WorldWideScience

Sample records for pre-mrna splice site

  1. Splicing of goose parvovirus pre-mRNA influences cytoplasmic translation of the processed mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Li, Long; Pintel, David J., E-mail: pinteld@missouri.edu

    2012-04-25

    Translation of goose parvovirus (GPV) 72 kDa Rep 1 is initiated from unspliced P9-generated mRNAs in ORF1 from the first in-frame AUG (537 AUG); however, this AUG is bypassed in spliced P9-generated RNA: translation of the 52 kDa Rep 2 protein from spliced RNA is initiated in ORF2 at the next AUG downstream (650 AUG). Usage of the 537 AUG was restored in spliced RNA when the GPV intron was replaced with a chimeric SV40 intron, or following specific mutations of the GPV intron which did not appear in the final spliced mRNA. Additionally, 650 AUG usage was gained in unspliced RNA when the GPV intron splice sites were debilitated. Splicing-dependent regulation of translation initiation was mediated in cis by GPV RNA surrounding the target AUGs. Thus, nuclear RNA processing of GPV P9-generated pre-mRNAs has a complex, but significant, effect on alternative translation initiation of the GPV Rep proteins.

  2. Splicing of goose parvovirus pre-mRNA influences cytoplasmic translation of the processed mRNA

    International Nuclear Information System (INIS)

    Li, Long; Pintel, David J.

    2012-01-01

    Translation of goose parvovirus (GPV) 72 kDa Rep 1 is initiated from unspliced P9-generated mRNAs in ORF1 from the first in-frame AUG (537 AUG); however, this AUG is bypassed in spliced P9-generated RNA: translation of the 52 kDa Rep 2 protein from spliced RNA is initiated in ORF2 at the next AUG downstream (650 AUG). Usage of the 537 AUG was restored in spliced RNA when the GPV intron was replaced with a chimeric SV40 intron, or following specific mutations of the GPV intron which did not appear in the final spliced mRNA. Additionally, 650 AUG usage was gained in unspliced RNA when the GPV intron splice sites were debilitated. Splicing-dependent regulation of translation initiation was mediated in cis by GPV RNA surrounding the target AUGs. Thus, nuclear RNA processing of GPV P9-generated pre-mRNAs has a complex, but significant, effect on alternative translation initiation of the GPV Rep proteins.

  3. The Human Splicing Factor ASF/SF2 can Specifically Recognize Pre-mRNA 5' Splice Sites

    Science.gov (United States)

    Zuo, Ping; Manley, James L.

    1994-04-01

    ASF/SF2 is a human protein previously shown to function in in vitro pre-mRNA splicing as an essential factor necessary for all splices and also as an alternative splicing factor, capable of switching selection of 5' splice sites. To begin to study the protein's mechanism of action, we have investigated the RNA binding properties of purified recombinant ASF/SF2. Using UV crosslinking and gel shift assays, we demonstrate that the RNA binding region of ASF/SF2 can interact with RNA in a sequence-specific manner, recognizing the 5' splice site in each of two different pre-mRNAs. Point mutations in the 5' splice site consensus can reduce binding by as much as a factor of 100, with the largest effects observed in competition assays. These findings support a model in which ASF/SF2 aids in the recognition of pre-mRNA 5' splice sites.

  4. Intergenic mRNA molecules resulting from trans-splicing.

    Science.gov (United States)

    Finta, Csaba; Zaphiropoulos, Peter G

    2002-02-22

    Accumulated recent evidence is indicating that alternative splicing represents a generalized process that increases the complexity of human gene expression. Here we show that mRNA production may not necessarily be limited to single genes, as human liver also has the potential to produce a variety of hybrid cytochrome P450 3A mRNA molecules. The four known cytochrome P450 3A genes in humans, CYP3A4, CYP3A5, CYP3A7, and CYP3A43, share a high degree of similarity, consist of 13 exons with conserved exon-intron boundaries, and form a cluster on chromosome 7. The chimeric CYP3A mRNA molecules described herein are characterized by CYP3A43 exon 1 joined at canonical splice sites to distinct sets of CYP3A4 or CYP3A5 exons. Because the CYP3A43 gene is in a head-to-head orientation with the CYP3A4 and CYP3A5 genes, bypassing transcriptional termination can not account for the formation of hybrid CYP3A mRNAs. Thus, the mechanism generating these molecules has to be an RNA processing event that joins exons of independent pre-mRNA molecules, i.e. trans-splicing. Using quantitative real-time polymerase chain reaction, the ratio of one CYP3A43/3A4 intergenic combination was estimated to be approximately 0.15% that of the CYP3A43 mRNAs. Moreover, trans-splicing has been found not to interfere with polyadenylation. Heterologous expression of the chimeric species composed of CYP3A43 exon 1 joined to exons 2-13 of CYP3A4 revealed catalytic activity toward testosterone.

