a method adding prestress to the slabs was adopted. Furthermore, a loop-like overlap joint for cable joint for the precast girders, expansion concrete for joint portion to compose the girder with the steel slab and so forth were adopted. 12 refs., 22 figs., 5 tabs.

  12. Engineering properties of fly ash concrete

    International Nuclear Information System (INIS)

    Hilmi Mahmud

    1999-01-01

    This paper presents some of the engineering properties of Malaysian fly ash concrete. Workability, compressive, flexural, tensile splitting, drying shrinkage, elastic modulus and non destructive tests were performed on fly ash and control OPC concrete specimens. Data show that concrete containing 25% fly ash replacement of cement exhibit superior or similar engineering properties to that normal concrete without fly ash. These encouraging results demonstrated the technical merits of incorporating fly ash in concrete and should pave the way for wide scale use of this versatile material in the Malaysian construction industry. (author)

  13. Reusing recycled aggregates in structural concrete

    Science.gov (United States)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  14. Structural Applications of Fibre Reinforced Concrete in the Czech Republic

    Science.gov (United States)

    Kohoutková, A.; Broukalová, I.

    2017-09-01

    The paper presents improvement of function and performance of the precast structural members by using fibre reinforced concrete (FRC) instead of ordinary reinforced concrete and attempts to transfer innovative technologies from laboratory in academic sphere into real industrial production which is cost-effective and brings about savings of labour and material. Three examples of successful technology transfer are shown - application of FRC in an element without common rebar reinforcement, in the element with steel rebar reinforcement and SFRC pre-tensioned structural element. Benefits of FRC utilization are discussed.

  15. Paving the Way for Apollo 11

    CERN Document Server

    Harland, David M

    2009-01-01

    In 'Paving the Way for Apollo 11' David Harland explains the lure of the Moon to classical philosophers, astronomers, and geologists, and how NASA set out to investigate the Moon in preparation for a manned lunar landing mission. It focuses particularly on the Lunar Orbiter and Surveyor missions.

  16. Development of a precast bridge deck overhang system for the rock creek bridge.

    Science.gov (United States)

    2008-12-01

    Precast, prestressed panels are commonly used at interior beams for bridges in Texas. The use of these : panels provides ease of construction, sufficient capacity, and good economy for the construction of : bridges in Texas. Current practice for the ...

  17. PAVE: Program for assembling and viewing ESTs

    Directory of Open Access Journals (Sweden)

    Bomhoff Matthew

    2009-08-01

    Full Text Available Abstract Background New sequencing technologies are rapidly emerging. Many laboratories are simultaneously working with the traditional Sanger ESTs and experimenting with ESTs generated by the 454 Life Science sequencers. Though Sanger ESTs have been used to generate contigs for many years, no program takes full advantage of the 5' and 3' mate-pair information, hence, many tentative transcripts are assembled into two separate contigs. The new 454 technology has the benefit of high-throughput expression profiling, but introduces time and space problems for assembling large contigs. Results The PAVE (Program for Assembling and Viewing ESTs assembler takes advantage of the 5' and 3' mate-pair information by requiring that the mate-pairs be assembled into the same contig and joined by n's if the two sub-contigs do not overlap. It handles the depth of 454 data sets by "burying" similar ESTs during assembly, which retains the expression level information while circumventing time and space problems. PAVE uses MegaBLAST for the clustering step and CAP3 for assembly, however it assembles incrementally to enforce the mate-pair constraint, bury ESTs, and reduce incorrect joins and splits. The PAVE data management system uses a MySQL database to store multiple libraries of ESTs along with their metadata; the management system allows multiple assemblies with variations on libraries and parameters. Analysis routines provide standard annotation for the contigs including a measure of differentially expressed genes across the libraries. A Java viewer program is provided for display and analysis of the results. Our results clearly show the benefit of using the PAVE assembler to explicitly use mate-pair information and bury ESTs for large contigs. Conclusion The PAVE assembler provides a software package for assembling Sanger and/or 454 ESTs. The assembly software, data management software, Java viewer and user's guide are freely available.

  18. PAVE: program for assembling and viewing ESTs.

    Science.gov (United States)

    Soderlund, Carol; Johnson, Eric; Bomhoff, Matthew; Descour, Anne

    2009-08-26

    New sequencing technologies are rapidly emerging. Many laboratories are simultaneously working with the traditional Sanger ESTs and experimenting with ESTs generated by the 454 Life Science sequencers. Though Sanger ESTs have been used to generate contigs for many years, no program takes full advantage of the 5' and 3' mate-pair information, hence, many tentative transcripts are assembled into two separate contigs. The new 454 technology has the benefit of high-throughput expression profiling, but introduces time and space problems for assembling large contigs. The PAVE (Program for Assembling and Viewing ESTs) assembler takes advantage of the 5' and 3' mate-pair information by requiring that the mate-pairs be assembled into the same contig and joined by n's if the two sub-contigs do not overlap. It handles the depth of 454 data sets by "burying" similar ESTs during assembly, which retains the expression level information while circumventing time and space problems. PAVE uses MegaBLAST for the clustering step and CAP3 for assembly, however it assembles incrementally to enforce the mate-pair constraint, bury ESTs, and reduce incorrect joins and splits. The PAVE data management system uses a MySQL database to store multiple libraries of ESTs along with their metadata; the management system allows multiple assemblies with variations on libraries and parameters. Analysis routines provide standard annotation for the contigs including a measure of differentially expressed genes across the libraries. A Java viewer program is provided for display and analysis of the results. Our results clearly show the benefit of using the PAVE assembler to explicitly use mate-pair information and bury ESTs for large contigs. The PAVE assembler provides a software package for assembling Sanger and/or 454 ESTs. The assembly software, data management software, Java viewer and user's guide are freely available.

  19. TRANSPARENT CONCRETE

    OpenAIRE

    Sandeep Sharma*, Dr. O.P. Reddy

    2017-01-01

    Transparent concrete is the new type of concrete introduced in todays world which carries special property of light transmitting due to presence of light Optical fibres. Which is also known as translucent concrete or light transmitting concrete, it is achieved by replacing coarse aggregates with transparent alternate materials (Optical fibres). The binding material in transparent concrete may be able to transmit light by using clear resins the concrete mix. The concrete used in industry in pr...

  20. The effects of moisture and temperature variations on the long term durability of polymer concrete

    DEFF Research Database (Denmark)

    Barbosa, Ricardo; Hansen, Kurt Kielsgaard; Grelk, Bent

    2013-01-01

    The use of polymer concrete to precast products in construction presents normally many advantages compared to traditional concrete. Higher strength, lower permeability, shorter curing periods, better chemical resistances and a better durability is normally predicated, however this is a research...... and after exposure to different thermal conditions is very important. In this paper, an experimental study concerning the influence of temperature and moisture in cyclic conditions on the durability of polymer concrete based on an unsaturated polyester resin is described and the results are presented...

  1. Static, Fire and Fatigue Tests of Ultra High-Strength Fibre Reinforced Concrete and Ribbed Bars

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard; Heshe, Gert

    2001-01-01

    A new building system has been developed during the last 10 years. This new system consists of a column / slab system with 6 x 6 m distance between the columns. The slabs are precast concrete elements of size 2.9 x 5.9 m connected through joints of ultra high strength fibre reinforced concrete...... - Densit Joint Cast ®. Also the connections between the columns and the slabs are made of this very strong concrete material. The paper describes some of the static tests carried out as well as some fire tests. Further, 2 chapters deal with some fatigue tests of the reinforcing bars as well as some fatigue...

  2. Numerical Investigation on Detection of Prestress Losses in a Prestressed Concrete Slab by Modal Analysis

    Science.gov (United States)

    Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.

    2017-10-01

    The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.

  3. How Concrete is Concrete

    OpenAIRE

    Koeno Gravemeijer

    2010-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two diff...

  4. Mechanical properties of high-strength concrete

    Science.gov (United States)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  5. How Concrete is Concrete

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2010-07-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics

  6. Autoclaved aerated concrete : shaping the evolution of residential construction in the United States.

    OpenAIRE

    Bukoski, Steven C.

    1998-01-01

    CIVINS (Civilian Institutions) Thesis document Precast Autoclaved Aerated Concrete (AAC) is a proven construction material used in Europe for over 70 years. Introduced to the United States in 1990, construction thus far is limited to commercial and custom borne applications. Premium benefits include energy efficiency and resistance to natural disaster and pests. Despite being the leading residential construction material in Europe and Japan, lumber is the leading material of choice in the ...

  7. Efficiency of fiber reinforced concrete application in structures subjected to dynamic effects

    Directory of Open Access Journals (Sweden)

    Morozov Valeriy Ivanovich

    2014-03-01

    Full Text Available Fiber reinforced concretes possess high strength under dynamic loadings, which include impact loads, thanks to their high structural viscosity. This is the reason for using them in difficult operating conditions, where increasing the performance characteristics and the structure durability is of prime importance, and the issues of the cost become less significant. Applying methods of disperse reinforcement is most challenging in case of subtle high-porous materials on mineral binders, for example foamed concrete. At the same time, the experiments conducted in Russia and abroad show, that also in other cases the concrete strength resistance several times increases as a result of disperse reinforcement. This doesn't depend on average density of the concrete and type of fiber used. In the article the fibre reinforced concrete impact resistance is analysed. Recommendations are given in regard to fibre concrete application in manufacture of monolithic floor units for industrial buildings and precast piles.

  8. Paving materials for heat island mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Pomerantz, M.; Akbari, H.; Chen, A.; Taha, H. [Lawrence Berkeley National Lab., CA (United States); Rosenfeld, A.H. [Dept. of Energy, Washington, DC (United States)

    1997-11-01

    This report summarizes paving materials suitable for urban streets, driveways, parking lots and walkways. The authors evaluate materials for their abilities to reflect sunlight, which will reduce their temperatures. This in turn reduces the excess air temperature of cities (the heat island effect). The report presents the compositions of the materials, their suitability for particular applications, and their approximate costs (in 1996). Both new and resurfacing are described. They conclude that, although light-colored materials may be more expensive than conventional black materials, a thin layer of light-colored pavement may produce energy savings and smog reductions whose long-term worth is greater than the extra cost.

  9. Paving the road to maximum productivity.

    Science.gov (United States)

    Holland, C

    1998-01-01

    "Job security" is an oxymoron in today's environment of downsizing, mergers, and acquisitions. Workers find themselves living by new rules in the workplace that they may not understand. How do we cope? It is the leader's charge to take advantage of this chaos and create conditions under which his or her people can understand the need for change and come together with a shared purpose to effect that change. The clinical laboratory at Arkansas Children's Hospital has taken advantage of this chaos to down-size and to redesign how the work gets done to pave the road to maximum productivity. After initial hourly cutbacks, the workers accepted the cold, hard fact that they would never get their old world back. They set goals to proactively shape their new world through reorganizing, flexing staff with workload, creating a rapid response laboratory, exploiting information technology, and outsourcing. Today the laboratory is a lean, productive machine that accepts change as a way of life. We have learned to adapt, trust, and support each other as we have journeyed together over the rough roads. We are looking forward to paving a new fork in the road to the future.

  10. How Concrete is Concrete?

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2011-01-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics.Key words:  Conceret Learning Materials, School Math, Common Sense, Scaffolding, Communication DOI: http://dx.doi.org/10.22342/jme.2.1.780.1-14

  11. Research based teaching as a model for developing complex pre-cast concrete structures

    DEFF Research Database (Denmark)

    Egholm Pedersen, Ole

    2012-01-01

    master students assisted in the development and realisation of an amorphous, catenary grid-shell. Development in many areas simultaneously was essential for the success of the case studies, which made them suitable for a research-based teaching setup, where didactic considerations on a general...... and specific level were important: On a general level, three didactic tools were used: the first being the presentation of knowledge generation as something that happens between researcher and student. The second involved presenting students with a narrow focus before presenting a wide one, and the third......: viewing the teaching studio as an interdisciplinary laboratory. On a specific level, didactic considerations involved a division of responsibility into smaller areas of investigation, allowing the students to conduct relevant experimentation while negotiating other areas of the research. Also...

  12. Constraint-aware interior layout exploration for pre-cast concrete-based buildings

    KAUST Repository

    Liu, Han; Yang, Yongliang; AlHalawani, Sawsan; Mitra, Niloy J.

    2013-01-01

    Creating desirable layouts of building interiors is a complex task as designers have to manually adhere to various local and global considerations arising from competing practical and design considerations. In this work, we present an interactive

  13. Precast, Prestressed Concrete Bent Caps : Volume 2, Design Recommendations and Design Examples

    Science.gov (United States)

    2018-04-01

    Recommendations for design of pretensioned bent caps are developed based on the findings of full-scale experimental tests of bent cap subassemblages. Companion examples are provided to demonstrate implementation of the design recommendations. First, ...

  14. Connections in Precast Buildings using Ultra High-Strength Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Jensen, Bjarne Chr.; Jensen, Lars Rom; Hansen, F. Toft

    1995-01-01

    are preferred, but due to transportation and lift capacities on the site, the size of the slab elements is limited. A building system with great distance between columns, reasonable sizes of slab elements and great possibilities for the architect to form the façade lines, would be a step forward...... for the building industry. The Building Department of the Education Ministry has initiated such a development, and very simple building systems will be used for the next building complex at Aalborg University. The partners who did the development for the Building Department, are Carl Bro Group, Dall & Lindhardtsen...

  15. Tests and limit analysis of loop connections between precast concrete elements loaded in tension

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2013-01-01

    in practice. The paper also presents an upper bound plasticity model, which is able to capture the experimental tendencies in a satisfactory manner. Finally, the paper includes discussions of how the presented research may be utilized in practice to design connections that are able to transfer the full yield...

  16. Evaluation of Precast Portland Cement Concrete Panels for Airfield Pavement Repairs

    Science.gov (United States)

    2015-05-01

    quality PCC over a 152-mm compacted well-graded limestone base, over compacted sandy, low-plasticity clay . Measured PCC material strengths of field...by 20 ft by 14 in. The PCC was constructed on a 6-in.-thick, well-graded limestone base over a sandy, low-plasticity clay subgrade. The PCC had an...Ratio of the second stress invariant on the tensile to compressive meridian, Kc 0.667 0.667 0.667 Viscosity parameter, µ 0 0 0 Fracture

  17. Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges.

    Science.gov (United States)

    2004-10-01

    Continuity diaphragms used on skewed bents in prestressed girder bridges cause difficulties in detailing and : construction. Details for bridges with large diaphragm skew angles (>30) have not been a problem for LA DOTD. : However, as the skew angl...

  18. Shear strength of match cast dry joints of precast concrete segmental bridges: proposal for Eurocode 2

    Directory of Open Access Journals (Sweden)

    Aparicio, J. A.

    2006-06-01

    Full Text Available This paper discusses a study on the performance of concretesegmental bridges with shear keys, focusing on theshear behaviour of castellated dry joints under ultimatelimit state conditions. The widely varying formulationused to evaluate joint shear strength were compiled,along with the experimental results published in the literatureon the subject. The various approaches were evaluatedby comparing their predictions of ultimate jointstrength to published empirical findings. The formulagiving the best prediction was adapted to the safety factorprovisions set out in Eurocode 2.Este trabajo presenta un estudio sobre el comportamientode puentes de dovelas de hormigon con llaves de cortante,centrado en el comportamiento a cortante de lasjuntas secas conjugadas en Estado Limite Ultimo. Se harealizado una exhaustiva recopilacion de la dispar formulacionexistente para evaluar la resistencia a cortante delas juntas. Se ha realizado, asimismo, una investigacionbibliografica de los resultados experimentales disponiblessobre este particular en la literatura. Los resultados recogidosen la bibliografia han sido comparados con la variadaformulacion existente para predecir la resistencia ultimade las juntas. La formula que mejor predice laresistencia ha sido identificada. Esta ha sido adaptada alformato de seguridad presente en el Eurocodigo 2.

  19. Performance and Characterization of Shear Ties for Use in Insulated Precast Concrete Sandwich Wall Panels

    Science.gov (United States)

    2010-11-01

    stainless 14 steel, galvanized carbon steel, carbon- fiber -reinforced polymer (CFRP), glass- fiber -reinforced polymer 15 (GFRP), and basalt - fiber ...CFRP Grid, (E) Universal Building Products GFRP Teplo Tie, and (F) Universal Building Products 6 Basalt FRP RockBar. Traditional steel connections...1.6 E Universal Building Products TeploTie GFRP Tie 10 mm dia. x 150 mm F RockBar Basalt FRP Bar 7 in. x 5/16 in. G TSA Manufacturing C-Clip

  20. Evaluation and Comparison of Freeze-Thaw Tests and Air Void Analysis of Pervious Concrete

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Kevern, John T.

    2016-01-01

    Pearl-Chain Bridge technology is an innovative precast arch bridge solution which uses pervious concrete as fill material. To ensure longevity of the bridge superstructure it is necessary that the per-vious concrete fill is designed to be freeze-thaw durable; however, no standards exist on how...... to eval-uate the freeze-thaw resistance of fresh or hardened pervious concrete and correspondingly what constitutes acceptable freeze-thaw durability. A greater understanding of the correlation between the freeze-thaw performance and the air void structure of pervious concrete is needed. In the present...... study six pervious concrete mixes were exposed to freeze-thaw testing, and their air void structure was analyzed using an automated linear-traverse method. It was found that there is a miscorrelation between these two test methods in their assumption of whether or not the large interconnected voids...

  1. STUDY ON THE BEHAVIOUR OF PRECAST BEAM COLUMN JOINT USING STEEL PLATE CONNECTION (JPSP)

    OpenAIRE

    Parung, H.

    2012-01-01

    Joint beam column connection is the most critical part for a structure subjected to earthquake loading. This part should be designed such that any possible failure can be prevented. For a cast in situ structure, any failure in this joint can be prevented if all requirements in the design code are obeyed. For pre-cast construction, structural failure usually occurs at the beam-column connection. The research aimed at studying the strength of precast beam-column joint using steel plate as conne...

  2. Experimental and Numerical Investigation of the FRP Shear Mechanism for Concrete Sandwich Panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Sopal, G.; Rizkalla, S.

    2015-01-01

    This paper investigates the composite action of 46 segments representing precast concrete sandwich panels (PCSPs) using a fiber-reinforced polymer [FRP; specifically, a carbon fiber-reinforced polymer (CFRP)] grid/rigid foam as a shear mechanism. The experimental aspect of the research reported...... reported in this paper indicated that increasing the spacing between vertical lines of CFRP grid increase the overall shear flow strengths due to the increase of the bonded contact area of the rigid foam to the concrete surface. However, the overall shear stresses were decreased due to the increase...

  3. Transfer and anchorage bond behaviour in self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Rigueira-Víctor, J. W.

    2006-12-01

    Full Text Available Self-compacting concretes (SCC provide solutions to the problems facing precast concrete construction, enhancing competitiveness, reducing turnaround times and improving final product quality. SCC is fast becoming a key product for the future development of the precast pre-stressed concrete industry.The present paper compares the bond performance of SCC and traditional concrete (TC. The bond performance results confirm the viability of SCC in precast pre-stressed concrete manufacture, despite a slightly higher loss of pre-stressing force and slightly greater anchorage lengths in SCC with a low water/cement ratio. No differences in transfer or anchorage length were detected,however, when high strength TC and SCC were compared. The ECADA test method proved to be well suited to detecting the differences between the concretes analyzed.El desarrollo de los hormigones autocompactantes (SCCofrece muchas posibilidades a las construcciones con hormigón prefabricado, aumentando su competitividad, reduciéndolos plazos de fabricación y ofreciendo mejoras en la calidad del producto final. El SCC se está convirtiendo en un producto clave para el futuro desarrollo de la industria de prefabricados de hormigón pretensado.En este estudio se compara el comportamiento adherente de los SCC con el de los hormigones tradicionales (TC actuales. Los resultados obtenidos confirman la viabilidad del uso de los SCC para la fabricación de elementos prefabricados con hormigón pretensado, en lo relativo a su comportamiento adherente, aunque con la necesidad de considerar unas pérdidas de pretensado ligeramente mayores. Asimismo,debe esperarse un ligero aumento de las longitudes de anclaje cuando se trabaje con SCC de baja relación agua/cemento. Sin embargo, no se han detectado diferencias de comportamiento entre ambos tipos de hormigón cuando la resistencia a compresión es alta en lo relativo a las longitudes de transmisión y anclaje. El método de ensayo ECADA

  4. Evaluation of curing compound application time on concrete surface durability : [brief].

    Science.gov (United States)

    2015-05-01

    Roadways that are both durable and aesthetically pleasing are primary goals of Wisconsin : Department of Transportation (WisDOT) paving projects. Recently, Portland Cement Concrete : (PCC) pavement projects constructed by WisDOT have experienced incr...

  5. Computer-based guidelines for concrete pavements : HIPERPAV III : user manual

    Science.gov (United States)

    2009-10-01

    This user manual provides guidance on how to use the new High PERformance PAVing (HIPERPAV) III software program for the analysis of early-age Portland cement concrete pavement (PCCP) behavior. HIPERPAV III includes several improvements over prev...

  6. Glazed Concrete

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Why glazed concrete? Concrete hardens and finds its strength at room temperature whereas clay products must first be fired before they achieve this strength. They are stronger and three times as durable as clay products, which is a weighty reason for choosing concrete.5 Another reason, which....... If this succeeds, it will be possible to manufacture thin, large-scale glazed concrete panels comparable in size to concrete sandwich construction and larger which, with or without back-casting, can work as load-bearing construction elements....

  7. Application of a distributed optical fiber sensing technique in monitoring the stress of precast piles

    International Nuclear Information System (INIS)

    Lu, Y; Shi, B; Wei, G Q; Zhang, D; Chen, S E

    2012-01-01

    Due to its ability in providing long distance, distributed sensing, the optical fiber sensing technique based on a Brillouin optical time domain reflectometer (BOTDR) has a unique advantage in monitoring the stability and safety of linear structures. This paper describes the application of a BOTDR-based technique to measure the stress within precast piles. The principle behind the BOTDR and the embedding technique for the sensing optical fiber in precast piles is first introduced, and then the analysis method and deformation and stress calculation based on distributed strain data are given. Finally, a methodology for using a BOTDR-based monitoring workflow for in situ monitoring of precast piles, combined with a practical example, is introduced. The methodology requires implantation of optical fibers prior to pile placement. Field experimental results show that the optical fiber implantation method with slotting, embedding, pasting and jointing is feasible, and have accurately measured the axial force, side friction, end-bearing resistance and bearing feature of the precast pile according to the strain measuring data. (paper)

  8. Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests

    DEFF Research Database (Denmark)

    Alberdi Pagola, Maria; Poulsen, Søren Erbs; Loveridge, Fleur

    2018-01-01

    This paper investigates the applicability of currently available analytical, empirical and numerical heat flow models for interpreting thermal response tests (TRT) of quadratic cross section precast pile heat exchangers. A 3D finite element model (FEM) is utilised for interpreting five TRTs by in...

  9. Rapid Radiochemical Methods for Asphalt Paving Material ...

    Science.gov (United States)

    Technical Brief Validated rapid radiochemical methods for alpha and beta emitters in solid matrices that are commonly encountered in urban environments were previously unavailable for public use by responding laboratories. A lack of tested rapid methods would delay the quick determination of contamination levels and the assessment of acceptable site-specific exposure levels. Of special concern are matrices with rough and porous surfaces, which allow the movement of radioactive material deep into the building material making it difficult to detect. This research focuses on methods that address preparation, radiochemical separation, and analysis of asphalt paving materials and asphalt roofing shingles. These matrices, common to outdoor environments, challenge the capability and capacity of very experienced radiochemistry laboratories. Generally, routine sample preparation and dissolution techniques produce liquid samples (representative of the original sample material) that can be processed using available radiochemical methods. The asphalt materials are especially difficult because they do not readily lend themselves to these routine sample preparation and dissolution techniques. The HSRP and ORIA coordinate radiological reference laboratory priorities and activities in conjunction with HSRP’s Partner Process. As part of the collaboration, the HSRP worked with ORIA to publish rapid radioanalytical methods for selected radionuclides in building material matrice

  10. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years......, the research in concrete hinges has not evolved significantly in that period. But introducing a new state-of-the-art concrete arch bridge solution (Pearl-Chain arches invented at the Technical University of Denmark) creates a necessity of a concrete hinge research based on modern standards. Back when research...... in concrete hinges was more common different designs were proposed for the geometry and reinforcement. Previous research focused on fatigue, multi-axial stresses around the hinge throat, and the relation between rotation- and moment. But many different test-setups were proposed by different researchers...

