WorldWideScience

Sample records for pre-synaptic firing rates

  1. Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity

    Science.gov (United States)

    Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon

    2011-01-01

    Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800

  2. Variable synaptic strengths controls the firing rate distribution in feedforward neural networks.

    Science.gov (United States)

    Ly, Cheng; Marsat, Gary

    2018-02-01

    Heterogeneity of firing rate statistics is known to have severe consequences on neural coding. Recent experimental recordings in weakly electric fish indicate that the distribution-width of superficial pyramidal cell firing rates (trial- and time-averaged) in the electrosensory lateral line lobe (ELL) depends on the stimulus, and also that network inputs can mediate changes in the firing rate distribution across the population. We previously developed theoretical methods to understand how two attributes (synaptic and intrinsic heterogeneity) interact and alter the firing rate distribution in a population of integrate-and-fire neurons with random recurrent coupling. Inspired by our experimental data, we extend these theoretical results to a delayed feedforward spiking network that qualitatively capture the changes of firing rate heterogeneity observed in in-vivo recordings. We demonstrate how heterogeneous neural attributes alter firing rate heterogeneity, accounting for the effect with various sensory stimuli. The model predicts how the strength of the effective network connectivity is related to intrinsic heterogeneity in such delayed feedforward networks: the strength of the feedforward input is positively correlated with excitability (threshold value for spiking) when firing rate heterogeneity is low and is negatively correlated with excitability with high firing rate heterogeneity. We also show how our theory can be used to predict effective neural architecture. We demonstrate that neural attributes do not interact in a simple manner but rather in a complex stimulus-dependent fashion to control neural heterogeneity and discuss how it can ultimately shape population codes.

  3. Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise

    Directory of Open Access Journals (Sweden)

    Loreen eHertäg

    2014-09-01

    Full Text Available Computational models offer a unique tool for understanding the network-dynamical mechanisms which mediate between physiological and biophysical properties, and behavioral function. A traditional challenge in computational neuroscience is, however, that simple neuronal models which can be studied analytically fail to reproduce the diversity of electrophysiological behaviors seen in real neurons, while detailed neuronal models which do reproduce such diversity are intractable analytically and computationally expensive. A number of intermediate models have been proposed whose aim is to capture the diversity of firing behaviors and spike times of real neurons while entailing a mathematical description as simple as possible. One such model is the exponential integrate-and-fire neuron with spike rate adaptation (aEIF which consists of two differential equations for the membrane potential (V and an adaptation current (w. Despite its simplicity, it can reproduce a wide variety of physiologically observed spiking patterns, can be fit to physiological recordings quantitatively, and, once done so, is able to predict spike times on traces not used for model fitting. Here we compute the steady-state firing rate of aEIF in the presence of Gaussian synaptic noise, using two approaches. The first approach is based on the 2-dimensional Fokker-Planck equation that describes the (V,w-probability distribution, which is solved using an expansion in the ratio between the time constants of the two variables. The second is based on the firing rate of the EIF model, which is averaged over the distribution of the $w$ variable. These analytically derived closed-form expressions were tested on simulations from a large variety of model cells quantitatively fitted to in vitro electrophysiological recordings from pyramidal cells and interneurons. Theoretical predictions closely agreed with the firing rate of the simulated cells fed with in-vivo-like synaptic noise.

  4. Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise.

    Science.gov (United States)

    Hertäg, Loreen; Durstewitz, Daniel; Brunel, Nicolas

    2014-01-01

    Computational models offer a unique tool for understanding the network-dynamical mechanisms which mediate between physiological and biophysical properties, and behavioral function. A traditional challenge in computational neuroscience is, however, that simple neuronal models which can be studied analytically fail to reproduce the diversity of electrophysiological behaviors seen in real neurons, while detailed neuronal models which do reproduce such diversity are intractable analytically and computationally expensive. A number of intermediate models have been proposed whose aim is to capture the diversity of firing behaviors and spike times of real neurons while entailing the simplest possible mathematical description. One such model is the exponential integrate-and-fire neuron with spike rate adaptation (aEIF) which consists of two differential equations for the membrane potential (V) and an adaptation current (w). Despite its simplicity, it can reproduce a wide variety of physiologically observed spiking patterns, can be fit to physiological recordings quantitatively, and, once done so, is able to predict spike times on traces not used for model fitting. Here we compute the steady-state firing rate of aEIF in the presence of Gaussian synaptic noise, using two approaches. The first approach is based on the 2-dimensional Fokker-Planck equation that describes the (V,w)-probability distribution, which is solved using an expansion in the ratio between the time constants of the two variables. The second is based on the firing rate of the EIF model, which is averaged over the distribution of the w variable. These analytically derived closed-form expressions were tested on simulations from a large variety of model cells quantitatively fitted to in vitro electrophysiological recordings from pyramidal cells and interneurons. Theoretical predictions closely agreed with the firing rate of the simulated cells fed with in-vivo-like synaptic noise.

  5. Irregular persistent activity induced by synaptic excitatory feedback

    Directory of Open Access Journals (Sweden)

    Francesca Barbieri

    2007-11-01

    Full Text Available Neurophysiological experiments on monkeys have reported highly irregular persistent activity during the performance of an oculomotor delayed-response task. These experiments show that during the delay period the coefficient of variation (CV of interspike intervals (ISI of prefrontal neurons is above 1, on average, and larger than during the fixation period. In the present paper, we show that this feature can be reproduced in a network in which persistent activity is induced by excitatory feedback, provided that (i the post-spike reset is close enough to threshold , (ii synaptic efficacies are a non-linear function of the pre-synaptic firing rate. Non-linearity between presynaptic rate and effective synaptic strength is implemented by a standard short-term depression mechanism (STD. First, we consider the simplest possible network with excitatory feedback: a fully connected homogeneous network of excitatory leaky integrate-and-fire neurons, using both numerical simulations and analytical techniques. The results are then confirmed in a network with selective excitatory neurons and inhibition. In both the cases there is a large range of values of the synaptic efficacies for which the statistics of firing of single cells is similar to experimental data.

  6. PET measures of pre- and post-synaptic cardiac beta adrenergic function

    Energy Technology Data Exchange (ETDEWEB)

    Link, Jeanne M.; Stratton, John R.; Levy, Wayne; Poole, Jeanne E.; Shoner, Steven C.; Stuetzle, Werner; Caldwell, James H. E-mail: jcald@u.washington.edu

    2003-11-01

    Positron Emission Tomography was used to measure global and regional cardiac {beta}-adrenergic function in 19 normal subjects and 9 congestive heart failure patients. [{sup 11}C]-meta-hydroxyephedrine was used to image norepinephrine transporter function as an indicator of pre-synaptic function and [{sup 11}C]-CGP12177 was used to measure cell surface {beta}-receptor density as an indicator of post-synaptic function. Pre-synaptic, but not post-synaptic, function was significantly different between normals and CHF patients. Pre-synaptic function was well matched to post-synaptic function in the normal hearts but significantly different and poorly matched in the CHF patients studied. This imaging technique can help us understand regional sympathetic function in cardiac disease.

  7. Vesicular GABA Uptake Can Be Rate Limiting for Recovery of IPSCs from Synaptic Depression

    Directory of Open Access Journals (Sweden)

    Manami Yamashita

    2018-03-01

    Full Text Available Summary: Synaptic efficacy plays crucial roles in neuronal circuit operation and synaptic plasticity. Presynaptic determinants of synaptic efficacy are neurotransmitter content in synaptic vesicles and the number of vesicles undergoing exocytosis at a time. Bursts of presynaptic firings depress synaptic efficacy, mainly due to depletion of releasable vesicles, whereas recovery from strong depression is initiated by endocytic vesicle retrieval followed by refilling of vesicles with neurotransmitter. We washed out presynaptic cytosolic GABA to induce a rundown of IPSCs at cerebellar inhibitory cell pairs in slices from rats and then allowed fast recovery by elevating GABA concentration using photo-uncaging. The time course of this recovery coincided with that of IPSCs from activity-dependent depression induced by a train of high-frequency stimulation. We conclude that vesicular GABA uptake can be a limiting step for the recovery of inhibitory neurotransmission from synaptic depression. : Recovery of inhibitory synaptic transmission from activity-dependent depression requires refilling of vesicles with GABA. Yamashita et al. find that vesicular uptake rate of GABA is a slow process, limiting the recovery rate of IPSCs from depression.

  8. Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony?

    Directory of Open Access Journals (Sweden)

    Andreas eKnoblauch

    2012-08-01

    Full Text Available Spike synchronization is thought to have a constructive role for feature integration, attention, associativelearning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoreticalstudies on spike-timing-dependent plasticity (STDP report an inherently decoupling influence of spikesynchronization on synaptic connections of coactivated neurons. For example, bidirectional synapticconnections as found in cortical areas could be reproduced only by assuming realistic models of STDP andrate coding. We resolve this conflict by theoretical analysis and simulation of various simple and realisticSTDP models that provide a more complete characterization of conditions when STDP leads to eithercoupling or decoupling of neurons firing in synchrony. In particular, we show that STDP consistentlycouples synchronized neurons if key model parameters are matched to physiological data: First, synapticpotentiation must be significantly stronger than synaptic depression for small (positive or negative timelags between presynaptic and postsynaptic spikes. Second, spike synchronization must be sufficientlyimprecise, for example, within a time window of 5-10msec instead of 1msec. Third, axonal propagationdelays should not be much larger than dendritic delays. Under these assumptions synchronized neuronswill be strongly coupled leading to a dominance of bidirectional synaptic connections even for simpleSTDP models and low mean firing rates at the level of spontaneous activity.

  9. The Impact of Stimulation Induced Short Term Synaptic Plasticity on Firing Patterns in the Globus Pallidus of the Rat

    Directory of Open Access Journals (Sweden)

    Jenia eBugaysen

    2011-03-01

    Full Text Available Electrical stimulation in the globus pallidus (GP leads to complex modulations of neuronal activity in the stimulated nucleus. Multiple in-vivo studies have demonstrated the modulation of both firing rates and patterns during and immediately following the GP stimulation. Previous in-vitro studies, together with computational studies, have suggested the involvement of short-term synaptic plasticity (STP during the stimulation. The aim of the current study was to explore in-vitro the effects of STP on neuronal activity of GP neurons during local repetitive stimulation. We recorded synaptic potentials and assessed the modulations of spontaneous firing in a postsynaptic neuron in acute brain slices via a whole-cell pipette. Low-frequency repetitive stimulation locked the firing of the neuron to the stimulus. However, high-frequency repetitive stimulation in the GP generated a biphasic modulation of the firing frequency consisting of inhibitory and excitatory phases. Using blockers of synaptic transmission, we show that GABAergic synapses mediated the inhibitory and glutamatergic synapses the excitatory part of the response. Furthermore, we report that at high stimulation frequencies both types of synapses undergo short-term depression leading to a time dependent modulation of the neuronal firing. These findings indicate that STP modulates the dynamic responses of pallidal activity during electrical stimulation, and may contribute to a better understanding of the mechanism underlying deep brain stimulation (DBS like protocols.

  10. KV7 Channels Regulate Firing during Synaptic Integration in GABAergic Striatal Neurons

    Directory of Open Access Journals (Sweden)

    M. Belén Pérez-Ramírez

    2015-01-01

    Full Text Available Striatal projection neurons (SPNs process motor and cognitive information. Their activity is affected by Parkinson’s disease, in which dopamine concentration is decreased and acetylcholine concentration is increased. Acetylcholine activates muscarinic receptors in SPNs. Its main source is the cholinergic interneuron that responds with a briefer latency than SPNs during a cortical command. Therefore, an important question is whether muscarinic G-protein coupled receptors and their signaling cascades are fast enough to intervene during synaptic responses to regulate synaptic integration and firing. One of the most known voltage dependent channels regulated by muscarinic receptors is the KV7/KCNQ channel. It is not known whether these channels regulate the integration of suprathreshold corticostriatal responses. Here, we study the impact of cholinergic muscarinic modulation on the synaptic response of SPNs by regulating KV7 channels. We found that KV7 channels regulate corticostriatal synaptic integration and that this modulation occurs in the dendritic/spines compartment. In contrast, it is negligible in the somatic compartment. This modulation occurs on sub- and suprathreshold responses and lasts during the whole duration of the responses, hundreds of milliseconds, greatly altering SPNs firing properties. This modulation affected the behavior of the striatal microcircuit.

  11. Forebrain deletion of αGDI in adult mice worsens the pre-synaptic deficit at cortico-lateral amygdala synaptic connections.

    Directory of Open Access Journals (Sweden)

    Veronica Bianchi

    Full Text Available The GDI1 gene encodes αGDI, which retrieves inactive GDP-bound RAB from membranes to form a cytosolic pool awaiting vesicular release. Mutations in GDI1 are responsible for X-linked Intellectual Disability. Characterization of the Gdi1-null mice has revealed alterations in the total number and distribution of hippocampal and cortical synaptic vesicles, hippocampal short-term synaptic plasticity and specific short-term memory deficits in adult mice, which are possibly caused by alterations of different synaptic vesicle recycling pathways controlled by several RAB GTPases. However, interpretation of these studies is complicated by the complete ablation of Gdi1 in all cells in the brain throughout development. In this study, we generated conditionally gene-targeted mice in which the knockout of Gdi1 is restricted to the forebrain, hippocampus, cortex and amygdala and occurs only during postnatal development. Adult mutant mice reproduce the short-term memory deficit previously reported in Gdi1-null mice. Surprisingly, the delayed ablation of Gdi1 worsens the pre-synaptic phenotype at cortico-amygdala synaptic connections compared to Gdi1-null mice. These results suggest a pivotal role of αGDI via specific RAB GTPases acting specifically in forebrain regions at the pre-synaptic sites involved in memory formation.

  12. Pre-fire planning for nuclear power plants

    International Nuclear Information System (INIS)

    Talbert, J.H.

    1980-01-01

    Regardless of the fire prevention measures which are taken, plant experience indicates that fires will occur in a nuclear power plant. When a fire occurs, the plant staff must handle the fire emergency. Pre-fire planning is a method of developing detailed fire attack plans and salvage operations to protect equipment from damage due to fire and fire fighting operations. This paper describes the purpose and use of a pre-fire plan to achieve these goals in nuclear power plants

  13. Inverse stochastic resonance induced by synaptic background activity with unreliable synapses

    Energy Technology Data Exchange (ETDEWEB)

    Uzuntarla, Muhammet, E-mail: muzuntarla@yahoo.com

    2013-11-15

    Inverse stochastic resonance (ISR) is a recently pronounced phenomenon that is the minimum occurrence in mean firing rate of a rhythmically firing neuron as noise level varies. Here, by using a realistic modeling approach for the noise, we investigate the ISR with concrete biophysical mechanisms. It is shown that mean firing rate of a single neuron subjected to synaptic bombardment exhibits a minimum as the spike transmission probability varies. We also demonstrate that the occurrence of ISR strongly depends on the synaptic input regime, where it is most prominent in the balanced state of excitatory and inhibitory inputs.

  14. Stable Control of Firing Rate Mean and Variance by Dual Homeostatic Mechanisms.

    Science.gov (United States)

    Cannon, Jonathan; Miller, Paul

    2017-12-01

    Homeostatic processes that provide negative feedback to regulate neuronal firing rates are essential for normal brain function. Indeed, multiple parameters of individual neurons, including the scale of afferent synapse strengths and the densities of specific ion channels, have been observed to change on homeostatic time scales to oppose the effects of chronic changes in synaptic input. This raises the question of whether these processes are controlled by a single slow feedback variable or multiple slow variables. A single homeostatic process providing negative feedback to a neuron's firing rate naturally maintains a stable homeostatic equilibrium with a characteristic mean firing rate; but the conditions under which multiple slow feedbacks produce a stable homeostatic equilibrium have not yet been explored. Here we study a highly general model of homeostatic firing rate control in which two slow variables provide negative feedback to drive a firing rate toward two different target rates. Using dynamical systems techniques, we show that such a control system can be used to stably maintain a neuron's characteristic firing rate mean and variance in the face of perturbations, and we derive conditions under which this happens. We also derive expressions that clarify the relationship between the homeostatic firing rate targets and the resulting stable firing rate mean and variance. We provide specific examples of neuronal systems that can be effectively regulated by dual homeostasis. One of these examples is a recurrent excitatory network, which a dual feedback system can robustly tune to serve as an integrator.

  15. Inhibition linearizes firing rate responses in human motor units: implications for the role of persistent inward currents.

    Science.gov (United States)

    Revill, Ann L; Fuglevand, Andrew J

    2017-01-01

    Motor neurons are the output neurons of the central nervous system and are responsible for controlling muscle contraction. When initially activated during voluntary contraction, firing rates of motor neurons increase steeply but then level out at modest rates. Activation of an intrinsic source of excitatory current at recruitment onset may underlie the initial steep increase in firing rate in motor neurons. We attempted to disable this intrinsic excitatory current by artificially activating an inhibitory reflex. When motor neuron activity was recorded while the inhibitory reflex was engaged, firing rates no longer increased steeply, suggesting that the intrinsic excitatory current was probably responsible for the initial sharp rise in motor neuron firing rate. During graded isometric contractions, motor unit (MU) firing rates increase steeply upon recruitment but then level off at modest rates even though muscle force continues to increase. The mechanisms underlying such firing behaviour are not known although activation of persistent inward currents (PICs) might be involved. PICs are intrinsic, voltage-dependent currents that activate strongly when motor neurons (MNs) are first recruited. Such activation might cause a sharp escalation in depolarizing current and underlie the steep initial rise in MU firing rate. Because PICs can be disabled with synaptic inhibition, we hypothesized that artificial activation of an inhibitory pathway might curb this initial steep rise in firing rate. To test this, human subjects performed slow triangular ramp contractions of the ankle dorsiflexors in the absence and presence of tonic synaptic inhibition delivered to tibialis anterior (TA) MNs by sural nerve stimulation. Firing rate profiles (expressed as a function of contraction force) of TA MUs recorded during these tasks were compared for control and stimulation conditions. Under control conditions, during the ascending phase of the triangular contractions, 93% of the firing

  16. Toward heterogeneity in feedforward network with synaptic delays based on FitzHugh-Nagumo model

    Science.gov (United States)

    Qin, Ying-Mei; Men, Cong; Zhao, Jia; Han, Chun-Xiao; Che, Yan-Qiu

    2018-01-01

    We focus on the role of heterogeneity on the propagation of firing patterns in feedforward network (FFN). Effects of heterogeneities both in parameters of neuronal excitability and synaptic delays are investigated systematically. Neuronal heterogeneity is found to modulate firing rates and spiking regularity by changing the excitability of the network. Synaptic delays are strongly related with desynchronized and synchronized firing patterns of the FFN, which indicate that synaptic delays may play a significant role in bridging rate coding and temporal coding. Furthermore, quasi-coherence resonance (quasi-CR) phenomenon is observed in the parameter domain of connection probability and delay-heterogeneity. All these phenomena above enable a detailed characterization of neuronal heterogeneity in FFN, which may play an indispensable role in reproducing the important properties of in vivo experiments.

  17. Functional differences between global pre- and postsynaptic inhibition in the Drosophila olfactory circuit

    Directory of Open Access Journals (Sweden)

    Masafumi eOizumi

    2012-03-01

    Full Text Available The Drosophila antennal lobe is subdivided into multiple glomeruli, each of which represents a unique olfactory information processing channel. In each glomerulus, feedforward input from olfactory receptor neurons (ORNs is transformed into activity of projection neurons (PNs, which represent the output. Recent investigations have indicated that lateral pre-synaptic inhibitory input from other glomeruli controls the gain of this transformation. Here, we address why this gain control acts `pre'-synaptically rather than `post'-synaptically. Postsynaptic inhibition could work similarly to presynaptic inhibition with regard to regulating the firing rates of PNs depending on the stimulus intensity. We investigate the differences between pre- and postsynaptic gain control in terms of odor discriminability by simulating a network model of the Drosophila antennal lobe with experimental data. We first demonstrate that only presynaptic inhibition can reproduce the type of gain control observed in experiments. We next show that presynaptic inhibition decorrelates PN responses whereas postsynaptic inhibition does not. Due to this effect, presynaptic gain control enhances the accuracy of odor discrimination by a linear decoder while its postsynaptic counterpart only diminishes it. Our results provide the reason gain control operates `pre'-synaptically but not `post'-synaptically in the Drosophila antennal lobe.

  18. Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    Directory of Open Access Journals (Sweden)

    Zedong eBi

    2016-02-01

    Full Text Available In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis. Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e. synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons. Neurons (including the post-synaptic neuron in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1 synchronous firing and burstiness tend to increase DiffV, (2 heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3 heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our

  19. A prolongation of the postspike afterhyperpolarization following spike trains can partly explain the lower firing rates at derecruitment than those at recruitment

    DEFF Research Database (Denmark)

    Wienecke, Jacob; Zhang, Mengliang; Hultborn, Hans

    2009-01-01

    rates at derecruitment correlated with a change in the postspike afterhyperpolarization (AHP) after preceding spike trains? This question was investigated by intracellular recordings from cat motor neurons in both unanesthetized and anesthetized preparations. The firing frequencies at recruitment...... for the lower frequencies at derecruitment. This was independent of whether the current injection had activated persistent inward current (PIC; plateau potentials, secondary range firing). It was found that a preceding spike train could prolong the AHP duration following a subsequent spike. The lower rate...... from AHP duration in fast motoneurons and higher than expected in slow motoneurons. It is suggested that these deviations are explained by the presence of synaptic noise as well as recruitment of PICs below firing threshold. Thus synaptic noise may allow spike discharge even after the end of the AHP...

  20. Single cocaine exposure does not alter striatal pre-synaptic dopamine function in mice: an [18 F]-FDOPA PET study.

    Science.gov (United States)

    Bonsall, David R; Kokkinou, Michelle; Veronese, Mattia; Coello, Christopher; Wells, Lisa A; Howes, Oliver D

    2017-12-01

    Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre-synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre- and post-synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre-synaptic dopamine function remain unclear. Non-invasive imaging techniques such as positron emission tomography have revealed impaired pre-synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre-synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15-20 min post treatment (p dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (KiCer: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l-amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre-treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre-synaptic dopaminergic neurons are not initiated following a single exposure to the drug. © 2017 International Society for Neurochemistry.

  1. SAD-B kinase regulates pre-synaptic vesicular dynamics at hippocampal Schaffer collateral synapses and affects contextual fear memory.

    Science.gov (United States)

    Watabe, Ayako M; Nagase, Masashi; Hagiwara, Akari; Hida, Yamato; Tsuji, Megumi; Ochiai, Toshitaka; Kato, Fusao; Ohtsuka, Toshihisa

    2016-01-01

    Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, such as axon specifications and maturation in central and peripheral nervous systems. At mature pre-synaptic terminals, SAD-B is associated with synaptic vesicles and the active zone cytomatrix; however, how SAD-B regulates neurotransmission and synaptic plasticity in vivo remains unclear. Thus, we used SAD-B knockout (KO) mice to study the function of this pre-synaptic kinase in the brain. We found that the paired-pulse ratio was significantly enhanced at Shaffer collateral synapses in the hippocampal CA1 region in SAD-B KO mice compared with wild-type littermates. We also found that the frequency of the miniature excitatory post-synaptic current was decreased in SAD-B KO mice. Moreover, synaptic depression following prolonged low-frequency synaptic stimulation was significantly enhanced in SAD-B KO mice. These results suggest that SAD-B kinase regulates vesicular release probability at pre-synaptic terminals and is involved in vesicular trafficking and/or regulation of the readily releasable pool size. Finally, we found that hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice. These observations suggest that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, but their roles in mature brains were only partially known. Here, we demonstrated, at mature pre-synaptic terminals, that SAD-B regulates vesicular release probability and synaptic plasticity. Moreover, hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice, suggesting that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. © 2015 International

  2. Metabolic Turnover of Synaptic Proteins: Kinetics, Interdependencies and Implications for Synaptic Maintenance

    Science.gov (United States)

    Cohen, Laurie D.; Zuchman, Rina; Sorokina, Oksana; Müller, Anke; Dieterich, Daniela C.; Armstrong, J. Douglas; Ziv, Tamar; Ziv, Noam E.

    2013-01-01

    Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non–Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2–5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load

  3. Functional Differences between Global Pre- and Postsynaptic Inhibition in the Drosophila Olfactory Circuit.

    Science.gov (United States)

    Oizumi, Masafumi; Satoh, Ryota; Kazama, Hokto; Okada, Masato

    2012-01-01

    The Drosophila antennal lobe is subdivided into multiple glomeruli, each of which represents a unique olfactory information processing channel. In each glomerulus, feedforward input from olfactory receptor neurons (ORNs) is transformed into activity of projection neurons (PNs), which represent the output. Recent investigations have indicated that lateral presynaptic inhibitory input from other glomeruli controls the gain of this transformation. Here, we address why this gain control acts "pre"-synaptically rather than "post"-synaptically. Postsynaptic inhibition could work similarly to presynaptic inhibition with regard to regulating the firing rates of PNs depending on the stimulus intensity. We investigate the differences between pre- and postsynaptic gain control in terms of odor discriminability by simulating a network model of the Drosophila antennal lobe with experimental data. We first demonstrate that only presynaptic inhibition can reproduce the type of gain control observed in experiments. We next show that presynaptic inhibition decorrelates PN responses whereas postsynaptic inhibition does not. Due to this effect, presynaptic gain control enhances the accuracy of odor discrimination by a linear decoder while its postsynaptic counterpart only diminishes it. Our results provide the reason gain control operates "pre"-synaptically but not "post"-synaptically in the Drosophila antennal lobe.

  4. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts

    Directory of Open Access Journals (Sweden)

    Marco Emanuele

    2016-05-01

    Full Text Available Alpha-synuclein (αSyn interferes with multiple steps of synaptic activity at pre-and post-synaptic terminals, however the mechanism/s by which αSyn alters neurotransmitter release and synaptic potentiation is unclear. By atomic force microscopy we show that human αSyn, when incubated with reconstituted membrane bilayer, induces lipid rafts' fragmentation. As a consequence, ion channels and receptors are displaced from lipid rafts with consequent changes in their activity. The enhanced calcium entry leads to acute mobilization of synaptic vesicles, and exhaustion of neurotransmission at later stages. At the post-synaptic terminal, an acute increase in glutamatergic transmission, with increased density of PSD-95 puncta, is followed by disruption of the interaction between N-methyl-d-aspartate receptor (NMDAR and PSD-95 with ensuing decrease of long term potentiation. While cholesterol loading prevents the acute effect of αSyn at the presynapse; inhibition of casein kinase 2, which appears activated by reduction of cholesterol, restores the correct localization and clustering of NMDARs.

  5. Effect of pre-firing compression on the prevention of pancreatic fistula in distal pancreatectomy.

    Science.gov (United States)

    Hirashita, Teijiro; Ohta, Masayuki; Yada, Kazuhiro; Tada, Kazuhiro; Saga, Kunihiro; Takayama, Hiroomi; Endo, Yuichi; Uchida, Hiroki; Iwashita, Yukio; Inomata, Masafumi

    2018-03-26

    Postoperative pancreatic fistula (POPF) is a major complication of distal pancreatectomy (DP). Several procedures for resection and closure of the pancreas have been proposed; however, the rate of POPF remains high. The aims of this study were to investigate the relationship between perioperative factors and POPF and to clarify the advantages of pre-firing compression of the pancreas in the DP. From 2008 to 2016, records of 75 patients who underwent DP were retrospectively reviewed. The relationship between the perioperative factors and clinically relevant POPF was investigated. Univariate analysis showed that body mass index, thickness of the pancreas, and pre-firing compression were significantly related with clinically relevant POPF. Multivariate analysis showed that the pre-firing compression was an independent factor of clinically relevant POPF (OR = 44.31, 95%CI = 3.394-578.3, P = 0.004). Pre-firing compression of the pancreas can prevent clinically relevant POPF in DP. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  7. Pre-oxidation and its effect on reducing high-temperature corrosion of superheater tubes during biomass firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Kvisgaard, M.; Montgomery, Melanie

    2017-01-01

    Superheater tubes in biomass-fired power plants experience high corrosion rates due to condensation of corrosive alkali chloride-rich deposits. To explore the possibility of reducing the corrosion attack by the formation of an initial protective oxide layer, the corrosion resistance of pre......-oxidised Al and Ti-containing alloys (Kanthal APM and Nimonic 80A, respectively) was investigated under laboratory conditions mimicking biomass firing. The alloys were pre-oxidised at 900°C for 1 week. Afterwards, pre-oxidised samples, and virgin non-pre-oxidised samples as reference, were coated...... with a synthetic deposit of KCl and exposed at 560°C for 1 week to a gas mixture typical of biomass firing. Results show that pre-oxidation could hinder the corrosion attack; however, the relative success was different for the two alloys. While corrosion attack was observed on the pre-oxidised Kanthal APM, the pre...

  8. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.

    Science.gov (United States)

    Ly, Cheng

    2015-12-01

    Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.

  9. Fire-free land use in pre-1492 Amazonian savannas.

    Science.gov (United States)

    Iriarte, José; Power, Mitchell J; Rostain, Stéphen; Mayle, Francis E; Jones, Huw; Watling, Jennifer; Whitney, Bronwen S; McKey, Doyle B

    2012-04-24

    The nature and scale of pre-Columbian land use and the consequences of the 1492 "Columbian Encounter" (CE) on Amazonia are among the more debated topics in New World archaeology and paleoecology. However, pre-Columbian human impact in Amazonian savannas remains poorly understood. Most paleoecological studies have been conducted in neotropical forest contexts. Of studies done in Amazonian savannas, none has the temporal resolution needed to detect changes induced by either climate or humans before and after A.D. 1492, and only a few closely integrate paleoecological and archaeological data. We report a high-resolution 2,150-y paleoecological record from a French Guianan coastal savanna that forces reconsideration of how pre-Columbian savanna peoples practiced raised-field agriculture and how the CE impacted these societies and environments. Our combined pollen, phytolith, and charcoal analyses reveal unexpectedly low levels of biomass burning associated with pre-A.D. 1492 savanna raised-field agriculture and a sharp increase in fires following the arrival of Europeans. We show that pre-Columbian raised-field farmers limited burning to improve agricultural production, contrasting with extensive use of fire in pre-Columbian tropical forest and Central American savanna environments, as well as in present-day savannas. The charcoal record indicates that extensive fires in the seasonally flooded savannas of French Guiana are a post-Columbian phenomenon, postdating the collapse of indigenous populations. The discovery that pre-Columbian farmers practiced fire-free savanna management calls into question the widely held assumption that pre-Columbian Amazonian farmers pervasively used fire to manage and alter ecosystems and offers fresh perspectives on an emerging alternative approach to savanna land use and conservation that can help reduce carbon emissions.

  10. Synaptic and functional linkages between spinal premotor interneurons and hand-muscle activity during precision grip

    Directory of Open Access Journals (Sweden)

    Tomohiko eTakei

    2013-04-01

    Full Text Available Grasping is a highly complex movement that requires the coordination of a number of hand joints and muscles. Previous studies showed that spinal premotor interneurons (PreM-INs in the primate cervical spinal cord have divergent synaptic effects on hand motoneurons and that they might contribute to hand-muscle synergies. However, the extent to which these PreM-IN synaptic connections functionally contribute to modulating hand-muscle activity is not clear. In this paper, we explored the contribution of spinal PreM-INs to hand-muscle activation by quantifying the synaptic linkage (SL and functional linkage (FL of the PreM-INs with hand-muscle activities. The activity of 23 PreM-INs was recorded from the cervical spinal cord (C6–T1, with EMG signals measured simultaneously from hand and arm muscles in two macaque monkeys performing a precision grip task. Spike-triggered averages (STAs of rectified EMGs were compiled for 456 neuron–muscle pairs; 63 pairs showed significant post-spike effects (i.e., SL. Conversely, 231 of 456 pairs showed significant cross-correlations between the IN firing rate and rectified EMG (i.e., FL. Importantly, a greater proportion of the neuron–muscle pairs with SL showed FL (43/63 pairs, 68% compared with the pairs without SL (203/393, 52%, and the presence of SL was significantly associated with that of FL. However, a significant number of pairs had SL without FL (SL∩!FL, n = 20 or FL without SL (!SL∩FL, n = 203, and the proportions of these incongruities exceeded the number expected by chance. These results suggested that spinal PreM-INs function to significantly modulate hand-muscle activity during precision grip, but the contribution of other neural structures is also needed to recruit an adequate combination of hand-muscle motoneurons.

  11. Integrated neuron circuit for implementing neuromorphic system with synaptic device

    Science.gov (United States)

    Lee, Jeong-Jun; Park, Jungjin; Kwon, Min-Woo; Hwang, Sungmin; Kim, Hyungjin; Park, Byung-Gook

    2018-02-01

    In this paper, we propose and fabricate Integrate & Fire neuron circuit for implementing neuromorphic system. Overall operation of the circuit is verified by measuring discrete devices and the output characteristics of the circuit. Since the neuron circuit shows asymmetric output characteristic that can drive synaptic device with Spike-Timing-Dependent-Plasticity (STDP) characteristic, the autonomous weight update process is also verified by connecting the synaptic device and the neuron circuit. The timing difference of the pre-neuron and the post-neuron induce autonomous weight change of the synaptic device. Unlike 2-terminal devices, which is frequently used to implement neuromorphic system, proposed scheme of the system enables autonomous weight update and simple configuration by using 4-terminal synapse device and appropriate neuron circuit. Weight update process in the multi-layer neuron-synapse connection ensures implementation of the hardware-based artificial intelligence, based on Spiking-Neural- Network (SNN).

  12. Synaptic and intrinsic activation of GABAergic neurons in the cardiorespiratory brainstem network.

    Science.gov (United States)

    Frank, Julie G; Mendelowitz, David

    2012-01-01

    GABAergic pathways in the brainstem play an essential role in respiratory rhythmogenesis and interactions between the respiratory and cardiovascular neuronal control networks. However, little is known about the identity and function of these GABAergic inhibitory neurons and what determines their activity. In this study we have identified a population of GABAergic neurons in the ventrolateral medulla that receive increased excitatory post-synaptic potentials during inspiration, but also have spontaneous firing in the absence of synaptic input. Using transgenic mice that express GFP under the control of the Gad1 (GAD67) gene promoter, we determined that this population of GABAergic neurons is in close apposition to cardioinhibitory parasympathetic cardiac neurons in the nucleus ambiguus (NA). These neurons fire in synchronization with inspiratory activity. Although they receive excitatory glutamatergic synaptic inputs during inspiration, this excitatory neurotransmission was not altered by blocking nicotinic receptors, and many of these GABAergic neurons continue to fire after synaptic blockade. The spontaneous firing in these GABAergic neurons was not altered by the voltage-gated calcium channel blocker cadmium chloride that blocks both neurotransmission to these neurons and voltage-gated Ca(2+) currents, but spontaneous firing was diminished by riluzole, demonstrating a role of persistent sodium channels in the spontaneous firing in these cardiorespiratory GABAergic neurons that possess a pacemaker phenotype. The spontaneously firing GABAergic neurons identified in this study that increase their activity during inspiration would support respiratory rhythm generation if they acted primarily to inhibit post-inspiratory neurons and thereby release inspiration neurons to increase their activity. This population of inspiratory-modulated GABAergic neurons could also play a role in inhibiting neurons that are most active during expiration and provide a framework for

  13. Synaptic and intrinsic activation of GABAergic neurons in the cardiorespiratory brainstem network.

    Directory of Open Access Journals (Sweden)

    Julie G Frank

    Full Text Available GABAergic pathways in the brainstem play an essential role in respiratory rhythmogenesis and interactions between the respiratory and cardiovascular neuronal control networks. However, little is known about the identity and function of these GABAergic inhibitory neurons and what determines their activity. In this study we have identified a population of GABAergic neurons in the ventrolateral medulla that receive increased excitatory post-synaptic potentials during inspiration, but also have spontaneous firing in the absence of synaptic input. Using transgenic mice that express GFP under the control of the Gad1 (GAD67 gene promoter, we determined that this population of GABAergic neurons is in close apposition to cardioinhibitory parasympathetic cardiac neurons in the nucleus ambiguus (NA. These neurons fire in synchronization with inspiratory activity. Although they receive excitatory glutamatergic synaptic inputs during inspiration, this excitatory neurotransmission was not altered by blocking nicotinic receptors, and many of these GABAergic neurons continue to fire after synaptic blockade. The spontaneous firing in these GABAergic neurons was not altered by the voltage-gated calcium channel blocker cadmium chloride that blocks both neurotransmission to these neurons and voltage-gated Ca(2+ currents, but spontaneous firing was diminished by riluzole, demonstrating a role of persistent sodium channels in the spontaneous firing in these cardiorespiratory GABAergic neurons that possess a pacemaker phenotype. The spontaneously firing GABAergic neurons identified in this study that increase their activity during inspiration would support respiratory rhythm generation if they acted primarily to inhibit post-inspiratory neurons and thereby release inspiration neurons to increase their activity. This population of inspiratory-modulated GABAergic neurons could also play a role in inhibiting neurons that are most active during expiration and provide a

  14. Significant or negligible sediment and nutrient losses after fire? Pre- and post-fire comparisons

    Science.gov (United States)

    Shakesby, R. A.; Ferreira, A. J. D.; Ferreira, C. S. S.; Stoof, C. R.; Urbanek, E.; Walsh, R. P. D.

    2009-04-01

    Prescribed fire (or a controlled burn) is a management tool used in wildfire-prone areas to reduce the fuel load of living and dead biomass, while attempting to keep disturbance of the ground surface and soil to a minimum. We know that wildfire, particularly of moderate or extreme severity, can cause important changes to the chemical and physical properties of soil, typically leading to a reduction in aggregate stability, surface roughness and water storage capacity, and an increase in overland flow. It has also been shown that wildfire disturbance can cause major loss of soil, particularly at plot and hillslope scales. There is less information on soil losses at catchment scales, but it is known that losses particularly of organic-rich fine sediment and nutrients can undergo hillslope to channel transfer, where they can affect water quality. Far less research has been carried out into the effects of prescribed fire on soil and nutrient losses at all scales, but particularly at catchment scales. This paper considers the impact of an experimental fire (equivalent to a severe prescribed fire) on soil and nutrient losses. These losses have been monitored at a range of scales (small rainfall simulation plots, long-term erosion plot, erosion plot, hillslope sediment traps (sediment fences) and catchment) before and after the fire in a 10-ha catchment near Góis, central Portugal, which forms part of the 5-year DESIRE research programme concerning desertification and its mitigation at a range of study sites worldwide. The catchment has steep slopes covered mainly with scrub vegetation ranging from c. 0.15 to 2m in height. The soil is thin, stony and highly water repellent. Long-term pre-burn erosion rates are known from a c. 10-year record of soil losses from a small erosion plot (8 x 2m in size) and sediment accumulation in the weir pool of a subcatchment gauging station. Rainfall simulations carried out under dry and wet antecedent conditions before and after the fire

  15. LRRK2 phosphorylates pre-synaptic N-ethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate.

    Science.gov (United States)

    Belluzzi, Elisa; Gonnelli, Adriano; Cirnaru, Maria-Daniela; Marte, Antonella; Plotegher, Nicoletta; Russo, Isabella; Civiero, Laura; Cogo, Susanna; Carrion, Maria Perèz; Franchin, Cinzia; Arrigoni, Giorgio; Beltramini, Mariano; Bubacco, Luigi; Onofri, Franco; Piccoli, Giovanni; Greggio, Elisa

    2016-01-13

    Lrrk2, a gene linked to Parkinson's disease, encodes a large scaffolding protein with kinase and GTPase activities implicated in vesicle and cytoskeletal-related processes. At the presynaptic site, LRRK2 associates with synaptic vesicles through interaction with a panel of presynaptic proteins. Here, we show that LRRK2 kinase activity influences the dynamics of synaptic vesicle fusion. We therefore investigated whether LRRK2 phosphorylates component(s) of the exo/endocytosis machinery. We have previously observed that LRRK2 interacts with NSF, a hexameric AAA+ ATPase that couples ATP hydrolysis to the disassembling of SNARE proteins allowing them to enter another fusion cycle during synaptic exocytosis. Here, we demonstrate that NSF is a substrate of LRRK2 kinase activity. LRRK2 phosphorylates full-length NSF at threonine 645 in the ATP binding pocket of D2 domain. Functionally, NSF phosphorylated by LRRK2 displays enhanced ATPase activity and increased rate of SNARE complex disassembling. Substitution of threonine 645 with alanine abrogates LRRK2-mediated increased ATPase activity. Given that the most common Parkinson's disease LRRK2 G2019S mutation displays increased kinase activity, our results suggest that mutant LRRK2 may impair synaptic vesicle dynamics via aberrant phosphorylation of NSF.

  16. Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. II: Spike Shuffling Methods on LIF Networks

    Directory of Open Access Journals (Sweden)

    Zedong Bi

    2016-08-01

    Full Text Available Synapses may undergo variable changes during plasticity because of the variability of spike patterns such as temporal stochasticity and spatial randomness. Here, we call the variability of synaptic weight changes during plasticity to be efficacy variability. In this paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations influence the efficacy variability under pair-wise additive spike-timing dependent plasticity (STDP and synaptic homeostasis (the mean strength of plastic synapses into a neuron is bounded, by implementing spike shuffling methods onto spike patterns self-organized by a network of excitatory and inhibitory leaky integrate-and-fire (LIF neurons. With the increase of the decay time scale of the inhibitory synaptic currents, the LIF network undergoes a transition from asynchronous state to weak synchronous state and then to synchronous bursting state. We first shuffle these spike patterns using a variety of methods, each designed to evidently change a specific pattern statistics; and then investigate the change of efficacy variability of the synapses under STDP and synaptic homeostasis, when the neurons in the network fire according to the spike patterns before and after being treated by a shuffling method. In this way, we can understand how the change of pattern statistics may cause the change of efficacy variability. Our results are consistent with those of our previous study which implements spike-generating models on converging motifs. We also find that burstiness/regularity is important to determine the efficacy variability under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause efficacy variability when the network moves into synchronous bursting states (the states observed in epilepsy.

  17. MOTOR UNIT FIRING RATES DURING SPASMS IN THENAR MUSCLES OF SPINAL CORD INJURED SUBJECTS

    Directory of Open Access Journals (Sweden)

    Inge eZijdewind

    2014-11-01

    Full Text Available Abstract Involuntary contractions of paralyzed muscles (spasms commonly disrupt daily activities and rehabilitation after human spinal cord injury. Our aim was to examine the recruitment, firing rate modulation, and derecruitment of motor units that underlie spasms of thenar muscles after cervical spinal cord injury. Intramuscular electromyographic activity (EMG, surface EMG, and force were recorded during thenar muscle spasms that occurred spontaneously or that were triggered by movement of a shoulder or leg. Most spasms were submaximal (mean: 39%, SD: 33 of the force evoked by median nerve stimulation at 50 Hz with strong relationships between EMG and force (R2>0.69. Unit recruitment occurred over a wide force range (0.2-103% of 50 Hz force. Significant unit rate modulation occurred during spasms (frequency at 25% maximal force: 8.8 Hz, 3.3 SD; at maximal force: 16.1 Hz, 4.1 SD. Mean recruitment frequency (7.1 Hz, 3.2 SD was significantly higher than derecruitment frequency (5.4 Hz, 2.4 SD. Coactive unit pairs that fired for more than 4 s showed high (R2>0.7, n=4 or low (R2:0.3-0.7, n=12 rate-rate correlations, and derecruitment reversals (21 pairs, 29%. Later recruited units had higher or lower maximal firing rates than lower threshold units. These discrepant data show that coactive motoneurons are driven by both common inputs and by synaptic inputs from different sources during muscle spasms. Further, thenar motoneurons can still fire at high rates in response to various peripheral inputs after spinal cord injury, supporting the idea that low maximal voluntary firing rates and forces in thenar muscles result from reduced descending drive.

  18. Sharp-Wave Ripples Orchestrate the Induction of Synaptic Plasticity during Reactivation of Place Cell Firing Patterns in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Josef H.L.P. Sadowski

    2016-03-01

    Full Text Available Place cell firing patterns reactivated during hippocampal sharp-wave ripples (SWRs in rest or sleep are thought to induce synaptic plasticity and thereby promote the consolidation of recently encoded information. However, the capacity of reactivated spike trains to induce plasticity has not been directly tested. Here, we show that reactivated place cell firing patterns simultaneously recorded from CA3 and CA1 of rat dorsal hippocampus are able to induce long-term potentiation (LTP at synapses between CA3 and CA1 cells but only if accompanied by SWR-associated synaptic activity and resulting dendritic depolarization. In addition, we show that the precise timing of coincident CA3 and CA1 place cell spikes in relation to SWR onset is critical for the induction of LTP and predictive of plasticity generated by reactivation. Our findings confirm an important role for SWRs in triggering and tuning plasticity processes that underlie memory consolidation in the hippocampus during rest or sleep.

  19. Exogenous α-synuclein hinders synaptic communication in cultured cortical primary rat neurons.

    Science.gov (United States)

    Hassink, G C; Raiss, C C; Segers-Nolten, I M J; van Wezel, R J A; Subramaniam, V; le Feber, J; Claessens, M M A E

    2018-01-01

    Amyloid aggregates of the protein α-synuclein (αS) called Lewy Bodies (LB) and Lewy Neurites (LN) are the pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. We have previously shown that high extracellular αS concentrations can be toxic to cells and that neurons take up αS. Here we aimed to get more insight into the toxicity mechanism associated with high extracellular αS concentrations (50-100 μM). High extracellular αS concentrations resulted in a reduction of the firing rate of the neuronal network by disrupting synaptic transmission, while the neuronal ability to fire action potentials was still intact. Furthermore, many cells developed αS deposits larger than 500 nm within five days, but otherwise appeared healthy. Synaptic dysfunction clearly occurred before the establishment of large intracellular deposits and neuronal death, suggesting that an excessive extracellular αS concentration caused synaptic failure and which later possibly contributed to neuronal death.

  20. Factors Influencing Short-term Synaptic Plasticity in the Avian Cochlear Nucleus Magnocellularis

    Directory of Open Access Journals (Sweden)

    Jason Tait Sanchez Quinones

    2015-01-01

    Full Text Available Defined as reduced neural responses during high rates of activity, synaptic depression is a form of short-term plasticity important for the temporal filtering of sound. In the avian cochlear nucleus magnocellularis (NM, an auditory brainstem structure, mechanisms regulating short-term synaptic depression include pre-, post-, and extrasynaptic factors. Using varied paired-pulse stimulus intervals, we found that the time course of synaptic depression lasts up to four seconds at late-developing NM synapses. Synaptic depression was largely reliant on exogenous Ca 2+ -dependent probability of presynaptic neurotransmitter release, and to a lesser extent, on the desensitization of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPA-R. Interestingly, although extrasynaptic glutamate clearance did not play a significant role in regulating synaptic depression, blocking glutamate clearance at early-developing synapses altered synaptic dynamics, changing responses from depression to facilitation. These results suggest a developmental shift in the relative reliance on pre-, post-, and extrasynaptic factors in regulating short-term synaptic plasticity in NM.

  1. Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks

    Science.gov (United States)

    Solanka, Lukas; van Rossum, Mark CW; Nolan, Matthew F

    2015-01-01

    Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength. DOI: http://dx.doi.org/10.7554/eLife.06444.001 PMID:26146940

  2. FIRES: Fire Information Retrieval and Evaluation System - A program for fire danger rating analysis

    Science.gov (United States)

    Patricia L. Andrews; Larry S. Bradshaw

    1997-01-01

    A computer program, FIRES: Fire Information Retrieval and Evaluation System, provides methods for evaluating the performance of fire danger rating indexes. The relationship between fire danger indexes and historical fire occurrence and size is examined through logistic regression and percentiles. Historical seasonal trends of fire danger and fire occurrence can be...

  3. Electrophysical properties, synaptic transmission and neuromodulation in serotonergic caudal raphe neurons.

    Science.gov (United States)

    Li, Y W; Bayliss, D A

    1998-06-01

    1. We studied electrophysiological properties, synaptic transmission and modulation by 5-hydroxytryptamine (5-HT) of caudal raphe neurons using whole-cell recording in a neonatal rat brain slice preparation; recorded neurons were identified as serotonergic by post-hoc immunohistochemical detection of tryptophan hydroxylase, the 5-HT-synthesizing enzyme. 2. Serotonergic neurons fired spontaneously (approximately 1 Hz), with maximal steady state firing rates of < 4 Hz. 5-Hydroxytryptamine caused hyperpolarization and cessation of spike activity in these neurons by activating inwardly rectifying K+ conductance via somatodendritic 5-HT1A receptors. 3. Unitary glutamatergic excitatory post-synaptic potentials (EPSP) and currents (EPSC) were evoked in serotonergic neurons by local electrical stimulation. Evoked EPSC were potently inhibited by 5-HT, an effect mediated by presynaptic 5-HT1B receptors. 4. In conclusion, serotonergic caudal raphe neurons are spontaneously active in vitro; they receive prominent glutamatergic synaptic inputs. 5-Hydroxytryptamine regulates serotonergic neuronal activity of the caudal raphe by decreasing spontaneous activity via somatodendritic 5-HT1A receptors and by inhibiting excitatory synaptic transmission onto these neurons via presynaptic 5-HT1B receptors. These local modulatory mechanisms provide multiple levels of feedback autoregulation of serotonergic raphe neurons by 5-HT.

  4. Fire characteristics charts for fire behavior and U.S. fire danger rating

    Science.gov (United States)

    Faith Ann Heinsch; Pat Andrews

    2010-01-01

    The fire characteristics chart is a graphical method of presenting U.S. National Fire Danger Rating indices or primary surface or crown fire behavior characteristics. A desktop computer application has been developed to produce fire characteristics charts in a format suitable for inclusion in reports and presentations. Many options include change of scales, colors,...

  5. Two-Dimensional Bumps in Piecewise Smooth Neural Fields with Synaptic Depression

    KAUST Repository

    Bressloff, Paul C.

    2011-01-01

    We analyze radially symmetric bumps in a two-dimensional piecewise-smooth neural field model with synaptic depression. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Synaptic depression dynamically reduces the strength of synaptic weights in response to increases in activity. We show that in the case of a Mexican hat weight distribution, sufficiently strong synaptic depression can destabilize a stationary bump solution that would be stable in the absence of depression. Numerically it is found that the resulting instability leads to the formation of a traveling spot. The local stability of a bump is determined by solutions to a system of pseudolinear equations that take into account the sign of perturbations around the circular bump boundary. © 2011 Society for Industrial and Applied Mathematics.

  6. Pre-fire treatment effects and post-fire forest dynamics on the Rodeo-Chediski burn area, Arizona

    Science.gov (United States)

    Barbara A. Strom

    2005-01-01

    The 2002 Rodeo-Chediski fire was the largest wildfire in Arizona history at 189,000 ha (468,000 acres), and exhibited some of the most extreme fire behavior ever seen in the Southwest. Pre-fire fuel reduction treatments of thinning, timber harvesting, and prescribed burning on the White Mountain Apache Tribal lands (WMAT) and thinning on the Apache-Sitgreaves National...

  7. Synaptic excitation in spinal motoneurons alternates with synaptic inhibition and is balanced by outward rectification during rhythmic motor network activity

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Hounsgaard, Jorn

    2017-01-01

    channels. Intrinsic outward rectification facilitates spiking by focusing synaptic depolarization near threshold for action potentials. By direct recording of synaptic currents, we also show that motoneurons are activated by out-of-phase peaks in excitation and inhibition during network activity, whereas......Regular firing in spinal motoneurons of red-eared turtles (Trachemys scripta elegans, either sex) evoked by steady depolarization at rest is replaced by irregular firing during functional network activity. The transition caused by increased input conductance and synaptic fluctuations in membrane...... potential was suggested to originate from intense concurrent inhibition and excitation. We show that the conductance increase in motoneurons during functional network activity is mainly caused by intrinsic outward rectification near threshold for action potentials by activation of voltage and Ca2+ gated K...

  8. Synaptic transmission modulates while non-synaptic processes govern the transition from pre-ictal to seizure activity in vitro

    OpenAIRE

    Jefferys, John; Fox, John; Jiruska, Premysl; Kronberg, Greg; Miranda, Dolores; Ruiz-Nuño, Ana; Bikson, Marom

    2018-01-01

    It is well established that non-synaptic mechanisms can generate electrographic seizures after blockade of synaptic function. We investigated the interaction of intact synaptic activity with non-synaptic mechanisms in the isolated CA1 region of rat hippocampal slices using the 'elevated-K+' model of epilepsy. Elevated K+ ictal bursts share waveform features with other models of electrographic seizures, including non-synaptic models where chemical synaptic transmission is suppressed, such as t...

  9. The Cooney Ridge Fire Experiment: An early operation to relate pre-, active, and post-fire field and remotely sensed measurements

    Science.gov (United States)

    Andrew T. Hudak; Patrick H. Freeborn; Sarah A. Lewis; Sharon M. Hood; Helen Y. Smith; Colin C. Hardy; Robert J. Kremens; Bret W. Butler; Casey Teske; Robert G. Tissell; Lloyd P. Queen; Bryce L. Nordgren; Benjamin C. Bright; Penelope Morgan; Philip J. Riggan; Lee Macholz; Leigh B. Lentile; James P. Riddering; Edward E. Mathews

    2018-01-01

    The Cooney Ridge Fire Experiment conducted by fire scientists in 2003 was a burnout operation supported by a fire suppression crew on the active Cooney Ridge wildfire incident. The fire experiment included measurements of pre-fire fuels, active fire behavior, and immediate post-fire effects. Heat flux measurements collected at multiple scales with multiple ground and...

  10. Pre-synaptic control of remote fear extinction in the neocortex

    Directory of Open Access Journals (Sweden)

    Gisella eVetere

    2012-06-01

    Full Text Available Consolidation of remote memory enhances immediate early genes induction (IEGs, augments the expression of the presynaptic growth associated protein 43 (GAP-43, and increases the density and size of dendritic spines in anterior cingulate (aCC and infra-limbic (ILC cortices. Remote memory extinction, however, does not uniformly alter consolidation-induced structural changes. In the aCC, the density, but not the size, of spines is reset to pseudo-conditioning levels while novel thin spines are formed in the ILC. Whether IEGs and GAP-43 also undergo region-specific changes upon remote memory extinction is undetermined. Here we confirm in the same batch of mice that c-Fos induction and GAP-43 expression are increased in both the aCC and the ILC 36 days after contextual fear conditioning. We then show that, in both regions, remote memory extinction is associated with decrease of c-Fos induction but no change in GAP-43 expression thus revealing similar, although protein-specific, pre-synaptic adaptations in aCC and ILC neurons. These observations, in addition to our previous report of region-specific post-synaptic structural changes, disclose a complex pattern of extinction-driven neocortical alterations suitable to support erasure or reinstatement of fear according to the environment demand.

  11. Pre- and post-synaptic sympathetic function in human hibernating myocardium

    International Nuclear Information System (INIS)

    John, Anna S.; Pepper, John R.; Dreyfus, Gilles D.; Pennell, Dudley J.; Mongillo, Marco; Khan, Muhammad T.; Depre, Christophe; Rimoldi, Ornella E.; Camici, Paolo G.

    2007-01-01

    Impaired pre-synaptic noradrenaline uptake-1 mechanism has been reported in a swine model of hibernating myocardium (HM). To ascertain whether adrenergic neuroeffector abnormalities are present in human HM, we combined functional measurements in vivo using cardiovascular magnetic resonance (CMR) and positron emission tomography (PET) to assess pre- and post-synaptic sympathetic function. Twelve patients with coronary artery disease and chronic left ventricular (LV) dysfunction underwent CMR at baseline and 6 months after bypass for assessment of regional and global LV function and identification of segments with reversible dysfunction. Before surgery, myocardial noradrenaline uptake-1 ([ 11 C]meta-hydroxy-ephedrine; HED) and β-adrenoceptor (β-AR) density ([ 11 C]CGP-12177) were measured with PET. Patient PET data were compared with those in 18 healthy controls. The volume of distribution (V d ) of HED in HM (47.95±28.05 ml/g) and infarcted myocardium (42.69±25.76 ml/g) was significantly reduced compared with controls (66.09±14.48 ml/g). The V d of HED in normal myocardium (49.93±20.48 ml/g) of patients was also lower than that in controls and the difference was close to statistical significance (p=0.06). Myocardial β-AR density was significantly lower in HM (5.49±2.35 pmol/g), infarcted (4.82±2.61 pmol/g) and normal (5.86±1.81 pmol/g) segments of patients compared with healthy controls (8.61±1.32 pmol/g). Noradrenaline uptake-1 mechanism and β-AR density are reduced in the myocardium of patients with chronic LV dysfunction and evidence of HM. The increased sympathetic activity to the heart in these patients is a generalised rather than regional phenomenon which is likely to contribute to the remodelling process of the whole LV rather than playing a causative role in HM. (orig.)

  12. Pre- and post-synaptic sympathetic function in human hibernating myocardium

    Energy Technology Data Exchange (ETDEWEB)

    John, Anna S.; Pepper, John R.; Dreyfus, Gilles D.; Pennell, Dudley J. [Imperial College, Hammersmith Hospital, National Heart and Lung Institute, London (United Kingdom); Mongillo, Marco; Khan, Muhammad T. [Imperial College, Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, London (United Kingdom); Depre, Christophe [University of Medicine and Dentistry New Jersey, Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, New Jersey, NJ (United States); University of Medicine and Dentistry New Jersey, Cardiovascular Research Institute, Department of Medicine, New Jersey, NJ (United States); Rimoldi, Ornella E. [Imperial College, Hammersmith Hospital, National Heart and Lung Institute, London (United Kingdom); Imperial College, Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, London (United Kingdom); New York Medical College, Cardiovascular Research Institute, Department of Medicine, Valhalla, NY (United States); Camici, Paolo G. [Imperial College, Hammersmith Hospital, National Heart and Lung Institute, London (United Kingdom); Imperial College, Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, London (United Kingdom)

    2007-12-15

    Impaired pre-synaptic noradrenaline uptake-1 mechanism has been reported in a swine model of hibernating myocardium (HM). To ascertain whether adrenergic neuroeffector abnormalities are present in human HM, we combined functional measurements in vivo using cardiovascular magnetic resonance (CMR) and positron emission tomography (PET) to assess pre- and post-synaptic sympathetic function. Twelve patients with coronary artery disease and chronic left ventricular (LV) dysfunction underwent CMR at baseline and 6 months after bypass for assessment of regional and global LV function and identification of segments with reversible dysfunction. Before surgery, myocardial noradrenaline uptake-1 ([{sup 11}C]meta-hydroxy-ephedrine; HED) and {beta}-adrenoceptor ({beta}-AR) density ([{sup 11}C]CGP-12177) were measured with PET. Patient PET data were compared with those in 18 healthy controls. The volume of distribution (V{sub d}) of HED in HM (47.95{+-}28.05 ml/g) and infarcted myocardium (42.69{+-}25.76 ml/g) was significantly reduced compared with controls (66.09{+-}14.48 ml/g). The V{sub d} of HED in normal myocardium (49.93{+-}20.48 ml/g) of patients was also lower than that in controls and the difference was close to statistical significance (p=0.06). Myocardial {beta}-AR density was significantly lower in HM (5.49{+-}2.35 pmol/g), infarcted (4.82{+-}2.61 pmol/g) and normal (5.86{+-}1.81 pmol/g) segments of patients compared with healthy controls (8.61{+-}1.32 pmol/g). Noradrenaline uptake-1 mechanism and {beta}-AR density are reduced in the myocardium of patients with chronic LV dysfunction and evidence of HM. The increased sympathetic activity to the heart in these patients is a generalised rather than regional phenomenon which is likely to contribute to the remodelling process of the whole LV rather than playing a causative role in HM. (orig.)

  13. Training the integrate-and-fire model with the informax principle: I

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng; Buxton, Hilary [COGS, Sussex University, Brighton (United Kingdom); Deng Yingchun [Department of Mathematics, Hunan Normal University, Changsha (China)

    2002-03-15

    In terms of the informax principle, and the input-output relationship of the integrate-and-fire (IF) model, IF neuron learning rules are developed. For supervised learning and with uniform weight of synapses (the theoretically tractable case), we show that the derived learning rule is stable and the stable state is unique. For unsupervised learning, within physiologically reasonable parameter regions, both long-term potentiation (LTP) and long-term depression (LTD) could happen when the inhibitory input is weak, but LTD cannot be observed when inhibitory input is strong enough. When both LTP and LTD occur, LTD is observable when the output of the postsynaptic neuron is faster than pre-synaptic inputs, otherwise LTP is observable, as observed in recent experiments. Learning rules of general cases are also studied and numerical examples show that the derived learning rule tends to equalize the contribution of different inputs to the output firing rates. (author)

  14. Mapping the recovery of the burnt vegetation by classifying pre- and post-fire spectral indices

    Directory of Open Access Journals (Sweden)

    M. A Peña

    2017-12-01

    Full Text Available This study analyzed the state of recovery of the burnt vegetation in the National Park of Torres del Paine between December, 2011 and March, 2012. The calculation and comparison of the NVDI (normalized difference vegetation index of the burnt area throughout a time series of 24 Landsat images acquired before, during and after the fire (2009- 2015, showed the temporal variation in the biomass levels of the burnt vegetation. The subsequent classification and comparison of the spectral indices: NDVI, NBR (normalized burnt ratio and NDWI (normalized difference water index on a full-data available and phenologically matched pre- and post-fire image pair (acquired in October 2009 and 2014, enabled to analyze and mapping the state of recovery of the burnt vegetation. The results show that the area of the lowest classes of all the spectral indices of the pre-fire date became the most dominant on the post-fire date. The pre- and post- fire NDVI class crossing by a confusion matrix showed that the highest and most prevailing pre-fire NDVI classes, mostly corresponding to hydromorphic forests and Andean scrubs, turned into the lowest class in 2014. The remaining area, comprising Patagonian steppe, reestablished its biomass levels in 2014, mostly exhibiting the same pre-fire NDVI classes. These results may provide guidelines to monitor and manage the regeneration of the vegetation impacted by this fire.

  15. Fire Models and Design Fires

    DEFF Research Database (Denmark)

    Poulsen, Annemarie

    The aim of this project is to perform an experimental study on the influence of the thermal feedback on the burning behavior of well ventilated pre-flashover fires. For the purpose an experimental method has been developed. Here the same identical objects are tested under free burn conditions...... carried out by Carleton University and NRC-IRC performed on seven different types of fire loads representing commercial premises, comprise the tests used for the study. The results show that for some of the room test the heat release rate increased due to thermal feedback compared to free burn for a pre......-flashover fire. Two phenomena were observed, that relate well to theory was found. In an incipient phase the heat release rate rose with the temperature of the smoke layer/enclosure boundaries. This increase was also found to depend on the flammability properties of the burning object. The results also...

  16. Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking.

    Directory of Open Access Journals (Sweden)

    Fabiano Baroni

    2014-05-01

    Full Text Available High-frequency oscillations (above 30 Hz have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF or Generalized Integrate-and-Fire (GIF neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i the firing rate response to the noisy background input, ii the membrane potential distribution, and iii the shape of Inhibitory Post-Synaptic Potentials (IPSPs. For hyperpolarizing inhibition, the GIF IPSP profile (factor iii exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i and ii, respectively, which tend to decrease synchrony. If inhibition is shunting instead

  17. Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking.

    Science.gov (United States)

    Baroni, Fabiano; Burkitt, Anthony N; Grayden, David B

    2014-05-01

    High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF) or Generalized Integrate-and-Fire (GIF) neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i) the firing rate response to the noisy background input, ii) the membrane potential distribution, and iii) the shape of Inhibitory Post-Synaptic Potentials (IPSPs). For hyperpolarizing inhibition, the GIF IPSP profile (factor iii)) exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i) and ii), respectively), which tend to decrease synchrony. If inhibition is shunting instead of

  18. Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity

    Science.gov (United States)

    Mizusaki, Beatriz E. P.; Agnes, Everton J.; Erichsen, Rubem; Brunnet, Leonardo G.