  5. GC content around splice sites affects splicing through pre-mRNA secondary structures

    Directory of Open Access Journals (Sweden)

    Chen Liang

    2011-01-01

    Full Text Available Abstract Background Alternative splicing increases protein diversity by generating multiple transcript isoforms from a single gene through different combinations of exons or through different selections of splice sites. It has been reported that RNA secondary structures are involved in alternative splicing. Here we perform a genomic study of RNA secondary structures around splice sites in humans (Homo sapiens, mice (Mus musculus, fruit flies (Drosophila melanogaster, and nematodes (Caenorhabditis elegans to further investigate this phenomenon. Results We observe that GC content around splice sites is closely associated with the splice site usage in multiple species. RNA secondary structure is the possible explanation, because the structural stability difference among alternative splice sites, constitutive splice sites, and skipped splice sites can be explained by the GC content difference. Alternative splice sites tend to be GC-enriched and exhibit more stable RNA secondary structures in all of the considered species. In humans and mice, splice sites of first exons and long exons tend to be GC-enriched and hence form more stable structures, indicating the special role of RNA secondary structures in promoter proximal splicing events and the splicing of long exons. In addition, GC-enriched exon-intron junctions tend to be overrepresented in tissue-specific alternative splice sites, indicating the functional consequence of the GC effect. Compared with regions far from splice sites and decoy splice sites, real splice sites are GC-enriched. We also found that the GC-content effect is much stronger than the nucleotide-order effect to form stable secondary structures. Conclusion All of these results indicate that GC content is related to splice site usage and it may mediate the splicing process through RNA secondary structures.

  6. Naturally occurring BRCA2 alternative mRNA splicing events in clinically relevant samples

    DEFF Research Database (Denmark)

    Fackenthal, James D; Yoshimatsu, Toshio; Zhang, Bifeng

    2016-01-01

    patterns and thereby disrupt gene function. mRNA analyses are therefore among the tests used to interpret the clinical significance of some genetic variants. However, these could be confounded by the appearance of naturally occurring alternative transcripts unrelated to germline sequence variation...... to characterise the spectrum of naturally occurring BRCA2 mRNA alternate-splicing events. METHODS: mRNA was prepared from several blood and breast tissue-derived cells and cell lines by contributing ENIGMA laboratories. cDNA representing BRCA2 alternate splice sites was amplified and visualised using capillary...... or agarose gel electrophoresis, followed by sequencing. RESULTS: We demonstrate the existence of 24 different BRCA2 mRNA alternate-splicing events in lymphoblastoid cell lines and both breast cancer and non-cancerous breast cell lines. CONCLUSIONS: These naturally occurring alternate-splicing events...

  7. Reprogramming the Dynamin 2 mRNA by Spliceosome-mediated RNA Trans-splicing

    Directory of Open Access Journals (Sweden)

    Delphine Trochet

    2016-01-01

    Full Text Available Dynamin 2 (DNM2 is a large GTPase, ubiquitously expressed, involved in membrane trafficking and regulation of actin and microtubule cytoskeletons. DNM2 mutations cause autosomal dominant centronuclear myopathy which is a rare congenital myopathy characterized by skeletal muscle weakness and histopathological features including nuclear centralization in absence of regeneration. No curative treatment is currently available for the DNM2-related autosomal dominant centronuclear myopathy. In order to develop therapeutic strategy, we evaluated here the potential of Spliceosome-Mediated RNA Trans-splicing technology to reprogram the Dnm2-mRNA in vitro and in vivo in mice. We show that classical 3′-trans-splicing strategy cannot be considered as accurate therapeutic strategy regarding toxicity of the pre-trans-splicing molecules leading to low rate of trans-splicing in vivo. Thus, we tested alternative strategies devoted to prevent this toxicity and enhance frequency of trans-splicing events. We succeeded to overcome the toxicity through a 5′-trans-splicing strategy which also allows detection of trans-splicing events at mRNA and protein levels in vitro and in vivo. These results suggest that the Spliceosome-Mediated RNA Trans-splicing strategy may be used to reprogram mutated Dnm2-mRNA but highlight the potential toxicity linked to the molecular tools which have to be carefully investigated during preclinical development.