  11. Concrete structures

    CERN Document Server

    Setareh, Mehdi

    2017-01-01

    This revised, fully updated second edition covers the analysis, design, and construction of reinforced concrete structures from a real-world perspective. It examines different reinforced concrete elements such as slabs, beams, columns, foundations, basement and retaining walls and pre-stressed concrete incorporating the most up-to-date edition of the American Concrete Institute Code (ACI 318-14) requirements for the design of concrete structures. It includes a chapter on metric system in reinforced concrete design and construction. A new chapter on the design of formworks has been added which is of great value to students in the construction engineering programs along with practicing engineers and architects. This second edition also includes a new appendix with color images illustrating various concrete construction practices, and well-designed buildings. The ACI 318-14 constitutes the most extensive reorganization of the code in the past 40 years. References to the various sections of the ACI 318-14 are pro...

  12. Structural behavior of concrete box bridge using embedded FBG sensors

    Science.gov (United States)

    Chung, Wonseok; Kang, Donghoon

    2012-04-01

    For the structural monitoring of railway bridges, electromagnetic interference (EMI) is a significant problem as modern railway lines are powered by high-voltage electric power feeding systems. Fiber optic sensing systems are free from EMI and have been successfully applied in civil engineering fields. This study presents the application of fiber Bragg grating (FBG)-based sensing systems to precast concrete box railway bridges. A 20 m long full-scale precast concrete box railway girder was fabricated and tested in order to identify its static performance. The experimental program involved the measurement of the nonlinear static behavior until failure. Multiplexed FBG strain sensors were embedded along the length of steel rebar and a strain-induced wavelength shift was measured in order to monitor internal strains. The measured values from the FBG-based sensors are compared with the results using electric signal-based sensors. The results show that the FBG sensing system is promising and can improve the efficiency of structural monitoring for modern railway bridges.

  13. Concrete Fibrations

    OpenAIRE

    Pagnan, Ruggero

    2017-01-01

    As far as we know, no notion of concrete fibration is available. We provide one such notion in adherence to the foundational attitude that characterizes the adoption of the fibrational perspective in approaching fundamental subjects in category theory and discuss it in connection with the notion of concrete category and the notions of locally small and small fibrations. We also discuss the appropriateness of our notion of concrete fibration for fibrations of small maps, which is relevant to a...

  14. NANOMODIFIED CONCRETE

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available One of the main directions in construction material science is the development of  next generation concrete that is ultra-dense, high-strength, ultra-porous, high heat efficient, extra corrosion-resistant. Selection of such direction is caused by extreme operational impacts on the concrete, namely: continuously increasing load on the concrete and various dynamics of such loads; the necessity in operation of concrete products in a wide temperature range and their exposure to various chemical and physical effects.The next generation concrete represents high-tech concrete mixtures with additives that takes on and retain the required properties when hardening and being used under any operational conditions. A differential characteristic of the next generation concrete is its complexity that presumes usage of various mineral dispersed components, two- and three fractional fine and coarse aggregates, complex chemical additives, combinations of polymer and iron reinforcement.Design strength and performance properties level of the next generation concrete is achieved by high-quality selection of the composition, proper selection of manufacturing techniques, concrete curing, bringing the quality of concrete items to the required level of technical condition during the operational phase. However, directed formation of its structure is necessary in order to obtain high-tech concrete.Along with the traditional methods for regulation of the next generation concrete structure, modification of concrete while using silica nanoparticles is also considered as a perspective one because the concrete patterning occurs due to introduction of a binder in a mineral matrix. Due to this it is possible to obtain nano-modified materials with completely new properties.The main problem with the creation of nano-modified concrete is a uniform distribution of nano-materials in the volume of the cement matrix which is particularly important in the cases of adding a modifier in

  15. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  16. Impact of nighttime paving operations on asphalt roughness behavior.

    Science.gov (United States)

    2013-05-01

    The relationship between nighttime construction scheduling and future road quality in terms of roughness was investigated. Research was three-phased: interviews with local leaders in paving, on-site observations, and historical data analyses. Intervi...

  17. Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations

    Science.gov (United States)

    Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.

    2018-04-01

    Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.

  18. Performance of precast buildings during Emilia-Romagna earthquakes: a case study

    OpenAIRE

    Ercolino, Marianna; Magliulo, Gennaro; Manfredi, Gaetano

    2015-01-01

    On May 2012 two earthquakes occurred in Emilia-Romagna region (Italy) causing several damages to existing industrial precast structures. These damages were mainly due to inadequate connection systems and the main recorded failures were the loss of support of structural elements due to the sliding of friction connections. This paper aims at justifying some of these damages by investigating the response of a real industrial building, located in Mirandola (Modena, Italy) and seriously damaged af...

  19. Concrete domains

    OpenAIRE

    Kahn, G.; Plotkin, G.D.

    1993-01-01

    This paper introduces the theory of a particular kind of computation domains called concrete domains. The purpose of this theory is to find a satisfactory framework for the notions of coroutine computation and sequentiality of evaluation.

  20. Heterogeneous Photocatalysis Applied to Concrete Pavement for Air Remediation

    NARCIS (Netherlands)

    Brouwers, H.J.H.; Hunger, M.; Ballari, M.; Hüsken, G.; Bittnar, Z.; Bartos, P.J.M.; Nemecek, J.; Smilauer, V.; Zeman, J.

    2009-01-01

    In the present work the degradation of nitrogen oxides (NOx) by concrete paving stones containing TiO2 to be applied in road construction is studied. A kinetic model is proposed to describe the photocatalytic reaction of nitric oxide (NO) in a standard flow laminar photoreactor irradiated with UV

  1. NOx photocatalytic degradation employing concrete pavement containing titanium dioxide

    NARCIS (Netherlands)

    Ballari, M.M.; Hunger, Martin; Hüsken, Götz; Brouwers, Jos

    2010-01-01

    In the present work the degradation of nitrogen oxides (NOx) by concrete paving stones containing TiO2 to be applied in road construction is studied. A kinetic model is proposed to describe the photocatalytic reaction of NOx (combining the degradation of NO and the appearance and disappearance of

  2. Numerical Analysis of Heat Storage and Heat Conductivity in the Concrete Hollow Core Deck Element

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    extent these simplified models estimate the heat storage potential of precast hollow-core concrete decks correctly. This study investigates various approaches on how to model the heat transfer within the air void in the deck. Furthermore, it is analysed how different heat transfer models influence...... the overall heat transfer and heat storage in the hollow-core decks. The presented results allow comparison between detailed results from 2D-COMSOL simulations and simple 1D calculations from the whole building simulation tool such as BSim program and moreover, it is possible to validate the calculation...... method in BSim for the concrete deck element with air voids. Finally, this paper presents a comparison of the calculated heat conductivity of the hollow-core concrete deck and the measured heat conductivity for the same deck by using hot box apparatus....

  3. Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection

    Science.gov (United States)

    Han, Baoguo; Zhang, Kun; Burnham, Tom; Kwon, Eil; Yu, Xun

    2013-01-01

    In this paper, a self-sensing carbon nanotube (CNT) concrete pavement system for traffic detection is proposed and tested in a roadway. Pre-cast and cast-in-place self-sensing CNT concrete sensors were simultaneously integrated into a controlled pavement test section at the Minnesota Road Research Facility (MnROAD), USA. Road tests of the system were conducted by using an MnROAD five-axle semi-trailer tractor truck and a van, respectively, both in the winter and summer. Test results show that the proposed self-sensing pavement system can accurately detect the passing of different vehicles under different vehicular speeds and test environments. These findings indicate that the developed self-sensing CNT concrete pavement system can achieve real-time vehicle flow detection with a high detection rate and a low false-alarm rate.

  4. Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection

    International Nuclear Information System (INIS)

    Han, Baoguo; Zhang, Kun; Yu, Xun; Burnham, Tom; Kwon, Eil

    2013-01-01

    In this paper, a self-sensing carbon nanotube (CNT) concrete pavement system for traffic detection is proposed and tested in a roadway. Pre-cast and cast-in-place self-sensing CNT concrete sensors were simultaneously integrated into a controlled pavement test section at the Minnesota Road Research Facility (MnROAD), USA. Road tests of the system were conducted by using an MnROAD five-axle semi-trailer tractor truck and a van, respectively, both in the winter and summer. Test results show that the proposed self-sensing pavement system can accurately detect the passing of different vehicles under different vehicular speeds and test environments. These findings indicate that the developed self-sensing CNT concrete pavement system can achieve real-time vehicle flow detection with a high detection rate and a low false-alarm rate. (paper)

  5. Self-Placing Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Certain concrete pours have areas where the congestion of reinforcing bars make placement of concrete almost impossible. Using conventional placing and vibration techniques, the resulting concrete can have considerable honeycombing due to the development of voids. Self-placing concrete is a possible solution to the problem. Also known as self-compactable concrete, self-consolidating concrete, flowable concrete, and non-vibration concrete. These concretes eliminate the need for vibration in a ...

  6. Application of super workable concrete to main tower of cable-stayed prestressed concrete bridge. ; Kiba park grand bridge. PC shachokyo no shuto eno tekiyo. ; Kiba koen ohashi

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Y.; Shindo, T.; Sakamoto, A. (Taisei Corp., Tokyo (Japan))

    1993-08-01

    The Kiba Park Grand Bridge is a cable-stayed prestressed concrete (PC) bridge with a length of 186m. The main tower of this PC cable-stayed bridge consists of a pair of vertical columns with height of 60m and a beam connecting the columns. For the purpose of the advanced efficiency of construction without formwork and removal work and the improvement of durability, the precast buried formwork made of polymer impregnated concrete formwork was adopted. Approximate 650 cubic meter of super workable concrete was placed for the upper part ranging from 7th to 17th blocks of vertical columns and the beam. Blast furnace cement B and fly ash were used as binder. Naphthalenesulfonic acid type high performance water reducing agent and lignosulfonic acid type AE (air-entraining) water reducing agent were used as admixtures. Super workable concrete was mixed using forced double-axle mixers in the ready-mixed concrete plant. Satisfactory quality of the fresh concrete and strength of the hardened concrete were obtained. 2 refs., 11 figs., 3 tabs.

  7. Identification of Candidate Zero Maintenance Paving Materials. Volume 1

    Science.gov (United States)

    1977-05-01

    Con Azufre," Proceedings, Second Interna- tional Seminar on Concrete Technology, Inscituto de Ingenieria Civil de la Universidad Autonoma de Nuevo Leon...Seminar on Concrete Technology, ]nstituto de Ingenieria Civil de la Univarsidad Autonoma de Nuevo Leon, Monterrey, Mexico, Mcr 1975, pp 261-274. 49...Seminario Internacional Sobre Technologia del Concrete, Insti- tute de Ingenieria Civil de la Universidad Autononia de Nuevo Leon, Monterrey, N. L., Mexico

  8. Recycling of rubber tires in asphalt paving materials

    Energy Technology Data Exchange (ETDEWEB)

    Piggott, M.R.; Woodhams, R.T.

    1979-01-01

    It has been known that the addition of rubber to asphalt used in paving will produced markedly superior road surfaces. Partly because of cost and because of the nonconventional paving techniques necessary, rubber has been largely ignored as a practical paving additive except in special cases. However, the large accumulation of old tires existing today provides a ready source for suitable rubber. If ground into a fine powder, this rubber can be mixed in a conventional pug mill along with sand, stone and asphalt to produce a hot mix which can be aplied in the normal manner without any special techniques. The extra cost of such modification is only 1% of a typical paving contract, whereas the advantages include lower maintenance cost, more durable road surface, and elimination of unwanted waste tires. This report has been prepared to assist civic and other authorities in the development of improved road surfacing formulations through the reuse of old tires. It includes the results of paving trials in Toronto and laboratory evaluations. These tests show that the addition of powdered rubber to asphalt paving materials markedly improves the durability and crack resistance, particularly at low temperatures. Additives in the rubber impart good strength retention in the presence of moisture. The toughness increases with age due to a slow interaction of the rubber with the asphalt which is accompanied by an increase in viscosity. As a result, performance is also enhanced at high temperatures and helps to minimize pavement distortions due to hot weather and traffic. 16 refs., 18 figs., 2 tabs.

  9. FEM performance of concrete beams reinforced by carbon fiber bars

    Directory of Open Access Journals (Sweden)

    Hasan Hashim

    2018-01-01

    Full Text Available Concrete structures may be vulnerable to harsh environment, reinforcement with Fiber Reinforced Polymer (FRP bars have an increasing acceptance than normal steel. The nature of (FRP bar is (non-corrosive which is very beneficial for increased durability as well as the reinforcement of FRP bar has higher strength than steel bar. FRP usage are being specified more and more by public structural engineers and individual companies as main reinforcement and as strengthening of structures. Steel reinforcement as compared to (FRP reinforcement are decreasingly acceptable for structural concrete reinforcement including precast concrete, cast in place concrete, columns, beams and other components. Carbon Fiber Reinforcement Polymer (CFRP have a very high modulus of elasticity “high modulus” and very high tensile strength. In aerospace industry, CFRP with high modulus are popular among all FRPs because it has a high strength to weight ratio. In this research, a finite element models will be used to represent beams with Carbon Fiber Reinforcement and beams with steel reinforcement. The primary objective of the research is the evaluation of the effect of (CFR on beam reinforcement.

  10. Design method of high performance precast external walls for warm climate by multi-objective optimization analysis

    International Nuclear Information System (INIS)

    Baglivo, Cristina; Congedo, Paolo Maria

    2015-01-01

    Taking into account the global environmental problems, there is the urgent need to reduce energy consumption and the greenhouse gas emissions in the construction sector. Environmental awareness can be achieved through the extensive application of precast systems in buildings construction. A multi-criteria analysis has been used to obtain energy-efficient precast walls for Zero Energy Building in warm climate focusing on eco-friendly building materials. The modeFRONTIER optimization tool, with the use of computational procedures developed in Matlab, has been used to assess the thermal dynamics of building components. The optimization has been carried out in terms of steady thermal transmittance, periodic thermal transmittance, decrement factor, time shift, areal heat capacity, thermal admittance, surface mass, small thickness, eco sustainability score, light-weight and costs. The best sequences of layers show repetitive features: high surface mass for the first layer (internal side), followed by eco-friendly insulating materials for the middle layer and common insulating materials for the outer layer. The results illustrate that it is possible to obtain high performance precast multi-layered walls also with light and thin solutions; in particular, the superficial mass and the internal areal heat capacity have an important role to obtain the best performance in the warm climate. - Highlights: • Environmental awareness through the application of prefabrication systems. • The precast allows important benefits compared to traditional walls build in situ. • At the end of their useful life, the precast can be re-used. • Precast walls with very high efficiency for warm climates. • High internal areal heat capacity avoids events of overheating/cooling down.

  11. Portland cement hydration and early setting of cement stone intended for efficient paving materials

    Science.gov (United States)

    Grishina, A.

    2017-10-01

    Due to the growth of load on automotive roads, modern transportation engineering is in need of efficient paving materials. Runways and most advanced highways require Portland cement concretes. This makes important the studies directed to improvement of binders for such concretes. In the present work some peculiarities of the process of Portland cement hydration and early setting of cement stone with barium hydrosilicate sol were examined. It was found that the admixture of said sol leads to a shift in the induction period to later times without significant change in its duration. The admixture of a modifier with nanoscale barium hydrosilicates increases the degree of hydration of the cement clinker minerals and changes the phase composition of the hydration products; in particular, the content of portlandite and tricalcium silicate decreases, while the amount of ettringite increases. Changes in the hydration processes of Portland cement and early setting of cement stone that are caused by the nanoscale barium hydrosilicates, allow to forecast positive technological effects both at the stage of manufacturing and at the stage of operation. In particular, the formwork age can be reduced, turnover of molds can be increased, formation of secondary ettringite and corrosion of the first type can be eliminated.

  12. Concrete durability

    OpenAIRE

    Gaspar Tébar, Demetrio

    1991-01-01

    The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of rese...

  13. Historic Concrete : From Concrete Repair to Concrete Conservation

    NARCIS (Netherlands)

    Heinemann, H.A.

    2013-01-01

    Concrete like materials were already applied during the Roman Empire. After the decline of the Roman Empire, a wide scale application of concrete only reappeared in the 19th century. Here lies also the origin of modern (reinforced) concrete. Since then, both concrete application and composition have

  14. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete

    Science.gov (United States)

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use. PMID:22399929

  15. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete

    Directory of Open Access Journals (Sweden)

    Yaowen Yang

    2010-05-01

    Full Text Available During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  16. A reusable PZT transducer for monitoring initial hydration and structural health of concrete.

    Science.gov (United States)

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  17. Fuel Cell Electric Vehicles: Paving the Way to Commercial Success -

    Science.gov (United States)

    Continuum Magazine | NREL Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Powered by a fuel cell system with light-weight, high-pressure hydrogen tanks, an electric motor, a nickel -metal-hydride battery, and a power-control unit, the Toyota fuel cell electric vehicle has zero tailpipe

  18. Thermal response test data of five quadratic cross section precast pile heat exchangers.

    Science.gov (United States)

    Alberdi-Pagola, Maria

    2018-06-01

    This data article comprises records from five Thermal Response Tests (TRT) of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled "Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests" (Alberdi-Pagola et al., 2018) [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.

  19. Thermal response test data of five quadratic cross section precast pile heat exchangers

    Directory of Open Access Journals (Sweden)

    Maria Alberdi-Pagola

    2018-06-01

    Full Text Available This data article comprises records from five Thermal Response Tests (TRT of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled “Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests” (Alberdi-Pagola et al., 2018 [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.

  20. Steam Cured Self-Consolidating Concrete and the Effects of Limestone Filler

    Science.gov (United States)

    Aqel, Mohammad A.

    The purpose of this thesis is to determine the effect and the mechanisms associated with replacing 15% of the cement by limestone filler on the mechanical properties and durability performance of self-consolidating concrete designed and cured for precast/prestressed applications. This study investigates the role of limestone filler on the hydration kinetics, mechanical properties (12 hours to 300 days), microstructural and durability performance (rapid chloride permeability, linear shrinkage, sulfate resistance, freeze-thaw resistance and salt scaling resistance) of various self-consolidating concrete mix designs containing 5% silica fume and steam cured at a maximum holding temperature of 55°C. This research also examines the resistance to delayed ettringite formation when the concrete is steam cured at 70°C and 82°C and its secondary consequences on the freeze-thaw resistance. The effect of several experimental variables related to the concrete mix design and also the curing conditions are examined, namely: limestone filler fineness, limestone filler content, cement type, steam curing duration and steam curing temperature. In general, the results reveal that self-consolidating concrete containing 15% limestone filler, steam cured at 55°C, 70°C and 82°C, exhibited similar or superior mechanical and transport properties as well as long term durability performance compared to similar concrete without limestone filler. When the concrete is steam cured at 55°C, the chemical reactivity of limestone filler has an important role in enhancing the mechanical properties at 16 hours (compared to the concrete without limestone filler) and compensating for the dilution effect at 28 days. Although, at 300 days, the expansion of all concrete mixes are below 0.05%, the corresponding freeze-thaw durability factors vary widely and are controlled by the steam curing temperature and the chemical composition of the cement. Overall, the material properties indicate that the use

  1. Properties of concrete blocks prepared with low grade recycled aggregates.

    Science.gov (United States)

    Poon, Chi-Sun; Kou, Shi-cong; Wan, Hui-wen; Etxeberria, Miren

    2009-08-01

    Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste. In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 degrees C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks.

  2. Radiological impact of cement, concrete and admixtures in Spain

    International Nuclear Information System (INIS)

    Chinchon-Paya, S.; Piedecausa, B.; Hurtado, S.; Sanjuan, M.A.; Chinchon, S.

    2011-01-01

    It has been analyzed samples of portland cement (PC) with and without admixtures, samples of calcium aluminate cement (CAC) with different content of Al 2 O 3 and specimens of concrete made with PC and CAC using High Resolution Gamma Spectrometry. The activity concentration index (I) is much less than 0.5 mSv y -1 for all the concrete specimens according to the Radiation protection document 112 of the European Commission. The PC without admixtures (CEM I 52,5 R) and the PC with addition of limestone (CEM II/BL 32,5 N) also have an I value much lower than 0.5 and the PC with the addition of fly ash and blast furnace slag (CEM IV/B (V) 32,5 N and III/A 42.5 N/SR) have an I value close to 0.6. The I value of the CAC used in the manufacture of structural precast concrete is of the order of 1 mSv y -1 . Some of the CAC used in refractory concrete reaches a value close to 2 mSv y -1 . - Highlights: → The activity values (I) of spanish portland cement and admixtures studied are similar to those described by other authors. → For the first time in scientific publications we have shown results of several calcium aluminate cements (CAC). → CAC used in structural concrete has an approximate I value = 1 (similar to blast furnace slag and fly ash). → One type of CAC with Al 2 O 3 content of 51% used in refractory concretes has a value of I = 2.

  3. Assessment of precast beam-column using capacity demand response spectrum subject to design basis earthquake and maximum considered earthquake

    Science.gov (United States)

    Ghani, Kay Dora Abd.; Tukiar, Mohd Azuan; Hamid, Nor Hayati Abdul

    2017-08-01

    Malaysia is surrounded by the tectonic feature of the Sumatera area which consists of two seismically active inter-plate boundaries, namely the Indo-Australian and the Eurasian Plates on the west and the Philippine Plates on the east. Hence, Malaysia experiences tremors from far distant earthquake occurring in Banda Aceh, Nias Island, Padang and other parts of Sumatera Indonesia. In order to predict the safety of precast buildings in Malaysia under near field ground motion the response spectrum analysis could be used for dealing with future earthquake whose specific nature is unknown. This paper aimed to develop of capacity demand response spectrum subject to Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) in order to assess the performance of precast beam column joint. From the capacity-demand response spectrum analysis, it can be concluded that the precast beam-column joints would not survive when subjected to earthquake excitation with surface-wave magnitude, Mw, of more than 5.5 Scale Richter (Type 1 spectra). This means that the beam-column joint which was designed using the current code of practice (BS8110) would be severely damaged when subjected to high earthquake excitation. The capacity-demand response spectrum analysis also shows that the precast beam-column joints in the prototype studied would be severely damaged when subjected to Maximum Considered Earthquake (MCE) with PGA=0.22g having a surface-wave magnitude of more than 5.5 Scale Richter, or Type 1 spectra.

  4. Application of large-scaled pre-cast components for the construction of water intake for a nuclear power plant

    International Nuclear Information System (INIS)

    Topolnicki, M.

    1976-01-01

    Problem of the construction of water intake for a 4000 MW nuclear power plant located at the seashore is solved. The advantages of application of large-size pre-cast components are presented,. The constructional solutions and proposed technologies are described in detail. (A.S.)

  5. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  6. Concrete spirituality

    OpenAIRE

    Kritzinger, Johannes N.J.

    2014-01-01

    This article reflects on a number of liturgical innovations in the worship of Melodi ya Tshwane, an inner-city congregation of the Uniting Reformed Church in Southern Africa (URCSA). The focus of the innovations was to implement the understanding of justice in Article 4 of the Confession of Belhar, a confessional standard of the URCSA. The basic contention of the article is that well designed liturgies that facilitate experiences of beauty can nurture a concrete spirituality to mobilise urba...

  7. Proportioning of Lightweight Concrete by the Inclusions of Expanded Polystyrene Beads (EPS and Foam Agent

    Directory of Open Access Journals (Sweden)

    Eethar Thanon Dawood

    2016-10-01

    Full Text Available This paper illustrates the performance of lightweight concrete using various amounts of expanded polystyrene beads (EPS and different amounts of foam agent to produce lightweight concrete. The objective of this paper is to produce lightweight concrete with good workability and strength, by different mix proportion of foam agent (0.4, 0.6, 0.8, 1, 1.2 kg/m3 and varying water cement ratio (w/c depending on the flow. Besides, various proportions using different percentages of EPS in order of volume fractions are used. The flow range used in the study is 110-130%. Each mix proportion is tested for compressive strength, modulus of rupture, density and voids ratio. The results gives acceptable ranges of strength for lightweight concrete produced by the inclusions of EPS beads and foam concrete. Therefore, the lightweight concrete produced in this work can be used for structural applications like multistory building frames, floors, bridges and prestressed or precast elements. 