    2017-08-01

    The plastic character of brain synapses is considered to be one of the foundations for the formation of memories. There are numerous kinds of such phenomenon currently described in the literature, but their role in the development of information pathways in neural networks with recurrent architectures is still not completely clear. In this paper we study the role of an activity-based process, called pre-synaptic dependent homeostatic scaling, in the organization of networks that yield precise-timed spiking patterns. It encodes spatio-temporal information in the synaptic weights as it associates a learned input with a specific response. We introduce a correlation measure to evaluate the precision of the spiking patterns and explore the effects of different inhibitory interactions and learning parameters. We find that large learning periods are important in order to improve the network learning capacity and discuss this ability in the presence of distinct inhibitory currents.

  19. Analysis and modeling of ensemble recordings from respiratory pre-motor neurons indicate changes in functional network architecture after acute hypoxia

    Directory of Open Access Journals (Sweden)

    Roberto F Galán

    2010-09-01

    Full Text Available We have combined neurophysiologic recording, statistical analysis, and computational modeling to investigate the dynamics of the respiratory network in the brainstem. Using a multielectrode array, we recorded ensembles of respiratory neurons in perfused in situ rat preparations that produce spontaneous breathing patterns, focusing on inspiratory pre-motor neurons. We compared firing rates and neuronal synchronization among these neurons before and after a brief hypoxic stimulus. We observed a significant decrease in the number of spikes after stimulation, in part due to a transient slowing of the respiratory pattern. However, the median interspike interval did not change, suggesting that the firing threshold of the neurons was not affected but rather the synaptic input was. A bootstrap analysis of synchrony between spike trains revealed that, both before and after brief hypoxia, up to 45 % (but typically less than 5 % of coincident spikes across neuronal pairs was not explained by chance. Most likely, this synchrony resulted from common synaptic input to the pre-motor population, an example of stochastic synchronization. After brief hypoxia most pairs were less synchronized, although some were more, suggesting that the respiratory network was “rewired” transiently after the stimulus. To investigate this hypothesis, we created a simple computational model with feed-forward divergent connections along the inspiratory pathway. Assuming that 1 the number of divergent projections was not the same for all presynaptic cells, but rather spanned a wide range and 2 that the stimulus increased inhibition at the top of the network; this model reproduced the reduction in firing rate and bootstrap-corrected synchrony subsequent to hypoxic stimulation observed in our experimental data.

  20. Equilibrium and response properties of the integrate-and-fire neuron in discrete time

    Directory of Open Access Journals (Sweden)

    Moritz Helias

    2010-01-01

    Full Text Available The integrate-and-fire neuron with exponential postsynaptic potentials is a frequently employed model to study neural networks. Simulations in discrete time still have highest performance at moderate numerical errors, which makes them first choice for long-term simulations of plastic networks. Here we extend the population density approach to investigate how the equilibrium and response properties of the leaky integrate-and-fire neuron are affected by time discretization. We present a novel analytical treatment of the boundary condition at threshold, taking both discretization of time and finite synaptic weights into account. We uncover an increased membrane potential density just below threshold as the decisive property that explains the deviations found between simulations and the classical diffusion approximation. Temporal discretization and finite synaptic weights both contribute to this effect. Our treatment improves the standard formula to calculate the neuron’s equilibrium firing rate. Direct solution of the Markov process describing the evolution of the membrane potential density confirms our analysis and yields a method to calculate the firing rate exactly. Knowing the shape of the membrane potential distribution near threshold enables us to devise the transient response properties of the neuron model to synaptic input. We find a pronounced non-linear fast response component that has not been described by the prevailing continuous time theory for Gaussian white noise input.

  1. Electrical coupling and excitatory synaptic transmission between rhythmogenic respiratory neurons in the preBötzinger complex

    DEFF Research Database (Denmark)

    Rekling, J C; Shao, X M; Feldman, J L

    2000-01-01

    Breathing pattern is postulated to be generated by brainstem neurons. However, determination of the underlying cellular mechanisms, and in particular the synaptic interactions between respiratory neurons, has been difficult. Here we used dual recordings from two distinct populations of brainstem...... respiratory neurons, hypoglossal (XII) motoneurons, and rhythmogenic (type-1) neurons in the preBötzinger complex (preBötC), the hypothesized site for respiratory rhythm generation, to determine whether electrical and chemical transmission is present. Using an in vitro brainstem slice preparation from newborn...... mice, we found that intracellularly recorded pairs of XII motoneurons and pairs of preBötC inspiratory type-1 neurons showed bidirectional electrical coupling. Coupling strength was low (neurons was heavily filtered (corner frequency,

  2. A Ca2+-based computational model for NDMA receptor-dependent synaptic plasticity at individual post-synaptic spines in the hippocampus

    Directory of Open Access Journals (Sweden)

    Owen Rackham

    2010-07-01

    Full Text Available Associative synaptic plasticity is synapse specific and requires coincident activity in presynaptic and postsynaptic neurons to activate NMDA receptors (NMDARs. The resultant Ca2+ influx is the critical trigger for the induction of synaptic plasticity. Given its centrality for the induction of synaptic plasticity, a model for NMDAR activation incorporating the timing of presynaptic glutamate release and postsynaptic depolarization by back-propagating action potentials could potentially predict the pre- and post-synaptic spike patterns required to induce synaptic plasticity. We have developed such a model by incorporating currently available data on the timecourse and amplitude of the postsynaptic membrane potential within individual spines. We couple this with data on the kinetics of synaptic NMDARs and then use the model to predict the continuous spine [Ca2+] in response to regular or irregular pre- and post-synaptic spike patterns. We then incorporate experimental data from synaptic plasticity induction protocols by regular activity patterns to couple the predicted local peak [Ca2+] to changes in synaptic strength. We find that our model accurately describes [Ca2+] in dendritic spines resulting from NMDAR activation during presynaptic and postsynaptic activity when compared to previous experimental observations. The model also replicates the experimentally determined plasticity outcome of regular and irregular spike patterns when applied to a single synapse. This model could therefore be used to predict the induction of synaptic plasticity under a variety of experimental conditions and spike patterns.

  3. Quantifying Fire's Impacts on Total and Pyrogenic Carbon Stocks in Mixed-Conifer Forests: Results from Pre- and Post-Fire Measurements in Active Wildfire Incidents

    Science.gov (United States)

    Miesel, J. R.; Reiner, A. L.; Ewell, C. M.; Sanderman, J.; Maestrini, B.; Adkins, J.

    2016-12-01

    Widespread US fire suppression policy has contributed to an accumulation of vegetation in many western forests relative to historic conditions, and these changes can exacerbate wildfire severity and carbon (C) emissions. Serious concern exists about positive feedbacks between wildfire emissions and global climate; however, fires not only release C from terrestrial to atmospheric pools, they also create "black" or pyrogenic C (PyC) which contributes to longer-term C stability. Our objective was to quantify wildfire impacts on aboveground and belowground total C and PyC stocks in California mixed-conifer forests. We worked with incident management teams to access five active wildfires to establish and measure plots within days before and after fire. We measured pre- and post-fire aboveground forest structure and woody fuels to calculate aboveground biomass, biomass C, and PyC, and we collected pre- and post-fire forest floor and 0-5 cm mineral soil samples to measure belowground C and PyC stocks. Our preliminary results show that fire had minimal impact on the number of trees per hectare, whereas C losses from the tree layer occurred via consumption of foliage, and PyC gain occurred in tree bark. Fire released 54% to 100% of surface fuel C. In the forest floor layer, we observed 33 to 100% C loss, whereas changes in PyC stocks ranged from 100% loss to 186% gain relative to pre-fire samples. In general, fire had minimal to no impact on 0-5 cm mineral soil C. We will present relationships between total C, PyC and post-fire C and N dynamics in one of the five wildfire sites. Our data are unique because they represent nearly immediate pre- and post-fire measurements in major wildfires in a widespread western U.S. forest type. This research advances understanding of the role of fire on forest C fluxes and C sequestration potential as PyC.

  4. Synaptic energy drives the information processing mechanisms in spiking neural networks.

    Science.gov (United States)

    El Laithy, Karim; Bogdan, Martin

    2014-04-01

    Flow of energy and free energy minimization underpins almost every aspect of naturally occurring physical mechanisms. Inspired by this fact this work establishes an energy-based framework that spans the multi-scale range of biological neural systems and integrates synaptic dynamic, synchronous spiking activity and neural states into one consistent working paradigm. Following a bottom-up approach, a hypothetical energy function is proposed for dynamic synaptic models based on the theoretical thermodynamic principles and the Hopfield networks. We show that a synapse exposes stable operating points in terms of its excitatory postsynaptic potential as a function of its synaptic strength. We postulate that synapses in a network operating at these stable points can drive this network to an internal state of synchronous firing. The presented analysis is related to the widely investigated temporal coherent activities (cell assemblies) over a certain range of time scales (binding-by-synchrony). This introduces a novel explanation of the observed (poly)synchronous activities within networks regarding the synaptic (coupling) functionality. On a network level the transitions from one firing scheme to the other express discrete sets of neural states. The neural states exist as long as the network sustains the internal synaptic energy.

  5. Persistent barrage firing in cortical interneurons can be induced in vivo and may be important for the suppression of epileptiform activity

    Directory of Open Access Journals (Sweden)

    Norimitsu eSuzuki

    2014-03-01

    Full Text Available Neural circuits are typically maintained in a state of dynamic equilibrium by balanced synaptic excitation and inhibition. However, brain regions that are particularly susceptible to epilepsy may have evolved additional specialized mechanisms for inhibiting overexcitation. Here we identify one such possible mechanism in the cerebral cortex and hippocampus of mice. Recently it was reported that some types of GABAergic interneurons can slowly integrate excitatory inputs until eventually they fire persistently in the absence of the original stimulus. This property, called persistent firing or retroaxonal barrage firing, is of unknown physiological importance. We show that two common types of interneurons in cortical regions, neurogliaform cells and fast-spiking multipolar cells, are unique in exhibiting barrage firing in acute slices (~85% and ~23% success rate for induction, respectively. Barrage firing can also be induced in vivo, although the success rate for induction is lower (~60% in neurogliaform cells. In slices, barrage firing could reliably be triggered by trains of excitatory synaptic input, as well as by exposure to proconvulsant bath solutions (elevated extracellular K+, blockade of GABAA receptors. Using pair recordings in slices, we confirmed that barrage-firing neurogliaform cells can produce synaptic inhibition of nearby pyramidal neurons, and that this inhibition outlasts the original excitation. The ubiquity of neurogliaform and fast-spiking cells, together with their ability to fire persistently following excessive excitation, suggests that these interneurons may function as cortical sentinels, imposing an activity-dependent brake on undesirable neuronal hyperexcitability.

  6. Cold Climate Structural Fire Danger Rating System?

    Directory of Open Access Journals (Sweden)

    Maria-Monika Metallinou

    2018-03-01

    Full Text Available Worldwide, fires kill 300,000 people every year. The fire season is usually recognized to be in the warmer periods of the year. Recent research has, however, demonstrated that the colder season also has major challenges regarding severe fires, especially in inhabited (heated wood-based structures in cold-climate areas. Knowledge about the effect of dry cellulose-based materials on fire development, indoor and outdoor, is a motivation for monitoring possible changes in potential fire behavior and associated fire risk. The effect of wind in spreading fires to neighboring structures points towards using weather forecasts as information on potential fire spread behavior. As modern weather forecasts include temperature and relative humidity predictions, there may already be sufficient information available to develop a structural fire danger rating system. Such a system may include the following steps: (1 Record weather forecasts and actual temperature and relative humidity inside and outside selected structures; (2 Develop a meteorology-data-based model to predict indoor relative humidity levels; (3 Perform controlled drying chamber experiments involving typical hygroscopic fire fuel; (4 Compare the results to the recorded values in selected structures; and (5 Develop the risk model involving the results from drying chamber experiments, weather forecasts, and separation between structures. Knowledge about the structures at risk and their use is also important. The benefits of an automated fire danger rating system would be that the society can better plan for potentially severe cold-climate fires and thereby limit the negative impacts of such fires.

  7. Study of GABAergic extra-synaptic tonic inhibition in single neurons and neural populations by traversing neural scales: application to propofol-induced anaesthesia.

    Science.gov (United States)

    Hutt, Axel; Buhry, Laure

    2014-12-01

    Anaesthetic agents are known to affect extra-synaptic GABAergic receptors, which induce tonic inhibitory currents. Since these receptors are very sensitive to small concentrations of agents, they are supposed to play an important role in the underlying neural mechanism of general anaesthesia. Moreover anaesthetic agents modulate the encephalographic activity (EEG) of subjects and hence show an effect on neural populations. To understand better the tonic inhibition effect in single neurons on neural populations and hence how it affects the EEG, the work considers single neurons and neural populations in a steady-state and studies numerically and analytically the modulation of their firing rate and nonlinear gain with respect to different levels of tonic inhibition. We consider populations of both type-I (Leaky Integrate-and-Fire model) and type-II (Morris-Lecar model) neurons. To bridge the single neuron description to the population description analytically, a recently proposed statistical approach is employed which allows to derive new analytical expressions for the population firing rate for type-I neurons. In addition, the work shows the derivation of a novel transfer function for type-I neurons as considered in neural mass models and studies briefly the interaction of synaptic and extra-synaptic inhibition. We reveal a strong subtractive and divisive effect of tonic inhibition in type-I neurons, i.e. a shift of the firing rate to higher excitation levels accompanied by a change of the nonlinear gain. Tonic inhibition shortens the excitation window of type-II neurons and their populations while maintaining the nonlinear gain. The gained results are interpreted in the context of recent experimental findings under propofol-induced anaesthesia.

  8. Burning phylogenies: fire, molecular evolutionary rates, and diversification.

    Science.gov (United States)

    Verdú, Miguel; Pausas, Juli G; Segarra-Moragues, José Gabriel; Ojeda, Fernando

    2007-09-01

    Mediterranean-type ecosystems are among the most remarkable plant biodiversity "hot spots" on the earth, and fire has traditionally been invoked as one of the evolutionary forces explaining this exceptional diversity. In these ecosystems, adult plants of some species are able to survive after fire (resprouters), whereas in other species fire kills the adults and populations are only maintained by an effective post-fire recruitment (seeders). Seeders tend to have shorter generation times than resprouters, particularly under short fire return intervals, thus potentially increasing their molecular evolutionary rates and, ultimately, their diversification. We explored whether seeder lineages actually have higher rates of molecular evolution and diversification than resprouters. Molecular evolutionary rates in different DNA regions were compared in 45 phylogenetically paired congeneric taxa from fire-prone Mediterranean-type ecosystems with contrasting seeder and resprouter life histories. Differential diversification was analyzed with both topological and chronological approaches in five genera (Banksia, Daviesia, Lachnaea, Leucadendron, and Thamnochortus) from two fire-prone regions (Australia and South Africa). We found that seeders had neither higher molecular rates nor higher diversification than resprouters. Such lack of differences in molecular rates between seeders and resprouters-which did not agree with theoretical predictions-may occur if (1) the timing of the switch from seeding to resprouting (or vice versa) occurs near the branch tip, so that most of the branch length evolves under the opposite life-history form; (2) resprouters suffer more somatic mutations and therefore counterbalancing the replication-induced mutations of seeders; and (3) the rate of mutations is not related to shorter generation times because plants do not undergo determinate germ-line replication. The absence of differential diversification is to be expected if seeders and resprouters

  9. Estimation of the synaptic input firing rates and characterization of the stimulation effects in an auditory neuron

    Czech Academy of Sciences Publication Activity Database

    Kobayashi, R.; He, J.; Lánský, Petr

    2015-01-01

    Roč. 9, May 18 (2015), s. 59 ISSN 1662-5188 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : synaptic inputs * statistical inference * state-space models * intracellular recordings * auditory cortex Subject RIV: BD - Theory of Information Impact factor: 2.653, year: 2015

  10. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    Directory of Open Access Journals (Sweden)

    Joshua G.A Pinto

    2015-02-01

    Full Text Available Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin and found that synaptic development in human primary visual cortex continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the 4 proteins and include a stage during early development (<1 year when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the first year or two of life. A multidimensional analysis (principle component analysis showed that most of the variance was captured by the sum of the 4 synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic.

  11. A memristive spiking neuron with firing rate coding

    Directory of Open Access Journals (Sweden)

    Marina eIgnatov

    2015-10-01

    Full Text Available Perception, decisions, and sensations are all encoded into trains of action potentials in the brain. The relation between stimulus strength and all-or-nothing spiking of neurons is widely believed to be the basis of this coding. This initiated the development of spiking neuron models; one of today's most powerful conceptual tool for the analysis and emulation of neural dynamics. The success of electronic circuit models and their physical realization within silicon field-effect transistor circuits lead to elegant technical approaches. Recently, the spectrum of electronic devices for neural computing has been extended by memristive devices, mainly used to emulate static synaptic functionality. Their capabilities for emulations of neural activity were recently demonstrated using a memristive neuristor circuit, while a memristive neuron circuit has so far been elusive. Here, a spiking neuron model is experimentally realized in a compact circuit comprising memristive and memcapacitive devices based on the strongly correlated electron material vanadium dioxide (VO2 and on the chemical electromigration cell Ag/TiO2-x/Al. The circuit can emulate dynamical spiking patterns in response to an external stimulus including adaptation, which is at the heart of firing rate coding as first observed by E.D. Adrian in 1926.

  12. Literature study regarding fire protection in nuclear power plants. Part I: Fire rated separations

    International Nuclear Information System (INIS)

    Isaksson, S.

    1995-06-01

    This literature study has been made on behalf of the Swedish Nuclear Power Inspectorate. The aim is to describe different aspects of fire protection in nuclear power plants. Conventional building codes can not give guidance on where to make fire rated separations in order to separate redundant trains of safety systems. The separation must originate in functional demands from the authorities on what functions are essential during and after a fire, and under what circumstances these functions shall be retained, i.e. the number of independent faults and initiating events. As a basic demand it is suggested to rate the strength of separations according to conventional building code, based on fire load. The whole separating construction shall have the same fire rating, including the ventilation system. Deviations from the basic demand can de done in case it can be proven that it is possible to compensate some or all of the fire rating with other measures. There is a general lack of statistical information regarding the reliability of fire separating constructions such as walls, fire doors, penetration seals and fire dampers. The amount of cables penetrating a seal is in many cases much higher in real installations than what has been tested for type approval. It would therefore be valuable to perform a furnace test with a more representative amount of cables passing through a penetration seal. Tests have shown that the 20 foot horizontal separation distance stipulated by NRC is not a guarantee against fire damage. Spatial separations based on general requirements shall not be allowed, but considered from case to case based on actual circumstances. For fire protection by isolation or coatings, it is of great importance to choose the method of protection carefully, to be compatible with the material it shall be applied on, and the environment and types of fire that may occur. 48 refs, 2 figs, 5 tabs

  13. Firing probability and mean firing rates of human muscle vasoconstrictor neurones are elevated during chronic asphyxia

    DEFF Research Database (Denmark)

    Ashley, Cynthia; Burton, Danielle; Sverrisdottir, Yrsa B

    2010-01-01

    in the obstructive sleep apnoea syndrome (OSAS) is associated with an increase in firing probability and mean firing rate, and an increase in multiple within-burst firing. Here we characterize the firing properties of muscle vasoconstrictor neurones in patients with chronic obstructive pulmonary disease (COPD), who...... are chronically asphyxic. We tested the hypothesis that this elevated chemical drive would shift the firing pattern from that seen in healthy subjects to that seen in OSAS. The mean firing probability (52%) and mean firing rate (0.92 Hz) of 17 muscle vasoconstrictor neurones recorded in COPD were comparable...

  14. Mechanism for propagation of rate signals through a 10-layer feedforward neuronal network

    International Nuclear Information System (INIS)

    Jie, Li; Wan-Qing, Yu; Ding, Xu; Feng, Liu; Wei, Wang

    2009-01-01

    Using numerical simulations, we explore the mechanism for propagation of rate signals through a 10-layer feedforward network composed of Hodgkin–Huxley (HH) neurons with sparse connectivity. When white noise is afferent to the input layer, neuronal firing becomes progressively more synchronous in successive layers and synchrony is well developed in deeper layers owing to the feedforward connections between neighboring layers. The synchrony ensures the successful propagation of rate signals through the network when the synaptic conductance is weak. As the synaptic time constant τ syn varies, coherence resonance is observed in the network activity due to the intrinsic property of HH neurons. This makes the output firing rate single-peaked as a function of τ syn , suggesting that the signal propagation can be modulated by the synaptic time constant. These results are consistent with experimental results and advance our understanding of how information is processed in feedforward networks. (cross-disciplinary physics and related areas of science and technology)

  15. Diacylglycerol kinases in the coordination of synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Dongwon Lee

    2016-08-01

    Full Text Available Synaptic plasticity is activity-dependent modification of the efficacy of synaptic transmission. Although detailed mechanisms underlying synaptic plasticity are diverse and vary at different types of synapses, diacylglycerol (DAG-associated signaling has been considered as an important regulator of many forms of synaptic plasticity, including long-term potentiation (LTP and long-term depression (LTD. Recent evidence indicate that DAG kinases (DGKs, which phosphorylate DAG to phosphatidic acid to terminate DAG signaling, are important regulators of LTP and LTD, as supported by the results from mice lacking specific DGK isoforms. This review will summarize these studies and discuss how specific DGK isoforms distinctly regulate different forms of synaptic plasticity at pre- and postsynaptic sites. In addition, we propose a general role of DGKs as coordinators of synaptic plasticity that make local synaptic environments more permissive for synaptic plasticity by regulating DAG concentration and interacting with other synaptic proteins.

  16. Agrin and synaptic laminin are required to maintain adult neuromuscular junctions.

    Directory of Open Access Journals (Sweden)

    Melanie A Samuel

    Full Text Available As synapses form and mature the synaptic partners produce organizing molecules that regulate each other's differentiation and ensure precise apposition of pre- and post-synaptic specializations. At the skeletal neuromuscular junction (NMJ, these molecules include agrin, a nerve-derived organizer of postsynaptic differentiation, and synaptic laminins, muscle-derived organizers of presynaptic differentiation. Both become concentrated in the synaptic cleft as the NMJ develops and are retained in adulthood. Here, we used mutant mice to ask whether these organizers are also required for synaptic maintenance. Deletion of agrin from a subset of adult motor neurons resulted in the loss of acetylcholine receptors and other components of the postsynaptic apparatus and synaptic cleft. Nerve terminals also atrophied and eventually withdrew from muscle fibers. On the other hand, mice lacking the presynaptic organizer laminin-α4 retained most of the synaptic cleft components but exhibited synaptic alterations reminiscent of those observed in aged animals. Although we detected no marked decrease in laminin or agrin levels at aged NMJs, we observed alterations in the distribution and organization of these synaptic cleft components suggesting that such changes could contribute to age-related synaptic disassembly. Together, these results demonstrate that pre- and post-synaptic organizers actively function to maintain the structure and function of adult NMJs.

  17. Biophysical synaptic dynamics in an analog VLSI network of Hodgkin-Huxley neurons.

    Science.gov (United States)

    Yu, Theodore; Cauwenberghs, Gert

    2009-01-01

    We study synaptic dynamics in a biophysical network of four coupled spiking neurons implemented in an analog VLSI silicon microchip. The four neurons implement a generalized Hodgkin-Huxley model with individually configurable rate-based kinetics of opening and closing of Na+ and K+ ion channels. The twelve synapses implement a rate-based first-order kinetic model of neurotransmitter and receptor dynamics, accounting for NMDA and non-NMDA type chemical synapses. The implemented models on the chip are fully configurable by 384 parameters accounting for conductances, reversal potentials, and pre/post-synaptic voltage-dependence of the channel kinetics. We describe the models and present experimental results from the chip characterizing single neuron dynamics, single synapse dynamics, and multi-neuron network dynamics showing phase-locking behavior as a function of synaptic coupling strength. The 3mm x 3mm microchip consumes 1.29 mW power making it promising for applications including neuromorphic modeling and neural prostheses.

  18. Myocardial pre-synaptic sympathetic function correlates with glucose uptake in the failing human heart

    International Nuclear Information System (INIS)

    Mongillo, Marco; Leccisotti, Lucia; John, Anna S.; Pennell, Dudley J.; Camici, Paolo G.

    2007-01-01

    We have previously shown that the myocardium of patients with heart failure (HF) is insulin resistant. Chronic β-adrenergic stimulation has been implicated in insulin resistance in cultured cardiomyocytes in vitro, where sustained noradrenaline stimulation inhibited insulin-modulated glucose uptake. As the failing heart is characterized by increased sympathetic drive, we hypothesized that there is a correlation between pre-synaptic sympathetic function and insulin sensitivity in the myocardium of patients with HF. Eight patients (aged 67 ± 7 years) with coronary artery disease and left ventricular dysfunction (ejection fraction 44 ± 10%) underwent function and viability assessment with cardiovascular magnetic resonance. Myocardial glucose utilization (MGU) was measured using positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG). Pre-synaptic noradrenaline re-uptake was measured by calculating [ 11 C]meta-hydroxy-ephedrine (HED) volume of distribution (V d ) with PET. Two groups of healthy volunteers served as controls for the FDG (n = 8, aged 52 ± 4 years, p -1 .g -1 ) and dysfunctional (0.49 ± 0.14 μmol.min -1 .g -1 ) segments compared with controls (0.61 ± 0.7 μmol.min -1 .g -1 ; p d was reduced in dysfunctional segments of patients (38.9 ± 21.2 ml.g -1 ) compared with normal segments (52.2 ± 19.6 ml.g -1 ) and compared with controls (62.7 ± 11.3 ml.g -1 ). In patients, regional MGU was correlated with HED V d . The results of this study provide novel evidence of a correlation between cardiac sympathetic function and insulin sensitivity, which may represent one of the mechanisms contributing to insulin resistance in failing human hearts. (orig.)

  19. Synaptic control of motoneuronal excitability

    DEFF Research Database (Denmark)

    Rekling, J C; Funk, G D; Bayliss, D A

    2000-01-01

    important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization......, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions...... and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward...

  20. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    DEFF Research Database (Denmark)

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias

    2015-01-01

    supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced......-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release....

  1. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Dickenson Anthony H

    2009-02-01

    Full Text Available Abstract Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1 has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal

  2. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    Science.gov (United States)

    Nguyen, David; Deng, Ping; Matthews, Elizabeth A; Kim, Doo-Sik; Feng, Guoping; Dickenson, Anthony H; Xu, Zao C; Luo, Z David

    2009-01-01

    Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1) has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia) similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR) neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal horn neurons to innocuous

  3. Working memory cells' behavior may be explained by cross-regional networks with synaptic facilitation.

    Directory of Open Access Journals (Sweden)

    Sergio Verduzco-Flores

    2009-08-01

    Full Text Available Neurons in the cortex exhibit a number of patterns that correlate with working memory. Specifically, averaged across trials of working memory tasks, neurons exhibit different firing rate patterns during the delay of those tasks. These patterns include: 1 persistent fixed-frequency elevated rates above baseline, 2 elevated rates that decay throughout the tasks memory period, 3 rates that accelerate throughout the delay, and 4 patterns of inhibited firing (below baseline analogous to each of the preceding excitatory patterns. Persistent elevated rate patterns are believed to be the neural correlate of working memory retention and preparation for execution of behavioral/motor responses as required in working memory tasks. Models have proposed that such activity corresponds to stable attractors in cortical neural networks with fixed synaptic weights. However, the variability in patterned behavior and the firing statistics of real neurons across the entire range of those behaviors across and within trials of working memory tasks are typical not reproduced. Here we examine the effect of dynamic synapses and network architectures with multiple cortical areas on the states and dynamics of working memory networks. The analysis indicates that the multiple pattern types exhibited by cells in working memory networks are inherent in networks with dynamic synapses, and that the variability and firing statistics in such networks with distributed architectures agree with that observed in the cortex.

  4. Pre- and post-fire pollutant loads in an urban fringe watershed in Southern California.

    Science.gov (United States)

    Burke, M P; Hogue, T S; Kinoshita, A M; Barco, J; Wessel, C; Stein, E D

    2013-12-01

    Post-fire runoff has the potential to be a large source of contaminants to downstream areas. However, the magnitude of this effect in urban fringe watersheds adjacent to large sources of airborne contaminants is not well documented. The current study investigates the impacts of wildfire on stormwater contaminant loading from the upper Arroyo Seco watershed, burned in 2009. This watershed is adjacent to the Greater Los Angeles, CA, USA area and has not burned in over 60 years. Consequently, it acts as a sink for regional urban pollutants and presents an opportunity to study the impacts of wildfire. Pre- and post-fire storm samples were collected and analyzed for basic cations, trace metals, and total suspended solids. The loss of vegetation and changes in soil properties from the fire greatly increased the magnitude of storm runoff, resulting in sediment-laden floods carrying high concentrations of particulate-bound constituents. Post-fire concentrations and loads were up to three orders of magnitude greater than pre-fire values for many trace metals, including lead and cadmium. A shift was also observed in the timing of chemical delivery, where maximum suspended sediment, trace metal, and cation concentrations coincided with, rather than preceded, peak discharge in the post-fire runoff, amplifying the fire's impacts on mass loading. The results emphasize the importance of sediment delivery as a primary mechanism for post-fire contaminant transport and suggest that traditional management practices that focus on treating only the early portion of storm runoff may be less effective following wildfire. We also advocate that watersheds impacted by regional urban pollutants have the potential to pose significant risk for downstream communities and ecosystems after fire.

  5. Glucose rapidly induces different forms of excitatory synaptic plasticity in hypothalamic POMC neurons.

    Directory of Open Access Journals (Sweden)

    Jun Hu

    Full Text Available Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+, EPSC(-, and EPSC(+/- based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs, using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+ neurons, but increased it in EPSC(- neurons. Unlike EPSC(+ and EPSC(- neurons, EPSC(+/- neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/- neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.

  6. Glucose rapidly induces different forms of excitatory synaptic plasticity in hypothalamic POMC neurons.

    Science.gov (United States)

    Hu, Jun; Jiang, Lin; Low, Malcolm J; Rui, Liangyou

    2014-01-01

    Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(-), and EPSC(+/-)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(-) neurons. Unlike EPSC(+) and EPSC(-) neurons, EPSC(+/-) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/-) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.

  7. Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs.

    Science.gov (United States)

    Kline, Joshua C; De Luca, Carlo J

    2016-01-01

    Synchronous motor unit firing instances have been attributed to anatomical inputs shared by motoneurons. Yet, there is a lack of empirical evidence confirming the notion that common inputs elicit synchronization under voluntary conditions. We tested this notion by measuring synchronization between motor unit action potential trains (MUAPTs) as their firing rates progressed within a contraction from a relatively low force level to a higher one. On average, the degree of synchronization decreased as the force increased. The common input notion provides no empirically supported explanation for the observed synchronization behavior. Therefore, we investigated a more probable explanation for synchronization. Our data set of 17,546 paired MUAPTs revealed that the degree of synchronization varies as a function of two characteristics of the motor unit firing rate: the similarity and the slope as a function of force. Both are measures of the excitation of the motoneurons. As the force generated by the muscle increases, the firing rate slope decreases, and the synchronization correspondingly decreases. Different muscles have motor units with different firing rate characteristics and display different amounts of synchronization. Although this association is not proof of causality, it consistently explains our observations and strongly suggests further investigation. So viewed, synchronization is likely an epiphenomenon, subject to countless unknown neural interactions. As such, synchronous firing instances may not be the product of a specific design and may not serve a specific physiological purpose. Our explanation for synchronization has the advantage of being supported by empirical evidence, whereas the common input does not. Copyright © 2016 the American Physiological Society.

  8. Experimental Implementation of a Biometric Laser Synaptic Sensor

    Directory of Open Access Journals (Sweden)

    Alexander N. Pisarchik

    2013-12-01

    Full Text Available We fabricate a biometric laser fiber synaptic sensor to transmit information from one neuron cell to the other by an optical way. The optical synapse is constructed on the base of an erbium-doped fiber laser, whose pumped diode current is driven by a pre-synaptic FitzHugh–Nagumo electronic neuron, and the laser output controls a post-synaptic FitzHugh–Nagumo electronic neuron. The implemented laser synapse displays very rich dynamics, including fixed points, periodic orbits with different frequency-locking ratios and chaos. These regimes can be beneficial for efficient biorobotics, where behavioral flexibility subserved by synaptic connectivity is a challenge.

  9. Using MODIS-NDVI for the Modeling of Post-Wildfire Vegetation Response as a Function of Environmental Conditions and Pre-Fire Restoration Treatments

    Directory of Open Access Journals (Sweden)

    Grant M. Casady

    2012-03-01

    Full Text Available Post-fire vegetation response is influenced by the interaction of natural and anthropogenic factors such as topography, climate, vegetation type and restoration practices. Previous research has analyzed the relationship of some of these factors to vegetation response, but few have taken into account the effects of pre-fire restoration practices. We selected three wildfires that occurred in Bandelier National Monument (New Mexico, USA between 1999 and 2007 and three adjacent unburned control areas. We used interannual trends in the Normalized Difference Vegetation Index (NDVI time series data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS to assess vegetation response, which we define as the average potential photosynthetic activity through the summer monsoon. Topography, fire severity and restoration treatment were obtained and used to explain post-fire vegetation response. We applied parametric (Multiple Linear Regressions-MLR and non-parametric tests (Classification and Regression Trees-CART to analyze effects of fire severity, terrain and pre-fire restoration treatments (variable used in CART on post-fire vegetation response. MLR results showed strong relationships between vegetation response and environmental factors (p < 0.1, however the explanatory factors changed among treatments. CART results showed that beside fire severity and topography, pre-fire treatments strongly impact post-fire vegetation response. Results for these three fires show that pre-fire restoration conditions along with local environmental factors constitute key processes that modify post-fire vegetation response.

  10. Analysis of RHIC beam dump pre-fires

    International Nuclear Information System (INIS)

    Zhang, W.; Ahrens, L.; Fischer, W.; Hahn, H.; Mi, J.; Sandberg, J.; Tan, Y.

    2011-01-01

    It has been speculated that the beam may cause instability of the RHIC Beam Abort Kickers. In this study, we explore the available data of past beam operations, the device history of key modulator components, and the radiation patterns to examine the correlations. The RHIC beam abort kicker system was designed and built in the 90's. Over last decade, we have made many improvements to bring the RHIC beam abort kicker system to a stable operational state. However, the challenge continues. We present the analysis of the pre-fire, an unrequested discharge of kicker, issues which relates to the RHIC machine safety and operational stability.

  11. Self-organised criticality via retro-synaptic signals

    Science.gov (United States)

    Hernandez-Urbina, Victor; Herrmann, J. Michael

    2016-12-01

    The brain is a complex system par excellence. In the last decade the observation of neuronal avalanches in neocortical circuits suggested the presence of self-organised criticality in brain networks. The occurrence of this type of dynamics implies several benefits to neural computation. However, the mechanisms that give rise to critical behaviour in these systems, and how they interact with other neuronal processes such as synaptic plasticity are not fully understood. In this paper, we present a long-term plasticity rule based on retro-synaptic signals that allows the system to reach a critical state in which clusters of activity are distributed as a power-law, among other observables. Our synaptic plasticity rule coexists with other synaptic mechanisms such as spike-timing-dependent plasticity, which implies that the resulting synaptic modulation captures not only the temporal correlations between spiking times of pre- and post-synaptic units, which has been suggested as requirement for learning and memory in neural systems, but also drives the system to a state of optimal neural information processing.

  12. Burst firing enhances neural output correlation

    Directory of Open Access Journals (Sweden)

    Ho Ka eChan

    2016-05-01

    Full Text Available Neurons communicate and transmit information predominantly through spikes. Given that experimentally observed neural spike trains in a variety of brain areas can be highly correlated, it is important to investigate how neurons process correlated inputs. Most previous work in this area studied the problem of correlation transfer analytically by making significant simplifications on neural dynamics. Temporal correlation between inputs that arises from synaptic filtering, for instance, is often ignored when assuming that an input spike can at most generate one output spike. Through numerical simulations of a pair of leaky integrate-and-fire (LIF neurons receiving correlated inputs, we demonstrate that neurons in the presence of synaptic filtering by slow synapses exhibit strong output correlations. We then show that burst firing plays a central role in enhancing output correlations, which can explain the above-mentioned observation because synaptic filtering induces bursting. The observed changes of correlations are mostly on a long time scale. Our results suggest that other features affecting the prevalence of neural burst firing in biological neurons, e.g., adaptive spiking mechanisms, may play an important role in modulating the overall level of correlations in neural networks.

  13. Intrinsic modulation of pulse-coupled integrate-and-fire neurons

    Science.gov (United States)

    Coombes, S.; Lord, G. J.

    1997-11-01

    Intrinsic neuromodulation is observed in sensory and neuromuscular circuits and in biological central pattern generators. We model a simple neuronal circuit with a system of two pulse-coupled integrate-and-fire neurons and explore the parameter regimes for periodic firing behavior. The inclusion of biologically realistic features shows that the speed and onset of neuronal response plays a crucial role in determining the firing phase for periodic rhythms. We explore the neurophysiological function of distributed delays arising from both the synaptic transmission process and dendritic structure as well as discrete delays associated with axonal communication delays. Bifurcation and stability diagrams are constructed with a mixture of simple analysis, numerical continuation and the Kuramoto phase-reduction technique. Moreover, we show that, for asynchronous behavior, the strength of electrical synapses can control the firing rate of the system.

  14. Free microparticles—An inducing mechanism of pre-firing in high pressure gas switches for fast linear transformer drivers

    Science.gov (United States)

    Li, Xiaoang; Pei, Zhehao; Wu, Zhicheng; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2018-03-01

    Microparticle initiated pre-firing of high pressure gas switches for fast linear transformer drivers (FLTDs) is experimentally and theoretically verified. First, a dual-electrode gas switch equipped with poly-methyl methacrylate baffles is used to capture and collect the microparticles. By analyzing the electrode surfaces and the collecting baffles by a laser scanning confocal microscope, microparticles ranging in size from tens of micrometers to over 100 μm are observed under the typical working conditions of FLTDs. The charging and movement of free microparticles in switch cavity are studied, and the strong DC electric field drives the microparticles to bounce off the electrode. Three different modes of free microparticle motion appear to be responsible for switch pre-firing. (i) Microparticles adhere to the electrode surface and act as a fixed protrusion which distorts the local electric field and initiates the breakdown in the gap. (ii) One particle escapes toward the opposite electrode and causes a near-electrode microdischarge, inducing the breakdown of the residual gap. (iii) Multiple moving microparticles are occasionally in cascade, leading to pre-firing. Finally, as experimental verification, repetitive discharges at ±90 kV are conducted in a three-electrode field-distortion gas switch, with two 8 mm gaps and pressurized with nitrogen. An ultrasonic probe is employed to monitor the bounce signals. In pre-firing incidents, the bounce is detected shortly before the collapse of the voltage waveform, which demonstrates that free microparticles contribute significantly to the mechanism that induces pre-firing in FLTD gas switches.

  15. Free microparticles-An inducing mechanism of pre-firing in high pressure gas switches for fast linear transformer drivers.

    Science.gov (United States)

    Li, Xiaoang; Pei, Zhehao; Wu, Zhicheng; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2018-03-01

    Microparticle initiated pre-firing of high pressure gas switches for fast linear transformer drivers (FLTDs) is experimentally and theoretically verified. First, a dual-electrode gas switch equipped with poly-methyl methacrylate baffles is used to capture and collect the microparticles. By analyzing the electrode surfaces and the collecting baffles by a laser scanning confocal microscope, microparticles ranging in size from tens of micrometers to over 100 μm are observed under the typical working conditions of FLTDs. The charging and movement of free microparticles in switch cavity are studied, and the strong DC electric field drives the microparticles to bounce off the electrode. Three different modes of free microparticle motion appear to be responsible for switch pre-firing. (i) Microparticles adhere to the electrode surface and act as a fixed protrusion which distorts the local electric field and initiates the breakdown in the gap. (ii) One particle escapes toward the opposite electrode and causes a near-electrode microdischarge, inducing the breakdown of the residual gap. (iii) Multiple moving microparticles are occasionally in cascade, leading to pre-firing. Finally, as experimental verification, repetitive discharges at ±90 kV are conducted in a three-electrode field-distortion gas switch, with two 8 mm gaps and pressurized with nitrogen. An ultrasonic probe is employed to monitor the bounce signals. In pre-firing incidents, the bounce is detected shortly before the collapse of the voltage waveform, which demonstrates that free microparticles contribute significantly to the mechanism that induces pre-firing in FLTD gas switches.

  16. Synaptic integration of transplanted interneuron progenitor cells into native cortical networks.

    Science.gov (United States)

    Howard, MacKenzie A; Baraban, Scott C

    2016-08-01

    Interneuron-based cell transplantation is a powerful method to modify network function in a variety of neurological disorders, including epilepsy. Whether new interneurons integrate into native neural networks in a subtype-specific manner is not well understood, and the therapeutic mechanisms underlying interneuron-based cell therapy, including the role of synaptic inhibition, are debated. In this study, we tested subtype-specific integration of transplanted interneurons using acute cortical brain slices and visualized patch-clamp recordings to measure excitatory synaptic inputs, intrinsic properties, and inhibitory synaptic outputs. Fluorescently labeled progenitor cells from the embryonic medial ganglionic eminence (MGE) were used for transplantation. At 5 wk after transplantation, MGE-derived parvalbumin-positive (PV+) interneurons received excitatory synaptic inputs, exhibited mature interneuron firing properties, and made functional synaptic inhibitory connections to native pyramidal cells that were comparable to those of native PV+ interneurons. These findings demonstrate that MGE-derived PV+ interneurons functionally integrate into subtype-appropriate physiological niches within host networks following transplantation. Copyright © 2016 the American Physiological Society.

  17. Glucose Rapidly Induces Different Forms of Excitatory Synaptic Plasticity in Hypothalamic POMC Neurons

    Science.gov (United States)

    Hu, Jun; Jiang, Lin; Low, Malcolm J.; Rui, Liangyou

    2014-01-01

    Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(−), and EPSC(+/−)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(−) neurons. Unlike EPSC(+) and EPSC(−) neurons, EPSC(+/−) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/−) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals. PMID:25127258

  18. Regional scales of fire danger rating in the forest: improved technique

    Directory of Open Access Journals (Sweden)

    A. V. Volokitina

    2017-04-01

    Full Text Available Wildland fires distribute unevenly in time and over area under the influence of weather and other factors. It is unfeasible to air patrol the whole forest area daily during a fire season as well as to keep all fire suppression forces constantly alert. Daily work and preparedness of forest fire protection services is regulated by the level of fire danger according to weather conditions (Nesterov’s index. PV-1 index, fire hazard class (Melekhov’s scale, regional scales (earlier called local scales. Unfortunately, there is still no unified comparable technique of making regional scales. As a result, it is difficult to maneuver forest fire protection resources, since the techniques currently used are not approved and not tested for their performance. They give fire danger rating incomparable even for neighboring regions. The paper analyzes the state-of-the-art in Russia and abroad. It is stated the irony is that with factors of fire danger measured quantitatively, the fire danger itself as a function has no quantitative expression. Thus, selection of an absolute criteria is of high importance for improvement of daily fire danger rating. On the example of the Chunsky forest ranger station (Krasnoyarsk Krai, an improved technique is suggested of making comparable local scales of forest fire danger rating based on an absolute criterion of fire danger rating – a probable density of active fires per million ha. A method and an algorithm are described of automatized local scales of fire danger that should facilitate effective creation of similar scales for any forest ranger station or aviation regional office using a database on forest fires and weather conditions. The information system of distant monitoring by Federal Forestry Agency of Russia is analyzed for its application in making local scales. To supplement the existing weather station net it is suggested that automatic compact weather stations or, if the latter is not possible, simple

  19. High Bandwidth Synaptic Communication and Frequency Tracking in Human Neocortex

    NARCIS (Netherlands)

    G. Testa-Silva (Guilherme); M.B. Verhoog (Matthijs); D. Linaro (Daniele); C.P.J. de Kock (Christiaan); J.C. Baayen; R.M. Meredith (Rhiannon); C.I. de Zeeuw (Chris); M. Giugliano (Michele); H.D. Mansvelder (Huibert)

    2014-01-01

    textabstractNeuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we

  20. Comparison of the dynamics of neural interactions in integrate-and-fire networks with current-based and conductance-based synapses

    Directory of Open Access Journals (Sweden)

    Stefano eCavallari

    2014-03-01

    Full Text Available Models of networks of Leaky Integrate-and-Fire neurons (LIF are a widely used tool for theoretical investigations of brain function. These models have been used both with current- and conductance-based synapses. However, the differences in the dynamics expressed by these two approaches have been so far mainly studied at the single neuron level. To investigate how these synaptic models affect network activity, we compared the single-neuron and neural population dynamics of conductance-based networks (COBN and current-based networks (CUBN of LIF neurons. These networks were endowed with sparse excitatory and inhibitory recurrent connections, and were tested in conditions including both low- and high-conductance states. We developed a novel procedure to obtain comparable networks by properly tuning the synaptic parameters not shared by the models. The so defined comparable networks displayed an excellent and robust match of first order statistics (average single neuron firing rates and average frequency spectrum of network activity. However, these comparable networks showed profound differences in the second order statistics of neural population interactions and in the modulation of these properties by external inputs. The correlation between inhibitory and excitatory synaptic currents and the cross-neuron correlation between synaptic inputs, membrane potentials and spike trains were stronger and more stimulus-sensitive in the COBN. Because of these properties, the spike train correlation carried more information about the strength of the input in the COBN, although the firing rates were equally informative in both network models. Moreover, COBN showed stronger neuronal population synchronization in the gamma band, and their spectral information about the network input was higher and spread over a broader range of frequencies. These results suggest that second order properties of network dynamics depend strongly on the choice of synaptic model.

  1. Phasic firing in vasopressin cells: understanding its functional significance through computational models.

    Directory of Open Access Journals (Sweden)

    Duncan J MacGregor

    Full Text Available Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response

  2. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    Science.gov (United States)

    Pinto, Joshua G. A.; Jones, David G.; Williams, C. Kate; Murphy, Kathryn M.

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic. PMID:25729353

  3. Myocardial pre-synaptic sympathetic function correlates with glucose uptake in the failing human heart

    Energy Technology Data Exchange (ETDEWEB)

    Mongillo, Marco; Leccisotti, Lucia [Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, London (United Kingdom); John, Anna S. [Hammersmith Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom); Pennell, Dudley J. [Royal Brompton Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom); Camici, Paolo G. [Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, London (United Kingdom); Hammersmith Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom)

    2007-08-15

    We have previously shown that the myocardium of patients with heart failure (HF) is insulin resistant. Chronic {beta}-adrenergic stimulation has been implicated in insulin resistance in cultured cardiomyocytes in vitro, where sustained noradrenaline stimulation inhibited insulin-modulated glucose uptake. As the failing heart is characterized by increased sympathetic drive, we hypothesized that there is a correlation between pre-synaptic sympathetic function and insulin sensitivity in the myocardium of patients with HF. Eight patients (aged 67 {+-} 7 years) with coronary artery disease and left ventricular dysfunction (ejection fraction 44 {+-} 10%) underwent function and viability assessment with cardiovascular magnetic resonance. Myocardial glucose utilization (MGU) was measured using positron emission tomography (PET) with {sup 18}F-fluorodeoxyglucose (FDG). Pre-synaptic noradrenaline re-uptake was measured by calculating [{sup 11}C]meta-hydroxy-ephedrine (HED) volume of distribution (V{sub d}) with PET. Two groups of healthy volunteers served as controls for the FDG (n = 8, aged 52 {+-} 4 years, p < 0.01 vs patients) and HED (n = 8, aged 40 {+-} 6 years, p < 0.01 vs patients) data. MGU in patients was reduced in both normal remote (0.44 {+-} 0.14 {mu}mol.min{sup -1}.g{sup -1}) and dysfunctional (0.49 {+-} 0.14 {mu}mol.min{sup -1}.g{sup -1}) segments compared with controls (0.61 {+-} 0.7 {mu}mol.min{sup -1}.g{sup -1}; p < 0.001 vs both). HED V{sub d} was reduced in dysfunctional segments of patients (38.9 {+-} 21.2 ml.g{sup -1}) compared with normal segments (52.2 {+-} 19.6 ml.g{sup -1}) and compared with controls (62.7 {+-} 11.3 ml.g{sup -1}). In patients, regional MGU was correlated with HED V{sub d}. The results of this study provide novel evidence of a correlation between cardiac sympathetic function and insulin sensitivity, which may represent one of the mechanisms contributing to insulin resistance in failing human hearts. (orig.)

  4. Enhancement of synaptic transmission induced by BDNF in cultured cortical neurons

    Science.gov (United States)

    He, Jun; Gong, Hui; Zeng, Shaoqun; Li, Yanling; Luo, Qingming

    2005-03-01

    Brain-derived neurotrophic factor (BDNF), like other neurotrophins, has long-term effects on neuronal survival and differentiation; furthermore, BDNF has been reported to exert an acute potentiation of synaptic activity and are critically involved in long-term potentiation (LTP). We found that BDNF rapidly induced potentiation of synaptic activity and an increase in the intracellular Ca2+ concentration in cultured cortical neurons. Within minutes of BDNF application to cultured cortical neurons, spontaneous firing rate was dramatically increased as were the frequency and amplitude of excitatory spontaneous postsynaptic currents (EPSCs). Fura-2 recordings showed that BDNF acutely elicited an increase in intracellular calcium concentration ([Ca2+]c). This effect was partially dependent on [Ca2+]o; The BDNF-induced increase in [Ca2+]c can not be completely blocked by Ca2+-free solution. It was completely blocked by K252a and partially blocked by Cd2+ and TTX. The results demonstrate that BDNF can enhances synaptic transmission and that this effect is accompanied by a rise in [Ca2+]c that requires two route: the release of Ca2+ from intracellular calcium stores and influx of extracellular Ca2+ through voltage-dependent Ca2+ channels in cultured cortical neurons.

  5. A scalable neural chip with synaptic electronics using CMOS integrated memristors

    International Nuclear Information System (INIS)

    Cruz-Albrecht, Jose M; Derosier, Timothy; Srinivasa, Narayan

    2013-01-01

    The design and simulation of a scalable neural chip with synaptic electronics using nanoscale memristors fully integrated with complementary metal–oxide–semiconductor (CMOS) is presented. The circuit consists of integrate-and-fire neurons and synapses with spike-timing dependent plasticity (STDP). The synaptic conductance values can be stored in memristors with eight levels, and the topology of connections between neurons is reconfigurable. The circuit has been designed using a 90 nm CMOS process with via connections to on-chip post-processed memristor arrays. The design has about 16 million CMOS transistors and 73 728 integrated memristors. We provide circuit level simulations of the entire chip performing neuronal and synaptic computations that result in biologically realistic functional behavior. (paper)

  6. Irregular Firing and High-Conductance States in Spinal Motoneurons during Scratching and Swimming

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Hounsgaard, Jorn; Alaburda, Aidas

    2016-01-01

    UNLABELLED: Intense synaptic transmission during scratch network activity increases conductance and induces irregular firing in spinal motoneurons. It is not known whether this high-conductance state is a select feature for scratching or a property that goes with spinal motor network activity...... in general. Here we compare conductance and firing patterns in spinal motoneurons during network activity for scratching and swimming in an ex vivo carapace-spinal cord preparation from adult turtles (Trachemys scripta elegans). The pattern and relative engagement of motoneurons are distinctly different...... in scratching and swimming. Nevertheless, we found increased synaptic fluctuations in membrane potential, irregular firing, and increased conductance in spinal motoneurons during scratch and swim network activity. Our finding indicates that intense synaptic activation of motoneurons is a general feature...

  7. Synaptic conditions for auto-associative memory storage and pattern completion in Jensen et al.'s model of hippocampal area CA3.

    Science.gov (United States)

    Cheu, Eng Yeow; Yu, Jiali; Tan, Chin Hiong; Tang, Huajin

    2012-12-01

    Jensen et al. (Learn Memory 3(2-3):243-256, 1996b) proposed an auto-associative memory model using an integrated short-term memory (STM) and long-term memory (LTM) spiking neural network. Their model requires that distinct pyramidal cells encoding different STM patterns are fired in different high-frequency gamma subcycles within each low-frequency theta oscillation. Auto-associative LTM is formed by modifying the recurrent synaptic efficacy between pyramidal cells. In order to store auto-associative LTM correctly, the recurrent synaptic efficacy must be bounded. The synaptic efficacy must be upper bounded to prevent re-firing of pyramidal cells in subsequent gamma subcycles. If cells encoding one memory item were to re-fire synchronously with other cells encoding another item in subsequent gamma subcycle, LTM stored via modifiable recurrent synapses would be corrupted. The synaptic efficacy must also be lower bounded so that memory pattern completion can be performed correctly. This paper uses the original model by Jensen et al. as the basis to illustrate the following points. Firstly, the importance of coordinated long-term memory (LTM) synaptic modification. Secondly, the use of a generic mathematical formulation (spiking response model) that can theoretically extend the results to other spiking network utilizing threshold-fire spiking neuron model. Thirdly, the interaction of long-term and short-term memory networks that possibly explains the asymmetric distribution of spike density in theta cycle through the merger of STM patterns with interaction of LTM network.

  8. High bandwidth synaptic communication and frequency tracking in human neocortex

    NARCIS (Netherlands)

    Testa-Silva, Guilherme; Verhoog, Matthijs B; Linaro, Daniele; de Kock, Christiaan P J; Baayen, Johannes C; Meredith, Rhiannon M; De Zeeuw, Chris I; Giugliano, Michele; Mansvelder, Huibert D

    2014-01-01

    Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from

  9. High bandwidth synaptic communication and frequency tracking in human neocortex.

    NARCIS (Netherlands)

    Testa-Silva, G.; Verhoog, M.B.; Linaro, D.; de Kock, C.P.J.; Baayen, J.C.; Meredith, R.M.; Zeeuw, C.I.; Giugliano, M.; Mansvelder, H.D.

    2014-01-01

    Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from

  10. LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics.

    Directory of Open Access Journals (Sweden)

    Itai Hayut

    2011-10-01

    Full Text Available Somatostatin-expressing, low threshold-spiking (LTS cells and fast-spiking (FS cells are two common subtypes of inhibitory neocortical interneuron. Excitatory synapses from regular-spiking (RS pyramidal neurons to LTS cells strongly facilitate when activated repetitively, whereas RS-to-FS synapses depress. This suggests that LTS neurons may be especially relevant at high rate regimes and protect cortical circuits against over-excitation and seizures. However, the inhibitory synapses from LTS cells usually depress, which may reduce their effectiveness at high rates. We ask: by which mechanisms and at what firing rates do LTS neurons control the activity of cortical circuits responding to thalamic input, and how is control by LTS neurons different from that of FS neurons? We study rate models of circuits that include RS cells and LTS and FS inhibitory cells with short-term synaptic plasticity. LTS neurons shift the RS firing-rate vs. current curve to the right at high rates and reduce its slope at low rates; the LTS effect is delayed and prolonged. FS neurons always shift the curve to the right and affect RS firing transiently. In an RS-LTS-FS network, FS neurons reach a quiescent state if they receive weak input, LTS neurons are quiescent if RS neurons receive weak input, and both FS and RS populations are active if they both receive large inputs. In general, FS neurons tend to follow the spiking of RS neurons much more closely than LTS neurons. A novel type of facilitation-induced slow oscillations is observed above the LTS firing threshold with a frequency determined by the time scale of recovery from facilitation. To conclude, contrary to earlier proposals, LTS neurons affect the transient and steady state responses of cortical circuits over a range of firing rates, not only during the high rate regime; LTS neurons protect against over-activation about as well as FS neurons.

  11. Long-term plasticity determines the postsynaptic response to correlated afferents with multivesicular short-term synaptic depression

    Directory of Open Access Journals (Sweden)

    Alexander David Bird

    2014-01-01

    Full Text Available Synchrony in a presynaptic population leads to correlations in vesicle occupancy at the active sites for neurotransmitter release. The number of independent release sites per presynaptic neuron, a synaptic parameter recently shown to be modifed during long-term plasticity, will modulate these correlations and therefore have a significant effect on the firing rate of the postsynaptic neuron. To understand how correlations from synaptic dynamics and from presynaptic synchrony shape the postsynaptic response, we study a model of multiple release site short-term plasticity and derive exact results for the crosscorrelation function of vesicle occupancy and neurotransmitter release, as well as the postsynaptic voltage variance. Using approximate forms for the postsynaptic firing rate in the limits of low and high correlations, we demonstrate that short-term depression leads to a maximum response for an intermediate number of presynaptic release sites, and that this leads to a tuning-curve response peaked at an optimal presynaptic synchrony setby the number of neurotransmitter release sites per presynaptic neuron. These effects arise because, above a certain level of correlation, activity in the presynaptic population is overly strong resulting in wastage of the pool of releasable neurotransmitter. As the nervous system operates under constraints of efficient metabolism it is likely that this phenomenon provides an activity-dependent constraint on network architecture.

  12. Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters.

    Science.gov (United States)

    Harsing, Laszlo G; Matyus, Peter

    2013-04-01

    Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic

  13. A complex-valued firing-rate model that approximates the dynamics of spiking networks.

    Directory of Open Access Journals (Sweden)

    Evan S Schaffer

    2013-10-01

    Full Text Available Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the transition to spike synchronization in networks of coupled excitatory and inhibitory neurons.

  14. A complex-valued firing-rate model that approximates the dynamics of spiking networks.

    Science.gov (United States)

    Schaffer, Evan S; Ostojic, Srdjan; Abbott, L F

    2013-10-01

    Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the transition to spike synchronization in networks of coupled excitatory and inhibitory neurons.

  15. Ensemble stacking mitigates biases in inference of synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Brendan Chambers

    2018-03-01

    Full Text Available A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches. Mapping the routing of spikes through local circuitry is crucial for understanding neocortical computation. Under appropriate experimental conditions, these maps can be used to infer likely patterns of synaptic recruitment, linking activity to underlying anatomical connections. Such inferences help to reveal the synaptic implementation of population dynamics and computation. We compare a number of standard functional measures to infer underlying connectivity. We find that regularization impacts measures

  16. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks

    Directory of Open Access Journals (Sweden)

    Runchun Mark Wang

    2015-05-01

    Full Text Available We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP and Spike Timing Dependent Delay Plasticity (STDDP. We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 2^26 (64M synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted and/or delayed pre-synaptic spike to the target synapse in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 2^36 (64G synaptic adaptors on a current high-end FPGA platform.

  17. Coal-Fired Power Plant Heat Rate Reductions

    Science.gov (United States)

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  18. Two Classes of Secreted Synaptic Organizers in the Central Nervous System.

    Science.gov (United States)

    Yuzaki, Michisuke

    2018-02-10

    Research in the last two decades has identified many synaptic organizers in the central nervous system that directly regulate the assembly of pre- and/or postsynaptic molecules, such as synaptic vesicles, active zone proteins, and neurotransmitter receptors. They are classified into secreted factors and cell adhesion molecules, such as neurexins and neuroligins. Certain secreted factors are termed extracellular scaffolding proteins (ESPs) because they are components of the synaptic extracellular matrix and serve as a scaffold at the synaptic cleft. These include Lgi1, Cbln1, neuronal pentraxins, Hevin, thrombospondins, and glypicans. Diffusible secreted factors, such as Wnts, fibroblast growth factors, and semaphorins, tend to act from a distance. In contrast, ESPs remain at the synaptic cleft and often help synaptic adhesion and/or accumulation of postsynaptic receptors. Many fundamental questions remain about when, how, and why various synaptic organizers establish and modify the vast numbers of connections during development and throughout life.

  19. Firing patterns of spontaneously active motor units in spinal cord-injured subjects.

    Science.gov (United States)

    Zijdewind, Inge; Thomas, Christine K

    2012-04-01

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were recorded for 30 min from thenar muscles of nine men with chronic cervical SCI. Motor units fired for sustained periods (>10 min) at regular (coefficient of variation ≤ 0.15, CV, n =19 units) or irregular intervals (CV>0.15, n =14). Regularly firing units started and stopped firing independently suggesting that intrinsic motoneurone properties were important for recruitment and derecruitment. Recruitment (3.6 Hz, SD 1.2), maximal (10.2 Hz, SD 2.3, range: 7.5-15.4 Hz) and derecruitment frequencies were low (3.3 Hz, SD 1.6), as were firing rate increases after recruitment (~20 intervals in 3 s). Once active, firing often covaried, promoting the idea that units received common inputs.Half of the regularly firing units showed a very slow decline (>40 s) in discharge before derecruitment and had interspike intervals longer than their estimated after hyperpolarisation potential (AHP) duration (estimated by death rate and breakpoint analyses). The other units were derecruited more abruptly and had shorter estimated AHP durations. Overall, regularly firing units had longer estimated AHP durations and were weaker than irregularly firing units, suggesting they were lower threshold units. Sustained firing of units at regular rates may reflect activation of persistent inward currents, visible here in the absence of voluntary drive, whereas irregularly firing units may only respond to synaptic noise.

  20. Spike timing analysis in neural networks with unsupervised synaptic plasticity

    Science.gov (United States)

    Mizusaki, B. E. P.; Agnes, E. J.; Brunnet, L. G.; Erichsen, R., Jr.

    2013-01-01

    The synaptic plasticity rules that sculpt a neural network architecture are key elements to understand cortical processing, as they may explain the emergence of stable, functional activity, while avoiding runaway excitation. For an associative memory framework, they should be built in a way as to enable the network to reproduce a robust spatio-temporal trajectory in response to an external stimulus. Still, how these rules may be implemented in recurrent networks and the way they relate to their capacity of pattern recognition remains unclear. We studied the effects of three phenomenological unsupervised rules in sparsely connected recurrent networks for associative memory: spike-timing-dependent-plasticity, short-term-plasticity and an homeostatic scaling. The system stability is monitored during the learning process of the network, as the mean firing rate converges to a value determined by the homeostatic scaling. Afterwards, it is possible to measure the recovery efficiency of the activity following each initial stimulus. This is evaluated by a measure of the correlation between spike fire timings, and we analysed the full memory separation capacity and limitations of this system.

  1. Noise in attractor networks in the brain produced by graded firing rate representations.

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    Full Text Available Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribution that is usually investigated. In integrate-and-fire simulations of an attractor decision-making network, we show that the noise is indeed greater for a given sparseness of the representation for graded, exponential, than for binary firing rate distributions. The greater noise was measured by faster escaping times from the spontaneous firing rate state when the decision cues are applied, and this corresponds to faster decision or reaction times. The greater noise was also evident as less stability of the spontaneous firing state before the decision cues are applied. The implication is that spiking-related noise will continue to be a factor that influences processes such as decision-making, signal detection, short-term memory, and memory recall even with the quite large networks found in the cerebral cortex. In these networks there are several thousand recurrent collateral synapses onto each neuron. The greater noise with graded firing rate distributions has the advantage that it can increase the speed of operation of cortical circuitry.

  2. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnO_x–Al_2O_3 thin film structure

    International Nuclear Information System (INIS)

    Li, H. K.; Chen, T. P.; Liu, P.; Zhang, Q.; Hu, S. G.; Liu, Y.; Lee, P. S.

    2016-01-01

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)–aluminum oxide (Al_2O_3) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al_2O_3 interface and/or in the Al_2O_3 layer.

  3. Ensemble stacking mitigates biases in inference of synaptic connectivity.

    Science.gov (United States)

    Chambers, Brendan; Levy, Maayan; Dechery, Joseph B; MacLean, Jason N

    2018-01-01

    A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches.

  4. Noise in attractor networks in the brain produced by graded firing rate representations

    OpenAIRE

    Webb, Tristan J.; Rolls, Edmund T; Deco, Gustavo; Feng, Jianfeng

    2011-01-01

    Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate\\ud probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as\\ud decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given\\ud mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribut...