  8. Theory on the Coupled Stochastic Dynamics of Transcription and Splice-Site Recognition

    Science.gov (United States)

    Murugan, Rajamanickam; Kreiman, Gabriel

    2012-01-01

    Eukaryotic genes are typically split into exons that need to be spliced together to form the mature mRNA. The splicing process depends on the dynamics and interactions among transcription by the RNA polymerase II complex (RNAPII) and the spliceosomal complex consisting of multiple small nuclear ribonucleo proteins (snRNPs). Here we propose a biophysically plausible initial theory of splicing that aims to explain the effects of the stochastic dynamics of snRNPs on the splicing patterns of eukaryotic genes. We consider two different ways to model the dynamics of snRNPs: pure three-dimensional diffusion and a combination of three- and one-dimensional diffusion along the emerging pre-mRNA. Our theoretical analysis shows that there exists an optimum position of the splice sites on the growing pre-mRNA at which the time required for snRNPs to find the 5′ donor site is minimized. The minimization of the overall search time is achieved mainly via the increase in non-specific interactions between the snRNPs and the growing pre-mRNA. The theory further predicts that there exists an optimum transcript length that maximizes the probabilities for exons to interact with the snRNPs. We evaluate these theoretical predictions by considering human and mouse exon microarray data as well as RNAseq data from multiple different tissues. We observe that there is a broad optimum position of splice sites on the growing pre-mRNA and an optimum transcript length, which are roughly consistent with the theoretical predictions. The theoretical and experimental analyses suggest that there is a strong interaction between the dynamics of RNAPII and the stochastic nature of snRNP search for 5′ donor splicing sites. PMID:23133354

  9. Theory on the coupled stochastic dynamics of transcription and splice-site recognition.

    Directory of Open Access Journals (Sweden)

    Rajamanickam Murugan

    Full Text Available Eukaryotic genes are typically split into exons that need to be spliced together to form the mature mRNA. The splicing process depends on the dynamics and interactions among transcription by the RNA polymerase II complex (RNAPII and the spliceosomal complex consisting of multiple small nuclear ribonucleo proteins (snRNPs. Here we propose a biophysically plausible initial theory of splicing that aims to explain the effects of the stochastic dynamics of snRNPs on the splicing patterns of eukaryotic genes. We consider two different ways to model the dynamics of snRNPs: pure three-dimensional diffusion and a combination of three- and one-dimensional diffusion along the emerging pre-mRNA. Our theoretical analysis shows that there exists an optimum position of the splice sites on the growing pre-mRNA at which the time required for snRNPs to find the 5' donor site is minimized. The minimization of the overall search time is achieved mainly via the increase in non-specific interactions between the snRNPs and the growing pre-mRNA. The theory further predicts that there exists an optimum transcript length that maximizes the probabilities for exons to interact with the snRNPs. We evaluate these theoretical predictions by considering human and mouse exon microarray data as well as RNAseq data from multiple different tissues. We observe that there is a broad optimum position of splice sites on the growing pre-mRNA and an optimum transcript length, which are roughly consistent with the theoretical predictions. The theoretical and experimental analyses suggest that there is a strong interaction between the dynamics of RNAPII and the stochastic nature of snRNP search for 5' donor splicing sites.