  8. Submicron particle monitoring of paving and related road construction operations.

    Science.gov (United States)

    Freund, Alice; Zuckerman, Norman; Baum, Lisa; Milek, Debra

    2012-01-01

    This study identified activities and sources that contribute to ultrafine and other submicron particle exposure that could trigger respiratory symptoms in highway repair workers. Submicron particle monitoring was conducted for paving, milling, and pothole repair operations in a major metropolitan area where several highway repair workers were identified as symptomatic for respiratory illness following exposures at the 2001 World Trade Center disaster site. Exposure assessments were conducted for eight trades involved in road construction using a TSI P-Trak portable condensation particle counter. Direct readings near the workers' breathing zones and observations of activities and potential sources were logged on 7 days on 27 workers using four different models of pavers and two types of millers. Average worker exposure levels ranged from 2 to 3 times background during paving and from 1 to 4 times background during milling. During asphalt paving, average personal exposures to submicron particulates were 25,000-60,000, 28,000-70,000, and 23,000-37,000 particles/ cm(3) for paver operators, screed operators, and rakers, respectively. Average personal exposures during milling were 19,000-111,000, 28,000-81,000, and 19,000 particles/cm(3) for the large miller operators, miller screed operators, and raker, respectively. Personal peak exposures were measured up to 467,000 and 455,000 particles/cm(3) in paving and milling, respectively. Several sources of submicron particles were identified. These included the diesel and electric fired screed heaters; engine exhaust from diesel powered construction vehicles passing by or idling; raking, dumping, and paving of asphalt; exhaust from the hotbox heater; pavement dust or fumes from milling operations, especially when the large miller started and stopped; and secondhand cigarette smoke. To reduce the potential for health effects in workers, over 40 recommendations were made to control exposures, including improved maintenance of

  9. Massive Niagara Falls power generation project uses unique concrete locking system

    Energy Technology Data Exchange (ETDEWEB)

    Polski, A. [Con Cast Pipe, Niagara Falls, ON (Canada)

    2006-09-15

    A 512 metre long accelerating wall and a 360 metre-long approach wall in the Niagara River are being built using a novel locking system to withstand the forces of nature. The walls have been designed to direct continuous flow to a new diversion tunnel below the City of Niagara Falls, Ontario. The walls are made of a single row of pre-cast concrete boxes that lock together in a special configuration to prevent movement from extreme load combinations in the Niagara River. The system was designed as part of a larger project to increase the power generating capabilities of the Sir Adam Beck 2 power generation station. Water channelled into the new tunnel will provide an estimated additional 1.6 terawatt-hours of renewable electricity annually and expand capacity at the station by about 15 per cent. The pre-cast reinforced concrete box design was chosen for the walls as it allowed fast and simple assembly of the structures. The basic structural system for each box is 4 vertical panels that form an open rectangular wall. The boxes are filled with clean rock fragments that are uniformly graded. Once the boxes are installed, cast-in-place concrete slabs will be poured to a depth of approximately 600 mm on top of the wall to cap the entire structure. The value of the design-build contract for the Niagara project is nearly $600 million out of an estimated $985 million budget. Commonly used for the design of culverts, the concrete box technology holds promise for applications including the stabilization of shorelines and the construction of small dams. 3 figs.

  10. Refractory concretes

    International Nuclear Information System (INIS)

    Holcombe, C.E. Jr.

    1979-01-01

    Novel concrete compositions comprise particles of aggregate material embedded in a cement matrix, said cement matrix produced by contacting an oxide selected from the group of Y 2 O 3 , La 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , Eu 2 O 3 and Gd 2 O 3 with an aqueous solution of a salt selected from the group of NH 4 HO 3 , NH 4 Cl, YCl 3 and Mg(NO 3 ) 2 to form a fluid mixture; and allowing the fluid mixture to harden

  11. Concrete construction engineering handbook

    CERN Document Server

    Nawy, Edward G

    2008-01-01

    Provides coverage of concrete construction engineering and technology. This work features discussions focusing on: the advances in engineered concrete materials; reinforced concrete construction; specialized construction techniques; and, design recommendations for high performance.

  12. Evaluation and Study the Effect of Additives and Other Factors on Tensile Strength of Asphalt Paving Mixtures

    Directory of Open Access Journals (Sweden)

    Hanaa Khaleel A. Al-Baiti

    2012-03-01

    Full Text Available The resistance of asphaltic concrete to cracking is dependent upon its tensile strength and flexibility characteristics. Also the low tensile strength has recognized as a major contributor to other performance problems. The fatigue life of mixtures decreases exponentially with decreasing of tensile strength. This trend is justified by the loss in stiffness and thereby initiating cracks and stripping. The main objective of this research is intended to study the effect of different variables related with the used materials and the external conditions on the tensile strength and predict a model of indirect tensile strength in asphalt concrete paving materials under the local prevailing conditions and investigate the effect of percent of additives of (Polyestrene resins and Hydrated Lime to enhance the resistance ability of asphalt concrete mixture against distresses. The main affected factors; soaking, asphalt content, compaction, aggregate maximum size and temperature, influence on the indirect tensile strength and presented through a statistics analysis model for tensile strength in asphalt mixture

  13. Recycled concrete aggregate in portland cement concrete.

    Science.gov (United States)

    2013-01-01

    Aggregates can be produced by crushing hydraulic cement concrete and are known as recycled concrete : aggregates (RCA). This report provides results from a New Jersey Department of Transportation study to identify : barriers to the use of RCA in new ...

  14. The Future Concrete: Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Liana Iureş

    2010-01-01

    Full Text Available The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  15. The Future Concrete: Self-Compacting Concrete

    OpenAIRE

    Iureş, Liana; Bob, Corneliu

    2010-01-01

    The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  16. Synthesis and Characterization of Functional Composite Carbon-Geopolymers for Precast Panel Application

    Directory of Open Access Journals (Sweden)

    Noor Afifah Kharisma

    2017-01-01

    Full Text Available The purpose of this study is to examine the influence of carbon (C particles as filler (aggregate in the production of geopolymers functional composite for possible precast panel application. Geopolymers was synthesized through alkali activation of metakaolin added with carbon particles relative to the mass of metakaolin. The mixture was cured at 70°C for 2 hours and the resulting composites were stored in open air for 28 days. The bulk density and the apparent porosity of the composites were measured by using Archimedes method. The thermal properties of the samples was examined by using thermal conductivity measurement and differential scanning calorimetry (DSC. The microstructure characterization of the samples were performed by using x-ray diffraction (XRD and Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS.

  17. Analytical modeling of post-tensioned precast beam-to-column connections

    International Nuclear Information System (INIS)

    Kaya, Mustafa; Arslan, A. Samet

    2009-01-01

    In this study, post-tensioned precast beam-to-column connections are tested experimentally at different stress levels, and are modelled analytically using 3D nonlinear finite element modelling method. ANSYS finite element software is used for this purposes. Nonlinear static analysis is used to determine the connection strength, behavior and stiffness when subjected to cyclic inelastic loads simulating ground excitation during an earthquake. The results obtained from the analytical studies are compared with the test results. In terms of stiffness, it was seen that the initial stiffness of the analytical models was lower than that of the tested specimens. As a result, modelling of these types of connection using 3D FEM can give crucial beforehand information, and overcome the disadvantages of time consuming workmanship and cost of experimental studies.

  18. Concrete decontamination and demolition methods

    International Nuclear Information System (INIS)

    LaGuardia, T.S.

    1980-01-01

    The US Department of Energy (DOE), Division of Environmental Control Technology, requested Nuclear Energy Services to prepare a handbook for the decontamination and decommissioning (D and D) of DOE-owned and commercially-owned radioactive facilities. the objective of the handbook is to provide the nuclear industry with guidance on the state-of-the-art methods and equipment available for decommissioning and to provide the means to estimate decommissioning costs and environmental impact. The methods available for concrete decontamination and demolition are summarized to provide an overview of some of the state-of-the-art techniques to be discussed at this workshop. The pertinent information on each method will include the selection factors such as the rate of performance in terms of concrete removal per unit time (cubic yards per day), manpower required by craft, unit cost (dollars per cubic yard) and the advantages and disadvantages. The methods included in this overview are those that have been routinely used in nuclear and nonnuclear applications or demonstrated in field tests. These methods include controlled blasting, wrecking ball or slab, backhoe mounted ram, flame torch, thermic lance, rock splitter, demolition compound, sawing, core stitch drilling, explosive cutting, paving breaker and power chisel, drill and spall, scarifying, water cannon and grinding

  19. Concrete durability

    Directory of Open Access Journals (Sweden)

    Gaspar Tébar, Demetrio

    1991-03-01

    Full Text Available The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of researchers and industries related with this material. Moreover, the new laboratory techniques are allowing to understand old problems and even to open again the discussion on reaction mechanisms which were believed to be completely understood. The article finalizes with a brief description of the numerous studies carried out at the Institute Eduardo Torroja on concrete durability, mainly those related with the resistance against gypsum attack (so abundant in our country land and against sea water attack.

    La realidad de que el hormigón no es un material eterno y es susceptible de sufrir ataques por agentes químicos, fue constatada desde el comienzo mismo de su uso industrial. En el presente trabajo el autor enumera los estudios realizados el siglo pasado y a comienzos del presente sobre la durabilidad del hormigón en agua de mar. En la actualidad y a pesar de los numerosos trabajos desarrollados desde entonces, el estudio de la durabilidad del hormigón sigue centrando la atención prioritaria y los recursos económicos de los investigadores e industrias relacionadas con este material. Además las nuevas técnicas de estudio están permitiendo comprender antiguos problemas e incluso reabrir la discusión sobre mecanismos de reacción que se creían completamente explicados. Finaliza el artículo con una descripción somera de los múltiples trabajos realizados en el Instituto Eduardo Torreja sobre la materia, en especial los estudios realizados sobre

  20. Prestressed concrete. Composite material perfectly utilizing the merits of steel and concrete; Puresutoresu concrete. Ko to concreteto no tokucho wo kanzen ni ikashita fukugo sozai

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, M. [Kyokuto Kogen Concrete Shinko Co. Ltd., Tokyo (Japan)

    1996-10-15

    Since the early stage of the development of the prestressed concrete (PC) manufacturing techniques, it has been said that forming a single PC structure by uniting precast segments with PC steel material into one is a construction method making the most of the feature of PC. This paper roughly describes the history of the development of PC and concrete examples of PC, centering on the construction techniques effectively utilizing the principle of PC and its materials. Especially, a PC bridge is superior to a steel bridge with respect to noise and vibration, so that the construction works of replacing railway steel bridges and railway elevated bridges by PC bridges have come to be seen in many places recently. In order to increase the span of a PC bridge, the reduction of the weight is a major factor. Therefore, an outer cable system has come to be used so as to reduce the thickness is cross section of the web of a PC beam as much as possible. The changes of the maximum span of cable stayed bridge are listed in a table in comparison of PC bridges with steel bridges. 29 refs., 9 figs., 1 tab.

  1. Concrete Memories

    DEFF Research Database (Denmark)

    Wiegand, Frauke Katharina

    2015-01-01

    This article traces the presence of Atlantikwall bunkers in amateur holiday snapshots and discusses the ambiguous role of the bunker site in visual cultural memory. Departing from my family’s private photo collection from twenty years of vacationing at the Danish West coast, the different mundane...... and poetic appropriations and inscriptions of the bunker site are depicted. Ranging between overlooked side presences and an overwhelming visibility, the concrete remains of fascist war architecture are involved in and motivate different sensuous experiences and mnemonic appropriations. The article meets...... the bunkers’ changing visuality and the cultural topography they both actively transform and are being transformed by through juxtaposing different acts and objects of memory over time and in different visual articulations....

  2. Experimental assessment of a three storey full-scale precast structure. SAFECAST Project: Work Package 4, Technical Report

    OpenAIRE

    NEGRO Paolo; BOURNAS DIONYSIOS; MOLINA RUIZ Francisco Javier; VIACCOZ Bernard; MAGONETTE Georges; CAPERAN Philippe

    2012-01-01

    In the framework of the SAFECAST Project, a full-scale three-storey precast building was subjected to a series of pseudodynamic (PsD) tests in the European Laboratory for Structural Assessment (ELSA) at the Joint Research Centre of the European Commission. The mock-up was constructed in such a way that four different structural configurations could be investigated experimentally. Therefore, the behaviour of various parameters like the types of mechanical connections (traditional as well as in...

  3. Road Edge of Pavement, EOP (Driveway_Paved, Driveway_Unpaved, Median, Parking_Paved, Parking_Unpaved, Roads_Paved, Roads_Unpaved): Part of 2005 Planimetry-Topography layers, Published in 2005, 1:1200 (1in=100ft) scale, Washington County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Road Edge of Pavement dataset current as of 2005. EOP (Driveway_Paved, Driveway_Unpaved, Median, Parking_Paved, Parking_Unpaved, Roads_Paved, Roads_Unpaved): Part of...

  4. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  5. Study on construction method of concrete in the underground research laboratory. 2

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Mikami, Tetsuji; Akiyoshi, Kenji; Uegaki, Yoshiaki

    2002-02-01

    The underground research laboratory, which will be constructed in Horonobe, plays a role of demonstration of construction technique upon nuclear waste repositories. Low alkalinity cement is one of candidates for repositories as a cementitious material in order to prevent alteration of bentonite and rock by hyper alkaline solution. JNC has developed a low alkalinity cement (HFSC) which contains a lot of fly ash, and has studied the physical and chemical properties by laboratory test. However workability which is required for construction procedure of repositories has not been studied enough yet. This study shows if requirements in actual construction, such as shotcreting, self-compacting, and, grouting, are fulfilled, and if the workability is preferable for tunneling construction. It is demonstrated that HFSC is applicable for shotcreting by testing in a modeled tunnel. It is pointed out that re-bars have a possibility of corrosion in low alkalinity cement. In-site test for saline water which may accelerate corrosion is started by setting specimen made in last year. Analyzing and assessing will be done next year. Construction method of tunnel lining is investigated in case of applying pre-cast segments. Self-compacting concrete is adopted, since added silica-fume needs superplasticizer and its workability is very flowable. Two piece of segment were made for the section which designed for a ordinary urban tunnel. It is noted that pre-casting concrete can be made by HFSC. Super fine cement powder for grouting which indicate low alkalinity can be selected by combination of grinned lime stone powder and silica fume with grinned ordinary Portland cement. The items to be improved toward using in Horonobe construction are pointed out by results of this study and summarized a study plan is described. Major problem to be solved is delaying compressive strength generation of HFSC. It is recognized in shotcrete and self-compacting concrete. Selecting types of fly ash and

  6. Impact strength and abrasion resistance of high strength concrete with rice husk ash and rubber tires

    Directory of Open Access Journals (Sweden)

    M. B. Barbosa

    Full Text Available The paper discusses the application of High Strength Concrete (HSC technology for concrete production with the incorporation of Rice Husk Ash (RHA residues by replacing a bulk of the material caking and rubber tires with partial aggregate volume, assessing their influence on the mechanical properties and durability. For concrete with RHA and rubber, it was possible to reduce the brittleness by increasing the energy absorbing capacity. With respect to abrasion, the RHA and rubber concretes showed lower mass loss than the concrete without residues, indicating that this material is attractive to be used in paving. It is thus hoped that these residues may represent a technological and ecological alternative for the production of concrete in construction works.

  7. The use of acoustic monitoring to manage concrete structures in the nuclear industry

    International Nuclear Information System (INIS)

    Paulson, P.O.; Tozser, O.; Wit, M. de

    2003-01-01

    Concrete and steel are widely used in containment vessels within the nuclear industry. Both are excellent acoustic transmitters. In many structures tensioned wire elements are used within containment structures. However, tensioned wire can be vulnerable to corrosion. To reduce the probability of corrosion sophisticated protection systems are used. To confirm that the design strength is available through time, extensive inspection and maintenance regimes are implemented. These regimes include tests to confirm the condition of the post-tensioning, and pressure tests (leak tests) to verify the performance of vessel. This paper presents an acoustic monitoring technology which uses widely distributed sensors to detect and locate wire failures using the energy released at failure. The technology has been used on a range of structures including post-tensioned concrete bridges, suspension bridges, buildings, pre-cast concrete cylinder pipelines (PCCP) and prestressed concrete containment vessels (PCCV), where it has increased confidence in structures and reduced maintenance costs. Where the level of ambient noise is low then SoundPrint acoustic monitoring can detect concrete cracking. This has been shown in PCCP pipelines, on laboratory test structures and also in nuclear structures. The programme has shown that distributed sensors can locate internal cracking well before there is any external evidence. Several projects have been completed on nuclear vessels. The first has been completed on an Electricite de France (EDF) concrete test pressure vessel at Civaux in France. The second at the Sandia PCCV Test Vessel in Albuquerque, New Mexico, USA, which involved the testing of a steel lined concrete vessel. The third was on a PCCV in Maryland, USA. Acoustic monitoring is also able to monitor the deterioration of post-tensioned concrete structures as a result of seismic activity. Summary details of a case history are presented. (author)

  8. Interfacial shear behavior of composite flanged concrete beams

    Directory of Open Access Journals (Sweden)

    Moataz Awry Mahmoud

    2014-08-01

    Full Text Available Composite concrete decks are commonly used in the construction of highway bridges due to their rapid constructability. The interfacial shear transfer between the top slab and the supporting beams is of great significance to the overall deck load carrying capacity and performance. Interfacial shear capacity is directly influenced by the distribution and the percentage of shear connectors. Research and design guidelines suggest the use of two different approaches to quantify the required interfacial shear strength, namely based on the maximum compressive forces in the flange at mid span or the maximum shear flow at the supports. This paper investigates the performance of flanged reinforced concrete composite beams with different shear connector’s distribution and reinforcing ratios. The study incorporated both experimental and analytical programs for beams. Key experimental findings suggest that concentrating the connectors at the vicinity of the supports enhances the ductility of the beam. The paper proposes a simple and straight forward approach to estimate the interfacial shear capacity that was proven to give good correlation with the experimental results and selected code provisions. The paper presents a method to predict the horizontal shear force between precast beams and cast in-situ slabs.

  9. Specifications and Construction Methods for Asphalt Concrete and Other Plant-Mix Types, 3rd Edition.

    Science.gov (United States)

    Asphalt Inst., College Park, MD.

    The purpose of this publication is to assist engineers in the analysis, design and control of paving projects that use asphalt concrete and other asphalt plant-mixes. The scope of this new third edition has been enlarged, and changes necessitated by advances in asphalt technology have been incorporated. Chapters I and II and Appendices A and B…

  10. Experimental concrete coating application on the median barrier of I 65 in Louisville.

    Science.gov (United States)

    2008-06-01

    The objectives of this research were to evaluate the experimental protective coating that was applied to approximately 1,200 linear feet of concrete median barrier along the paving project on a section of I 65 between mile points 131.289 and 136.421 ...

  11. Evaluation of fly ash concrete durability containing class II durability aggregates.

    Science.gov (United States)

    1986-07-01

    Fly ash was used in this evaluation study to replace 15% of the cement in : Class C-3 concrete paving mixes. One Class "c" ash from Iowa approved : sources was examined in each mix. Substitution rate was based on 1 to 1 : basis, for each pound of cem...

  12. Cast-concrete products made with FBC ash and wet-collected coal-ash

    Energy Technology Data Exchange (ETDEWEB)

    Naik, T.R.; Kraus, R.N.; Chun, Y.M.; Botha, F.D. [University of Wisconsin, Milwaukee, WI (United States)

    2005-12-01

    Cast-concrete hollow blocks, solid blocks, and paving stones were produced at a manufacturing plant by replacing up to 45% (by mass) of portland cement with fluidized bed combustion (FBC) coal ash and up to 9% of natural aggregates with wet-collected, low-lime, coarse coal-ash (WA). Cast-concrete product specimens of all three types exceeded the compressive strength requirements of ASTM from early ages, with the exception of one paving-stone mixture, which fell short of the requirement by less than 10%. The cast-concrete products made by replacing up to 40% of cement with FBC ash were equivalent in strength (89-113% of control) to the products without ash. The abrasion resistance of paving stones was equivalent for up to 34% FBC ash content. Partial replacement of aggregates with WA decreased strength of the products. The resistance of hollow blocks and paving stones to freezing and thawing decreased appreciably with increasing ash contents. The cast-concrete products could be used indoors in regions where freezing and thawing is a concern, and outdoors in a moderate climate.

  13. Effect of High-Temperature Curing Methods on the Compressive Strength Development of Concrete Containing High Volumes of Ground Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Wonsuk Jung

    2017-01-01

    Full Text Available This paper investigates the effect of the high-temperature curing methods on the compressive strength of concrete containing high volumes of ground granulated blast-furnace slag (GGBS. GGBS was used to replace Portland cement at a replacement ratio of 60% by binder mass. The high-temperature curing parameters used in this study were the delay period, temperature rise, peak temperature (PT, peak period, and temperature down. Test results demonstrate that the compressive strength of the samples with PTs of 65°C and 75°C was about 88% higher than that of the samples with a PT of 55°C after 1 day. According to this investigation, there might be optimum high-temperature curing conditions for preparing a concrete containing high volumes of GGBS, and incorporating GGBS into precast concrete mixes can be a very effective tool in increasing the applicability of this by-product.

  14. Parallel paving: An algorithm for generating distributed, adaptive, all-quadrilateral meshes on parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Lober, R.R.; Tautges, T.J.; Vaughan, C.T.

    1997-03-01

    Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.

  15. Experimental study of reinforced concrete pile caps with external, embedded and partially embedded socket with smooth interface

    Directory of Open Access Journals (Sweden)

    R. Barros

    Full Text Available On Precast concrete structures the column foundation connections can occur through the socket foundation, which can be embedded, partially embedded or external, with socket walls over the pile caps. This paper presents an experimental study about two pile caps reinforced concrete with external, partially embedded and embedded socket submitted to central load, using 1:2 scaled models. In the analyzed models, the smooth interface between the socket walls and column was considered. The results are compared to a reference model that presents monolithic connections between the column and pile cap. It is observed that the ultimate load of pile cap with external sockets has the same magnitude as the reference pile cap, but the ultimate load of models with partially embedded and embedded socket present less magnitude than the reference model.

  16. Fibre Concrete 2017

    Science.gov (United States)

    2017-09-01

    9th international conference on fibre reinforced concretes (FRC), textile reinforced concretes (TRC) and ultra-high performance concretes (UHPC) Preface The Fibre Concrete Conference series is held biennially to provide a platform to share knowledge on fibre reinforced concretes, textile concretes and ultra-high performance concretes regarding material properties and behaviour, technology procedures, topics of long-term behaviour, creep, durability; sustainable aspects of concrete including utilisation of waste materials in concrete production and recycling of concrete. The tradition of Fibre Concrete Conferences started in eighties of the last century. Nowadays the conference is organized by the Department of Concrete and Masonry Structures of the Czech Technical University in Prague, Faculty of Civil Engineering. The 9th International Conference Fibre Concrete 2017 had 109 participants from 27 countries all over the world. 55 papers were presented including keynote lectures of Professor Bažant, Professor Bartoš and Dr. Broukalová. The conference program covered wide range of topics from scientific research to practical applications. The presented contributions related to performance and behaviour of cement based composites, their long-term behaviour and durability, sustainable aspects, advanced analyses of structures from these composites and successful applications. This conference was organized also to honour Professor Zděnek P. Bažant on the occasion of his jubilee and to appreciate his merits and discoveries in the field of fibre reinforced composites, structural mechanics and engineering.

  17. Investigation of load transfer efficiency in jointed plain concrete pavements (JPCP using FEM

    Directory of Open Access Journals (Sweden)

    Vahid Sadeghi

    2018-05-01

    Full Text Available Owing to heavy traffic loads, rigid pavements encounter various types of failures at transverse joints during their lifetime. Three-dimensional finite-element method (3D-FEM was used to assess the structural response of jointed concrete pavement under moving tandem axle loads. In this study, 3D FEM was verified using an existing numerical model and field measurement of the concrete slab traversed by a moving truck. This paper also investigated the effects of multiple parameters: material properties, slab geometry, load magnitude and frictional status of the slab and base layer on load transfer efficiency (LTE of the transverse joints. Further study has been done to investigate the slab performance without the dowel bars which occurs when parts of the pavement needed to be repaired using precast slabs. The aggregate interlock between the new slab and the existing slab is simulated by frictional interface. In 3D FEM model, the load transfer efficiency has been improved by increasing the elasticity modules of the concrete slab and the base layer or increasing the slab thickness. This can decrease the joints' deflections, reduces the damages on pavement joints. Removing dowel bars adversely affected the load transfer. Keywords: Concrete pavement, Load transfer, Finite-element method, Dowel bar, Structural behavior

  18. Experimental Study on Thermal Conductivity of Self-Compacting Concrete with Recycled Aggregate

    Directory of Open Access Journals (Sweden)

    María Fenollera

    2015-07-01

    Full Text Available The research focuses on the use of recycled aggregate (RA, from waste pieces generated during production in precast plants for self-compacting concrete (SCC manufactured with a double sustainable goal: recycle manufacturing waste (consumption and improvement of the thermal properties of the manufactured product (energy efficiency. For this purpose, a mechanical study to ensure technical feasibility of the concrete obtained has been conducted, as well as a thermal analysis of recycled SCC specimens of 50 N/mm2 resistance, with different RA doses (0%, 20%, 50% and 100%. The main parameters that characterize a SCC in both states, fresh (slump-flow and hard (compressive strength, have been tested; also, a qualitative analysis of the thermal conductivity using infrared thermography (IRT and quantitative analysis with heat flow meter at three temperatures 20 °C, 25 °C and 30 °C have been performed. The results suggest the existence of two different thermal behaviors: concretes with 0% and 20% of RA, and on the other hand concretes with 50% and 100% of RA. It has also demonstrated the validity of the IRT as sampling technique in estimating the thermal behavior of materials having reduced range of variation in parameters.