  5. Post-fire vegetation behaviour in large burnt scars from 2005 fire season in Spain

    Science.gov (United States)

    Bastos, A.; Gouveia, C. M.; DaCamara, C. C.; Trigo, R. M.

    2012-04-01

    Wildfires have a wide diversity of impacts on landscape which, in turn, depend on the interaction of fire regimes (e.g. intensity, extent, frequency) and the response of vegetation to them in short and long-terms. The increase in erosion rates and the loss of nutrients by runoff in the first months following the fire are among the major impacts of wildfires. A minimum of 30% of vegetation cover is enough to protect soils against erosion but vegetation may require a long period to reach this threshold after severe fires. Since erosion risk is strongly linked to vegetation recovery rates, post-fire vegetation monitoring becomes crucial in land management. Fire regimes in the Mediterranean have been changing in the past decades due to modifications in both socio-economic and climate patterns. Although many vegetation species in Mediterranean ecosystems are adapted to wildfires, changes in fire regime characteristics affect the ability of ecosystems to recover to their previous state. In Spain, fire is an important driver of changes in landscape composition, leading to dominance of shrubland following fire and to a major decrease of pine woodlands (Viedma et al., 2006). Remote sensing is a powerful tool in land management, allowing vegetation monitoring on large spatial scales for relatively long periods of time. In order to assess vegetation dynamics, monthly NDVI data from 1998-2009 from SPOT/VEGETATION at 1km spatial resolution over the Iberian Peninsula were used. This work focuses on 2005 fire season in Spain, which registered the highest amount of burnt area since 1994, with more than 188000 ha burnt. Burnt scars in this fire season were identified by cluster analysis. Post-fire vegetation recovery was assessed based on the monoparametric model developed by Gouveia et al. (2010) that was applied to four large scars located in different geographical settings with different land cover characteristics. While the two northern regions presented fast recovery, in the

  6. Spike-timing dependent plasticity and the cognitive map.

    Science.gov (United States)

    Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael

    2010-01-01

    Since the discovery of place cells - single pyramidal neurons that encode spatial location - it has been hypothesized that the hippocampus may act as a cognitive map of known environments. This putative function has been extensively modeled using auto-associative networks, which utilize rate-coded synaptic plasticity rules in order to generate strong bi-directional connections between concurrently active place cells that encode for neighboring place fields. However, empirical studies using hippocampal cultures have demonstrated that the magnitude and direction of changes in synaptic strength can also be dictated by the relative timing of pre- and post-synaptic firing according to a spike-timing dependent plasticity (STDP) rule. Furthermore, electrophysiology studies have identified persistent "theta-coded" temporal correlations in place cell activity in vivo, characterized by phase precession of firing as the corresponding place field is traversed. It is not yet clear if STDP and theta-coded neural dynamics are compatible with cognitive map theory and previous rate-coded models of spatial learning in the hippocampus. Here, we demonstrate that an STDP rule based on empirical data obtained from the hippocampus can mediate rate-coded Hebbian learning when pre- and post-synaptic activity is stochastic and has no persistent sequence bias. We subsequently demonstrate that a spiking recurrent neural network that utilizes this STDP rule, alongside theta-coded neural activity, allows the rapid development of a cognitive map during directed or random exploration of an environment of overlapping place fields. Hence, we establish that STDP and phase precession are compatible with rate-coded models of cognitive map development.

  7. Spike-timing dependent plasticity and the cognitive map

    Directory of Open Access Journals (Sweden)

    Daniel eBush

    2010-10-01

    Full Text Available Since the discovery of place cells – single pyramidal neurons that encode spatial location – it has been hypothesised that the hippocampus may act as a cognitive map of known environments. This putative function has been extensively modelled using auto-associative networks, which utilise rate-coded synaptic plasticity rules in order to generate strong bi-directional connections between concurrently active place cells that encode for neighbouring place fields. However, empirical studies using hippocampal cultures have demonstrated that the magnitude and direction of changes in synaptic strength can also be dictated by the relative timing of pre- and post- synaptic firing according to a spike-timing dependent plasticity (STDP rule. Furthermore, electrophysiology studies have identified persistent ‘theta-coded’ temporal correlations in place cell activity in vivo, characterised by phase precession of firing as the corresponding place field is traversed. It is not yet clear if STDP and theta-coded neural dynamics are compatible with cognitive map theory and previous rate-coded models of spatial learning in the hippocampus. Here, we demonstrate that an STDP rule based on empirical data obtained from the hippocampus can mediate rate-coded Hebbian learning when pre- and post- synaptic activity is stochastic and has no persistent sequence bias. We subsequently demonstrate that a spiking recurrent neural network that utilises this STDP rule, alongside theta-coded neural activity, allows the rapid development of a cognitive map during directed or random exploration of an environment of overlapping place fields. Hence, we establish that STDP and phase precession are compatible with rate-coded models of cognitive map development.

  8. Generalization of the event-based Carnevale-Hines integration scheme for integrate-and-fire models

    NARCIS (Netherlands)

    van Elburg, R.A.J.; van Ooyen, A.

    2009-01-01

    An event-based integration scheme for an integrate-and-fire neuron model with exponentially decaying excitatory synaptic currents and double exponential inhibitory synaptic currents has been introduced by Carnevale and Hines. However, the integration scheme imposes nonphysiological constraints on

  9. Generalization of the Event-Based Carnevale-Hines Integration Scheme for Integrate-and-Fire Models

    NARCIS (Netherlands)

    van Elburg, Ronald A. J.; van Ooyen, Arjen

    An event-based integration scheme for an integrate-and-fire neuron model with exponentially decaying excitatory synaptic currents and double exponential inhibitory synaptic currents has been introduced by Carnevale and Hines. However, the integration scheme imposes nonphysiological constraints on

  10. Enabling an Integrated Rate-temporal Learning Scheme on Memristor

    Science.gov (United States)

    He, Wei; Huang, Kejie; Ning, Ning; Ramanathan, Kiruthika; Li, Guoqi; Jiang, Yu; Sze, Jiayin; Shi, Luping; Zhao, Rong; Pei, Jing

    2014-04-01

    Learning scheme is the key to the utilization of spike-based computation and the emulation of neural/synaptic behaviors toward realization of cognition. The biological observations reveal an integrated spike time- and spike rate-dependent plasticity as a function of presynaptic firing frequency. However, this integrated rate-temporal learning scheme has not been realized on any nano devices. In this paper, such scheme is successfully demonstrated on a memristor. Great robustness against the spiking rate fluctuation is achieved by waveform engineering with the aid of good analog properties exhibited by the iron oxide-based memristor. The spike-time-dependence plasticity (STDP) occurs at moderate presynaptic firing frequencies and spike-rate-dependence plasticity (SRDP) dominates other regions. This demonstration provides a novel approach in neural coding implementation, which facilitates the development of bio-inspired computing systems.

  11. Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting.

    Science.gov (United States)

    Morozova, Ekaterina O; Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C; Kuznetsov, Alexey

    2016-10-01

    In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca 2+ ) concentration, thus reducing the Ca 2+ -dependent potassium (K + ) current. In this way, the GABA-mediated hyperpolarization replaces Ca 2+ -dependent K + current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. Copyright © 2016 the American Physiological Society.

  12. Soil Microbial Activity Responses to Fire in a Semi-arid Savannah Ecosystem Pre- and Post-Monsoon Season

    Science.gov (United States)

    Jimenez, J. R.; Raub, H. D.; Jong, E. L.; Muscarella, C. R.; Smith, W. K.; Gallery, R. E.

    2017-12-01

    Extracellular enzyme activities (EEA) of soil microorganisms can act as important proxies for nutrient limitation and turnover in soil and provide insight into the biochemical requirements of microbes in terrestrial ecosystems. In semi-arid ecosystems, microbial activity is influenced by topography, disturbances such as fire, and seasonality from monsoon rains. Previous studies from forest ecosystems show that microbial communities shift to similar compositions after severe fires despite different initial conditions. In semi-arid ecosystems with high spatial heterogeniety, we ask does fire lead to patch intensification or patch homogenization and how do monsoon rains influence the successional trajectories of microbial responses? We analyzed microbial activity and soil biogeochemistry throughout the monsoon season in paired burned and unburned sites in the Santa Rita Experimental Range, AZ. Surface soil (5cm) from bare-ground patches, bole, canopy drip line, and nearby grass patches for 5 mesquite trees per site allowed tests of spatiotemporal responses to fire and monsoon rain. Microbial activity was low during the pre-monsoon season and did not differ between the burned and unburned sites. We found greater activity near mesquite trees that reflects soil water and nutrient availability. Fire increased soil alkalinity, though soils near mesquite trees were less affected. Soil water content was significantly higher in the burned sites post-monsoon, potentially reflecting greater hydrophobicity of burned soils. Considering the effects of fire in these semi-arid ecosystems is especially important in the context of the projected changing climate regime in this region. Assessing microbial community recovery pre-, during, and post-monsoon is important for testing predictions about whether successional pathways post-fire lead to recovery or novel trajectories of communities and ecosystem function.

  13. LTD windows of the STDP learning rule and synaptic connections having a large transmission delay enable robust sequence learning amid background noise.

    Science.gov (United States)

    Hayashi, Hatsuo; Igarashi, Jun

    2009-06-01

    Spike-timing-dependent synaptic plasticity (STDP) is a simple and effective learning rule for sequence learning. However, synapses being subject to STDP rules are readily influenced in noisy circumstances because synaptic conductances are modified by pre- and postsynaptic spikes elicited within a few tens of milliseconds, regardless of whether those spikes convey information or not. Noisy firing existing everywhere in the brain may induce irrelevant enhancement of synaptic connections through STDP rules and would result in uncertain memory encoding and obscure memory patterns. We will here show that the LTD windows of the STDP rules enable robust sequence learning amid background noise in cooperation with a large signal transmission delay between neurons and a theta rhythm, using a network model of the entorhinal cortex layer II with entorhinal-hippocampal loop connections. The important element of the present model for robust sequence learning amid background noise is the symmetric STDP rule having LTD windows on both sides of the LTP window, in addition to the loop connections having a large signal transmission delay and the theta rhythm pacing activities of stellate cells. Above all, the LTD window in the range of positive spike-timing is important to prevent influences of noise with the progress of sequence learning.

  14. BDNF-induced local protein synthesis and synaptic plasticity.

    Science.gov (United States)

    Leal, Graciano; Comprido, Diogo; Duarte, Carlos B

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is an important regulator of synaptic transmission and long-term potentiation (LTP) in the hippocampus and in other brain regions, playing a role in the formation of certain forms of memory. The effects of BDNF in LTP are mediated by TrkB (tropomyosin-related kinase B) receptors, which are known to be coupled to the activation of the Ras/ERK, phosphatidylinositol 3-kinase/Akt and phospholipase C-γ (PLC-γ) pathways. The role of BDNF in LTP is best studied in the hippocampus, where the neurotrophin acts at pre- and post-synaptic levels. Recent studies have shown that BDNF regulates the transport of mRNAs along dendrites and their translation at the synapse, by modulating the initiation and elongation phases of protein synthesis, and by acting on specific miRNAs. Furthermore, the effect of BDNF on transcription regulation may further contribute to long-term changes in the synaptic proteome. In this review we discuss the recent progress in understanding the mechanisms contributing to the short- and long-term regulation of the synaptic proteome by BDNF, and the role in synaptic plasticity, which is likely to influence learning and memory formation. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Motor unit firing rate patterns during voluntary muscle force generation: a simulation study

    Science.gov (United States)

    Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.

    2014-04-01

    Objective. Muscle force is generated by a combination of motor unit (MU) recruitment and changes in the discharge rate of active MUs. There have been two basic MU recruitment and firing rate paradigms reported in the literature, which describe the control of the MUs during force generation. The first (termed the reverse ‘onion skin’ profile), exhibits lower firing rates for lower threshold units, with higher firing rates occurring in higher threshold units. The second (termed the ‘onion skin’ profile), exhibits an inverse arrangement, with lower threshold units reaching higher firing rates. Approach. Using a simulation of the MU activity in a hand muscle, this study examined the force generation capacity and the variability of the muscle force magnitude at different excitation levels of the MU pool under these two different MU control paradigms. We sought to determine which rate/recruitment scheme was more efficient for force generation, and which scheme gave rise to the lowest force variability. Main results. We found that the force output of both firing patterns leads to graded force output at low excitation levels, and that the force generation capacity of the two different paradigms diverged around 50% excitation. In the reverse ‘onion skin’ pattern, at 100% excitation, the force output reached up to 88% of maximum force, whereas for the ‘onion skin’ pattern, the force output only reached up to 54% of maximum force at 100% excitation. The force variability was lower at the low to moderate force levels under the ‘onion skin’ paradigm than with the reverse ‘onion skin’ firing patterns, but this effect was reversed at high force levels. Significance. This study captures the influence of MU recruitment and firing rate organization on muscle force properties, and our results suggest that the different firing organizations can be beneficial at different levels of voluntary muscle force generation and perhaps for different tasks.

  16. Influence of proprioceptive feedback on the firing rate and recruitment of motoneurons

    Science.gov (United States)

    De Luca, C. J.; Kline, J. C.

    2012-02-01

    We investigated the relationships of the firing rate and maximal recruitment threshold of motoneurons recorded during isometric contraction with the number of spindles in individual muscles. At force levels above 10% of maximal voluntary contraction, the firing rate was inversely related to the number of spindles in a muscle, with the slope of the relationship increasing with force. The maximal recruitment threshold of motor units increased linearly with the number of spindles in the muscle. Thus, muscles with a greater number of spindles had lower firing rates and a greater maximal recruitment threshold. These findings may be explained by a mechanical interaction between muscle fibres and adjacent spindles. During low-level (0% to 10%) voluntary contractions, muscle fibres of recruited motor units produce force twitches that activate nearby spindles to respond with an immediate excitatory feedback that reaches maximal level. As the force increases further, the twitches overlap and tend towards tetanization, the muscle fibres shorten, the spindles slacken, their excitatory firings decrease, and the net excitation to the homonymous motoneurons decreases. Motoneurons of muscles with greater number of spindles receive a greater decrease in excitation which reduces their firing rates, increases their maximal recruitment threshold, and changes the motoneuron recruitment distribution.

  17. Thermodynamic analysis and economic evaluation of a 1000 MW bituminous coal fired power plant incorporating low-temperature pre-drying (LTPD)

    International Nuclear Information System (INIS)

    Xu, Cheng; Xu, Gang; Zhu, Mingming; Dong, Wei; Zhang, Yang; Yang, Yongping; Zhang, Dongke

    2016-01-01

    Highlights: • An improved design of coal pre-drying using flue gas waste heat was proposed. • 0.4% energy efficiency increase was achieved with the proposed system. • The additional net economic benefit of the proposed system is $1.91 M per year. • Proposed concept can be widely applied to improve coal-fired power plant efficiency. - Abstract: Low-temperature pre-drying (LTPD) of lignite has been identified as an effective approach to improve the efficiency of lignite fired power plants. In this study, an improved concept for the pre-drying of medium moisture bituminous coals using flue gas waste heat was proposed and its feasibility was assessed. In the proposed configuration, the boiler exhaust flue gas is drawn to dryers to heat and pre-dry the raw coal, removing a large proportion of the coal moisture and leading to an improvement in the energy efficiency of the power plant. Thermodynamic analysis and economic evaluation were performed based on a typical 1000 MW bituminous coal fired power plant incorporating the proposed LTPD concept. The results showed that the net power plant efficiency gain is as much as 0.4 percentage point with additional net power output of 9.3 MW as compared to the reference plant without coal pre-drying. This was attributed to the reduction in the moisture content from 10.3 to 2.7 wt%. The additional net economic benefit attained due to the coal pre-drying was estimated to reach $1.91 M per year. This work provides a broadly applicable and economically feasible approach to further improve the energy efficiency of power plants firing coals with medium moisture contents.

  18. Spiking Neural Networks with Unsupervised Learning Based on STDP Using Resistive Synaptic Devices and Analog CMOS Neuron Circuit.

    Science.gov (United States)

    Kwon, Min-Woo; Baek, Myung-Hyun; Hwang, Sungmin; Kim, Sungjun; Park, Byung-Gook

    2018-09-01

    We designed the CMOS analog integrate and fire (I&F) neuron circuit can drive resistive synaptic device. The neuron circuit consists of a current mirror for spatial integration, a capacitor for temporal integration, asymmetric negative and positive pulse generation part, a refractory part, and finally a back-propagation pulse generation part for learning of the synaptic devices. The resistive synaptic devices were fabricated using HfOx switching layer by atomic layer deposition (ALD). The resistive synaptic device had gradual set and reset characteristics and the conductance was adjusted by spike-timing-dependent-plasticity (STDP) learning rule. We carried out circuit simulation of synaptic device and CMOS neuron circuit. And we have developed an unsupervised spiking neural networks (SNNs) for 5 × 5 pattern recognition and classification using the neuron circuit and synaptic devices. The hardware-based SNNs can autonomously and efficiently control the weight updates of the synapses between neurons, without the aid of software calculations.

  19. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system.

    Science.gov (United States)

    Kulkarni, Abhishek; Ertekin, Deniz; Lee, Chi-Hon; Hummel, Thomas

    2016-03-17

    The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.

  20. Role of synaptic structural plasticity in impairments of spatial learning and memory induced by developmental lead exposure in Wistar rats.

    Directory of Open Access Journals (Sweden)

    Yongmei Xiao

    Full Text Available Lead (Pb is found to impair cognitive function. Synaptic structural plasticity is considered to be the physiological basis of synaptic functional plasticity and has been recently found to play important roles in learning and memory. To study the effect of Pb on spatial learning and memory at different developmental stages, and its relationship with alterations of synaptic structural plasticity, postnatal rats were randomly divided into three groups: Control; Pre-weaning Pb (Parents were exposed to 2 mM PbCl2 3 weeks before mating until weaning of pups; Post-weaning Pb (Weaned pups were exposed to 2 mM PbCl2 for 9 weeks. The spatial learning and memory of rats was measured by Morris water maze (MWM on PND 85-90. Rat pups in Pre-weaning Pb and Post-weaning Pb groups performed significantly worse than those in Control group (p<0.05. However, there was no significant difference in the performance of MWM between the two Pb-exposure groups. Before MWM (PND 84, the number of neurons and synapses significantly decreased in Pre-weaning Pb group, but not in Post-weaning Pb group. After MWM (PND 91, the number of synapses in Pre-weaning Pb group increased significantly, but it was still less than that of Control group (p<0.05; the number of synapses in Post-weaning Pb group was also less than that of Control group (p<0.05, although the number of synapses has no differences between Post-weaning Pb and Control groups before MWM. In both Pre-weaning Pb and Post-weaning Pb groups, synaptic structural parameters such as thickness of postsynaptic density (PSD, length of synaptic active zone and synaptic curvature increased significantly while width of synaptic cleft decreased significantly compared to Control group (p<0.05. Our data demonstrated that both early and late developmental Pb exposure impaired spatial learning and memory as well as synaptic structural plasticity in Wistar rats.

  1. Neuronal cytoskeleton in synaptic plasticity and regeneration.

    Science.gov (United States)

    Gordon-Weeks, Phillip R; Fournier, Alyson E

    2014-04-01

    During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo-dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre- and post-synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system. © 2013 International Society for Neurochemistry.

  2. Phase-locking and bistability in neuronal networks with synaptic depression

    Science.gov (United States)

    Akcay, Zeynep; Huang, Xinxian; Nadim, Farzan; Bose, Amitabha

    2018-02-01

    We consider a recurrent network of two oscillatory neurons that are coupled with inhibitory synapses. We use the phase response curves of the neurons and the properties of short-term synaptic depression to define Poincaré maps for the activity of the network. The fixed points of these maps correspond to phase-locked modes of the network. Using these maps, we analyze the conditions that allow short-term synaptic depression to lead to the existence of bistable phase-locked, periodic solutions. We show that bistability arises when either the phase response curve of the neuron or the short-term depression profile changes steeply enough. The results apply to any Type I oscillator and we illustrate our findings using the Quadratic Integrate-and-Fire and Morris-Lecar neuron models.

  3. Presynaptic protein synthesis required for NT-3-induced long-term synaptic modulation

    Directory of Open Access Journals (Sweden)

    Je H

    2011-01-01

    Full Text Available Abstract Background Neurotrophins elicit both acute and long-term modulation of synaptic transmission and plasticity. Previously, we demonstrated that the long-term synaptic modulation requires the endocytosis of neurotrophin-receptor complex, the activation of PI3K and Akt, and mTOR mediated protein synthesis. However, it is unclear whether the long-term synaptic modulation by neurotrophins depends on protein synthesis in pre- or post-synaptic cells. Results Here we have developed an inducible protein translation blocker, in which the kinase domain of protein kinase R (PKR is fused with bacterial gyrase B domain (GyrB-PKR, which could be dimerized upon treatment with a cell permeable drug, coumermycin. By genetically targeting GyrB-PKR to specific cell types, we show that NT-3 induced long-term synaptic modulation requires presynaptic, but not postsynaptic protein synthesis. Conclusions Our results provide mechanistic insights into the cell-specific requirement for protein synthesis in the long-term synaptic modulation by neurotrophins. The GyrB-PKR system may be useful tool to study protein synthesis in a cell-specific manner.

  4. Literature study regarding fire protection in nuclear power plants. Part I: Fire rated separations; Litteraturstudie angaaende brandskydd i kaernkraftverk. Del I: Brandteknisk separation

    Energy Technology Data Exchange (ETDEWEB)

    Isaksson, S [Swedish Testing and Research Inst., Boraas (Sweden)

    1995-06-01

    This literature study has been made on behalf of the Swedish Nuclear Power Inspectorate. The aim is to describe different aspects of fire protection in nuclear power plants. Conventional building codes can not give guidance on where to make fire rated separations in order to separate redundant trains of safety systems. The separation must originate in functional demands from the authorities on what functions are essential during and after a fire, and under what circumstances these functions shall be retained, i.e. the number of independent faults and initiating events. As a basic demand it is suggested to rate the strength of separations according to conventional building code, based on fire load. The whole separating construction shall have the same fire rating, including the ventilation system. Deviations from the basic demand can de done in case it can be proven that it is possible to compensate some or all of the fire rating with other measures. There is a general lack of statistical information regarding the reliability of fire separating constructions such as walls, fire doors, penetration seals and fire dampers. The amount of cables penetrating a seal is in many cases much higher in real installations than what has been tested for type approval. It would therefore be valuable to perform a furnace test with a more representative amount of cables passing through a penetration seal. Tests have shown that the 20 foot horizontal separation distance stipulated by NRC is not a guarantee against fire damage. Spatial separations based on general requirements shall not be allowed, but considered from case to case based on actual circumstances. For fire protection by isolation or coatings, it is of great importance to choose the method of protection carefully, to be compatible with the material it shall be applied on, and the environment and types of fire that may occur. 48 refs, 2 figs, 5 tabs.

  5. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnO{sub x}–Al{sub 2}O{sub 3} thin film structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. K.; Chen, T. P., E-mail: echentp@ntu.edu.sg; Liu, P.; Zhang, Q. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, S. G. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Liu, Y. [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Lee, P. S. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-06-28

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)–aluminum oxide (Al{sub 2}O{sub 3}) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al{sub 2}O{sub 3} interface and/or in the Al{sub 2}O{sub 3} layer.

  6. Synaptic Vesicle Endocytosis in Different Model Systems

    Directory of Open Access Journals (Sweden)

    Quan Gan

    2018-06-01

    Full Text Available Neurotransmission in complex animals depends on a choir of functionally distinct synapses releasing neurotransmitters in a highly coordinated manner. During synaptic signaling, vesicles fuse with the plasma membrane to release their contents. The rate of vesicle fusion is high and can exceed the rate at which synaptic vesicles can be re-supplied by distant sources. Thus, local compensatory endocytosis is needed to replenish the synaptic vesicle pools. Over the last four decades, various experimental methods and model systems have been used to study the cellular and molecular mechanisms underlying synaptic vesicle cycle. Clathrin-mediated endocytosis is thought to be the predominant mechanism for synaptic vesicle recycling. However, recent studies suggest significant contribution from other modes of endocytosis, including fast compensatory endocytosis, activity-dependent bulk endocytosis, ultrafast endocytosis, as well as kiss-and-run. Currently, it is not clear whether a universal model of vesicle recycling exist for all types of synapses. It is possible that each synapse type employs a particular mode of endocytosis. Alternatively, multiple modes of endocytosis operate at the same synapse, and the synapse toggles between different modes depending on its activity level. Here we compile review and research articles based on well-characterized model systems: frog neuromuscular junctions, C. elegans neuromuscular junctions, Drosophila neuromuscular junctions, lamprey reticulospinal giant axons, goldfish retinal ribbon synapses, the calyx of Held, and rodent hippocampal synapses. We will compare these systems in terms of their known modes and kinetics of synaptic vesicle endocytosis, as well as the underlying molecular machineries. We will also provide the future development of this field.

  7. Coupling an aVLSI neuromorphic vision chip to a neurotrophic model of synaptic plasticity: the development of topography.

    Science.gov (United States)

    Elliott, Terry; Kramer, Jörg

    2002-10-01

    We couple a previously studied, biologically inspired neurotrophic model of activity-dependent competitive synaptic plasticity and neuronal development to a neuromorphic retina chip. Using this system, we examine the development and refinement of a topographic mapping between an array of afferent neurons (the retinal ganglion cells) and an array of target neurons. We find that the plasticity model can indeed drive topographic refinement in the presence of afferent activity patterns generated by a real-world device. We examine the resilience of the developing system to the presence of high levels of noise by adjusting the spontaneous firing rate of the silicon neurons.

  8. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  9. A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory.

    Science.gov (United States)

    Chicca, E; Badoni, D; Dante, V; D'Andreagiovanni, M; Salina, G; Carota, L; Fusi, S; Del Giudice, P

    2003-01-01

    Electronic neuromorphic devices with on-chip, on-line learning should be able to modify quickly the synaptic couplings to acquire information about new patterns to be stored (synaptic plasticity) and, at the same time, preserve this information on very long time scales (synaptic stability). Here, we illustrate the electronic implementation of a simple solution to this stability-plasticity problem, recently proposed and studied in various contexts. It is based on the observation that reducing the analog depth of the synapses to the extreme (bistable synapses) does not necessarily disrupt the performance of the device as an associative memory, provided that 1) the number of neurons is large enough; 2) the transitions between stable synaptic states are stochastic; and 3) learning is slow. The drastic reduction of the analog depth of the synaptic variable also makes this solution appealing from the point of view of electronic implementation and offers a simple methodological alternative to the technological solution based on floating gates. We describe the full custom analog very large-scale integration (VLSI) realization of a small network of integrate-and-fire neurons connected by bistable deterministic plastic synapses which can implement the idea of stochastic learning. In the absence of stimuli, the memory is preserved indefinitely. During the stimulation the synapse undergoes quick temporary changes through the activities of the pre- and postsynaptic neurons; those changes stochastically result in a long-term modification of the synaptic efficacy. The intentionally disordered pattern of connectivity allows the system to generate a randomness suited to drive the stochastic selection mechanism. We check by a suitable stimulation protocol that the stochastic synaptic plasticity produces the expected pattern of potentiation and depression in the electronic network.

  10. Error associated with model predictions of wildland fire rate of spread

    Science.gov (United States)

    Miguel G. Cruz; Martin E. Alexander

    2015-01-01

    How well can we expect to predict the spread rate of wildfires and prescribed fires? The degree of accuracy in model predictions of wildland fire behaviour characteristics are dependent on the model's applicability to a given situation, the validity of the model's relationships, and the reliability of the model input data (Alexander and Cruz 2013b#. We...

  11. Dissociable effects of dopamine on neuronal firing rate and synchrony in the dorsal striatum

    Directory of Open Access Journals (Sweden)

    John M Burkhardt

    2009-10-01

    Full Text Available Previous studies showed that dopamine depletion leads to both changes in firing rate and in neuronal synchrony in the basal ganglia. Since dopamine D1 and D2 receptors are preferentially expressed in striatonigral and striatopallidal medium spiny neurons, respectively, we investigated the relative contribution of lack of D1 and/or D2-type receptor activation to the changes in striatal firing rate and synchrony observed after dopamine depletion. Similar to what was observed after dopamine depletion, co-administration of D1 and D2 antagonists to mice chronically implanted with multielectrode arrays in the striatum caused significant changes in firing rate, power of the local field potential (LFP oscillations, and synchrony measured by the entrainment of neurons to striatal local field potentials. However, although blockade of either D1 or D2 type receptors produced similarly severe akinesia, the effects on neural activity differed. Blockade of D2 receptors affected the firing rate of medium spiny neurons and the power of the LFP oscillations substantially, but it did not affect synchrony to the same extent. In contrast, D1 blockade affected synchrony dramatically, but had less substantial effects on firing rate and LFP power. Furthermore, there was no consistent relation between neurons changing firing rate and changing LFP entrainment after dopamine blockade. Our results suggest that the changes in rate and entrainment to the LFP observed in medium spiny neurons after dopamine depletion are somewhat dissociable, and that lack of D1- or D2-type receptor activation can exert independent yet interactive pathological effects during the progression of Parkinson’s disease.

  12. Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models

    Science.gov (United States)

    Cuntz, Hermann; Lansner, Anders; Panzeri, Stefano; Einevoll, Gaute T.

    2015-01-01

    Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best “LFP proxy”, we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with “ground-truth” LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo. PMID:26657024

  13. Computing the Local Field Potential (LFP from Integrate-and-Fire Network Models.

    Directory of Open Access Journals (Sweden)

    Alberto Mazzoni

    2015-12-01

    Full Text Available Leaky integrate-and-fire (LIF network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP. Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best "LFP proxy", we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents with "ground-truth" LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo.

  14. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy.

    Science.gov (United States)

    Fletcher, Emily V; Simon, Christian M; Pagiazitis, John G; Chalif, Joshua I; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z

    2017-07-01

    Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.

  15. Increasing inhibitory input increases neuronal firing rate: why and when? Diffusion process cases

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng [COGS, Sussex University (United Kingdom)]. E-mail: jf218@cam.ac.uk; Wei Gang [Department of Mathematics, Hong Kong Baptist University, Hong Kong (China)]. E-mail gwei@math.hkbu.edu.hk

    2001-09-21

    Increasing inhibitory input to single neuronal models, such as the FitzHugh-Nagumo model and the Hodgkin-Huxley model, can sometimes increase their firing rates, a phenomenon which we term inhibition-boosted firing (IBF). Here we consider neuronal models with diffusion approximation inputs, i.e. they share the identical first- and second-order statistics of the corresponding Poisson process inputs. Using the integrate-and-fire model and the IF-FHN model, we explore theoretically how and when IBF can happen. For both models, it is shown that there is a critical input frequency at which the efferent firing rate is identical when the neuron receives purely excitatory inputs or exactly balanced inhibitory and excitatory inputs. When the input frequency is lower than the critical frequency, IBF occurs. (author)

  16. DAYCENT Simulations to Test the Influence of Fire Regime and Fire Suppression on Trace Gas Fluxes and Nitrogen Biogeochemistry of Colorado Forests

    Directory of Open Access Journals (Sweden)

    Mark A. Gathany

    2012-07-01

    Full Text Available Biological activity and the physical environment regulate greenhouse gas fluxes (CH4, N2O and NO from upland soils. Wildfires are known to alter these factors such that we collected daily weather records, fire return intervals, or specific fire years, and soil data of four specific sites along the Colorado Front Range. These data were used as primary inputs into DAYCENT. In this paper we test the ability of DAYCENT to simulate four forested sites in this area and to address two objectives: (1 to evaluate the short-term influence of fire on trace gas fluxes from burned landscapes; and (2 to compare trace gas fluxes among locations and between pre-/post- fire suppression. The model simulations indicate that CH4 oxidation is relatively unaffected by wildfire. In contrast, gross nitrification rates were reduced by 13.5–37.1% during the fire suppression period. At two of the sites, we calculated increases in gross nitrification rates (>100%, and N2O and NO fluxes during the year of fire relative to the year before a fire. Simulated fire suppression exhibited decreased gross nitrification rates presumably as nitrogen is immobilized. This finding concurs with other studies that highlight the importance of forest fires to maintain soil nitrogen availability.

  17. Regulation of Synaptic Structure by the Ubiquitin C-terminal Hydrolase UCH-L1

    Science.gov (United States)

    Cartier, Anna E.; Djakovic, Stevan N.; Salehi, Afshin; Wilson, Scott M.; Masliah, Eliezer; Patrick, Gentry N.

    2009-01-01

    UCH-L1 is a de-ubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We have found that UCH-L1 activity is rapidly up-regulated by NMDA receptor activation which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of pre and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1 inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner. PMID:19535597

  18. Stochastic lattice model of synaptic membrane protein domains.

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  19. Neuronal inhibition and synaptic plasticity of basal ganglia neurons in Parkinson's disease

    Science.gov (United States)

    Milosevic, Luka; Kalia, Suneil K; Hodaie, Mojgan; Lozano, Andres M; Fasano, Alfonso; Popovic, Milos R; Hutchison, William D

    2018-01-01

    Abstract Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease symptoms. The therapeutic benefits of deep brain stimulation are frequency-dependent, but the underlying physiological mechanisms remain unclear. To advance deep brain stimulation therapy an understanding of fundamental mechanisms is critical. The objectives of this study were to (i) compare the frequency-dependent effects on cell firing in subthalamic nucleus and substantia nigra pars reticulata; (ii) quantify frequency-dependent effects on short-term plasticity in substantia nigra pars reticulata; and (iii) investigate effects of continuous long-train high frequency stimulation (comparable to conventional deep brain stimulation) on synaptic plasticity. Two closely spaced (600 µm) microelectrodes were advanced into the subthalamic nucleus (n = 27) and substantia nigra pars reticulata (n = 14) of 22 patients undergoing deep brain stimulation surgery for Parkinson’s disease. Cell firing and evoked field potentials were recorded with one microelectrode during stimulation trains from the adjacent microelectrode across a range of frequencies (1–100 Hz, 100 µA, 0.3 ms, 50–60 pulses). Subthalamic firing attenuated with ≥20 Hz (P stimulation (silenced at 100 Hz), while substantia nigra pars reticulata decreased with ≥3 Hz (P stimulation. Patients with longer silent periods after 100 Hz stimulation in the subthalamic nucleus tended to have better clinical outcome after deep brain stimulation. At ≥30 Hz the first evoked field potential of the stimulation train in substantia nigra pars reticulata was potentiated (P stimulation (P stimulation-induced inhibition than the substantia nigra pars reticulata likely due to differing ratios of GABA:glutamate terminals on the soma and/or the nature of their GABAergic inputs (pallidal versus striatal). We suggest that enhancement of inhibitory synaptic plasticity, and frequency-dependent potentiation and

  20. Calcitonin gene-related peptide alters the firing rates of hypothalamic temperature sensitive and insensitive neurons

    Directory of Open Access Journals (Sweden)

    Grimm Eleanor R

    2008-07-01

    Full Text Available Abstract Background Transient hyperthermic shifts in body temperature have been linked to the endogenous hormone calcitonin gene-related peptide (CGRP, which can increase sympathetic activation and metabolic heat production. Recent studies have demonstrated that these centrally mediated responses may result from CGRP dependent changes in the activity of thermoregulatory neurons in the preoptic and anterior regions of the hypothalamus (POAH. Results Using a tissue slice preparation, we recorded the single-unit activity of POAH neurons from the adult male rat, in response to temperature and CGRP (10 μM. Based on the slope of firing rate as a function of temperature, neurons were classified as either warm sensitive or temperature insensitive. All warm sensitive neurons responded to CGRP with a significant decrease in firing rate. While CGRP did not alter the firing rates of some temperature insensitive neurons, responsive neurons showed an increase in firing rate. Conclusion With respect to current models of thermoregulatory control, these CGRP dependent changes in firing rate would result in hyperthermia. This suggests that both warm sensitive and temperature insensitive neurons in the POAH may play a role in producing this hyperthermic shift in temperature.

  1. The 1978 National Fire-Danger Rating System: technical documentation

    Science.gov (United States)

    Larry S. Bradshaw; John E. Deeming; Robert E. Burgan; Jack D. Cohen

    1984-01-01

    The National Fire-Danger Rating System (NFDRS), implemented in 1972, has been revised and reissued as the 1978 NFDRS. This report describes the full developmental history of the NFDRS, including purpose, technical foundation, and structure. Includes an extensive bibliography and appendixes.

  2. Effects of fatigue on motor unit firing rate versus recruitment threshold relationships.

    Science.gov (United States)

    Stock, Matt S; Beck, Travis W; Defreitas, Jason M

    2012-01-01

    The purpose of this study was to examine the influence of fatigue on the average firing rate versus recruitment threshold relationships for the vastus lateralis (VL) and vastus medialis. Nineteen subjects performed ten maximum voluntary contractions of the dominant leg extensors. Before and after this fatiguing protocol, the subjects performed a trapezoid isometric muscle action of the leg extensors, and bipolar surface electromyographic signals were detected from both muscles. These signals were then decomposed into individual motor unit action potential trains. For each subject and muscle, the relationship between average firing rate and recruitment threshold was examined using linear regression analyses. For the VL, the linear slope coefficients and y-intercepts for these relationships increased and decreased, respectively, after fatigue. For both muscles, many of the motor units decreased their firing rates. With fatigue, recruitment of higher threshold motor units resulted in an increase in slope for the VL. Copyright © 2011 Wiley Periodicals, Inc.

  3. Dynamic stereotypic responses of Basal Ganglia neurons to subthalamic nucleus high-frequency stimulation in the parkinsonian primate.

    Science.gov (United States)

    Moran, Anan; Stein, Edward; Tischler, Hadass; Belelovsky, Katya; Bar-Gad, Izhar

    2011-01-01

    Deep brain stimulation (DBS) in the subthalamic nucleus (STN) is a well-established therapy for patients with severe Parkinson's disease (PD); however, its mechanism of action is still unclear. In this study we explored static and dynamic activation patterns in the basal ganglia (BG) during high-frequency macro-stimulation of the STN. Extracellular multi-electrode recordings were performed in primates rendered parkinsonian using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Recordings were preformed simultaneously in the STN and the globus pallidus externus and internus. Single units were recorded preceding and during the stimulation. During the stimulation, STN mean firing rate dropped significantly, while pallidal mean firing rates did not change significantly. The vast majority of neurons across all three nuclei displayed stimulation driven modulations, which were stereotypic within each nucleus but differed across nuclei. The predominant response pattern of STN neurons was somatic inhibition. However, most pallidal neurons demonstrated synaptic activation patterns. A minority of neurons across all nuclei displayed axonal activation. Temporal dynamics were observed in the response to stimulation over the first 10 seconds in the STN and over the first 30 seconds in the pallidum. In both pallidal segments, the synaptic activation response patterns underwent delay and decay of the magnitude of the peak response due to short term synaptic depression. We suggest that during STN macro-stimulation the STN goes through a functional ablation as its upper bound on information transmission drops significantly. This notion is further supported by the evident dissociation between the stimulation driven pre-synaptic STN somatic inhibition and the post-synaptic axonal activation of its downstream targets. Thus, BG output maintains its firing rate while losing the deleterious effect of the STN. This may be a part of the mechanism leading to the beneficial effect of DBS in PD.

  4. Dynamic stereotypic responses of basal ganglia neurons to subthalamic nucleus high frequency stimulation in the parkinsonian primate

    Directory of Open Access Journals (Sweden)

    Anan eMoran

    2011-04-01

    Full Text Available Deep brain stimulation in the subthalamic nucleus (STN is a well-established therapy for patients with severe Parkinson‟s disease (PD; however, its mechanism of action is still unclear. In this study we explored static and dynamic activation patterns in the basal ganglia during high frequency macro-stimulation of the STN. Extracellular multi-electrode recordings were performed in primates rendered parkinsonian using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Recordings were preformed simultaneously in the STN and the globus pallidus externus and internus. Single units were recorded preceding and during the stimulation. During the stimulation, STN mean firing rate dropped significantly, while pallidal mean firing rates did not change significantly. The vast majority of neurons across all three nuclei displayed stimulation driven modulations, which were stereotypic within each nucleus but differed across nuclei. The predominant response pattern of STN neurons was somatic inhibition. However, most pallidal neurons demonstrated synaptic activation patterns. A minority of neurons across all nuclei displayed axonal activation. Temporal dynamics were observed in the response to stimulation over the first 10 seconds in the STN and over the first 30 seconds in the pallidum. In both pallidal segments, the synaptic activation response patterns underwent delay and decay of the magnitude of the peak response due to short term synaptic depression. We suggest that during STN macro stimulation the STN goes through a functional ablation as its upper bound on information transmission drops significantly. This notion is further supported by the evident dissociation between the stimulation driven pre-synaptic STN somatic inhibition and the post-synaptic axonal activation of its downstream targets. Thus, basal ganglia output maintains its firing rate while losing the deleterious effect of the STN. This may be a part of the mechanism leading to the beneficial

  5. Time-related changes in firing rates are influenced by recruitment threshold and twitch force potentiation in the first dorsal interosseous.

    Science.gov (United States)

    Miller, Jonathan D; Herda, Trent J; Trevino, Michael A; Sterczala, Adam J; Ciccone, Anthony B

    2017-08-01

    What is the central question of this study? The influences of motor unit recruitment threshold and twitch force potentiation on the changes in firing rates during steady-force muscular contractions are not well understood. What is the main finding and its importance? The behaviour of motor units during steady force was influenced by recruitment threshold, such that firing rates decreased for lower-threshold motor units but increased for higher-threshold motor units. In addition, individuals with greater changes in firing rates possessed greater twitch force potentiation. There are contradictory reports regarding changes in motor unit firing rates during steady-force contractions. Inconsistencies are likely to be the result of previous studies disregarding motor unit recruitment thresholds and not examining firing rates on a subject-by-subject basis. It is hypothesized that firing rates are manipulated by twitch force potentiation during contractions. Therefore, in this study we examined time-related changes in firing rates at steady force in relationship to motor unit recruitment threshold in the first dorsal interosseous and the influence of twitch force potentiation on such changes in young versus aged individuals. Subjects performed a 12 s steady-force contraction at 50% maximal voluntary contraction, with evoked twitches before and after the contraction to quantify potentiation. Firing rates, in relationship to recruitment thresholds, were determined at the beginning, middle and end of the steady force. There were no firing rate changes for aged individuals. For the young, firing rates decreased slightly for lower-threshold motor units but increased for higher-threshold motor units. Twitch force potentiation was greater for young than aged subjects, and changes in firing rates were correlated with twitch force potentiation. Thus, individuals with greater increases in firing rates of higher-threshold motor units and decreases in lower-threshold motor units

  6. Synaptic connectivity and spatial memory: a topological approach

    Science.gov (United States)

    Milton, Russell; Babichev, Andrey; Dabaghian, Yuri

    2015-03-01

    In the hippocampus, a network of place cells generates a cognitive map of space, in which each cell is responsive to a particular area of the environment - its place field. The peak response of each cell and the size of each place field have considerable variability. Experimental evidence suggests that place cells encode a topological map of space that serves as a basis of spatial memory and spatial awareness. Using a computational model based on Persistent Homology Theory we demonstrate that if the parameters of the place cells spiking activity fall inside of the physiological range, the network correctly encodes the topological features of the environment. We next introduce parameters of synaptic connectivity into the model and demonstrate that failures in synapses that detect coincident neuronal activity lead to spatial learning deficiencies similar to the ones that are observed in rodent models of neurodegenerative diseases. Moreover, we show that these learning deficiencies may be mitigated by increasing the number of active cells and/or by increasing their firing rate, suggesting the existence of a compensatory mechanism inherent to the cognitive map.

  7. Neural network regulation driven by autonomous neural firings

    Science.gov (United States)

    Cho, Myoung Won

    2016-07-01

    Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.

  8. Vastus Lateralis Motor Unit Firing Rate Is Higher in Women With Patellofemoral Pain.

    Science.gov (United States)

    Gallina, Alessio; Hunt, Michael A; Hodges, Paul W; Garland, S Jayne

    2018-05-01

    To compare neural drive, determined from motor unit firing rate, in the vastus medialis and lateralis in women with and without patellofemoral pain. Cross-sectional study. University research laboratory. Women (N=56) 19 to 35 years of age, including 36 with patellofemoral pain and 20 controls. Not applicable. Participants sustained an isometric knee extension contraction at 10% of their maximal voluntary effort for 70 seconds. Motor units (N=414) were identified using high-density surface electromyography. Average firing rate was calculated between 5 and 35 seconds after recruitment for each motor unit. Initial firing rate was the inverse of the first 3 motor unit interspike intervals. In control participants, vastus medialis motor units discharged at higher rates than vastus lateralis motor units (P=.001). This was not observed in women with patellofemoral pain (P=.78) because of a higher discharge rate of vastus lateralis compared with control participants (P=.002). No between-group differences were observed for vastus medialis (P=.93). Similar results were obtained for the initial motor unit firing rate. These findings suggest that women with patellofemoral pain have a higher neural drive to vastus lateralis but not vastus medialis, which may be a contributor of the altered patellar kinematics observed in some studies. The different neural drive may be an adaptation to patellofemoral pain, possibly to compensate for decreased quadriceps force production, or a precursor of patellofemoral pain. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity.

    Science.gov (United States)

    Costa, Rui Ponte; Padamsey, Zahid; D'Amour, James A; Emptage, Nigel J; Froemke, Robert C; Vogels, Tim P

    2017-09-27

    Long-term modifications of neuronal connections are critical for reliable memory storage in the brain. However, their locus of expression-pre- or postsynaptic-is highly variable. Here we introduce a theoretical framework in which long-term plasticity performs an optimization of the postsynaptic response statistics toward a given mean with minimal variance. Consequently, the state of the synapse at the time of plasticity induction determines the ratio of pre- and postsynaptic modifications. Our theory explains the experimentally observed expression loci of the hippocampal and neocortical synaptic potentiation studies we examined. Moreover, the theory predicts presynaptic expression of long-term depression, consistent with experimental observations. At inhibitory synapses, the theory suggests a statistically efficient excitatory-inhibitory balance in which changes in inhibitory postsynaptic response statistics specifically target the mean excitation. Our results provide a unifying theory for understanding the expression mechanisms and functions of long-term synaptic transmission plasticity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Influence of the contractile properties of muscle on motor unit firing rates during a moderate-intensity contraction in vivo.

    Science.gov (United States)

    Trevino, Michael A; Herda, Trent J; Fry, Andrew C; Gallagher, Philip M; Vardiman, John P; Mosier, Eric M; Miller, Jonathan D

    2016-08-01

    It is suggested that firing rate characteristics of motor units (MUs) are influenced by the physical properties of the muscle. However, no study has correlated MU firing rates at recruitment, targeted force, or derecruitment with the contractile properties of the muscle in vivo. Twelve participants (age = 20.67 ± 2.35 yr) performed a 40% isometric maximal voluntary contraction of the leg extensors that included linearly increasing, steady force, and decreasing segments. Muscle biopsies were collected with myosin heavy chain (MHC) content quantified, and surface electromyography (EMG) was recorded from the vastus lateralis. The EMG signal was decomposed into the firing events of single MUs. Slopes and y-intercepts were calculated for 1) firing rates at recruitment vs. recruitment threshold, 2) mean firing rates at steady force vs. recruitment threshold, and 3) firing rates at derecruitment vs. derecruitment threshold relationships for each subject. Correlations among type I %MHC isoform content and the slopes and y-intercepts from the three relationships were examined. Type I %MHC isoform content was correlated with MU firing rates at recruitment (y-intercepts: r = -0.577; slopes: r = 0.741) and targeted force (slopes: r = 0.853) vs. recruitment threshold and MU firing rates at derecruitment (y-intercept: r = -0.597; slopes: r = 0.701) vs. derecruitment threshold relationships. However, the majority of the individual MU firing rates vs. recruitment and derecruitment relationships were not significant (P > 0.05) and, thus, revealed no systematic pattern. In contrast, MU firing rates during the steady force demonstrated a systematic pattern with higher firing rates for the lower- than higher-threshold MUs and were correlated with the physical properties of MUs in vivo. Copyright © 2016 the American Physiological Society.

  11. Drought impact on vegetation in pre and post fire events in Iberian Peninsula

    Science.gov (United States)

    Gouveia, C. M.; Bastos, A.; Trigo, R. M.; DaCamara, C.

    2012-04-01

    In 2004/2005, the Iberian Peninsula was stricken by an exceptional drought that affected more than one third of Portugal and part of southern Spain during more than 9 months. This severe drought had a strong negative impact on vegetation dynamics, as it coincided with the period of high photosynthetic activity (Gouveia et al., 2009). Since water availability is a crucial factor in post-fire vegetation recovery, it is desirable to assess the impact that such water-stress conditions had on fire sensitivity and post-fire vegetation recovery. Fire events in the European Mediterranean areas have become a serious problem and a major ecosystem disturbance, increasing erosion and soil degradation. In Portugal, the years 2003 and 2005 were particularly devastating. In 2003 it was registered the maximal burnt area since 1980, with more than 425000 ha burned, representing about 5% of Portuguese mainland. The 2005 fire season registered the highest number of fire occurrences in Portugal and the second year with the greatest number of fires in Spain. The high number of fire events observed during the summer 2005 in the Iberian Peninsula is linked, in part, to the extreme drought conditions that prevailed during the preceding winter and spring seasons of 2004/2005. Vegetation recovery after the 2003 and 2005 fire seasons was estimated using the mono-parametric model developed by Gouveia et al. (2010), which relies on monthly values of Normalized Difference Vegetation Index (NDVI), from 1999 to 2009, at 1kmresolution, as obtained from the VEGETATION-SPOT5 instrument.. This model was further used to evaluate the effect of drought in pre and post vegetation activity. Besides the standard NDVI, the Normalized Difference Water Index (NDWI) and the Normalized Difference Drought Index (NDDI) were computed in order to evaluate drought intensity. In the case of the burnt scars of 2003, when data corresponding to the months of drought are removed, recovery times are considerably shorter

  12. Pre-synaptic glycine GlyT1 transporter--NMDA receptor interaction: relevance to NMDA autoreceptor activation in the presence of Mg2+ ions.

    Science.gov (United States)

    Musante, Veronica; Summa, Maria; Cunha, Rodrigo A; Raiteri, Maurizio; Pittaluga, Anna

    2011-05-01

    Rat hippocampal glutamatergic terminals possess NMDA autoreceptors whose activation by low micromolar NMDA elicits glutamate exocytosis in the presence of physiological Mg(2+) (1.2 mM), the release of glutamate being significantly reduced when compared to that in Mg(2+)-free condition. Both glutamate and glycine were required to evoke glutamate exocytosis in 1.2 mM Mg(2+), while dizocilpine, cis-4-[phosphomethyl]-piperidine-2-carboxylic acid and 7-Cl-kynurenic acid prevented it, indicating that occupation of both agonist sites is needed for receptor activation. D-serine mimicked glycine but also inhibited the NMDA/glycine-induced release of [(3H]D-aspartate, thus behaving as a partial agonist. The NMDA/glycine-induced release in 1.2 mM Mg(2+) strictly depended on glycine uptake through the glycine transporter type 1 (GlyT1), because the GlyT1 blocker N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine hydrochloride, but not the GlyT2 blocker Org 25534, prevented it. Accordingly, [(3)H]glycine was taken up during superfusion, while lowering the external concentration of Na(+), the monovalent cation co-transported with glycine by GlyT1, abrogated the NMDA-induced effect. Western blot analysis of subsynaptic fractions confirms that GlyT1 and NMDA autoreceptors co-localize at the pre-synaptic level, where GluN3A subunits immunoreactivity was also recovered. It is proposed that GlyT1s coexist with NMDA autoreceptors on rat hippocampal glutamatergic terminals and that glycine taken up by GlyT1 may permit physiological activation of NMDA pre-synaptic autoreceptors. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  13. Distinct neuronal coding schemes in memory revealed by selective erasure of fast synchronous synaptic transmission.

    Science.gov (United States)

    Xu, Wei; Morishita, Wade; Buckmaster, Paul S; Pang, Zhiping P; Malenka, Robert C; Südhof, Thomas C

    2012-03-08

    Neurons encode information by firing spikes in isolation or bursts and propagate information by spike-triggered neurotransmitter release that initiates synaptic transmission. Isolated spikes trigger neurotransmitter release unreliably but with high temporal precision. In contrast, bursts of spikes trigger neurotransmission reliably (i.e., boost transmission fidelity), but the resulting synaptic responses are temporally imprecise. However, the relative physiological importance of different spike-firing modes remains unclear. Here, we show that knockdown of synaptotagmin-1, the major Ca(2+) sensor for neurotransmitter release, abrogated neurotransmission evoked by isolated spikes but only delayed, without abolishing, neurotransmission evoked by bursts of spikes. Nevertheless, knockdown of synaptotagmin-1 in the hippocampal CA1 region did not impede acquisition of recent contextual fear memories, although it did impair the precision of such memories. In contrast, knockdown of synaptotagmin-1 in the prefrontal cortex impaired all remote fear memories. These results indicate that different brain circuits and types of memory employ distinct spike-coding schemes to encode and transmit information. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Annual runoff and erosion in a recently burn Mediterranean forest - The effects of plowing and time-since-fire

    Science.gov (United States)

    Vieira, D. C. S.; Malvar, M. C.; Fernández, C.; Serpa, D.; Keizer, J. J.

    2016-10-01

    The impacts of forest fires on runoff and soil erosion have been assessed by many studies, so the effects of fires on the hydrological and geomorphological processes of burnt forest areas, globally and in the Mediterranean region, are well established. Few studies, however, have assessed post-fire runoff and erosion on large time scales. In addition, a limited number of studies are available that consider the effect of pre-fire land management practices on post-fire runoff and erosion. This study evaluated annual runoff and sediment losses, at micro plot scale, for 4 years after a wildfire in three eucalypt plantations with different pre-fire land management practices (i.e., plowed and unplowed). During the four years following the fire, runoff amounts and coefficients at the downslope plowed (1257 mm, 26%) and contour plowed eucalypt sites (1915 mm, 40%) were higher than at the unplowed site (865 mm, 14%). Sediment losses over the 4 years of study were also consistently higher at the two plowed sites (respectively, 0.47 and 0.83 Mg ha- 1 y- 1 at the downslope and contour plowed eucalypt site) than at the unplowed site (0.11 Mg ha- 1 y- 1). Aside from pre-fire land management, time-since-fire also seemed to significantly affect post-fire annual runoff and erosion. In general, annual runoff amounts and erosion rates followed the rainfall pattern. Runoff amounts presented a peak during the third year of monitoring while erosion rates reached their maximum one year earlier, in the second year. Runoff coefficients increased over the 4 years of monitoring, in disagreement to the window of disturbance post-fire recovery model, but sediment concentrations decreased over the study period. When compared with other long-term post-fire studies and with studies evaluating the effects of pre- and post-fire management practices, the results of the present work suggest that an ecosystem's recovery after fire is highly dependent on the background of disturbances of each site, as

  15. Synaptic contacts impaired by styrene-7,8-oxide toxicity

    International Nuclear Information System (INIS)

    Corsi, P.; D'Aprile, A.; Nico, B.; Costa, G.L.; Assennato, G.

    2007-01-01

    Styrene-7,8-oxide (SO), a chemical compound widely used in industrial applications, is a potential hazard for humans, particularly in occupational settings. Neurobehavioral changes are consistently observed in occupationally exposed individuals and alterations of neurotransmitters associated with neuronal loss have been reported in animal models. Although the toxic effects of styrene have been extensively documented, the molecular mechanisms responsible for SO-induced neurotoxicity are still unclear. A possible dopamine-mediated effect of styrene neurotoxicity has been previously demonstrated, since styrene oxide alters dopamine neurotransmission in the brain. Thus, the present study hypothesizes that styrene neurotoxicity may involve synaptic contacts. Primary striatal neurons were exposed to styrene oxide at different concentrations (0.1-1 mM) for different time periods (8, 16, and 24 h) to evaluate the dose able to induce synaptic impairments. The expression of proteins crucial for synaptic transmission such as Synapsin, Synaptophysin, and RAC-1 were considered. The levels of Synaptophysin and RAC-1 decreased in a dose-dependent manner. Accordingly, morphological alterations, observed at the ultrastructural level, primarily involved the pre-synaptic compartment. In SO-exposed cultures, the biochemical cascade of caspases was activated affecting the cytoskeleton components as their target. Thus the impairments in synaptic contacts observed in SO-exposed cultures might reflect a primarily morphological alteration of neuronal cytoskeleton. In addition, our data support the hypothesis developed by previous authors of reactive oxygen species (ROS) initiating events of SO cytotoxicity

  16. The burning and smoke release rates of sodium pool fires

    International Nuclear Information System (INIS)

    Newman, R.N.; Payne, J.F.B.

    1976-10-01

    The burning rates and smoke release fractions of sodium pool fires have been measured over the pool temperature range 250 0 C to 750 0 C. A theoretical model is derived which satisfactorily predicts the burning rate over the above temperature range. The theory further predicts that the burning rate should be independent of pool diameter, a prediction supported by a comparison of burning rate data from this study and available data from other studies. (author)

  17. Human limbic encephalitis serum enhances hippocampal mossy fiber-CA3 pyramidal cell synaptic transmission.

    Science.gov (United States)

    Lalic, Tatjana; Pettingill, Philippa; Vincent, Angela; Capogna, Marco

    2011-01-01

    Limbic encephalitis (LE) is a central nervous system (CNS) disease characterized by subacute onset of memory loss and epileptic seizures. A well-recognized form of LE is associated with voltage-gated potassium channel complex antibodies (VGKC-Abs) in the patients' sera. We aimed to test the hypothesis that purified immunoglobulin G (IgG) from a VGKC-Ab LE serum would excite hippocampal CA3 pyramidal cells by reducing VGKC function at mossy-fiber (MF)-CA3 pyramidal cell synapses. We compared the effects of LE and healthy control IgG by whole-cell patch-clamp and extracellular recordings from CA3 pyramidal cells of rat hippocampal acute slices. We found that the LE IgG induced epileptiform activity at a population level, since synaptic stimulation elicited multiple population spikes extracellularly recorded in the CA3 area. Moreover, the LE IgG increased the rate of tonic firing and strengthened the MF-evoked synaptic responses. The synaptic failure of evoked excitatory postsynaptic currents (EPSCs) was significantly lower in the presence of the LE IgG compared to the control IgG. This suggests that the LE IgG increased the release probability on MF-CA3 pyramidal cell synapses compared to the control IgG. Interestingly, α-dendrotoxin (120 nm), a selective Kv1.1, 1.2, and 1.6 subunit antagonist of VGKC, mimicked the LE IgG-mediated effects. This is the first functional demonstration that LE IgGs reduce VGKC function at CNS synapses and increase cell excitability. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.

  18. Rate response of neurons subject to fast or frozen noise: from stochastic and homogeneous to deterministic and heterogeneous populations.

    Science.gov (United States)

    Alijani, Azadeh Khajeh; Richardson, Magnus J E

    2011-07-01

    The response of a neuronal population to afferent drive can be expected to be sensitive to both the distribution and dynamics of membrane voltages within the population. Voltage fluctuations can be driven by synaptic noise, neuromodulators, or cellular inhomogeneities: processes ranging from millisecond autocorrelation times to effectively static or "frozen" noise. Here we extend previous studies of filtered fluctuations to the experimentally verified exponential integrate-and-fire model. How fast or frozen fluctuations affect the steady-state rate and firing-rate response are both examined using perturbative solutions and limits of a 1 + 2 dimensional Fokker-Planck equation. The central finding is that, under conditions of a more-or-less constant population voltage variance, the firing-rate response is only weakly dependent on the fluctuation filter constant: The voltage distribution is the principal determinant of the population response. This result is unexpected given the nature of the systems underlying the extreme limits of fast and frozen fluctuations; the first limit represents a homogeneous population of neurons firing stochastically, whereas the second limit is equivalent to a heterogeneous population of neurons firing deterministically.

  19. Mapping synaptic pathology within cerebral cortical circuits in subjects with schizophrenia

    Directory of Open Access Journals (Sweden)

    Robert Sweet

    2010-06-01

    Full Text Available Converging lines of evidence indicate that schizophrenia is characterized by impairments of synaptic machinery within cerebral cortical circuits. Efforts to localize these alterations in brain tissue from subjects with schizophrenia have frequently been limited to the quantification of structures that are non-selectively identified (e.g. dendritic spines labeled in Golgi preparations, axon boutons labeled with synaptophysin, or to quantification of proteins using methods unable to resolve relevant cellular compartments. Multiple label fluorescence confocal microscopy represents a means to circumvent many of these limitations, by concurrently extracting information regarding the number, morphology, and relative protein content of synaptic structures. An important adaptation required for studies of human disease is coupling this approach to stereologic methods for systematic random sampling of relevant brain regions. In this review article we consider the application of multiple label fluorescence confocal microscopy to the mapping of synaptic alterations in subjects with schizophrenia and describe the application of a novel, readily automated, iterative intensity/morphological segmentation algorithm for the extraction of information regarding synaptic structure number, size, and relative protein level from tissue sections obtained using unbiased stereological principles of sampling. In this context, we provide examples of the examination of pre- and post-synaptic structures within excitatory and inhibitory circuits of the cerebral cortex.

  20. Mechanisms of Gain Control by Voltage-Gated Channels in Intrinsically-Firing Neurons

    Science.gov (United States)

    Patel, Ameera X.; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems

  1. Variance in population firing rate as a measure of slow time-scale correlation

    Directory of Open Access Journals (Sweden)

    Adam C. Snyder

    2013-12-01

    Full Text Available Correlated variability in the spiking responses of pairs of neurons, also known as spike count correlation, is a key indicator of functional connectivity and a critical factor in population coding. Underscoring the importance of correlation as a measure for cognitive neuroscience research is the observation that spike count correlations are not fixed, but are rather modulated by perceptual and cognitive context. Yet while this context fluctuates from moment to moment, correlation must be calculated over multiple trials. This property undermines its utility as a dependent measure for investigations of cognitive processes which fluctuate on a trial-to-trial basis, such as selective attention. A measure of functional connectivity that can be assayed on a moment-to-moment basis is needed to investigate the single-trial dynamics of populations of spiking neurons. Here, we introduce the measure of population variance in normalized firing rate for this goal. We show using mathematical analysis, computer simulations and in vivo data how population variance in normalized firing rate is inversely related to the latent correlation in the population, and how this measure can be used to reliably classify trials from different typical correlation conditions, even when firing rate is held constant. We discuss the potential advantages for using population variance in normalized firing rate as a dependent measure for both basic and applied neuroscience research.

  2. The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses.

    Directory of Open Access Journals (Sweden)

    Chang-Gyu Hahn

    Full Text Available Recent molecular genetics studies have suggested various trans-synaptic processes for pathophysiologic mechanisms of neuropsychiatric illnesses. Examination of pre- and post-synaptic scaffolds in the brains of patients would greatly aid further investigation, yet such an approach in human postmortem tissue has yet to be tested. We have examined three methods using density gradient based purification of synaptosomes followed by detergent extraction (Method 1 and the pH based differential extraction of synaptic membranes (Methods 2 and 3. All three methods separated fractions from human postmortem brains that were highly enriched in typical PSD proteins, almost to the exclusion of pre-synaptic proteins. We examined these fractions using electron microscopy (EM and verified the integrity of the synaptic membrane and PSD fractions derived from human postmortem brain tissues. We analyzed protein composition of the PSD fractions using two dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS and observed known PSD proteins by mass spectrometry. Immunoprecipitation and immunoblot studies revealed that expected protein-protein interactions and certain posttranscriptional modulations were maintained in PSD fractions. Our results demonstrate that PSD fractions can be isolated from human postmortem brain tissues with a reasonable degree of integrity. This approach may foster novel postmortem brain research paradigms in which the stoichiometry and protein composition of specific microdomains are examined.

  3. Analysis of the influence of operating conditions on fouling rates in fired heaters

    International Nuclear Information System (INIS)

    Morales-Fuentes, A.; Picón-Núñez, M.; Polley, G.T.; Méndez-Díaz, S.