  10. Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the 5' but not the 3' splice site inhibit intron processing in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Liu, H X; Goodall, G J; Kole, R; Filipowicz, W

    1995-01-16

    We have performed a systematic study of the effect of artificial hairpins on pre-mRNA splicing in protoplasts of a dicot plant, Nicotiana plumbaginifolia. Hairpins with a potential to form 18 or 24 bp stems strongly inhibit splicing when they sequester the 5' splice site or are placed in the middle of short introns. However, similar 24 bp hairpins sequestering the 3' splice site do not prevent this site from being used as an acceptor. Utilization of the stem-located 3' site requires that the base of the stem is separated from the upstream 5' splice site by a minimum of approximately 45 nucleotides and that another 'helper' 3' splice site is present downstream of the stem. The results indicate that the spliceosome or factors associated with it may have a potential to unfold secondary structure present in the downstream portion of the intron, prior to or at the step of the 3' splice site selection. The finding that the helper 3' site is required for utilization of the stem-located acceptor confirms and extends previous observations, obtained with HeLa cell in vitro splicing systems, indicating that the 3' splice site may be recognized at least twice during spliceosome assembly.

  11. Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid conjugates targeting intron-exon junctions

    Directory of Open Access Journals (Sweden)

    Nielsen Peter E

    2010-06-01

    Full Text Available Abstract Background Modulation of pre-mRNA splicing by antisense molecules is a promising mechanism of action for gene therapeutic drugs. In this study, we have examined the potential of peptide nucleic acid (PNA 9-aminoacridine conjugates to modulate the pre-mRNA splicing of the mdm2 human cancer gene in JAR cells. Methods We screened 10 different 15 mer PNAs targeting intron2 at both the 5' - and the 3'-splice site for their effects on the splicing of mdm2 using RT-PCR analysis. We also tested a PNA (2512 targeting the 3'-splice site of intron3 with a complementarity of 4 bases to intron3 and 11 bases to exon4 for its splicing modulation effect. This PNA2512 was further tested for the effects on the mdm2 protein level as well as for inhibition of cell growth in combination with the DNA damaging agent camptothecin (CPT. Results We show that several of these PNAs effectively inhibit the splicing thereby producing a larger mRNA still containing intron2, while skipping of exon3 was not observed by any of these PNAs. The most effective PNA (PNA2406 targeting the 3'-splice site of intron2 had a complementarity of 4 bases to intron2 and 11 bases to exon3. PNA (2512 targeting the 3'-splice site of intron3 induced both splicing inhibition (intron3 skipping and skipping of exon4. Furthermore, treatment of JAR cells with this PNA resulted in a reduction in the level of MDM2 protein and a concomitant increase in the level of tumor suppressor p53. In addition, a combination of this PNA with CPT inhibited cell growth more than CPT alone. Conclusion We have identified several PNAs targeting the 5'- or 3'-splice sites in intron2 or the 3'-splice site of intron3 of mdm2 pre-mRNA which can inhibit splicing. Antisense targeting of splice junctions of mdm2 pre-mRNA may be a powerful method to evaluate the cellular function of MDM2 splice variants as well as a promising approach for discovery of mdm2 targeted anticancer drugs.

  12. A novel point mutation (G[sup [minus]1] to T) in a 5[prime] splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker Muscular Dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko; Takeshima, Yasuhiro; Narita, Naoko; Wada, Hiroko; Yokoyama, Mitsuhiro; Nakamura, Hajime; Matsuo, Masafumi (Kobe Univ. School of Medicine (Japan))

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.

  13. Modulation of 5' splice site selection using tailed oligonucleotides carrying splicing signals

    Directory of Open Access Journals (Sweden)

    Elela Sherif

    2006-01-01

    Full Text Available Abstract Background We previously described the use of tailed oligonucleotides as a means of reprogramming alternative pre-mRNA splicing in vitro and in vivo. The tailed oligonucleotides that were used interfere with splicing because they contain a portion complementary to sequences immediately upstream of the target 5' splice site combined with a non-hybridizing 5' tail carrying binding sites for the hnRNP A1/A2 proteins. In the present study, we have tested the inhibitory activity of RNA oligonucleotides carrying different tail structures. Results We show that an oligonucleotide with a 5' tail containing the human β-globin branch site sequence inhibits the use of the 5' splice site of Bcl-xL, albeit less efficiently than a tail containing binding sites for the hnRNP A1/A2 proteins. A branch site-containing tail positioned at the 3' end of the oligonucleotide also elicited splicing inhibition but not as efficiently as a 5' tail. The interfering activity of a 3' tail was improved by adding a 5' splice site sequence next to the branch site sequence. A 3' tail carrying a Y-shaped branch structure promoted similar splicing interference. The inclusion of branch site or 5' splice site sequences in the Y-shaped 3' tail further improved splicing inhibition. Conclusion Our in vitro results indicate that a variety of tail architectures can be used to elicit splicing interference at low nanomolar concentrations, thereby broadening the scope and the potential impact of this antisense technology.