  19. Experimental Study on Thermal Conductivity of Self-Compacting Concrete with Recycled Aggregate

    Science.gov (United States)

    Fenollera, María; Míguez, José Luis; Goicoechea, Itziar; Lorenzo, Jaime

    2015-01-01

    The research focuses on the use of recycled aggregate (RA), from waste pieces generated during production in precast plants for self-compacting concrete (SCC) manufactured with a double sustainable goal: recycle manufacturing waste (consumption) and improvement of the thermal properties of the manufactured product (energy efficiency). For this purpose, a mechanical study to ensure technical feasibility of the concrete obtained has been conducted, as well as a thermal analysis of recycled SCC specimens of 50 N/mm2 resistance, with different RA doses (0%, 20%, 50% and 100%). The main parameters that characterize a SCC in both states, fresh (slump-flow) and hard (compressive strength), have been tested; also, a qualitative analysis of the thermal conductivity using infrared thermography (IRT) and quantitative analysis with heat flow meter at three temperatures 20 °C, 25 °C and 30 °C have been performed. The results suggest the existence of two different thermal behaviors: concretes with 0% and 20% of RA, and on the other hand concretes with 50% and 100% of RA. It has also demonstrated the validity of the IRT as sampling technique in estimating the thermal behavior of materials having reduced range of variation in parameters. PMID:28793449

  20. Experimental Study on Thermal Conductivity of Self-Compacting Concrete with Recycled Aggregate.

    Science.gov (United States)

    Fenollera, María; Míguez, José Luis; Goicoechea, Itziar; Lorenzo, Jaime

    2015-07-20

    The research focuses on the use of recycled aggregate (RA), from waste pieces generated during production in precast plants for self-compacting concrete (SCC) manufactured with a double sustainable goal: recycle manufacturing waste (consumption) and improvement of the thermal properties of the manufactured product (energy efficiency). For this purpose, a mechanical study to ensure technical feasibility of the concrete obtained has been conducted, as well as a thermal analysis of recycled SCC specimens of 50 N/mm² resistance, with different RA doses (0%, 20%, 50% and 100%). The main parameters that characterize a SCC in both states, fresh (slump-flow) and hard (compressive strength), have been tested; also, a qualitative analysis of the thermal conductivity using infrared thermography (IRT) and quantitative analysis with heat flow meter at three temperatures 20 °C, 25 °C and 30 °C have been performed. The results suggest the existence of two different thermal behaviors: concretes with 0% and 20% of RA, and on the other hand concretes with 50% and 100% of RA. It has also demonstrated the validity of the IRT as sampling technique in estimating the thermal behavior of materials having reduced range of variation in parameters.

  1. Workability of glass reinforced concrete (GRC) with granite and silica sand aggregates

    Science.gov (United States)

    Moceikis, R.; Kičaitė, A.; Keturakis, E.

    2017-10-01

    Glass fiber reinforced concrete (GRC) opens the door for lightweight and complex shaped innovative construction, adding architectural value to buildings. With panel thickness down to 15 mm, considerable amount of total loads and materials per square meter of facade can be saved, if compared to conventionally used 80 mm thickness outer layer in insulated precast concrete wall elements. Even though GRC is used for over 50 years in such countries as Great Britain, USA and Japan, there are very few examples and little research done in Eastern Europe with this building material. European Commission propagates sustainable design as commitment to energy efficiency, environmental stewardship and conservation. For this reason, GRC plays important role in mowing toward these goals. In this paper, GRC premix recipes including fine granite and silica sands, reinforced with 13mm length alkali resistant glass fibers are investigated. Two CEM I 52,5R cements with different particle sizes were used and severe water dissociation noticed in one of concrete mixes. Cement particle size distribution determined with laser diffraction particle analyser Cilas 1090LD. To determine modulus of rupture (M.O.R.) and limit of proportionality (L.O.P), plates thickness 15 and 20 mm were produced and tested for flexural resistance according to 4-point bending scheme. Concrete workability tests were made according EN 1170-1.

  2. Long-Term Bending Creep Behavior of Thin-Walled CFRP Tendon Pretensioned Spun Concrete Poles

    Directory of Open Access Journals (Sweden)

    Giovanni P. Terrasi

    2014-07-01

    Full Text Available This paper discusses the long-term behavior of a series of highly-loaded, spun concrete pole specimens prestressed with carbon fiber-reinforced polymer (CFRP tendons, which were subjected to outdoor four-point bending creep tests since 1996 in the frame of collaboration with the Swiss precast concrete producer, SACAC (Società Anonima Cementi Armati Centrifugati. The 2 m span cylindrical beams studied are models for lighting poles produced for the last 10 years and sold on the European market. Five thin-walled pole specimens were investigated (diameter: 100 mm; wall-thickness: 25–27 mm. All specimens were produced in a pretensioning and spinning technique and were prestressed by pultruded CFRP tendons. Initially, two reference pole specimens were tested in quasi-static four-point bending to determine the short-term failure moment and to model the short-term flexural behavior. Then, three pole specimens were loaded to different bending creep moments: while the lowest loaded specimen was initially uncracked, the second specimen was loaded with 50% of the short-term bending failure moment and exhibited cracking immediately after load introduction. The highest loaded pole specimen sustained a bending moment of 72% of the short-term bending failure moment for 16.5 years before failing in July 2013, due to the bond failure of the tendons, which led to local crushing of the high-performance spun concrete (HPSC. Besides this, long-term monitoring of the creep tests has shown a limited time- and temperature-dependent increase of the deflections over the years, mainly due to the creep of the concrete. A concrete creep-based model allowed for the calculation of the long-term bending curvatures with reasonable accuracy. Furthermore, the pole specimens showed crack patterns that were stable over time and minimal slippage of the tendons with respect to the pole’s end-faces for the two lower load levels. The latter proves the successful and durable

  3. Concrete pavement joint deterioration.

    Science.gov (United States)

    2015-12-01

    Concrete pavements are an important part of our national infrastructure. In recent years the relatively small number of reported joints deteriorating prematurely in concrete pavements around Indiana has increased. Changes over the past 45 years in IN...

  4. Concrete aggregate durability study.

    Science.gov (United States)

    2009-06-01

    There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...

  5. Method to obtain g-functions for multiple precast quadratic pile heat exchangers

    DEFF Research Database (Denmark)

    Pagola, Maria Alberdi; Jensen, Rasmus Lund; Madsen, Søren

    The average fluid temperature circulating through the ground loop is one of the main parameters required when choosing the most adequate heat pump for a ground source heat pump installation. Besides, the analysis of the fluid temperature over time will show the sustainability of the energy supply...... over the lifetime of the installation. The average fluid temperature is subjected to the type of ground heat exchangers and the thermal interactions between them, which also depend on the soil thermal properties. For the case of precast piles, the thermal interactions become significant...... as they are usually placed within short distances (0.5 to 4 metres). Fast models that can account for these interactions are required to enable feasibility studies and support the design phase. Besides, since pile heat exchangers have a main structural role, it is also relevant to develop models that can determine...... the temperature changes that the foundation might be subjected to, to assess thermo-mechanical implications. 3D finite element model (FEM) computation of the thermal behaviour of multiple pile heat exchanger foundations is not cost effective nor for feasibility studies, nor for most design applications. Therefore...

  6. Semi-Active Control of Precast RC Columns under Seismic Action

    Science.gov (United States)

    Caterino, Nicola; Spizzuoco, Mariacristina

    2017-10-01

    This work is inspired by the idea of dissipating seismic energy at the base of prefabricated RC columns via semi-active (SA) variable dampers exploiting the base rocking. It was performed a wide numerical campaign to investigate the seismic behaviour of a pre-cast RC column with a variable base restraint. The latter is based on the combined use of a hinge, elastic springs, and magnetorheological (MR) dampers remotely controlled according to the instantaneous response of the structural component. The MR devices are driven by a SA control algorithm purposely written to modulate the dissipative capability so as to reduce base bending moment without causing excessive displacement at the top. The proposed strategy results to be really promising, since the base restraint relaxation, that favours the base moment demand reduction, is accompanied by a high enhancement of the dissipated energy due to rocking that can be even able to reduce top displacement in respect to the “fixed base rotation” conditions.

  7. Sustainability assessment and physical characterization of pervious concrete pavement made with GGBS

    Directory of Open Access Journals (Sweden)

    El-Hassan Hilal

    2017-01-01

    Full Text Available The increasing use of pervious concrete as sustainable and environment-friendly paving materials is primarily owed to its ability to reduce pavement runoff. The mechanical and transport properties of pervious concrete with 50% ground-granulated blast furnace slag (GGBS replacement are examined in this paper. Open-graded 10 mm and 20 mm aggregates were used to attain porosity of 10%, 15%, and 20%. Polypropylene short cut fibers were added to the mix. The clogging potential of pervious concrete exposed to dust was also investigated. The results indicated that increasing the porosity led to a decrease in compressive and tensile strength. Similar findings were reported when smaller aggregates were used. The fiber addition was only effective in low-porosity concrete. Permeability, characterized by its coefficient k, was proportional to porosity and inversely proportional to aggregate size. After 40-year simulated dust exposure, the concrete permeability could be restored with water flushing maintenance process. In comparison to ordinary Portland cement (OPC concrete, pervious concrete incorporating GGBS is a more sustainable paving solution, offering a reduction in heat island effect and electricity consumption while also alleviating carbon emissions.

  8. Lunar concrete for construction

    Science.gov (United States)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  9. Reuse of steel slag in bituminous paving mixtures.

    Science.gov (United States)

    Sorlini, Sabrina; Sanzeni, Alex; Rondi, Luca

    2012-03-30

    This paper presents a comprehensive study to evaluate the mechanical properties and environmental suitability of electric arc furnace (EAF) steel slag in bituminous paving mixtures. A variety of tests were executed on samples of EAF slag to characterize the physical, geometrical, mechanical and chemical properties as required by UNI EN specifications, focusing additionally on the volumetric expansion associated with hydration of free CaO and MgO. Five bituminous mixtures of aggregates for flexible road pavement were designed containing up to 40% of EAF slag and were tested to determine Marshall stability and indirect tensile strength. The leaching behaviour of slag samples and bituminous mixtures was evaluated according to the UNI EN leaching test. The tested slag showed satisfactory physical and mechanical properties and a release of pollutants generally below the limits set by the Italian code. Tests on volume stability of fresh materials confirmed that a period of 2-3 months is necessary to reduce effects of oxides hydration. The results of tests performed on bituminous mixtures with EAF slag were comparable with the performance of mixtures containing natural aggregates and the leaching tests provided satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Automatic control system for uniformly paving iron ore pellets

    Science.gov (United States)

    Wang, Bowen; Qian, Xiaolong

    2014-05-01

    In iron and steelmaking industry, iron ore pellet qualities are crucial to end-product properties, manufacturing costs and waste emissions. Uniform pellet pavements on the grate machine are a fundamental prerequisite to ensure even heat-transfer and pellet induration successively influences performance of the following metallurgical processes. This article presents an automatic control system for uniformly paving green pellets on the grate, via a mechanism mainly constituted of a mechanical linkage, a swinging belt, a conveyance belt and a grate. Mechanism analysis illustrates that uniform pellet pavements demand the frontend of the swinging belt oscillate at a constant angular velocity. Subsequently, kinetic models are formulated to relate oscillatory movements of the swinging belt's frontend to rotations of a crank link driven by a motor. On basis of kinetic analysis of the pellet feeding mechanism, a cubic B-spline model is built for numerically computing discrete frequencies to be modulated during a motor rotation. Subsequently, the pellet feeding control system is presented in terms of compositional hardware and software components, and their functional relationships. Finally, pellet feeding experiments are carried out to demonstrate that the control system is effective, reliable and superior to conventional methods.

  11. Impact of Modificated Asphalt Mixtures on Paving Functioning and Environment

    Directory of Open Access Journals (Sweden)

    Gediminas Gribulis

    2016-10-01

    Full Text Available Atmospheric pollution began to increase in the beginning of 19th century, when the global economy and industrial development started the signal grow. The current problem of global warming is partly related with emission of carbon dioxide (CO2 to environment, which one of the sources are industrial production companies. Warm asphalt mix is usually used in the practice of Lithuania and the world for equipment of road paving. These mixes are produced in specialized asphalt mixers where stone dosing, drying and its mixing with bituminous binders are performed. The temperature of produced hot asphalt mix in mixer reach 150–180 °C and 120–160 °C of mixture laying on the road. Various pollutants, carbon dioxide, formaldehydes, and other are spread to the environment. The carried out researches in Lithuania and the world have showed that while using special additives it is possible to reduce the temperatures of warm asphalt production and laying on the road. Such reduction of temperature helps not to worsen the quality of asphalt layer, to lower the emission of pollutants to environment, to improve the conditions of road workers and to economically use the gas for production of asphalt mixes. Production technologies of different asphalt mixes, their advantages and disadvantages, and results of laboratory tests are analyzed in this article. Equipment samples of experimental road sections, using the warm mixing asphalt mixtures are given.

  12. Determination of the apparent porosity level of refractory concrete during a sintering process using an ultrasonic pulse velocity technique and image analysis

    Directory of Open Access Journals (Sweden)

    LJUBICA M. PAVLOVIĆ

    2010-03-01

    Full Text Available Concrete which undergoes a thermal treatment before (pre-casted concrete blocks and during (concrete embedded in-situ its life-service can be applied in plants operating at high temperature and as thermal insulation. Sintering is a process which occurs within a concrete structure in such conditions. Progression of sintering process can be monitored by the change of the porosity parameters determined with a nondestructive test method - ultrasonic pulse velocity and computer program for image analysis. The experiment has been performed on the samples of corundum and bauxite concrete composites. The apparent porosity of the samples thermally treated at 110, 800, 1000, 1300 and 1500 C was primary investigated with a standard laboratory procedure. Sintering parameters were calculated from the creep testing. The loss of strength and material degradation occurred in concrete when it was subjected to the increased temperature and a compressive load. Mechanical properties indicate and monitor changes within microstructure. The level of surface deterioration after the thermal treatment was determined using Image Pro Plus program. Mechanical strength was estimated using ultrasonic pulse velocity testing. Nondestructive ultrasonic mea¬surement was used as a qualitative description of the porosity change in specimens which is the result of the sintering process. The ultrasonic pulse velocity technique and image analysis proved to be reliable methods for monitoring of micro-structural change during the thermal treatment and service life of refractory concrete.

  13. Reinforced sulphur concrete

    NARCIS (Netherlands)

    2014-01-01

    Reinforced sulphur concrete wherein one or more metal reinforcing members are in contact with sulphur concrete is disclosed. The reinforced sulphur concrete comprises an adhesion promoter that enhances the interaction between the sulphur and the one or more metal reinforcing members.

  14. Deterioration of Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Chloride ingress is a common cause of deterioration of reinforced concrete bridges. Concrete may be exposed to chloride by seawater or de-icing salts. The chloride initiates corrosion of the reinforcement, which through expansion disrupts the concrete. In addition, the corrosion reduces the cross...

  15. concrete5 for developers

    CERN Document Server

    Uzayr, Sufyan bin

    2014-01-01

    Whether you have had some previous experience with concrete5 or are entirely new to it, this book will help you understand all that you need to know in order to get started with concrete5 development. A background in PHP is required; some knowledge of HTML/CSS is needed in order to fully grasp the concepts underlying concrete5 theme development.

  16. Optimization process for thin-walled high performance concrete sandwich panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2014-01-01

    with the specifications of the design constrains and variables. The tool integrates the processes of HPCSP design, quantity take-off and cost estimation into a single system that would provide different costs for different HPCSP designs. The proposed multi-objective optimisation scheme results into derivation of basic......A Nearly zero energy buildings are to become a requirement as part of the European energy policy. There are many ways of designing nearly zero energy buildings, but there is a lack of knowledge on optimization processes in the sense of structurally and thermally efficient design with an optimal...... economical solution. The present paper aims to provide multi-objective optimisation procedure addressed to structural precast thin-walled High Performance Concrete Sandwich Panels (HPCSP). The research aim is concerned with developing a tool that considers the cost of HPCSP materials along...

  17. Influence of Basalt FRP Mesh Reinforcement on High-Performance Concrete Thin Plates at High Temperatures

    DEFF Research Database (Denmark)

    Hulin, Thomas; Lauridsen, Dan H.; Hodicky, Kamil

    2015-01-01

    A basalt fiber–reinforced polymer (BFRP) mesh was introduced as reinforcement in high-performance concrete (HPC) thin plates (20–30 mm) for implementation in precast sandwich panels. An experimental program studied the BFRP mesh influence on HPC exposed to high temperature. A set of standard...... furnace tests compared performances of HPC with and without BFRP mesh, assessing material behavior; another set including polypropylene (PP) fibers to avoid spalling compared the performance of BFRP mesh reinforcement to that of regular steel reinforcement, assessing mechanical properties......, requiring the use of steel. Microscope observations highlighted degradation of the HPC-BFRP mesh interface with temperature due to the melting polymer matrix of the mesh. These observations call for caution when using fiber-reinforced polymer (FRP) reinforcement in elements exposed to fire hazard....

  18. Paving the way : road-building wave good as gold

    International Nuclear Information System (INIS)

    Lorenz, A.

    2001-01-01

    reduce transport costs for traded goods. It was also noted that with concerns regarding the price of oil, there is potential for concrete being a real competitor. While asphalts are easy to repair, concrete is more durable. In the future, North American projects will give consideration to concrete to include long-term life-cycle costs of construction materials. 3 figs

  19. Modified pavement cement concrete

    Science.gov (United States)

    Botsman, L. N.; Ageeva, M. S.; Botsman, A. N.; Shapovalov, S. M.

    2018-03-01

    The paper suggests design principles of pavement cement concrete, which covers optimization of compositions and structures at the stage of mixture components selection due to the use of plasticizing agents and air-retaining substances that increase the viability of a concrete mixture. It also demonstrates advisability of using plasticizing agents together with air-retaining substances when developing pavement concrete compositions, which provides for the improvement of physical and mechanical properties of concrete and the reduction of cement binding agent consumption thus preserving strength indicators. The paper shows dependences of the main physical-mechanical parameters of concrete on cement consumption, a type and amount of additives.

  20. Material properties characterization - concrete

    International Nuclear Information System (INIS)

    England, G.L.; MacLeod, J.S.

    1978-01-01

    A review is presented of the six contributions in the SMiRT 4 conference to Session H5 on structural analysis of prestressed concrete reactor pressure vessels. These relate to short term stress-strain aspects of concrete loaded beyond the linear range in uniaxial and biaxial stress fields, to some time and temperature dependent properties of concrete at working stress levels, and to a programme of strain-gauge testing for the assessment of concrete properties. From the information discussed, it is clear that there are difficulties in determining material properties for concrete, and these are summarised. (UK)

  1. Balanced improvement of high performance concrete material properties with modified graphite nanomaterials

    Science.gov (United States)

    Peyvandi, Amirpasha

    of exposure to chloride solutions, pointing at the benefits of nanoplatelets towards enhancement of concrete resistance to chloride ion diffusion. It was also found that the intensity of Thaumasite, a key species marking sulfate attack on cement hydrates, was lowered with the addition of graphite nanoplatelets in concrete exposed to sulfate solutions. Experimental evaluations were conducted on scaled-up production of concrete nanocomposite in precast concrete plants. Full-scale reinforced concrete pipes and beams were produced using concrete nanocomposites. Durability and structural tests indicated that the use of graphite nanoplatelets, alone or in combination with synthetic (PVA) fibers, produced significant gains in the durability characteristics, and also benefited the structural performance of precast reinforced concrete products. The material and scaled-up structural investigations conducted in the project concluded that lower-cost graphite nanomaterials (e.g., graphite nanoplatelets) offer significant potentials as multi-functional additives capable of enhancing the barrier, durability and mechanical performance of concrete materials. The benefits of graphite nanomaterials tend to be more pronounced in higher-performance concrete materials.

  2. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  3. Density of asphalt paving mixtures: Measurements, variations, and influencing factors

    International Nuclear Information System (INIS)

    Solaimanian, M.

    1990-01-01

    The first part describes the results of a research study to determine the effectiveness of the Troxler Model 4640 Thin Lift Nuclear Density Gauge. The densities obtained from cores and the nuclear density gauge from seven construction projects were compared. A linear regression technique was used to investigate how well the core densities could be predicted from nuclear densities. Correlation coefficients were determined to indicate the degree of correlation between the core and nuclear densities. Using a statistical analysis technique, the range of differences between core and nuclear measurements was established for specified confidence levels for each project. Analysis of the data indicated that the accuracy of this gauge is highly material dependent. While acceptable results were obtained with limestone mixtures, the gauge did not perform satisfactorily with mixtures containing siliceous aggregate. The data presented in this paper indicate that the gauge could be used as a quality control tool provided that a calibration is developed for each project. The maximum theoretical specific gravities of asphalt-aggregate paving mixtures obtained from different methods were compared. The study included experimental work and analysis of the resulting data. The agreement between results obtained from the Texas C-14 method and the Rice method were excellent. Results obtained by backcalculating theoretical maximum densities from a single Rice test were also found to be satisfactory. Theoretical approach based on bulk specific gravity of aggregate is not recommended because of yielding significantly low theoretical maximum specific gravities and high relative densities. The last two parts summarize density levels and corresponding variations obtained from fifty-seven construction projects throughout the state of Texas

  4. Underground Parking structure built with deep foundations and vault precast elements in Spain

    Directory of Open Access Journals (Sweden)

    Fernández-Ordóñez, D.

    2012-09-01

    Full Text Available In many cases the only places available for the construction of a new car park are the existing streets or roads. These streets may also have important or historic buildings very close to the structure, which means that they cannot be disturbed in any way during the construction of the parking structure. In this particular case, the novelty is that the top deck is solved with a unique structure: a vault that interacts with the pile wall not only for vertical but also for horizontal loads due to the arch mechanism. The construction of the vault is solved as a large precast element of one piece of more than 16 in length and 2.40m in width, which is built in the factory, transported with the help of trucks and erected on site with large cranes.

    En muchos casos las únicas localizaciones para construir aparcamientos son las calles o carreteras. Estas calles también suelen tener alrededor importantes edificios históricos muy cercanos a la propia estructura. En este caso particular la novedad reside en que el forjado superior está resuelto con una estructura especial: una bóveda que interacciona con la pantalla de pilotes no solo en el sentido vertical sino también en el horizontal formando un verdadero mecanismo de arco. La construcción de la bóveda se ha resuelto con grandes elementos prefabricados de una pieza de más de 16m de longitud y de 2,40m de ancho. Se han fabricado en una factoría, transportados y montados en obra con grandes grúas.

  5. Concrete laying laboratory

    International Nuclear Information System (INIS)

    Bastlova, K.

    1986-01-01

    The task of the concrete laying laboratory established within a special department for quality control and assurance at the Dukovany nuclear power plant, is to check the composition of concrete mixes produced by the central concrete production plant on the site, and the shipment, laying and processing of concrete. The composition is given of special barite and serpentinite concretes designed for biological shields. The system of checks and of filing the results is briefly described. Esperience is summed up from the operation of the concrete laying laboratory, and conclusions are formulated which should be observed on similar large construction sites. They include the precise definition of the designer's requirements for the quality of concrete, the surface finish of concrete surfaces, the method of concreting specific structures around bushings, increased density reinforcements and various technological elements, and requirements for shipment to poorly accessible or remote places. As for the equipment of the laboratory, it should be completed with an instrument for the analysis of fresh concrete mixes, a large capacity drying kiln, etc. (Z.M.)

  6. Special protective concretes

    International Nuclear Information System (INIS)

    Bouniol, P.