    2014-01-01

    Fouling due to chemical reaction in preheat trains for the processing of crude oil plays a key role in the operation and maintenance costs and on greenhouse emissions to atmosphere in crude processing plants. A preheat train consists of a set of heat transfer units that provide the crude oil stream the required amount of thermal energy to reach its target temperature either by heat recovery or by direct firing. Fired heaters supply external high temperature heating through the burning of fuel which result in complex heat transfer processes due to the large temperature and pressure changes and vaporization that takes place inside the unit. In this work, a thermo-hydraulic analysis of the performance of fired heaters is carried out through the application of commercial software to solve the mathematical models using finite difference methods; the analysis is applied to the crude side of a vertical fired heater in order to evaluate the impact of process conditions such as throughput and crude inlet temperature (CIT) on the fouling that take place at the early stages of operation. Using a fouling rate model based on thermo-hydraulic parameters, fouling rates are predicted assuming steady state operation and clean conditions. Although variations in process conditions are known to influence fouling rates, little work has been done on the subject. In this work excess air and steam injection are studied as a means to mitigate fouling. Results show that throughput reduction brings about a marked increase in the fouling rates. A decrease in CIT affects only the convection zone and it is found that this effect is negligible. In terms of excess air, it is found that although it affects negatively the heater efficiency it can be used to balance heat transfer between the convection and radiation zone in a way that fouling rates are reduced; however this strategy should be considered right from the design stage. Finally it is observed that steam injection is an effective method

  4. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape.

    Science.gov (United States)

    Zald, Harold S J; Dunn, Christopher J

    2018-04-26

    Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi-owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting management objectives, providing a unique experimental landscape to understand how different management practices influence wildfire severity. Leveraging Landsat based estimates of fire severity (Relative differenced Normalized Burn Ratio, RdNBR) and geospatial data on fire progression, weather, topography, pre-fire forest conditions, and land ownership, we asked (1) what is the relative importance of different variables driving fire severity, and (2) is intensive plantation forestry associated with higher fire severity? Using Random Forest ensemble machine learning, we found daily fire weather was the most important predictor of fire severity, followed by stand age and ownership, followed by topographic features. Estimates of pre-fire forest biomass were not an important predictor of fire severity. Adjusting for all other predictor variables in a general least squares model incorporating spatial autocorrelation, mean predicted RdNBR was higher on private industrial forests (RdNBR 521.85 ± 18.67 [mean ± SE]) vs. BLM forests (398.87 ± 18.23) with a much greater proportion of older forests. Our findings suggest intensive plantation forestry characterized by young forests and spatially homogenized fuels, rather than pre-fire biomass, were significant drivers of wildfire severity. This has implications for perceptions of wildfire risk, shared fire management responsibilities, and developing

  5. Autonomous Forest Fire Detection

    NARCIS (Netherlands)

    Breejen, E. den; Breuers, M.; Cremer, F.; Kemp, R.A.W.; Roos, M.; Schutte, K.; Vries, J.S. de

    1998-01-01

    Forest fire detection is a very important issue in the pre-suppression process. Timely detection allows the suppression units to reach the fire in its initial stages and this will reduce the suppression costs considerably. The autonomous forest fire detection principle is based on temporal contrast

  6. Little Bear Fire Summary Report

    Science.gov (United States)

    Sarah McCaffrey; Melanie Stidham; Hannah. Brenkert-Smith

    2013-01-01

    In June 2012, immediately after the Little Bear Fire burned outside Ruidoso, New Mexico, a team of researchers interviewed fire managers, local personnel, and residents to understand perceptions of the event itself, communication, evacuation, and pre-fire preparedness. The intensity of fire behavior and resulting loss of 242 homes made this a complex fire with a...

  7. Remote sensing of fire severity: linking post-fire reflectance data with physiological responses in two western conifer species

    Science.gov (United States)

    Sparks, A. M.; Smith, A. M.; Kolden, C.; Apostol, K. G.; Boschetti, L.

    2014-12-01

    Fire is a common disturbance in forested ecosystems in the western U.S. and can be responsible for long-term impacts on vegetation and soil. An improved understanding of how ecosystems recover after fire is necessary so that land managers can plan for and mitigate the effects of these disturbances. Although several studies have attempted to link fire intensity with severity, direct links between spectral indices of severity and key physiological changes in vegetation are not well understood. We conducted an assessment of how two western conifer species respond to four fire radiative energy treatments, with spectra acquired pre- and up to a month post-burn. After transforming the spectral data into Landsat 8 equivalent reflectance, burn severity indices commonly used in the remote sensing community were compared to concurrent physiological measurements including gas exchange and photosynthetic rate. Preliminary results indicate significant relationships between several fire severity indices and physiological responses measured in the conifer seedlings.

  8. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc.

    Science.gov (United States)

    Anderson, Charles T; Radford, Robert J; Zastrow, Melissa L; Zhang, Daniel Y; Apfel, Ulf-Peter; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-05-19

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling.

  9. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc

    Science.gov (United States)

    Anderson, Charles T.; Radford, Robert J.; Zastrow, Melissa L.; Zhang, Daniel Y.; Apfel, Ulf-Peter; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling. PMID:25947151

  10. Neurosteroid modulation of neuronal excitability and synaptic transmission in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, Silvarosa; Frondaroli, Adele; Dieni, Cristina; Dutia, Mayank B; Pettorossi, Vito E

    2007-07-01

    In rat brainstem slices, we investigated the influence of the neurosteroids tetrahydrodeoxycorticosterone (THDOC) and allopregnanolone (ALLO) on the synaptically driven and spontaneous activity of vestibular neurons, by analysing their effects on the amplitude of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation and on the spontaneous firing rate of MVN neurons. Furthermore, the interaction with gamma-aminobutyric acid (GABA) and glutamate receptors was analysed by using specific antagonists for GABA(A) (bicuculline), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/ kainate [2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulphonamide disodium salt (NBQX)], N-methyl-D-aspartate (NMDA) [D-(-)-2-amino-5-phosphonopentanoic acid (AP-5)] and group I metabotropic glutamate receptors (mGlu-I) [(R,S)-1-aminoindan-1,5-dicarboxylic acid (AIDA)] receptors. THDOC and ALLO evoked two opposite long-lasting effects, consisting of either a potentiation or a reduction of field potential and firing rate, which showed early and late components, occurring in conjunction or separately after neurosteroid application. The depressions depended on GABA(A) receptors, as they were abolished by bicuculline, while early potentiation involved glutamate AMPA/kainate receptors, as NBQX markedly reduced the incidence of early firing rate enhancement and, in the case of ALLO, even provoked depression. This suggests that THDOC and ALLO enhance the GABA(A) inhibitory influence on the MVN neurons and facilitate the AMPA/kainate facilitatory one. Conversely, a late potentiation effect, which was still induced after glutamate and GABA(A) receptor blockade, might involve a different mechanism. We conclude that the modulation of neuronal activity in the MVN by THDOC and ALLO, through their actions on GABA(A) and AMPA/kainate receptors, may have a physiological role in regulating the vestibular system function under normal

  11. Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive.

    Science.gov (United States)

    Williams, Michael R; DeSpenza, Tyrone; Li, Meijie; Gulledge, Allan T; Luikart, Bryan W

    2015-01-21

    Developing neurons must regulate morphology, intrinsic excitability, and synaptogenesis to form neural circuits. When these processes go awry, disorders, including autism spectrum disorder (ASD) or epilepsy, may result. The phosphatase Pten is mutated in some patients having ASD and seizures, suggesting that its mutation disrupts neurological function in part through increasing neuronal activity. Supporting this idea, neuronal knock-out of Pten in mice can cause macrocephaly, behavioral changes similar to ASD, and seizures. However, the mechanisms through which excitability is enhanced following Pten depletion are unclear. Previous studies have separately shown that Pten-depleted neurons can drive seizures, receive elevated excitatory synaptic input, and have abnormal dendrites. We therefore tested the hypothesis that developing Pten-depleted neurons are hyperactive due to increased excitatory synaptogenesis using electrophysiology, calcium imaging, morphological analyses, and modeling. This was accomplished by coinjecting retroviruses to either "birthdate" or birthdate and knock-out Pten in granule neurons of the murine neonatal dentate gyrus. We found that Pten knock-out neurons, despite a rapid onset of hypertrophy, were more active in vivo. Pten knock-out neurons fired at more hyperpolarized membrane potentials, displayed greater peak spike rates, and were more sensitive to depolarizing synaptic input. The increased sensitivity of Pten knock-out neurons was due, in part, to a higher density of synapses located more proximal to the soma. We determined that increased synaptic drive was sufficient to drive hypertrophic Pten knock-out neurons beyond their altered action potential threshold. Thus, our work contributes a developmental mechanism for the increased activity of Pten-depleted neurons. Copyright © 2015 the authors 0270-6474/15/350943-17$15.00/0.

  12. Ia Afferent input alters the recruitment thresholds and firing rates of single human motor units.

    Science.gov (United States)

    Grande, G; Cafarelli, E

    2003-06-01

    Vibration of the patellar tendon recruits motor units in the knee extensors via excitation of muscle spindles and subsequent Ia afferent input to the alpha-motoneuron pool. Our first purpose was to determine if the recruitment threshold and firing rate of the same motor unit differed when recruited involuntarily via reflex or voluntarily via descending spinal pathways. Although Ia input is excitatory to the alpha-motoneuron pool, it has also been shown paradoxically to inhibit itself. Our second purpose was to determine if vibration of the patellar tendon during a voluntary knee extension causes a change in the firing rate of already recruited motor units. In the first protocol, 10 subjects voluntarily reproduced the same isometric force profile of the knee extensors that was elicited by vibration of the patellar tendon. Single motor unit recordings from the vastus lateralis (VL) were obtained with tungsten microelectrodes and unitary behaviour was examined during both reflex and voluntary knee extensions. Recordings from 135 single motor units showed that both recruitment thresholds and firing rates were lower during reflex contractions. In the second protocol, 7 subjects maintained a voluntary knee extension at 30 N for approximately 40-45 s. Three bursts of patellar tendon vibration were superimposed at regular intervals throughout the contraction and changes in the firing rate of already recruited motor units were examined. A total of 35 motor units were recorded and each burst of superimposed vibration caused a momentary reduction in the firing rates and recruitment of additional units. Our data provide evidence that Ia input modulates the recruitment thresholds and firing rates of motor units providing more flexibility within the neuromuscular system to grade force at low levels of force production.

  13. Maximum likelihood estimation of biophysical parameters of synaptic receptors from macroscopic currents

    Directory of Open Access Journals (Sweden)

    Andrey eStepanyuk

    2014-10-01

    Full Text Available Dendritic integration and neuronal firing patterns strongly depend on biophysical properties of synaptic ligand-gated channels. However, precise estimation of biophysical parameters of these channels in their intrinsic environment is complicated and still unresolved problem. Here we describe a novel method based on a maximum likelihood approach that allows to estimate not only the unitary current of synaptic receptor channels but also their multiple conductance levels, kinetic constants, the number of receptors bound with a neurotransmitter and the peak open probability from experimentally feasible number of postsynaptic currents. The new method also improves the accuracy of evaluation of unitary current as compared to the peak-scaled non-stationary fluctuation analysis, leading to a possibility to precisely estimate this important parameter from a few postsynaptic currents recorded in steady-state conditions. Estimation of unitary current with this method is robust even if postsynaptic currents are generated by receptors having different kinetic parameters, the case when peak-scaled non-stationary fluctuation analysis is not applicable. Thus, with the new method, routinely recorded postsynaptic currents could be used to study the properties of synaptic receptors in their native biochemical environment.

  14. NACOM - a code for sodium spray fire analysis

    International Nuclear Information System (INIS)

    Rao, P.M.; Kannan, S.E.

    2002-01-01

    Full text: In liquid metal fast breeder reactors (LMFBR), leakage of sodium can result in a spray fire. Because of higher burning rates in droplet form combustion of sodium in spray fire, thermal consequences are more severe than that in a sodium pool fire. The code NACOM was developed for the analysis of sodium spray fires in LMFBRs facilities. The code uses the validated model for estimating the falling droplet burning rates in pre-ignition and vapour phase combustion stages. It uses a distribution system to generate the droplet groups of different diameters that represent the spray. The code requires about 20 input parameters like sodium leak rates, sodium temperature, initial cell conditions like oxygen concentration, temperature and dimensions. NACOM is a validated code based on experiments with sodium inventory up to 650 kg in 0 to 21 % O 2 atmospheres. The paper brings out the salient features of the code along with the sensitivity analysis of the main input parameters like spray volume mean diameter, oxygen concentration etc. based on the results obtained. The limitations of the code and the confidence margins applicable to results obtained are also brought out

  15. Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.

    Science.gov (United States)

    Michaelis, Mary L; Jiang, Lei; Michaelis, Elias K

    2017-01-01

    Isolation of synaptic nerve terminals or synaptosomes provides an opportunity to study the process of neurotransmission at many levels and with a variety of approaches. For example, structural features of the synaptic terminals and the organelles within them, such as synaptic vesicles and mitochondria, have been elucidated with electron microscopy. The postsynaptic membranes are joined to the presynaptic "active zone" of transmitter release through cell adhesion molecules and remain attached throughout the isolation of synaptosomes. These "post synaptic densities" or "PSDs" contain the receptors for the transmitters released from the nerve terminals and can easily be seen with electron microscopy. Biochemical and cell biological studies with synaptosomes have revealed which proteins and lipids are most actively involved in synaptic release of neurotransmitters. The functional properties of the nerve terminals, such as responses to depolarization and the uptake or release of signaling molecules, have also been characterized through the use of fluorescent dyes, tagged transmitters, and transporter substrates. In addition, isolated synaptosomes can serve as the starting material for the isolation of relatively pure synaptic plasma membranes (SPMs) that are devoid of organelles from the internal environment of the nerve terminal, such as mitochondria and synaptic vesicles. The isolated SPMs can reseal and form vesicular structures in which transport of ions such as sodium and calcium, as well as solutes such as neurotransmitters can be studied. The PSDs also remain associated with the presynaptic membranes during isolation of SPM fractions, making it possible to isolate the synaptic junctional complexes (SJCs) devoid of the rest of the plasma membranes of the nerve terminals and postsynaptic membrane components. Isolated SJCs can be used to identify the proteins that constitute this highly specialized region of neurons. In this chapter, we describe the steps involved

  16. Precise synaptic efficacy alignment suggests potentiation dominated learning

    Directory of Open Access Journals (Sweden)

    Christoph eHartmann

    2016-01-01

    coordinated potentiation -- in this case, from STDP in the presence of correlated pre- and post-synaptic activity -- naturally leads to an alignment of parallel synapses.

  17. Fires in rooms containing electrical components - incident planning, fire fighting tactics, risks

    International Nuclear Information System (INIS)

    Magnusson, Tommy; Ottosson, Jan; Lindskog, BertiI; Soederquist Bende, Evy; Eriksson, Fredrik; Haffling, Stefan

    2006-12-01

    On July 1, 2005 a fire occurred within an electrical switch room at Forsmark Nuclear Power Plant. At the evaluation of the incident it was identified that the pre-fire plans did not give sufficient information in order to make the appropriate decisions. Questions raised based on the incident are how decisions are made and orders are delegated with respect to the incident command, which fire fighting tactic should be used, which types of extinguishing media should be used, what are the risks with respect to safety of staff and safety of the reactor. Lessons learned from the fire at Forsmark were that pre-incident planning was at hand but the information was not sufficient to make the correct initial decisions that might be critical for life and property. One of the most crucial ingredients in all safety related work is to utilize previous experience in order to maintain a high degree of safety. Lessons learnt are also the foundation on which the ability to construct or create strong barriers against a certain fault phenomena, fault mechanism or type of initial event. In the case of nuclear processes, fire is considered as an important and critical initial event which has to be recognized in a number of cases in order to maintain a safe process. The likelihood for a fire to represent an initial event should not be underestimated and can therefore not be neglected, probabilistically or deterministically, unless the inherent safety systems can not control the event in an acceptable manner. Regardless of safety measures and lessons learnt from previous experiences in the construction and the operation of the nuclear facility, fires can occur. Previous experiences point out that process system, e.g. systems that are part of the turbine, are more frequently subject to fire incidents compared to ordinary safety systems. Fires in electrical components, often electrical cabinets, can be difficult to handle and to extinguish quickly. This report presents the background work

  18. Ultrafast Synaptic Events in a Chalcogenide Memristor

    Science.gov (United States)

    Li, Yi; Zhong, Yingpeng; Xu, Lei; Zhang, Jinjian; Xu, Xiaohua; Sun, Huajun; Miao, Xiangshui

    2013-04-01

    Compact and power-efficient plastic electronic synapses are of fundamental importance to overcoming the bottlenecks of developing a neuromorphic chip. Memristor is a strong contender among the various electronic synapses in existence today. However, the speeds of synaptic events are relatively slow in most attempts at emulating synapses due to the material-related mechanism. Here we revealed the intrinsic memristance of stoichiometric crystalline Ge2Sb2Te5 that originates from the charge trapping and releasing by the defects. The device resistance states, representing synaptic weights, were precisely modulated by 30 ns potentiating/depressing electrical pulses. We demonstrated four spike-timing-dependent plasticity (STDP) forms by applying programmed pre- and postsynaptic spiking pulse pairs in different time windows ranging from 50 ms down to 500 ns, the latter of which is 105 times faster than the speed of STDP in human brain. This study provides new opportunities for building ultrafast neuromorphic computing systems and surpassing Von Neumann architecture.

  19. Effects of Burn Severity and Environmental Conditions on Post-Fire Regeneration in Siberian Larch Forest

    Directory of Open Access Journals (Sweden)

    Thuan Chu

    2017-03-01

    Full Text Available Post-fire forest regeneration is strongly influenced by abiotic and biotic heterogeneity in the pre- and post-fire environments, including fire regimes, species characteristics, landforms, hydrology, regional climate, and soil properties. Assessing these drivers is key to understanding the long-term effects of fire disturbances on forest succession. We evaluated multiple factors influencing patterns of variability in a post-fire boreal Larch (Larix sibirica forest in Siberia. A time-series of remote sensing images was analyzed to estimate post-fire recovery as a response variable across the burned area in 1996. Our results suggested that burn severity and water content were primary controllers of both Larch forest recruitment and green vegetation cover as defined by the forest recovery index (FRI and the fractional vegetation cover (FVC, respectively. We found a high rate of Larch forest recruitment in sites of moderate burn severity, while a more severe burn was the preferable condition for quick occupation by vegetation that included early seral communities of shrubs, grasses, conifers and broadleaf trees. Sites close to water and that received higher solar energy during the summer months showed a higher rate of both recovery types, defined by the FRI and FVC, dependent on burn severity. In addition to these factors, topographic variables and pre-fire condition were important predictors of post-fire forest patterns. These results have direct implications for the post-fire forest management in the Siberian boreal Larch region.

  20. Fire Effects at the Tundra-Boreal Ecotone in Interior Alaska

    Science.gov (United States)

    Howard, B. K.; Mack, M. C.; Johnstone, J. F.; Walker, X. J.; Roland, C.

    2016-12-01

    Climate warming in northern latitudes has led to an intensification of disturbance by wildfire. Little is known about the effects of fire on tundra vegetation. Changes in vegetation composition could have important implications for carbon cycling , and may feedback positively or negatively to future climate change (Randerson et al., 2006). Our study utilizes extensive pre-fire ecological data collected by the National Park Service (NPS) Inventory and Monitoring (I&M) program to assess the prefire conditions important in driving successional pathways within Denali National Park and Preserve. In 2013, the East Toklat fire burned 30,000 acres of tussock tundra and mixed white and black spruce forest at a high severity, which encompassed 50 NPS plots that were originally monitored in 2003. Our sampling occurred the summer of 2016 following the same NPS protocols to assess post-fire vegetation composition. In addition, we conducted a seeding experiment using locally collected white and black spruce seed to assess natural and potential tree regeneration in unburned and post fire environments. Seed traps were established along our transects to assess seed rain. A multivariate approach will be used to assess post-fire community dynamics and future field seasons will address tree germination and survival rates. These data will then be coupled with pre and post-fire ecological data to parse out important factors driving secondary succession.

  1. A robust and scalable neuromorphic communication system by combining synaptic time multiplexing and MIMO-OFDM.

    Science.gov (United States)

    Srinivasa, Narayan; Zhang, Deying; Grigorian, Beayna

    2014-03-01

    This paper describes a novel architecture for enabling robust and efficient neuromorphic communication. The architecture combines two concepts: 1) synaptic time multiplexing (STM) that trades space for speed of processing to create an intragroup communication approach that is firing rate independent and offers more flexibility in connectivity than cross-bar architectures and 2) a wired multiple input multiple output (MIMO) communication with orthogonal frequency division multiplexing (OFDM) techniques to enable a robust and efficient intergroup communication for neuromorphic systems. The MIMO-OFDM concept for the proposed architecture was analyzed by simulating large-scale spiking neural network architecture. Analysis shows that the neuromorphic system with MIMO-OFDM exhibits robust and efficient communication while operating in real time with a high bit rate. Through combining STM with MIMO-OFDM techniques, the resulting system offers a flexible and scalable connectivity as well as a power and area efficient solution for the implementation of very large-scale spiking neural architectures in hardware.

  2. Contractile function and motor unit firing rates of the human hamstrings.

    Science.gov (United States)

    Kirk, Eric A; Rice, Charles L

    2017-01-01

    Neuromuscular properties of the lower limb in health, aging, and disease are well described for major lower limb muscles comprising the quadriceps, triceps surae, and dorsiflexors, with the notable exception of the posterior thigh (hamstrings). The purpose of this study was to further characterize major muscles of the lower limb by comprehensively exploring contractile properties in relation to spinal motor neuron output expressed as motor unit firing rates (MUFRs) in the hamstrings of 11 (26.5 ± 3.8) young men. Maximal isometric voluntary contraction (MVC), voluntary activation, stimulated contractile properties including a force-frequency relationship, and MUFRs from submaximal to maximal voluntary contractile intensities were assessed in the hamstrings. Strength and MUFRs were assessed at two presumably different muscle lengths by varying the knee joint angles (90° and 160°). Knee flexion MVCs were 60-70% greater in the extended position (160°). The frequency required to elicit 50% of maximum tetanic torque was 16-17 Hz. Mean MUFRs at 25-50% MVC were 9-31% less in the biceps femoris compared with the semimembranosus-semitendinosus group. Knee joint angle (muscle length) influenced MUFRs such that mean MUFRs were greater in the shortened (90°) position at 50% and 100% MVC. Compared with previous reports, mean maximal MUFRs in the hamstrings are greater than those in the quadriceps and triceps surae and somewhat less than those in the tibialis anterior. Mean maximal MUFRs in the hamstrings are influenced by changes in knee joint angle, with lower firing rates in the biceps femoris compared with the semimembranosus-semitendinosus muscle group. We studied motor unit firing rates (MUFRs) at various voluntary contraction intensities in the hamstrings, one of the only major lower limb muscles to have MUFRs affected by muscle length changes. Within the hamstrings muscle-specific differences have greater impact on MUFRs than length changes, with the biceps femoris

  3. Monitoring post-fire recovery of shrublands in Mediterranean-type ecosystems using MODIS and TM/ETM+ data

    Science.gov (United States)

    Hope, Allen; Albers, Noah; Bart, Ryan

    2010-05-01

    Wildland fires in Mediterranean-Type Ecosystems (MTEs) are episodic events that dramatically alter land-cover conditions. Monitoring post-fire vegetation recovery is important for land management applications such as the scheduling of prescribed burns, post-fire resource management and soil erosion control. Full recovery of MTE shrublands may take many years and have a prolonged effect on water, energy and carbon fluxes in these ecosystems. Comparative studies of fynbos ecosystems in the Cape Floristic Region of South Africa (Western Cape Region) and chaparral ecosystems of California have demonstrated that there is a considerable degree of convergence in some aspects of post-fire vegetation regeneration and marked differences in other aspects. Since these MTEs have contrasting rainfall and soil nutrient conditions, an obvious question arises as to the similarity or dissimilarity in remotely sensed post-fire recovery pathways of vegetation stands in these two regions and the extent to which fire severity and drought impact the rate of vegetation recovery. Post-fire recovery pathways of chaparral and fynbos vegetation stands were characterized using the normalized difference vegetation index (NDVI) based on TM/ETM+ and MODIS (250 m) data. Procedures based on stands of unburned vegetation (control) were implemented to normalize the NDVI for variations associated with inter-annual differences in rainfall. Only vegetation stands that had not burned for 20 years were examined in this study to eliminate potential effects of variable fire histories on the recovery pathways. Post-fire recovery patterns of vegetation in both regions and across different vegetation types were found to be very similar. Post-fire stand age was the primary control over vegetation recovery and the NDVI returned to pre-fire values within seven to 10 years of the fires. Droughts were shown to cause slight interruptions in recovery rates while fire severity had no discernable effect. Intra

  4. TGF-β Signaling in Dopaminergic Neurons Regulates Dendritic Growth, Excitatory-Inhibitory Synaptic Balance, and Reversal Learning

    Directory of Open Access Journals (Sweden)

    Sarah X. Luo

    2016-12-01

    Full Text Available Neural circuits involving midbrain dopaminergic (DA neurons regulate reward and goal-directed behaviors. Although local GABAergic input is known to modulate DA circuits, the mechanism that controls excitatory/inhibitory synaptic balance in DA neurons remains unclear. Here, we show that DA neurons use autocrine transforming growth factor β (TGF-β signaling to promote the growth of axons and dendrites. Surprisingly, removing TGF-β type II receptor in DA neurons also disrupts the balance in TGF-β1 expression in DA neurons and neighboring GABAergic neurons, which increases inhibitory input, reduces excitatory synaptic input, and alters phasic firing patterns in DA neurons. Mice lacking TGF-β signaling in DA neurons are hyperactive and exhibit inflexibility in relinquishing learned behaviors and re-establishing new stimulus-reward associations. These results support a role for TGF-β in regulating the delicate balance of excitatory/inhibitory synaptic input in local microcircuits involving DA and GABAergic neurons and its potential contributions to neuropsychiatric disorders.

  5. Numerical Studies on Heat Release Rate in Room Fire on Liquid Fuel under Different Ventilation Factors

    Directory of Open Access Journals (Sweden)

    N. Cai

    2012-01-01

    Full Text Available Heat release rate (HRR of the design fire is the most important parameter in assessing building fire hazards. However, HRR in room fire was only studied by computational fluid dynamics (CFD in most of the projects determining fire safety provisions by performance-based design. In contrast to ten years ago, officers in the Far East are now having better knowledge of CFD. Two common questions are raised on CFD-predicted results on describing free boundaries; and on computing grid size. In this work, predicting HRR by the CFD model was justified with experimental room pool fire data reported earlier. The software fire dynamics simulator (FDS version 5 was selected as the CFD simulation tool. Prescribed input heating rate based on the experimental results was used with the liquid fuel model in FDS. Five different free boundary conditions were investigated to predict HRR. Grid sensitivity study was carried out using one stretched mesh and multiple uniform meshes with different grid sizes. As it is difficult to have the entire set of CFD predicted results agreed with experiments, macroscopic flow parameters on the mass flow rate through door opening predicted by CFD were also justified by another four conditions with different ventilation factors.

  6. Chaos in integrate-and-fire dynamical systems

    International Nuclear Information System (INIS)

    Coombes, S.

    2000-01-01

    Integrate-and-fire (IF) mechanisms are often studied within the context of neural dynamics. From a mathematical perspective they represent a minimal yet biologically realistic model of a spiking neuron. The non-smooth nature of the dynamics leads to extremely rich spike train behavior capable of explaining a variety of biological phenomenon including phase-locked states, mode-locking, bursting and pattern formation. The conditions under which chaotic spike trains may be generated in synaptically interacting networks of neural oscillators is an important open question. Using techniques originally introduced for the study of impact oscillators we develop the notion of a Liapunov exponent for IF systems. In the strong coupling regime a network may undergo a discrete Turing-Hopf bifurcation of the firing times from a synchronous state to a state with periodic or quasiperiodic variations of the interspike intervals on closed orbits. Away from the bifurcation point these invariant circles may break up. We establish numerically that in this case the largest IF Liapunov exponent becomes positive. Hence, one route to chaos in networks of synaptically coupled IF neurons is via the breakup of invariant circles

  7. A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability.

    Directory of Open Access Journals (Sweden)

    Bronac Flanagan

    2018-04-01

    Full Text Available The ability of astrocytes to rapidly clear synaptic glutamate and purposefully release the excitatory transmitter is critical in the functioning of synapses and neuronal circuits. Dysfunctions of these homeostatic functions have been implicated in the pathology of brain disorders such as mesial temporal lobe epilepsy. However, the reasons for these dysfunctions are not clear from experimental data and computational models have been developed to provide further understanding of the implications of glutamate clearance from the extracellular space, as a result of EAAT2 downregulation: although they only partially account for the glutamate clearance process. In this work, we develop an explicit model of the astrocytic glutamate transporters, providing a more complete description of the glutamate chemical potential across the astrocytic membrane and its contribution to glutamate transporter driving force based on thermodynamic principles and experimental data. Analysis of our model demonstrates that increased astrocytic glutamate content due to glutamine synthetase downregulation also results in increased postsynaptic quantal size due to gliotransmission. Moreover, the proposed model demonstrates that increased astrocytic glutamate could prolong the time course of glutamate in the synaptic cleft and enhances astrocyte-induced slow inward currents, causing a disruption to the clarity of synaptic signalling and the occurrence of intervals of higher frequency postsynaptic firing. Overall, our work distilled the necessity of a low astrocytic glutamate concentration for reliable synaptic transmission of information and the possible implications of enhanced glutamate levels as in epilepsy.

  8. Neuromodulation, development and synaptic plasticity.

    Science.gov (United States)

    Foehring, R C; Lorenzon, N M

    1999-03-01

    We discuss parallels in the mechanisms underlying use-dependent synaptic plasticity during development and long-term potentiation (LTP) and long-term depression (LTD) in neocortical synapses. Neuromodulators, such as norepinephrine, serotonin, and acetylcholine have also been implicated in regulating both developmental plasticity and LTP/LTD. There are many potential levels of interaction between neuromodulators and plasticity. Ion channels are substrates for modulation in many cell types. We discuss examples of modulation of voltage-gated Ca2+ channels and Ca(2+)-dependent K+ channels and the consequences for neocortical pyramidal cell firing behaviour. At the time when developmental plasticity is most evident in rat cortex, the substrate for modulation is changing as the densities and relative proportions of various ion channels types are altered during ontogeny. We discuss examples of changes in K+ and Ca2+ channels and the consequence for modulation of neuronal activity.

  9. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity

    KAUST Repository

    Orlando, Marta

    2017-10-17

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  10. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity

    KAUST Repository

    Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea

    2017-01-01

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  11. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity.

    Science.gov (United States)

    Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea

    2017-10-23

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABA A Receptors (GABA A Rs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABA A R clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABA A R clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  12. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    Directory of Open Access Journals (Sweden)

    Ronald Fischer

    Full Text Available How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers, low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers and spectators (unrelated/unknown to the fire-walkers. We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual.

  13. Firing properties of identified interneuron populations in the mammalian hindlimb central pattern generator

    DEFF Research Database (Denmark)

    Butt, S. J B; Harris-Warrick, Ronald M.; Kiehn, Ole

    2002-01-01

    a heterogenous population with neurons that fired in all phases of the locomotor cycle and exhibited varying degrees of rhythmicity, from strongly rhythmic to nonrhythmic. Among the rhythmic, putative CPG dCINs were populations that fired inphase with the ipsilateral or with the contralateral L2 locomotorlike......, with little direct contribution from the intrinsic pacemaker hyperpolarization-activated inward current. For both ipsilaterally and contralaterally firing dCINs the dominant synaptic drive was in-phase with the ipsilateral L2 motor activity. This study provides the first characterization of putative CPG...

  14. Real-time relationship between PKA biochemical signal network dynamics and increased action potential firing rate in heart pacemaker cells

    Science.gov (United States)

    Yaniv, Yael; Ganesan, Ambhighainath; Yang, Dongmei; Ziman, Bruce D.; Lyashkov, Alexey E.; Levchenko, Andre; Zhang, Jin; Lakatta, Edward G.

    2015-01-01

    cAMP-PKA protein kinase is a key nodal signaling pathway that regulates a wide range of heart pacemaker cell functions. These functions are predicted to be involved in regulation of spontaneous action potential (AP) generation of these cells. Here we investigate if the kinetics and stoichiometry of increase in PKA activity match the increase in AP firing rate in response to β-adrenergic receptor (β-AR) stimulation or phosphodiesterase (PDE) inhibition, that alter the AP firing rate of heart sinoatrial pacemaker cells. In cultured adult rabbit pacemaker cells infected with an adenovirous expressing the FRET sensor AKAR3, the EC50 in response to graded increases in the intensity of β-AR stimulation (by Isoproterenol) the magnitude of the increases in PKA activity and the spontaneous AP firing rate were similar (0.4±0.1nM vs. 0.6±0.15nM, respectively). Moreover, the kinetics (t1/2) of the increases in PKA activity and spontaneous AP firing rate in response to β-AR stimulation or PDE inhibition were tightly linked. We characterized the system rate-limiting biochemical reactions by integrating these experimentally derived data into mechanistic-computational model. Model simulations predicted that phospholamban phosphorylation is a potent target of the increase in PKA activity that links to increase in spontaneous AP firing rate. In summary, the kinetics and stoichiometry of increases in PKA activity in response to a physiological (β-AR stimulation) or pharmacological (PDE inhibitor) stimuli match those of changes in the AP firing rate. Thus Ca2+-cAMP/PKA-dependent phosphorylation limits the rate and magnitude of increase in spontaneous AP firing rate. PMID:26241846

  15. Influence of heating rate and temperature firing on the properties of bodies of red ceramic

    International Nuclear Information System (INIS)

    Silva, B.J. da; Goncalves, W.P.; Cartaxo, J.M.; Macedo, R.S.; Neves, G.A.; Santana, L.N.L.; Menezes, R.R.

    2011-01-01

    In the red ceramic industry, the firing is one of the main stages of the production process. There are two heating rates prevailing at this stage: the slow (traditional ceramics) and fast. The slow rate more used in Brazil, is considered delayed. This study aims to evaluate the influence of particle size and chemical composition of three mixture of clay, used in the manufacture of red ceramic products and to study the influence of the firing temperature on their technological properties. When subjected to heating rates slow and fast. Initially, the mixtures were characterized subsequently were extruded, dried and subjected to firing at temperatures of 900 and 1000 ° C with heating rates of 5, 20 and 30 °C/min. The results indicated that the chemical composition and particle size influenced significantly the technological properties and that the bodies obtained with the paste that had lower levels of flux showed better stability. (author)

  16. Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat

    Science.gov (United States)

    Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.; Feridun Turkman, K.

    2018-02-01

    We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological factors by means of the Canadian Fire Weather Index (FWI) and is estimated using a daily model based on a generalized Pareto distribution. Five classes of fire danger are then associated with daily probability estimated by the daily model. The model is calibrated using 13 years of data (2004-2016) and validated against the period of January-September 2017. Results obtained show that about 72 % of events releasing daily energy above 10 000 GJ belong to the extreme class of fire danger, a considerably high fraction that is more than 1.5 times the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS) or the Fire Risk Map (FRM) product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.

  17. Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat

    Directory of Open Access Journals (Sweden)

    M. M. Pinto

    2018-02-01

    Full Text Available We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF and the European Centre for Medium-Range Weather Forecasts (ECMWF. Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological factors by means of the Canadian Fire Weather Index (FWI and is estimated using a daily model based on a generalized Pareto distribution. Five classes of fire danger are then associated with daily probability estimated by the daily model. The model is calibrated using 13 years of data (2004–2016 and validated against the period of January–September 2017. Results obtained show that about 72 % of events releasing daily energy above 10 000 GJ belong to the extreme class of fire danger, a considerably high fraction that is more than 1.5 times the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS or the Fire Risk Map (FRM product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.

  18. Synaptic electronics: materials, devices and applications.

    Science.gov (United States)

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  19. Synaptic electronics: materials, devices and applications

    International Nuclear Information System (INIS)

    Kuzum, Duygu; Yu, Shimeng; Philip Wong, H-S

    2013-01-01

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented. (topical review)

  20. Banach Synaptic Algebras

    Science.gov (United States)

    Foulis, David J.; Pulmannov, Sylvia

    2018-04-01

    Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.

  1. Synaptic theory of Replicator-like melioration

    Directory of Open Access Journals (Sweden)

    Yonatan Loewenstein

    2010-06-01

    Full Text Available According to the theory of Melioration, organisms in repeated choice settings shift their choice preference in favor of the alternative that provides the highest return. The goal of this paper is to explain how this learning behavior can emerge from microscopic changes in the efficacies of synapses, in the context of two-alternative repeated-choice experiment. I consider a large family of synaptic plasticity rules in which changes in synaptic efficacies are driven by the covariance between reward and neural activity. I construct a general framework that predicts the learning dynamics of any decision-making neural network that implements this synaptic plasticity rule and show that melioration naturally emerges in such networks. Moreover, the resultant learning dynamics follows the Replicator equation which is commonly used to phenomenologically describe changes in behavior in operant conditioning experiments. Several examples demonstrate how the learning rate of the network is affected by its properties and by the specifics of the plasticity rule. These results help bridge the gap between cellular physiology and learning behavior.

  2. Effects of gamma-aminobutyric acid (GABA) on synaptogenesis and synaptic function

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Elster, L

    1998-01-01

    The correct establishment and function of synapses depend on a variety of factors, such as guidance of pre- and postsynaptic neurons as well as receptor development and localization. gamma-Aminobutyric acid (GABA) has a pronounced effect on these events and elicits differentiation of neurons......; that is, GABA acts as a trophic signal. Accordingly, activating preexisting GABA receptors, a trophic GABA signal enhances the growth rate of neuronal processes, facilitates synapse formation, and promotes synthesis of specific proteins. Transcription and de novo synthesis are initiated by the GABA signal......, but the intracellular link between GABA receptor activation and DNA transcription is largely unknown. GABA also controls the induction and development of functionally and pharmacologically different GABAA receptor subtypes. The induced receptors are likely to be inserted only into the synaptic membrane domain. However...

  3. A 3D vision system for the measurement of the rate of spread and the height of fire fronts

    International Nuclear Information System (INIS)

    Rossi, L; Molinier, T; Tison, Y; Pieri, A; Akhloufi, M

    2010-01-01

    This paper presents a three-dimensional (3D) vision-based instrumentation system for the measurement of the rate of spread and height of complex fire fronts. The proposed 3D imaging system is simple, does not require calibration, is easily deployable in indoor and outdoor environments and can handle complex fire fronts. New approaches for measuring the position, the rate of spread and the height of a fire front during its propagation are introduced. Experiments were conducted in indoor and outdoor conditions with fires of different scales. Linear and curvilinear fire front spreading were studied. The obtained results are promising and show the interesting performance of the proposed system in operational and complex fire scenarios

  4. Symmetry breaking in two interacting populations of quadratic integrate-and-fire neurons

    Science.gov (United States)

    Ratas, Irmantas; Pyragas, Kestutis

    2017-10-01

    We analyze the dynamics of two coupled identical populations of quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The populations are heterogeneous; they include both inherently spiking and excitable neurons. The coupling within and between the populations is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neuron's firing rates and the mean membrane potentials in both populations. The reduced equations are exact in the infinite-size limit. The bifurcation analysis of the equations reveals a rich variety of nonsymmetric patterns, including a splay state, antiphase periodic oscillations, chimera-like states, and chaotic oscillations as well as bistabilities between various states. The validity of the reduced equations is confirmed by direct numerical simulations of the finite-size networks.

  5. Finite post synaptic potentials cause a fast neuronal response

    Directory of Open Access Journals (Sweden)

    Moritz eHelias

    2011-02-01

    Full Text Available A generic property of the communication between neurons is the exchange of pulsesat discrete time points, the action potentials. However, the prevalenttheory of spiking neuronal networks of integrate-and-fire model neuronsrelies on two assumptions: the superposition of many afferent synapticimpulses is approximated by Gaussian white noise, equivalent to avanishing magnitude of the synaptic impulses, and the transfer oftime varying signals by neurons is assessable by linearization. Goingbeyond both approximations, we find that in the presence of synapticimpulses the response to transient inputs differs qualitatively fromprevious predictions. It is instantaneous rather than exhibiting low-passcharacteristics, depends non-linearly on the amplitude of the impulse,is asymmetric for excitation and inhibition and is promoted by a characteristiclevel of synaptic background noise. These findings resolve contradictionsbetween the earlier theory and experimental observations. Here wereview the recent theoretical progress that enabled these insights.We explain why the membrane potential near threshold is sensitiveto properties of the afferent noise and show how this shapes the neuralresponse. A further extension of the theory to time evolution in discretesteps quantifies simulation artifacts and yields improved methodsto cross check results.

  6. Use of the pre-dose technique for environmental dosimetry. [Thermoluminescence from fired bricks or tiles

    Energy Technology Data Exchange (ETDEWEB)

    Bailiff, I K [Durham Univ. (UK). TL Lab.; Haskell, E H [Utah Univ., Salt Lake City (USA). Radiobiology Div.

    1984-01-01

    The pre-dose effect associated with the 110/sup 0/C TL peak of quartz is the basis of a dating technique developed at the Oxford Laboratory, and now in use to date pottery and brick at the Durham Laboratory. Recently its use for the measurement of fallout gamma dose has been initiated at the University of Utah. Using quartz extracted from fired brick, the technique has been shown to be sufficiently sensitive to measure doses in the region of 10 mGy. The complexities of the technique encountered during dating in its upper range (approx. 5 Gy) are equally apparent in its lower range (10 mGy). With a common interest in the pre-dose technique, the research that is being performed to apply the technique through its full range in environmental dosimetry is discussed.

  7. Developmental profiles of the intrinsic properties and synaptic function of auditory neurons in preterm and term baboon neonates.

    Science.gov (United States)

    Kim, Sei Eun; Lee, Seul Yi; Blanco, Cynthia L; Kim, Jun Hee

    2014-08-20

    The human fetus starts to hear and undergoes major developmental changes in the auditory system during the third trimester of pregnancy. Although there are significant data regarding development of the auditory system in rodents, changes in intrinsic properties and synaptic function of auditory neurons in developing primate brain at hearing onset are poorly understood. We performed whole-cell patch-clamp recordings of principal neurons in the medial nucleus of trapezoid body (MNTB) in preterm and term baboon brainstem slices to study the structural and functional maturation of auditory synapses. Each MNTB principal neuron received an excitatory input from a single calyx of Held terminal, and this one-to-one pattern of innervation was already formed in preterm baboons delivered at 67% of normal gestation. There was no difference in frequency or amplitude of spontaneous excitatory postsynaptic synaptic currents between preterm and term MNTB neurons. In contrast, the frequency of spontaneous GABA(A)/glycine receptor-mediated inhibitory postsynaptic synaptic currents, which were prevalent in preterm MNTB neurons, was significantly reduced in term MNTB neurons. Preterm MNTB neurons had a higher input resistance than term neurons and fired in bursts, whereas term MNTB neurons fired a single action potential in response to suprathreshold current injection. The maturation of intrinsic properties and dominance of excitatory inputs in the primate MNTB allow it to take on its mature role as a fast and reliable relay synapse. Copyright © 2014 the authors 0270-6474/14/3411399-06$15.00/0.

  8. EDITORIAL: Synaptic electronics Synaptic electronics

    Science.gov (United States)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  9. Effects of Barbell Deadlift Training on Submaximal Motor Unit Firing Rates for the Vastus Lateralis and Rectus Femoris

    Science.gov (United States)

    Stock, Matt S.; Thompson, Brennan J.

    2014-01-01

    Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age  = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units. PMID:25531294

  10. Effects of barbell deadlift training on submaximal motor unit firing rates for the vastus lateralis and rectus femoris.

    Directory of Open Access Journals (Sweden)

    Matt S Stock

    Full Text Available Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC assessment. Twenty-four previously untrained men (mean age  = 24 years were randomly assigned to training (n = 15 or control (n = 9 groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC and y-intercepts (pps of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70, but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units.

  11. Effects of barbell deadlift training on submaximal motor unit firing rates for the vastus lateralis and rectus femoris.

    Science.gov (United States)

    Stock, Matt S; Thompson, Brennan J

    2014-01-01

    Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age  = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units.

  12. The chronotron: a neuron that learns to fire temporally precise spike patterns.

    Directory of Open Access Journals (Sweden)

    Răzvan V Florian

    Full Text Available In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons, one that provides high memory capacity (E-learning, and one that has a higher biological plausibility (I-learning. With I-learning, the neuron learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons' performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding information in the phase of firing relative to a background rhythm.

  13. Serotonin Regulates the Firing of Principal Cells of the Subiculum by Inhibiting a T-type Ca(2+) Current

    DEFF Research Database (Denmark)

    Petersen, Anders V; Jensen, Camilla S; Crépel, Valérie

    2017-01-01

    The subiculum is the main output of the hippocampal formation. A high proportion of its principal neurons fire action potentials in bursts triggered by the activation of low threshold calcium currents. This firing pattern promotes synaptic release and regulates spike-timing-dependent plasticity. ...... of epileptiform discharges induced in in vitro models for temporal lobe epilepsy (TLE)....

  14. Synaptic heterogeneity and stimulus-induced modulation of depression in central synapses.

    Science.gov (United States)

    Hunter, J D; Milton, J G

    2001-08-01

    Short-term plasticity is a pervasive feature of synapses. Synapses exhibit many forms of plasticity operating over a range of time scales. We develop an optimization method that allows rapid characterization of synapses with multiple time scales of facilitation and depression. Investigation of paired neurons that are postsynaptic to the same identified interneuron in the buccal ganglion of Aplysia reveals that the responses of the two neurons differ in the magnitude of synaptic depression. Also, for single neurons, prolonged stimulation of the presynaptic neuron causes stimulus-induced increases in the early phase of synaptic depression. These observations can be described by a model that incorporates two availability factors, e.g., depletable vesicle pools or desensitizing receptor populations, with different time courses of recovery, and a single facilitation component. This model accurately predicts the responses to novel stimuli. The source of synaptic heterogeneity is identified with variations in the relative sizes of the two availability factors, and the stimulus-induced decrement in the early synaptic response is explained by a slowing of the recovery rate of one of the availability factors. The synaptic heterogeneity and stimulus-induced modifications in synaptic depression observed here emphasize that synaptic efficacy depends on both the individual properties of synapses and their past history.

  15. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?

    Science.gov (United States)

    Baker, William L

    2015-01-01

    Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984-2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984-2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046-2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in

  16. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby (Texas-MED)

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  17. Statistical theory of synaptic connectivity in the neocortex

    Science.gov (United States)

    Escobar, Gina

    Learning and long-term memory rely on plasticity of neural circuits. In adult cerebral cortex plasticity can be mediated by modulation of existing synapses and structural reorganization of circuits through growth and retraction of dendritic spines. In the first part of this thesis, we describe a theoretical framework for the analysis of spine remodeling plasticity. New synaptic contacts appear in the neuropil where gaps between axonal and dendritic branches can be bridged by dendritic spines. Such sites are termed potential synapses. We derive expressions for the densities of potential synapses in the neuropil. We calculate the ratio of actual to potential synapses, called the connectivity fraction, and use it to find the number of structurally different circuits attainable with spine remodeling. These parameters are calculated in four systems: mouse occipital cortex, rat hippocampal area CA1, monkey primary visual (V1), and human temporal cortex. The neurogeometric results indicate that a dendritic spine can choose among an average of 4-7 potential targets in rodents, while in primates it can choose from 10-20 potential targets. The potential of the neuropil to undergo circuit remodeling is found to be highest in rat CA1 (4.9-6.0 nats/mum 3) and lowest in monkey V1 (0.9-1.0 nats/mum3). We evaluate the lower bound of neuron selectivity in the choice of synaptic partners and find that post-synaptic excitatory neurons in rodents make synaptic contacts with more than 21-30% of pre-synaptic axons encountered with new spine growth. Primate neurons appear to be more selective, making synaptic connections with more than 7-15% of encountered axons. Another plasticity mechanism is included in the second part of this work: long-term potentiation and depression of excitatory synaptic connections. Because synaptic strength is correlated with the size of the synapse, the former can be inferred from the distribution of spine head volumes. To this end we analyze and compare 166

  18. Using the web tool GIS SPIDER for monitoring the state of forest cover in the pre- and post-fire periods

    Directory of Open Access Journals (Sweden)

    J. Villodre

    2013-09-01

    Full Text Available Pre- and post-wildland fire management will be improved by the knowledge of the stand conditions. Different types of quantitative and qualitative data, such as water stress, cover temperature or the Normalized Difference Vegetation Index (NDVI are critical for understanding fire risk, fire severity or vegetation recovering after the fire. Even though, there is a lack of easy accessible measurements about these topics. In this vein, remote sensing provides suitable information and in a global view about the canopy state: water balance, fire risk or the primary productivity estimation. It allows the monitoring of large areas in different temporal and spatial resolutions and with low cost. The output information can be disseminated using tools such as web-GIS based systems. In this paper the SPIDER (System of Participatory Information, Decision support, and Expert knowledge for irrigation and River basin water Management tool is presented, which allows monitoring canopy conditions before and after fires in a simple way and friendly environment. SPIDER is also able to analyse environmental conditions in almost the entire Iberian Peninsula, with a temporal resolution that ranges among 1 to 16 days. Images of NDVI, surface temperatures and water stress are based on MODIS aqua satellite images.Results show the potential of the system to the analysis of vegetation anomalies, monitoring of water stress, fire severity or the vegetation recovery after fire, in a dynamic way. The database allows multitemporal analysis of different parameters related to the state of the vegetation, growing, water deficit and fire severity degree. Further analysis of these data provides relevant information such as drought effects or catastrophic events in the vegetation.

  19. Monitoring the Effects of Forest Restoration Treatments on Post-Fire Vegetation Recovery with MODIS Multitemporal Data

    Directory of Open Access Journals (Sweden)

    Willem J. D. van Leeuwen

    2008-03-01

    Full Text Available This study examines how satellite based time-series vegetation greenness data and phenological measurements can be used to monitor and quantify vegetation recovery after wildfire disturbances and examine how pre-fire fuel reduction restoration treatments impact fire severity and impact vegetation recovery trajectories. Pairs of wildfire affected sites and a nearby unburned reference site were chosen to measure the post-disturbance recovery in relation to climate variation. All site pairs were chosen in forested uplands in Arizona and were restricted to the area of the Rodeo-Chediski fire that occurred in 2002. Fuel reduction treatments were performed in 1999 and 2001. The inter-annual and seasonal vegetation dynamics before, during, and after wildfire events can be monitored using a time series of biweekly composited MODIS NDVI (Moderate Resolution Imaging Spectroradiometer - Normalized Difference Vegetation Index data. Time series analysis methods included difference metrics, smoothing filters, and fitting functions that were applied to extract seasonal and inter-annual change and phenological metrics from the NDVI time series data from 2000 to 2007. Pre- and post-fire Landsat data were used to compute the Normalized Burn Ratio (NBR and examine burn severity at the selected sites. The phenological metrics (pheno-metrics included the timing and greenness (i.e. NDVI for the start, peak and end of the growing season as well as proxy measures for the rate of green-up and senescence and the annual vegetation productivity. Pre-fire fuel reduction treatments resulted in lower fire severity, which reduced annual productivity much less than untreated areas within the Rodeo-Chediski fire perimeter. The seasonal metrics were shown to be useful for estimating the rate of post-fire disturbance recovery and the timing of phenological greenness phases. The use of satellite time series NDVI data and derived pheno-metrics show potential for tracking vegetation

  20. Long-Term Synaptic Plasticity Emulated in Modified Graphene Oxide Electrolyte Gated IZO-Based Thin-Film Transistors.

    Science.gov (United States)

    Yang, Yi; Wen, Juan; Guo, Liqiang; Wan, Xiang; Du, Peifu; Feng, Ping; Shi, Yi; Wan, Qing

    2016-11-09

    Emulating neural behaviors at the synaptic level is of great significance for building neuromorphic computational systems and realizing artificial intelligence. Here, oxide-based electric double-layer (EDL) thin-film transistors were fabricated using 3-triethoxysilylpropylamine modified graphene oxide (KH550-GO) electrolyte as the gate dielectrics. Resulting from the EDL effect and electrochemical doping between mobile protons and the indium-zinc-oxide channel layer, long-term synaptic plasticity was emulated in our devices. Synaptic functions including long-term memory, synaptic temporal integration, and dynamic filters were successfully reproduced. In particular, spike rate-dependent plasticity (SRDP), one of the basic learning rules of long-term plasticity in the neural network where the synaptic weight changes according to the rate of presynaptic spikes, was emulated in our devices. Our results may facilitate the development of neuromorphic computational systems.

  1. An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management

    Science.gov (United States)

    Christopher D. O' Connor; David E. Calkin; Matthew P. Thompson

    2017-01-01

    During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions,...

  2. Peatland Fire Danger Rating According to Weeds Characteristic Under Jelutung (Dyera Polyphylla Plantation

    Directory of Open Access Journals (Sweden)

    Acep Akbar

    2016-04-01

    Full Text Available Besides to be a competitor plant, weeds could act as the potential fuel under plantation forest in peatland. Characteristic of weeds in relation to peat swamp forest fire danger was studied under jelutung  plantation in Central Kalimantan. The research was aimed at exploring the potency of weed to become one of the fire danger rating indicators. By using vegetation analyses method in sampling unit of weeds population, results showed that three plantation area have different dominance weed species. The weeds species that could be the indicator of height fire risk according to water content and percentage of weed mortality during the drought, height potency of greenhouse gas emmision, culm height, and chemical material content that easy burned in this study were Imperata cylindrica, Stenochlaena polustris, Cyclosorus aridus, and Nephrolepis exaltata. While, the presence of Glichenia linearis, Melastoma malabatracum, Ficus grossulariodes, Saurophus androginus, Spatoglathis plicata,Himenocalis littoralis, Leptaspis urcheolata, Cyperus rotundus, and Amaranthus spinosa were not indicated high fire risk.

  3. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    Science.gov (United States)

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range. Copyright © 2016 the American Physiological Society.

  4. Strategies for preventing invasive plant outbreaks after prescribed fire in ponderosa pine forest

    Science.gov (United States)

    Symstad, Amy J.; Newton, Wesley E.; Swanson, Daniel J.

    2014-01-01

    Land managers use prescribed fire to return a vital process to fire-adapted ecosystems, restore forest structure from a state altered by long-term fire suppression, and reduce wildfire intensity. However, fire often produces favorable conditions for invasive plant species, particularly if it is intense enough to reveal bare mineral soil and open previously closed canopies. Understanding the environmental or fire characteristics that explain post-fire invasive plant abundance would aid managers in efficiently finding and quickly responding to fire-caused infestations. To that end, we used an information-theoretic model-selection approach to assess the relative importance of abiotic environmental characteristics (topoedaphic position, distance from roads), pre-and post-fire biotic environmental characteristics (forest structure, understory vegetation, fuel load), and prescribed fire severity (measured in four different ways) in explaining invasive plant cover in ponderosa pine forest in South Dakota’s Black Hills. Environmental characteristics (distance from roads and post-fire forest structure) alone provided the most explanation of variation (26%) in post-fire cover of Verbascum thapsus (common mullein), but a combination of surface fire severity and environmental characteristics (pre-fire forest structure and distance from roads) explained 36–39% of the variation in post-fire cover of Cirsium arvense (Canada thistle) and all invasives together. For four species and all invasives together, their pre-fire cover explained more variation (26–82%) in post-fire cover than environmental and fire characteristics did, suggesting one strategy for reducing post-fire invasive outbreaks may be to find and control invasives before the fire. Finding them may be difficult, however, since pre-fire environmental characteristics explained only 20% of variation in pre-fire total invasive cover, and less for individual species. Thus, moderating fire intensity or targeting areas

  5. Reduced firing rates of high threshold motor units in response to eccentric overload.

    Science.gov (United States)

    Balshaw, Tom G; Pahar, Madhu; Chesham, Ross; Macgregor, Lewis J; Hunter, Angus M

    2017-01-01

    Acute responses of motor units were investigated during submaximal voluntary isometric tasks following eccentric overload (EO) and constant load (CL) knee extension resistance exercise. Ten healthy resistance-trained participants performed four experimental test sessions separated by 5 days over a 20 day period. Two sessions involved constant load and the other two used eccentric overload. EO and CL used both sessions for different target knee eccentric extension phases; one at 2 sec and the other at 4 sec. Maximal voluntary contractions (MVC) and isometric trapezoid efforts for 10 sec at 70% MVC were completed before and after each intervention and decomposed electromyography was used to measure motor unit firing rate. The firing rate of later recruited, high-threshold motor units declined following the 2-sec EO but was maintained following 2sec CL (P motor units were maintained for both loading types following 4-sec extension phases. MVC and rate of force development where maintained following both EO and CL and 2 and 4 sec phases. This study demonstrates a slower firing rate of high-threshold motor units following fast eccentric overload while MVC was maintained. This suggests that there was a neuromuscular stimulus without cost to the force-generating capacity of the knee extensors. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  6. Perinatal fluoxetine effects on social play, the HPA system, and hippocampal plasticity in pre-adolescent male and female rats: Interactions with pre-gestational maternal stress.

    Science.gov (United States)

    Gemmel, Mary; Hazlett, Mariah; Bögi, Eszter; De Lacalle, Sonsoles; Hill, Lesley A; Kokras, Nikolaos; Hammond, Geoffrey L; Dalla, Christina; Charlier, Thierry D; Pawluski, Jodi L

    2017-10-01

    Selective serotonin reuptake inhibitor medications (SSRIs) are the first lines of treatment for maternal affective disorders, and are prescribed to up to 10% of pregnant women. Concern has been raised about how perinatal exposure to these medications affect offspring neurobehavioral outcomes, particularly those related to social interactions, as recent research has reported conflicting results related to autism spectrum disorder (ASD) risk in children prenatally exposed to SSRIs. Therefore, the aim of this work was to investigate the effects of perinatal exposure to the SSRI fluoxetine on social play behaviors and the hypothalamic pituitary adrenal system, using a model of pre-gestational maternal stress. We also investigated synaptic proteins in the CA2, CA3, and dentate gyrus of the hippocampus, as well as number of immature neurons in the granule cell layer, as both measures of plasticity in the hippocampus have been linked to social behaviors. In pre-adolescent male and female Sprague-Dawley rat offspring, main findings show that perinatal fluoxetine prevents the negative effect of maternal stress on sibling play behavior. However, perinatal fluoxetine increased social aggressive play with a novel conspecific in both sexes and decreased time grooming a novel conspecific in males only. Perinatal fluoxetine also increased serum corticosteroid binding globulin levels, 5-HT levels in the hippocampus, and pre-synaptic density assessed via synaptophysin in the dentate gyrus. Social interaction was significantly correlated with changes in plasticity in the CA2 region of the hippocampus. Pre-gestational maternal stress exposure resulted in significantly decreased rates of hippocampal neurogenesis and synaptophysin density in the dentate gyrus of pre-adolescent males, but not females. Together, these results further characterize the role of perinatal SSRIs, maternal stress prior to conception, and sex/gender on developing social behaviors and related plasticity in the

  7. Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact

    Directory of Open Access Journals (Sweden)

    Andreas eKlaus

    2011-07-01

    Full Text Available In the striatal microcircuit, fast-spiking (FS interneurons have an important role in mediating inhibition onto neighboring medium spiny (MS projection neurons. In this study, we combined computational modeling with in vitro and in vivo electrophysiological measurements to investigate FS cells in terms of their discharge properties and their synaptic efficacies onto MS neurons. In vivo firing of striatal FS interneurons is characterized by a high firing variability. It is not known, however, if this variability results from the input that FS cells receive, or if it is promoted by the stuttering spike behavior of these neurons. Both our model and measurements in vitro show that FS neurons that exhibit random stuttering discharge in response to steady depolarization, do not show the typical stuttering behavior when they receive fluctuating input. Importantly, our model predicts that electrically coupled FS cells show substantial spike synchronization only when they are in the stuttering regime. Therefore, together with the lack of synchronized firing of striatal FS interneurons that has been reported in vivo, these results suggest that neighboring FS neurons are not in the stuttering regime simultaneously and that in vivo FS firing variability is more likely determined by the input fluctuations. Furthermore, the variability in FS firing is translated to variability in the postsynaptic amplitudes in MS neurons due to the strong synaptic depression of the FS-to-MS synapse. Our results support the idea that these synapses operate over a wide range from strongly depressed to almost fully recovered. The strong inhibitory effects that FS cells can impose on their postsynaptic targets, and the fact that the FS-to-MS synapse model showed substantial depression over extended periods of time might indicate the importance of cooperative effects of multiple presynaptic FS interneurons and the precise orchestration of their activity.

  8. How to reduce your fire insurance rates

    Science.gov (United States)

    Dubain, M.

    1971-01-01

    Construction procedures and utilization of materials to reduce the cost of insuring large buildings against losses from fire are discussed. Examples of good and bad techniques in building construction and fire safety management are provided. The inadequacies of building codes and the hazards resulting from improper construction are examined.

  9. Fire and Deforestation Dynamics in South America over the Past 50 Years

    Science.gov (United States)

    van Marle, M.; Field, R. D.; van der Werf, G.

    2015-12-01

    Fires play an important role in the Earth system and are one of the major sources of greenhouse gases and aerosols. Satellites have been key to understand their spatial and temporal variability in space and time, but the most frequently used satellite datasets start only in 1995. There are still large uncertainties about the frequency and intensity of fires in the pre-satellite time period, especially in regions with active deforestation, which may have changed dramatically in intensity in the past decades influencing fire dynamics. We used two datasets to extend the record of fires and deforestation in the Amazon region back in time: 1) annual forest loss rates starting in 1990 derived from Vegetation Optical Depth (VOD), which is a satellite-based vegetation product that can be used as proxy for forest loss, and 2) horizontal visibility as proxy for fire emissions, reported by weather stations and airports in the Amazon, which started around 1940, and having widespread coverage since 1973. We show that these datasets overlap with fire emission estimates from the Global Fire Emissions Database (GFED) enabling us to estimate fire emissions over the last 50 years. We will discuss how fires have varied over time in this region with globally significant emissions, how droughts have influenced fire activity and deforestation rates, and what the impact is of land-use change caused by fire on emissions in the Amazon region.

  10. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland

    Directory of Open Access Journals (Sweden)

    Tineke Kraaij

    2017-08-01

    Full Text Available Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed ‘recruitment’. Factors (in decreasing order of importance affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire and fire return interval (>7 years had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2–3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting

  11. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland.