  14. Footprints of a trypanosomatid RNA world: pre-small subunit rRNA processing by spliced leader addition trans-splicing

    Directory of Open Access Journals (Sweden)

    Mario Gustavo Mayer

    2012-06-01

    Full Text Available The addition of a capped mini-exon [spliced leader (SL] through trans-splicing is essential for the maturation of RNA polymerase (pol II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS region. Additionally, we detected the SL-5'ETS molecule using three distinct methods and located the acceptor site between two known 5'ETS rRNA processing sites (A' and A1 in four different trypanosomatids. Moreover, we detected a polyadenylated 5'ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin, we observed SL-5'ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA led to the accumulation of SL-5'ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.

  15. Ire1 mediated mRNA splicing in a C-terminus deletion mutant of Drosophila Xbp1.

    Directory of Open Access Journals (Sweden)

    Dina S Coelho

    Full Text Available The Unfolded Protein Response is a homeostatic mechanism that permits eukaryotic cells to cope with Endoplasmic Reticulum (ER stress caused by excessive accumulation of misfolded proteins in the ER lumen. The more conserved branch of the UPR relies on an ER transmembrane enzyme, Ire1, which, upon ER stress, promotes the unconventional splicing of a small intron from the mRNA encoding the transcription factor Xbp1. In mammals, two specific regions (the hydrophobic region 2--HR2--and the C-terminal translational pausing site present in the Xbp1unspliced protein mediate the recruitment of the Xbp1 mRNA-ribosome-nascent chain complex to the ER membrane, so that Xbp1 mRNA can be spliced by Ire1. Here, we generated a Drosophila Xbp1 deletion mutant (Excision101 lacking both HR2 and C-terminal region, but not the Ire1 splicing site. We show that Ire1-dependent splicing of Xbp1 mRNA is reduced, but not abolished in Excision101. Our results suggest the existence of additional mechanisms for ER membrane targeting of Xbp1 mRNA that are independent of the C-terminal domain of Drosophila Xbp1unspliced.

  16. Splice Site Mutations in the ATP7A Gene

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Tümer, Zeynep; Møller, Lisbeth Birk

    2011-01-01

    Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12...... mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation...... to in vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations...

  17. cis-Acting and trans-acting modulation of equine infectious anemia virus alternative RNA splicing

    International Nuclear Information System (INIS)

    Liao, Huey-Jane; Baker, Carl C.; Princler, Gerald L.; Derse, David

    2004-01-01

    Equine infectious anemia virus (EIAV), a lentivirus distantly related to HIV-1, encodes regulatory proteins, EIAV Tat (ETat) and Rev (ERev), from a four-exon mRNA. Exon 3 of the tat/rev mRNA contains a 30-nucleotide purine-rich element (PRE) which binds both ERev and SF2/ASF, a member of the SR family of RNA splicing factors. To better understand the role of this element in the regulation of EIAV pre-mRNA splicing, we quantified the effects of mutation or deletion of the PRE on exon 3 splicing in vitro and on alternative splicing in vivo. We also determined the branch point elements upstream of exons 3 and 4. In vitro splicing of exon 3 to exon 4 was not affected by mutation of the PRE, and addition of purified SR proteins enhanced splicing independently of the PRE. In vitro splicing of exon 2 to exon 3 was dependent on the PRE; under conditions of excess SR proteins, either the PRE or the 5' splice site of exon 3 was sufficient to activate splicing. We applied isoform-specific primers in real-time RT-PCR reactions to quantitatively analyze alternative splicing in cells transfected with rev-minus EIAV provirus constructs. In the context of provirus with wild-type exon 3, greater than 80% of the viral mRNAs were multiply spliced, and of these, less than 1% excluded exon 3. Deletion of the PRE resulted in a decrease in the relative amount of multiply spliced mRNA to about 40% of the total and approximately 39% of the viral mRNA excluded exon 3. Ectopic expression of ERev caused a decrease in the relative amount of multiply spliced mRNA to approximately 50% of the total and increased mRNAs that excluded exon 3 to about 4%. Over-expression of SF2/ASF in cells transfected with wild-type provirus constructs inhibited splicing but did not significantly alter exon 3 skipping

  18. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing.