    2001-01-01

    Concrete is the most convenient material when large-scale radiation protection is needed. Thus, special concretes for nuclear purposes are used in various facilities like reactors, reprocessing centers, storage sites, accelerators, hospitals with nuclear medicine equipment, food ionization centers etc.. The recent advances made in civil engineering for the improvement of concrete durability and compactness are for a large part transposable to protection concretes. This article presents the basic knowledge about protection concretes with the associated typological and technological aspects. A large part is devoted to the intrinsic properties of concretes and to their behaviour in irradiation and temperature conditions: 1 - definition and field of application of special protective concretes; 2 - evolution of concepts and technologies (durability of structures, techniques of formulation, new additives, market evolution); 3 - design of protective structures (preliminary study, radiation characteristics, thermal constraints, damping and dimensioning, mechanical criteria); 4 - formulation of special concretes (general principles, granulates, hydraulic binders, pulverulent additives, water/cement ratio, reference composition of some special concretes); 5 - properties of special concretes (damping and thermo-mechanical properties); 6 - induced-irradiation and temperature phenomena (activation, radiolysis, mineralogical transformations, drying, shrinking, creep, corrosion of reinforcement). (J.S.)

  7. Development of an Augmented Reality environment for the assembly of a precast wood-frame wall using the BIM model

    Directory of Open Access Journals (Sweden)

    Ana Regina Mizrahy Cuperschmid

    Full Text Available Abstract This article presents the development of an Augmented Reality (AR application to assist in the assembly of a precast wood-frame wall, based on the BIM model of the wall execution sequence. The research study used the Design Science Research approach and its aim was to develop an AR application named "montAR" (version 2.0. This application offers a tutorial that combines a wall model visualized in AR in actual scale, followed by an audio with step-by-step instructions of the assembly process. Its applicability was simulated in a laboratory with the participation of volunteers (architecture and engineering students. Two visualization gadgets were used and compared: smartphones and smart glasses. The potentialities and difficulties of the use of the AR system were assessed through a questionnaire answered by the participants and through direct observation and result analysis by the researchers. The results demonstrated the potential of using AR for precast wall assembly. From a technological innovation perspective, this study emphasizes the potential use of AR as a technology suitable for training and for construction quality control.

  8. Hybrid green permeable pave with hexagonal modular pavement systems

    International Nuclear Information System (INIS)

    Rashid, M A; Abustan, I; Hamzah, M O

    2013-01-01

    Modular permeable pavements are alternatives to the traditional impervious asphalt and concrete pavements. Pervious pore spaces in the surface allow for water to infiltrate into the pavement during rainfall events. As of their ability to allow water to quickly infiltrate through the surface, modular permeable pavements allow for reductions in runoff quantity and peak runoff rates. Even in areas where the underlying soil is not ideal for modular permeable pavements, the installation of under drains has still been shown to reflect these reductions. Modular permeable pavements have been regarded as an effective tool in helping with stormwater control. It also affects the water quality of stormwater runoff. Places using modular permeable pavement has been shown to cause a significant decrease in several heavy metal concentrations as well as suspended solids. Removal rates are dependent upon the material used for the pavers and sub-base material, as well as the surface void space. Most heavy metals are captured in the top layers of the void space fill media. Permeable pavements are now considered an effective BMP for reducing stormwater runoff volume and peak flow. This study examines the extent to which such combined pavement systems are capable of handling load from the vehicles. Experimental investigation were undertaken to quantify the compressive characteristics of the modular. Results shows impressive results of achieving high safety factor for daily life vehicles.

  9. Paving the way for low-carbon development strategies

    International Nuclear Information System (INIS)

    Van Tilburg, X.; Wuertenberger, L.; De Coninck, H.; Bakker, S.

    2011-09-01

    The aim of this report is to help move forward the discussion on low-carbon development strategies (LCDS) towards a useful climate policy instrument. It does so through a historical perspective on the use of an LCDS in a national and international context in order to provide high-level guidance to governments and experts who plan the development of an LCDS. The ultimate aim of a low-carbon development strategy is to catalyse concrete actions that support development with lower emissions. Therefore the process of LCDS development should not focus narrowly on producing a strategy document. Depending on the national context, an LCDS can serve different audiences and have different purposes, adding robustness to the attainment of mitigation actions. Rather than specifying a target or producing a document, an LCDS should provide a process that, depending on the developing country's readiness, meets needs to develop and to fill capacity, knowledge and information gaps. It should bring stakeholders from government, the private sector and civil society on the same page and eventually lead to greenhouse gas emissions that are lower compared to the situation in which the LCDS process had not been undertaken. International support could be sought for an LCDS process, but should not be made obligatory.

  10. Axial Compression Behavior of a New Type of Prefabricated Concrete Sandwich Wall Panel

    Science.gov (United States)

    Qun, Xie; Shuai, Wang; Chun, Liu

    2018-03-01

    A novel type of prefabricated concrete sandwich wall panel which could be used as a load-bearing structural element in buildings has been presented in this paper. Compared with the traditional sandwich panels, there are several typical characteristics for this wall system, including core columns confined by spiral stirrup along the cross-section of panel with 600mm spacing, precast foamed concrete block between two structural layers as internal insulation part, and a three-dimensional (3D) steel wire skeleton in each layer which is composed of two vertical steel wire meshes connected by horizontally short steel bar. All steel segments in the panel are automatically prefabricated in factory and then are assembled to form steel system in site. In order to investigate the structural behavior of this wall panel, two full-scale panels have been experimentally studied under axial compressive load. The test results show that the wall panel presents good load-bearing capacity and integral stiffness without out-of-plane flexural failure. Compared to the panel with planar steel wire mesh in concrete layer, the panel with 3D steel wire skeleton presents higher strength and better rigidity even in the condition of same steel ratio in panels which verifies that the 3D steel skeleton could greatly enhance the structural behavior of sandwich panel.

  11. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  12. Evaluation of recycled concrete as aggregate in new concrete pavements.

    Science.gov (United States)

    2014-04-01

    This study evaluated the use of recycled concrete as coarse aggregate in new concrete pavements. : Recycled concrete aggregate (RCA) produced from demolished pavements in three geographically dispersed locations in Washington state were used to perfo...

  13. Concrete portable handbook

    CERN Document Server

    Woodson, R Dodge

    2011-01-01

    Whether or not, you are on the job site or back in the office, this book will help you to avoid mistakes, code violations, and wasted time and money. The book's four part treatment begins with constituent materials followed by self contained parts on Concrete Properties, Processes, and Concrete Repair and Rehabilitation. Designed to be an ""all in one"" reference, the author includes a wealth information for the most popular types of testing. This includes: Analysis of Fresh Concrete; Testing Machines; Accelerated Testing Methods; Analysis of Hardened Concrete and Mortar; Core Sampl

  14. Summary review of Mound Facility's experience in decontamination of concrete

    International Nuclear Information System (INIS)

    Combs, A.B.; Davis, W.P.; Garner, J.M.; Geichman, J.R.

    1980-01-01

    Most of the current concrete decontamination work at Mound Facility involves surfaces that are contaminated with plutonium-238. Approximately 60,000 sq. ft. of concrete floors will have to be decontaminated in Mound's current Decontamination and Decommissioning (D and D) Project. Although most of these surfaces are partially protected by a barrier (tile or paint), contaminated water and acid have penetrated these barriers. The technique for decontaminating these floors is desribed. The initial cleaning of the floor involes standard water and detergent. Acids are not used in cleaning as they tend to drive the contamination deeper into the concrete surface. Next, the floor tile is manually removed inside a temporary enclosure under negative and filtered ventilation. Finally, layers of contaminated concrete are mechanically removed inside the ventilated enclosure. The suspected depth and surface area of contamination determines the type of mechanical tool used. In summary, several generic methods of concrete decontamination can be utilized: chemical, such as water, detergent, acids, paint remover, strippable paints, etc.; rotary using sanders, grinders, scarifiers, etc.; impact such as pressure washers (hydrolasers), particle blasters, scabblers, needlers, spallers, paving and rock breakers, ram hoes, etc. The particular method used depends on several factors: surface and area involved; depth of contamination; cost and availability of equipment; usage safety and radiological control; and waste generated

  15. LIGHTWEIGHT CONCRETE BASED GRANSHLAK

    Directory of Open Access Journals (Sweden)

    NETESA M. I.

    2016-02-01

    Full Text Available Raising of problem. Concrete advisable to obtain a low strength with local secondary resources for recycling and reduce the environmental burden on the environment. But it is important to design such concrete compositions with a reduced flow of cement. It is known that the coefficient of efficiency of use of cement in the concrete of the heavy and B10 is less than about 0.5, which is almost two times smaller than in class B15 concrete and above. Even lower coefficient of efficiency in light concrete cement low strength. Therefore, it is important to find patterns determining the composition of lightweight concrete based on local-products industry with more efficient use of cement in them. Purpose.. Based on the analysis of earlier research results, including with the use of methods of mathematical planning of experiments to determine the concrete contents, which can provide the requirements for the underlying layers of the floor, the compressive strength of which should correspond to the class B5. It is important to provide the required strength at minimum flow of the cement, which is the most expensive and energy-intensive part of concrete. Conclusion. Analysis of the test results of control samples of concrete in 28-day-old, the following laws. The required tensile strength of concrete compressive strength of 7.0 MPa can be obtained in the test range when used in formulations as a filler as the Dnieper hydroelectric power station fly ash and tailings Krivoy Rog iron ore YuGOK. To ensure providing the required characteristic strength of the concrete in the underlying layers of the floor is advisable to use a nominal composition per cubic meter of concrete: cement 160 kg granshlaka Plant named after Petrovsky, 675 kg of fly ash Dnieper HPP 390 kg, 400 kg of sand, 230 liters of water. Thus, while ensuring rational grain composition components can obtain the desired strength lightweight concrete based granshlaka plant Petrovsky, using as fillers

  16. Strength Properties of Foamed Concrete Containing Crushed Steel Slag as Partial Replacement of Sand with Specific Gradation

    Directory of Open Access Journals (Sweden)

    Tiong Hock Yong

    2017-01-01

    Full Text Available Lightweight construction material, notably foamed concrete, had become more favourable to reduce building weight and cost, accelerate construction process, and ease handling of precast segment. Simultaneously, rapid development had result in price rising of conventional material and environmental issue due to abundant wastes, for instance steel slag. As a consequence, feasibility of steel slag to be incorporated in lightweight foamed concrete for both structural and nonstructural purpose is worth to be investigated. This paper is aimed to evaluate the effects of crushed steel slag, as partial replacement of sand with specific gradation, on performance of lightweight foamed concrete (LFC with density of 1600 kg/m3 to 1700 kg/m3 in terms of compressive and tensile strengths. Different steel slag based LFCs were developed by replacing 0, 25, 50, 75 and 100% of steel slag for sand. Different water to cement ratios (w/c and dosages of super-plasticizer (sp were adopted to confirm certain workability, strength properties was then studied for ages of 7 and 28 days. The laboratory results showed that lightweight foamed concrete with incorporation of crushed steel slag has decreased strength; however it still achieves structural strength of 17 MPa when replacement level is less than 25% at density of 1600 kg/m3 to 1700 kg/m3.

  17. DMPD: Toll-like receptors: paving the path to T cell-driven autoimmunity? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17888644 Toll-like receptors: paving the path to T cell-driven autoimmunity? Marsla... Toll-like receptors: paving the path to T cell-driven autoimmunity? PubmedID 17888644 Title Toll-like recep...tors: paving the path to T cell-driven autoimmunity? Authors Marsland BJ, Kopf M.

  18. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    The durability of MOC concrete compositions against extreme environmental conditions viz. heating–cooling, freezing–thawing, wetting–drying and penetration and deposition of salts etc were investigated. The results reveal that MOC concrete has high compressive strength associated with high flexural strength and the ...

  19. Radiographic testing of concrete

    International Nuclear Information System (INIS)

    Porter, James F.

    1997-01-01

    The increase in construction activity in the Philippines, reinforced concrete building is still a favorite among designers, because it is much cheaper to build and it requires qualified welders, etc. and extensive nondestructive testing and inspection of metals, welds and castings. Of all the techniques radiography is widely used for concrete

  20. Concrete deck material properties.

    Science.gov (United States)

    2009-01-01

    The two-fold focus of this study was (a) to develop an understanding of the mechanisms responsible for causing : cracking in the concrete; and (b) to study the influence of the local materials on the performance of NYSDOTs HP : concrete mixture. R...

  1. Concrete-Design

    Directory of Open Access Journals (Sweden)

    Leczovics Péter

    2014-12-01

    Full Text Available Present paper introduces a new interpretation of concrete, demonstrating some extreme possibilities of this rigid material such as a design element. In the first part a brief overview of the previous achievements are shown. The second part of this paper focuses on the relationship between concrete and fashion.

  2. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...... concretes, workability, ductility, and confinement problems....

  3. Concrete, hardened: Self desiccation

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard; Persson, Bertil

    1999-01-01

    The test method covers the determination of internal relative humidity (RH) in hardened concrete and cement mortar using RH instruments. The determination of RH is done on crushed samples of concrete or cement motar. This test method is only for measuring equipment which gives off or takes up...

  4. concrete5 Beginner's Guide

    CERN Document Server

    Laubacher, Remo

    2011-01-01

    This book is part of Packt's Beginner's Guide series. You will be guided through the set up of a Concrete5 site with step-by-step practical examples. This book is ideal for developers who would like to build their first site with Concrete5. Some k

  5. Radiation shielding concrete

    International Nuclear Information System (INIS)

    Kunishima, Shigeru.

    1990-01-01

    The radiation shielding concretes comprise water, cement, fine aggregates consisting of serpentines and blown mist slags, coarse aggregates consisting of serpentines and kneading materials. Since serpentines containing a relatively great amount of water of crystallization in rocks as coarse aggregates and fine aggregates, the hydrogen content in the radiation shielding concretes is increased and the neutron shielding effect is improved. In addition, since serpentines are added as the fine aggregates and blown mists slags of a great specific gravity are used, the specific gravity of the shielding concretes is increased to improve the γ-ray shielding effect. Further, by the use of the kneading material having a water reducing effect and fluidizing effect, and by the bearing effect of the spherical blown mist slags used as the fine aggregates, concrete fluidity can be increased. Accordingly, workability of the radiation shielding concretes can be improved. (T.M.)

  6. Concrete quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Holz, N. [Harza Engineering Company, Chicago, IL (United States)

    2000-08-01

    This short article reports on progress at the world's largest civil construction project, namely China's Three Gorges hydro project. Work goes on around the clock to put in place nearly 28 M m{sup 3} of concrete. At every stage of the work there is strong emphasis on quality assurance (QA) and concrete is no exception. The US company Harza Engineering has been providing QA since the mid-1980s and concrete QA has been based on international standards. Harza personnel work in the field with supervisors developing educational tools for supervising concrete construction and quality, as well as providing training courses in concrete technology. Some details on flood control, capacity, water quality and environmental aspects are given..

  7. Comparison of human exposure pathways in an urban brownfield: reduced risk from paving roads.

    Science.gov (United States)

    James, Kyle; Farrell, Richard E; Siciliano, Steven D

    2012-10-01

    Risk assessments often do not quantify the risk associated with soil inhalation. This pathway generally makes a negligible contribution to the cumulative risk, because soil ingestion is typically the dominant exposure pathway. Conditions in northern or rural centers in Canada characterized by large areas of exposed soil, including unpaved roads, favor the resuspension of soil particles, making soil inhalation a relevant risk pathway. The authors determined and compared human exposure to metals and polycyclic aromatic hydrocarbons (PAHs) from soil ingestion and inhalation and analyzed the carcinogenic and noncarcinogenic risks before and after roads were paved in a northern community. To determine the inhalation exposure, three size fractions of airborne particulate matter were collected (total suspended particulates [TSP], particulate matter with an aerodynamic diameter less than 10 µm [PM10], and particulate matter with an aerodynamic diameter less than 2.5 µm [PM2.5]) before and after roads were paved. Road paving reduced the concentration of many airborne contaminants by 25 to 75%, thus reducing risk. For example, before paving, the carcinogenic risk associated with inhalation of Cr was 3.4 excess cancers per 100,000 people exposed, whereas after paving, this risk was reduced to 1.6 in 100,000. Paving roads reduced the concentrations of total suspended particulates (TSP; p roads is an effective method of reducing risk from the inhalation of soil particles. Copyright © 2012 SETAC.

  8. Concrete sample point: 304 Concretion Facility

    International Nuclear Information System (INIS)

    Rollison, M.D.

    1995-01-01

    This report contains information concerning the analysis of concretes for volatile organic compounds. Included are the raw data for these analysis and the quality control data, the standards data, and all of the accompanying chains-of-custody records and requests for special analysis

  9. Performance of Waterless Concrete

    Science.gov (United States)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  10. Electrokinetic decontamination of concrete

    International Nuclear Information System (INIS)

    Lomasney, H.L.; SenGupta, A.K.; Yachmenev, V.

    1996-01-01

    ELECTROSORB Electrokinetic Extraction Technology, developed by ISOTRON Corp., offers a cost-effective approach to treating contaminated concrete. Heavy metals/radionuclides trapped in concrete can be extracted using this process if they are chemically solubilized; solubilizers used are citric acid alone and a mixture of citric and nitric acids. A DC electric field is applied across the contaminated concrete to electrokinetically transport the solubilized contaminants from the concrete pores to a collector on the concrete surface. The collector is an extraction pad laid on the surface. The pad provides confinement for a planar electrode and solubilizer solution; it is operated under a vacuum to hold the pad against the concrete surface. Operation requires little attendance, reducing the workers' health hazards. The process incorporates a mechanism for recycling the solubilizer solution. A field demonstration of the process took place in Building 21 of DOE's Mound facility in Miamisburg, OH, over 12 days in June 1996. The thorium species present in this building's concrete floors included ThO 2 and thorium oxalate. The nitric acid was found to facilitate Th extraction

  11. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  12. Effect of insulating concrete forms in concrete compresive strength

    Science.gov (United States)

    Martinez Jerez, Silvio R.

    The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.

  13. Concrete and criticality

    International Nuclear Information System (INIS)

    Carter, R.D.

    1978-01-01

    Concrete is a widely used structural material which occurs frequently in systems requiring criticality analyses. Ordinarily, we give little thought to what its actual composition is (as compared to reference compositions), yet in criticality safety, differences in composition can cause large changes in k-effective and it may not be easy to predict in which direction the change will occur. Concrete composition is quite variable with differences in the aggregate used in the concrete in various parts of the country providing relative large differences in k-effective. The water content of concrete can also strongly affect the reactivity of a system in which it acts as a reflector or is interspersed between fissile units. Because concrete is so common and is often (but not always) a better reflector than water, one must know the concrete compositions or be prepared to use a ''worst case'' composition. It may be a problem, however, to determine just what is the worst case. At the Hanford Plant, the aggregate normally used is basalt, which gives a composition very low in carbon as opposed to those areas (e.g., Oak Ridge) where the use of limestone aggregate will result in concrete with a high carbon content. The data presented show some of the effects found in situations using ''Hanford'' concrete, but similar effects might be found with other compositions. In some cases, the use of concrete may be incidental to the effects shown. While the numbers shown are those for actual systems, the primary intent is to alert the reader that these effects can occur. In applying this information, the analyst should use material specific to the systems being analyzed

  14. Biodecontamination of concrete

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Benson, J.

    1996-01-01

    A novel technology for biologically decontaminating concrete is being jointly developed by scientists at the Idaho National Engineering Laboratory (INEL) and British Nuclear Fuels plc (BNFL). The technology exploits a naturally occurring phenomenon referred to as microbially influenced degradation (MID) in which bacteria produce acids that dissolve the cement matrix of concrete. Most radionuclide contamination of concrete is fixed in the outer few mm of the concrete surface. By capturing and controlling this natural process, a biological method of removing the surface of concrete to depths up to several mm is being developed. Three types of bacteria are known to be important in MID of concrete: nitrifying bacteria that produce nitric acid, sulfur oxidizing bacteria that produce sulfuric acid, and certain heterotrophic bacteria that produce organic acids. An investigation of natural environments demonstrated with scanning electron microscopy the presence of bacteria on concrete surfaces of a variety of structures, such as bridges and dams, where corrosion is evident. Enumeration of sulfur oxidizing and nitrifying bacteria revealed their presence and activity on structures to varying degrees in different environments. Under ideal conditions, Thiobacillus thiooxidans, a sulfur oxidizing bacteria, attached to and colonized the surface of concrete specimens. Over 1mm depth of material from a 10 cm x 10 cm square surface was removed in 68 days in the Thiobacillus treated specimen compared to a sterile control. Laboratory and field demonstrations are currently being conducted using experimental chambers designed to be mounted directly to concrete surfaces where radionuclide contamination exists. Data is being obtained in order to determine actual rates of surface removal and limitations to the system. This information will be used to develop a full scale decontamination technology

  15. concrete5 cookbook

    CERN Document Server

    Strack, David

    2013-01-01

    The Cookbook-style recipes allow you to go both directly to your topic of interest or follow topics throughout a chapter to gain in-depth knowledge. This practical Cookbook will cater to the needs of both intermediate and advanced concrete5 developers.This book is geared towards intermediate to advanced PHP developers who would like to learn more about the concrete5 content management system. Developers already familiar with concrete5 will learn new time-saving tricks and will find the book to be a great reference tool.

  16. Concrete = aggregate, cement, water?

    International Nuclear Information System (INIS)

    Jelinek, J.

    1990-01-01

    Concrete for the Temelin nuclear power plant is produced to about 70 different formulae. For quality production, homogeneous properties of aggregates, accurate proportioning devices, technological discipline and systematic inspections and tests should be assured. The results are reported of measuring compression strength after 28 days for different concrete samples. The results of such tests allow reducing the proportion of cement, which brings about considerable savings. Reduction in cement quantities can also be achieved by adding ash to the concrete mixes. Ligoplast, a plasticizer addition is used for improving workability. (M.D). 8 figs

  17. Properties of high-workability concrete with recycled concrete aggregate

    OpenAIRE

    Safiuddin,; Alengaram,Ubagaram Johnson; Salam,Abdus; Jumaat,Mohd Zamin; Jaafar,Fahrol Fadhli; Saad,Hawa Binti

    2011-01-01

    This study presents the effects of recycled concrete aggregate (RCA) on the key fresh and hardened properties of concrete. RCA was used to produce high-workability concrete substituting 0-100% natural coarse aggregate (NCA) by weight. The slump and slump flow of fresh concretes were determined to ensure high workability. In addition, the compressive, flexural and splitting tensile strengths, modulus of elasticity, and permeable voids of hardened concretes were determined. The test results rev...

  18. COMPARATIVE STUDY OF GLASS FIBRE CONCRETE AND NORMAL CONCRETE

    OpenAIRE

    Mr.Yogesh S.Lanjewar*

    2018-01-01

    Concrete is basically the most important material concerning with the construction and infrastructural procedures, for which it should be of good strength and durability. Many researches are being conducted to make concrete more sustainable and of more strength and durability. Therefore keeping this in mind i have chosen to do the comparative study regarding the strength of normal concrete with the glass fibre added concrete using mix design procedure as per IS 10262-2009 for concrete. As w...

  19. Electrokenitic Corrosion Treatment of Concrete

    Science.gov (United States)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  20. Electrokinetic Strength Enhancement of Concrete

    Science.gov (United States)

    Cardenas, Henry E. (Inventor)

    2016-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  1. Shrinkage Reducing Admixture for Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Concrete shrinkage cracking is a common problem in all types of concrete structures, especially for structures and environments where the cracks are prevalent and the repercussions are most severe. A liquid shrinkage reducing admixture for concrete, developed by GRACE Construction Products and ARCO Chemical Company, that reduces significantly the shrinkage during concrete drying and potentially reduces overall cracking over time.

  2. A historical examination of concrete

    International Nuclear Information System (INIS)

    Mallinson, L.G.; Li Davies, I.

    1987-01-01

    The requirement that concrete in radioactive waste repositories be stable physically and chemically for very long times has initiated studies of ancient and old concretes. This report is a contribution to this effort. After a description of the history of cement and concrete, the published literature relating to the analysis of old and ancient concrete is reviewed. A series of samples spanning the history of concrete has been obtained; a variety of physical and chemical techniques have been employed to characterize these samples. Reasons for survival of ancient concretes, and for durability of early, reinforced concretes are identified. Recommendations for further studies are given. 132 refs

  3. Anchorage in concrete construction

    CERN Document Server

    Eligehausen, Rolf; Silva, John F

    2013-01-01

    A comprehensive treatment of current fastening technology using inserts (anchor channels, headed stud), anchors (metal expansion anchor, undercut anchor, bonded anchor, concrete screw and plastic anchor) as well as power actuated fasteners in concrete. It describes in detail the fastening elements as well as their effects and load-bearing capacities in cracked and non-cracked concrete. It further focuses on corrosion behaviour, fire resistance and characteristics with earthquakes and shocks. It finishes off with the design of fastenings according to the European Technical Approval Guideline (ETAG 001), the Final Draft of the CEN Technical Specification 'Design of fastenings for use in concrete' and the American Standards ACI 318-05, Appendix D and ACI 349-01, Appendix B.