    Science.gov (United States)

    Kraaij, Tineke; Cowling, Richard M; van Wilgen, Brian W; Rikhotso, Diba R; Difford, Mark

    2017-01-01

    Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae) which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa) where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents) of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire) fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed 'recruitment'). Factors (in decreasing order of importance) affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire) and fire return interval (>7 years) had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2-3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting that proteoid

  12. ASSESSMENT OF FIRE SEVERITY AND POST-FIRE REGENERATION BASED ON TOPOGRAPHICAL FEATURES USING MULTITEMPORAL LANDSAT IMAGERY: A CASE STUDY in MERSIN, TURKEY

    Directory of Open Access Journals (Sweden)

    H. Tonbul

    2016-06-01

    Full Text Available Satellite based remote sensing technologies and Geographical Information Systems (GIS present operable and cost-effective solutions for mapping fires and observing post-fire regeneration. Mersin-Gülnar wildfire, which occurred in August 2008 in Turkey, selected as study site. The fire was devastating and continued 55 days. According to Turkish General Directorate of Forestry reports, it caused two deaths and left hundreds of people homeless. The aim of this study is to determine the fire severity and monitor vegetation recovery with using multitemporal spectral indices together with topographical factors. Pre-fire and post-fire Landsat ETM+ images were obtained to assess the related fire severity with using the widely-used differenced Normalized Burn Ratio (dNBR algorithm. Also, the Normalized Vegetation Index (NDVI and Soil Adjusted Vegetation Index (SAVI were used to determine vegetation regeneration dynamics for a period of six consecutive years. In addition, aspect image derived from Aster Global Digital Elevation Model (GDEM were used to determine vegetation regeneration regime of the study area. Results showed that 5388 ha of area burned with moderate to high severity damage. As expected, NDVI and SAVI values distinctly declined post-fire and then began to increase in the coming years. Mean NDVI value of burned area changed from 0.48 to 0.17 due to wildfire, whilst mean SAVI value changed from 0.61 to 0.26. Re-growth rates calculated for NDVI and SAVI 57% and 63% respectively, six years after the fire. Moreover, NDVI and SAVI were estimated six consecutive year period by taking into consideration east, south, north and west facing slopes. Analysis showed that north-facing and east-facing slopes have higher regeneration rates in compared to other aspects. This study serves as a window to an understanding of the process of fire severity and vegetation regeneration that is vital in wildfire management systems.

  13. Assessment of Fire Severity and Post-Fire Regeneration Based on Topographical Features Using Multitemporal Landsat Imagery: a Case Study in Mersin, Turkey

    Science.gov (United States)

    Tonbul, H.; Kavzoglu, T.; Kaya, S.

    2016-06-01

    Satellite based remote sensing technologies and Geographical Information Systems (GIS) present operable and cost-effective solutions for mapping fires and observing post-fire regeneration. Mersin-Gülnar wildfire, which occurred in August 2008 in Turkey, selected as study site. The fire was devastating and continued 55 days. According to Turkish General Directorate of Forestry reports, it caused two deaths and left hundreds of people homeless. The aim of this study is to determine the fire severity and monitor vegetation recovery with using multitemporal spectral indices together with topographical factors. Pre-fire and post-fire Landsat ETM+ images were obtained to assess the related fire severity with using the widely-used differenced Normalized Burn Ratio (dNBR) algorithm. Also, the Normalized Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) were used to determine vegetation regeneration dynamics for a period of six consecutive years. In addition, aspect image derived from Aster Global Digital Elevation Model (GDEM) were used to determine vegetation regeneration regime of the study area. Results showed that 5388 ha of area burned with moderate to high severity damage. As expected, NDVI and SAVI values distinctly declined post-fire and then began to increase in the coming years. Mean NDVI value of burned area changed from 0.48 to 0.17 due to wildfire, whilst mean SAVI value changed from 0.61 to 0.26. Re-growth rates calculated for NDVI and SAVI 57% and 63% respectively, six years after the fire. Moreover, NDVI and SAVI were estimated six consecutive year period by taking into consideration east, south, north and west facing slopes. Analysis showed that north-facing and east-facing slopes have higher regeneration rates in compared to other aspects. This study serves as a window to an understanding of the process of fire severity and vegetation regeneration that is vital in wildfire management systems.

  14. Characterization and extraction of the synaptic apposition surface for synaptic geometry analysis

    Science.gov (United States)

    Morales, Juan; Rodríguez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Angel

    2013-01-01

    Geometrical features of chemical synapses are relevant to their function. Two critical components of the synaptic junction are the active zone (AZ) and the postsynaptic density (PSD), as they are related to the probability of synaptic release and the number of postsynaptic receptors, respectively. Morphological studies of these structures are greatly facilitated by the use of recent electron microscopy techniques, such as combined focused ion beam milling and scanning electron microscopy (FIB/SEM), and software tools that permit reconstruction of large numbers of synapses in three dimensions. Since the AZ and the PSD are in close apposition and have a similar surface area, they can be represented by a single surface—the synaptic apposition surface (SAS). We have developed an efficient computational technique to automatically extract this surface from synaptic junctions that have previously been three-dimensionally reconstructed from actual tissue samples imaged by automated FIB/SEM. Given its relationship with the release probability and the number of postsynaptic receptors, the surface area of the SAS is a functionally relevant measure of the size of a synapse that can complement other geometrical features like the volume of the reconstructed synaptic junction, the equivalent ellipsoid size and the Feret's diameter. PMID:23847474

  15. A fast 30 kV 5 kHz repetition rate resonant capacitor charger

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Huiskamp, T.; van Heesch, E.J.M.; Pemen, A.J.M.

    2016-01-01

    A novel circuit topology of a fast 30 kV resonant capacitor charger is presented in this paper. The charger is designed for high repetition rate spark gap based pulsed power modulators. A spark gap can fire spontaneously (pre-firing) during charging of a capacitor bank due to poor dielectric

  16. Pursuing the pre-combustion CCS route in oil refineries – The impact on fired heaters

    International Nuclear Information System (INIS)

    Weydahl, Torleif; Jamaluddin, Jamal; Seljeskog, Morten; Anantharaman, Rahul

    2013-01-01

    Highlights: ► The aim is to approach Carbon Capture and Storage (CCS) to refinery fired heaters. ► An identical simplified burner configuration is applied where refinery fuel is replaced with hydrogen. ► Initial simulations indicate that hydrogen replacement do not alter heater operation in a negative way. ► Despite the higher flame temperature in the hydrogen case, the NO x emissions are not higher. ► The prompt-NO mechanism contributes significantly in the refinery fuel case. -- Abstract: The work presented in this paper investigates the effect of replacing refinery fuel gas in the radiant section burners of a fired heater with hydrogen. The aim is to approach pre-combustion CCS to refinery fired heaters by identifying the impact on heat-, flow- and radiation distribution in the lower radiant section of the fired heater when simply switching refinery gas with hydrogen at equivalent power using the same burner geometrics. Additionally the formation of NO x is considered. The investigations are performed using a conventional Reynolds Average Navier Stokes (RANS), Computational Fluid Dynamics (CFD) approach using detailed reaction kinetics consisting of 325 elementary reactions and 53 species. Simplified and generalized furnace and burner geometries are used in the present work. The results show that approximately the same average wall heat flux density is achieved when the refinery fuel is replaced by hydrogen. However, the distribution of heat on the inner surfaces changes. The hydrogen case has, as expected, a higher flame temperature than the base case, nevertheless, the nitric oxide (NO x ) emissions are comparable to base case emissions. Several indications point in the direction of a significant contribution to the base case emissions from the less temperature dependent prompt-NO mechanism, which obviously is not contributing to the hydrogen case emissions.

  17. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  18. Compensating Level-Dependent Frequency Representation in Auditory Cortex by Synaptic Integration of Corticocortical Input.

    Directory of Open Access Journals (Sweden)

    Max F K Happel

    Full Text Available Robust perception of auditory objects over a large range of sound intensities is a fundamental feature of the auditory system. However, firing characteristics of single neurons across the entire auditory system, like the frequency tuning, can change significantly with stimulus intensity. Physiological correlates of level-constancy of auditory representations hence should be manifested on the level of larger neuronal assemblies or population patterns. In this study we have investigated how information of frequency and sound level is integrated on the circuit-level in the primary auditory cortex (AI of the Mongolian gerbil. We used a combination of pharmacological silencing of corticocortically relayed activity and laminar current source density (CSD analysis. Our data demonstrate that with increasing stimulus intensities progressively lower frequencies lead to the maximal impulse response within cortical input layers at a given cortical site inherited from thalamocortical synaptic inputs. We further identified a temporally precise intercolumnar synaptic convergence of early thalamocortical and horizontal corticocortical inputs. Later tone-evoked activity in upper layers showed a preservation of broad tonotopic tuning across sound levels without shifts towards lower frequencies. Synaptic integration within corticocortical circuits may hence contribute to a level-robust representation of auditory information on a neuronal population level in the auditory cortex.

  19. Determination by a CFD code of the heat release rate in a confined and mechanically-ventilated compartment fire

    International Nuclear Information System (INIS)

    Nasr, Ayoub

    2011-01-01

    For several years, many experimental/numerical research programs have been carried out at IRSN in order to provide sufficient data on the burning process and understand the behavior of a pool fire in a confined and mechanically ventilated compartment. Several experimental tests have shown that in some cases, the oxygen concentration in the local decreases then stabilizes until fire extinction. The fuel mass loss rate is instantaneously adjusted according to the ventilation in the local, which may leads to a lower fuel consumption rate as compared to that in free atmosphere. The fire duration is then 2 to 3 times greater than that obtained in free atmosphere, which may damages some specific safety equipment used to reduce the spread of fire between compartments such as fire doors. The objective of this work is to propose a theoretical approach that allows the determination of the burning rate of fuels for pool fires in a closed compartment. Fuel response to vitiated air as well as burning enhancement due to hot gases and confinement should be taken into account. Thus, a theoretical formulation, based on an energy balance equation at the pool fire surface, was developed and compared with the empirical correlation of Peatross and Beyler before being implemented in a CFD code 'ISIS', developed at IRSN and validated against PRISME fire test results. The main advantage of this global approach is that no assumptions were made on the relative importance of each mode of heat transfer from the flame. In fact, the convective and the radiant components of the heat flux from the flame to the fuel surface were determined taking into account the air vitiation effect. In addition to this theoretical approach, an experimental work was conducted at the Institut PPRIME to study heptane pool fires in a reduced-scale fire compartment, in the aim to investigate the effects of vitiated air on fire parameters. These results were used to validate the theoretical formulation developed

  20. Burst-time-dependent plasticity robustly guides ON/OFF segregation in the lateral geniculate nucleus.

    Directory of Open Access Journals (Sweden)

    Julijana Gjorgjieva

    2009-12-01

    Full Text Available Spontaneous retinal activity (known as "waves" remodels synaptic connectivity to the lateral geniculate nucleus (LGN during development. Analysis of retinal waves recorded with multielectrode arrays in mouse suggested that a cue for the segregation of functionally distinct (ON and OFF retinal ganglion cells (RGCs in the LGN may be a desynchronization in their firing, where ON cells precede OFF cells by one second. Using the recorded retinal waves as input, with two different modeling approaches we explore timing-based plasticity rules for the evolution of synaptic weights to identify key features underlying ON/OFF segregation. First, we analytically derive a linear model for the evolution of ON and OFF weights, to understand how synaptic plasticity rules extract input firing properties to guide segregation. Second, we simulate postsynaptic activity with a nonlinear integrate-and-fire model to compare findings with the linear model. We find that spike-time-dependent plasticity, which modifies synaptic weights based on millisecond-long timing and order of pre- and postsynaptic spikes, fails to segregate ON and OFF retinal inputs in the absence of normalization. Implementing homeostatic mechanisms results in segregation, but only with carefully-tuned parameters. Furthermore, extending spike integration timescales to match the second-long input correlation timescales always leads to ON segregation because ON cells fire before OFF cells. We show that burst-time-dependent plasticity can robustly guide ON/OFF segregation in the LGN without normalization, by integrating pre- and postsynaptic bursts irrespective of their firing order and over second-long timescales. We predict that an LGN neuron will become ON- or OFF-responsive based on a local competition of the firing patterns of neighboring RGCs connecting to it. Finally, we demonstrate consistency with ON/OFF segregation in ferret, despite differences in the firing properties of retinal waves. Our

  1. NFDRSPC: The National Fire-Danger Rating System on a Personal Computer

    Science.gov (United States)

    Bryan G. Donaldson; James T. Paul

    1990-01-01

    This user's guide is an introductory manual for using the 1988 version (Burgan 1988) of the National Fire-Danger Rating System on an IBM PC or compatible computer. NFDRSPC is a window-oriented, interactive computer program that processes observed and forecast weather with fuels data to produce NFDRS indices. Other program features include user-designed display...

  2. Fire characteristics associated with firefighter injury on large federal wildland fires.

    Science.gov (United States)

    Britton, Carla; Lynch, Charles F; Torner, James; Peek-Asa, Corinne

    2013-02-01

    Wildland fires present many injury hazards to firefighters. We estimate injury rates and identify fire-related factors associated with injury. Data from the National Interagency Fire Center from 2003 to 2007 provided the number of injuries in which the firefighter could not return to his or her job assignment, person-days worked, and fire characteristics (year, region, season, cause, fuel type, resistance to control, and structures destroyed). We assessed fire-level risk factors of having at least one reported injury using logistic regression. Negative binomial regression was used to examine incidence rate ratios associated with fire-level risk factors. Of 867 fires, 9.5% required the most complex management and 24.7% required the next-highest level of management. Fires most often occurred in the western United States (82.8%), during the summer (69.6%), caused by lightening (54.9%). Timber was the most frequent fuel source (40.2%). Peak incident management level, person-days of exposure, and the fire's resistance to control were significantly related to the odds of a fire having at least one reported injury. However, the most complex fires had a lower injury incidence rate than less complex fires. Although fire complexity and the number of firefighters were associated with the risk for at least one reported injury, the more experienced and specialized firefighting teams had lower injury incidence. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Object-based Forest Fire Analysis for Pedrógão Grande Fire Using Landsat 8 OLI and Sentinel-2A Imagery

    Science.gov (United States)

    Tonbul, H.; Kavzoglu, T.

    2017-12-01

    Forest fires are among the most important natural disasters with the damage to the natural habitat and human-life. Mapping damaged forest fires is crucial for assessing ecological effects caused by fire, monitoring land cover changes and modeling atmospheric and climatic effects of fire. In this context, satellite data provides a great advantage to users by providing a rapid process of detecting burning areas and determining the severity of fire damage. Especially, Mediterranean ecosystems countries sets the suitable conditions for the forest fires. In this study, the determination of burnt areas of forest fire in Pedrógão Grande region of Portugal occurred in June 2017 was carried out using Landsat 8 OLI and Sentinel-2A satellite images. The Pedrógão Grande fire was one of the largest fires in Portugal, more than 60 people was killed and thousands of hectares were ravaged. In this study, four pairs of pre-fire and post-fire top of atmosphere (TOA) and atmospherically corrected images were utilized. The red and near infrared (NIR) spectral bands of pre-fire and post-fire images were stacked and multiresolution segmentation algorithm was applied. In the segmentation processes, the image objects were generated with estimated optimum homogeneity criteria. Using eCognition software, rule sets have been created to distinguish unburned areas from burned areas. In constructing the rule sets, NDVI threshold values were determined pre- and post-fire and areas where vegetation loss was detected using the NDVI difference image. The results showed that both satellite images yielded successful results for burned area discrimination with a very high degree of consistency in terms of spatial overlap and total burned area (over 93%). Object based image analysis (OBIA) was found highly effective in delineation of burnt areas.

  4. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    Science.gov (United States)

    Meredith, Rhiannon M.; van Ooyen, Arjen

    2012-01-01

    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  5. The relationship of motor unit size, firing rate and force.

    Science.gov (United States)

    Conwit, R A; Stashuk, D; Tracy, B; McHugh, M; Brown, W F; Metter, E J

    1999-07-01

    Using a clinical electromyographic (EMG) protocol, motor units were sampled from the quadriceps femoris during isometric contractions at fixed force levels to examine how average motor unit size and firing rate relate to force generation. Mean firing rates (mFRs) and sizes (mean surface-detected motor unit action potential (mS-MUAP) area) of samples of active motor units were assessed at various force levels in 79 subjects. MS-MUAP size increased linearly with increased force generation, while mFR remained relatively constant up to 30% of a maximal force and increased appreciably only at higher force levels. A relationship was found between muscle force and mS-MUAP area (r2 = 0.67), mFR (r2 = 0.38), and the product of mS-MUAP area and mFR (mS-MUAP x mFR) (r2 = 0.70). The results support the hypothesis that motor units are recruited in an orderly manner during forceful contractions, and that in large muscles only at higher levels of contraction ( > 30% MVC) do mFRs increase appreciably. MS-MUAP and mFR can be assessed using clinical EMG techniques and they may provide a physiological basis for analyzing the role of motor units during muscle force generation.

  6. Frequency dependent changes in NMDAR-dependent synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Arvind eKumar

    2011-09-01

    Full Text Available The NMDAR-dependent synaptic plasticity is thought to mediate several forms of learning, and can be induced by spike trains containing a small number of spikes occurring with varying rates and timing, as well as with oscillations. We computed the influence of these variables on the plasticity induced at a single NMDAR containing synapse using a reduced model that was analytically tractable, and these findings were confirmed using detailed, multi-compartment model. In addition to explaining diverse experimental results about the rate and timing dependence of synaptic plasticity, the model made several novel and testable predictions. We found that there was a preferred frequency for inducing long-term potentiation (LTP such that higher frequency stimuli induced lesser LTP, decreasing as 1/f when the number of spikes in the stimulus was kept fixed. Among other things, the preferred frequency for inducing LTP varied as a function of the distance of the synapse from the soma. In fact, same stimulation frequencies could induce LTP or LTD depending on the dendritic location of the synapse. Next, we found that rhythmic stimuli induced greater plasticity then irregular stimuli. Furthermore, brief bursts of spikes significantly expanded the timing dependence of plasticity. Finally, we found that in the ~5-15Hz frequency range both rate- and timing-dependent plasticity mechanisms work synergistically to render the synaptic plasticity most sensitive to spike-timing. These findings provide computational evidence that oscillations can have a profound influence on the plasticity of an NMDAR-dependent synapse, and show a novel role for the dendritic morphology in this process.

  7. 13 CFR 123.406 - What is the interest rate on a pre-disaster mitigation loan?

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false What is the interest rate on a pre... ADMINISTRATION DISASTER LOAN PROGRAM Pre-Disaster Mitigation Loans § 123.406 What is the interest rate on a pre-disaster mitigation loan? The interest rate on a pre-disaster mitigation loan will be fixed at 4 percent...

  8. Mathematical analysis and algorithms for efficiently and accurately implementing stochastic simulations of short-term synaptic depression and facilitation

    Directory of Open Access Journals (Sweden)

    Mark D McDonnell

    2013-05-01

    Full Text Available The release of neurotransmitter vesicles after arrival of a pre-synaptic action potential at cortical synapses is known to be a stochastic process, as is the availability of vesicles for release. These processes are known to also depend on the recent history of action-potential arrivals, and this can be described in terms of time-varying probabilities of vesicle release. Mathematical models of such synaptic dynamics frequently are based only on the mean number of vesicles released by each pre-synaptic action potential, since if it is assumed there are sufficiently many vesicle sites, then variance is small. However, it has been shown recently that variance across sites can be significant for neuron and network dynamics, and this suggests the potential importance of studying short-term plasticity using simulations that do generate trial-to-trial variability. Therefore, in this paper we study several well-known conceptual models for stochastic availability and release. We state explicitly the random variables that these models describe and propose efficient algorithms for accurately implementing stochastic simulations of these random variables in software or hardware. Our results are complemented by mathematical analysis and statement of pseudo-code algorithms.

  9. Synaptic consolidation across multiple timescales

    Directory of Open Access Journals (Sweden)

    Lorric Ziegler

    2014-03-01

    Full Text Available The brain is bombarded with a continuous stream of sensory events, but retains only a small subset in memory. The selectivity of memory formation prevents our memory from being overloaded with irrelevant items that would rapidly bring the brain to its storage limit; moreover, selectivity also prevents overwriting previously formed memories with new ones. Memory formation in the hippocampus, as well as in other brain regions, is thought to be linked to changes in the synaptic connections between neurons. In this view, sensory events imprint traces at the level of synapses that reflect potential memory items. The question of memory selectivity can therefore be reformulated as follows: what are the reasons and conditions that some synaptic traces fade away whereas others are consolidated and persist? Experimentally, changes in synaptic strength induced by 'Hebbian' protocols fade away over a few hours (early long-term potentiation or e-LTP, unless these changes are consolidated. The experiments and conceptual theory of synaptic tagging and capture (STC provide a mechanistic explanation for the processes involved in consolidation. This theory suggests that the initial trace of synaptic plasticity sets a tag at the synapse, which then serves as a marker for potential consolidation of the changes in synaptic efficacy. The actual consolidation processes, transforming e-LTP into late LTP (l-LTP, require the capture of plasticity-related proteins (PRP. We translate the above conceptual model into a compact computational model that accounts for a wealth of in vitro data including experiments on cross-tagging, tag-resetting and depotentiation. A central ingredient is that synaptic traces are described with several variables that evolve on different time scales. Consolidation requires the transmission of information from a 'fast' synaptic trace to a 'slow' one through a 'write' process, including the formation of tags and the production of PRP for the

  10. Predicting wildfire ignitions, escapes, and large fire activity using Predictive Service’s 7-Day Fire Potential Outlook in the western USA

    Science.gov (United States)

    Karin L. Riley; Crystal Stonesifer; Haiganoush Preisler; Dave Calkin

    2014-01-01

    Can fire potential forecasts assist with pre-positioning of fire suppression resources, which could result in a cost savings to the United States government? Here, we present a preliminary assessment of the 7-Day Fire Potential Outlook forecasts made by the Predictive Services program. We utilized historical fire occurrence data and archived forecasts to assess how...

  11. Rich spectrum of neural field dynamics in the presence of short-term synaptic depression

    Science.gov (United States)

    Wang, He; Lam, Kin; Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2015-09-01

    In continuous attractor neural networks (CANNs), spatially continuous information such as orientation, head direction, and spatial location is represented by Gaussian-like tuning curves that can be displaced continuously in the space of the preferred stimuli of the neurons. We investigate how short-term synaptic depression (STD) can reshape the intrinsic dynamics of the CANN model and its responses to a single static input. In particular, CANNs with STD can support various complex firing patterns and chaotic behaviors. These chaotic behaviors have the potential to encode various stimuli in the neuronal system.

  12. Drosophila-Cdh1 (Rap/Fzr) a regulatory subunit of APC/C is required for synaptic morphology, synaptic transmission and locomotion.

    Science.gov (United States)

    Wise, Alexandria; Schatoff, Emma; Flores, Julian; Hua, Shao-Ying; Ueda, Atsushi; Wu, Chun-Fang; Venkatesh, Tadmiri

    2013-11-01

    The assembly of functional synapses requires the orchestration of the synthesis and degradation of a multitude of proteins. Protein degradation and modification by the conserved ubiquitination pathway has emerged as a key cellular regulatory mechanism during nervous system development and function (Kwabe and Brose, 2011). The anaphase promoting complex/cyclosome (APC/C) is a multi-subunit ubiquitin ligase complex primarily characterized for its role in the regulation of mitosis (Peters, 2002). In recent years, a role for APC/C in nervous system development and function has been rapidly emerging (Stegmuller and Bonni, 2005; Li et al., 2008). In the mammalian central nervous system the activator subunit, APC/C-Cdh1, has been shown to be a regulator of axon growth and dendrite morphogenesis (Konishi et al., 2004). In the Drosophila peripheral nervous system (PNS), APC2, a ligase subunit of the APC/C complex has been shown to regulate synaptic bouton size and activity (van Roessel et al., 2004). To investigate the role of APC/C-Cdh1 at the synapse we examined loss-of-function mutants of Rap/Fzr (Retina aberrant in pattern/Fizzy related), a Drosophila homolog of the mammalian Cdh1 during the development of the larval neuromuscular junction in Drosophila. Our cell biological, ultrastructural, electrophysiological, and behavioral data showed that rap/fzr loss-of-function mutations lead to changes in synaptic structure and function as well as locomotion defects. Data presented here show changes in size and morphology of synaptic boutons, and, muscle tissue organization. Electrophysiological experiments show that loss-of-function mutants exhibit increased frequency of spontaneous miniature synaptic potentials, indicating a higher rate of spontaneous synaptic vesicle fusion events. In addition, larval locomotion and peristaltic movement were also impaired. These findings suggest a role for Drosophila APC/C-Cdh1 mediated ubiquitination in regulating synaptic morphology

  13. Fires in rooms containing electrical components - incident planning, fire fighting tactics, risks; Braender i driftrum - Insatsplaner, slaeckteknik, risker

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Tommy; Ottosson, Jan; Lindskog, BertiI; Soederquist Bende, Evy; Eriksson, Fredrik; Haffling, Stefan

    2006-12-15

    On July 1, 2005 a fire occurred within an electrical switch room at Forsmark Nuclear Power Plant. At the evaluation of the incident it was identified that the pre-fire plans did not give sufficient information in order to make the appropriate decisions. Questions raised based on the incident are how decisions are made and orders are delegated with respect to the incident command, which fire fighting tactic should be used, which types of extinguishing media should be used, what are the risks with respect to safety of staff and safety of the reactor. Lessons learned from the fire at Forsmark were that pre-incident planning was at hand but the information was not sufficient to make the correct initial decisions that might be critical for life and property. One of the most crucial ingredients in all safety related work is to utilize previous experience in order to maintain a high degree of safety. Lessons learnt are also the foundation on which the ability to construct or create strong barriers against a certain fault phenomena, fault mechanism or type of initial event. In the case of nuclear processes, fire is considered as an important and critical initial event which has to be recognized in a number of cases in order to maintain a safe process. The likelihood for a fire to represent an initial event should not be underestimated and can therefore not be neglected, probabilistically or deterministically, unless the inherent safety systems can not control the event in an acceptable manner. Regardless of safety measures and lessons learnt from previous experiences in the construction and the operation of the nuclear facility, fires can occur. Previous experiences point out that process system, e.g. systems that are part of the turbine, are more frequently subject to fire incidents compared to ordinary safety systems. Fires in electrical components, often electrical cabinets, can be difficult to handle and to extinguish quickly. This report presents the background work

  14. In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Harry Pantazopoulos

    2016-01-01

    Full Text Available Rapidly emerging evidence implicates perineuronal nets (PNNs and extracellular matrix (ECM molecules that compose or interact with PNNs, in the pathophysiology of several psychiatric disorders. Studies on schizophrenia, autism spectrum disorders, mood disorders, Alzheimer’s disease, and epilepsy point to the involvement of ECM molecules such as chondroitin sulfate proteoglycans, Reelin, and matrix metalloproteases, as well as their cell surface receptors. In many of these disorders, PNN abnormalities have also been reported. In the context of the “quadripartite” synapse concept, that is, the functional unit composed of the pre- and postsynaptic terminals, glial processes, and ECM, and of the role that PNNs and ECM molecules play in regulating synaptic functions and plasticity, these findings resonate with one of the most well-replicated aspects of the pathology of psychiatric disorders, that is, synaptic abnormalities. Here we review the evidence for PNN/ECM-related pathology in these disorders, with particular emphasis on schizophrenia, and discuss the hypothesis that such pathology may significantly contribute to synaptic dysfunction.

  15. A Review of Fire Interactions and Mass Fires

    Directory of Open Access Journals (Sweden)

    Mark A. Finney

    2011-01-01

    Full Text Available The character of a wildland fire can change dramatically in the presence of another nearby fire. Understanding and predicting the changes in behavior due to fire-fire interactions cannot only be life-saving to those on the ground, but also be used to better control a prescribed fire to meet objectives. In discontinuous fuel types, such interactions may elicit fire spread where none otherwise existed. Fire-fire interactions occur naturally when spot fires start ahead of the main fire and when separate fire events converge in one location. Interactions can be created intentionally during prescribed fires by using spatial ignition patterns. Mass fires are among the most extreme examples of interactive behavior. This paper presents a review of the detailed effects of fire-fire interaction in terms of merging or coalescence criteria, burning rates, flame dimensions, flame temperature, indraft velocity, pulsation, and convection column dynamics. Though relevant in many situations, these changes in fire behavior have yet to be included in any operational-fire models or decision support systems.

  16. Synaptic protein changes after a chronic period of sensorimotor perturbation in adult rats: a potential role of phosphorylation/O-GlcNAcylation interplay.

    Science.gov (United States)

    Fourneau, Julie; Canu, Marie-Hélène; Cieniewski-Bernard, Caroline; Bastide, Bruno; Dupont, Erwan

    2018-05-28

    In human, a chronic sensorimotor perturbation (SMP) through prolonged body immobilization alters motor task performance through a combination of peripheral and central factors. Studies performed on a rat model of SMP have shown biomolecular changes and a reorganization of sensorimotor cortex through events such as morphological modifications of dendritic spines (number, length, functionality). However, underlying mechanisms are still unclear. It is well known that phosphorylation regulates a wide field of synaptic activity leading to neuroplasticity. Another post-translational modification that interplays with phosphorylation is O-GlcNAcylation. This atypical glycosylation, reversible and dynamic, is involved in essential cellular and physiological processes such as synaptic activity, neuronal morphogenesis, learning and memory. We examined potential roles of phosphorylation/O-GlcNAcylation interplay in synaptic plasticity within rat sensorimotor cortex after a SMP period. For this purpose, sensorimotor cortex synaptosomes were separated by sucrose gradient, in order to isolate a subcellular compartment enriched in proteins involved in synaptic functions. A period of SMP induced plastic changes at the pre- and postsynaptic levels, characterized by a reduction of phosphorylation (synapsin1, AMPAR GluA2) and expression (synaptophysin, PSD-95, AMPAR GluA2) of synaptic proteins, as well as a decrease in MAPK/ERK42 activation. Expression levels of OGT/OGA enzymes was unchanged but we observed a specific reduction of synapsin1 O-GlcNAcylation in sensorimotor cortex synaptosomes. The synergistic regulation of synapsin1 phosphorylation/O-GlcNAcylation could affect presynaptic neurotransmitter release. Associated with other pre- and postsynaptic changes, synaptic efficacy could be impaired in somatosensory cortex of SMP rat. Thus, synapsin1 O-GlcNAcylation/phosphorylation interplay also appears to be involved in this synaptic plasticity by finely regulating neural activity

  17. Mean composite fire severity metrics computed with Google Earth Engine offer improved accuracy and expanded mapping potential

    Science.gov (United States)

    Parks, Sean; Holsinger, Lisa M.; Voss, Morgan; Loehman, Rachel A.; Robinson, Nathaniel P.

    2018-01-01

    Landsat-based fire severity datasets are an invaluable resource for monitoring and research purposes. These gridded fire severity datasets are generally produced with pre-and post-fire imagery to estimate the degree of fire-induced ecological change. Here, we introduce methods to produce three Landsat-based fire severity metrics using the Google Earth Engine (GEE) platform: the delta normalized burn ratio (dNBR), the relativized delta normalized burn ratio (RdNBR), and the relativized burn ratio (RBR). Our methods do not rely on time-consuming a priori scene selection and instead use a mean compositing approach in which all valid pixels (e.g. cloud-free) over a pre-specified date range (pre- and post-fire) are stacked and the mean value for each pixel over each stack is used to produce the resulting fire severity datasets. This approach demonstrates that fire severity datasets can be produced with relative ease and speed compared the standard approach in which one pre-fire and post-fire scene are judiciously identified and used to produce fire severity datasets. We also validate the GEE-derived fire severity metrics using field-based fire severity plots for 18 fires in the western US. These validations are compared to Landsat-based fire severity datasets produced using only one pre- and post-fire scene, which has been the standard approach in producing such datasets since their inception. Results indicate that the GEE-derived fire severity datasets show improved validation statistics compared to parallel versions in which only one pre-fire and post-fire scene are used. We provide code and a sample geospatial fire history layer to produce dNBR, RdNBR, and RBR for the 18 fires we evaluated. Although our approach requires that a geospatial fire history layer (i.e. fire perimeters) be produced independently and prior to applying our methods, we suggest our GEE methodology can reasonably be implemented on hundreds to thousands of fires, thereby increasing opportunities

  18. proBDNF Negatively Regulates Neuronal Remodeling, Synaptic Transmission, and Synaptic Plasticity in Hippocampus

    Directory of Open Access Journals (Sweden)

    Jianmin Yang

    2014-05-01

    Full Text Available Experience-dependent plasticity shapes postnatal development of neural circuits, but the mechanisms that refine dendritic arbors, remodel spines, and impair synaptic activity are poorly understood. Mature brain-derived neurotrophic factor (BDNF modulates neuronal morphology and synaptic plasticity, including long-term potentiation (LTP via TrkB activation. BDNF is initially translated as proBDNF, which binds p75NTR. In vitro, recombinant proBDNF modulates neuronal structure and alters hippocampal long-term plasticity, but the actions of endogenously expressed proBDNF are unclear. Therefore, we generated a cleavage-resistant probdnf knockin mouse. Our results demonstrate that proBDNF negatively regulates hippocampal dendritic complexity and spine density through p75NTR. Hippocampal slices from probdnf mice exhibit depressed synaptic transmission, impaired LTP, and enhanced long-term depression (LTD in area CA1. These results suggest that proBDNF acts in vivo as a biologically active factor that regulates hippocampal structure, synaptic transmission, and plasticity, effects that are distinct from those of mature BDNF.

  19. Synaptic remodeling, synaptic growth and the storage of long-term memory in Aplysia.

    Science.gov (United States)

    Bailey, Craig H; Kandel, Eric R

    2008-01-01

    Synaptic remodeling and synaptic growth accompany various forms of long-term memory. Storage of the long-term memory for sensitization of the gill-withdrawal reflex in Aplysia has been extensively studied in this respect and is associated with the growth of new synapses by the sensory neurons onto their postsynaptic target neurons. Recent time-lapse imaging studies of living sensory-to-motor neuron synapses in culture have monitored both functional and structural changes simultaneously so as to follow remodeling and growth at the same specific synaptic connections continuously over time and to examine the functional contribution of these learning-related structural changes to the different time-dependent phases of memory storage. Insights provided by these studies suggest the synaptic differentiation and growth induced by learning in the mature nervous system are highly dynamic and often rapid processes that can recruit both molecules and mechanisms used for de novo synapse formation during development.

  20. Poisson-Like Spiking in Circuits with Probabilistic Synapses

    Science.gov (United States)

    Moreno-Bote, Rubén

    2014-01-01

    Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705

  1. Emulating short-term synaptic dynamics with memristive devices

    Science.gov (United States)

    Berdan, Radu; Vasilaki, Eleni; Khiat, Ali; Indiveri, Giacomo; Serb, Alexandru; Prodromakis, Themistoklis

    2016-01-01

    Neuromorphic architectures offer great promise for achieving computation capacities beyond conventional Von Neumann machines. The essential elements for achieving this vision are highly scalable synaptic mimics that do not undermine biological fidelity. Here we demonstrate that single solid-state TiO2 memristors can exhibit non-associative plasticity phenomena observed in biological synapses, supported by their metastable memory state transition properties. We show that, contrary to conventional uses of solid-state memory, the existence of rate-limiting volatility is a key feature for capturing short-term synaptic dynamics. We also show how the temporal dynamics of our prototypes can be exploited to implement spatio-temporal computation, demonstrating the memristors full potential for building biophysically realistic neural processing systems.

  2. Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes

    Science.gov (United States)

    Jamie Lydersen; Malcolm North; Brandon M. Collins

    2014-01-01

    The 2013 Rim Fire, originating on Forest Service land, burned into old-growth forests within Yosemite National Park with relatively restored frequent-fire regimes (¡Ý2 predominantly low and moderate severity burns within the last 35 years). Forest structure and fuels data were collected in the field 3-4 years before the fire, providing a rare chance to use pre-existing...

  3. Corrosion and Materials Performance in biomass fired and co-fired power plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH; Biede, O

    2003-01-01

    not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10...... and 20% energy basis) with coal has shown corrosion rates lower than those in straw-fired plants. With both 10 and 20% straw, no chlorine corrosion was seen. This paper will describe the results from in situ investigations undertaken in Denmark on high temperature corrosion in biomass fired plants....... Results from 100% straw-firing, woodchip and co-firing of straw with coal will be reported. The corrosion mechanisms observed are summarized and the corrosion rates for 18-8 type stainless steels are compared....

  4. Post-fire regeneration in a Mediterranean pine forest with historically low fire frequency

    Science.gov (United States)

    Buhk, Constanze; Götzenberger, Lars; Wesche, Karsten; Gómez, Pedro Sánchez; Hensen, Isabell

    2006-11-01

    Species of Mediterranean vegetation are known to regenerate directly after fire. The phenomenon of autosuccession (direct regeneration) has been found to be often combined with an increase of species richness during the first years after fire due to the high abundance of short-lived herbaceous plants facilitated by plentiful nutrients and light. The high degree of vegetation resilience, which is expressed in terms of autosuccession, has been explained by the selective pressure of fire in historic times. According to existing palaeoecological data, however, the Pinus halepensis forests in the Ricote Mountains (Province of Murcia, SE Spain) did not experience substantial fire impact before the presence of man nor are they especially fire-prone today. Therefore, we studied post-fire regeneration to find out if direct succession is present or if species from pre-fire vegetation are absent during the post-fire regeneration stages. Patterns of succession were deduced from observations made in sample plots on sites of a known regeneration age as well as in adjacent unburnt areas. The results of the vegetation analyses, including a Detrended Correspondence Analysis, indicate that Pinus halepensis forest regeneration after fire resembles autosuccession. As regards the presence of woody species, there is a high percentage similarity on north (83%) and south (70%) facing slopes during the first year after fire vs. reference areas which is due, for example, to direct regeneration of the resprouting Quercus coccifera or seeders like Pinus halepensis or Fumana laevipes. However, if herbaceous species are included in the comparison, the similarity on north-facing sites decreases (to 53%) with the presence of additional species, mainly ruderals like Anagallis arvensis or Reseda phyteuma, and even woody species on the burnt plots. This effect indicates "enhanced autosuccession", which was not found on south-facing sites where overall species richness was very high irrespective of

  5. Synaptic Wnt/GSK3β Signaling Hub in Autism

    Science.gov (United States)

    Caracci, Mario O.; Ávila, Miguel E.; De Ferrari, Giancarlo V.

    2016-01-01

    Hundreds of genes have been associated with autism spectrum disorders (ASDs) and the interaction of weak and de novo variants derive from distinct autistic phenotypes thus making up the “spectrum.” The convergence of these variants in networks of genes associated with synaptic function warrants the study of cell signaling pathways involved in the regulation of the synapse. The Wnt/β-catenin signaling pathway plays a central role in the development and regulation of the central nervous system and several genes belonging to the cascade have been genetically associated with ASDs. In the present paper, we review basic information regarding the role of Wnt/β-catenin signaling in excitatory/inhibitory balance (E/I balance) through the regulation of pre- and postsynaptic compartments. Furthermore, we integrate information supporting the role of the glycogen synthase kinase 3β (GSK3β) in the onset/development of ASDs through direct modulation of Wnt/β-catenin signaling. Finally, given GSK3β activity as key modulator of synaptic plasticity, we explore the potential of this kinase as a therapeutic target for ASD. PMID:26881141

  6. Fire, humans and landscape. Is there a connection?

    Science.gov (United States)

    Valese, Eva; Ascoli, Davide; Conedera, Marco; Held, Alex

    2013-04-01

    Fire evolved on the earth under the direct influence of climate and the accumulation of burnable biomass at various times and spatial scales. As a result, fire regimes depend not only on climatic and biological factors, but also greatly reflect the cultural background of how people do manage ecosystems and fire. A new awareness among scientists and managers has been rising about the ecological role of fire and the necessity to understand its past natural and cultural dynamics in different ecosystems, in order to preserve present ecosystem functionality and minimize management costs and negative impacts. As a consequence we assisted in the last decades to a general shift from the fire control to the fire management approach, where fire prevention, fire danger rating, fire ecology, fire pre-suppression and suppression strategies are fully integrated in the landscape management. Nowadays, a large number of authors recognize that a total suppression strategy, as the one adopted during last decades, leads to a fire paradox: the more we fight for putting out all fires, the more extreme events occur and cause long term damages. The aim of this review is to provide a state of art about the connection between fire, humans and landscape, along time and space. Negative and positive impacts on ecosystem services and values are put in evidence, as well as their incidence on human aptitude to fire use as to fire suppression. In order to capture a consistent fragment of fire history, palaeofires and related palynological studies are considered. They enable a valuable, even if partial, look at the millenary fire regime. Actual strategies and future directions are described in order to show what are the alternatives for living with fire, since removing completely this disturbance from earth is not a option, nor feasible neither advisable. Examples from the world, in particular from the Alps and the Mediterranean basin, are shown for better illustrating the signature of

  7. Reduced frequency and severity of residential fires following delivery of fire prevention education by on-duty fire fighters: cluster randomized controlled study.

    Science.gov (United States)

    Clare, Joseph; Garis, Len; Plecas, Darryl; Jennings, Charles

    2012-04-01

    In 2008, Surrey Fire Services, British Columbia, commenced a firefighter-delivered, door-to-door fire-prevention education and smoke alarm examination/installation initiative with the intention of reducing the frequency and severity of residential structure fires in the City of Surrey. High-risk zones within the city were identified and 18,473 home visits were undertaken across seven temporal delivery cohorts (13.8% of non-apartment dwellings in the city). The frequency and severity of fires pre- and post- the home visit intervention was examined in comparison to randomized high-risk cluster controls. Overall, the frequency of fires was found to have reduced in the city overall, however, the reduction in the intervention cohorts was significantly larger than for controls. Furthermore, when fires did occur within the intervention cohorts, smoke detectors were activated more frequently and the fires were confined to the object of origin more often post-home visits. No equivalent pattern was observed for the cluster control. On-duty fire fighters can reduce the frequency and severity of residential fires through targeted, door-to-door distribution of fire prevention education in high-risk areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. 40 CFR 30.18 - Hotel and motel fire safety.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Hotel and motel fire safety. 30.18... EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements § 30.18 Hotel and motel fire safety. The Hotel and Motel Fire Safety Act of 1990 (Public Law 101-391) establishes a number of fire...

  9. Motor unit recruitment and firing rate in medial gastrocnemius muscles during external perturbations in standing in humans.

    Science.gov (United States)

    Pollock, C L; Ivanova, T D; Hunt, M A; Garland, S J

    2014-10-01

    There is limited investigation of the interaction between motor unit recruitment and rate coding for modulating force during standing or responding to external perturbations. Fifty-seven motor units were recorded from the medial gastrocnemius muscle with intramuscular electrodes in response to external perturbations in standing. Anteriorly directed perturbations were generated by applying loads in 0.45-kg increments at the pelvis every 25-40 s until 2.25 kg was maintained. Motor unit firing rate was calculated for the initial recruitment load and all subsequent loads during two epochs: 1) dynamic response to perturbation directly following each load drop and 2) maintenance of steady state between perturbations. Joint kinematics and surface electromyography (EMG) from lower extremities and force platform measurements were assessed. Application of the external loads resulted in a significant forward progression of the anterior-posterior center of pressure (AP COP) that was accompanied by modest changes in joint angles (recruitment, motor unit firing rate immediately after the load drop was significantly lower than during subsequent load drops or during the steady state at the same load. There was a modest increase in motor unit firing rate immediately after the load drop on subsequent load drops associated with regaining balance. There was no effect of maintaining balance with increased load and forward progression of the AP COP on steady-state motor unit firing rate. The medial gastrocnemius utilized primarily motor unit recruitment to achieve the increased levels of activation necessary to maintain standing in the presence of external loads. Copyright © 2014 the American Physiological Society.

  10. Chemical and dispersal characteristics of particulate emissions from forest fires in Siberia

    Science.gov (United States)

    Y. N. Samsonov; V. A. Ivanov; D. J. McRae; S. P. Baker

    2012-01-01

    Approximately 20 experimental fires were conducted on forest plots of 1-4 ha each in 2000-07 in two types of boreal forests in central Siberia, and 18 on 6 x 12-m plots in 2008-10. These experiments were designed to mimic wildfires under similar burning conditions. The fires were conducted in prescribed conditions including full documentation on pre-fire weather, pre-...

  11. Modulation of synaptic plasticity by stress hormone associates with plastic alteration of synaptic NMDA receptor in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Yiu Chung Tse

    Full Text Available Stress exerts a profound impact on learning and memory, in part, through the actions of adrenal corticosterone (CORT on synaptic plasticity, a cellular model of learning and memory. Increasing findings suggest that CORT exerts its impact on synaptic plasticity by altering the functional properties of glutamate receptors, which include changes in the motility and function of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of glutamate receptor (AMPAR that are responsible for the expression of synaptic plasticity. Here we provide evidence that CORT could also regulate synaptic plasticity by modulating the function of synaptic N-methyl-D-aspartate receptors (NMDARs, which mediate the induction of synaptic plasticity. We found that stress level CORT applied to adult rat hippocampal slices potentiated evoked NMDAR-mediated synaptic responses within 30 min. Surprisingly, following this fast-onset change, we observed a slow-onset (>1 hour after termination of CORT exposure increase in synaptic expression of GluN2A-containing NMDARs. To investigate the consequences of the distinct fast- and slow-onset modulation of NMDARs for synaptic plasticity, we examined the formation of long-term potentiation (LTP and long-term depression (LTD within relevant time windows. Paralleling the increased NMDAR function, both LTP and LTD were facilitated during CORT treatment. However, 1-2 hours after CORT treatment when synaptic expression of GluN2A-containing NMDARs is increased, bidirectional plasticity was no longer facilitated. Our findings reveal the remarkable plasticity of NMDARs in the adult hippocampus in response to CORT. CORT-mediated slow-onset increase in GluN2A in hippocampal synapses could be a homeostatic mechanism to normalize synaptic plasticity following fast-onset stress-induced facilitation.

  12. Impaired development of cortico-striatal synaptic connectivity in a cell culture model of Huntington's disease.

    Science.gov (United States)

    Buren, Caodu; Parsons, Matthew P; Smith-Dijak, Amy; Raymond, Lynn A

    2016-03-01

    Huntington's disease (HD) is a genetically inherited neurodegenerative disease caused by a mutation in the gene encoding the huntingtin protein. This mutation results in progressive cell death that is particularly striking in the striatum. Recent evidence indicates that early HD is initially a disease of the synapse, in which subtle alterations in synaptic neurotransmission, particularly at the cortico-striatal (C-S) synapse, can be detected well in advance of cell death. Here, we used a cell culture model in which striatal neurons are co-cultured with cortical neurons, and monitored the development of C-S connectivity up to 21days in vitro (DIV) in cells cultured from either the YAC128 mouse model of HD or the background strain, FVB/N (wild-type; WT) mice. Our data demonstrate that while C-S connectivity in WT co-cultures develops rapidly and continuously from DIV 7 to 21, YAC128 C-S connectivity shows no significant growth from DIV 14 onward. Morphological and electrophysiological data suggest that a combination of pre- and postsynaptic mechanisms contribute to this effect, including a reduction in both the postsynaptic dendritic arborization and the size and replenishment rate of the presynaptic readily releasable pool of excitatory vesicles. Moreover, a chimeric culture strategy confirmed that the most robust impairment in C-S connectivity was only observed when mutant huntingtin was expressed both pre- and postsynaptically. In all, our data demonstrate a progressive HD synaptic phenotype in this co-culture system that may be exploited as a platform for identifying promising therapeutic strategies to prevent early HD-associated synaptopathy. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Integrating remote sensing and terrain data in forest fire modeling

    Science.gov (United States)

    Medler, Michael Johns

    Forest fire policies are changing. Managers now face conflicting imperatives to re-establish pre-suppression fire regimes, while simultaneously preventing resource destruction. They must, therefore, understand the spatial patterns of fires. Geographers can facilitate this understanding by developing new techniques for mapping fire behavior. This dissertation develops such techniques for mapping recent fires and using these maps to calibrate models of potential fire hazards. In so doing, it features techniques that strive to address the inherent complexity of modeling the combinations of variables found in most ecological systems. Image processing techniques were used to stratify the elements of terrain, slope, elevation, and aspect. These stratification images were used to assure sample placement considered the role of terrain in fire behavior. Examination of multiple stratification images indicated samples were placed representatively across a controlled range of scales. The incorporation of terrain data also improved preliminary fire hazard classification accuracy by 40%, compared with remotely sensed data alone. A Kauth-Thomas transformation (KT) of pre-fire and post-fire Thematic Mapper (TM) remotely sensed data produced brightness, greenness, and wetness images. Image subtraction indicated fire induced change in brightness, greenness, and wetness. Field data guided a fuzzy classification of these change images. Because fuzzy classification can characterize a continuum of a phenomena where discrete classification may produce artificial borders, fuzzy classification was found to offer a range of fire severity information unavailable with discrete classification. These mapped fire patterns were used to calibrate a model of fire hazards for the entire mountain range. Pre-fire TM, and a digital elevation model produced a set of co-registered images. Training statistics were developed from 30 polygons associated with the previously mapped fire severity. Fuzzy

  14. Depotentiation from potentiated synaptic strength in a tristable system of coupled phosphatase and kinase

    Directory of Open Access Journals (Sweden)

    Mengjiao Chen

    2016-10-01

    Full Text Available Long-term potentiation (LTP of synaptic strength is strongly implicated in learning and memory. On the other hand, depotentiation, the reversal of synaptic strength from potentiated LTP state to the pre-LTP level, is required in extinction of the obsolete memory. A generic tristable system, which couples the phosphatase and kinase switches, exclusively explains how moderate and high elevation of intracellular calcium concentration triggers long-term depression (LTD and LTP, respectively. The present study, introducing calcium influx and calcium release from internal store into the tristable system, further show that significant elevation of cytoplasmic calcium concentration switches activation of both kinase and phosphatase to their basal states, thereby depotentiate the synaptic strength. A phase-plane analysis of the combined model was employed to explain the previously reported depotentiation in experiments and predict a threshold-like effect with calcium concentration. The results not only reveal a mechanism of NMDAR- and mGluR-dependent depotentiation, but also predict further experiments about the role of internal calcium store in induction of depotentiation and extinction of established memories.

  15. Synaptic plasticity in drug reward circuitry.

    Science.gov (United States)

    Winder, Danny G; Egli, Regula E; Schramm, Nicole L; Matthews, Robert T

    2002-11-01

    Drug addiction is a major public health issue worldwide. The persistence of drug craving coupled with the known recruitment of learning and memory centers in the brain has led investigators to hypothesize that the alterations in glutamatergic synaptic efficacy brought on by synaptic plasticity may play key roles in the addiction process. Here we review the present literature, examining the properties of synaptic plasticity within drug reward circuitry, and the effects that drugs of abuse have on these forms of plasticity. Interestingly, multiple forms of synaptic plasticity can be induced at glutamatergic synapses within the dorsal striatum, its ventral extension the nucleus accumbens, and the ventral tegmental area, and at least some of these forms of plasticity are regulated by behaviorally meaningful administration of cocaine and/or amphetamine. Thus, the present data suggest that regulation of synaptic plasticity in reward circuits is a tractable candidate mechanism underlying aspects of addiction.

  16. Fire Behavior System for the Full Range of Fire Management Needs

    Science.gov (United States)

    Richard C. Rothermel; Patricia L. Andrews

    1987-01-01

    An "integrated fire behavior/fire danger rating system" should be "seamless" to avoid requiring choices among alternate, independent systems. Descriptions of fuel moisture, fuels, and fire behavior should be standardized, permitting information to flow easily through the spectrum of fire management needs. The level of resolution depends on the...

  17. Synaptic Effects of Electric Fields

    Science.gov (United States)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  18. Synaptic function is modulated by LRRK2 and glutamate release is increased in cortical neurons of G2019S LRRK2 knock-in mice.

    Science.gov (United States)

    Beccano-Kelly, Dayne A; Kuhlmann, Naila; Tatarnikov, Igor; Volta, Mattia; Munsie, Lise N; Chou, Patrick; Cao, Li-Ping; Han, Heather; Tapia, Lucia; Farrer, Matthew J; Milnerwood, Austen J

    2014-01-01

    Mutations in Leucine-Rich Repeat Kinase-2 (LRRK2) result in familial Parkinson's disease and the G2019S mutation alone accounts for up to 30% in some ethnicities. Despite this, the function of LRRK2 is largely undetermined although evidence suggests roles in phosphorylation, protein interactions, autophagy and endocytosis. Emerging reports link loss of LRRK2 to altered synaptic transmission, but the effects of the G2019S mutation upon synaptic release in mammalian neurons are unknown. To assess wild type and mutant LRRK2 in established neuronal networks, we conducted immunocytochemical, electrophysiological and biochemical characterization of >3 week old cortical cultures of LRRK2 knock-out, wild-type overexpressing and G2019S knock-in mice. Synaptic release and synapse numbers were grossly normal in LRRK2 knock-out cells, but discretely reduced glutamatergic activity and reduced synaptic protein levels were observed. Conversely, synapse density was modestly but significantly increased in wild-type LRRK2 overexpressing cultures although event frequency was not. In knock-in cultures, glutamate release was markedly elevated, in the absence of any change to synapse density, indicating that physiological levels of G2019S LRRK2 elevate probability of release. Several pre-synaptic regulatory proteins shown by others to interact with LRRK2 were expressed at normal levels in knock-in cultures; however, synapsin 1 phosphorylation was significantly reduced. Thus, perturbations to the pre-synaptic release machinery and elevated synaptic transmission are early neuronal effects of LRRK2 G2019S. Furthermore, the comparison of knock-in and overexpressing cultures suggests that one copy of the G2019S mutation has a more pronounced effect than an ~3-fold increase in LRRK2 protein. Mutant-induced increases in transmission may convey additional stressors to neuronal physiology that may eventually contribute to the pathogenesis of Parkinson's disease.

  19. Flexible Proton-Gated Oxide Synaptic Transistors on Si Membrane.

    Science.gov (United States)

    Zhu, Li Qiang; Wan, Chang Jin; Gao, Ping Qi; Liu, Yang Hui; Xiao, Hui; Ye, Ji Chun; Wan, Qing

    2016-08-24

    Ion-conducting materials have received considerable attention for their applications in fuel cells, electrochemical devices, and sensors. Here, flexible indium zinc oxide (InZnO) synaptic transistors with multiple presynaptic inputs gated by proton-conducting phosphorosilicate glass-based electrolyte films are fabricated on ultrathin Si membranes. Transient characteristics of the proton gated InZnO synaptic transistors are investigated, indicating stable proton-gating behaviors. Short-term synaptic plasticities are mimicked on the proposed proton-gated synaptic transistors. Furthermore, synaptic integration regulations are mimicked on the proposed synaptic transistor networks. Spiking logic modulations are realized based on the transition between superlinear and sublinear synaptic integration. The multigates coupled flexible proton-gated oxide synaptic transistors may be interesting for neuroinspired platforms with sophisticated spatiotemporal information processing.

  20. Fire scar growth and closure rates in white oak (Quercus alba) and the implications for prescribed burning

    Science.gov (United States)

    Michael C. Stambaugh; Kevin T. Smith; Daniel C. Dey

    2017-01-01

    In burned forestlands, fire scar wounds commonly occur on tree stems as a result of cambial heating. In hardwood forests in particular, wounding can lead to stem decay with the extent of decay being related to scar size and exposure time. Therefore, wound closure rates are important to understand in the context of fire management such that allowing sufficient time for...

  1. Post Fire Vegetation Recovery in Greece after the large Drought event of 2007

    Science.gov (United States)

    Gouveia, Célia M.; Bastos, Ana; DaCamara, Carlos; Trigo, Ricardo

    2013-04-01

    Fire is a natural factor of Mediterranean ecosystems. However, fire regimes in the European Mediterranean areas have been changing in the last decades, mainly due to land-use changes and climate driven factors possibly associated with climatic warming (e.g. decline of precipitation, increasing temperatures but also higher frequency of heatwaves). In Greece, the fire season of 2007 was particularly devastating, achieving the new all-time record of estimated burnt area (225 734 ha), since 1980. Additionally, we must stress that prior to the summer fire season in 2007, Greece suffered an exceptional drought event. This severe drought had a strong negative impact in vegetation dynamics. Since water availability is a crucial factor in post-fire vegetation recovery, it is desirable to assess the impact that such water-stress conditions had on fire sensitivity and post-fire vegetation recovery. Based on monthly values of NDVI, at the 1km×1km spatial scale, as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2010, large burnt scars are identified in Greece, during 2007 fire season. Vegetation recovery is then assessed based on a mono parametric regression model originally developed by Gouveia et al. (2010) to identify large burnt scars in Portugal during the 2003 fire season and after applied to 2005 fire season (Bastos et al., 2012). Some large burnt areas are selected and the respective NDVI behaviour is monitored throughout the pre and the post fire period. The vegetation dynamics during the pre-fire period is analysed and related to the extreme climatic events that characterised the considered period. An analysis is made of the dependence of recovery rates on land cover types and fire damage. Finally results are compared to results already obtained for Portugal (Gouveia et al. 2010). This work emphasises the use of a simple methodology, when applied to low resolution satellite imagery in order to monitor vegetation recovery after large fires events over

  2. Motor unit firing rates during spasms in thenar muscles of spinal cord injured subjects

    NARCIS (Netherlands)

    Zijdewind, Inge; Bakels, Robert; Thomas, Christine K.

    2014-01-01

    Involuntary contractions of paralyzed muscles (spasms) commonly disrupt daily activities and rehabilitation after human spinal cord injury (SCI). Our aim was to examine the recruitment, firing rate modulation, and derecruitment of motor units that underlie spasms of thenar muscles after cervical

  3. Short-term synaptic plasticity and heterogeneity in neural systems

    Science.gov (United States)

    Mejias, J. F.; Kappen, H. J.; Longtin, A.; Torres, J. J.

    2013-01-01

    We review some recent results on neural dynamics and information processing which arise when considering several biophysical factors of interest, in particular, short-term synaptic plasticity and neural heterogeneity. The inclusion of short-term synaptic plasticity leads to enhanced long-term memory capacities, a higher robustness of memory to noise, and irregularity in the duration of the so-called up cortical states. On the other hand, considering some level of neural heterogeneity in neuron models allows neural systems to optimize information transmission in rate coding and temporal coding, two strategies commonly used by neurons to codify information in many brain areas. In all these studies, analytical approximations can be made to explain the underlying dynamics of these neural systems.

  4. Calculation of Fire Severity Factors and Fire Non-Suppression Probabilities For A DOE Facility Fire PRA

    International Nuclear Information System (INIS)

    Elicson, Tom; Harwood, Bentley; Lucek, Heather; Bouchard, Jim

    2011-01-01

    Over a 12 month period, a fire PRA was developed for a DOE facility using the NUREG/CR-6850 EPRI/NRC fire PRA methodology. The fire PRA modeling included calculation of fire severity factors (SFs) and fire non-suppression probabilities (PNS) for each safe shutdown (SSD) component considered in the fire PRA model. The SFs were developed by performing detailed fire modeling through a combination of CFAST fire zone model calculations and Latin Hypercube Sampling (LHS). Component damage times and automatic fire suppression system actuation times calculated in the CFAST LHS analyses were then input to a time-dependent model of fire non-suppression probability. The fire non-suppression probability model is based on the modeling approach outlined in NUREG/CR-6850 and is supplemented with plant specific data. This paper presents the methodology used in the DOE facility fire PRA for modeling fire-induced SSD component failures and includes discussions of modeling techniques for: Development of time-dependent fire heat release rate profiles (required as input to CFAST), Calculation of fire severity factors based on CFAST detailed fire modeling, and Calculation of fire non-suppression probabilities.

  5. Improved fire retardancy of thermoset composites modified with carbon nanofibers

    International Nuclear Information System (INIS)

    Zhao Zhongfu; Gou Jan

    2009-01-01

    Multifunctional thermoset composites were made from polyester resin, glass fiber mats and carbon nanofiber sheets (CNS). Their flaming behavior was investigated with cone calorimeter under well-controlled combustion conditions. The heat release rate was lowered by pre-planting carbon nanofiber sheets on the sample surface with the total fiber content of only 0.38 wt.%. Electron microscopy showed that carbon nanofiber sheet was partly burned and charred materials were formed on the combusting surface. Both the nanofibers and charred materials acted as an excellent insulator and/or mass transport barrier, improving the fire retardancy of the composite. This behavior agrees well with the general mechanism of fire retardancy in various nanoparticle-thermoplastic composites.

  6. Aerosol generation from Kerosene fires

    International Nuclear Information System (INIS)

    Jordan, S.; Lindner, W.

    1981-01-01

    The course of solvent surface fires is dependent on the surface area on fire; depth of pool and solvent composition do not influence the fire rate. But the fire rate increases rapidly with the burning area. The residual oxygen concentration after a fire in a closed container is dependent on the violence of the fire, i.e. on the burning surface. Moreover the ending of the fire is influenced by the TBP-concentration of the solvent. With sufficient supply of solvent the TBP-concentration changes only slightly during the fire, so that a fire at 14% O 2 -concentration is extinguished within the container. With the TBP-concentration changing considerably, i.e. little mass, a fire with a similar burning surface is already extinguished at an O 2 -content of 18%. The aerosol generation depends on the fire rate, and so it is higher in free atmosphere than in closed containers. The soot production in the mixture fire (kerosene /TBP 70/30) is higher by a factor 7 than in the pure kerosene fire. Primary soot-particles have a diameter of approximately 0,05 μm and agglomerate rapidly into aggregates of 0,2-0,4 μm. (orig.) [de

  7. Influence of Synaptic Depression on Memory Storage Capacity

    Science.gov (United States)

    Otsubo, Yosuke; Nagata, Kenji; Oizumi, Masafumi; Okada, Masato

    2011-08-01

    Synaptic efficacy between neurons is known to change within a short time scale dynamically. Neurophysiological experiments show that high-frequency presynaptic inputs decrease synaptic efficacy between neurons. This phenomenon is called synaptic depression, a short term synaptic plasticity. Many researchers have investigated how the synaptic depression affects the memory storage capacity. However, the noise has not been taken into consideration in their analysis. By introducing ``temperature'', which controls the level of the noise, into an update rule of neurons, we investigate the effects of synaptic depression on the memory storage capacity in the presence of the noise. We analytically compute the storage capacity by using a statistical mechanics technique called Self Consistent Signal to Noise Analysis (SCSNA). We find that the synaptic depression decreases the storage capacity in the case of finite temperature in contrast to the case of the low temperature limit, where the storage capacity does not change.

  8. Secreted factors as synaptic organizers.

    Science.gov (United States)

    Johnson-Venkatesh, Erin M; Umemori, Hisashi

    2010-07-01

    A critical step in synaptic development is the differentiation of presynaptic and postsynaptic compartments. This complex process is regulated by a variety of secreted factors that serve as synaptic organizers. Specifically, fibroblast growth factors, Wnts, neurotrophic factors and various other intercellular signaling molecules are proposed to regulate presynaptic and/or postsynaptic differentiation. Many of these factors appear to function at both the neuromuscular junction and in the central nervous system, although the specific function of the molecules differs between the two. Here we review secreted molecules that organize the synaptic compartments and discuss how these molecules shape synaptic development, focusing on mammalian in vivo systems. Their critical role in shaping a functional neural circuit is underscored by their possible link to a wide range of neurological and psychiatric disorders both in animal models and by mutations identified in human patients. © The Authors (2010). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  9. Quantitative comparison of fire danger index performance using fire activity

    CSIR Research Space (South Africa)

    Steenkamp, KC

    2012-07-01

    Full Text Available parameters such as flame length or rate of spread can be physically measured or modeled. Fire danger indices are not designed to describe the characteristics of a fire but rather the potential of a fire taking place in an area of interest [5]. Several...

  10. MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity

    International Nuclear Information System (INIS)

    Zhu Guoqi; Chen Ying; Huang Yuying; Li Qinglin; Behnisch, Thomas

    2011-01-01

    Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only at the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: → I.p. MPTP-injection mediates death of dopaminergic neurons. → I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. → I.p. MPTP-injection does not alter basal synaptic transmission. → Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. → Attenuation of NMDA-receptors mediated

  11. Spontaneous Vesicle Recycling in the Synaptic Bouton

    Directory of Open Access Journals (Sweden)

    Sven eTruckenbrodt

    2014-12-01

    Full Text Available The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.