    Directory of Open Access Journals (Sweden)

    Geetha Melangath

    Full Text Available Budding yeast spliceosomal factors ScSlu7 and ScPrp18 interact and mediate intron 3'ss choice during second step pre-mRNA splicing. The fission yeast genome with abundant multi-intronic transcripts, degenerate splice signals and SR proteins is an apt unicellular fungal model to deduce roles for core spliceosomal factors in alternative splice-site choice, intron retention and to study the cellular implications of regulated splicing. From our custom microarray data we deduce a stringent reproducible subset of S. pombe alternative events. We examined the role of factors SpSlu7 or SpPrp18 for these splice events and investigated the relationship to growth phase and stress. Wild-type log and stationary phase cells showed ats1+ exon 3 skipped and intron 3 retained transcripts. Interestingly the non-consensus 5'ss in ats1+ intron 3 caused SpSlu7 and SpPrp18 dependent intron retention. We validated the use of an alternative 5'ss in dtd1+ intron 1 and of an upstream alternative 3'ss in DUF3074 intron 1. The dtd1+ intron 1 non-canonical 5'ss yielded an alternative mRNA whose levels increased in stationary phase. Utilization of dtd1+ intron 1 sub-optimal 5' ss required functional SpPrp18 and SpSlu7 while compromise in SpSlu7 function alone hampered the selection of the DUF3074 intron 1 non canonical 3'ss. We analysed the relative abundance of these splice isoforms during mild thermal, oxidative and heavy metal stress and found stress-specific splice patterns for ats1+ and DUF3074 intron 1 some of which were SpSlu7 and SpPrp18 dependent. By studying ats1+ splice isoforms during compromised transcription elongation rates in wild-type, spslu7-2 and spprp18-5 mutant cells we found dynamic and intron context-specific effects in splice-site choice. Our work thus shows the combinatorial effects of splice site strength, core splicing factor functions and transcription elongation kinetics to dictate alternative splice patterns which in turn serve as an additional

  19. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS) Gene.

    Science.gov (United States)

    Nakajima, Yoko; Meijer, Judith; Zhang, Chunhua; Wang, Xu; Kondo, Tomomi; Ito, Tetsuya; Dobritzsch, Doreen; Van Kuilenburg, André B P

    2016-01-12

    Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R) in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.

  20. Interplay between DMD point mutations and splicing signals in Dystrophinopathy phenotypes.

    Directory of Open Access Journals (Sweden)

    Jonàs Juan-Mateu

    Full Text Available DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements.

  1. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS Gene

    Directory of Open Access Journals (Sweden)

    Yoko Nakajima

    2016-01-01

    Full Text Available Dihydropyrimidinase (DHP deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.

  2. Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia

    Science.gov (United States)

    Axelrod, Felicia B.; Liebes, Leonard; Gold-von Simson, Gabrielle; Mendoza, Sandra; Mull, James; Leyne, Maire; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio; Slaugenhaupt, Susan A.

    2011-01-01

    Familial dysautonomia (FD) is caused by an intronic splice mutation in the IKBKAP gene that leads to partial skipping of exon 20 and tissue-specific reduction in I-κ-B kinase complex associated protein/ elongation protein 1 (IKAP/ELP-1) expression. Kinetin (6-furfurylaminopurine) has been shown to improve splicing and increase wild-type IKBKAP mRNA and IKAP protein expression in FD cell lines and carriers. To determine if oral kinetin treatment could alter mRNA splicing in FD subjects and was tolerable, we administered kinetin to eight FD individuals homozygous for the splice mutation. Subjects received 23.5 mg/Kg/day for 28 days. An increase in wild-type IKBKAP mRNA expression in leukocytes was noted after eight days in six of eight individuals; after 28 days the mean increase as compared to baseline was significant (p=0.002). We have demonstrated that kinetin is tolerable in this medically fragile population. Not only did kinetin produce the desired effect on splicing in FD patients, but also that effect appears to improve with time despite lack of dose change. This is the first report of a drug that produces in vivo mRNA splicing changes in individuals with FD and supports future long-term trials to determine if kinetin will prove therapeutic in FD patients. PMID:21775922