  4. Concrete Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  5. Prestressed concrete design

    CERN Document Server

    Hurst, MK

    1998-01-01

    This edition provides up-to-date guidance on the detailed design of prestressed concrete structures. All major topics are dealt with, including prestressed flat slabs, an important and growing application in the design of buildings.

  6. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    TECS

    exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution ... Having tremendous load bearing capacity, it can withstand .... retention coefficients for similar concrete compositions.

  7. Improving concrete overlay construction.

    Science.gov (United States)

    2010-03-01

    Several road construction projects involving concrete overlays at the state and county levels in Iowa in 2009 were studied for : construction techniques and methods. The projects that were evaluated consisted of sites in four Iowa counties: Osceola, ...

  8. Concrete decontamination scoping tests

    International Nuclear Information System (INIS)

    Archibald, K.E.

    1995-01-01

    This report details the research efforts and scoping tests performed at the Idaho Chemical Process Plant using scabbling, chemical, and electro-osmotic decontamination techniques on radiologically contaminated concrete

  9. Modeling reinforced concrete durability.

    Science.gov (United States)

    2014-06-01

    This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...

  10. EVALUATION OF TIRE RUBBER DISPOSAL IN CONCRETE FOR PAVEMENTS

    Directory of Open Access Journals (Sweden)

    Rosa Cristina Cecche Lintz

    2009-12-01

    Full Text Available The production of waste by the tire industry has been a growing problem, indicating the need for its reuse. More than thirty million tires are discharged per year in Brazil, where regulation for the environment states that for each four new tires, five unusable ones must be adequately disposed by manufacturers and importers. Paving consumes an extremely large quantity of materials, which can be the source of rational application of waste and rejected materials. Research shows that tire rubber can be added to asphalt, which increases its durability and improves pavement quality and safety conditions by absorbing the rubber elastic properties, and also be used for architectural applications, among others. This study deals with the addition of rubber fibers from tire crushing in concrete for roadway pavements in order to provide proper indication about the alternative material disposal through an evaluation of the mechanical behavior of the modified concrete. Different concrete mixes were produced, within which, part of fine aggregates were substituted by tire rubber and mechanical experiment tests were performed, which show that, due to great resistance losses, the disposal of this alternative material in concrete should be considered for light traffic pavements, with the addition of rubber ranging up to 10% in mass.

  11. Effects of Interlocking and Supporting Conditions on Concrete Block Pavements

    Science.gov (United States)

    Mahapatra, Geetimukta; Kalita, Kuldeep

    2018-02-01

    Concrete Block Paving (CBP) is widely used as wearing course in flexible pavements, preferably under light and medium vehicular loadings. Construction of CBP at site is quick and easy in quality control. Usually, flexible pavement design philosophy is followed in CBP construction, though it is structurally different in terms of small block elements with high strength concrete and their interlocking aspects, frequent joints and discontinuity, restrained edge etc. Analytical solution for such group action of concrete blocks under loading in a three dimensional multilayer structure is complex and thus, the need of conducting experimental studies is necessitated for extensive understanding of the load—deformation characteristics and behavior of concrete blocks in pavement. The present paper focuses on the experimental studies for load transfer characteristics of CBP under different interlocking and supporting conditions. It is observed that both interlocking and supporting conditions affect significantly on the load transfer behavior in CBP structures. Coro-lock block exhibits better performance in terms of load carrying capacity and distortion behavior under static loads. Plate load tests are performed over subgrade, granular sub-base (GSB), CBP with and without GSB using different block shapes. For an example case, the comparison of CBP with conventional flexible pavement section is also presented and it is found that CBP provides considerable benefit in terms of construction cost of the road structure.

  12. EVALUATION OF TIRE RUBBER DISPOSAL IN CONCRETE FOR PAVEMENTS

    Directory of Open Access Journals (Sweden)

    Rosa Cristina Cecche Lintz

    2009-01-01

    Full Text Available The production of waste by the tire industry has been a growing problem, indicating the need for its reuse. More than thirty million tires are discharged per year in Brazil, where regulation for the environment states that for each four new tires, five unusable ones must be adequately disposed by manufacturers and importers. Paving consumes an extremely large quantity of materials, which can be the source of rational application of waste and rejected materials. Research shows that tire rubber can be added to asphalt, which increases its durability and improves pavement quality and safety conditions by absorbing the rubber elastic properties, and also be used for architectural applications, among others. This study deals with the addition of rubber fibers from tire crushing in concrete for roadway pavements in order to provide proper indication about the alternative material disposal through an evaluation of the mechanical behavior of the modified concrete. Different concrete mixes were produced, within which, part of fine aggregates were substituted by tire rubber and mechanical experiment tests were performed, which show that, due to great resistance losses, the disposal of this alternative material in concrete should be considered for light traffic pavements, with the addition of rubber ranging up to 10% in mass.

  13. Recycling of concrete

    International Nuclear Information System (INIS)

    Halaszovich, S.

    1988-01-01

    The paper reviews potentials and problems of disposal or recycling of concrete removed from nuclear installations. Due to the difficulties in determining radioactivity limits that are compatible with utilization of recycled material in practice, a method is proposed that takes into account inhalation of dusts, as occurring during the reprocessing or recycling of the concrete, for instance in road building. This method is based on the maximum permissible radioactivity uptake by inhalation of a nuclide mixture of unknown composition. (RB) [de

  14. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  15. ADVANCEMENTS IN CONCRETE TECHNOLOGY

    OpenAIRE

    Shri Purvansh B. Shah; Shri Prakash D. Gohil; Shri Hiren J. Chavda; Shri Tejas D. Khediya

    2015-01-01

    Developing and maintaining world’s infrastructure to meet the future needs of industrialized and developing countries is necessary to economically grow and improve the quality of life. The quality and performance of concrete plays a key role for most of infrastructure including commercial, industrial, residential and military structures, dams, power plants. Concrete is the single largest manufactured material in the world and accounts for more than 6 billion metric tons of materials annual...

  16. Spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2015-04-01

    TxDOT uses prestressed slab beam bridges for short-span bridges ranging from approximately 3050 ft in : length. These bridges have precast, pretensioned slab beams placed immediately adjacent to one another : with a cast-in-place slab made composi...

  17. Performance of "Waterless Concrete"

    Science.gov (United States)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  18. Fracture Mechanics of Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, Jens Peder

    Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high-strength......Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high......-strength concrete. Chapter 2 A description of the factors which influence the strength and cracking of concrete and high strength concrete is made. Then basic linear fracture mechanics is outlined followed by a description and evaluation of the models used to describe concrete fracture in tension. The chapter ends...... and the goveming equations are explicit and simple. These properties of the model make it a very powerful tool, which is applicable for the designing engineer. The method is also extended to reinforced concrete, where the results look very promising. The large experimental investigation on high-strength concrete...

  19. Fibre-concrete container

    International Nuclear Information System (INIS)

    2000-01-01

    In this leaflet the fibre-concrete container for radioactive wastes is described. The fibre container is made of fibre-concrete that contains cement, aggregate, sand, filter, flame-silica, super-plastificator, water and scattered metal fibres. The fibre-concrete container has a dice shape with outer dimension 1.7 x 1.7 x 1.7 m. It is mounted of a container body, a container cover and two caps. Total weight of container is 4,240 kg, maximum weight of loaded container do not must exceed 15,000 kg. The physical and mechanical properties of the fibre-concrete container are described in detail. The fibre-concrete container manufactured for storing of low and intermediate radioactive wastes. A fibre-concrete container utilization to store of radioactive wastes solves these problems: increase of stability of stored packages of radioactive waste; watertightness within 300 years at least; static stability of bearing space; better utilization of bearing spaces; insulation of radioactive waste in a case of seismic and geological event; increase of fire resistance; and transport of radioactive waste

  20. Concrete radiation shielding

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1989-01-01

    The increased use of nuclear energy has given rise to a growth in the amount of artificially produced radiation and radioactive materials. The design and construction of shielding to protect people, equipment and structures from the effects of radiation has never been more important. Experience has shown that concrete is an effective, versatile and economical material for the construction of radiation shielding. This book provides information on the principles governing the interaction of radiation with matter and on relevant nuclear physics to give the engineer an understanding of the design and construction of concrete shielding. It covers the physical, mechanical and nuclear properties of concrete; the effects of elevated temperatures and possible damage to concrete due to radiation; basic procedures for the design of concrete radiation shields and finally the special problems associated with their construction and cost. Although written primarily for engineers concerned with the design and construction of concrete shielding, the book also reviews the widely scattered data and information available on this subject and should therefore be of interest to students and those wishing to research further in this field. (author)

  1. Separation of contaminated concrete

    International Nuclear Information System (INIS)

    Bakiewicz, J.L.; Reymer, A.P.S.

    1990-01-01

    Separating the contaminated parts from the non-contaminated parts from decommissioned nuclear facilities may strongly reduce the amount of contaminated concrete. The reduction in volume of the radioactive contaminated concrete is dependent on how much cementstone is in the concrete. This research program shows that the radioactive contamination is mostly in the cementstone. However the choice that the cementstone parts, (or better said the radioactive parts) are smaller than 1 mm may not always be true. Normally the cementstone takes about 30% of the total concrete volume. A separation procedure composed by a combination of milling and thermal shock has been assessed. Both the cold and hot thermal shock in combination with milling are not able to separate the cementstone from the larger aggregates completely. However, the cementstone from the concrete with a low nominal grain size seems to be almost completely removed by the combination cold thermal shock/milling, while the cementstone from the concrete with a high nominal grain size seems to be almost completely removed by the combination hot thermal shock/milling. After both methods a layer of cementstone was still visible on the aggregates. Washing followed by a nitric acid treatment removed each 2 wt% of cementstone

  2. Substructure hybrid testing of reinforced concrete shear wall structure using a domain overlapping technique

    Science.gov (United States)

    Zhang, Yu; Pan, Peng; Gong, Runhua; Wang, Tao; Xue, Weichen

    2017-10-01

    An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.

  3. Offshore concrete structures

    International Nuclear Information System (INIS)

    Lamas Pardo, M.; Carral Couce, L. M.

    2011-01-01

    In the offshore industry there are two possible materials for the construction of the hull of a structure; the steel and concrete, with the first one widely used until now, as in the rest of the shiphuidling industry of merchant ships, warships, etc. Materials such as aluminum, GRP or timber areused in small units with lengths lower than 100 m, and in less adverse conditions than in the offshore industry. Nevertheless, some ships/barges have been built of concrete in the past, but have been rather isolated cases which have not changed the practice in the industry. In the First and Second World War were built by the scarcity of materials, while the series of barges by Alfred A. Yee was a rare exception. Other units were also made in concrete, but almost anecdotal. Still, the behaviour of these concrete structures, especially in terms of maintenance, has been excellent. Therefore, the fact that the concrete has not had an adequate reception so far in shipbuilding, does not mean that in will not be the material best suited for the offshore industry in the future. The extra displacement and associated fuel costs in concrete ships have been found prohibitive in the past. But the loss of mobility of a concrete hull in relation to a steel hull can be perfectly offset by the advantages offered by the concrete, as the shipping and offshore industry have very different priorities. One of the main differences in these priorities is in terms of maintenance and resistance to fatigue, precisely where the concrete performs better. ships can easily be dry docked for maintenance and repair, while in the offshore platforms these works have to be done in situ so maintenance and fatigue are crucial to them. Besides these, the concrete has other advantages according to findings of several studies. And although they are interested in the conclusions that the makes as they came from people in the concrete industry, the fact that in recent years concrete offshore unit shave been built

  4. ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement.

    Science.gov (United States)

    Xiao, Jian; Zou, Xiang; Xu, Wenyao

    2017-09-26

    "Smart Pavement" is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor-ePave-to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system's performance and explore the trade-off.

  5. Crazy-paving sign in high-resolution computed tomography in parainfluenza virus pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Matsuno, Osamu [Department of Respiratory Disease, NHO National Osaka Minami Medical Center, Kido higashi machi 2-1, Kawachinagano City, Osaka 586-8521 (Japan)], E-mail: matsuno@ommc-hp.jp; Hayama, Yoshitomo; Honda, Hidehiro; Yamane, Hiroyuki; Yamamoto, Suguru; Ueno, Kiyonobu [Department of Respiratory Disease, NHO National Osaka Minami Medical Center, Kido higashi machi 2-1, Kawachinagano City, Osaka 586-8521 (Japan); Saeki, Yukihiko [Department of Clinical Research, NHO National Osaka Minami Medical Center, Kido higashi machi 2-1, Kawachinagano city, Osaka 586-8521 (Japan)

    2010-05-15

    The crazy-paving sign is the appearance of a smooth linear pattern superimposed on an area of ground-glass opacity on thin-section computed tomography (CT). A 69-year-old woman was admitted to our hospital for treatment of pneumonia. Thoracic CT showed a crazy-paving sign in the right lung field on admission. She received ceftriaxone and clarithromycin, and the symptoms and infiltration shadow promptly disappeared. Serologic testing revealed a greater than 4-fold increase in the IgG titer for parainfluenza virus I. To our knowledge, there is no previous report of the crazy-paving sign in associated with viral pneumonia in a non-immunocompromised host or with parainfluenza pneumonia.

  6. Usage of Crushed Concrete Fines in Decorative Concrete

    Science.gov (United States)

    Pilipenko, Anton; Bazhenova, Sofia

    2017-10-01

    The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of

  7. Ultrasonic imaging in concrete

    International Nuclear Information System (INIS)

    Ribay, G.; Paris, O.; Rambach, J.M.

    2009-01-01

    The third and final protection barrier confining nuclear reactors is usually a concrete containment structure. Monitoring the structural integrity of these barriers is critical in ensuring the safety of nuclear power plants. The Institute for Radiological Protection and Nuclear Safety (IRSN) in France in collaboration with the French Atomic commission (CEA/LIST) has developed an ultrasonic phased-array technique capable of inspecting thick concrete walls. The non-destructive method is dedicated to detect cracks and bulk defects. Given the thickness of the structure (1.2 m) undergoing inspection and the heterogeneity of the concrete, the optimal frequency lies in the 50-300 kHz range. At these frequencies, the ultrasonic beam profiles are widespread (non-directive) with poor signal-to-noise ratio. Previous studies have shown the potential of using phased-array techniques (i.e., beam focusing and beam steering) in order to improve detection resolution and sizing accuracy. In this paper we present experimental studies performed with array up to 16 transducers working at 200 kHz. Experiments are carried out on representative concrete blocks containing artificial defects. One is a reinforced mock-up representative of the first reinforcing mesh of wall containment. Experimental results show that in spite of the reinforcement, artificial defects deep as half a meter can be detected. Reconstructed images resulting from phased array acquisitions on an artificial crack embedded in a concrete block are also presented and discussed. The presented method allows detecting oriented defects in concrete with improved signal to noise ratio and sensibility. A simulation model of the interaction of ultrasound with a heterogeneous medium like concrete is briefly commented. (authors)

  8. Let’s Get Concrete!

    DEFF Research Database (Denmark)

    Jones, Candace; Boxenbaum, Eva

    whereas in the United States market and professional logics interacted: manufacturers cooperated to create standards for concrete and appealed to architects as consumers. Our findings also illuminate that concrete was legitimated initially by imitation of stone, but this strategy soon de......-legitimated not only concrete but also stone. Concrete was perceived as merely imitative and thus inauthentic. For concrete to become a legitimate and widely adopted material, architects had to theorize concrete as unique material with distinctive aesthetic possibilities, which led to new kinds of buildings and new...... architectural styles. Our study illuminates the key role that materials and aesthetics played within architects’ professional logic and shaped processes of institutional change....

  9. The use of coal mining wastes for manufacturing paving materials; Los Esteriles del Carbon como Materia Prima para la Fabricacion de Materiales para Pavimentacion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This project was aimed at proving the technical feasibility of the use of coal mining wastes in the manufacturing of paving materials: floor-tiles, flags, paving-stones, grit stones, etc. The study proved that coal mining wastes in a mixture with other raw materials can be used in the manufacturing of paving materials: floor-tiles, paving-stones, grit stones.

  10. Studies of historic concrete

    International Nuclear Information System (INIS)

    Jull, S.P.; Lees, T.P.

    1990-01-01

    Underground concrete repositories for nuclear waste will have to maintain their integrity for hundreds of years. This study examines ancient concretes and assesses the suitability of equivalent modern materials for underground storage. Thirty four ancient samples have been obtained from Great Britain, Austria and Italy. One 19th century sample was also collected. The samples were examined using a variety of analytical techniques (including scanning electron microscopy, optical microscopy, chemical analysis and pH determination). The samples were also subjected to a range of physical tests. Most of the samples examined were very weak and porous although they had retained full structural integrity. With the exception of the 19th century sample, none of the concretes had maintained pH alkaline enough to immobilize radionuclides. Hydrated calcium silicates have been detected in some samples which are similar to those observed in modern Portland cement concretes. These stable cementitious species have endured for almost two thousand years. All the ancient concretes and mortars examined contained natural pozzolanic material or crushed burnt clay. This may have had some effect on the reduction in alkalinity although the main reason was full carbonation of calcium hydroxide

  11. Concrete and prestressing process, container made with this concrete

    International Nuclear Information System (INIS)

    Gerard, M.

    1992-01-01

    Shape memory alloy fibers or heat shrinking fibers are encapsulated in a standard concrete. Prestressed concrete is obtained by heat treatment. Application is made to the fabrication of radioactive waste containers

  12. Concrete with onyx waste aggregate as aesthetically valued structural concrete

    Science.gov (United States)

    Setyowati E., W.; Soehardjono, A.; Wisnumurti

    2017-09-01

    The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.

  13. Durability of lightweight concrete : Phase I : concrete temperature study.

    Science.gov (United States)

    1968-08-01

    This report describes a study conducted to determine the temperature gradient throughout the depth of a six inch concrete bridge deck. The bridge deck selected for study was constructed using lightweight concrete for the center spans and sand and gra...

  14. Water Entrainment in Concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben

    This report gives a survey of different techniques for incorporation of designed, water-filled cavities in concrete: Water entrainment. Also an estimate of the optimum size of the water inclusions is given. Water entrainment can be used to avoid self-desiccation and self-desiccation shrinkage...... during hydration [1,26]. What is needed is some sort of container which retains the shape of the water when mixed into the concrete. The container may function based on several different physical or chemical principles. Cells and gels are examples of containers found in nature. A cell membrane provides...... a boundary to water, whereas a polymer network incorporates water in its intersticious space with its affinity due to interaction energy and polymer entropy. Such containers allow water to be stored as an entity. In relation to concrete the water encapsulation may be accomplished either before or after start...

  15. Drying of Concrete

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Geiker, Mette Rica; Nygaard, Peter Vagn

    2002-01-01

    Estimated and measured relative humidity (RH) change during drying are compared for two concretes, 1: w/c=0.46 and 2: w/(c+0.5fa+2sf)=0.50. The estimations were undertaken by means of the Swedish program TorkaS 1.0. Measurements were performed by RH-sensors type Humi-Guard. Drying of 150 mm thick...... samples from sides at 60% RH and 22 °C took place from 4 to 56 days after casting. At the end of the drying period the measured RH was about 4% lower than the estimated RH at 1/5th depth from the exposed surface for both concretes. In the middle of the samples, the measured RH of concretes 1 and 2 were 2...

  16. Impact of some field factors on inhalation exposure levels to bitumen emissions during road paving operations.

    Science.gov (United States)

    Deygout, François; Auburtin, Guy

    2015-03-01

    Variability in occupational exposure levels to bitumen emissions has been observed during road paving operations. This is due to recurrent field factors impacting the level of exposure experienced by workers during paving. The present study was undertaken in order to quantify the impact of such factors. Pre-identified variables currently encountered in the field were monitored and recorded during paving surveys, and were conducted randomly covering current applications performed by road crews. Multivariate variance analysis and regressions were then used on computerized field data. The statistical investigations were limited due to the relatively small size of the study (36 data). Nevertheless, the particular use of the step-wise regression tool enabled the quantification of the impact of several predictors despite the existing collinearity between variables. The two bitumen organic fractions (particulates and volatiles) are associated with different field factors. The process conditions (machinery used and delivery temperature) have a significant impact on the production of airborne particulates and explain up to 44% of variability. This confirms the outcomes described by previous studies. The influence of the production factors is limited though, and should be complemented by studying factors involving the worker such as work style and the mix of tasks. The residual volatile compounds, being part of the bituminous binder and released during paving operations, control the volatile emissions; 73% of the encountered field variability is explained by the composition of the bitumen batch. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. Planning the asphalt construction process : Towards more consistent paving and compaction operations

    NARCIS (Netherlands)

    Arbeider, C.G.; Miller, Seirgei Rosario; Doree, Andre; Oosterveld, M.

    2017-01-01

    This research addresses the challenge of linking paving and compaction given that they are mostly treated as detached activities, leading to a decrease in the quality of the compacted asphalt layer. The objective was to develop a support tool that can assist decision-making related to equipment

  18. Paving the Way for Invasive Species: Road Type and the Spread of Common Ragweed ( Ambrosia artemisiifolia)

    Science.gov (United States)

    Joly, Martin; Bertrand, Pascale; Gbangou, Roland Y.; White, Marie-Catherine; Dubé, Jean; Lavoie, Claude

    2011-09-01

    Roads function as prime habitats and corridors for invasive plant species. Yet despite the diversity of road types, there is little research on the influence of these types on the spread of invaders. Common ragweed ( Ambrosia artemisiifolia), a plant producing large amounts of allergenic pollen, was selected as a species model for examining the impact of road type on the spread of invasive plants. We examined this relationship in an agricultural region of Quebec, Canada. We mapped plant distribution along different road types, and constructed a model of species presence. Common ragweed was found in almost all sampling sites located along regional (97%) and local paved (81%) roads. However, verges of unpaved local roads were rarely (13%) colonized by the plant. A model (53% of variance explained), constructed with only four variables (paved regional roads, paved local roads, recently mown road verges, forest cover), correctly predicted (success rate: 89%) the spatial distribution of common ragweed. Results support the hypothesis that attributes associated with paved roads strongly favour the spread of an opportunistic invasive plant species. Specifically, larger verges and greater disturbance associated with higher traffic volume create propitious conditions for common ragweed. To date, emphasis has been placed on controlling the plant in agricultural fields, even though roadsides are probably a much larger seed source. Strategies for controlling the weed along roads have only focused on major highways, even though the considerable populations along local roads also contribute to the production of pollen. Management prioritizations developed to control common ragweed are thus questionable.

  19. CHARACTERIZATION OF MUD/DIRT CARRYOUT ONTO PAVED ROADS FROM CONSTRUCTION AND DEMOLITION ACTIVITIES

    Science.gov (United States)

    The report characterizes fugitive dust generated by vehicular traffic on paved streets and highways resulting from mud/dirt carryout from unpaved areas as a primary source of PM-10 (particles = or < 10 micrometers in aerodynamic diameter), and evaluates three technologies for eff...

  20. Use of fiber reinforced concrete for concrete pavement slab replacement.

    Science.gov (United States)

    2014-03-01

    Unlike ordinary concrete pavement, replacement concrete slabs need to be open to traffic within 24 hours (sooner in : some cases). Thus, high early-strength concrete is used; however, it frequently cracks prematurely as a result of high : heat of hyd...

  1. Concentrated loads on concrete

    DEFF Research Database (Denmark)

    Lorenzen, Karen Grøndahl; Nielsen, Mogens Peter

    1997-01-01

    This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas are devel......This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas...

  2. Sprayed concrete linings

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-12-01

    Sprayed concrete, or shotcrete, was invented in the 1920s for preserving dinosaur skeletons and was used underground initially in coalmines for the preservation and fine proofing of timber supports. Its use as a support lining in rock tunnelling was developed in the 1950s and 60s. The article surveys equipment available from major manufacturers and suppliers of concrete spraying equipment (Aliva, Cifa, GIA, Industri, Ingersoll Rand, etc.), specialist cement and additive manufacturers (Castle, Cement, Moria Carbotech). manufacturers of lattice girders and fibre reinforcement, and manufacturers of instrumentation for tunnel linings. 5 tabs., 9 photos.

  3. Electrokinetic decontamination of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lomasney, H. [ISOTRON Corp., New Orleans, LA (United States)

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  4. Structural Materials: 95. Concrete

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2012-01-01

    Nuclear power plant concrete structures and their materials of construction are described, and their operating experience noted. Aging and environmental factors that can affect the durability of the concrete structures are identified. Basic components of a program to manage aging of these structures are identified and described. Application of structural reliability theory to devise uniform risk-based criteria by which existing facilities can be evaluated to achieve a desired performance level when subjected to uncertain demands and to quantify the effects of degradation is outlined. Finally, several areas are identified where additional research is desired.