  12. Active hippocampal networks undergo spontaneous synaptic modification.

    Directory of Open Access Journals (Sweden)

    Masako Tsukamoto-Yasui

    Full Text Available The brain is self-writable; as the brain voluntarily adapts itself to a changing environment, the neural circuitry rearranges its functional connectivity by referring to its own activity. How the internal activity modifies synaptic weights is largely unknown, however. Here we report that spontaneous activity causes complex reorganization of synaptic connectivity without any external (or artificial stimuli. Under physiologically relevant ionic conditions, CA3 pyramidal cells in hippocampal slices displayed spontaneous spikes with bistable slow oscillations of membrane potential, alternating between the so-called UP and DOWN states. The generation of slow oscillations did not require fast synaptic transmission, but their patterns were coordinated by local circuit activity. In the course of generating spontaneous activity, individual neurons acquired bidirectional long-lasting synaptic modification. The spontaneous synaptic plasticity depended on a rise in intracellular calcium concentrations of postsynaptic cells, but not on NMDA receptor activity. The direction and amount of the plasticity varied depending on slow oscillation patterns and synapse locations, and thus, they were diverse in a network. Once this global synaptic refinement occurred, the same neurons now displayed different patterns of spontaneous activity, which in turn exhibited different levels of synaptic plasticity. Thus, active networks continuously update their internal states through ongoing synaptic plasticity. With computational simulations, we suggest that with this slow oscillation-induced plasticity, a recurrent network converges on a more specific state, compared to that with spike timing-dependent plasticity alone.

  13. An assessment of the impact of home safety assessments on fires and fire-related injuries: a case study of Cheshire Fire and Rescue Service.

    Science.gov (United States)

    Arch, B N; Thurston, M N

    2013-06-01

    Deaths and injuries related to fires are largely preventable events. In the UK, a plethora of community-based fire safety initiatives have been introduced over the last 25 years, often led by fire and rescue services, to address this issue. This paper focuses on one such initiative--home safety assessments (HSAs). Cheshire Fire and Rescue Service (in England) implemented a uniquely large-scale HSA intervention. This paper assesses its effectiveness. The impact of HSAs was assessed in relation to three outcomes: accidental dwelling fires (ADFs), ADFs contained and injuries arising from ADFs. A two-period comparison in fire-related rates of incidences in Cheshire between 2002 and 2011 was implemented, using Poisson regression and adjusting for the national temporal trend using a control group comprising the 37 other English non-metropolitan fire-services. Significant reductions were observed in rates of ADFs [incidence rate ratios (IRR): 0.79, 95% confidence interval (CI): 0.74-0.83, P fires contained to room of origin. There is strong evidence to suggest that the intervention was successful in reducing domestic fires and related injuries.

  14. Stochastic representation of fire behavior in a wildland fire protection planning model for California.

    Science.gov (United States)

    J. Keith Gilless; Jeremy S. Fried

    1998-01-01

    A fire behavior module was developed for the California Fire Economics Simulator version 2 (CFES2), a stochastic simulation model of initial attack on wildland fire used by the California Department of Forestry and Fire Protection. Fire rate of spread (ROS) and fire dispatch level (FDL) for simulated fires "occurring" on the same day are determined by making...

  15. Self-sustained firing activities of the cortical network with plastic rules in weak AC electrical fields

    International Nuclear Information System (INIS)

    Qin Ying-Mei; Wang Jiang; Men Cong; Zhao Jia; Wei Xi-Le; Deng Bin

    2012-01-01

    Both external and endogenous electrical fields widely exist in the environment of cortical neurons. The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied. It is found that self-sustained rhythmic firing patterns, which are closely correlated with the cognitive functions, are significantly modified due to the self-organizing of the network in the weak AC field. The activities of the neural networks are affected by the synaptic connection strength, the external stimuli, and so on. In the presence of learning rules, the synaptic connections can be modulated by the external stimuli, which will further enhance the sensitivity of the network to the external signal. The properties of the external AC stimuli can serve as control parameters in modulating the evolution of the neural network. (interdisciplinary physics and related areas of science and technology)

  16. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2013-01-01

    Full Text Available Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO and its isotopic signature measured at South Pole station (SPO. Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the

  17. Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness

    Science.gov (United States)

    Dideriksen, Jakob L.; Negro, Francesco; Enoka, Roger M.

    2012-01-01

    Motoneurons receive synaptic inputs from tens of thousands of connections that cause membrane potential to fluctuate continuously (synaptic noise), which introduces variability in discharge times of action potentials. We hypothesized that the influence of synaptic noise on force steadiness during voluntary contractions is limited to low muscle forces. The hypothesis was examined with an analytical description of transduction of motor unit spike trains into muscle force, a computational model of motor unit recruitment and rate coding, and experimental analysis of interspike interval variability during steady contractions with the abductor digiti minimi muscle. Simulations varied contraction force, level of synaptic noise, size of motor unit population, recruitment range, twitch contraction times, and level of motor unit short-term synchronization. Consistent with the analytical derivations, simulations and experimental data showed that force variability at target forces above a threshold was primarily due to low-frequency oscillations in neural drive, whereas the influence of synaptic noise was almost completely attenuated by two low-pass filters, one related to convolution of motoneuron spike trains with motor unit twitches (temporal summation) and the other attributable to summation of single motor unit forces (spatial summation). The threshold force above which synaptic noise ceased to influence force steadiness depended on recruitment range, size of motor unit population, and muscle contractile properties. This threshold was low (motor unit recruitment and muscle properties of a typical muscle are tuned to limit the influence of synaptic noise on force steadiness to low forces and that the inability to produce a constant force during stronger contractions is mainly attributable to the common low-frequency oscillations in motoneuron discharge rates. PMID:22423000

  18. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  19. Monitoring changes in the intracellular calcium concentration and synaptic efficacy in the mollusc Aplysia.

    Science.gov (United States)

    Ludwar, Bjoern Ch; Evans, Colin G; Cropper, Elizabeth C

    2012-07-15

    It has been suggested that changes in intracellular calcium mediate the induction of a number of important forms of synaptic plasticity (e.g., homosynaptic facilitation). These hypotheses can be tested by simultaneously monitoring changes in intracellular calcium and alterations in synaptic efficacy. We demonstrate how this can be accomplished by combining calcium imaging with intracellular recording techniques. Our experiments are conducted in a buccal ganglion of the mollusc Aplysia californica. This preparation has a number of experimentally advantageous features: Ganglia can be easily removed from Aplysia and experiments use adult neurons that make normal synaptic connections and have a normal ion channel distribution. Due to the low metabolic rate of the animal and the relatively low temperatures (14-16 °C) that are natural for Aplysia, preparations are stable for long periods of time. To detect changes in intracellular free calcium we will use the cell impermeant version of Calcium Orange which is easily 'loaded' into a neuron via iontophoresis. When this long wavelength fluorescent dye binds to calcium, fluorescence intensity increases. Calcium Orange has fast kinetic properties and, unlike ratiometric dyes (e.g., Fura 2), requires no filter wheel for imaging. It is fairly photo stable and less phototoxic than other dyes (e.g., fluo-3). Like all non-ratiometric dyes, Calcium Orange indicates relative changes in calcium concentration. But, because it is not possible to account for changes in dye concentration due to loading and diffusion, it can not be calibrated to provide absolute calcium concentrations. An upright, fixed stage, compound microscope was used to image neurons with a CCD camera capable of recording around 30 frames per second. In Aplysia this temporal resolution is more than adequate to detect even a single spike induced alteration in the intracellular calcium concentration. Sharp electrodes are simultaneously used to induce and record

  20. Recent amendments of the KTA 2101.2 fire barrier resistance rating method for German NPP and comparison to the Eurocode t-equivalent method

    Energy Technology Data Exchange (ETDEWEB)

    Forell, Burkhard [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany)

    2015-12-15

    The German nuclear standard KTA2101 on ''Fire Protection in Nuclear Power Plants'', Part 2: ''Fire Protection of Structural Plant Components'' includes a simplified method for the fire resistance rating of fire barrier elements based on the t-equivalent approach. The method covers the specific features of compartments in nuclear power plant buildings in terms of the boundary conditions which have to be expected in the event of fire. The method has proven to be relatively simple and straightforward to apply. The paper gives an overview of amendments with respect to the rating method made within the regular review of the KTA 2101.2. A comparison to the method of the non-nuclear Eurocode 1 is also provided. The Eurocode method is closely connected to the German standard DIN 18230 on structural fire protection in industrial buildings. Special emphasis of the comparison is given to the ventilation factor, which has a large impact on the required fire resistance.

  1. Impacts of prescribed fire on Pinus rigida Mill. in upland forests of the Atlantic Coastal Plain.

    Science.gov (United States)

    Carlo, Nicholas J; Renninger, Heidi J; Clark, Kenneth L; Schäfer, Karina V R

    2016-08-01

    A comparative analysis of the impacts of prescribed fire on three upland forest stands in the Northeastern Atlantic Plain, NJ, USA, was conducted. Effects of prescribed fire on water use and gas exchange of overstory pines were estimated via sap-flux rates and photosynthetic measurements on Pinus rigida Mill. Each study site had two sap-flux plots, one experiencing prescribed fire and one control (unburned) plot for comparison before and after the fire. We found that photosynthetic capacity in terms of Rubisco-limited carboxylation rate and intrinsic water-use efficiency was unaffected, while light compensation point and dark respiration rate were significantly lower in the burned vs control plots post-fire. Furthermore, quantum yield in pines in the pine-dominated stands was less affected than pines in the mixed oak/pine stand, as there was an increase in quantum yield in the oak/pine stand post-fire compared with the control (unburned) plot. We attribute this to an effect of forest type but not fire per se. Average daily sap-flux rates of the pine trees increased compared with control (unburned) plots in pine-dominated stands and decreased in the oak/pine stand compared with control (unburned) plots, potentially due to differences in fuel consumption and pre-fire sap-flux rates. Finally, when reference canopy stomatal conductance was analyzed, pines in the pine-dominated stands were more sensitive to changes in vapor pressure deficit (VPD), while stomatal responses of pines in the oak/pine stand were less affected by VPD. Therefore, prescribed fire affects physiological functioning and water use of pines, but the effects may be modulated by forest stand type and fuel consumption pattern, which suggests that these factors may need to be taken into account for forest management in fire-dominated systems. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Quantifying collective effervescence: Heart-rate dynamics at a fire-walking ritual

    DEFF Research Database (Denmark)

    Xygalatas, Dimitris; Konvalinka, Ivana; Roepstorff, Andreas

    2011-01-01

    Collective rituals are ubiquitous and resilient features of all known human cultures. They are also functionally opaque, costly, and sometimes dangerous. Social scientists have speculated that collective rituals generate benefits in excess of their costs by reinforcing social bonding and group...... solidarity, yet quantitative evidence for these conjectures is scarce. Our recent study measured the physiological effects of a highly arousing Spanish fire-walking ritual, revealing shared patterns in heart-rate dynamics between participants and related spectators. We briefly describe our results...

  3. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice

    Directory of Open Access Journals (Sweden)

    Jackson George R

    2011-06-01

    Full Text Available Abstract Background The correlation between neurofibrillary tangles of tau and disease progression in the brains of Alzheimer's disease (AD patients remains an area of contention. Innovative data are emerging from biochemical, cell-based and transgenic mouse studies that suggest that tau oligomers, a pre-filament form of tau, may be the most toxic and pathologically significant tau aggregate. Results Here we report that oligomers of recombinant full-length human tau protein are neurotoxic in vivo after subcortical stereotaxic injection into mice. Tau oligomers impaired memory consolidation, whereas tau fibrils and monomers did not. Additionally, tau oligomers induced synaptic dysfunction by reducing the levels of synaptic vesicle-associated proteins synaptophysin and septin-11. Tau oligomers produced mitochondrial dysfunction by decreasing the levels of NADH-ubiquinone oxidoreductase (electron transport chain complex I, and activated caspase-9, which is related to the apoptotic mitochondrial pathway. Conclusions This study identifies tau oligomers as an acutely toxic tau species in vivo, and suggests that tau oligomers induce neurodegeneration by affecting mitochondrial and synaptic function, both of which are early hallmarks in AD and other tauopathies. These results open new avenues for neuroprotective intervention strategies of tauopathies by targeting tau oligomers.

  4. A fire history derived from Pinus resinosa Ait. for the Islands of Eastern Lac La Croix, Minnesota, USA.

    Science.gov (United States)

    Johnson, Lane B; Kipfmueller, Kurt F

    2016-06-01

    We reconstructed fire occurrence near a fur-trade era canoe travel corridor (used ca. 1780-1802) in the Quetico-Superior region west of Lake Superior to explore the possibility of human influence on pre-fire suppression rates of fire occurrence. Our research objectives were to (1) examine the spatial and temporal patterns of fire in the study area, (2) test fires' strength of association with regional drought, and (3) assess whether reconstructed fire frequencies could be explained by observed rates of lightning fire ignition over the modern period of record. We developed a 420-year fire history for the eastern portion of Lac La Croix in the Boundary Waters Canoe Area Wilderness (BWCAW). Seventy-one fire-scarred samples were collected from remnant Pinus resinosa Ait. (red pine) stumps and logs from thirteen distinct island and three mainland forest stands. Collectively these samples contained records of 255 individual fire scars representing 79 fire events from 1636 to 1933 (study area mean fire intervals [MFI] 3.8 yr). Reconstructed fires were spatially and temporally asynchronous and not strongly associated with regional drought (P > 0.05). When compared to the conservative, tree-ring reconstructed estimate of historical fire occurrence and modern lightning-caused fires (1929-2012), a noticeable change in the distribution and frequency of fires within the study area was evident with only two lightning-ignited island fires since 1934 in the study area. Our results suggest a high likelihood that indigenous land use contributed to surface fire ignitions within our study area and highlights the importance of examining the potential effects of past indigenous land use when determining modern approaches to fire and wilderness management in fire-adapted ecosystems.

  5. Efficiency of the pre-heater against flow rate on primary the beta test loop

    International Nuclear Information System (INIS)

    Edy Sumarno; Kiswanta; Bambang Heru; Ainur R; Joko P

    2013-01-01

    Calculation of efficiency of the pre-heater has been carried out against the flow rate on primary the BETA Test Loop. BETA test loop (UUB) is a facilities of experiments to study the thermal hydraulic phenomenon, especially for thermal hydraulic post-LOCA (Lost of Coolant Accident). Sequences removal on the BETA Test Loop contained a pre-heater that serves as a getter heat from the primary side to the secondary side, determination of efficiency is to compare the incoming heat energy with the energy taken out by a secondary fluid. Characterization is intended to determine the performance of a pre-heater, then used as tool for analysis, and as a reference design experiments. Calculation of efficiency methods performed by operating the pre-heater with fluid flow rate variation on the primary side. Calculation of efficiency on the results obtained that the efficiency change with every change of flow rate, the flow rate is 71.26% on 163.50 ml/s and 60.65% on 850.90 ml/s. Efficiency value can be even greater if the pre-heater tank is wrapped with thermal insulation so there is no heat leakage. (author)

  6. Cortical Network Models of Firing Rates in the Resting and Active States Predict BOLD Responses.

    Directory of Open Access Journals (Sweden)

    Maxwell R Bennett

    Full Text Available Measurements of blood oxygenation level dependent (BOLD signals have produced some surprising observations. One is that their amplitude is proportional to the entire activity in a region of interest and not just the fluctuations in this activity. Another is that during sleep and anesthesia the average BOLD correlations between regions of interest decline as the activity declines. Mechanistic explanations of these phenomena are described here using a cortical network model consisting of modules with excitatory and inhibitory neurons, taken as regions of cortical interest, each receiving excitatory inputs from outside the network, taken as subcortical driving inputs in addition to extrinsic (intermodular connections, such as provided by associational fibers. The model shows that the standard deviation of the firing rate is proportional to the mean frequency of the firing when the extrinsic connections are decreased, so that the mean BOLD signal is proportional to both as is observed experimentally. The model also shows that if these extrinsic connections are decreased or the frequency of firing reaching the network from the subcortical driving inputs is decreased, or both decline, there is a decrease in the mean firing rate in the modules accompanied by decreases in the mean BOLD correlations between the modules, consistent with the observed changes during NREM sleep and under anesthesia. Finally, the model explains why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical input, gives rises to responses throughout the cortex as observed, with these responses mediated by the extrinsic (intermodular connections.

  7. Post-fire Water Quality Response and Associated Physical Drivers

    Science.gov (United States)

    Rust, A.; Saxe, S.; Hogue, T. S.; McCray, J. E.; Rhoades, C.

    2017-12-01

    The frequency and severity of forest fires is increasing across the western US. Wildfires are known to impact water quality in receiving waters; many of which are important sources of water supply. Studies on individual forest fires have shown an increase in total suspended solids, nutrient and metal concentrations and loading in receiving streams. The current research looks at a large number of fires across a broad region (Western United States) to identify typical water quality changes after fire and the physical characteristics that drive those responses. This presentation will overview recent development of an extensive database on post-fire water quality. Across 172 fires, we found that water quality changed significantly in one out of three fires up to five years after the event compared to pre-burn conditions. For basins with higher frequency data, it was evident that water quality changes were significant in the first three years following fire. In both the initial years following fire and five years after fire, concentrations and loading rates of dissolved nutrients such as nitrite, nitrate and orthophosphate and particulate forms of nutrients, total organic nitrogen, total nitrogen, total phosphate, and total phosphorus increase thirty percent of the time. Concentrations of some major dissolved ions and metals decrease, with increased post-fire flows, while total particulate concentrations increased; the flux of both dissolved and particulate forms increase in thirty percent of the fires over five years. Water quality change is not uniform across the studied watersheds. A second goal of this study is to identify physical characteristics of a watershed that drive water quality response. Specifically, we investigate the physical, geochemical, and climatological characteristics of watersheds that control the type, direction, and magnitude of water quality change. Initial results reveal vegetation recovery is a key driver in post-fire water quality response

  8. Lateral regulation of synaptic transmission by astrocytes.

    Science.gov (United States)

    Covelo, A; Araque, A

    2016-05-26

    Fifteen years ago the concept of the "tripartite synapse" was proposed to conceptualize the functional view that astrocytes are integral elements of synapses. The signaling exchange between astrocytes and neurons within the tripartite synapse results in the synaptic regulation of synaptic transmission and plasticity through an autocrine form of communication. However, recent evidence indicates that the astrocyte synaptic regulation is not restricted to the active tripartite synapse but can be manifested through astrocyte signaling at synapses relatively distant from active synapses, a process termed lateral astrocyte synaptic regulation. This phenomenon resembles the classical heterosynaptic modulation but is mechanistically different because it involves astrocytes and its properties critically depend on the morphological and functional features of astrocytes. Therefore, the functional concept of the tripartite synapse as a fundamental unit must be expanded to include the interaction between tripartite synapses. Through lateral synaptic regulation, astrocytes serve as an active processing bridge for synaptic interaction and crosstalk between synapses with no direct neuronal connectivity, supporting the idea that neural network function results from the coordinated activity of astrocytes and neurons. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Normalization of water flow rate for external fire fighting of the buildings in settlements with zone water supply

    Directory of Open Access Journals (Sweden)

    Deryushev Leonid Georgievich

    2014-12-01

    Full Text Available In the article the requirements for fire safety assurance are justified for the objects, in which water is supplied with account for serial and parallel area zoning. In the process of zoning the district is segregated into such parts, for which head rate in any point of selection of water from network will not exceed 6 bar. In the current regulatory rules the requirements for the calculation of the costs of water points are stated, as well as in case of extinguishing fires at the sites with water-supply systems zones. It is recommended to analyze each zone of the system of water-supply separately, without interrelation with the common water feeders, water consumers and services of fire extinguishing. Such an approach to assign water discharge for fire extinguishing results in the decrease of fire safety of an object, deforms calculation technique of outside systems of water-supply of the similar-type objects located in different parts of the terrain. Taking the number of fires and water consumption for fire suppression by the number of residents in each zone, we thus underestimate the capacity of the pipeline system. It is offered to make changes in Norms and Standards in force on fire safety of settlements. The recommendations on regulation of the number of fires and water flow for fire fighting in residential objects with zoned systems of water-supply are formulated.

  10. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise.

    Science.gov (United States)

    Macgregor, Lewis J; Hunter, Angus M

    2018-01-01

    Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; pexercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures.

  11. Pre-irradiation at a low dose-rate blunted p53 response

    International Nuclear Information System (INIS)

    Takahashi, A.; Ohnishi, K.; Asakawa, I.; Tamamoto, T.; Yasumoto, J.; Yuki, K.; Ohnishi, T.; Tachibana, A.

    2003-01-01

    Full text: We have studied whether the p53-centered signal transduction pathway induced by acute radiation is interfered with chronic pre-irradiation at a low dose-rate in human cultured cells and whole body of mice. In squamous cell carcinoma cells, we found that a challenge irradiation with X-ray immediately after chronic irradiation resulted in lower levels of p53 than those observed after the challenge irradiation alone. In addition, the induction of p53-centered apoptosis and the accumulation of its related proteins after the challenge irradiation were strongly correlated with the above-mentioned phenomena. In mouse spleen, the induction of apoptosis and the accumulation of p53 and Bax were observed dose-dependently at 12 h after a challenge irradiation. In contrast, we found significant suppression of them induced by challenge irradiation at a high dose-rate when mice were pre-irradiated with chronic irradiation at a low dose-rate. These findings suggest that chronic pre-irradiation suppressed the p53 function through radiation-induced p53-dependent signal transduction processes. There are numerous papers about p53 functions in apoptosis, radiosensitivity, genomic instability and cancer incidence in cultured cells or animals. According to our data and other findings, since p53 can prevent carcinogenesis, pre-irradiation at a low dose-rate might enhance the predisposition to cancer. Therefore, it is possible that different maximal permissible dose equivalents for the public populations are appropriate. Furthermore, concerning health of human beings, studies of the adaptive responses to radiation are quite important, because the radiation response strongly depends on experience of prior exposure to radiation

  12. Charts for interpreting wildland fire behavior characteristics

    Science.gov (United States)

    Patricia L. Andrews; Richard C. Rothermel

    1982-01-01

    The fire characteristics chart is proposed as a graphical method ofpresenting two primary characteristics of fire behavior – spread rate and intensity. Its primary use is communicating and interpreting either site-specific predictions of fire behavior or National Fire-Danger Rating System (NFDRS) indexes and components. Rate of spread, heat per unit area, flame length...

  13. The Role of Co-chaperones in Synaptic Proteostasis and Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Erica L. Gorenberg

    2017-05-01

    Full Text Available Synapses must be preserved throughout an organism's lifespan to allow for normal brain function and behavior. Synapse maintenance is challenging given the long distances between the termini and the cell body, reliance on axonal transport for delivery of newly synthesized presynaptic proteins, and high rates of synaptic vesicle exo- and endocytosis. Hence, synapses rely on efficient proteostasis mechanisms to preserve their structure and function. To this end, the synaptic compartment has specific chaperones to support its functions. Without proper synaptic chaperone activity, local proteostasis imbalances lead to neurotransmission deficits, dismantling of synapses, and neurodegeneration. In this review, we address the roles of four synaptic chaperones in the maintenance of the nerve terminal, as well as their genetic links to neurodegenerative disease. Three of these are Hsp40 co-chaperones (DNAJs: Cysteine String Protein alpha (CSPα; DNAJC5, auxilin (DNAJC6, and Receptor-Mediated Endocytosis 8 (RME-8; DNAJC13. These co-chaperones contain a conserved J domain through which they form a complex with heat shock cognate 70 (Hsc70, enhancing the chaperone's ATPase activity. CSPα is a synaptic vesicle protein known to chaperone the t-SNARE SNAP-25 and the endocytic GTPase dynamin-1, thereby regulating synaptic vesicle exocytosis and endocytosis. Auxilin binds assembled clathrin cages, and through its interactions with Hsc70 leads to the uncoating of clathrin-coated vesicles, a process necessary for the regeneration of synaptic vesicles. RME-8 is a co-chaperone on endosomes and may have a role in clathrin-coated vesicle endocytosis on this organelle. These three co-chaperones maintain client function by preserving folding and assembly to prevent client aggregation, but they do not break down aggregates that have already formed. The fourth synaptic chaperone we will discuss is Heat shock protein 110 (Hsp110, which interacts with Hsc70, DNAJAs, and

  14. Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure

    Science.gov (United States)

    McCarley, T. Ryan; Kolden, Crystal A.; Vaillant, Nicole M.; Hudak, Andrew T.; Smith, Alistair M.S.; Wing, Brian M.; Kellogg, Bryce; Kreitler, Jason R.

    2017-01-01

    Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Predominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field sampling plots. While these methods are important, field data is usually limited to opportunistic post-fire observations, and spectral data often lacks validation with specific variables of change. Additional uncertainty remains regarding how best to account for environmental variables influencing fire effects (e.g., weather) for which observational data cannot easily be acquired, and whether pre-fire agents of change such as bark beetle and timber harvest impact model accuracy. This study quantifies wildfire effects by correlating changes in forest structure derived from multi-temporal Light Detection and Ranging (LiDAR) acquisitions to multi-temporal spectral changes captured by the Landsat Thematic Mapper and Operational Land Imager for the 2012 Pole Creek Fire in central Oregon. Spatial regression modeling was assessed as a methodology to account for spatial autocorrelation, and model consistency was quantified across areas impacted by pre-fire mountain pine beetle and timber harvest. The strongest relationship (pseudo-r2 = 0.86, p LiDAR-derived estimate of canopy cover change. Relationships between percentage of LiDAR returns in forest strata and spectral indices generally increased in strength with strata height. Structural measurements made closer to the ground were not well correlated. The spatial regression approach improved all relationships, demonstrating its utility, but model performance declined across pre-fire agents of change, suggesting that such studies should stratify by pre-fire forest condition. This study establishes that spectral indices such as d74 and dNBR are most sensitive to wildfire-caused structural changes such as reduction in canopy cover and perform best when that structure has not been reduced pre-fire.

  15. Climatic stress increases forest fire severity across the western United States

    Science.gov (United States)

    Phillip J. van Mantgem; Jonathan C.B. Nesmith; MaryBeth Keifer; Eric E. Knapp; Alan Flint; Lorriane Flint

    2013-01-01

    Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after...

  16. Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico

    Science.gov (United States)

    Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.

    2013-05-01

    Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments

  17. A Combined Optogenetic-Knockdown Strategy Reveals a Major Role of Tomosyn in Mossy Fiber Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Yoav Ben-Simon

    2015-07-01

    Full Text Available Neurotransmitter release probability (Pr largely determines the dynamic properties of synapses. While much is known about the role of presynaptic proteins in transmitter release, their specific contribution to synaptic plasticity is unclear. One such protein, tomosyn, is believed to reduce Pr by interfering with the SNARE complex formation. Tomosyn is enriched at hippocampal mossy fiber-to-CA3 pyramidal cell synapses (MF-CA3, which characteristically exhibit low Pr, strong synaptic facilitation, and pre-synaptic protein kinase A (PKA-dependent long-term potentiation (LTP. To evaluate tomosyn’s role in MF-CA3 function, we used a combined knockdown (KD-optogenetic strategy whereby presynaptic neurons with reduced tomosyn levels were selectively activated by light. Using this approach in mouse hippocampal slices, we found that facilitation, LTP, and PKA-induced potentiation were significantly impaired at tomosyn-deficient synapses. These findings not only indicate that tomosyn is a key regulator of MF-CA3 plasticity but also highlight the power of a combined KD-optogenetic approach to determine the role of presynaptic proteins.

  18. Bi-directional astrocytic regulation of neuronal activity within a network

    Directory of Open Access Journals (Sweden)

    Susan Yu Gordleeva

    2012-11-01

    Full Text Available The concept of a tripartite synapse holds that astrocytes can affect both the pre- and postsynaptic compartments through the Ca2+-dependent release of gliotransmitters. Because astrocytic Ca2+ transients usually last for a few seconds, we assumed that astrocytic regulation of synaptic transmission may also occur on the scale of seconds. Here, we considered the basic physiological functions of tripartite synapses and investigated astrocytic regulation at the level of neural network activity. The firing dynamics of individual neurons in a spontaneous firing network was described by the Hodgkin-Huxley model. The neurons received excitatory synaptic input driven by the Poisson spike train with variable frequency. The mean field concentration of the released neurotransmitter was used to describe the presynaptic dynamics. The amplitudes of the excitatory postsynaptic currents (PSCs obeyed the gamma distribution law. In our model, astrocytes depressed the presynaptic release and enhanced the postsynaptic currents. As a result, low frequency synaptic input was suppressed while high frequency input was amplified. The analysis of the neuron spiking frequency as an indicator of network activity revealed that tripartite synaptic transmission dramatically changed the local network operation compared to bipartite synapses. Specifically, the astrocytes supported homeostatic regulation of the network activity by increasing or decreasing firing of the neurons. Thus, the astrocyte activation may modulate a transition of neural network into bistable regime of activity with two stable firing levels and spontaneous transitions between them.

  19. Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area.

    Science.gov (United States)

    Joshi, Abhilasha; Salib, Minas; Viney, Tim James; Dupret, David; Somogyi, Peter

    2017-12-20

    Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra cells show the highest rhythmicity among MS neurons and fire with short burst duration (median, 38 ms) preferentially at the trough of both CA1 theta and slow irregular oscillations, coincident with highest hippocampal excitability. Teevra cells synaptically target GABAergic axo-axonic and some CCK interneurons in restricted septo-temporal CA3 segments. The rhythmicity of their firing decreases from septal to temporal termination of individual axons. We hypothesize that Teevra neurons coordinate oscillatory activity across the septo-temporal axis, phasing the firing of specific CA3 interneurons, thereby contributing to the selection of pyramidal cell assemblies at the theta trough via disinhibition. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The impact of fire on habitat use by the short-snouted elephant ...

    African Journals Online (AJOL)

    Thickets were an important refuge both pre- and post-fire, but the proportion of thicket within ... of E. brachyrhynchus movements to patches of unburned vegetation. ... in fire management and allowing sufficient island patches to remain post-fire ...

  1. How to generate and interpret fire characteristics charts for surface and crown fire behavior

    Science.gov (United States)

    Patricia L. Andrews; Faith Ann Heinsch; Luke Schelvan

    2011-01-01

    A fire characteristics chart is a graph that presents primary related fire behavior characteristics-rate of spread, flame length, fireline intensity, and heat per unit area. It helps communicate and interpret modeled or observed fire behavior. The Fire Characteristics Chart computer program plots either observed fire behavior or values that have been calculated by...

  2. Fire test database

    International Nuclear Information System (INIS)

    Lee, J.A.

    1989-01-01

    This paper describes a project recently completed for EPRI by Impell. The purpose of the project was to develop a reference database of fire tests performed on non-typical fire rated assemblies. The database is designed for use by utility fire protection engineers to locate test reports for power plant fire rated assemblies. As utilities prepare to respond to Information Notice 88-04, the database will identify utilities, vendors or manufacturers who have specific fire test data. The database contains fire test report summaries for 729 tested configurations. For each summary, a contact is identified from whom a copy of the complete fire test report can be obtained. Five types of configurations are included: doors, dampers, seals, wraps and walls. The database is computerized. One version for IBM; one for Mac. Each database is accessed through user-friendly software which allows adding, deleting, browsing, etc. through the database. There are five major database files. One each for the five types of tested configurations. The contents of each provides significant information regarding the test method and the physical attributes of the tested configuration. 3 figs

  3. Attractor neural networks with resource-efficient synaptic connectivity

    Science.gov (United States)

    Pehlevan, Cengiz; Sengupta, Anirvan

    Memories are thought to be stored in the attractor states of recurrent neural networks. Here we explore how resource constraints interplay with memory storage function to shape synaptic connectivity of attractor networks. We propose that given a set of memories, in the form of population activity patterns, the neural circuit choses a synaptic connectivity configuration that minimizes a resource usage cost. We argue that the total synaptic weight (l1-norm) in the network measures the resource cost because synaptic weight is correlated with synaptic volume, which is a limited resource, and is proportional to neurotransmitter release and post-synaptic current, both of which cost energy. Using numerical simulations and replica theory, we characterize optimal connectivity profiles in resource-efficient attractor networks. Our theory explains several experimental observations on cortical connectivity profiles, 1) connectivity is sparse, because synapses are costly, 2) bidirectional connections are overrepresented and 3) are stronger, because attractor states need strong recurrence.

  4. Hydrological response of a small catchment burned by experimental fire

    Directory of Open Access Journals (Sweden)

    C. R. Stoof

    2012-02-01

    Full Text Available Fire can considerably change hydrological processes, increasing the risk of extreme flooding and erosion events. Although hydrological processes are largely affected by scale, catchment-scale studies on the hydrological impact of fire in Europe are scarce, and nested approaches are rarely used. We performed a catchment-scale experimental fire to improve insight into the drivers of fire impact on hydrology. In north-central Portugal, rainfall, canopy interception, streamflow and soil moisture were monitored in small shrub-covered paired catchments pre- and post-fire. The shrub cover was medium dense to dense (44 to 84% and pre-fire canopy interception was on average 48.7% of total rainfall. Fire increased streamflow volumes 1.6 times more than predicted, resulting in increased runoff coefficients and changed rainfall-streamflow relationships – although the increase in streamflow per unit rainfall was only significant at the subcatchment-scale. Fire also fastened the response of topsoil moisture to rainfall from 2.7 to 2.1 h (p = 0.058, and caused more rapid drying of topsoils after rain events. Since soil physical changes due to fire were not apparent, we suggest that changes resulting from vegetation removal played an important role in increasing streamflow after fire. Results stress that fire impact on hydrology is largely affected by scale, highlight the hydrological impact of fire on small scales, and emphasize the risk of overestimating fire impact when upscaling plot-scale studies to the catchment-scale. Finally, they increase understanding of the processes contributing to post-fire flooding and erosion events.

  5. Moderate Image Spectrometer (MODIS) Fire Radiative Energy: Physics and Applications

    Science.gov (United States)

    Kaufman, Y.

    2004-01-01

    MODIS fire channel does not saturate in the presence of fires. The fire channel therefore is used to estimate the fire radiative energy, a measure of the rate of biomass consumption in the fire. We found correlation between the fire radiative energy, the rate of formation of burn scars and the rate of emission of aerosol from the fires. Others found correlations between the fire radiative energy and the rate of biomass consumption. This relationships can be used to estimates the emissions from the fires and to estimate the fire hazards.

  6. Spread and burning behavior of continuous spill fires

    DEFF Research Database (Denmark)

    Zhao, Jinlong; Huang, Hong; Jomaas, Grunde

    2017-01-01

    Spill fire experiments with continuous discharge on a fireproof glass sheet were conducted to improve the understanding of spill fire spread and burning. Ethanol was used as the fuel and the discharge rate was varied from 2.8. mL/s to 7.6. mL/s. Three ignition conditions were used...... in the experiments; no ignition, instantaneous ignition and delayed ignition. The spread rate, regression rate, penetrated thermal radiation and the temperature of the bottom glass were analyzed. The experiments clearly show the entire spread process for spill fires. Further, the regression rate of spill fires...... at the quasi-steady burning was lower than that of pool fires and the ratio of the spill fires' regression rate to the pool fires' regression rate was found to be approximately 0.89. With respect to the radiative penetration and the heat conduction between the fuel layer and the glass, a regression rate...

  7. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Irving, John S

    2003-04-01

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  8. Fire behavior simulation in Mediterranean forests using the minimum travel time algorithm

    Science.gov (United States)

    Kostas Kalabokidis; Palaiologos Palaiologou; Mark A. Finney

    2014-01-01

    Recent large wildfires in Greece exemplify the need for pre-fire burn probability assessment and possible landscape fire flow estimation to enhance fire planning and resource allocation. The Minimum Travel Time (MTT) algorithm, incorporated as FlamMap's version five module, provide valuable fire behavior functions, while enabling multi-core utilization for the...

  9. Modeling of compartment fire

    International Nuclear Information System (INIS)

    Sathiah, P.; Siccama, A.; Visser, D.; Komen, E.

    2011-01-01

    Fire accident in a containment is a serious threat to nuclear reactors. Fire can cause substantial loss to life and property. The risk posed by fire can also exceed the risk from internal events within a nuclear reactor. Numerous research efforts have been performed to understand and analyze the phenomenon of fire in nuclear reactor and its consequences. Modeling of fire is an important subject in the field of fire safety engineering. Two approaches which are commonly used in fire modeling are zonal modeling and field modeling. The objective of this work is to compare zonal and field modeling approach against a pool fired experiment performed in a well-confined compartment. Numerical simulations were performed against experiments, which were conducted within PRISME program under the framework of OECD. In these experiments, effects of ventilation flow rate on heat release rate in a confined and mechanically ventilated compartment is investigated. Time dependent changes in gas temperature and oxygen mass fraction were measured. The trends obtained by numerical simulation performed using zonal model and field model compares well with experiments. Further validation is needed before this code can be used for fire safety analyses. (author)

  10. The impact of state fire safe cigarette policies on fire fatalities, injuries, and incidents.

    Science.gov (United States)

    Folz, David H; Shults, Chris

    Cigarettes are a leading cause of civilian deaths in home fires. Over the last decade, state fire service leaders and allied interest groups succeeded in persuading state lawmakers to require manufacturers to sell only low-ignition strength or "fire safe" cigarettes as a strategy to reduce these fatalities and the injuries and losses that stem from them. This article examines whether the states' fire safe cigarette laws actually helped to save lives, prevent injuries, and reduce the incidence of home fires ignited by cigarettes left unattended by smokers. Controlling for the effects of key demographic, social, economic, and housing variables, this study finds that the states' fire-safe cigarette policies had significant impacts on reducing the rate of smoking-related civilian fire deaths and the incidence of fires started by tobacco products. The findings also suggest that the states' fire safe cigarette policies may have helped to reduce the rate of smoking-related fire injuries. The study shows that collective actions by leaders in the fire service across the states can result in meaningful policy change that protects lives and advances public safety even when a political consensus for action is absent at the national level.

  11. Loss of Huntingtin stimulates capture of retrograde dense-core vesicles to increase synaptic neuropeptide stores.

    Science.gov (United States)

    Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S

    2017-08-01

    The Huntington's disease protein Huntingtin (Htt) regulates axonal transport of dense-core vesicles (DCVs) containing neurotrophins and neuropeptides. DCVs travel down axons to reach nerve terminals where they are either captured in synaptic boutons to support later release or reverse direction to reenter the axon as part of vesicle circulation. Currently, the impact of Htt on DCV dynamics in the terminal is unknown. Here we report that knockout of Drosophila Htt selectively reduces retrograde DCV flux at proximal boutons of motoneuron terminals. However, initiation of retrograde transport at the most distal bouton and transport velocity are unaffected suggesting that synaptic capture rate of these retrograde DCVs could be altered. In fact, tracking DCVs shows that retrograde synaptic capture efficiency is significantly elevated by Htt knockout or knockdown. Furthermore, synaptic boutons contain more neuropeptide in Htt knockout larvae even though bouton size, single DCV fluorescence intensity, neuropeptide release in response to electrical stimulation and subsequent activity-dependent capture are unaffected. Thus, loss of Htt increases synaptic capture as DCVs travel by retrograde transport through boutons resulting in reduced transport toward the axon and increased neuropeptide in the terminal. These results therefore identify native Htt as a regulator of synaptic capture and neuropeptide storage. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. A fire danger rating system for Hawaii

    Science.gov (United States)

    Robert E. Burgan; Francis M. Fujioka; George H. Hirata

    1974-01-01

    Extremes in rainfall on the Hawaiian Islands make it difficult to judge forest fire danger conditions. The use of an automatic data collection and computer processing system helps to monitor the problem.

  13. Fire resistant behaviour of cellulosic textile functionalized with wastage plant bio-molecules: A comparative scientific report.

    Science.gov (United States)

    Basak, Santanu; Wazed Ali, S

    2018-07-15

    Three different wastage plant based bio-molecules named banana peel powder (Musa acuminata) (BPP), coconut shell (Cocos nucifera) extract (CSE) and pomegranate rind (Punica granatum) extract (PRE) have been explored as fire resistant material on the cellulosic polymer (cotton fabric). To this end, extracts have been applied to the cotton fabric in different concentration at elevated temperature for specific time period. Treated cotton fabric showed 6 (BPP), 8.5 (CSE) and 12 (PRE) times lower vertical burning rate compared to the control cotton fabric. Thermo-gravimetry (TG) curves and the limiting oxygen index (LOI) value revealed that the PRE extract (LOI: 32) treated fabric encompassed more thermal stability compared to the BPP (LOI:26) and the CSE (LOI: 27) treated fabric as it showed higher oxygen index and more weight retention (40%) at higher temperature 450°C. Moreover, the carbonaceous samples remained after the burning of the extracts and the treated fabrics showed structural integration and more carbon content [65.6 (PRE extract) and 76.3% (PRE treated cotton)] compared to the fragile, net like char of the control cotton fabric, having less carbon content (49.8%). Gas Chromatography Mass spectroscopy (GC-MS) of the different extracts (CSE, PRE, BPP) used for the study showed the presence of high molecular weight aromatic phenolic compounds, tannin based compound and the nitrogen containing alkaloids, responsible for fire resistant effect of the different extract treated fabric. Besides fire retardancy, all the treated fabric showed attractive natural colour (measured by colour strength values) and there has been no adverse effect on the tensile strength property of the fabric after the treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. An operational system of fire danger rating over Mediterranean Europe

    Science.gov (United States)

    Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.

    2017-04-01

    A methodology is presented to assess fire danger based on the probability of exceedance of prescribed thresholds of daily released energy. The procedure is developed and tested over Mediterranean Europe, defined by latitude circles of 35 and 45°N and meridians of 10°W and 27.5°E, for the period 2010-2016. The procedure involves estimating the so-called static and daily probabilities of exceedance. For a given point, the static probability is estimated by the ratio of the number of daily fire occurrences releasing energy above a given threshold to the total number of occurrences inside a cell centred at the point. The daily probability of exceedance which takes into account meteorological factors by means of the Canadian Fire Weather Index (FWI) is in turn estimated based on a Generalized Pareto distribution with static probability and FWI as covariates of the scale parameter. The rationale of the procedure is that small fires, assessed by the static probability, have a weak dependence on weather, whereas the larger fires strongly depend on concurrent meteorological conditions. It is shown that observed frequencies of exceedance over the study area for the period 2010-2016 match with the estimated values of probability based on the developed models for static and daily probabilities of exceedance. Some (small) variability is however found between different years suggesting that refinements can be made in future works by using a larger sample to further increase the robustness of the method. The developed methodology presents the advantage of evaluating fire danger with the same criteria for all the study area, making it a good parameter to harmonize fire danger forecasts and forest management studies. Research was performed within the framework of EUMETSAT Satellite Application Facility for Land Surface Analysis (LSA SAF). Part of methods developed and results obtained are on the basis of the platform supported by The Navigator Company that is currently providing

  15. Fire Safety Consideration in the Pre-conceptual Design State of Pyro-Facillity

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hong Rae; Seo, Seok Jun; Lee, Hyo Jik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The government, in order to solve this problem, has organized a public engagement committee and is searching for a solution. To use sustainable nuclear energy, our country is also pursuing research and development of fast breeder reactor and pyroprocessing technology in accordance with the international movement of spent fuel recycling and efforts towards nuclear non-proliferation which is centered on the development and demonstration of recycling spent fuel and fast breeder reactors. Pyro-facility has different features with nuclear power plant. In the pyroprocess, chemical and electrochemical separation were took place in the hot cells and material at risk (MAR) is distributed in many working areas. In this paper, we conducted the fire modeling of hot cells to see the stability of pyrophoric materials which is considered as one of the potential hazardous materials in the main process cell. Based on modeling results, consideration of fire safety pyrofacility will be discussed. We performed preliminary hazard analysis for pyrofacility and summarized potential fire hazard. Pyrophoric material fire is the dominant hazard in the main process hot cell and fire modeling of cable tray in the cell was analyzed to see the stability of pyrophoric materials. Analysis results clearly shows that pyrophoric materials are prone to be affected.

  16. Learning by Erring: fire!

    Science.gov (United States)

    Bjugn, Roger; Hansen, Jarle

    2013-08-01

    Biorepositories may be affected by a number of emergencies ranging from bad publicity to natural disasters, and biorepositories should have plans for handling such situations. The emergency management process includes all phases from mitigation to recovery. Fire is one disaster that may cause extensive damage to both physical structures and humans. In this article, we analyze events related to a fire in a storage facility for mechanical freezers. The analysis covers both the pre-crisis stage, the fire itself, and the post-crisis stage. Even the best intended planning cannot stop a crisis from happening. However, an open-minded analysis of the crisis with focus on learning and quality improvement can improve an organization's ability to handle the next emergency situation.

  17. Econometric analysis of fire suppression production functions for large wildland fires

    Science.gov (United States)

    Thomas P. Holmes; David E. Calkin

    2013-01-01

    In this paper, we use operational data collected for large wildland fires to estimate the parameters of economic production functions that relate the rate of fireline construction with the level of fire suppression inputs (handcrews, dozers, engines and helicopters). These parameter estimates are then used to evaluate whether the productivity of fire suppression inputs...

  18. Hydrologic Effects of the 1988 Galena Fire, Black Hills Area, South Dakota

    Science.gov (United States)

    Driscoll, Daniel G.; Carter, Janet M.; Ohlen, Donald O.

    2004-01-01

    The Galena Fire burned about 16,788 acres of primarily ponderosa pine forest during July 5-8, 1988, in the Black Hills area of South Dakota. The fire burned primarily within the Grace Coolidge Creek drainage basin and almost entirely within the boundaries of Custer State Park. A U.S. Geological Survey gaging station with streamflow records dating back to 1977 was located along Grace Coolidge Creek within the burned area. About one-half of the gaging station's 26.8-square-mile drainage area was burned. The drainage basin for Bear Gulch, which is tributary to Grace Coolidge Creek, was burned particularly severely, with complete deforestation occurring in nearly the entirety of the area upstream from a gaging station that was installed in 1989. A study to evaluate effects of the Galena Fire on streamflow, geomorphology, and water quality was initiated in 1988. The geomorphologic and water-quality components of the study were completed by 1990 and are summarized in this report. A data-collection network consisting of streamflow- and precipitation-gaging stations was operated through water year 1998 for evaluation of effects on streamflow characteristics, including both annual-yield and peak-flow characteristics, which are the main focus of this report. Moderately burned areas did not experience a substantial increase in the rate of surface erosion; however, severely burned areas underwent surficial erosion nearly twice that of the unburned areas. The sediment production rate of Bear Gulch estimated 8 to 14 months after the fire was 870 ft3/acre (44 tons/acre). Substantial degradation of stream channels within the severely burned headwater areas of Bear Gulch was documented. Farther downstream, channel aggradation resulted from deposition of sediments transported from the headwater areas. The most notable water-quality effect was on concentrations of suspended sediment, which were orders of magnitude higher for Bear Gulch than for the unburned control area. Effects on

  19. Synapse geometry and receptor dynamics modulate synaptic strength.

    Directory of Open Access Journals (Sweden)

    Dominik Freche

    Full Text Available Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity.

  20. Synaptic vesicle distribution by conveyor belt.

    Science.gov (United States)

    Moughamian, Armen J; Holzbaur, Erika L F

    2012-03-02

    The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Suppression of pool fires with HRC-125 in a simulated engine nacelle.

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, David R. (INS, Inc., Lexington Park, MD); Hewson, John C.

    2007-06-01

    CFD simulations are conducted to predict the distribution of fire suppressant in an engine nacelle and to predict the suppression of pool fires by the application of this suppressant. In the baseline configuration, which is based on an installed system, suppressant is injected through four nozzles at a rate fast enough to suppress all simulated pool fires. Variations that reduce the mass of the suppression system (reducing the impact of the suppression system on meeting mission needs) are considered, including a reduction in the rate of suppressant injection, a reduction in the mass of suppressant and a reduction in the number of nozzles. In general, these variations should work to reduce the effectiveness of the suppression system, but the CFD results point out certain changes that have negligible impact, at least for the range of phenomena considered here. The results are compared with measurements where available. Comparisons with suppressant measurements are reasonable. A series of twenty-three fire suppression tests were conducted to check the predictions. The pre-test predictions were generally successful in identifying the range of successful suppression tests. In two separate cases, each where one nozzle of the suppression system was capped, the simulation results did indicate a failure to suppress for a condition where the tests indicated successful suppression. When the test-suppressant discharge rate was reduced by roughly 25%, the tests were in agreement with the predictions. That is, the simulations predict a failure to suppress slightly before observed in these cases.

  2. Short and Long-Term Attentional Firing Rates Can Be Explained by ST-Neuron Dynamics

    Directory of Open Access Journals (Sweden)

    Oscar J. Avella Gonzalez

    2018-03-01

    Full Text Available Attention modulates neural selectivity and optimizes the allocation of cortical resources during visual tasks. A large number of experimental studies in primates and humans provide ample evidence. As an underlying principle of visual attention, some theoretical models suggested the existence of a gain element that enhances contrast of the attended stimuli. In contrast, the Selective Tuning model of attention (ST proposes an attentional mechanism based on suppression of irrelevant signals. In this paper, we present an updated characterization of the ST-neuron proposed by the Selective Tuning model, and suggest that the inclusion of adaptation currents (Ih to ST-neurons may explain the temporal profiles of the firing rates recorded in single V4 cells during attentional tasks. Furthermore, using the model we show that the interaction between stimulus-selectivity of a neuron and attention shapes the profile of the firing rate, and is enough to explain its fast modulation and other discontinuities observed, when the neuron responds to a sudden switch of stimulus, or when one stimulus is added to another during a visual task.

  3. A Scale for Rating Fire-Prevention Contactors

    Science.gov (United States)

    M.L. Doolittle

    1979-01-01

    A scale is constructed to help fire-prevention program administrators determine if an individual contactor is effective at influencing people. The 24 items in the scale indicate the qualities that an effective contactor should have.

  4. Huntingtin is critical both pre- and postsynaptically for long-term learning-related synaptic plasticity in Aplysia.

    Directory of Open Access Journals (Sweden)

    Yun-Beom Choi

    Full Text Available Patients with Huntington's disease exhibit memory and cognitive deficits many years before manifesting motor disturbances. Similarly, several studies have shown that deficits in long-term synaptic plasticity, a cellular basis of memory formation and storage, occur well before motor disturbances in the hippocampus of the transgenic mouse models of Huntington's disease. The autosomal dominant inheritance pattern of Huntington's disease suggests the importance of the mutant protein, huntingtin, in pathogenesis of Huntington's disease, but wild type huntingtin also has been shown to be important for neuronal functions such as axonal transport. Yet, the role of wild type huntingtin in long-term synaptic plasticity has not been investigated in detail. We identified a huntingtin homolog in the marine snail Aplysia, and find that similar to the expression pattern in mammalian brain, huntingtin is widely expressed in neurons and glial cells. Importantly the expression of mRNAs of huntingtin is upregulated by repeated applications of serotonin, a modulatory transmitter released during learning in Aplysia. Furthermore, we find that huntingtin expression levels are critical, not only in presynaptic sensory neurons, but also in the postsynaptic motor neurons for serotonin-induced long-term facilitation at the sensory-to-motor neuron synapse of the Aplysia gill-withdrawal reflex. These results suggest a key role for huntingtin in long-term memory storage.

  5. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    KAUST Repository

    Burlakov, V. M.

    2012-01-10

    We introduce a bistability mechanism for long-term synaptic plasticity based on switching between two metastable states that contain significantly different numbers of synaptic receptors. One state is characterized by a two-dimensional gas of mobile interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out of the synapse. Transitions between the two states can be initiated by either an increase (potentiation) or a decrease (depotentiation) of the net receptor flux into the synapse. This changes the saturation level of the receptor gas and triggers nucleation or evaporation of receptor clusters. © 2012 American Physical Society.

  6. Analysis of Post-Fire Vegetation Recovery in the Mediterranean Basin using MODIS Derived Vegetation Indices

    Science.gov (United States)

    Hawtree, Daniel; San Miguel, Jesus; Sedano, Fernando; Kempeneers, Pieter

    2010-05-01

    The Mediterranean basin region is highly susceptible to wildfire, with approximately 60,000 individual fires and half a million ha of natural vegetation burnt per year. Of particular concern in this region is the impact of repeated wildfires on the ability of natural lands to return to a pre-fire state, and of the possibility of desertification of semi-arid areas. Given these concerns, understanding the temporal patterns of vegetation recovery is important for the management of environmental resources in the region. A valuable tool for evaluating these recovery patterns are vegetation indices derived from remote sensing data. Previous research on post-fire vegetation recovery conducted in this region has found significant variability in recovery times across different study sites. It is unclear what the primary variables are affecting the differences in the rates of recovery, and if any geographic patterns of behavior exist across the Mediterranean basin. This research has primarily been conducted using indices derived from Landsat imagery. However, no extensive analysis of vegetation regeneration for large regions has been published, and assessment of vegetation recovery on the basis of medium-spatial resolution imagery such as that of MODIS has not yet been analyzed. This study examines the temporal pattern of vegetation recovery in a number of fire sites in the Mediterranean basin, using data derived from MODIS 16 -day composite vegetation indices. The intent is to develop a more complete picture of the temporal sequence of vegetation recovery, and to evaluate what additional factors impact variations in the recovery sequence. In addition, this study evaluates the utility of using MODIS derived vegetation indices for regeneration studies, and compares the findings to earlier studies which rely on Landsat data. Wildfires occurring between the years 2000 and 2004 were considered as potential study sites for this research. Using the EFFIS dataset, all wildfires

  7. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Directory of Open Access Journals (Sweden)

    Christian Albers

    Full Text Available Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP. Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious and strong (teacher spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  8. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Science.gov (United States)

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  9. Modeling the Pyrolysis and Combustion Behaviors of Non-Charring and Intumescent-Protected Polymers Using “FiresCone”

    Directory of Open Access Journals (Sweden)

    Long Shi

    2015-10-01

    Full Text Available A mathematical model, named FiresCone, was developed to simulate the pyrolysis and combustion processes of different types of combustible materials, which also took into account both gas and solid phases. In the present study, some non-charring and intumescent-protected polymer samples were investigated regarding their combustion behaviors in response to pre-determined external heat fluxes. The modeling results were validated against the experimental outcomes obtained from a cone calorimeter. The predicted mass loss rates of the samples were found to fit reasonably well with the experimental data collected under various levels of external irradiation. Both the experimental and modeling results showed that the peak mass loss rate of the non-charring polymer material occurred near the end of burning, whereas for the intumescent-protected polymer it happed shortly after the start of the experiment. “FiresCone” is expected to act as a practical tool for the investigation of fire behavior of combustible materials. It is also expected to model fire scenarios under complicated conditions.

  10. Composition and Structure of Forest Fire Refugia: What Are the Ecosystem Legacies across Burned Landscapes?

    Directory of Open Access Journals (Sweden)

    Garrett W. Meigs

    2018-05-01

    Full Text Available Locations within forest fires that remain unburned or burn at low severity—known as fire refugia—are important components of contemporary burn mosaics, but their composition and structure at regional scales are poorly understood. Focusing on recent, large wildfires across the US Pacific Northwest (Oregon and Washington, our research objectives are to (1 classify fire refugia and burn severity based on relativized spectral change in Landsat time series; (2 quantify the pre-fire composition and structure of mapped fire refugia; (3 in forested areas, assess the relative abundance of fire refugia and other burn severity classes across forest composition and structure types. We analyzed a random sample of 99 recent fires in forest-dominated landscapes from 2004 to 2015 that collectively encompassed 612,629 ha. Across the region, fire refugia extent was substantial but variable from year to year, with an annual mean of 38% of fire extent and range of 15–60%. Overall, 85% of total fire extent was forested, with the other 15% being non-forest. In comparison, 31% of fire refugia extent was non-forest prior to the most recent fire, highlighting that mapped refugia do not necessarily contain tree-based ecosystem legacies. The most prevalent non-forest cover types in refugia were vegetated: shrub (40%, herbaceous (33%, and crops (18%. In forested areas, the relative abundance of fire refugia varied widely among pre-fire forest types (20–70% and structural conditions (23–55%. Consistent with fire regime theory, fire refugia and high burn severity areas were inversely proportional. Our findings underscore that researchers, managers, and other stakeholders should interpret burn severity maps through the lens of pre-fire land cover, especially given the increasing importance of fire and fire refugia under global change.

  11. Frequency and impact of Holocene fire in eastern South Island, New Zealand

    International Nuclear Information System (INIS)

    Rogers, G.M.; Walker, S.; Basher, L.M.; Lee, W.G.

    2007-01-01

    Our evaluation of pre-settlement Holocene (10,000-1000 BP) fire, using radiocarbon-dated charcoals and pollen and charcoal spectra in pollen diagrams, concludes that fires were infrequent and patchy in the eastern South Island of New Zealand. Charcoal radiocarbon dates point to three broad phases of fire frequency: infrequent patchy fires from 10,000 to 2600 BP; a slightly increased frequency between 2600 and 1000 BP; and an unprecedented increase of fires after 1000 BP, which peaked between 800 and 500 BP. We suggest that natural fire was driven more by vegetation flammability (with ignitibility and combustibility components) than climate within this rain-shadow region, that plant chemistry principally determined fire frequency, and that topography determined the extent of fire. The review suggests that there were rare spatial and temporal instances of a feedback relationship between fire and early-successional grasses in eastern South Island. This occurred only within narrow-range, cool environments, whose equilibrium communities were of flammable, phenolic-rich woody species and grasses, and was predominantly in the late pre-settlement period. Elsewhere, grasses and herbs were understorey components to otherwise low-flammability, hardwood forest and scrub. (author). 47 refs., 6 figs., 4 tabs

  12. Effectiveness of two contrasting mulching rates to reduce post-fire soil and organic matter losses

    Science.gov (United States)

    Silva, Flavio; Prats, Sergio; Vieira, Diana; Puga, João; Lopes, Rita; Gonzaléz-Pelayo, Oscar; Caetano, Ana; Campos, Isabel; Keizer, Jacob

    2017-04-01

    Wildfire-affected soils can reveal strong responses in runoff generation and associated soil (fertility) losses, thereby constituting a major threat to the typically shallow and poor forest soils of the Portuguese mountain areas. Mulching with logging residues from these forests has proven to provide a protective soil cover that is highly effective in reducing post-fire runoff and especially erosion (Prats et al., 2012, 2014, 2016a, 2016b). However, these past experiments have all applied comparatively large amounts of forest residues, in the order of 10 Mg ha-1, so that the relationship between application rate and effectiveness is still poorly known. Such relationship would nonetheless be of crucial importance for the employment of forest residue mulching in practice, as one of the possible emergency stabilization measures to be contemplated in post-fire land management of a recently-burned area. Further research gaps that exist in relation to post-fire forest residue mulching include its effectiveness in reducing soil fertility losses (C, N, P; Ferreira et al., 2016a, 2016b) and in minimizing export of contaminants (especially PAHs and metals; Campos et al., 2016), and its (secondary) impacts on soil biological activity and diversity (Puga et al., 2016) and on forest productivity (including through the addition of organic matter to the soil surface, partially replacing the burned litter layer; Prats et al. 2016b). In the framework of the EU-project RECARE, the effectiveness of two contrasting mulching rates with forest logging residues has been tested following a wildfire that on August 9th - 10th 2015 consumed some 715 ha of eucalypt plantations in the Semide municipality, central Portugal. Commercially-available logging residues (chopped bark and twigs) from eucalypt plantations were purchased, transported to the study site and applied to six out of nine 16 m2 erosion bounded plots that had been installed in a burned eucalypt plantation using a randomized

  13. Post Fire Vegetation Recovery in Portugal

    Science.gov (United States)

    Gouveia, Celia; Bastos, Ana; DaCamara, Carlos; Trigo, Ricardo M.

    2011-01-01

    Fires in Portugal, as in the Mediterranean ecosystems, have a complex effect on vegetation regeneration due to the different responses of vegetation to the variety of fire regimes and to the complexity of landscape structures. A thorough evaluation of vegetation recovery after fire events becomes therefore crucial in land management. In 2005, Portugal suffered a strong damage from forest fires that damaged an area of 300 000 ha of forest and shrub. This year are particularly interesting because it is associated the severe drought of 2005. The aim of the present study is to identify large burnt scars in Portugal during the 2005 fire seasons and monitoring vegetation behaviour throughout the pre and the post fire periods. The mono-parametric model developed by Gouveia et al. (2010), based on monthly values of NDVI, at the 1km×1km spatial scale, as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2009, was used.

  14. Effects of 17beta-estradiol on glutamate synaptic transmission and neuronal excitability in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Frondaroli, A; Scarduzio, M; Dutia, M B; Dieni, C; Pettorossi, V E

    2010-02-17

    We investigated the effects of the neurosteroid 17beta-estradiol (E(2)) on the evoked and spontaneous activity of rat medial vestibular nucleus (MVN) neurons in brainstem slices. E(2) enhances the synaptic response to vestibular nerve stimulation in type B neurons and depresses the spontaneous discharge in both type A and B neurons. The amplitude of the field potential, as well as the excitatory post-synaptic potential (EPSP) and current (EPSC), in type B neurons, are enhanced by E(2). Both effects are long-term phenomena since they outlast the drug washout. The enhancement of synaptic response is mainly due to facilitation of glutamate release mediated by pre-synaptic N-methyl-D-aspartate receptors (NMDARs), since the reduction of paired pulse ratio (PPR) and the increase of miniature EPSC frequency after E(2) are abolished under D-(-)-2-amino-5-phosphonopentanoic acid (AP-5). E(2) also facilitates post-synaptic NMDARs, but it does not affect directly alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and group I-metabotropic glutamate receptors (mGluRs-I). In contrast, the depression of the spontaneous discharge of type A and type B neurons appears to depend on E(2) modulation of intrinsic ion conductances, as the effect remains after blockade of glutamate, GABA and glycine receptors (GlyRs). The net effect of E(2) is to enhance the signal-to-noise ratio of the synaptic response in type B neurons, relative to resting activity of all MVN neurons. These findings provide evidence for a novel potential mechanism to modulate the responsiveness of vestibular neurons to afferent inputs, and so regulate vestibular function in vivo.

  15. Synthesis of knowledge of extreme fire behavior: volume I for fire managers

    Science.gov (United States)

    Paul A. Werth; Brian E. Potter; Craig B. Clements; Mark A. Finney; Scott L. Goodrick; Martin E. Alexander; Miguel G. Cruz; Jason A. Forthofer; Sara S. McAllister

    2011-01-01

    The National Wildfire Coordinating Group definition of extreme fire behavior (EFB) indicates a level of fire behavior characteristics that ordinarily precludes methods of direct control action. One or more of the following is usually involved: high rate of spread, prolific crowning/spotting, presence of fire whirls, and strong convection column. Predictability is...

  16. Recurrent fires and environment shape the vegetation in Quercus suber L. woodlands and maquis.

    Science.gov (United States)

    Schaffhauser, Alice; Curt, Thomas; Véla, Errol; Tatoni, Thierry

    2012-06-01

    The effects of fire recurrence on vegetation patterns in Quercus suber L. and Erica-Cistus communities in Mediterranean fire-prone ecosystems of south-eastern France were examined on stands belonging to 5 fire classes, corresponding to different numbers of fires (from 0 to 4) and time intervals between fires since 1959. A common pool of species was identified among the plots, which was typical of both open and closed maquis. Fire recurrence reduced the abundance of trees and herbs, whereas it increased the abundance of small shrubs. Richness differed significantly between the most contrasting classes of fire recurrence, with maximal values found in control plots and minimal values in plots that had burned recurrently and recently. Equitability indices did not vary significantly, in contrast to Shannon's diversity index which mostly correlated with richness. Forest ecosystems that have burnt once or twice in the last 50 years were resilient; that is to say they recovered a biomass and composition similar to that of the pre-fire state. However, after more than 3-4 fires, shrubland communities displayed lower species richness and diversity indices than unburned plots. The time since the last fire and the number of fires were the most explanatory fire variables, governing the structure of post-fire plant communities. However, environmental factors, such as slope or exposure, also made a significant contribution. Higher rates of fire recurrence can affect the persistence or expansion of shrublands in the future, as observed in other Mediterranean areas. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  17. 17β-Estradiol-Induced Synaptic Rearrangements Are Accompanied by Altered Ectonucleotidase Activities in Male Rat Hippocampal Synaptosomes.

    Science.gov (United States)

    Mitrović, Nataša; Zarić, Marina; Drakulić, Dunja; Martinović, Jelena; Sévigny, Jean; Stanojlović, Miloš; Nedeljković, Nadežda; Grković, Ivana

    2017-03-01

    17β-Estradiol (E2) rapidly, by binding to membrane estrogen receptors, activates cell signaling cascades which induce formation of new dendritic spines in the hippocampus of males as in females, but the interaction with other metabolic processes, such as extracellular adenine nucleotides metabolism, are currently unknown. Extracellular adenine nucleotides play significant roles, controlling excitatory glutamatergic synapses and development of neural circuits and synaptic plasticity. Their precise regulation in the synaptic cleft is tightly controlled by ecto-nucleoside triphosphate diphosphohydrolase (NTPDase)/ecto-5'-nucleotidase (eN) enzyme chain. Therefore, we sought to clarify whether a single systemic injection of E2 in male rats is accompanied by changes in the expression of the pre- and postsynaptic proteins and downstream kinases linked to E2-induced synaptic rearrangement as well as alterations in NTPDase/eN pathway in the hippocampal synaptosomes. Obtained data showed activation of mammalian target of rapamycin and upregulation of key synaptic proteins necessary for spine formation, 24 h after systemic E2 administration. In E2-mediated conditions, we found downregulation of NTPDase1 and NTPDase2 and attenuation of adenine nucleotide hydrolysis by NTPDase/eN enzyme chain, without changes in NTPDase3 properties and augmentation of synaptic tissue-nonspecific alkaline phosphatase (TNAP) activity. Despite reduced NTPDase activities, increased TNAP activity probably prevents toxic accumulation of ATP in the extracellular milieu and also hydrolyzes accumulated ADP due to unchanged NTPDase3 activity. Thus, our initial evaluation supports idea of specific roles of different ectonucleotidases and their coordinated actions in E2-mediated spine remodeling and maintenance.

  18. The effects of raking on sugar pine mortality following prescribed fire in Sequoia and Kings Canyon National Parks, California, USA

    Science.gov (United States)

    Nesmith, Jonathan C. B.; O'Hara, Kevin L.; van Mantgem, Phillip J.; de Valpine, Perry

    2010-01-01

    Prescribed fire is an important tool for fuel reduction, the control of competing vegetation, and forest restoration. The accumulated fuels associated with historical fire exclusion can cause undesirably high tree mortality rates following prescribed fires and wildfires. This is especially true for sugar pine (Pinus lambertiana Douglas), which is already negatively affected by the introduced pathogen white pine blister rust (Cronartium ribicola J.C. Fisch. ex Rabenh). We tested the efficacy of raking away fuels around the base of sugar pine to reduce mortality following prescribed fire in Sequoia and Kings Canyon national parks, California, USA. This study was conducted in three prescribed fires and included 457 trees, half of which had the fuels around their bases raked away to mineral soil to 0.5 m away from the stem. Fire effects were assessed and tree mortality was recorded for three years after prescribed fires. Overall, raking had no detectable effect on mortality: raked trees averaged 30% mortality compared to 36% for unraked trees. There was a significant effect, however, between the interaction of raking and average pre-treatment forest floor fuel depth: the predicted probability of survival of a 50 cm dbh tree was 0.94 vs. 0.96 when average pre-treatment fuel depth was 0 cm for a raked and unraked tree, respectively. When average pre-treatment forest floor fuel depth was 30 cm, the predicted probability of survival for a raked 50 cm dbh tree was 0.60 compared to only 0.07 for an unraked tree. Raking did not affect mortality when fire intensity, measured as percent crown volume scorched, was very low (0% scorch) or very high (>80% scorch), but the raking treatment significantly increased the proportion of trees that survived by 9.6% for trees that burned under moderate fire intensity (1% to 80% scorch). Raking significantly reduced the likelihood of bole charring and bark beetle activity three years post fire. Fuel depth and anticipated fire intensity need

  19. Probe Measurements of Ash Deposit Formation Rate and Shedding in a Biomass Suspension-Fired boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    The aim of this study was to investigate ash deposit formation rate, heat uptake reduction and deposit removal by using advanced online ash deposition and sootblowing probes in a 350 MWth suspension-fired boiler, utilizing wood and straw pellets as fuel. The influence of fuel type (straw share...

  20. Alzheimer’s disease Aβ assemblies mediating rapid disruption of synaptic plasticity and memory

    Directory of Open Access Journals (Sweden)

    Klyubin Igor

    2012-07-01

    Full Text Available Abstract Alzheimer’s disease (AD is characterized by episodic memory impairment that often precedes clinical diagnosis by many years. Probing the mechanisms of such impairment may provide much needed means of diagnosis and therapeutic intervention at an early, pre-dementia, stage. Prior to the onset of significant neurodegeneration, the structural and functional integrity of synapses in mnemonic circuitry is severely compromised in the presence of amyloidosis. This review examines recent evidence evaluating the role of amyloid-ß protein (Aβ in causing rapid disruption of synaptic plasticity and memory impairment. We evaluate the relative importance of different sizes and conformations of Aβ, including monomer, oligomer, protofibril and fibril. We pay particular attention to recent controversies over the relevance to the pathophysiology of AD of different water soluble Aβ aggregates and the importance of cellular prion protein in mediating their effects. Current data are consistent with the view that both low-n oligomers and larger soluble assemblies present in AD brain, some of them via a direct interaction with cellular prion protein, cause synaptic memory failure. At the two extremes of aggregation, monomers and fibrils appear to act in vivo both as sources and sinks of certain metastable conformations of soluble aggregates that powerfully disrupt synaptic plasticity. The same principle appears to apply to other synaptotoxic amyloidogenic proteins including tau, α-synuclein and prion protein.

  1. Fire analog: a comparison between fire plumes and energy center cooling tower plumes

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-10-01

    Thermal plumes or convection columns associated with large fires are compared to thermal plumes from cooling towers and proposed energy centers to evaluate the fire analog concept. Energy release rates of mass fires are generally larger than for single or small groups of cooling towers but are comparable to proposed large energy centers. However, significant physical differences exist between cooling tower plumes and fire plumes. Cooling tower plumes are generally dominated by ambient wind, stability and turbulence conditions. Fire plumes, depending on burning rates and other factors, can transform into convective columns which may cause the fire behavior to become more violent. This transformation can cause strong inflow winds and updrafts, turbulence and concentrated vortices. Intense convective columns may interact with ambient winds to create significant downwind effects such as wakes and Karman vortex streets. These characteristics have not been observed with cooling tower plumes to date. The differences in physical characteristics between cooling tower and fire plumes makes the fire analog concept very questionable even though the approximate energy requirements appear to be satisfied in case of large energy centers. Additional research is suggested in studying the upper-level plume characteristics of small experimental fires so this information can be correlated with similar data from cooling towers. Numerical simulation of fires and proposed multiple cooling tower systems could also provide comparative data.

  2. PRE-ELECTIONAL DECREASE OF THE UNEMPLOYMENT RATE

    Directory of Open Access Journals (Sweden)

    Damjan Miličević

    2013-02-01

    Full Text Available Opportunistic business cycle models test whether the current government has the ability to reduce unemployment in pre-election period. First opportunistic business cycle models tested regressions using unemployment rate as the dependent variable, and for explanatory variables used unemployment rate in the previous two periods and political dummy variable defined as unity several quarters prior to election and zero elsewhere. Such models did not find evidence of opportunistic cycle for unemployment. Haynes and Stone in their model estimated regressions using unemployment as the dependent variable and sixteen dummy variables as explanatory variables (one for each quarter in the Presidential electoral term. Results showed that unemployment has roughly sinusoidal sixteen quarter cycle, where unemployment troughs on average the quarter of the election. Mentioned models are tested with data for the United States for the period from 1948 to 2011 where regressions results coincide with models mentioned in the article.

  3. Fire effects on the Point Reyes Mountain Beaver (Aplodontia rufa phaea) at Point Reyes National Seashore, 10 years after the Vision Fire

    Science.gov (United States)

    Fellers, Gary M.; Osbourn, Michael

    2009-01-01

    The 1995 Vision Fire burned 5000 ha and destroyed 40% of the habitat of the Point Reyes Mountain Beaver (Aplodontia rufa phaea). Surveys immediately post-fire and in 2000 showed that only 0.4 to 1.7% of Mountain Beavers within the burn area survived. In 2000, dense, ground-hugging Blue-blossom Ceanothus (Ceanothus thrysiflorus) appeared to make coastal scrub thickets much less suitable for Mountain Beavers even though the number of burrows at our 11 study sites had returned to 88% of pre-fire numbers. In 2005 (10 y post-fire), the habitat appeared to be better for Mountain Beavers; Blue-blossom Ceanothus had diminished and vegetation more typical of northern coastal scrub, such as Coyote Brush (Baccharis pilularis) overstory with a lower layer of herbaceous vegetation, had greatly increased; but the number of Mountain Beaver burrows had declined to 52% of pre-fire numbers and there was little change in the number of sites occupied between our 2000 and 2005 surveys. With the expected successional changes in thicket structure, Mountain Beaver populations are likely to recover further, but there will probably be considerable variation in how each population stabilizes.

  4. Cerebral CBM1 neuron contributes to synaptic modulation appearing during rejection of seaweed in Aplysia kurodai.

    Science.gov (United States)

    Narusuye, Kenji; Nagahama, Tatsumi

    2002-11-01

    The Japanese species Aplysia kurodai feeds well on Ulva but rejects Gelidium with distinctive rhythmic patterned movements of the jaws and radula. We have previously shown that the patterned jaw movements during the rejection of Gelidium might be caused by long-lasting suppression of the monosynaptic transmission from the multiaction MA neurons to the jaw-closing (JC) motor neurons in the buccal ganglia and that the modulation might be directly produced by some cerebral neurons. In the present paper, we have identified a pair of catecholaminergic neurons (CBM1) in bilateral cerebral M clusters. The CBM1, probably equivalent to CBI-1 in A. californica, simultaneously produced monosynaptic excitatory postsynaptic potentials (EPSPs) in the MA and JC neurons. Firing of the CBM1 reduced the size of the inhibitory postsynaptic currents (IPSCs) in the JC neuron, evoked by the MA spikes, for >100 s. Moreover, the application of dopamine mimicked the CBM1 modulatory effects and pretreatment with a D1 antagonist, SCH23390, blocked the modulatory effects induced by dopamine. It could also largely block the modulatory effects induced by the CBM1 firing. These results suggest that the CBM1 may directly modulate the synaptic transmission by releasing dopamine. Moreover, we explored the CBM1 spike activity induced by taste stimulation of the animal lips with seaweed extracts by the use of calcium imaging. The calcium-sensitive dye, Calcium Green-1, was iontophoretically loaded into a cell body of the CBM1 using a microelectrode. Application of either Ulva or Gelidium extract to the lips increased the fluorescence intensity, but the Gelidium extract always induced a larger change in fluorescence compared with the Ulva extract, although the solution used induced the maximum spike responses of the CBM1 for each of the seaweed extracts. When the firing frequency of the CBM1 activity after taste stimulation was estimated, the Gelidium extract induced a spike activity of ~30 spikes

  5. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction

    Directory of Open Access Journals (Sweden)

    Aile evan Huijstee

    2015-01-01

    Full Text Available Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behaviour, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA. This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc and the prefrontal cortex (PFC, with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioural symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodelling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction.

  6. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction

    Science.gov (United States)

    van Huijstee, Aile N.; Mansvelder, Huibert D.

    2015-01-01

    Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine (DA) system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behavior, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA). This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc) and the prefrontal cortex (PFC), with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioral symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodeling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction. PMID:25653591

  7. A Computational Model to Investigate Astrocytic Glutamate Uptake Influence on Synaptic Transmission and Neuronal Spiking

    Directory of Open Access Journals (Sweden)

    Sushmita Lakshmi Allam

    2012-10-01

    Full Text Available Over the past decades, our view of astrocytes has switched from passive support cells to active processing elements in the brain. The current view is that astrocytes shape neuronal communication and also play an important role in many neurodegenerative diseases. Despite the growing awareness of the importance of astrocytes, the exact mechanisms underlying neuron-astrocyte communication and the physiological consequences of astrocytic-neuronal interactions remain largely unclear. In this work, we define a modeling framework that will permit to address unanswered questions regarding the role of astrocytes. Our computational model of a detailed glutamatergic synapse facilitates the analysis of neural system responses to various stimuli and conditions that are otherwise difficult to obtain experimentally, in particular the readouts at the sub-cellular level. In this paper, we extend a detailed glutamatergic synaptic model, to include astrocytic glutamate transporters. We demonstrate how these glial transporters, responsible for the majority of glutamate uptake, modulate synaptic transmission mediated by ionotropic AMPA and NMDA receptors at glutamatergic synapses. Furthermore, we investigate how these local signaling effects at the synaptic level are translated into varying spatio-temporal patterns of neuron firing. Paired pulse stimulation results reveal that the effect of astrocytic glutamate uptake is more apparent when the input inter-spike interval is sufficiently long to allow the receptors to recover from desensitization. These results suggest an important functional role of astrocytes in spike timing dependent processes and demand further investigation of the molecular basis of certain neurological diseases specifically related to alterations in astrocytic glutamate uptake, such as epilepsy.

  8. Real-time relationship between PKA biochemical signal network dynamics and increased action potential firing rate in heart pacemaker cells: Kinetics of PKA activation in heart pacemaker cells.

    Science.gov (United States)

    Yaniv, Yael; Ganesan, Ambhighainath; Yang, Dongmei; Ziman, Bruce D; Lyashkov, Alexey E; Levchenko, Andre; Zhang, Jin; Lakatta, Edward G

    2015-09-01

    cAMP-PKA protein kinase is a key nodal signaling pathway that regulates a wide range of heart pacemaker cell functions. These functions are predicted to be involved in regulation of spontaneous action potential (AP) generation of these cells. Here we investigate if the kinetics and stoichiometry of increase in PKA activity match the increase in AP firing rate in response to β-adrenergic receptor (β-AR) stimulation or phosphodiesterase (PDE) inhibition, that alters the AP firing rate of heart sinoatrial pacemaker cells. In cultured adult rabbit pacemaker cells infected with an adenovirus expressing the FRET sensor AKAR3, the EC50 in response to graded increases in the intensity of β-AR stimulation (by Isoproterenol) the magnitude of the increases in PKA activity and the spontaneous AP firing rate were similar (0.4±0.1nM vs. 0.6±0.15nM, respectively). Moreover, the kinetics (t1/2) of the increases in PKA activity and spontaneous AP firing rate in response to β-AR stimulation or PDE inhibition were tightly linked. We characterized the system rate-limiting biochemical reactions by integrating these experimentally derived data into a mechanistic-computational model. Model simulations predicted that phospholamban phosphorylation is a potent target of the increase in PKA activity that links to increase in spontaneous AP firing rate. In summary, the kinetics and stoichiometry of increases in PKA activity in response to a physiological (β-AR stimulation) or pharmacological (PDE inhibitor) stimuli match those of changes in the AP firing rate. Thus Ca(2+)-cAMP/PKA-dependent phosphorylation limits the rate and magnitude of increase in spontaneous AP firing rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Molecular mechanisms of synaptic remodeling in alcoholism.

    Science.gov (United States)

    Kyzar, Evan J; Pandey, Subhash C

    2015-08-05

    Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism. Published by Elsevier Ireland Ltd.

  10. Duration of fuels reduction following prescribed fire in coniferous forests of U.S. national parks in California and the Colorado Plateau

    Science.gov (United States)

    van Mantgem, Phillip J.; Lalemand, Laura; Keifer, MaryBeth; Kane, Jeffrey M.

    2016-01-01

    Prescribed fire is a widely used forest management tool, yet the long-term effectiveness of prescribed fire in reducing fuels and fire hazards in many vegetation types is not well documented. We assessed the magnitude and duration of reductions in surface fuels and modeled fire hazards in coniferous forests across nine U.S. national parks in California and the Colorado Plateau. We used observations from a prescribed fire effects monitoring program that feature standard forest and surface fuels inventories conducted pre-fire, immediately following an initial (first-entry) prescribed fire and at varying intervals up to >20 years post-fire. A subset of these plots was subjected to prescribed fire again (second-entry) with continued monitoring. Prescribed fire effects were highly variable among plots, but we found on average first-entry fires resulted in a significant post-fire reduction in surface fuels, with litter and duff fuels not returning to pre-fire levels over the length of our observations. Fine and coarse woody fuels often took a decade or longer to return to pre-fire levels. For second-entry fires we found continued fuels reductions, without strong evidence of fuel loads returning to levels observed immediately prior to second-entry fire. Following both first- and second-entry fire there were increases in estimated canopy base heights, along with reductions in estimated canopy bulk density and modeled flame lengths. We did not find evidence of return to pre-fire conditions during our observation intervals for these measures of fire hazard. Our results show that prescribed fire can be a valuable tool to reduce fire hazards and, depending on forest conditions and the measurement used, reductions in fire hazard can last for decades. Second-entry prescribed fire appeared to reinforce the reduction in fuels and fire hazard from first-entry fires.

  11. A novel solar energy integrated low-rank coal fired power generation using coal pre-drying and an absorption heat pump

    International Nuclear Information System (INIS)

    Xu, Cheng; Bai, Pu; Xin, Tuantuan; Hu, Yue; Xu, Gang; Yang, Yongping

    2017-01-01

    Highlights: •An improved solar energy integrated LRC fired power generation is proposed. •High efficient and economic feasible solar energy conversion is achieved. •Cold-end losses of the boiler and condenser are reduced. •The energy and exergy efficiencies of the overall system are improved. -- Abstract: A novel solar energy integrated low-rank coal (LRC) fired power generation using coal pre-drying and an absorption heat pump (AHP) was proposed. The proposed integrated system efficiently utilizes the solar energy collected from the parabolic trough to drive the AHP to absorb the low-grade waste heat of the steam cycle, achieving larger amount of heat with suitable temperature for coal’s moisture removal prior to the furnace. Through employing the proposed system, the solar energy could be partially converted into the high-grade coal’s heating value and the cold-end losses of the boiler and the steam cycle could be reduced simultaneously, leading to a high-efficient solar energy conversion together with a preferable overall thermal efficiency of the power generation. The results of the detailed thermodynamic and economic analyses showed that, using the proposed integrated concept in a typical 600 MW LRC-fired power plant could reduce the raw coal consumption by 4.6 kg/s with overall energy and exergy efficiencies improvement of 1.2 and 1.8 percentage points, respectively, as 73.0 MW th solar thermal energy was introduced. The cost of the solar generated electric power could be as low as $0.044/kW h. This work provides an improved concept to further advance the solar energy conversion and utilisation in solar-hybrid coal-fired power generation.

  12. Fire-safety engineering and performance-based codes

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    project administrators, etc. The book deals with the following topics: • Historical presentation on the subject of fire • Legislation and building project administration • European fire standardization • Passive and active fire protection • Performance-based Codes • Fire-safety Engineering • Fundamental......Fire-safety Engineering is written as a textbook for Engineering students at universities and other institutions of higher education that teach in the area of fire. The book can also be used as a work of reference for consulting engineers, Building product manufacturers, contractors, building...... thermodynamics • Heat exchange during the fire process • Skin burns • Burning rate, energy release rate and design fires • Proposal to Risk-based design fires • Proposal to a Fire scale • Material ignition and flame spread • Fire dynamics in buildings • Combustion products and toxic gases • Smoke inhalation...

  13. Temperature calculation in fire safety engineering

    CERN Document Server

    Wickström, Ulf

    2016-01-01

    This book provides a consistent scientific background to engineering calculation methods applicable to analyses of materials reaction-to-fire, as well as fire resistance of structures. Several new and unique formulas and diagrams which facilitate calculations are presented. It focuses on problems involving high temperature conditions and, in particular, defines boundary conditions in a suitable way for calculations. A large portion of the book is devoted to boundary conditions and measurements of thermal exposure by radiation and convection. The concepts and theories of adiabatic surface temperature and measurements of temperature with plate thermometers are thoroughly explained. Also presented is a renewed method for modeling compartment fires, with the resulting simple and accurate prediction tools for both pre- and post-flashover fires. The final chapters deal with temperature calculations in steel, concrete and timber structures exposed to standard time-temperature fire curves. Useful temperature calculat...

  14. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation

    Directory of Open Access Journals (Sweden)

    Sara Calafate

    2015-05-01

    Full Text Available Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer’s disease (AD. Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology.

  15. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation.

    Science.gov (United States)

    Calafate, Sara; Buist, Arjan; Miskiewicz, Katarzyna; Vijayan, Vinoy; Daneels, Guy; de Strooper, Bart; de Wit, Joris; Verstreken, Patrik; Moechars, Diederik

    2015-05-26

    Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer's disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. SYNAPTIC DEPRESSION IN DEEP NEURAL NETWORKS FOR SPEECH PROCESSING.

    Science.gov (United States)

    Zhang, Wenhao; Li, Hanyu; Yang, Minda; Mesgarani, Nima

    2016-03-01

    A characteristic property of biological neurons is their ability to dynamically change the synaptic efficacy in response to variable input conditions. This mechanism, known as synaptic depression, significantly contributes to the formation of normalized representation of speech features. Synaptic depression also contributes to the robust performance of biological systems. In this paper, we describe how synaptic depression can be modeled and incorporated into deep neural network architectures to improve their generalization ability. We observed that when synaptic depression is added to the hidden layers of a neural network, it reduces the effect of changing background activity in the node activations. In addition, we show that when synaptic depression is included in a deep neural network trained for phoneme classification, the performance of the network improves under noisy conditions not included in the training phase. Our results suggest that more complete neuron models may further reduce the gap between the biological performance and artificial computing, resulting in networks that better generalize to novel signal conditions.

  17. Nicotinic mechanisms influencing synaptic plasticity in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    Andon Nicholas PLACZEK; Tao A ZHANG; John Anthony DANI

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed throughout the hippocampus, and nicotinic signaling plays an important role in neuronal function. In the context of learning and memory related behaviors associated with hippocampal function, a potentially significant feature of nAChR activity is the impact it has on synaptic plasticity. Synaptic plasticity in hippocampal neurons has long been considered a contributing cellular mechanism of learning and memory. These same kinds of cellular mechanisms are a factor in the development of nicotine addiction. Nicotinic signaling has been demonstrated by in vitro studies to affect synaptic plasticity in hippocampal neurons via multiple steps, and the signaling has also been shown to evoke synaptic plasticity in vivo. This review focuses on the nAChRs subtypes that contribute to hippocampal synaptic plasticity at the cellular and circuit level. It also considers nicotinic influences over long-term changes in the hippocampus that may contribute to addiction.

  18. Spaceflight-induced synaptic modifications within hair cells of the mammalian utricle.

    Science.gov (United States)

    Sultemeier, David R; Choy, Kristel R; Schweizer, Felix E; Hoffman, Larry F

    2017-06-01

    Exposure to the microgravity conditions of spaceflight alleviates the load normally imposed by the Earth's gravitational field on the inner ear utricular epithelia. Previous ultrastructural investigations have shown that spaceflight induces an increase in synapse density within hair cells of the rat utricle. However, the utricle exhibits broad physiological heterogeneity across different epithelial regions, and it is unknown whether capabilities for synaptic plasticity generalize to hair cells across its topography. To achieve systematic and broader sampling of the epithelium than was previously conducted, we used immunohistochemistry and volumetric image analyses to quantify synapse distributions across representative utricular regions in specimens from mice exposed to spaceflight (a 15-day mission of the space shuttle Discovery). These measures were compared with similarly sampled Earth-bound controls. Following paraformaldehyde fixation and microdissection, immunohistochemistry was performed on intact specimens to label presynaptic ribbons (anti-CtBP2) and postsynaptic receptor complexes (anti-Shank1A). Synapses were identified as closely apposed pre- and postsynaptic puncta. Epithelia from horizontal semicircular canal cristae served as "within-specimen" controls, whereas utricles and cristae from Earth-bound cohorts served as experimental controls. We found that synapse densities decreased in the medial extrastriolae of microgravity specimens compared with experimental controls, whereas they were unchanged in the striolae and horizontal cristae from the two conditions. These data demonstrate that structural plasticity was topographically localized to the utricular region that encodes very low frequency and static changes in linear acceleration, and illuminates the remarkable capabilities of utricular hair cells for synaptic plasticity in adapting to novel gravitational environments. NEW & NOTEWORTHY Spaceflight imposes a radically different sensory environment

  19. Synaptic degeneration and remodelling after fast kindling of the olfactory bulb

    DEFF Research Database (Denmark)

    Woldbye, D P; Bolwig, T G; Kragh, J

    1996-01-01

    in the basolateral amygdala and dentate gyrus, suggesting that these regions may be functionally altered during the kindling process. In the piriform cortex and dentate gyrus increased NCAM/D3(SNAP-25) ratios found ipsilaterally at seven days after kindling probably reflect an elevated rate of synaptic remodelling...

  20. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    OpenAIRE

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2010-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic ...

  1. Alcohol skin preparation causes surgical fires.

    Science.gov (United States)

    Rocos, B; Donaldson, L J

    2012-03-01

    Surgical fires are a rare but serious preventable safety risk in modern hospitals. Data from the US show that up to 650 surgical fires occur each year, with up to 5% causing death or serious harm. This study used the National Reporting and Learning Service (NRLS) database at the National Patient Safety Agency to explore whether spirit-based surgical skin preparation fluid contributes to the cause of surgical fires. The NRLS database was interrogated for all incidents of surgical fires reported between 1 March 2004 and 1 March 2011. Each report was scrutinised manually to discover the cause of the fire. Thirteen surgical fires were reported during the study period. Of these, 11 were found to be directly related to spirit-based surgical skin preparation or preparation soaked swabs and drapes. Despite manufacturer's instructions and warnings, surgical fires continue to occur. Guidance published in the UK and US states that spirit-based skin preparation solutions should continue to be used but sets out some precautions. It may be that fire risk should be included in pre-surgical World Health Organization checklists or in the surgical training curriculum. Surgical staff should be aware of the risk that spirit-based skin preparation fluids pose and should take action to minimise the chance of fire occurring.

  2. A new technique for fire risk estimation in the wildland urban interface

    Science.gov (United States)

    Dasgupta, S.; Qu, J. J.; Hao, X.

    A novel technique based on the physical variable of pre-ignition energy is proposed for assessing fire risk in the Grassland-Urban-Interface The physical basis lends meaning a site and season independent applicability possibilities for computing spread rates and ignition probabilities features contemporary fire risk indices usually lack The method requires estimates of grass moisture content and temperature A constrained radiative-transfer inversion scheme on MODIS NIR-SWIR reflectances which reduces solution ambiguity is used for grass moisture retrieval while MODIS land surface temperature emissivity products are used for retrieving grass temperature Subpixel urban contamination of the MODIS reflective and thermal signals over a Grassland-Urban-Interface pixel is corrected using periodic estimates of urban influence from high spatial resolution ASTER

  3. All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI.

    Science.gov (United States)

    Zolnik, Timothy A; Sha, Fern; Johenning, Friedrich W; Schreiter, Eric R; Looger, Loren L; Larkum, Matthew E; Sachdev, Robert N S

    2017-03-01

    The genetically encoded fluorescent calcium integrator calcium-modulated photoactivatable ratiobetric integrator (CaMPARI) reports calcium influx induced by synaptic and neural activity. Its fluorescence is converted from green to red in the presence of violet light and calcium. The rate of conversion - the sensitivity to activity - is tunable and depends on the intensity of violet light. Synaptic activity and action potentials can independently initiate significant CaMPARI conversion. The level of conversion by subthreshold synaptic inputs is correlated to the strength of input, enabling optical readout of relative synaptic strength. When combined with optogenetic activation of defined presynaptic neurons, CaMPARI provides an all-optical method to map synaptic connectivity. The calcium-modulated photoactivatable ratiometric integrator (CaMPARI) is a genetically encoded calcium integrator that facilitates the study of neural circuits by permanently marking cells active during user-specified temporal windows. Permanent marking enables measurement of signals from large swathes of tissue and easy correlation of activity with other structural or functional labels. One potential application of CaMPARI is labelling neurons postsynaptic to specific populations targeted for optogenetic stimulation, giving rise to all-optical functional connectivity mapping. Here, we characterized the response of CaMPARI to several common types of neuronal calcium signals in mouse acute cortical brain slices. Our experiments show that CaMPARI is effectively converted by both action potentials and subthreshold synaptic inputs, and that conversion level is correlated to synaptic strength. Importantly, we found that conversion rate can be tuned: it is linearly related to light intensity. At low photoconversion light levels CaMPARI offers a wide dynamic range due to slower conversion rate; at high light levels conversion is more rapid and more sensitive to activity. Finally, we employed Ca

  4. Exogenous ciliary neurotrophic factor (CNTF) reduces synaptic depression during repetitive stimulation.

    Science.gov (United States)

    Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Priego, Mercedes; Obis, Teresa; Lanuza, Maria A; Besalduch, Nuria; Tomàs, Josep

    2012-09-01

    It has been shown that ciliary neurotrophic factor (CNTF) has trophic and maintenance effects on several types of peripheral and central neurons, glia, and cells outside the nervous system. Both CNTF and its receptor, CNTF-Rα, are expressed in the muscle. We use confocal immunocytochemistry to show that the trophic cytokine and its receptor are present in the pre- and post-synaptic sites of the neuromuscular junctions (NMJs). Applied CNTF (7.5-200 ng/ml, 60 min-3 h) does not acutely affect spontaneous potentials (size or frequency) or quantal content of the evoked acetylcholine release from post-natal (in weak or strong axonal inputs on dually innervated end plates or in the most mature singly innervated synapses at P6) or adult (P30) NMJ of Levator auris longus muscle of the mice. However, CNTF reduces roughly 50% the depression produced by repetitive stimulation (40 Hz, 2 min) on the adult NMJs. Our findings indicate that, unlike neurotrophins, exogenous CNTF does not acutely modulate transmitter release locally at the mammalian neuromuscular synapse but can protect mature end plates from activity-induced synaptic depression. © 2012 Peripheral Nerve Society.

  5. On optical detection of densely labeled synapses in neuropil and mapping connectivity with combinatorially multiplexed fluorescent synaptic markers.

    Directory of Open Access Journals (Sweden)

    Yuriy Mishchenko

    Full Text Available We propose a new method for mapping neural connectivity optically, by utilizing Cre/Lox system Brainbow to tag synapses of different neurons with random mixtures of different fluorophores, such as GFP, YFP, etc., and then detecting patterns of fluorophores at different synapses using light microscopy (LM. Such patterns will immediately report the pre- and post-synaptic cells at each synaptic connection, without tracing neural projections from individual synapses to corresponding cell bodies. We simulate fluorescence from a population of densely labeled synapses in a block of hippocampal neuropil, completely reconstructed from electron microscopy data, and show that high-end LM is able to detect such patterns with over 95% accuracy. We conclude, therefore, that with the described approach neural connectivity in macroscopically large neural circuits can be mapped with great accuracy, in scalable manner, using fast optical tools, and straightforward image processing. Relying on an electron microscopy dataset, we also derive and explicitly enumerate the conditions that should be met to allow synaptic connectivity studies with high-resolution optical tools.

  6. Effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa

    CSIR Research Space (South Africa)

    Govender, N

    2006-08-01

    Full Text Available in the Kruger National Park, South Africa, by documenting fuel loads, fuel moisture contents, rates of fire spread and the heat yields of fuel in 956 experimental plot burns over 21 years. 3. Individual fires were conducted in five different months (February...

  7. Modeling post-fire hydro-geomorphic recovery in the Waldo Canyon Fire

    Science.gov (United States)

    Kinoshita, Alicia; Nourbakhshbeidokhti, Samira; Chin, Anne

    2016-04-01

    Wildfire can have significant impacts on watershed hydrology and geomorphology by changing soil properties and removing vegetation, often increasing runoff and soil erosion and deposition, debris flows, and flooding. Watershed systems may take several years or longer to recover. During this time, post-fire channel changes have the potential to alter hydraulics that influence characteristics such as time of concentration and increase time to peak flow, flow capacity, and velocity. Using the case of the 2012 Waldo Canyon Fire in Colorado (USA), this research will leverage field-based surveys and terrestrial Light Detection and Ranging (LiDAR) data to parameterize KINEROS2 (KINematic runoff and EROSion), an event oriented, physically-based watershed runoff and erosion model. We will use the Automated Geospatial Watershed Assessment (AGWA) tool, which is a GIS-based hydrologic modeling tool that uses commonly available GIS data layers to parameterize, execute, and spatially visualize runoff and sediment yield for watersheds impacted by the Waldo Canyon Fire. Specifically, two models are developed, an unburned (Bear Creek) and burned (Williams) watershed. The models will simulate burn severity and treatment conditions. Field data will be used to validate the burned watersheds for pre- and post-fire changes in infiltration, runoff, peak flow, sediment yield, and sediment discharge. Spatial modeling will provide insight into post-fire patterns for varying treatment, burn severity, and climate scenarios. Results will also provide post-fire managers with improved hydro-geomorphic modeling and prediction tools for water resources management and mitigation efforts.

  8. Depression-Biased Reverse Plasticity Rule Is Required for Stable Learning at Top-Down Connections

    Science.gov (United States)

    Burbank, Kendra S.; Kreiman, Gabriel

    2012-01-01

    Top-down synapses are ubiquitous throughout neocortex and play a central role in cognition, yet little is known about their development and specificity. During sensory experience, lower neocortical areas are activated before higher ones, causing top-down synapses to experience a preponderance of post-synaptic activity preceding pre-synaptic activity. This timing pattern is the opposite of that experienced by bottom-up synapses, which suggests that different versions of spike-timing dependent synaptic plasticity (STDP) rules may be required at top-down synapses. We consider a two-layer neural network model and investigate which STDP rules can lead to a distribution of top-down synaptic weights that is stable, diverse and avoids strong loops. We introduce a temporally reversed rule (rSTDP) where top-down synapses are potentiated if post-synaptic activity precedes pre-synaptic activity. Combining analytical work and integrate-and-fire simulations, we show that only depression-biased rSTDP (and not classical STDP) produces stable and diverse top-down weights. The conclusions did not change upon addition of homeostatic mechanisms, multiplicative STDP rules or weak external input to the top neurons. Our prediction for rSTDP at top-down synapses, which are distally located, is supported by recent neurophysiological evidence showing the existence of temporally reversed STDP in synapses that are distal to the post-synaptic cell body. PMID:22396630

  9. Depression-biased reverse plasticity rule is required for stable learning at top-down connections.

    Directory of Open Access Journals (Sweden)

    Kendra S Burbank

    Full Text Available Top-down synapses are ubiquitous throughout neocortex and play a central role in cognition, yet little is known about their development and specificity. During sensory experience, lower neocortical areas are activated before higher ones, causing top-down synapses to experience a preponderance of post-synaptic activity preceding pre-synaptic activity. This timing pattern is the opposite of that experienced by bottom-up synapses, which suggests that different versions of spike-timing dependent synaptic plasticity (STDP rules may be required at top-down synapses. We consider a two-layer neural network model and investigate which STDP rules can lead to a distribution of top-down synaptic weights that is stable, diverse and avoids strong loops. We introduce a temporally reversed rule (rSTDP where top-down synapses are potentiated if post-synaptic activity precedes pre-synaptic activity. Combining analytical work and integrate-and-fire simulations, we show that only depression-biased rSTDP (and not classical STDP produces stable and diverse top-down weights. The conclusions did not change upon addition of homeostatic mechanisms, multiplicative STDP rules or weak external input to the top neurons. Our prediction for rSTDP at top-down synapses, which are distally located, is supported by recent neurophysiological evidence showing the existence of temporally reversed STDP in synapses that are distal to the post-synaptic cell body.

  10. Neuro-inspired computing using resistive synaptic devices

    CERN Document Server

    2017-01-01

    This book summarizes the recent breakthroughs in hardware implementation of neuro-inspired computing using resistive synaptic devices. The authors describe how two-terminal solid-state resistive memories can emulate synaptic weights in a neural network. Readers will benefit from state-of-the-art summaries of resistive synaptic devices, from the individual cell characteristics to the large-scale array integration. This book also discusses peripheral neuron circuits design challenges and design strategies. Finally, the authors describe the impact of device non-ideal properties (e.g. noise, variation, yield) and their impact on the learning performance at the system-level, using a device-algorithm co-design methodology. • Provides single-source reference to recent breakthroughs in resistive synaptic devices, not only at individual cell-level, but also at integrated array-level; • Includes detailed discussion of the peripheral circuits and array architecture design of the neuro-crossbar system; • Focuses on...

  11. Synaptic Correlates of Working Memory Capacity.

    Science.gov (United States)

    Mi, Yuanyuan; Katkov, Mikhail; Tsodyks, Misha

    2017-01-18

    Psychological studies indicate that human ability to keep information in readily accessible working memory is limited to four items for most people. This extremely low capacity severely limits execution of many cognitive tasks, but its neuronal underpinnings remain unclear. Here we show that in the framework of synaptic theory of working memory, capacity can be analytically estimated to scale with characteristic time of short-term synaptic depression relative to synaptic current time constant. The number of items in working memory can be regulated by external excitation, enabling the system to be tuned to the desired load and to clear the working memory of currently held items to make room for new ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Depression as a Glial-Based Synaptic Dysfunction

    Directory of Open Access Journals (Sweden)

    Daniel eRial

    2016-01-01

    Full Text Available Recent studies combining pharmacological, behavioral, electrophysiological and molecular approaches indicate that depression results from maladaptive neuroplastic processing occurring in defined frontolimbic circuits responsible for emotional processing such as the prefrontal cortex, hippocampus, amygdala and ventral striatum. However, the exact mechanisms controlling synaptic plasticity that are disrupted to trigger depressive conditions have not been elucidated. Since glial cells (astrocytes and microglia tightly and dynamically interact with synapses, engaging a bi-directional communication critical for the processing of synaptic information, we now revisit the role of glial cells in the etiology of depression focusing on a dysfunction of the ‘quad-partite’ synapse. This interest is supported by the observations that depressive-like conditions are associated with a decreased density and hypofunction of astrocytes and with an increase microglia ‘activation’ in frontolimbic regions, which is expected to contribute for the synaptic dysfunction present in depression. Furthermore, the traditional culprits of depression (glucocorticoids, biogenic amines, BDNF affect glia functioning, whereas antidepressant treatments (SSRIs, electroshock, deep brain stimulation recover glia functioning. In this context of a quad-partite synapse, systems modulating glia-synapse bidirectional communication - such as the purinergic neuromodulation system operated by ATP and adenosine - emerge as promising candidates to re-normalize synaptic function by combining direct synaptic effects with an ability to also control astrocyte and microglia function. This proposed triple action of purines to control aberrant synaptic function illustrates the rationale to consider the interference with glia dysfunction as a mechanism of action driving the design of future pharmacological tools to manage depression.

  13. Role of the origin of glutamatergic synaptic inputs in controlling synaptic plasticity and its modulation by alcohol in mice nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Gilles Erwann Martin

    2015-07-01

    Full Text Available It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens, a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the nucleus accumbens receives glutamatergic inputs from distinct brain regions (e.g. the prefrontal cortex, the amygdala and the hippocampus, each region providing different information (e.g. spatial, emotional and cognitive. Combining whole-cell patch-clamp recordings and the optogenetic technique, we examined synaptic plasticity, and its regulation by alcohol, at cortical, hippocampal and amygdala inputs in fresh slices of mouse tissue. We showed that the origin of synaptic inputs determines the basic properties of glutamatergic synaptic transmission, the expression of spike-timing dependent long-term depression (tLTD and long-term potentiation (tLTP and their regulation by alcohol. While we observed both tLTP and tLTD at amygadala and hippocampal synapses, we showed that cortical inputs only undergo tLTD. Functionally, we provide evidence that acute EtOH has little effects on higher order information coming from the prefrontal cortex (PFCx, while severely impacting the ability of emotional and contextual information to induce long-lasting changes of synaptic strength.

  14. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment - April 2003

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    2003-04-30

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  15. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.

    Science.gov (United States)

    Rodriguez, Alexander V; Funk, Chadd M; Vyazovskiy, Vladyslav V; Nir, Yuval; Tononi, Giulio; Cirelli, Chiara

    2016-12-07

    During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal "fatigue": high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the "fatigue" accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced neurons in the mouse cortex to fire

  16. Measurements relating fire radiative energy density and surface fuel consumption - RxCADRE 2011 and 2012

    Science.gov (United States)

    Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar

    2016-01-01

    Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...

  17. Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle

    Science.gov (United States)

    Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

    2004-02-01

    The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

  18. A Tool for Rating the Resilience of Critical Infrastructures in Extreme Fires

    Science.gov (United States)

    2014-05-01

    Rapid Rise Fire Tests of Protection Materials for Structural Steel - Efectis Nederland Report – 2008-Efectis-R0695, Fire Testing Procedure for Concrete...extreme fire conditions such as ASTM E1529 [5], NFPA 502 [8], UL 1709 [4] and Efectis Nederland BV report [9]. One of the critical features of a

  19. Alteration of synaptic connectivity of oligodendrocyte precursor cells following demyelination

    Science.gov (United States)

    Sahel, Aurélia; Ortiz, Fernando C.; Kerninon, Christophe; Maldonado, Paloma P.; Angulo, María Cecilia; Nait-Oumesmar, Brahim

    2015-01-01

    Oligodendrocyte precursor cells (OPCs) are a major source of remyelinating oligodendrocytes in demyelinating diseases such as Multiple Sclerosis (MS). While OPCs are innervated by unmyelinated axons in the normal brain, the fate of such synaptic contacts after demyelination is still unclear. By combining electrophysiology and immunostainings in different transgenic mice expressing fluorescent reporters, we studied the synaptic innervation of OPCs in the model of lysolecithin (LPC)-induced demyelination of corpus callosum. Synaptic innervation of reactivated OPCs in the lesion was revealed by the presence of AMPA receptor-mediated synaptic currents, VGluT1+ axon-OPC contacts in 3D confocal reconstructions and synaptic junctions observed by electron microscopy. Moreover, 3D confocal reconstructions of VGluT1 and NG2 immunolabeling showed the existence of glutamatergic axon-OPC contacts in post-mortem MS lesions. Interestingly, patch-clamp recordings in LPC-induced lesions demonstrated a drastic decrease in spontaneous synaptic activity of OPCs early after demyelination that was not caused by an impaired conduction of compound action potentials. A reduction in synaptic connectivity was confirmed by the lack of VGluT1+ axon-OPC contacts in virtually all rapidly proliferating OPCs stained with EdU (50-ethynyl-20-deoxyuridine). At the end of the massive proliferation phase in lesions, the proportion of innervated OPCs rapidly recovers, although the frequency of spontaneous synaptic currents did not reach control levels. In conclusion, our results demonstrate that newly-generated OPCs do not receive synaptic inputs during their active proliferation after demyelination, but gain synapses during the remyelination process. Hence, glutamatergic synaptic inputs may contribute to inhibit OPC proliferation and might have a physiopathological relevance in demyelinating disorders. PMID:25852473

  20. Estimation of Synaptic Conductances in Presence of Nonlinear Effects Caused by Subthreshold Ionic Currents

    DEFF Research Database (Denmark)

    Vich, Catalina; Berg, Rune W.; Guillamon, Antoni

    2017-01-01

    Subthreshold fluctuations in neuronal membrane potential traces contain nonlinear components, and employing nonlinear models might improve the statistical inference. We propose a new strategy to estimate synaptic conductances, which has been tested using in silico data and applied to in vivo...... recordings. The model is constructed to capture the nonlinearities caused by subthreshold activated currents, and the estimation procedure can discern between excitatory and inhibitory conductances using only one membrane potential trace. More precisely, we perform second order approximations of biophysical...... models to capture the subthreshold nonlinearities, resulting in quadratic integrate-and-fire models, and apply approximate maximum likelihood estimation where we only suppose that conductances are stationary in a 50–100 ms time window. The results show an improvement compared to existent procedures...

  1. Synchronization of map-based neurons with memory and synaptic delay

    Energy Technology Data Exchange (ETDEWEB)

    Sausedo-Solorio, J.M. [Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42074 Pachuca, Hidalgo (Mexico); Pisarchik, A.N., E-mail: apisarch@cio.mx [Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Centre for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcon, Madrid (Spain)

    2014-06-13

    Synchronization of two synaptically coupled neurons with memory and synaptic delay is studied using the Rulkov map, one of the simplest neuron models which displays specific features inherent to bursting dynamics. We demonstrate a transition from lag to anticipated synchronization as the relationship between the memory duration and the synaptic delay time changes. The neuron maps synchronize either with anticipation, if the memory is longer than the synaptic delay time, or with lag otherwise. The mean anticipation time is equal to the difference between the memory and synaptic delay independently of the coupling strength. Frequency entrainment and phase-locking phenomena as well as a transition from regular spikes to chaos are demonstrated with respect to the coupling strength. - Highlights: • We study synchronization of neurons with memory and synaptic delay in the map model. • Neurons synchronize either with anticipation or with lag depending on delay time. • Mean anticipation time is equal to the difference between memory and synaptic delay. • Frequency entrainment and phase locking are studied with respect to the coupling.

  2. Post-fire recovery of torpor and activity patterns of a small mammal.

    Science.gov (United States)

    Stawski, Clare; Hume, Taylor; Körtner, Gerhard; Currie, Shannon E; Nowack, Julia; Geiser, Fritz

    2017-05-01

    To cope with the post-fire challenges of decreased availability of food and shelter, brown antechinus ( Antechinus stuartii ), a small marsupial mammal, increase the use of energy-conserving torpor and reduce activity. However, it is not known how long it takes for animals to resume pre-fire torpor and activity patterns during the recovery of burnt habitat. Therefore, we tested the hypothesis that antechinus will adjust torpor use and activity after a fire depending on vegetation recovery. We simultaneously quantified torpor and activity patterns for female antechinus from three adjacent areas: (i) the area of a management burn 1 year post-fire, (ii) an area that was burned 2 years prior, and (iii) a control area. In comparison to shortly after the management burn, antechinus in all three groups displayed less frequent and less pronounced torpor while being more active. We provide the first evidence that only 1 year post-fire antechinus resume pre-fire torpor and activity patterns, probably in response to the return of herbaceous ground cover and foraging opportunities. © 2017 The Author(s).

  3. Synaptic Plasticity, Dementia and Alzheimer Disease.

    Science.gov (United States)

    Skaper, Stephen D; Facci, Laura; Zusso, Morena; Giusti, Pietro

    2017-01-01

    Neuroplasticity is not only shaped by learning and memory but is also a mediator of responses to neuron attrition and injury (compensatory plasticity). As an ongoing process it reacts to neuronal cell activity and injury, death, and genesis, which encompasses the modulation of structural and functional processes of axons, dendrites, and synapses. The range of structural elements that comprise plasticity includes long-term potentiation (a cellular correlate of learning and memory), synaptic efficacy and remodelling, synaptogenesis, axonal sprouting and dendritic remodelling, and neurogenesis and recruitment. Degenerative diseases of the human brain continue to pose one of biomedicine's most intractable problems. Research on human neurodegeneration is now moving from descriptive to mechanistic analyses. At the same time, it is increasing apparently that morphological lesions traditionally used by neuropathologists to confirm post-mortem clinical diagnosis might furnish us with an experimentally tractable handle to understand causative pathways. Consider the aging-dependent neurodegenerative disorder Alzheimer's disease (AD) which is characterised at the neuropathological level by deposits of insoluble amyloid β-peptide (Aβ) in extracellular plaques and aggregated tau protein, which is found largely in the intracellular neurofibrillary tangles. We now appreciate that mild cognitive impairment in early AD may be due to synaptic dysfunction caused by accumulation of non-fibrillar, oligomeric Aβ, occurring well in advance of evident widespread synaptic loss and neurodegeneration. Soluble Aβ oligomers can adversely affect synaptic structure and plasticity at extremely low concentrations, although the molecular substrates by which synaptic memory mechanisms are disrupted remain to be fully elucidated. The dendritic spine constitutes a primary locus of excitatory synaptic transmission in the mammalian central nervous system. These structures protruding from dendritic

  4. Sex differences in the effects of pre- and postnatal caffeine exposure on behavior and synaptic proteins in pubescent rats.

    Science.gov (United States)

    Sallaberry, Cássia; Ardais, Ana Paula; Rocha, Andréia; Borges, Maurício Felisberto; Fioreze, Gabriela T; Mioranzza, Sabrina; Nunes, Fernanda; Pagnussat, Natália; Botton, Paulo Henrique S; Porciúncula, Lisiane O

    2018-02-02

    Few studies have addressed the effects of caffeine in the puberty and/or adolescence in a sex dependent manner. Considering that caffeine intake has increased in this population, we investigated the behavioral and synaptic proteins changes in pubescent male and female rats after maternal consumption of caffeine. Adult female Wistar rats started to receive water or caffeine (0.1 and 0.3g/L in drinking water; low and moderate dose, respectively) during the active cycle at weekdays, two weeks before mating. The treatment lasted up to weaning and the offspring received caffeine until the onset of puberty (30-34days old). Behavioral tasks were performed to evaluate locomotor activity (open field task), anxious-like behavior (elevated plus maze task) and recognition memory (object recognition task) and synaptic proteins levels (proBDNF, BDNF, GFAP and SNAP-25) were verified in the hippocampus and cerebral cortex. While hyperlocomotion was observed in both sexes after caffeine treatment, anxiety-related behavior was attenuated by caffeine (0.3g/L) only in females. While moderate caffeine worsened recognition memory in females, an improvement in the long-term memory was observed in male rats for both doses. Coincident with memory improvement in males, caffeine increased pro- and BDNF in the hippocampus and cortex. Females presented increased proBDNF levels in both brain regions, with no effects of caffeine. While GFAP was not altered, moderate caffeine intake increased SNAP-25 in the cortex of female rats. Our findings revealed that caffeine promoted cognitive benefits in males associated with increased BDNF levels, while females showed less anxiety. Our findings revealed that caffeine promotes distinct behavioral outcomes and alterations in synaptic proteins during brain development in a sex dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A pivotal role of GSK-3 in synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Clarrisa A Bradley

    2012-02-01

    Full Text Available Glycogen synthase kinase-3 (GSK-3 has many cellular functions. Recent evidence suggests that it plays a key role in certain types of synaptic plasticity, in particular a form of long-term depression (LTD that is induced by the synaptic activation of N-methyl-D-aspartate (NMDA receptors. In the present article we summarise what is currently known concerning the roles of GSK-3 in synaptic plasticity at both glutamatergic and GABAergic synapses. We summarise its role in cognition and speculate on how alterations in the synaptic functioning of GSK-3 may be a major factor in certain neurodegenerative disorders.

  6. Synaptic Remodeling in the Dentate Gyrus, CA3, CA1, Subiculum, and Entorhinal Cortex of Mice: Effects of Deprived Rearing and Voluntary Running

    Directory of Open Access Journals (Sweden)

    Andrea T. U. Schaefers

    2010-01-01

    Full Text Available Hippocampal cell proliferation is strongly increased and synaptic turnover decreased after rearing under social and physical deprivation in gerbils (Meriones unguiculatus. We examined if a similar epigenetic effect of rearing environment on adult neuroplastic responses can be found in mice (Mus musculus. We examined synaptic turnover rates in the dentate gyrus, CA3, CA1, subiculum, and entorhinal cortex. No direct effects of deprived rearing on rates of synaptic turnover were found in any of the studied regions. However, adult wheel running had the effect of leveling layer-specific differences in synaptic remodeling in the dentate gyrus, CA3, and CA1, but not in the entorhinal cortex and subiculum of animals of both rearing treatments. Epigenetic effects during juvenile development affected adult neural plasticity in mice, but seemed to be less pronounced than in gerbils.

  7. Presynaptic learning and memory with a persistent firing neuron and a habituating synapse: a model of short term persistent habituation.

    Science.gov (United States)

    Ramanathan, Kiruthika; Ning, Ning; Dhanasekar, Dhiviya; Li, Guoqi; Shi, Luping; Vadakkepat, Prahlad

    2012-08-01

    Our paper explores the interaction of persistent firing axonal and presynaptic processes in the generation of short term memory for habituation. We first propose a model of a sensory neuron whose axon is able to switch between passive conduction and persistent firing states, thereby triggering short term retention to the stimulus. Then we propose a model of a habituating synapse and explore all nine of the behavioral characteristics of short term habituation in a two neuron circuit. We couple the persistent firing neuron to the habituation synapse and investigate the behavior of short term retention of habituating response. Simulations show that, depending on the amount of synaptic resources, persistent firing either results in continued habituation or maintains the response, both leading to longer recovery times. The effectiveness of the model as an element in a bio-inspired memory system is discussed.

  8. Assessment of Osmotic Pre-Drying Treatment on Drying Rates of Fresh Tomato Fruits

    Directory of Open Access Journals (Sweden)

    P. A. Idah

    2014-06-01

    Full Text Available The aim of this work is to investigate the influence of osmotic pre-drying treatments on drying rates of tomato (Lycopersiconesculentum at various drying temperatures. Fresh Roma tomato fruit samples were sliced to a thickness of 5 mm and the seeds were removed. Weight of 300 g was measured for each of the three replicates and immersed in a hypertonic solution of sucrose of different concentrations 40 and 60 oBrix each held for osmotic duration of 1 and 2 hours, drained for 10 min and then dried at 50, 60, and 70 oC in a mechanical dryer. Control samples were also weighed 300 g per replicate and dried at 50, 60, and 70 oC without pre-drying treatment. The initial moisture content of fresh tomato used was 94.5% (wb. Moisture loss of each sample was monitored and recorded hourly until the product has reached the desired final moisture content (≤ 7%.The data collected were subjected to statistical analysis of variance (ANOVA and Duncan New Multiple range tests (DNMRT to ascertain the level of significance differences between the individual treatments and their interaction at p ≤ 0.05.The results show that at all the drying temperatures used, the control tomato samples exhibited the fastest drying rate with an average of 35.2 g/hr, samples pre-treated at 40 oBrix has an average drying rate of 26.6 g/hr, while samples pre-treated at 60 oBrix has the slowest drying rate of 25.2 g/hr. It was also revealed that samples subjected to 1 hour osmotic time have faster drying rates than those treated for 2 hours osmotic time.

  9. Fire creates host plant patches for monarch butterflies

    Science.gov (United States)

    Baum, Kristen A.; Sharber, Wyatt V.

    2012-01-01

    Monarch butterflies (Danaus plexippus) depend on the presence of host plants (Asclepias spp.) within their breeding range for reproduction. In the southern Great Plains, Asclepias viridis is a perennial that flowers in May and June, and starts to senesce by August. It is locally abundant and readily used by monarchs as a host plant. We evaluated the effects of summer prescribed fire on A. viridis and the use of A. viridis by monarch butterflies. Summer prescribed fire generated a newly emergent population of A. viridis that was absent in other areas. Pre-migrant monarch butterflies laid eggs on A. viridis in summer burned plots in late August and September, allowing adequate time for a new generation of adult monarchs to emerge and migrate south to their overwintering grounds. Thus, summer prescribed fire may provide host plant patches and/or corridors for pre-migrant monarchs during a time when host plant availability may be limited in other areas. PMID:22859559

  10. High temperature corrosion in straw-fired power plants: Influence of steam/metal temperature on corrosion rates for TP347H

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Biede, O; Larsen, OH

    2002-01-01

    The corrosion in straw-fired boilers has been investigated at various straw-fired power plants in Denmark. Water/air-cooled probes, a test superheater and test sections removed from the actual superheater have been utilised to characterise corrosion and corrosion rates. This paper describes...... the corrosion rates measured for the TP347H type steel. The corrosion morphology at high temperature consists of grain boundary attack and selective attack of chromium. The corrosion rate increases with calculated metal temperature (based on steam temperature), however there is great variation within....... The difference in the results could be traced back to a lower flue gas temperature on one side of the boiler. Although metal temperature is the most important parameter with respect to corrosion rate, flue gas temperature also plays an important role. Efforts to quantify the effect of flue gas temperature...

  11. Burning behavior in a poor-ventilation compartment fire - ghosting fire

    International Nuclear Information System (INIS)

    Sugawa, Osami; Kawagoe, Kunio; Oka, Yasushi

    1991-01-01

    We investigated compartment fire behavior under poor-ventilation conditions using a methyl alcohol pool fire as the source with a diameter of 30 cm set in a tight box of 2 m (W)x3 m(L)x0.6 m(H). The temperatures in the box and the fuel, gas concentrations of CO, CO 2 , and O 2 , and the fuel consumption rate were measured simultaneously. The burning fuel surface level was kept constant during the test by means of an automatic fuel supply system. It was found that the flame begun to detach from the fuel surface as the oxygen concentration decreased to about 16%, and the color changed to pale blue. The flame detached completely from the fuel and a 'ghosting flame' was observed just under the ceiling which showed a thin pale blue flame and looked line an aurora. The oxygen concentration measured in the ghosting period under the ceiling was 9-10 vol%, and CO 2 was 4.5 vol% so that the oxygen of such concentration acted as in inert gas. CO 2 gas concentration looked almost a single-layer with gradient in the upper half part in ghosting period. Temperatures in the same layer decreased after ghosting occurred with gradient. For poor-ventilated fires, air exchange rate as 1.6-2.4 times/hr was estimated in the test; the burning rate decreased finally to about 1/6 of the fuel controlled fire. It has been tacitly assumed that the flame (reaction zone) and pyrolyzing material area (fuel) exit in almost the same zone, but ghosting fire is not necessarily the case. Therefore, extinguishment of ghosting fire which may occur in an enclosure with fuel and energy rich but poor-ventilation such as a power plant will be extremely difficult. (orig.)

  12. Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum.

    Science.gov (United States)

    Rancillac, Armelle; Crépel, Francis

    2004-02-01

    Various forms of synaptic plasticity underlying motor learning have already been well characterized at cerebellar parallel fibre (PF)-Purkinje cell (PC) synapses. Inhibitory interneurones play an important role in controlling the excitability and synchronization of PCs. We have therefore tested the possibility that excitatory synapses between PFs and stellate cells (SCs) are also able to exhibit long-term changes in synaptic efficacy. In the present study, we show that long-term potentiation (LTP) and long-term depression (LTD) were induced at these synapses by a low frequency stimulation protocol (2 Hz for 60 s) and that pairing this low frequency stimulation protocol with postsynaptic depolarization induced a marked shift of synaptic plasticity in favour of LTP. This LTP was cAMP independent, but required nitric oxide (NO) production from pre- and/or postsynaptic elements, depending on the stimulation or pairing protocol used, respectively. In contrast, LTD was not dependent on NO production but it required activation of postsynaptic group II and possibly of group I metabotropic glutamate receptors. Finally, stimulation of PFs at 8 Hz for 15 s also induced LTP at PF-SC synapses. But in this case, LTP was cAMP dependent, as was also observed at PF-PC synapses for presynaptic LTP induced in the same conditions. Thus, long-term changes in synaptic efficacy can be accomplished by PF-SCs synapses as well as by PF-PC synapses, suggesting that both types of plasticity might co-operate during cerebellar motor learning.

  13. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    Science.gov (United States)

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and

  14. Climatic stress increases forest fire severity across the western United States

    Science.gov (United States)

    van Mantgem, Philip J.; Nesmith, Jonathan C. B.; Keifer, MaryBeth; Knapp, Eric E.; Flint, Alan; Flint, Lorriane

    2013-01-01

    Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire).

  15. Remote sensing fire and fuels in southern California

    Science.gov (United States)

    Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen

    2011-01-01

    Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...

  16. A presynaptic role for PKA in synaptic tagging and memory.

    Science.gov (United States)

    Park, Alan Jung; Havekes, Robbert; Choi, Jennifer Hk; Luczak, Vince; Nie, Ting; Huang, Ted; Abel, Ted

    2014-10-01

    Protein kinase A (PKA) and other signaling molecules are spatially restricted within neurons by A-kinase anchoring proteins (AKAPs). Although studies on compartmentalized PKA signaling have focused on postsynaptic mechanisms, presynaptically anchored PKA may contribute to synaptic plasticity and memory because PKA also regulates presynaptic transmitter release. Here, we examine this issue using genetic and pharmacological application of Ht31, a PKA anchoring disrupting peptide. At the hippocampal Schaffer collateral CA3-CA1 synapse, Ht31 treatment elicits a rapid decay of synaptic responses to repetitive stimuli, indicating a fast depletion of the readily releasable pool of synaptic vesicles. The interaction between PKA and proteins involved in producing this pool of synaptic vesicles is supported by biochemical assays showing that synaptic vesicle protein 2 (SV2), Rim1, and SNAP25 are components of a complex that interacts with cAMP. Moreover, acute treatment with Ht31 reduces the levels of SV2. Finally, experiments with transgenic mouse lines, which express Ht31 in excitatory neurons at the Schaffer collateral CA3-CA1 synapse, highlight a requirement for presynaptically anchored PKA in pathway-specific synaptic tagging and long-term contextual fear memory. These results suggest that a presynaptically compartmentalized PKA is critical for synaptic plasticity and memory by regulating the readily releasable pool of synaptic vesicles. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Fire risk analysis, fire simulation, fire spreading and impact of smoke and heat on instrumentation electronics - State-of-the-Art Report

    International Nuclear Information System (INIS)

    Roewekamp, M.; Bertrand, R.; Bonneval, F.; Hamblen, D.; Siu, N.; Aulamo, H.; Martila, J.; Sandberg, J.; Virolainen, R.

    2000-01-01

    OECD countries. The contents of each chapter are based on the writers' knowledge on his or her national practices and on the results of the questionnaire. The emphasis in the descriptions of the national practices also reflects the information supplied by the responding countries. Fire PSA is also used in other OECD countries, but the scope of this report is limited to those countries which responded to the questionnaire. The contents of this report are as follows: Fire PSA methodology overview - Based on a review of fire risk studies performed in the contributing countries, the report addresses different methodology and applications issues. Methodology issues, treated in Chapter 2, include the treatment of physical barriers, fire detection and suppression systems and fire fighting. They also include the treatment of operator actions and dependencies (both direct and indirect) between a fire and the plant's safety systems, definition of initiating events, and screening methods. Key assumptions and the effect of plant operational state (i.e., full power vs. low power operation) are dealt with in the report as well. Fire simulation models and codes applied or available - Chapter 3 of the report identifies which fire simulation codes have been used in actual PSAs. The models and scenarios used in different codes are described. To build confidence on fire simulation models, validation against experimental results in different types of fires is necessary. Fire experiments and the pre- and post experiment calculation used for code validation as well as ongoing fire simulation code development projects are discussed. Examples of fire scenarios and typical modeling assumptions are treated and numerous references are given in Chapter 3. References for experimental case studies and related simulation models and codes used for analyzing the production and spreading of smoke are also provided. The impact of smoke and heat - The immediate consequences of fires are caused by heat

  18. Effect of pre operative heart rate on post spinal hypotension in obsteric patients

    International Nuclear Information System (INIS)

    Khan, S.; Zahoor, M.U.; Zaid, A.Y.; Buland, K.

    2010-01-01

    The purpose of the study was to determine the association between of preoperative heart rate and post spinal hypotension in women undergoing cesarean section, Two hundred patients undergoing caesarean were included in the study selected on non probability convenience sampling technique, The patients were divided into two groups depending upon their pre operative heart rate. Spinal anesthesia was administered and number of patients developing hypotension was noted. Among 200 patients, who were included in the study; 112 were placed in group A and 88 were placed in group B depending on mean heart rate of 90 beats per minute or less or 91 beats per minute or more respectively. In group A 14 (11.86%) patients developed hypotension where as in group B 28 (31,82%) patients developed hypotension. Pre operative heart rate is significantly associated with post spinal hypotension in obstetric patients undergoing cesarean section. (author)

  19. Compliance-Free, Digital SET and Analog RESET Synaptic Characteristics of Sub-Tantalum Oxide Based Neuromorphic Device.