  5. Improved concretes for corrosion resistance

    Science.gov (United States)

    1997-07-01

    The deterioration of various reinforced concrete bridge components containing conventional black steel reinforcement is the most important problem facing U.S. highway agencies. A major cause of this concrete deterioration (cracking, delamination, and...

  6. Modeling reinforced concrete durability : [summary].

    Science.gov (United States)

    2014-06-01

    Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...

  7. Advance Organizers: Concret Versus Abstract.

    Science.gov (United States)

    Corkill, Alice J.; And Others

    1988-01-01

    Two experiments examined the relative effects of concrete and abstract advance organizers on students' memory for subsequent prose. Results of the experiments are discussed in terms of the memorability, familiarity, and visualizability of concrete and abstract verbal materials. (JD)

  8. Runoff velocity behaviour on smooth pavement and paving blocks surfaces measured by a tilted plot

    Directory of Open Access Journals (Sweden)

    Sedyowati Laksni

    2017-06-01

    Full Text Available Paving blocks have been widely known as an alternative technology for reducing runoff discharge due to their infiltration performance and capability of retarding the flow. Surface configuration of the different paving blocks types and the openings area play important role in decreasing the runoff velocity. In this study, we investigated the surface runoff velocity on two types of paving blocks layers, and a smooth pavement as comparison. The paving blocks type were rectangular blocks, which have 3.2% openings ratio and hexagonal blocks, which have 6.5% openings ratio. We used a tilted plot covering area of 2 × 6 m, equipped by a rainfall simulator to accommodate the variation of surface slope and rainfall intensity. We measured the velocity by using modification of dye tracer and buoyancy method. The data were then tabulated and graphed based on the paving types and the surface slopes. Generally, the velocity-slope relationship has demonstrated that the increase in surface slope leads to the increase in velocity. In this study, the result showed that slope and rainfall intensity simultaneously influenced the velocity (F = 19.91 > Ftable = 5.14; P < 0.05. However, the findings of this study showed a weak relationship between the changes of surface slope and the changes of runoff velocity on the rectangular blocks (R2 = 0.38. The greater slope did not always invariably lead to the greater runoff velocity. It was likely that there was other predictor variable that was not identified before, and need to be further investigated.

  9. Exposure to occupational dust and changes in pulmonary function among cobblestone paving workers of Jimma, Ethiopia

    Directory of Open Access Journals (Sweden)

    Kalkidan Abate Hassen

    2014-01-01

    Full Text Available The classic diseases of "dusty" occupations may be on decline, but they are not yet extinct. Studies have found associations between changes in ambient particulate air pollution and increased cardiorespiratory morbidity and mortality. A cross-sectional comparative study design was employed on 127 male nonsmoker cobblestone paving workers and 194 matched employed office workers as a reference in order to assess changes in pulmonary function related to dust exposure among cobblestone road paving workers of Jimma zone, Ethiopia. Data was collected using structured questionnaires and spirometric measurements after ethical clearance was obtained. Data was analyzed using unpaired t-tests to examine the differences between the groups. P-values equal or less than 0.05 were considered statistically significant; odds were calculated at a 95% confidence interval. Cobblestone road paving workers had significantly higher odds of respiratory symptoms, dry cough (p < 0.05, cough (p < 0.01 and sore throat (p< 0.001 compared to the reference. The FEV1 for workers exposed to cobblestone road paving workers ranged between 3.12 - 4.73 L, with a mean of 3.96 ± 0.6 L, significantly lower than the reference groups who had a range of 3.3 - 4.78 L and a mean of 4.01 ± 0.6 L (p < 0.05. The mean value of the ratio of FEV1/FVC was significantly decreased in the cobblestone road paving workers compared to the controls (87.2 (SD 4.3 v 89.5 (SD 5.4, p = 0.01. In conclusion, the study revealed clear evidence of the need for health education and for the promotion of activities directed towards mitigating respiratory hazards in order to foster a safe and healthy work environment.

  10. Develop Strong and Serviceable Details for Precast, Prestressed Concrete Bent Cap Standards That Can Be Implemented on Everyday Bridge Construction Projects, Project Summary

    Science.gov (United States)

    2018-01-01

    Pretensioned bent caps are an attractive substructure component because they offer contractors an option for fabrication by prestressing plants and can be used to eliminate or reduce cracks. Two sets of design recommendations were developed to enable...

  11. Applications of Foamed Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Mohd Sari Kamarul Aini

    2017-01-01

    Full Text Available Application of foamed concrete is increasing at present due to high demand on foamed concrete structures with good mechanical and physical properties. This paper discusses on the use of basic raw materials, their characteristics, production process, and their application in foamed lightweight concrete with densities between 300 kg/m3 and 1800 kg/m3. It also discusses the factors that influence the strengths and weaknesses of foamed concrete based on studies that were conducted previously.

  12. TEXTILE TECHNOLOGIES IN CONCRETE ENVIRONMENTS."

    OpenAIRE

    Morrow, Ruth; Belford, Patricia

    2007-01-01

    Girli Concrete is a cross disciplinary funded research project based in the University of Ulster involving a textile designer/ researcher, an architect/ academic and a concrete manufacturing firm.Girli Concrete brings together concrete and textile technologies, testing ideas ofconcrete as textile and textile as structure. It challenges the perception of textiles as only the ‘dressing’ to structure and instead integrates textile technologies into the products of building products. Girli Concre...

  13. Constitutive model for reinforced concrete

    NARCIS (Netherlands)

    Feenstra, P.H.; Borst, de R.

    1995-01-01

    A numerical model is proposed for reinforced-concrete behavior that combines the commonly accepted ideas from modeling plain concrete, reinforcement, and interaction behavior in a consistent manner. The behavior of plain concrete is govern by fracture-energy-level-based formulation both in tension

  14. Porous Concrete and Its Application

    Directory of Open Access Journals (Sweden)

    V. V. Opekunov

    2005-01-01

    Full Text Available Some aspects of resource saving problem in the process of mass construction and operation of heated construction installations are considered in the paper. A special attention is paid to necessary application of porous concrete products in the process of the housing construction. The preference is given to the products made of autoclave cellular concrete and cement hydrophobisized cement perlite concrete.

  15. Concrete produced with recycled aggregates

    Directory of Open Access Journals (Sweden)

    J. J. L. Tenório

    Full Text Available This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW, which were divided into recycled sand (fine and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW. The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.

  16. Structural Concrete, Science into Practice

    NARCIS (Netherlands)

    Bruggeling, A.S.G.

    1987-01-01

    There is a need for a more rational and unified approach to all types of concrete structure, reinforced of prestressed. The first chapter explains in a historical review why the approach of reinforced concrete and that of prestressed concrete have hitherto been very different. In outlining the

  17. Forterra Concrete Products, Inc.

    Science.gov (United States)

    The EPA is providing notice of a proposed Administrative Penalty Assessment against Forterra Concrete Products, Inc., a business located at 511 E. John Carpenter Freeway, Irving, TX, 75062, for alleged violations at its facility located at 23600 W. 40th St

  18. Teaching concrete structures

    DEFF Research Database (Denmark)

    Goltermann, Per

    2014-01-01

    The teaching of concrete structures has been revised and a number of new approaches have been developed, implemented and evaluated. Inductive teaching, E-learning and “patches” have been found to be improvements and may be an inspiration and help for others development of the teaching and learning...

  19. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  20. Continuous Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1996-01-01

    This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...

  1. Hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.

    1996-01-01

    As part of the maintenance policy of the Dutch Ministry of Transport, Civil Engineering Division, hydrophobic treatment of concrete was considered as an additional protective measure against penetration of aggressive substances, for instance deicing salts in bridge decks. A set of tests was designed

  2. Concrete longevity overview

    International Nuclear Information System (INIS)

    Chang, W.; Morreale, B.

    1991-01-01

    A number of compact host states and unaffiliated states are currently selecting appropriate disposal technology and construction materials for their planned low-level radioactive waste (LLW) disposal facilities. Concrete is one of the candidate materials under consideration for the construction of LLW disposal facilities because of its strength, durability, abundant availability, and relatively low cost. The LLW disposal facilities must maintain intruder barrier integrity for up to 500 years, without active maintenance after the first 100 years. The ability of concrete to survive for such a long time as a construction material is a critical issue. This report provides a basic understanding of the composition and workings of concrete as a structural material in LLW disposal facilities and a description of degradation factors and state-of-the-art mitigative measures available to preserve the durability and longevity of concrete. Neither the paper nor the report is intended to be a design guidance document, and neither addresses using cement as a waste solidification agent. 5 refs., 1 tab

  3. Fracture Mechanics of Concrete

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the international workshop on concrete fracture, organised by A Carpinteri, at Torino ... The next question is how to bring the size effect into codes of practice on the ... analysis of the recent collapse of the World Trade Center in New York by Z P ...

  4. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In

  5. Electrical pulses protect concrete

    NARCIS (Netherlands)

    Koleva, D.; Fraaij, A.; Van Kasteren, J.

    2006-01-01

    Even concrete is not as hard as it looks. Sea water, salt on icy roads, and indirectly even carbon dioxide from the air can corrode the steel of the reinforcing bars and so threaten the strength and integrity of a bridge pier, jetty, or viaduct. Dessi Koleva, a chemical engineer from Bulgaria, spent

  6. CONCRETE REACTOR CONTAINMENT

    Energy Technology Data Exchange (ETDEWEB)

    Lumb, Ralph F.; Hall, William F.; Fruchtbaum, Jacob

    1963-06-15

    The results of various leak-rate tests demonstrate the practicality of concrete as primary containment for the maximum credible accident for a research reactor employing plate-type fuel and having a power in excess of one megawatt. Leak-test time was shortened substantially by measuring the relaxation time for overpressure decay, which is a function of leak rate. (auth)

  7. Electroosmotic decontamination of concrete

    International Nuclear Information System (INIS)

    Bostick, W.D.; Bush, S.A.; Marsh, G.C.; Henson, H.M.; Box, W.D.; Morgan, I.L.

    1993-03-01

    A method is described for the electroosmotic decontamination of concrete surfaces, in which an electrical field is used to induce migration of ionic contaminants from porous concrete into an electrolyte solution that may be disposed of as a low-level liquid radioactive waste (LLRW); alternately, the contaminants from the solution can be sorbed onto anion exchange media in order to prevent contaminant buildup in the solution and to minimize the amount of LLRW generated. We have confirmed the removal of uranium (and infer the removal of 99 Tc) from previously contaminated concrete surfaces. In a typical experimental configuration, a stainless steel mesh is placed in an electrolyte solution contained within a diked cell to serve as the negative electrode (cathode) and contaminant collection medium, respectively, and an existing metal penetration (e.g., piping, conduit, or rebar reinforcement within the concrete surface) serves as the positive electrode (anode) to complete the cell. Typically we have achieved 70 to >90% reductions in surface activity by applying 2 )

  8. Polyester polymer concrete overlay.

    Science.gov (United States)

    2013-01-01

    Polyester polymer concrete (PPC) was used in a trial application on a section of pavement that suffers from extensive studded tire wear. The purpose of the trial section is to determine if PPC is a possible repair strategy for this type of pavement d...

  9. Concrete. Connecting Creative Technologists

    NARCIS (Netherlands)

    Bakker, T.P.; Huijboom, N.M.; Koops, R.; Kotterink, B.; Nieuwenhuis, O.A.; Seiffert, L.; Siem, R.; Zee, F.A. van der

    2015-01-01

    Kruisbestuiving tussen de creatieve en high-tech sector biedt enorme kansen, bijvoorbeeld op het gebied van Smart Industry. Desondanks blijven deze kansen in de praktijk vaak onderbenut. In het project 'CONCRETE' heeft TNO op basis van een aantal case studies onderzocht welke succesfactoren tot een

  10. Numerical analysis and comparison of three types of herringbone frame structure for highway subgrade slopes protection

    Science.gov (United States)

    Nie, Yihua; Tang, Saiqian; Xu, Yang; Mao, Kunli

    2018-04-01

    In order to obtain mechanical response distribution of herringbone frame structure for highway subgrade slopes protection and select the best structure type, 3D numerical models of three types herringbone frame structure were established and analyzed in finite element software ANSYS. Indoor physical model of soil slope protected by herringbone frame structure was built and mechanical response of the frame structure was measured by loading tests. Numerical results indicate slope foot is the stress most disadvantageous location. Comparative analysis shows that structure composed of mortar rubble base layer and precast concrete blocks paving layer is the best one for resisting deformation and structure with cement mortar base layer and precast concrete blocks paving layer is the best one for being of low stress.

  11. Self-compacting concrete (SCC)

    DEFF Research Database (Denmark)

    Geiker, Mette Rica

    2008-01-01

    In many aspects Self-Compacting Concrete (SCC, “Self-Consolidating Concrete” in North America) can be considered the concrete of the future. SCC is a family of tailored concretes with special engineered properties in the fresh state. SCC flows into the formwork and around even complicated...... reinforcement arrangements under its own weight. Thus, SCC is not vibrated like conventional concrete. This drastically improves the working environment during construction, the productivity, and potentially improves the homogeneity and quality of the concrete. In addition SCC provides larger architectural...

  12. Early Property Development in Concrete

    DEFF Research Database (Denmark)

    Normann, Gitte; Munch-Petersen, Christian

    The Freiesleben Maturity function is widely used for planning of execution. We tested if for concrete with and without fly ash. The test showed surprisingly that the maturity function in general is not valid. We found that curing at high temperature gave a significant decrease in strength. Fly ash...... appears to reduce this decrease somewhat. We also examined the resistance against chloride penetration for the different concrete types. The resistance was reduced at high temperatures for concrete without fly ash. For concrete with fly ash, it was the opposite; concrete with fly ash obtained higher...

  13. Estimating Durability of Reinforced Concrete

    Science.gov (United States)

    Varlamov, A. A.; Shapovalov, E. L.; Gavrilov, V. B.

    2017-11-01

    In this article we propose to use the methods of fracture mechanics to evaluate concrete durability. To evaluate concrete crack resistance characteristics of concrete directly in the structure in order to implement the methods of fracture mechanics, we have developed special methods. Various experimental studies have been carried out to determine the crack resistance characteristics and the concrete modulus of elasticity during its operating. A comparison was carried out for the results obtained with the use of the proposed methods and those obtained with the standard methods for determining the concrete crack resistance characteristics.

  14. An historical examination of concrete

    International Nuclear Information System (INIS)

    Mallinson, L.G.

    1986-03-01

    The requirement that concrete in nuclear waste repositories be stable physically and chemically for hundreds, if not thousands, of years has initiated studies of ancient and old concretes. The history of cement and concrete is described. The oldest know concrete, from Yugoslavia, is ca. 7,500 years old. Concrete was used in many ancient civilisations, including those of Egypt, Greece and Rome. Ancient concretes were usually based upon lime, but sometimes gypsum was used. Pure lime concretes hardened by atomospheric carbonation but the Ancients, in particular the Romans, also employed hydraulic limes and discovered pozzolanas to make superior concretes which, upon hardening, contained complex cementitious hydrates including calcium-silicate-hydrate (CSH), the principal binding element in Portland cement concrete. Portland cement was not invented until 1824 or later and consists principally of calcium silicates formed by clinkerisation of a mixture of limestone and clay in carefully measured proportions. The cement sets hydraulically to form, principally, calcium hydroxide and CSH, the latter being an amorphous or semi-amorphous substance of variable composition. The published literature relating to the analysis of old and ancient cements and concretes is reviewed. A suite of samples spanning the history of concrete has been obtained. A variety of physical and chemical techniques have been employed to characterise these samples. (author)

  15. Life Cycle Assessment of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sjunnesson, Jeannette

    2005-09-15

    This is an environmental study on concrete that follows the standard protocol of life cycle assessment (LCA). The study is done for two types of concrete, ordinary and frost-resistant concrete, and has an extra focus on the superplasticizers used as admixtures. The utilization phase is not included in this study since the type of construction for which the concrete is used is not defined and the concrete is assumed to be inert during this phase. The results show that it is the production of the raw material and the transports involved in the life cycle of concrete that are the main contributors to the total environmental load. The one single step in the raw material production that has the highest impact is the production of cement. Within the transportation operations the transportation of concrete is the largest contributor, followed by the transportation of the cement. The environmental impact of frost-resistant concrete is between 24-41 % higher than that of ordinary concrete due to its higher content of cement. Superplasticizers contribute with approximately 0.4-10.4 % of the total environmental impact of concrete, the least to the global warming potential (GWP) and the most to the photochemical ozone creation potential (POCP). Also the toxicity of the superplasticizers is investigated and the conclusion is that the low amount of leakage of superplasticizers from concrete leads to a low risk for the environment and for humans.

  16. Moving research to practice through partnership: a case study in Asphalt Paving.

    Science.gov (United States)

    Chang, Charlotte; Nixon, Laura; Baker, Robin

    2015-08-01

    Multi-stakeholder partnerships play a critical role in dissemination and implementation in health and safety. To better document and understand construction partnerships that have successfully scaled up effective interventions to protect workers, this case study focused on the collaborative processes of the Asphalt Paving Partnership. In the 1990s, this partnership developed, evaluated, disseminated, and achieved near universal, voluntary adoption of paver engineering controls to reduce exposure to asphalt fumes. We used in-depth interviews (n = 15) and document review in the case study. We describe contextual factors that both facilitated and challenged the formation of the collaboration, central themes and group processes, and research to practice (r2p) outcomes. The Asphalt Paving Partnership offers insight into how multi-stakeholder partnerships in construction can draw upon the strengths of diverse members to improve the dissemination and adoption of health and safety innovations and build a collaborative infrastructure to sustain momentum over time. © 2015 Wiley Periodicals, Inc.

  17. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Rice, Charles M

    2013-01-01

    More than two decades of intense research has provided a detailed understanding of hepatitis C virus (HCV), which chronically infects 2% of the world's population. This effort has paved the way for the development of antiviral compounds to spare patients from life-threatening liver disease......, such as HCV diversity, viral resistance, the influence of host genetics, advanced liver disease and other co-morbidities....

  18. Influence of pavement macrotexture on PM10 emissions from paved roads: A controlled study

    Science.gov (United States)

    China, Swarup; James, David E.

    2012-12-01

    This paper investigates influence of pavement macrotexture on paved road PM10 emissions. This study was conducted on different paved roadway types (local, collector and minor arterial) in the Las Vegas Valley, Nevada. Pavement macrotexture was measured using the ASTM E 965 sand patch method and the Digital Surface Roughness Meter™ (DSRM™). A controlled constant soil loading with known PM10 fraction was applied to cleaned road surfaces. The Desert Research Institute's (DRI) Mini-PI-SWERL™ (Portable In-Situ Wind ERosion Lab) was used to estimate PM10 mass emissions and cumulative mass emitted from pavement surfaces. PM10 mass emissions using controlled applied soil loadings generally declined with increasing pavement macrotexture at all applied shear levels. The relationships were statistically significant, and indicate that pavement macrotexture may need to be included in future development of revised paved road PM10 emissions factors. A change in the slope of emitted PM10 mass and pavement macrotexture occurred between 0.8 and 0.9 mm mean texture depth (MTD). Anomalies in PM10 mass emissions were observed at MTDs exceeding 1.2 mm. Two-way frequency distributions of pavement surface features obtained from DSRM measurements were analyzed to explain the observed anomalies. Results showed that pavement surface feature size distributions may influence on PM10 emissions from paved roads at similar MTDs. PM10 mass emissions were found to linearly depend on adjusted mode size of the pavement surface aggregate. A sharp decrease in friction velocities, computed from wind erosion theory, at MTDs above 0.9 mm matched an observed sharp decrease in PM10 emissions rates at MTDs above 0.9 mm, indicating that classical wind erosion theory could be adapted for non-erodible pavement surfaces and linearly relate PM10 emissions rates to applied shear stress at an aerodynamic roughness height of 0.075 mm.

  19. Coffered slabs as a perspective type of the reinforced concrete structures

    OpenAIRE

    Kibkalo Anton; Volkov Mikhail; Vodolagina Anna; Murgul Vera

    2016-01-01

    The article discusses coffered slabs. In this paper considered the technology of arrangement of this slabs. Cast-in-place and precast ways of construction of coffered slab are reviewed. Сast-in-place and precast coffered slabs has been analysed in this article. Among other things construction of coffered slabs has an economical and technical advantages.

  20. Coffered slabs as a perspective type of the reinforced concrete structures

    Directory of Open Access Journals (Sweden)

    Kibkalo Anton

    2016-01-01

    Full Text Available The article discusses coffered slabs. In this paper considered the technology of arrangement of this slabs. Cast-in-place and precast ways of construction of coffered slab are reviewed. Сast-in-place and precast coffered slabs has been analysed in this article. Among other things construction of coffered slabs has an economical and technical advantages.

  1. Design and construction of a prestressed concrete pressure vessel for a working pressure of 69N/mm2 (10,000 p.s.i)

    International Nuclear Information System (INIS)

    Dawson, P.

    1977-01-01

    Construction is nearing completion of a pressure vessel with a chamber 9.15 m (30 ft.) high and 3.05 m (10 ft.) internal diameter for hydraulic tests on marine components up to 69 N/mm 2 (10,000 p.s.i.) working pressure. The chamber comprises a steel cylinder, with independent end plates contained within a prestressed concrete structure. The cylinder is constructed in two halves, each consisting of three forged rings, 170 mm thick, shrink-fitted onto a 90 mm thick liner. It rests on a 100 mm thick bottom plate, provided with a band of hard-facing overlay on which the cylinder slides in response to changes of test medium pressure. Models to be tested within the chamber are hung from a removeable 150 mm thick top plate. A central elliptical hatch provides access into the chamber. Special sealing assemblies are fitted at the junction of the cylinder sections and between the cylinder and end plates. These seals are capable of accepting radial expansion of the cylinder and corresponding vertical movements at the upper seal arising from elastic movements of the enclosing structure. The top plate is restrained by a wire-wound prestressed concrete closure plug, itself located by twelve bifurcated inclined steel struts which transfer the load on the top plate into the concrete structure. The struts are retractable to allow removal of the closure plug and top plate. The enclosing concrete structure is 25 m (82 ft.) high and 11 m (36 ft.) diameter. It is vertically prestressed by 180 no. 540 Tonne tendons and circumferentially prestressed by 5 mm wire laid under tension in pre-cast concrete channels by the Taylor Woodrow Wire-Winding System. The structure was analysed, using limit state principles, by computerised elastic and non-elastic dynamic relaxation techniques. The results were evaluated against triaxial stress criteria established from relevant research work and experience obtained from nuclear prestressed concrete pressure vessels

  2. Paving asphalt products exhibit a lack of carcinogenic and mutagenic activity.

    Science.gov (United States)

    Goyak, Katy O; McKee, Richard H; Minsavage, Gary D; McGowan, Claude; Daughtrey, Wayne C; Freeman, James J

    2011-10-01

    A paving asphalt and a vacuum residuum (derived from crude oil by atmospheric and subsequent vacuum distillation and used as a blend stock for asphalt) were tested in skin carcinogenesis assays in mice and in optimized Ames assays for mutagenic activity. In the skin cancer tests, each substance was applied twice weekly for 104 weeks to the clipped backs of groups of 50 male C3H mice. Neither the paving asphalt nor the vacuum residuum (30% weight/volume and 75% weight/weight in US Pharmacopeia mineral oil, respectively) produced any tumors. The positive control benzo[a]pyrene (0.05% w/v in toluene) induced tumors in 46 of 50 mice, demonstrating the effectiveness of the test method. Salmonella typhimurium tester strain TA98 was used in the optimized Ames assay to evaluate mutagenic potential. Dimethylsulfoxide (DMSO) extractions of the substances were not mutagenic when tested up to toxic limits. Thus, under the conditions of these studies, neither the paving asphalt nor the vacuum residuum was carcinogenic or mutagenic.