    Science.gov (United States)

    Abbas, Yawar; Jeon, Yu-Rim; Sokolov, Andrey Sergeevich; Kim, Sohyeon; Ku, Boncheol; Choi, Changhwan

    2018-01-19

    A two terminal semiconducting device like a memristor is indispensable to emulate the function of synapse in the working memory. The analog switching characteristics of memristor play a vital role in the emulation of biological synapses. The application of consecutive voltage sweeps or pulses (action potentials) changes the conductivity of the memristor which is considered as the fundamental cause of the synaptic plasticity. In this study, a neuromorphic device using an in-situ growth of sub-tantalum oxide switching layer is fabricated, which exhibits the digital SET and analog RESET switching with an electroforming process without any compliance current (compliance free). The process of electroforming and SET is observed at the positive sweeps of +2.4 V and +0.86 V, respectively, while multilevel RESET is observed with the consecutive negative sweeps in the range of 0 V to -1.2 V. The movement of oxygen vacancies and gradual change in the anatomy of the filament is attributed to digital SET and analog RESET switching characteristics. For the Ti/Ta 2 O 3-x /Pt neuromorphic device, the Ti top and Pt bottom electrodes are considered as counterparts of the pre-synaptic input terminal and a post-synaptic output terminal, respectively.

  20. Ponderosa Pine Forest Restoration Treatment Longevity: Implications of Regeneration on Fire Hazard

    Directory of Open Access Journals (Sweden)

    Wade T. Tinkham

    2016-07-01

    Full Text Available Restoration of pine forests has become a priority for managers who are beginning to embrace ideas of highly heterogeneous forest structures that potentially encourages high levels of regeneration. This study utilizes stem-mapped stands to assess how simulated regeneration timing and magnitude influence longevity of reduced fire behavior by linking growth and yield model outputs to a crown fire prediction model. Treatment longevity was assessed as return time to within 10% of pre-treatment predicted wind speeds for the onset of passive (Torching and active (Crowning crown fire behavior. Treatment longevity in terms of Torching and Crowning was reduced 5 years for every 550 and 150 seedlings ha−1, respectively. Introducing regeneration as a single pulse further reduced Torching treatment longevity 10 years compared to other regeneration distributions. Crowning treatment longevity increased at higher site indices, where a 6 m increase in site index increased longevity 4.5 year. This result was contrary to expectations that canopy openings after treatments would close faster on higher productivity sites. Additionally, Torching longevity was influenced by the rate of crown recession, were reducing the recession rate decreased longevity in areas with higher site indices. These dependencies highlight a need for research exploring stand development in heterogeneous sites.

  1. Control Of Motor Unit Firing During Step-Like Increases In Voluntary Force

    Directory of Open Access Journals (Sweden)

    Xiaogang eHu

    2014-09-01

    Full Text Available In most skeletal muscles, force is generated by a combination of motor unit (MU recruitment and increases in the firing rate of previously active MUs. Two contrasting patterns of firing rate organization have been reported. In the first pattern, the earliest recruited MUs reach the highest firing rates as force is increased, and later recruited MUs fire at lower rates. When firing rate of multiple MUs are superimposed, these rate trajectories form a concentric layered profile termed ‘onion skin’. In the second pattern, called ‘reverse onion skin’, later recruited MUs reach higher firing rates, and crossing of firing rate trajectories for recorded MUs is common (although such trajectories are assembled routinely from different trials. Our present study examined the firing rate organization of concurrently active MUs of the first dorsal interosseous muscle during serial, step-like increases in isometric abduction forces. We used a surface sensor array coupled with MU discrimination algorithms to characterize MU firing patterns. Our objective was to determine whether ‘onion skin’ profiles are contingent upon the force trajectory of the motor task, examined here using step-like increases of force output, and also whether they are manifested at different force levels.Our results revealed that the overall ‘onion skin’ firing rate profile was retained as the force level increased with each force step up to 15% MVC. However, the distribution of firing rates across MUs was compressed with increasing force, and overlapping firing rate of units were observed. This rate compression was largely due to rate saturation of the relatively high frequency discharging MUs.Our results reflect flexible firing patterns across MUs at different levels of excitation drive. It is also evident that many units did not follow all the step increases consistently. This failure to track firing rate increases at higher forces could be due to an intrinsically

  2. Modeling ionospheric pre-reversal enhancement and plasma bubble growth rate using data assimilation

    Science.gov (United States)

    Rajesh, P. K.; Lin, C. C. H.; Chen, C. H.; Matsuo, T.

    2017-12-01

    We report that assimilating total electron content (TEC) into a coupled thermosphere-ionosphere model by using the ensemble Kalman filter results in improved specification and forecast of eastward pre-reversal enhancement (PRE) electric field (E-field). Through data assimilation, the ionospheric plasma density, thermospheric winds, temperature and compositions are adjusted simultaneously. The improvement of dusk-side PRE E-field over the prior state is achieved primarily by intensification of eastward neutral wind. The improved E-field promotes a stronger plasma fountain and deepens the equatorial trough. As a result, the horizontal gradients of Pedersen conductivity and eastward wind are increased due to greater zonal electron density gradient and smaller ion drag at dusk, respectively. Such modifications provide preferable conditions and obtain a strengthened PRE magnitude closer to the observation. The adjustment of PRE E-field is enabled through self-consistent thermosphere and ionosphere coupling processes captured in the model. The assimilative outputs are further utilized to calculate the flux tube integrated Rayleigh-Taylor instability growth rate during March 2015 for investigation of global plasma bubble occurrence. Significant improvements in the calculated growth rates could be achieved because of the improved update of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.

  3. Transform-invariant visual representations in self-organizing spiking neural networks

    Directory of Open Access Journals (Sweden)

    Benjamin eEvans

    2012-07-01

    Full Text Available The ventral visual pathway achieves object and face recognition by building transform-invariant representations from elementary visual features. In previous computer simulation studies with rate-coded neural networks, the development of transform invariant representations has been demonstrated using either of two biologically plausible learning mechanisms, Trace learning and Continuous Transformation (CT learning. However, it has not previously been investigated how transform invariant representations may be learned in a more biologically accurate spiking neural network. A key issue is how the synaptic connection strengths in such a spiking network might self-organize through Spike-Time Dependent Plasticity (STDP where the change in synaptic strength is dependent on the relative times of the spikes emitted by the pre- and postsynaptic neurons rather than simply correlated activity driving changes in synaptic efficacy. Here we present simulations with conductance-based integrate-and-fire (IF neurons using a STDP learning rule to address these gaps in our understanding. It is demonstrated that with the appropriate selection of model pa- rameters and training regime, the spiking network model can utilize either Trace-like or CT-like learning mechanisms to achieve transform-invariant representations.

  4. Electric Dipole Theory of Chemical Synaptic Transmission

    Science.gov (United States)

    Wei, Ling Y.

    1968-01-01

    In this paper we propose that chemicals such as acetylcholine are electric dipoles which when oriented and arranged in a large array could produce an electric field strong enough to drive positive ions over the junction barrier of the post-synaptic membrane and thus initiate excitation or produce depolarization. This theory is able to explain a great number of facts such as cleft size, synaptic delay, nonregeneration, subthreshold integration, facilitation with repetition, and the calcium and magnesium effects. It also shows why and how acetylcholine could act as excitatory or inhibitory transmitters under different circumstances. Our conclusion is that the nature of synaptic transmission is essentially electrical, be it mediated by electrical or chemical transmitters. PMID:4296121

  5. Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission

    Science.gov (United States)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-01

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  6. Astroglial metabolic networks sustain hippocampal synaptic transmission.

    Science.gov (United States)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-05

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  7. Synaptic transmission block by presynaptic injection of oligomeric amyloid beta

    Science.gov (United States)

    Moreno, Herman; Yu, Eunah; Pigino, Gustavo; Hernandez, Alejandro I.; Kim, Natalia; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2009-01-01

    Early Alzheimer's disease (AD) pathophysiology is characterized by synaptic changes induced by degradation products of amyloid precursor protein (APP). The exact mechanisms of such modulation are unknown. Here, we report that nanomolar concentrations of intraaxonal oligomeric (o)Aβ42, but not oAβ40 or extracellular oAβ42, acutely inhibited synaptic transmission at the squid giant synapse. Further characterization of this phenotype demonstrated that presynaptic calcium currents were unaffected. However, electron microscopy experiments revealed diminished docked synaptic vesicles in oAβ42-microinjected terminals, without affecting clathrin-coated vesicles. The molecular events of this modulation involved casein kinase 2 and the synaptic vesicle rapid endocytosis pathway. These findings open the possibility of a new therapeutic target aimed at ameliorating synaptic dysfunction in AD. PMID:19304802

  8. Ten Years of Post-Fire Vegetation Recovery following the 2007 Zaca Fire using Landsat Satellite Imagery

    Science.gov (United States)

    Hallett, J. K. E.; Miller, D.; Roberts, D. A.

    2017-12-01

    Forest fires play a key role in shaping eco-systems. The risk to vegetation depends on the fire regime, fuel conditions (age and amount), fire temperature, and physiological characteristics such as bark thickness and stem diameter. The 2007 Zaca Fire (24 kilometers NE of Buellton, Santa Barbara County, California) burned 826.4 km2 over the course of 2 months. In this study, we used a time series of Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager imagery, to evaluate plant burn severity and post fire recovery as defined into classes of above average recovery, normal recovery, and below average recovery. We spectrally unmixed the images into green vegetation (GV), non-photosynthetic vegetation (NPV), soil surface (SOIL), and ash with a spectral library developed using Constrained Reference Endmember Selection (CRES). We delineated the fire perimeter using the differenced Normalized Burn Ratio (dNBR) and evaluated changes in this index and the Normalized Difference Vegetation Index through time. The results showed an immediate decline in GV and NPV fractions, with a rise in soil and ash fractions directly following the fire, with a slow recovery in GV fraction and a loss of bare soil cover. The was a sharp increase in the ash fraction following the fire and gradual decrease in the year after. Most areas have recovered as of 2017, with prominent recovery in the center of the burn scar and reduced recovery in areas to the south. These results indicate how post-fire vegetation varies based on initial burn severity and pre-fire GV and NPV fractions.

  9. Dynamical Properties of Discrete-Time Background Neural Networks with Uniform Firing Rate

    Directory of Open Access Journals (Sweden)

    Min Wan

    2013-01-01

    Full Text Available The dynamics of a discrete-time background network with uniform firing rate and background input is investigated. The conditions for stability are firstly derived. An invariant set is then obtained so that the nondivergence of the network can be guaranteed. In the invariant set, it is proved that all trajectories of the network starting from any nonnegative value will converge to a fixed point under some conditions. In addition, bifurcation and chaos are discussed. It is shown that the network can engender bifurcation and chaos with the increase of background input. The computations of Lyapunov exponents confirm the chaotic behaviors.

  10. Firing temperature of pottery using TL and OSL techniques

    International Nuclear Information System (INIS)

    Polymeris, G.S.; Sakalis, A.; Papadopoulou, D.; Dallas, G.; Kitis, G.; Tsirliganis, N.C.

    2007-01-01

    Several methods of thermal analysis are used to determine in the laboratory the firing temperature of ancient ceramic sherds. These methods are based primarily on changes of physical characteristics occurring when clay minerals are heated. The luminescence properties of quartz grains in a ceramic matrix also undergo certain changes during firing. The possibility of measuring the sensitivity change (sensitization) of quartz in order to determine the firing temperature of archeological ceramic artifacts was investigated. The sensitivity change was studied for both the thermoluminescence (TL) and the optically stimulated luminescence (OSL) signal for a ceramic sample of known firing temperature. Various segments of the sample were annealed to a different temperature. Subsequently, the initial sensitivity, as well as the thermal and the pre-dose sensitization were measured for both TL and OSL at room temperature as a function of the annealing temperature. The obtained TL glow curves showed different shapes for annealing temperatures above the firing temperature. Thermal and pre-dose sensitizations also exhibited a similar, although less prominent, rise. The OSL signal was analyzed by integrating the raw signal over the initial second of stimulation. The initial sensitivity showed an abrupt change for annealing temperatures around the firing temperature. An alternative approach used for the analysis of the OSL signal involved a full-component resolved sensitization study. The same abrupt change for the initial sensitivity of both the first and second components was observed, as well as, a clear but not very prominent thermal sensitization trend for annealing temperatures above the firing temperature

  11. Analytical model for cable tray fires

    International Nuclear Information System (INIS)

    Clarke, R.K.

    1975-09-01

    A model for cable tray fires based on buoyant plume theory is presented. Using the model in conjunction with empirical data on size of natural fires and burning rate of cellulosic materials, estimates are made of the heat flux as a function of vertical and horizontal distance from a tray fire. Both local fires and fires extending along a significant length of tray are considered. For the particular set of fire parameters assumed in the calculations, the current tray separation criteria of five feet vertical and three feet horizontal are found to be marginal for local fires and too small to prevent fire spread for extended tray fires. 8 references. (auth)

  12. Dynamics of the exponential integrate-and-fire model with slow currents and adaptation.

    Science.gov (United States)

    Barranca, Victor J; Johnson, Daniel C; Moyher, Jennifer L; Sauppe, Joshua P; Shkarayev, Maxim S; Kovačič, Gregor; Cai, David

    2014-08-01

    In order to properly capture spike-frequency adaptation with a simplified point-neuron model, we study approximations of Hodgkin-Huxley (HH) models including slow currents by exponential integrate-and-fire (EIF) models that incorporate the same types of currents. We optimize the parameters of the EIF models under the external drive consisting of AMPA-type conductance pulses using the current-voltage curves and the van Rossum metric to best capture the subthreshold membrane potential, firing rate, and jump size of the slow current at the neuron's spike times. Our numerical simulations demonstrate that, in addition to these quantities, the approximate EIF-type models faithfully reproduce bifurcation properties of the HH neurons with slow currents, which include spike-frequency adaptation, phase-response curves, critical exponents at the transition between a finite and infinite number of spikes with increasing constant external drive, and bifurcation diagrams of interspike intervals in time-periodically forced models. Dynamics of networks of HH neurons with slow currents can also be approximated by corresponding EIF-type networks, with the approximation being at least statistically accurate over a broad range of Poisson rates of the external drive. For the form of external drive resembling realistic, AMPA-like synaptic conductance response to incoming action potentials, the EIF model affords great savings of computation time as compared with the corresponding HH-type model. Our work shows that the EIF model with additional slow currents is well suited for use in large-scale, point-neuron models in which spike-frequency adaptation is important.

  13. Investigation of pre-drying lignite in an existing Greek power plant

    Directory of Open Access Journals (Sweden)

    Agraniotis Michalis

    2012-01-01

    Full Text Available The application of lignite pre-drying technologies in next generation of lignite power plants by utilizing low pressure steam as a drying medium instead of hot recirculated flue gas - combined with thermal utilization of the vaporized coal moisture - is expected to bring efficiency increase of 2-4 percentage points in future lignite power plants compared with today’s state of the art. The pre-drying concept is of particular importance in Greek boilers firing lignite with a high water and ash content. The combustion of Greek predried lignite has been investigated experimentally and via numerical simulations in our previous research. This study focuses on the potential integration of a lignite pre-drying system in an existing Greek power plant with dry lignite co-firing thermal share of up to 30%. The radiative and convective heat fluxes to the boiler and the overall boiler heat balance is calculated for reference and dry lignite co-firing conditions by an in-house calculation code. The overall plant’s thermal cycle is then simulated using commercial thermal cycle calculation software. The net plant efficiency is in this way determined for reference and dry coal co-firing conditions. According to the simulation results the integration of a pre-drying system and the implementation of dry lignite co-firing may bring an efficiency increase of about 1.5 percentage points in existing Greek boilers. It is therefore considered as an important measure towards improving plant efficiency and reducing specific CO2 emissions in existing plants.

  14. Mapping Fire Severity Using Imaging Spectroscopy and Kernel Based Image Analysis

    Science.gov (United States)

    Prasad, S.; Cui, M.; Zhang, Y.; Veraverbeke, S.

    2014-12-01

    Improved spatial representation of within-burn heterogeneity after wildfires is paramount to effective land management decisions and more accurate fire emissions estimates. In this work, we demonstrate feasibility and efficacy of airborne imaging spectroscopy (hyperspectral imagery) for quantifying wildfire burn severity, using kernel based image analysis techniques. Two different airborne hyperspectral datasets, acquired over the 2011 Canyon and 2013 Rim fire in California using the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) sensor, were used in this study. The Rim Fire, covering parts of the Yosemite National Park started on August 17, 2013, and was the third largest fire in California's history. Canyon Fire occurred in the Tehachapi mountains, and started on September 4, 2011. In addition to post-fire data for both fires, half of the Rim fire was also covered with pre-fire images. Fire severity was measured in the field using Geo Composite Burn Index (GeoCBI). The field data was utilized to train and validate our models, wherein the trained models, in conjunction with imaging spectroscopy data were used for GeoCBI estimation wide geographical regions. This work presents an approach for using remotely sensed imagery combined with GeoCBI field data to map fire scars based on a non-linear (kernel based) epsilon-Support Vector Regression (e-SVR), which was used to learn the relationship between spectra and GeoCBI in a kernel-induced feature space. Classification of healthy vegetation versus fire-affected areas based on morphological multi-attribute profiles was also studied. The availability of pre- and post-fire imaging spectroscopy data over the Rim Fire provided a unique opportunity to evaluate the performance of bi-temporal imaging spectroscopy for assessing post-fire effects. This type of data is currently constrained because of limited airborne acquisitions before a fire, but will become widespread with future spaceborne sensors such as those on

  15. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise

    Science.gov (United States)

    Macgregor, Lewis J.

    2018-01-01

    Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; pmotor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures. PMID:29630622

  16. Phosphodiesterase Inhibition to Target the Synaptic Dysfunction in Alzheimer's Disease

    Science.gov (United States)

    Bales, Kelly R.; Plath, Niels; Svenstrup, Niels; Menniti, Frank S.

    Alzheimer's Disease (AD) is a disease of synaptic dysfunction that ultimately proceeds to neuronal death. There is a wealth of evidence that indicates the final common mediator of this neurotoxic process is the formation and actions on synaptotoxic b-amyloid (Aβ). The premise in this review is that synaptic dysfunction may also be an initiating factor in for AD and promote synaptotoxic Aβ formation. This latter hypothesis is consistent with the fact that the most common risk factors for AD, apolipoprotein E (ApoE) allele status, age, education, and fitness, encompass suboptimal synaptic function. Thus, the synaptic dysfunction in AD may be both cause and effect, and remediating synaptic dysfunction in AD may have acute effects on the symptoms present at the initiation of therapy and also slow disease progression. The cyclic nucleotide (cAMP and cGMP) signaling systems are intimately involved in the regulation of synaptic homeostasis. The phosphodiesterases (PDEs) are a superfamily of enzymes that critically regulate spatial and temporal aspects of cyclic nucleotide signaling through metabolic inactivation of cAMP and cGMP. Thus, targeting the PDEs to promote improved synaptic function, or 'synaptic resilience', may be an effective and facile approach to new symptomatic and disease modifying therapies for AD. There continues to be a significant drug discovery effort aimed at discovering PDE inhibitors to treat a variety of neuropsychiatric disorders. Here we review the current status of those efforts as they relate to potential new therapies for AD.

  17. Y-TZP zirconia regeneration firing: Microstructural and crystallographic changes after grinding.

    Science.gov (United States)

    Ryan, Daniel Patrick Obelenis; Fais, Laiza Maria Grassi; Antonio, Selma Gutierrez; Hatanaka, Gabriel Rodrigues; Candido, Lucas Miguel; Pinelli, Ligia Antunes Pereira

    2017-07-26

    This study evaluated microstructural and crystallographic phase changes after grinding (G) and regeneration firing/anneling (R) of Y-TZP ceramics. Thirty five bars (Lava TM and Ice Zirkon) were divided: Y-TZP pre-sintered, control (C), regeneration firing (R), dry grinding (DG), dry grinding+regeneration firing (DGR), wet grinding (WG) and wet grinding+regeneration firing (WGR). Grinding was conducted using a diamond bur and annealing at 1,000°C. The microstructure was analyzed by SEM and the crystalline phases by X-ray diffraction (XRD). XRD showed that pre-sintered specimens contained tetragonal and monoclinic phases, while groups C and R showed tetragonal, cubic and monoclinic phases. After grinding, the cubic phase was eliminated in all groups. Annealing (DGR and WGR) resulted in only tetragonal phase. SEM showed semi-circular cracks after grinding and homogenization of particles after annealing. After grinding, surfaces show tetragonal and monoclinic phases and R can be assumed to be necessary prior to porcelain layering when grinding is performed.

  18. Cocaine Promotes Coincidence Detection and Lowers Induction Threshold during Hebbian Associative Synaptic Potentiation in Prefrontal Cortex.

    Science.gov (United States)

    Ruan, Hongyu; Yao, Wei-Dong

    2017-01-25

    Addictive drugs usurp neural plasticity mechanisms that normally serve reward-related learning and memory, primarily by evoking changes in glutamatergic synaptic strength in the mesocorticolimbic dopamine circuitry. Here, we show that repeated cocaine exposure in vivo does not alter synaptic strength in the mouse prefrontal cortex during an early period of withdrawal, but instead modifies a Hebbian quantitative synaptic learning rule by broadening the temporal window and lowers the induction threshold for spike-timing-dependent LTP (t-LTP). After repeated, but not single, daily cocaine injections, t-LTP in layer V pyramidal neurons is induced at +30 ms, a normally ineffective timing interval for t-LTP induction in saline-exposed mice. This cocaine-induced, extended-timing t-LTP lasts for ∼1 week after terminating cocaine and is accompanied by an increased susceptibility to potentiation by fewer pre-post spike pairs, indicating a reduced t-LTP induction threshold. Basal synaptic strength and the maximal attainable t-LTP magnitude remain unchanged after cocaine exposure. We further show that the cocaine facilitation of t-LTP induction is caused by sensitized D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons, which then pathologically recruits voltage-gated l-type Ca 2+ channels that synergize with GluN2A-containing NMDA receptors to drive t-LTP at extended timing. Our results illustrate a mechanism by which cocaine, acting on a key neuromodulation pathway, modifies the coincidence detection window during Hebbian plasticity to facilitate associative synaptic potentiation in prefrontal excitatory circuits. By modifying rules that govern activity-dependent synaptic plasticity, addictive drugs can derail the experience-driven neural circuit remodeling process important for executive control of reward and addiction. It is believed that addictive drugs often render an addict's brain reward system hypersensitive, leaving the individual more susceptible to

  19. The vestibulo- and preposito-cerebellar cholinergic neurons of a ChAT-tdTomato transgenic rat exhibit heterogeneous firing properties and the expression of various neurotransmitter receptors.

    Science.gov (United States)

    Zhang, Yue; Kaneko, Ryosuke; Yanagawa, Yuchio; Saito, Yasuhiko

    2014-04-01

    Cerebellar function is regulated by cholinergic mossy fiber inputs that are primarily derived from the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN). In contrast to the growing evidence surrounding cholinergic transmission and its functional significance in the cerebellum, the intrinsic and synaptic properties of cholinergic projection neurons (ChPNs) have not been clarified. In this study, we generated choline acetyltransferase (ChAT)-tdTomato transgenic rats, which specifically express the fluorescent protein tdTomato in cholinergic neurons, and used them to investigate the response properties of ChPNs identified via retrograde labeling using whole-cell recordings in brainstem slices. In response to current pulses, ChPNs exhibited two afterhyperpolarisation (AHP) profiles and three firing patterns; the predominant AHP and firing properties differed between the MVN and PHN. Morphologically, the ChPNs were separated into two types based on their soma size and dendritic extensions. Analyses of the firing responses to time-varying sinusoidal current stimuli revealed that ChPNs exhibited different firing modes depending on the input frequencies. The maximum frequencies in which each firing mode was observed were different between the neurons that exhibited distinct firing patterns. Analyses of the current responses to the application of neurotransmitter receptor agonists revealed that the ChPNs expressed (i) AMPA- and NMDA-type glutamate receptors, (ii) GABAA and glycine receptors, and (iii) muscarinic and nicotinic acetylcholine receptors. The current responses mediated by these receptors of MVN ChPNs were not different from those of PHN ChPNs. These findings suggest that ChPNs receive various synaptic inputs and encode those inputs appropriately across different frequencies. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Model of large pool fires

    Energy Technology Data Exchange (ETDEWEB)

    Fay, J.A. [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)]. E-mail: jfay@mit.edu

    2006-08-21

    A two zone entrainment model of pool fires is proposed to depict the fluid flow and flame properties of the fire. Consisting of combustion and plume zones, it provides a consistent scheme for developing non-dimensional scaling parameters for correlating and extrapolating pool fire visible flame length, flame tilt, surface emissive power, and fuel evaporation rate. The model is extended to include grey gas thermal radiation from soot particles in the flame zone, accounting for emission and absorption in both optically thin and thick regions. A model of convective heat transfer from the combustion zone to the liquid fuel pool, and from a water substrate to cryogenic fuel pools spreading on water, provides evaporation rates for both adiabatic and non-adiabatic fires. The model is tested against field measurements of large scale pool fires, principally of LNG, and is generally in agreement with experimental values of all variables.

  1. Model of large pool fires

    International Nuclear Information System (INIS)

    Fay, J.A.

    2006-01-01

    A two zone entrainment model of pool fires is proposed to depict the fluid flow and flame properties of the fire. Consisting of combustion and plume zones, it provides a consistent scheme for developing non-dimensional scaling parameters for correlating and extrapolating pool fire visible flame length, flame tilt, surface emissive power, and fuel evaporation rate. The model is extended to include grey gas thermal radiation from soot particles in the flame zone, accounting for emission and absorption in both optically thin and thick regions. A model of convective heat transfer from the combustion zone to the liquid fuel pool, and from a water substrate to cryogenic fuel pools spreading on water, provides evaporation rates for both adiabatic and non-adiabatic fires. The model is tested against field measurements of large scale pool fires, principally of LNG, and is generally in agreement with experimental values of all variables

  2. Myopic (HD-PTP, PTPN23) selectively regulates synaptic neuropeptide release.

    Science.gov (United States)

    Bulgari, Dinara; Jha, Anupma; Deitcher, David L; Levitan, Edwin S

    2018-02-13

    Neurotransmission is mediated by synaptic exocytosis of neuropeptide-containing dense-core vesicles (DCVs) and small-molecule transmitter-containing small synaptic vesicles (SSVs). Exocytosis of both vesicle types depends on Ca 2+ and shared secretory proteins. Here, we show that increasing or decreasing expression of Myopic (mop, HD-PTP, PTPN23), a Bro1 domain-containing pseudophosphatase implicated in neuronal development and neuropeptide gene expression, increases synaptic neuropeptide stores at the Drosophila neuromuscular junction (NMJ). This occurs without altering DCV content or transport, but synaptic DCV number and age are increased. The effect on synaptic neuropeptide stores is accounted for by inhibition of activity-induced Ca 2+ -dependent neuropeptide release. cAMP-evoked Ca 2+ -independent synaptic neuropeptide release also requires optimal Myopic expression, showing that Myopic affects the DCV secretory machinery shared by cAMP and Ca 2+ pathways. Presynaptic Myopic is abundant at early endosomes, but interaction with the endosomal sorting complex required for transport III (ESCRT III) protein (CHMP4/Shrub) that mediates Myopic's effect on neuron pruning is not required for control of neuropeptide release. Remarkably, in contrast to the effect on DCVs, Myopic does not affect release from SSVs. Therefore, Myopic selectively regulates synaptic DCV exocytosis that mediates peptidergic transmission at the NMJ.

  3. The synthetic cannabinoid HU210 induces spatial memory deficits and suppresses hippocampal firing rate in rats.

    Science.gov (United States)

    Robinson, L; Goonawardena, A V; Pertwee, R G; Hampson, R E; Riedel, G

    2007-07-01

    Previous work implied that the hippocampal cannabinoid system was particularly important in some forms of learning, but direct evidence for this hypothesis is scarce. We therefore assessed the effects of the synthetic cannabinoid HU210 on memory and hippocampal activity. HU210 (100 microg kg(-1)) was administered intraperitoneally to rats under three experimental conditions. One group of animals were pre-trained in spatial working memory using a delayed-matching-to-position task and effects of HU210 were assessed in a within-subject design. In another, rats were injected before acquisition learning of a spatial reference memory task with constant platform location. Finally, a separate group of animals was implanted with electrode bundles in CA1 and CA3 and single unit responses were isolated, before and after HU210 treatment. HU210 treatment had no effect on working or short-term memory. Relative to its control Tween 80, deficits in acquisition of a reference memory version of the water maze were obtained, along with drug-related effects on anxiety, motor activity and spatial learning. Deficits were not reversed by the CB(1) receptor antagonists SR141716A (3 mg kg(-1)) or AM281 (1.5 mg kg(-1)). Single unit recordings from principal neurons in hippocampal CA3 and CA1 confirmed HU210-induced attenuation of the overall firing activity lowering both the number of complex spikes fired and the occurrence of bursts. These data provide the first direct evidence that the underlying mechanism for the spatial memory deficits induced by HU210 in rats is the accompanying abnormality in hippocampal cell firing.

  4. Fire metrology: Current and future directions in physics-based measurements

    Science.gov (United States)

    Robert L. Kremens; Alistair M.S. Smith; Matthew B. Dickinson

    2010-01-01

    The robust evaluation of fire impacts on the biota, soil, and atmosphere requires measurement and analysis methods that can characterize combustion processes across a range of temporal and spatial scales. Numerous challenges are apparent in the literature. These challenges have led to novel research to quantify the 1) structure and heterogeneity of the pre-fire...

  5. Capacity analysis in multi-state synaptic models: a retrieval probability perspective.

    Science.gov (United States)

    Huang, Yibi; Amit, Yali

    2011-06-01

    We define the memory capacity of networks of binary neurons with finite-state synapses in terms of retrieval probabilities of learned patterns under standard asynchronous dynamics with a predetermined threshold. The threshold is set to control the proportion of non-selective neurons that fire. An optimal inhibition level is chosen to stabilize network behavior. For any local learning rule we provide a computationally efficient and highly accurate approximation to the retrieval probability of a pattern as a function of its age. The method is applied to the sequential models (Fusi and Abbott, Nat Neurosci 10:485-493, 2007) and meta-plasticity models (Fusi et al., Neuron 45(4):599-611, 2005; Leibold and Kempter, Cereb Cortex 18:67-77, 2008). We show that as the number of synaptic states increases, the capacity, as defined here, either plateaus or decreases. In the few cases where multi-state models exceed the capacity of binary synapse models the improvement is small.

  6. Influence of active dendritic currents on input-output processing in spinal motoneurons in vivo.

    Science.gov (United States)

    Lee, R H; Kuo, J J; Jiang, M C; Heckman, C J

    2003-01-01

    The extensive dendritic tree of the adult spinal motoneuron generates a powerful persistent inward current (PIC). We investigated how this dendritic PIC influenced conversion of synaptic input to rhythmic firing. A linearly increasing, predominantly excitatory synaptic input was generated in triceps ankle extensor motoneurons by slow stretch (duration: 2-10 s) of the Achilles tendon in the decerebrate cat preparation. The firing pattern evoked by stretch was measured by injecting a steady current to depolarize the cell to threshold for firing. The effective synaptic current (I(N), the net synaptic current reaching the soma of the cell) evoked by stretch was measured during voltage clamp. Hyperpolarized holding potentials were used to minimize the activation of the dendritic PIC and thus estimate stretch-evoked I(N) for a passive dendritic tree (I(N,PASS)). Depolarized holding potentials that approximated the average membrane potential during rhythmic firing allowed strong activation of the dendritic PIC and thus resulted in marked enhancement of the total stretch-evoked I(N) (I(N,TOT)). The net effect of the dendritic PIC on the generation of rhythmic firing was assessed by plotting stretch-evoked firing (strong PIC activation) versus stretch-evoked I(N,PASS) (minimal PIC activation). The gain of this input-output function for the neuron (I-O(N)) was found to be ~2.7 times as high as for the standard injected frequency current (F-I) function in low-input conductance neurons. However, about halfway through the stretch, firing rate tended to become constant, resulting in a sharp saturation in I-O(N) that was not present in F-I. In addition, the gain of I-O(N) decreased sharply with increasing input conductance, resulting in much lower stretch-evoked firing rates in high-input conductance cells. All three of these phenomena (high initial gain, saturation, and differences in low- and high-input conductance cells) were also readily apparent in the differences between

  7. Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and Trans-Synaptic Signaling Mediating Synaptic Remodeling

    Science.gov (United States)

    Sears, James C.; Broadie, Kendal

    2018-01-01

    Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. The disease arises through loss of fragile X mental retardation protein (FMRP), which normally exhibits peak expression levels in early-use critical periods, and is required for activity-dependent synaptic remodeling during this transient developmental window. FMRP canonically binds mRNA to repress protein translation, with targets that regulate cytoskeleton dynamics, membrane trafficking, and trans-synaptic signaling. We focus here on recent advances emerging in these three areas from the Drosophila disease model. In the well-characterized central brain mushroom body (MB) olfactory learning/memory circuit, FMRP is required for activity-dependent synaptic remodeling of projection neurons innervating the MB calyx, with function tightly restricted to an early-use critical period. FMRP loss is phenocopied by conditional removal of FMRP only during this critical period, and rescued by FMRP conditional expression only during this critical period. Consistent with FXS hyperexcitation, FMRP loss defects are phenocopied by heightened sensory experience and targeted optogenetic hyperexcitation during this critical period. FMRP binds mRNA encoding Drosophila ESCRTIII core component Shrub (human CHMP4 homolog) to restrict Shrub translation in an activity-dependent mechanism only during this same critical period. Shrub mediates endosomal membrane trafficking, and perturbing Shrub expression is known to interfere with neuronal process pruning. Consistently, FMRP loss and Shrub overexpression targeted to projection neurons similarly causes endosomal membrane trafficking defects within synaptic boutons, and genetic reduction of Shrub strikingly rescues Drosophila FXS model defects. In parallel work on the well-characterized giant fiber (GF) circuit, FMRP limits iontophoretic dye loading into central interneurons, demonstrating an FMRP role controlling core neuronal properties through the

  8. Modelling of Fire in an Open Car Park

    DEFF Research Database (Denmark)

    Marton, Timea; Dederichs, Anne Simone; Giuliani, Luisa

    2015-01-01

    Steel car parks exhibit high vulnerability to fire, as a consequence of the degradation of the steel mechanical properties at high temperatures and of the combustible type and amount. Real fire accidents in open car parks demonstrated a much faster and extended fire spread than predictions......, assuming that a fire spread rate of 12 min and consider at most 3-4 vehicles on fire at the same time. Fire Dynamic Simulator (FDS) is applied in this current paper to study fire spread between cars. The outcomes of the investigations show that the fire spread is strongly influenced by the geometrical...... layout and that the distance between cars plays a determinant role on the fire spread rate and ignition of adjacent cars. In particular it was found that the fire spread can be faster than 12 minutes in the case of the cars parked 40 and 60 cm from each other....

  9. Simulating spatial and temporally related fire weather

    Science.gov (United States)

    Isaac C. Grenfell; Mark Finney; Matt Jolly

    2010-01-01

    Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...

  10. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire...

  11. Estimation of Synaptic Conductances in Presence of Nonlinear Effects Caused by Subthreshold Ionic Currents

    Directory of Open Access Journals (Sweden)

    Catalina Vich

    2017-07-01

    Full Text Available Subthreshold fluctuations in neuronal membrane potential traces contain nonlinear components, and employing nonlinear models might improve the statistical inference. We propose a new strategy to estimate synaptic conductances, which has been tested using in silico data and applied to in vivo recordings. The model is constructed to capture the nonlinearities caused by subthreshold activated currents, and the estimation procedure can discern between excitatory and inhibitory conductances using only one membrane potential trace. More precisely, we perform second order approximations of biophysical models to capture the subthreshold nonlinearities, resulting in quadratic integrate-and-fire models, and apply approximate maximum likelihood estimation where we only suppose that conductances are stationary in a 50–100 ms time window. The results show an improvement compared to existent procedures for the models tested here.

  12. Effects of Burn Severity and Environmental Conditions on Post-Fire Regeneration in Siberian Larch Forest

    OpenAIRE

    Thuan Chu; Xulin Guo; Kazuo Takeda

    2017-01-01

    Post-fire forest regeneration is strongly influenced by abiotic and biotic heterogeneity in the pre- and post-fire environments, including fire regimes, species characteristics, landforms, hydrology, regional climate, and soil properties. Assessing these drivers is key to understanding the long-term effects of fire disturbances on forest succession. We evaluated multiple factors influencing patterns of variability in a post-fire boreal Larch (Larix sibirica) forest in Siberia. A time-series o...

  13. Interesting spontaneous combustion fire at Haus Aden colliery

    Energy Technology Data Exchange (ETDEWEB)

    Both, W; Weinheimer, O

    1976-02-05

    Spontaneous combustion ahead of the face occurred in an over-worked and under-worked seam. When the first cavity containing hot ash was found, an attempt to extinguish the fire with water was abandoned because of the quantity of steam produced, but the fire was extinguished by covering it with paste containing magnesium chloride and hydroxide and calcium chloride. Mining operations continued while the coal surrounding the hot region was cooled with water. The steps taken to detect and deal with other fires in advance of the face are described. These included pre-infusion with calcium chloride solution via boreholes and treatment of the hot cavities encountered with magnesium chloride paste. This method of fire-fighting was more successful than the use of water alone.

  14. Synaptic responses evoked by tactile stimuli in Purkinje cells in mouse cerebellar cortex Crus II in vivo.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Chu

    Full Text Available Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice.Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6-8-week-old HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0, the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs in the somata of PCs. Application of SR95531, a specific GABA(A receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation.These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABA(A receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice.

  15. Patterns of Canopy and Surface Layer Consumption in a Boreal Forest Fire from Repeat Airborne Lidar

    Science.gov (United States)

    Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert

    2017-01-01

    Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaskas Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broad leaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from above ground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity

  16. Effects of fire on fish populations: Landscape perspectives on persistance of native fishes and nonnative fish invasions

    Science.gov (United States)

    Dunham, J.B.; Young, M.; Gresswell, Robert E.; Rieman, B.

    2003-01-01

    Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests vulnerability of fish to fire is contingent upon the quality of affected habitats, the amount and distribution of habitat (habitat fragmentation), and habitat specificity of the species in question. Species with narrow habitat requirements in highly degraded and fragmented systems are likely to be most vulnerable to fire and fire-related disturbance. In addition to effects of fire on native fish, there are growing concerns about the effects of fire on nonnative fish invasions. The role of fire in facilitating invasions by nonnative fishes is unknown, but experience with other species suggests some forms of disturbance associated with fire may facilitate invasion. Management efforts to promote persistence of fishes in fire-prone landscapes can take the form of four basic alternatives: (1) pre-fire management; (2) post-fire management; (3) managing fire itself (e.g. fire fighting); and (4) monitoring and adaptive management. Among these alternatives, pre-fire management is likely to be most effective. Effective pre-fire management activities will address factors that may render fish populations more vulnerable to the effects of fire (e.g. habitat degradation, fragmentation, and nonnative species). Post-fire management is also potentially important, but suffers from being a reactive approach that may not address threats in time to avert them. Managing fire itself can be important in some contexts, but negative consequences for fish populations are possible (e.g. toxicity of fire fighting chemicals to fish). Monitoring and adaptive management can provide important new information for evaluating alternatives, but

  17. The sodium fire tests performed in the FAUNA facility on up to 12m2 fire areas

    International Nuclear Information System (INIS)

    Cherdron, W.; Jordan, S.

    1983-08-01

    The FAUNA test facility started operation in 1979. It serves to investigate large area sodium fires in closed containments and to study the generation, behaviour and removal of sodium fire aerosols. In this report, the experimental results of the 6 sodium pool fires are described which were performed with up to 500 kg of sodium in fire pans of 2 m 2 , 5 m 2 and 12 m 2 surface area, respectively. Both, the thermodynamic data and the data of the reaction kinetics of the fires were determined. In addition, the behaviour of the released aerosols during and after the fire was studied. On the basis of measurements of the temperature profiles at various levels above the fire areas it was shown that the convective flows above fire areas of different sizes in closed containments differ markedly and, obviously, exert an influence on the development of the fire and the release of particles. Whilst in rather small fires the gas above the pan rises as in a chimney and flows back on the walls, no chimney effect can be observed in a large pool fire. In rather large fires higher burning rates and aerosol release rates were observed. Some meters above the fire area temperatures around 300-400 0 C, temporarily even up to 700 0 C, were measured. The tests F5 and F6 were performed above all to observe the fire behaviour in terms of thermodynamics and reaction kinetics in a fully closed containment. (orig./RW) [de

  18. Statistical mechanics of attractor neural network models with synaptic depression

    International Nuclear Information System (INIS)

    Igarashi, Yasuhiko; Oizumi, Masafumi; Otsubo, Yosuke; Nagata, Kenji; Okada, Masato

    2009-01-01

    Synaptic depression is known to control gain for presynaptic inputs. Since cortical neurons receive thousands of presynaptic inputs, and their outputs are fed into thousands of other neurons, the synaptic depression should influence macroscopic properties of neural networks. We employ simple neural network models to explore the macroscopic effects of synaptic depression. Systems with the synaptic depression cannot be analyzed due to asymmetry of connections with the conventional equilibrium statistical-mechanical approach. Thus, we first propose a microscopic dynamical mean field theory. Next, we derive macroscopic steady state equations and discuss the stabilities of steady states for various types of neural network models.

  19. Fire debris analysis for forensic fire investigation using laser induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Choi, Soojin; Yoh, Jack J.

    2017-08-01

    The possibility verification of the first attempt to apply LIBS to arson investigation was performed. LIBS has capabilities for real time in-situ analysis and depth profiling. It can provide valuable information about the fire debris that are complementary to the classification of original sample components and combustion residues. In this study, fire debris was analyzed to determine the ignition source and existence of a fire accelerant using LIBS spectra and depth profiling analysis. Fire debris chemical composition and carbon layer thickness determines the possible ignition source while the carbon layer thickness of combusted samples represents the degree of sample carbonization. When a sample is combusted with fire accelerants, a thicker carbon layer is formed because the burning rate is increased. Therefore, depth profiling can confirm the existence of combustion accelerants, which is evidence of arson. Also investigation of fire debris by depth profiling is still possible when a fire is extinguished with water from fire hose. Such data analysis and in-situ detection of forensic signals via the LIBS may assist fire investigation at crime scenes.

  20. A Vision-Based Approach to Fire Detection

    Directory of Open Access Journals (Sweden)

    Pedro Gomes

    2014-09-01

    Full Text Available This paper presents a vision-based method for fire detection from fixed surveillance smart cameras. The method integrates several well-known techniques properly adapted to cope with the challenges related to the actual deployment of the vision system. Concretely, background subtraction is performed with a context-based learning mechanism so as to attain higher accuracy and robustness. The computational cost of a frequency analysis of potential fire regions is reduced by means of focusing its operation with an attentive mechanism. For fast discrimination between fire regions and fire-coloured moving objects, a new colour-based model of fire's appearance and a new wavelet-based model of fire's frequency signature are proposed. To reduce the false alarm rate due to the presence of fire-coloured moving objects, the category and behaviour of each moving object is taken into account in the decision-making. To estimate the expected object's size in the image plane and to generate geo-referenced alarms, the camera-world mapping is approximated with a GPS-based calibration process. Experimental results demonstrate the ability of the proposed method to detect fires with an average success rate of 93.1% at a processing rate of 10 Hz, which is often sufficient for real-life applications.

  1. GABA Metabolism and Transport: Effects on Synaptic Efficacy

    Directory of Open Access Journals (Sweden)

    Fabian C. Roth

    2012-01-01

    Full Text Available GABAergic inhibition is an important regulator of excitability in neuronal networks. In addition, inhibitory synaptic signals contribute crucially to the organization of spatiotemporal patterns of network activity, especially during coherent oscillations. In order to maintain stable network states, the release of GABA by interneurons must be plastic in timing and amount. This homeostatic regulation is achieved by several pre- and postsynaptic mechanisms and is triggered by various activity-dependent local signals such as excitatory input or ambient levels of neurotransmitters. Here, we review findings on the availability of GABA for release at presynaptic terminals of interneurons. Presynaptic GABA content seems to be an important determinant of inhibitory efficacy and can be differentially regulated by changing synthesis, transport, and degradation of GABA or related molecules. We will discuss the functional impact of such regulations on neuronal network patterns and, finally, point towards pharmacological approaches targeting these processes.

  2. Synaptic membrane rafts: traffic lights for local neurotrophin signaling?

    Science.gov (United States)

    Zonta, Barbara; Minichiello, Liliana

    2013-10-18

    Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signaling, plasticity, and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signaling. The tyrosine kinase neurotrophin receptors (Trk) and the low-affinity p75 neurotrophin receptor (p75(NTR)) are enriched in neuronal lipid rafts together with the intermediates of downstream signaling pathways, suggesting a possible role of rafts in neurotrophin signaling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.

  3. Synaptic membrane rafts: traffic lights for local neurotrophin signalling?

    Directory of Open Access Journals (Sweden)

    Barbara eZonta

    2013-10-01

    Full Text Available Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signalling, plasticity and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signalling. The tyrosine kinase neurotrophin receptors (Trk and the low-affinity p75 neurotrophin receptor (p75NTR are enriched in neuronal lipid rafts together with the intermediates of downstream signalling pathways, suggesting a possible role of rafts in neurotrophin signalling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.

  4. Characterisation of open-door electrical cabinet fires in compartments

    Energy Technology Data Exchange (ETDEWEB)

    Coutin, M., E-mail: mickael.coutin@irsn.fr; Plumecocq, W.; Zavaleta, P.; Audouin, L.

    2015-05-15

    Highlights: • Heat release rate of electrical cabinet fire source in a vitiated atmosphere. • Experimental database for proper validation the combustible modelling, taking into account the oxygen depletion in an enclosure. • New model for complex fire source. - Abstract: The study of electrical fires is a major concern for fire safety in the industry and more particularly for fire safety in nuclear facilities. To investigate this topic, IRSN conducted a large number of real-scale experiments involving open-door electrical cabinets burning firstly under a calorimetric hood and then inside a mechanically-ventilated compartment. The main challenges are to determine accurately the heat release rate of such a complex fire source in a vitiated atmosphere and to provide an experimental database for validating properly the combustible modelling, taking into account the oxygen depletion in an enclosure. After providing a detailed description of the fire scenarios and of the experimental apparatus, this paper focuses on the characteristic stages of the cabinet fire development, essentially based on the heat release rate time evolution of the fire. The effects of the confinement, of the outlet branch location, of the ventilation management and of the fire barrier on the fire source were then investigated. The reproducibility of electrical cabinet fires is also studied. A new model for complex fire source (applied in this study for open-door electrical cabinet fires) was then developed. This model was introduced in the zone code SYLVIA and the major features of the compartment fire experiments, such as characteristic heat release rate with effect of oxygen depletion and over-pressure peak were then calculated with a rather good agreement for this complex fire source (i.e. electrical cabinet)

  5. Fire resistance of wood members with directly applied protection

    Science.gov (United States)

    Robert H. White

    2009-01-01

    Fire-resistive wood construction is achieved either by having the structural elements be part of fire-rated assemblies or by using elements of sufficient size that the elements themselves have the required fire-resistance ratings. For exposed structural wood elements, the ratings in the United States are calculated using either the T.T. Lie method or the National...

  6. 46 CFR 28.315 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... After September 15, 1991, and That Operate With More Than 16 Individuals on Board § 28.315 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel 36 feet (11.8 meters) or more in length must...

  7. Informing the network: Improving communication with interface communities during wildland fire

    Science.gov (United States)

    Taylor, J.G.; Gillette, S.C.; Hodgson, R.W.; Downing, J.L.; Burns, M.R.; Chavez, D.J.; Hogan, J.T.

    2007-01-01

    An interagency research team studied fire communications that took place during different stages of two wildfires in southern California: one small fire of short duration and one large fire of long duration. This "quick- response" research showed that pre-fire communication planning was particularly effective for smaller fire events and parts of that planning proved invaluable for the large fire event as well. Information seeking by the affected public relied on locally convenient sources during the small fire. During the large fire, widespread evacuations disrupted many of the local informal communication networks. Residents' needs were for "real-time, " place-specific information: precise location, severity, size, and direction of spread of the fires. Fire management agencies must contribute real-time, place-specific fire information when it is most needed by the affected public, as they try to make sense out of the chaos of a wildland fire. Disseminating fire information as broadly as possible through multiple pathways will maximize the probability of the public finding the information they need. ?? Society for Human Ecology.

  8. Synaptic release and extracellular actions of Zn2+ limit propagation of spreading depression and related events in vitro and in vivo.

    Science.gov (United States)

    Aiba, Isamu; Carlson, Andrew P; Sheline, Christian T; Shuttleworth, C William

    2012-02-01

    Cortical spreading depression (CSD) is a consequence of a slowly propagating wave of neuronal and glial depolarization (spreading depolarization; SD). Massive release of glutamate contributes to SD propagation, and it was recently shown that Zn(2+) is also released from synaptic vesicles during SD. The present study examined consequences of extracellular Zn(2+) accumulation on the propagation of SD. SD mechanisms were studied first in murine brain slices, using focal KCl applications as stimuli and making electrical and optical recordings in hippocampal area CA1. Elevating extracellular Zn(2+) concentrations with exogenous ZnCl(2) reduced SD propagation rates. Selective chelation of endogenous Zn(2+) (using TPEN or CaEDTA) increased SD propagation rates, and these effects appeared due to chelation of Zn(2+) derived from synaptic vesicles. Thus, in tissues where synaptic Zn(2+) release was absent [knockout (KO) of vesicular Zn(2+) transporter ZnT-3], SD propagation rates were increased, and no additional increase was observed following chelation of endogenous Zn(2+) in these tissues. The role of synaptic Zn(2+) was then examined on CSD in vivo. ZnT-3 KO animals had higher susceptibility to CSD than wild-type controls as evidenced by significantly higher propagation rates and frequencies. Studies of candidate mechanisms excluded changes in neuronal excitability, presynaptic release, and GABA receptors but left open a possible contribution of N-methyl-d-aspartate (NMDA) receptor inhibition. These results suggest the extracellular accumulation of synaptically released Zn(2+) can serve as an intrinsic inhibitor to limit SD events. The inhibitory action of extracellular Zn(2+) on SD may counteract to some extent the neurotoxic effects of intracellular Zn(2+) accumulation in acute brain injury models.

  9. Bumps, breathers, and waves in a neural network with spike frequency adaptation

    International Nuclear Information System (INIS)

    Coombes, S.; Owen, M.R.

    2005-01-01

    We introduce a continuum model of neural tissue that includes the effects of spike frequency adaptation (SFA). The basic model is an integral equation for synaptic activity that depends upon nonlocal network connectivity, synaptic response, and the firing rate of a single neuron. We consider a phenomenological model of SFA via a simple state-dependent threshold firing rate function. As without SFA, Mexican-hat connectivity allows for the existence of spatially localized states (bumps). Importantly recent Evans function techniques are used to show that bumps may destabilize leading to the emergence of breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. Simulations confirm our theoretical predictions and illustrate the rich behavior of this model

  10. Evaluating crown fire rate of spread predictions from physics-based models

    Science.gov (United States)

    C. M. Hoffman; J. Ziegler; J. Canfield; R. R. Linn; W. Mell; C. H. Sieg; F. Pimont

    2015-01-01

    Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate...

  11. Effects of electrical stimulation of ventral septal area on firing rates of pyrogen-treated thermosensitive neurons in preoptic anterior hypothalamus from rabbits.

    Science.gov (United States)

    Dong, Jun; Xie, Xin-Hua; Lu, Da-Xiang; Fu, Yong-Mei

    2007-01-09

    Although there is considerable evidence supporting that fever evolved as a host defense response, it is important that the rise in body temperature would not be too high. Many endogenous cryogens or antipyretics that limit the rise in body temperature have been identified. Endogenous antipyretics attenuate fever by influencing the thermoregulatory neurons in the preoptic anterior hypothalamus (POAH) and in adjacent septal areas including ventral septal area (VSA). Our previous study showed that intracerebroventricular (I.C.V.) injection of interleukin-1beta (IL-1beta) affected electrophysiological activities of thermosensitive neurons in VSA regions, and electrical stimulation of POAH reversed the effect of IL-1beta. To further investigate the functional electrophysiological connection between POAH and VSA and its mechanisms in thermoregulation, the firing rates of thermosensitive neurons in POAH of forty-seven unit discharge were recorded by using extracellular microelectrode technique in New Zealand white rabbits. Our results show that the firing rates of the warm-sensitive neurons decreased significantly and those of the cold-sensitive neurons increased in POAH when the pyrogen (IL-1beta) was injected I.C.V. The effects of IL-1beta on firing rates in thermosensitive neurons of POAH were reversed by electrical stimulation of VSA. An arginine vasopressin (AVP) V1 antagonist abolished the regulatory effects of VSA on the firing rates in thermosensitive neurons of POAH evoked by IL-1beta. However, an AVP V2 antagonist had no effects. These data indicated that VSA regulates the activities of the thermosensitive neurons of POAH through AVP V1 but not AVP V2 receptor.

  12. Fire Effects on Soil and Dissolved Organic Matter in a Southern Appalachian Hardwood Forest: Movement of Fire-Altered Organic Matter Across the Terrestrial-Aquatic Interface Following the Great Smoky Mountains National Park Fire of 2016

    Science.gov (United States)

    Matosziuk, L.; Gallo, A.; Hatten, J. A.; Heckman, K. A.; Nave, L. E.; Sanclements, M.; Strahm, B. D.; Weiglein, T.

    2017-12-01

    Wildfire can dramatically affect the quantity and quality of soil organic matter (SOM), producing thermally altered organic material such as pyrogenic carbon (PyC) and polyaromatic hydrocarbons (PAHs). The movement of this thermally altered material through terrestrial and aquatic ecosystems can differ from that of unburned SOM, with far-reaching consequences for soil carbon cycling and water quality. Unfortunately, due to the rapid ecological changes following fire and the lack of robust pre-fire controls, the cycling of fire-altered carbon is still poorly understood. In December 2016, the Chimney Tops 2 fire in Great Smoky Mountains National Park burned over co-located terrestrial and aquatic NEON sites. We have leveraged the wealth of pre-fire data at these sites (chemical, physical, and microbial characterization of soils, continuous measurements of both soil and stream samples, and five soil cores up to 110 cm in depth) to conduct a thorough study of the movement of fire-altered organic matter through terrestrial and aquatic ecosystems. Stream samples have been collected weekly beginning 5 weeks post-fire. Grab samples of soil were taken at discrete time points in the first two months after the fire. Eight weeks post-fire, a second set of cores was taken and resin lysimeters installed at three different depths. A third set of cores and grab samples will be taken 8-12 months after the fire. In addition to routine soil characterization techniques, solid samples from cores and grab samples at all time points will be analyzed for PyC and PAHs. To determine the effect of fire on dissolved organic matter (DOM), hot water extracts of these soil samples, as well as the stream samples and lysimeter samples, will also be analyzed for PyC and PAHs. Selected samples will be analyzed by 1D- and 2D-NMR to further characterize the chemical composition of DOM. This extensive investigation of the quantity and quality of fire-altered organic material at discrete time points

  13. Defective glycinergic synaptic transmission in zebrafish motility mutants

    Directory of Open Access Journals (Sweden)

    Hiromi Hirata

    2010-01-01

    Full Text Available Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs.

  14. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    Science.gov (United States)

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2009-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch-once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch-once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs. PMID:20161699

  15. γ1-Containing GABA-A Receptors Cluster at Synapses Where they Mediate Slower Synaptic Currents than γ2-Containing GABA-A Receptors

    Directory of Open Access Journals (Sweden)

    Christine L. Dixon

    2017-06-01

    Full Text Available GABA-A receptors (GABAARs are pentameric ligand-gated ion channels that are assembled mainly from α (α1–6, β (β1–3 and γ (γ1–3 subunits. Although GABAARs containing γ2L subunits mediate most of the inhibitory neurotransmission in the brain, significant expression of γ1 subunits is seen in the amygdala, pallidum and substantia nigra. However, the location and function of γ1-containing GABAARs in these regions remains unclear. In “artificial” synapses, where the subunit composition of postsynaptic receptors is specifically controlled, γ1 incorporation slows the synaptic current decay rate without affecting channel deactivation, suggesting that γ1-containing receptors are not clustered and therefore activated by diffuse neurotransmitter. However, we show that γ1-containing receptors are localized at neuronal synapses and form clusters in both synaptic and extrasynaptic regions. In addition, they exhibit rapid membrane diffusion and a higher frequency of exchange between synaptic and perisynaptic populations compared to γ2L-containing GABAARs. A point mutation in the large intracellular domain and a pharmacological analysis reveal that when a single non-conserved γ2L residue is mutated to its γ1 counterpart (T349L, the synaptic current decay is slowed from γ2L- to γ1-like without changing the clustering or diffusion properties of the receptors. In addition, previous fast perfusion and single channel kinetic experiments revealed no difference in the intrinsic closing rates of γ2L- and γ1-containing receptors when expressed in HEK293 cells. These observations together with Monte Carlo simulations of synaptic function confirm that decreased clustering does not control γ1-containing GABAAR kinetics. Rather, they suggest that γ1- and γ2L-containing receptors exhibit differential synaptic current decay rates due to differential gating dynamics when localized at the synapse.

  16. Optical Dissection of Experience-Dependent Pre- and Postsynaptic Plasticity in the Drosophila Brain

    Directory of Open Access Journals (Sweden)

    Ulrike Pech

    2015-03-01

    Full Text Available Drosophila represents a key model organism for dissecting neuronal circuits that underlie innate and adaptive behavior. However, this task is limited by a lack of tools to monitor physiological parameters of spatially distributed, central synapses in identified neurons. We generated transgenic fly strains that express functional fluorescent reporters targeted to either pre- or postsynaptic compartments. Presynaptic Ca2+ dynamics are monitored using synaptophysin-coupled GCaMP3, synaptic transmission is monitored using red fluorescent synaptophysin-pHTomato, and postsynaptic Ca2+ dynamics are visualized using GCaMP3 fused with the postsynaptic matrix protein, dHomer. Using two-photon in vivo imaging of olfactory projection neurons, odor-evoked activity across populations of synapses is visualized in the antennal lobe and the mushroom body calyx. Prolonged odor exposure causes odor-specific and differential experience-dependent changes in pre- and postsynaptic activity at both levels of olfactory processing. The approach advances the physiological analysis of synaptic connections across defined groups of neurons in intact Drosophila.

  17. Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model.

    Directory of Open Access Journals (Sweden)

    Guido Gigante

    2015-11-01

    Full Text Available Cortical networks, in-vitro as well as in-vivo, can spontaneously generate a variety of collective dynamical events such as network spikes, UP and DOWN states, global oscillations, and avalanches. Though each of them has been variously recognized in previous works as expression of the excitability of the cortical tissue and the associated nonlinear dynamics, a unified picture of the determinant factors (dynamical and architectural is desirable and not yet available. Progress has also been partially hindered by the use of a variety of statistical measures to define the network events of interest. We propose here a common probabilistic definition of network events that, applied to the firing activity of cultured neural networks, highlights the co-occurrence of network spikes, power-law distributed avalanches, and exponentially distributed 'quasi-orbits', which offer a third type of collective behavior. A rate model, including synaptic excitation and inhibition with no imposed topology, synaptic short-term depression, and finite-size noise, accounts for all these different, coexisting phenomena. We find that their emergence is largely regulated by the proximity to an oscillatory instability of the dynamics, where the non-linear excitable behavior leads to a self-amplification of activity fluctuations over a wide range of scales in space and time. In this sense, the cultured network dynamics is compatible with an excitation-inhibition balance corresponding to a slightly sub-critical regime. Finally, we propose and test a method to infer the characteristic time of the fatigue process, from the observed time course of the network's firing rate. Unlike the model, possessing a single fatigue mechanism, the cultured network appears to show multiple time scales, signalling the possible coexistence of different fatigue mechanisms.

  18. Fire management strategies to maintain species population processes in a fragmented landscape of fire-interval extremes.

    Science.gov (United States)

    Tulloch, Ayesha I T; Pichancourt, Jean-Baptiste; Gosper, Carl R; Sanders, Angela; Chadès, Iadine

    2016-10-01

    Changed fire regimes have led to declines of fire-regime-adapted species and loss of biodiversity globally. Fire affects population processes of growth, reproduction, and dispersal in different ways, but there is little guidance about the best fire regime(s) to maintain species population processes in fire-prone ecosystems. We use a process-based approach to determine the best range of fire intervals for keystone plant species in a highly modified Mediterranean ecosystem in southwestern Australia where current fire regimes vary. In highly fragmented areas, fires are few due to limited ignitions and active suppression of wildfire on private land, while in highly connected protected areas fires are frequent and extensive. Using matrix population models, we predict population growth of seven Banksia species under different environmental conditions and patch connectivity, and evaluate the sensitivity of species survival to different fire management strategies and burning intervals. We discover that contrasting, complementary patterns of species life-histories with time since fire result in no single best fire regime. All strategies result in the local patch extinction of at least one species. A small number of burning strategies secure complementary species sets depending on connectivity and post-fire growing conditions. A strategy of no fire always leads to fewer species persisting than prescribed fire or random wildfire, while too-frequent or too-rare burning regimes lead to the possible local extinction of all species. In low landscape connectivity, we find a smaller range of suitable fire intervals, and strategies of prescribed or random burning result in a lower number of species with positive growth rates after 100 years on average compared with burning high connectivity patches. Prescribed fire may reduce or increase extinction risk when applied in combination with wildfire depending on patch connectivity. Poor growing conditions result in a significantly

  19. Effects of forest fire on soil nutrients in Turkish pine (Pinus brutia, Ten) ecosystems.

    Science.gov (United States)

    Yildiz, Oktay; Esen, Derya; Sarginci, Murat; Toprak, Bulent

    2010-01-01

    Fire is a long-standing and poorly understood component of the Mediterranean forestlands in Turkey. Fire can alter plant composition, destroy biomass, alter soil physical and chemical properties and reduce soil nutrient pools. However fire can also promote productivity of certain ecosystems by mineralizing soil nutrients and promoting fast growing nitrogen fixing plant species. Fire effects on soils and ecosystems in Turkey and Mediterranean regions are not well understood. This study uses a retrospective space-for-time substitution to study soil macro-nutrient changes on sites which were burned at different times during the last 8 years. The study sites are in the Fethiye Forest Management Directorate in the western Mediterranean Sea region of Turkey. Our samples show 40% less Soil C, and cation exchange capacity (CEC) at 0-20 cm soil depth two weeks after the fire. Soil C and CEC appear to recover to pre-fire level in one year. Concentrations of Mg were significantly lower on new-burn sites, but returned to pre-fire levels in one year. Total soil N concentrations one and two years after fire were 90% higher than other sites, and total P was 9 times higher on new-burn site than averages from other sites. Some implications of these results for forest managers are discussed.

  20. Delay-induced diversity of firing behavior and ordered chaotic firing in adaptive neuronal networks

    International Nuclear Information System (INIS)

    Gong Yubing; Wang Li; Xu Bo

    2012-01-01

    In this paper, we study the effect of time delay on the firing behavior and temporal coherence and synchronization in Newman–Watts thermosensitive neuron networks with adaptive coupling. At beginning, the firing exhibit disordered spiking in absence of time delay. As time delay is increased, the neurons exhibit diversity of firing behaviors including bursting with multiple spikes in a burst, spiking, bursting with four, three and two spikes, firing death, and bursting with increasing amplitude. The spiking is the most ordered, exhibiting coherence resonance (CR)-like behavior, and the firing synchronization becomes enhanced with the increase of time delay. As growth rate of coupling strength or network randomness increases, CR-like behavior shifts to smaller time delay and the synchronization of firing increases. These results show that time delay can induce diversity of firing behaviors in adaptive neuronal networks, and can order the chaotic firing by enhancing and optimizing the temporal coherence and enhancing the synchronization of firing. However, the phenomenon of firing death shows that time delay may inhibit the firing of adaptive neuronal networks. These findings provide new insight into the role of time delay in the firing activity of adaptive neuronal networks, and can help to better understand the complex firing phenomena in neural networks.