  3. PENENTUAN CAMPURAN LUMPUR LAPINDO SEBAGAI SUBSTITUSI PASIR DAN SEMEN DALAM PEMBUATAN PAVING BLOCK RAMAH LINGKUNGAN

    Directory of Open Access Journals (Sweden)

    Ganjar Samudro

    2016-03-01

    Full Text Available Lumpur Lapindo (LL atau Lumpur Sidoarjo (Lusi merupakan lumpur panas, yang pemanfaatannya sangat terbatas dan menimbulkan dampak sosial dan lingkungan yang cukup besar. Karakteristik Lumpur Lapindo mengandung silikat (SiO2 dan kapur (CaO yang cukup tinggi dan bersifat pozoland. Selain kandungan kimia yang menguntungkan, Lumpur Lapindo juga bersifat B3 dengan kandungan logam berat Pb 35,41 ppm dan Cu 21,9 ppm yang melebihi baku mutu Kepmenkes no.907/2002, PP no.82/2001 dan PP no.18/1999. Teknik olidifikasi menjadi paving block dapat digunakan untuk mengubah watak fisik dan kimia limbah B3 dengan cara penambahan senyawa pengikat sehingga pergerakan senyawa-senyawa B3 dapat dihambat dan membentuk ikatan massa monolit dengan struktur yang kekar. Penambahan Lumpur Lapindo sebagai substitusi semen dan pasir ditentukan sebesar 10%, 20%, 30%, 40%, dan 50%, dengan pengujian terhadap kuat tekan, daya serap air dan perlindian. Penelitian ini didapatkan variasi Lumpur Lapindo sebagai substitusi pasir dan semen optimum asingmasing sebesar 30% dengan kuat tekan 408 kg/cm2 , daya serap air 10,17% dan uji perlindian dihasilkan dibawah 0,03 ppm Pb dan Cu, serta biaya pembuatan 1 buah paving block berkurang dari Rp 1.302,86 per buah menjadi Rp 1.059,40 per buah. Lumpur Lapindo sebagai substitusi semen lebih baik penggunaannya dalam pembuatan paving block ramah ingkungan.

  4. Quality inspection of concrete

    International Nuclear Information System (INIS)

    Mellmann, G.

    1983-01-01

    The testing instruction named in the pertinent standards for concrete vary considerably. They can best be judged through comparing their operating characteristic curves. Here it is noticed for the proof of the solidity of the building, that with the compressive resistances derived from the impact test, method-related severe variations influence the evaluation of the results. In the scope of tests carried out by the Federal Institute for Material Testing, through non destructive, ultrasonic echo return measurements and impact tests as well as through combined evaluation with the aid of a multiple linear regression analysis, it could be proven that a greater confidence level can be achieved and thus a more appropriate judgement of the quality of the concrete of a building is possible. (orig.) [de

  5. Drilling waste makes concrete

    International Nuclear Information System (INIS)

    Rosfjord, A.

    1993-01-01

    The article deals with a method of drilling waste reclamation by utilizing the converted oil-containing cuttings from the North Sea in the concrete production in Norway. The oil content is to be removed in an incineration process by heating the cuttings to about 800 o C. The output capacity from the exhaust gas water cooling system is 7500 kW/hour, and is to be used in different industrial heating processes. The remaining content of pollutants in the cleaned exhaust gas outlet corresponds to the required limits with the exception of SO 2 and HCl. In addition, an exhaust gas washing plant is to be installed in the near future designed for the further reduction of pollutants by 90%. The converted raw materials are used as a supplement for lessening the demand of sand and cement in the production of concrete-made pipes. 1 fig

  6. Reinforced concrete tomography

    International Nuclear Information System (INIS)

    Mariscotti, M.A.J.; Morixe, M.; Tarela, P.A.; Thieberger, P.

    1997-01-01

    In this paper we describe the technique of reinforced concrete tomography, its historical background, recent technological developments and main applications. Gamma radiation sensitive plates are imprinted with radiation going through the concrete sample under study, and then processed to reveal the presence of reinforcement and defects in the material density. The three dimensional reconstruction, or tomography, of the reinforcement out of a single gammagraphy is an original development alternative to conventional methods. Re-bar diameters and positions may be determined with an accuracy of ± 1 mm 0.5-1 cm, respectively. The non-destructive character of this technique makes it particularly attractive in cases of inhabited buildings and diagnoses of balconies. (author) [es

  7. Hypervelocity impact of concrete

    International Nuclear Information System (INIS)

    Watson, A.J.; Anderson, W.F.; Archer, B.

    1982-01-01

    Blocks of concrete and various other materials were impacted by high speed copper jets at the centre of one face, the resulting transient phenomena were measured using ultra high speed photography and various electrical signal transducers. Measurements were made of the jet velocity, penetration rate, crack velocity and initiation time, and strain pulse propagation. Post test measurements were made using electron microscopy, ultra sonics and stereoscopic photography. (orig.) [de

  8. Design of ultra-lightweight concrete: towards monolithic concrete structures

    Directory of Open Access Journals (Sweden)

    Yu Qing Liang

    2014-04-01

    Full Text Available This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K; and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm . This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.

  9. Operational features of decorative concrete

    Science.gov (United States)

    Bazhenova, Olga; Kotelnikov, Maxim

    2018-03-01

    This article deals with the questions of creation and use of decorative and finishing concrete and mortar. It has been revealed that the most effective artificial rock-imitating stone materials are those made of decorative concrete with the opened internal structure of material. At the same time it is important that the particles of decorative aggregate should be distributed evenly in the concrete volume. It can be reached only at a continuous grain-size analysis of the aggregate from the given rock. The article tackles the necessity of natural stone materials imitation for the cement stone color to correspond to the color of the rock. The possibility of creation of the decorative concrete imitating rocks in the high-speed turbulent mixer is considered. Dependences of durability and frost resistance of the studied concrete on the pore size and character and also parameters characterizing crack resistance of concrete are received.

  10. Concrete workability and fibre content

    OpenAIRE

    Vikan, Hedda

    2007-01-01

    Research report Parameters influencing the workability of fibre concrete and maximum fibre content are given in this state of the art report along with the range of fibre types available on today’s market. The study reveales that new placing techniques and production methods are crucial in order to increase fibre content and concrete strength. Achieving the same mechanical properties as traditionally reinforced concrete will probably also demand changes of the matrix. Finally, reco...

  11. Inspection Strategies for Concrete Bridges

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1989-01-01

    In this paper an optimal inspection strategy for concrete bridges based on periodic routine and detailed inspections is presented. The failure mode considered is corrosion of the reinforcement due to chlorides. A simple modelling of the corrosion and of the inspection strategy is presented....... The optimal inspection strategy is determined from an optimization problem, where the design variables are time intervals between detailed inspections and the concrete cover. The strategy is illustrated on a simple structure, namely a reinforced concrete beam....

  12. Another Concrete In the Wall

    OpenAIRE

    Meric, Asli Duru

    2015-01-01

    concrete has a memory. It stores the construction sequences. It shows what it is made of and how it is made. The texture of the formwork, the color difference of the pours, and the shadows of the metal ties combine to layer the beauty of concrete. The aim of this study is to explore the instruments of a concrete surface in order to enhance this multi-sensory experience. This study began with the design of a concrete wall and evolved into the design of a single-family home. MARCH

  13. Performance-Based Specifications of Workability Characteristics of Prestressed, Precast Self-Consolidating Concrete—A North American Prospective

    Science.gov (United States)

    Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Hwang, Soo-Duck; Han, Ning-Xu

    2014-01-01

    Adequate selection of material constituents and test methods are necessary for workability specifications and performance of hardened concrete. An experimental program was performed to evaluate the suitability of various test methods for workability assessment and to propose performance specifications of prestressed concrete. In total, 33 self-consolidating concrete (SCC) mixtures made with various mixture proportioning parameters, including maximum size and type of aggregate, type and content of binder, and w/cm were evaluated. Correlations among various test results used in evaluating the workability responses are established. It is recommended that SCC should have slump flow values of 635–760 mm. To ensure proper filling capacity greater than 80%, such concrete should have a passing ability that corresponds to L-box blocking ratio (h2/h1) ≥ 0.5, J-Ring flow of 570–685 mm, slump flow minus J-Ring flow diameter ≤75 mm. Moreover, Stable SCC should develop a column segregation index lower than 5%, and rate of settlement at 30 min of 0.27%/h for SCC proportioned with 12.5 or 9.5 mm MSA. It is recommended that SCC should have a plastic viscosity of 100–225 Pa·s and 100–400 Pa·s for concrete made with crushed aggregate and gravel, respectively, to ensure proper workability. PMID:28788578

  14. Build-up Factor Calculation for Ordinary Concrete, Baryte Concrete and Blast-furnace Slugges Concrete as γ Radiation Shielding

    International Nuclear Information System (INIS)

    Isman MT; Elisabeth Supriatni; Tochrul Binowo

    2002-01-01

    Calculation of build up factor ordinary concrete, baryte concrete and blast-furnace sludge concrete have been carried out. The calculations have been carried out by dose rate measurement of Cs 137 source before and after passing through shielding. The investigated variables were concrete type, thickness of concrete and relative possession of concrete. Concrete type variables are ordinary concrete, baryte concrete and blast sludge furnace concrete. The thickness variables were 6, 12, 18, 24, 30 and 36 cm. The relative position variables were dose to the source and close to detector. The result showed that concrete type and position did not have significant effect to build-up factor value, while the concrete thickness (r) and the attenuation coefficient (μ) were influenced to the build-up factor. The higher μr value the higher build-up factor value. (author)

  15. Water footprint and life cycle assessment of concrete roof tile and brick products at PT. XYZ

    Science.gov (United States)

    Octavia, Caesara; Laurence; Hartono, Natalia

    2017-12-01

    PT. XYZ is an Indonesian company engaged in manufacturing concrete roof tile and paving block. The company has not paid attention to the environmental and human health aspects of their production activity, where there is so much water used and discarded during the production process and no water treatment for the wastewater produced. Therefore this topic proposed in order to determine the resulting impacts from the production processes of concrete roof tile and brick at PT. XYZ on the environment and human health. The impact on the environment and human health were identified through water footprint assessment (WFA) and life cycle assessment (LCA). Through the WFA accounting, it is known that the amount of water needed to produce a concrete roof tile is 21.384 L which consists of 16.433 L blue water and 4.951 L grey water, whereas for a brick is 10.496 L which consists of 10.48 L blue water and 0.016 L grey water. With ReCiPe midpoint (H) method, it is known that the dominant impact categories generated in one batch production processes of concrete roof tile and brick are natural land transformation, marine eco-toxicity, freshwater eutrophication, and freshwater eco-toxicity, where those impact categories represent the average of 75.5% from overall impact category for concrete roof tile and brick products.

  16. IKEA

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    1996-01-01

    A technical description of design and execution of a warehouse made by precast concrete components......A technical description of design and execution of a warehouse made by precast concrete components...

  17. Fresh gasoline emissions, not paved road dust, alter cardiac repolarization in ApoE-/- mice.

    Science.gov (United States)

    Campen, Matthew J; McDonald, Jacob D; Reed, Matthew D; Seagrave, Jeanclare

    2006-01-01

    Fresh vehicular emissions potentially represent a ubiquitous environmental concern for cardiovascular health. We compared electrocardiographic effects of fresh gasoline engine emissions with resuspended paved road dust in a mouse model of coronary insufficiency. Apolipoprotein E (ApoE)-/- mice on a high fat diet were exposed by whole-body inhalation to either gasoline emissions at 60 microg/m3 particulate matter (PM), an equivalent atmosphere with particles filtered out of the whole exhaust, or paved road dust at 0.5 and 3.5 mg /m3 for 6 h/d for 3 d. Radiotelemetry recordings of electrocardiogram (ECG) were analyzed for changes in T-wave morphology (QT interval, T-wave amplitude, and T-wave Area). Following exposures, lung lavage and blood samples were obtained to assay for markers of pulmonary and systemic inflammation. No exposure induced significant changes in heart rate and only the high concentration of road dust induced signs of pulmonary inflammation. T-wave area exhibited significant deviation from baseline values during exposure to gasoline exhaust particulates, but not to either concentration of road dust or gasoline emissions sans particulates. Gasoline-exposed mice demonstrated elevated plasma endothelin-1, but did not cause systemic inflammation. These data support the hypothesis that freshly-generated engine emissions, as opposed to resuspended paved road dust, may drive cardiac effects that have been observed at road-sides in the environment. The absence of ECG effects for both very high concentrations of road dust PM and equivalent concentrations of the vapor/gas phase of gasoline engine exhaust further indicate the specific risk conferred by fresh vehicular PM.

  18. Characterisation and management of concrete grinding residuals.

    Science.gov (United States)

    Kluge, Matt; Gupta, Nautasha; Watts, Ben; Chadik, Paul A; Ferraro, Christopher; Townsend, Timothy G

    2018-02-01

    Concrete grinding residue is the waste product resulting from the grinding, cutting, and resurfacing of concrete pavement. Potential beneficial applications for concrete grinding residue include use as a soil amendment and as a construction material, including as an additive to Portland cement concrete. Concrete grinding residue exhibits a high pH, and though not hazardous, it is sufficiently elevated that precautions need to be taken around aquatic ecosystems. Best management practices and state regulations focus on reducing the impact on such aquatic environment. Heavy metals are present in concrete grinding residue, but concentrations are of the same magnitude as typically recycled concrete residuals. The chemical composition of concrete grinding residue makes it a useful product for some soil amendment purposes at appropriate land application rates. The presence of unreacted concrete in concrete grinding residue was examined for potential use as partial replacement of cement in new concrete. Testing of Florida concrete grinding residue revealed no dramatic reactivity or improvement in mortar strength.

  19. Pemanfaatan Limbah Serbuk Batu Marmer Dari Gunung Batu Naitapan Kabupaten Timor Tengah Selatan Pada Campuran Paving Block

    OpenAIRE

    Hunggurami, Elia; Lauata, Meriyanti Flowrinda; Utomo, Sudiyo

    2013-01-01

    Mining of marble stone at Naitapan Stone Mountain waste floured marble sawn stone. Marble powder is a lot of buried material and its utilization is still relatively small. Seeing its potential, waste marble powder can be pursued for use as an alternative building material that is as fine aggregate substitute for sand in the manufacture of paving blocks. Replacement of sand with powdered marble will certainly affect the physical properties of the paving blocks, so that the study sought to find...

  20. The influence of recycled concrete aggregates in pervious concrete

    Directory of Open Access Journals (Sweden)

    L. M. TAVARES

    Full Text Available The expansion of urban areas under constant changes in the hydrological cycle directly affects the drainage of rainwater. The problems of urban drainage become major engineering problems to be solved in order to avoid negative consequences for local populations. Another urban problem is the excessive production of construction and demolition waste (CDW, in which , even with a increasingly policy of waste management , have been an end up being thrown in inappropriate disposal sites. Alternatively aiming to a minimization of the problems presented, we propose the study of permeable concrete using recycled concrete aggregate. In this study, there were evaluated the performance of concrete by means of permeability, consistency, strength, and interface conditions of the materials . Satisfactory relationships of resistance/permeability of concrete with recycled aggregate in relation to the concrete with natural aggregates was obtained, showing their best potential.

  1. Natural Rubber Modification For Upper Layer Of Rubberized Asphalt Paving Block AS Shock Absorber

    OpenAIRE

    Nasruddin, Nasruddin

    2017-01-01

    The research of rubber compounding modification for upper layer of rubberized asphalt paving block as shock absorber using natural rubber, styrene butadiene rubber (SBR) as synthetic rubber, fly ash as filler and also vegetable oil as plasticizer has been conducted. The research design was varying the filler Si-69, fly ash and palm oil. The five formulas A, B, C, D, and E designed by varying the amount of Si-69 (48.5; 50.75; 53.00; 55.25; and 57.50) phr; coal fly ash (4.75, 7.00, 9.25, 11.50 ...

  2. Nuclear radiation and the properties of concrete

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1983-08-01

    Concrete is used for structures in which the concrete is exposed to nuclear radiation. Exposure to nuclear radiation may affect the properties of concrete. The report mentions the types of nuclear radiation while radiation damage in concrete is discussed. Attention is also given to the effects of neutron and gamma radiation on compressive and tensile strength of concrete. Finally radiation shielding, the attenuation of nuclear radiation and the value of concrete as a shielding material is discussed

  3. The concrete canister program

    International Nuclear Information System (INIS)

    Ohta, M.M.

    1978-02-01

    In the spring of 1974, WNRE began development and demonstration of a dry storage concept, called the concrete canister, as a possible alternative to storage of irradiated CANDU fuel in water pools. The canister is a thick-walled concrete monolith containing baskets of fuel in the dry state. The decay heat from the fuel is dissipated to the environment by natural heat transfer. Four canisters were designed and constructed. Two canisters containing electric heaters have been subjected to heat loads of 2.5 times the design, ramp heat-load cycling, and simulated weathering tests. The other two canisters were loaded with irradiated fuel, one containing fuel bundles of uniform decay heat and the other containing bundles of non-uniform decay heat in a non-symmetrical radial and axial array. The collected data were used to verify the analytical tools for prediction of effectiveness of heat transfer and radiation shielding and to verify the design of the basket and canisters. The demonstration canisters have shown that this concept is a viable alternative to water pools for the storage of irradiated CANDU fuel. (author)

  4. The Concrete and Pavement Challenge

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  5. Revised Rules for Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Jensen, F. M.; Middleton, C.

    This paper is based on research performed for the Highway Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: Concrete Bridges" It contains details of a methodology which can be used to generate Whole Life (WL) reliability profiles....... These WL reliability profiles may be used to establish revised rules for Concrete Bridges....

  6. Proportioning of light weight concrete

    DEFF Research Database (Denmark)

    Palmus, Lars

    1996-01-01

    Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory......Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory...

  7. Fatigue of Concrete Armour Units

    DEFF Research Database (Denmark)

    Sørensen, N. B.; Burcharth, H. F.; Liu, Z.

    1995-01-01

    In the present article fatigue as a possible reason for failure of Dolosse armour units made of plain concrete is discussed.......In the present article fatigue as a possible reason for failure of Dolosse armour units made of plain concrete is discussed....

  8. Concrete for γ radiation shielding

    International Nuclear Information System (INIS)

    Azevedo e Souza, A.C. de; Rogers, John Douglas

    1980-01-01

    The attenuation characteristics of γ radiation in concrete slabs, considering their mechanical resistence and densities were determined. One heavy concrete which was used, was prepared using as additives iron ore and Fe 2 O 3 pellets in various grain sizes. Fortran programs were used for analysing data and determining the absorption coefficients and attenuation factors. (Author) [pt

  9. Radiographic testing in concrete structures

    International Nuclear Information System (INIS)

    Oliveira, D. de

    1987-01-01

    The radiographic testing done in concrete structures is used to analyse the homogeneity, position and corrosion of armatures and to detect discontinuity in the concrete such as: gaps, cracks and segregations. This work develops a Image quality Indicator (IQI) with an adequated sensibility to detect discontinuites based on BS4408 norm. (E.G.) [pt

  10. Wood and concrete polymer composites

    International Nuclear Information System (INIS)

    Singer, K.

    1974-01-01

    There are several ways to prepare and use wood and concrete polymer composites. The most important improvements in the case of concrete polymer composites are obtained for compressive and tensile strengths. The progress in this field in United States and other countries is discussed in this rview. (M.S.)

  11. Concrete for. gamma. radiation shielding

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo e Souza, A.C. (Rio de Janeiro Univ. (Brazil). Inst. de Quimica); Rogers, J D [Rio de Janeiro Univ. (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1980-06-01

    The attenuation characteristics of ..gamma.. radiation in concrete slabs, considering their mechanical resistence and densities were determined. One heavy concrete which was used, was prepared using as additives iron ore and Fe/sub 2/ O/sub 3/ pellets in various grain sizes. Fortran programs were used for analysing data and determining the absorption coefficients and attenuation factors.

  12. Concrete shielding exterior to iron

    International Nuclear Information System (INIS)

    Yurista, P.; Cossairt, D.

    1983-08-01

    A rule of thumb at Fermilab has been to use 3 feet of concrete exterior to iron shielding. A recent design of a shield with a severe dimensional constraint has prompted a re-evaluation of this rule of thumb and has led to the following calculations of the concrete thickness required to nullify this problem. 4 references, 4 figures

  13. Urban heritage, building maintenance : Concrete

    NARCIS (Netherlands)

    Verhoef, L.G.W.

    1999-01-01

    Concrete as a conglomerate of sand, stone and a binder, is a very old material indeed. In the Roman period earth from Puozzoli, together with lime and water could bind the sand and the stones to form a conglomerate that has an affmity to our modem concrete. Later, in the more northem areas of

  14. Concrete Operations and Attentional Capacity.

    Science.gov (United States)

    Chapman, Michael; Lindenberger, Ulman

    1989-01-01

    To test predictions regarding the attentional capacity requirements of Piaget's stage of concrete operations, a battery of concrete operational tasks and two measures of attentional capacity were administered to 120 first-, second-, and third-graders. Findings concern class inclusion, transitivity of length and weight, and multiplication of…

  15. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat....... Codes for designing prefabricated reinforced components of aircrete structures have adopted these recently developed approaches.......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  16. Novel techniques for concrete curing

    DEFF Research Database (Denmark)

    Kovler, Konstantin; Jensen, Ole Mejlhede

    2005-01-01

    It is known that some high-strength/high-performance concretes (HSC/HPC) are prone to cracking at an early age unless special precautions are taken. The paper deals with the methods of curing as one of the main strategies to ensure good performance of concrete. Curing by both external (conventional......) and internal methods is reviewed and analyzed, among other methods of mitigating shrinkage and cracking of concrete. The focus is on the mitigation of autogenous shrinkage of low water to binder ratio (w/b) concrete by means of internal curing. The concepts of internal curing are based on using lightweight...... aggregate, superabsorbent polymers or water-soluble chemicals, which reduce water evaporation (so called "internal sealing"). These concepts have been intensively researched in the 90s, but still are not widespread among contractors and concrete suppliers. The differences between conventional methods...

  17. Basic principles of concrete structures

    CERN Document Server

    Gu, Xianglin; Zhou, Yong

    2016-01-01

    Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compa...

  18. Sodium concrete reaction - Structural considerations

    International Nuclear Information System (INIS)

    Ferskakis, G.N.

    1984-01-01

    An overview of the sodium concrete reaction phenomenon, with emphasis on structural considerations, is presented. Available test results for limestone, basalt, and magnetite concrete with various test article configurations are reviewed. Generally, tests indicate reaction is self limiting before all sodium is used. Uncertainties, however, concerning the mechanism for penetration of sodium into concrete have resulted in different theories about a reaction model. Structural behavior may be significant in the progression of the reaction due to thermal-structuralchemical interactions involving tensile cracking, compressive crushing, or general deterioration of concrete and the exposure of fresh concrete surfaces to react with sodium. Structural behavior of test articles and potential factors that could enhance the progression of the reaction are discussed

  19. Concrete poetry in three languages

    Directory of Open Access Journals (Sweden)

    Aleksandra Kremer

    2013-01-01

    Full Text Available This paper analyzes different paths of the development of both the movement and the notion of concrete poetry in three linguistic regions. The German-language konkrete Dichtung turns out to usually denote the original, historical shape of the movement, which was partly created in German- speaking countries and which has been treated as a literary phenomenon. The Englishlanguage term concrete poetry is a much broader category which also encompasses visual poetry and avant-garde texts that are distant from the sources of concretism in its early form. The Polish understanding of ‘poezja konkretna’ [concrete poetry] was influenced by both German- and English- language books and by the movement’s regional version, which appeared in Poland as late as in the 1970s. The selected linguistic areas allowed the author to show three basic ways of thinking about concretism, i.e. about its initial, international, and regional versions.

  20. Previous concrete as one of the technology to overcome the puddle

    Science.gov (United States)

    Agung Putra Handana, M.; Karolina, Rahmi; Syahputra, Eko; Zulfikar

    2018-03-01

    Some construction waste has been utilized as a material in certain concrete compositions for engineering building materials. One is a concrete that has been removed after testing at a laboratory called recycle concrete. Disposed concrete, crushed and filtered with filter number 50; 37.5; 19; 9.5; and 4.75 mm are subsequently converted into rough aggregate materials in the manufacture of pervious concrete to be tested for compressive strength and infiltration velocity to water. Pervious concrete test specimens in the form of cylinders with dimensions (15 x 30) cm and plate-shaped with dimension (100 x 100 x 10) cm with the quality plan Fc ' = 15 MPa at age 28 days. The research methodology consisted of testing of wear, test object preparation, periodic maintenance, visual inspection, compressive strength testing, and infiltration rate of specimens against water (based on ASTM C1701). Treatment of specimens by spraying periodically before the test time. From the results of the Los Angeles wear test, it appears that recycled aggregate has an average wear rate of 20.88% (based on SNI 03-2417-1991) on the Los Angeles test) and the visual test on the specimen is appropriate (based on SNI 03 -0691-1996 on paving block) as the basis for testing the specimens. The largest compressive strength was found in pervious concrete with 9.5 mm graded aggregates of 5.89 MPa, while the smallest compressive strength of 50 mm gradation was 2.15 MPa and had a compressive strength of 28% of pervious concrete compressive strength on generally (based on SNI 03-6805-2002). The fastest infiltration speed occurs in 50 mm pervious gradient concrete at 4.52 inc / hr and is late in 9.5 mm grading of 2.068 inc / hr or an inflation rate inflation rate of 54.25% for gradation of 9.5 mm to 50 mm gradation, So that in accordance with the purpose of pervious concrete use, concrete that can drain water to the bottom layer