  3. Loss of Pnn expression attenuates expression levels of SR family splicing factors and modulates alternative pre-mRNA splicing in vivo

    International Nuclear Information System (INIS)

    Chiu Yali; Ouyang Pin

    2006-01-01

    SR and SR-related proteins have been implicated as trans-acting factors that play an important role in splice selection and are involved at specific stages of spliceosome formation. A well-established property of SR protein splicing factors is their ability to influence selection of alternative splice sites in a concentration-dependent manner. Identification of molecules that regulate SR family protein expression is therefore of vital importance in RNA biology. Here we report that depletion of Pnn expression, a SR-related protein with functions involved in pre-mRNA splicing and mRNA export, induces reduced expression of a subset of cellular proteins, especially that of SR family proteins, including SC35, SRm300, SRp55, and SRp40, but not that of other nuclear proteins, such as p53, Mdm2, and ki67. Knocking down Pnn expression was achieved in vitro by siRNA transfection. Expression levels of SR and SR-related proteins in Pnn-depleted cells as compared to those in control cells were evaluated by immunofluorescent staining and Western blot with specific antibodies. In addition, we also demonstrate that loss of Pnn expression could modulate splice site selection of model reporter gene in vivo. Our finding is significant in terms of regulation of SR protein cellular concentration because it reveals that Pnn may play a general role in the control of the cellular amount of family SR proteins through down-regulation of its own expression, thereby providing us with a better understanding of the cellular mechanism by which Pnn fulfills its biological function

  4. Analysis and recognition of 5 ' UTR intron splice sites in human pre-mRNA

    DEFF Research Database (Denmark)

    Eden, E.; Brunak, Søren

    2004-01-01

    Prediction of splice sites in non-coding regions of genes is one of the most challenging aspects of gene structure recognition. We perform a rigorous analysis of such splice sites embedded in human 5' untranslated regions (UTRs), and investigate correlations between this class of splice sites and...

  5. Dynamic regulation of genome-wide pre-mRNA splicing and stress tolerance by the Sm-like protein LSm5 in Arabidopsis

    KAUST Repository

    Cui, Peng

    2014-01-07

    Background: Sm-like proteins are highly conserved proteins that form the core of the U6 ribonucleoprotein and function in several mRNA metabolism processes, including pre-mRNA splicing. Despite their wide occurrence in all eukaryotes, little is known about the roles of Sm-like proteins in the regulation of splicing.Results: Here, through comprehensive transcriptome analyses, we demonstrate that depletion of the Arabidopsis supersensitive to abscisic acid and drought 1 gene (SAD1), which encodes Sm-like protein 5 (LSm5), promotes an inaccurate selection of splice sites that leads to a genome-wide increase in alternative splicing. In contrast, overexpression of SAD1 strengthens the precision of splice-site recognition and globally inhibits alternative splicing. Further, SAD1 modulates the splicing of stress-responsive genes, particularly under salt-stress conditions. Finally, we find that overexpression of SAD1 in Arabidopsis improves salt tolerance in transgenic plants, which correlates with an increase in splicing accuracy and efficiency for stress-responsive genes.Conclusions: We conclude that SAD1 dynamically controls splicing efficiency and splice-site recognition in Arabidopsis, and propose that this may contribute to SAD1-mediated stress tolerance through the metabolism of transcripts expressed from stress-responsive genes. Our study not only provides novel insights into the function of Sm-like proteins in splicing, but also uncovers new means to improve splicing efficiency and to enhance stress tolerance in a higher eukaryote. 2014 Cui et al.; licensee BioMed Central Ltd.

  6. Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis

    KAUST Repository

    Ding, Feng; Cui, Peng; Wang, Zhenyu; Zhang, ShouDong; Ali, Shahjahan; Xiong, Liming

    2014-01-01

    Background: Alternative splicing (AS) of precursor mRNA (pre-mRNA) is an important gene regulation process that potentially regulates many physiological processes in plants, including the response to abiotic stresses such as salt stress

  7. Acute Endoplasmic Reticulum Stress-Independent Unconventional Splicing of XBP1 mRNA in the Nucleus of Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Yuanyuan Wang

    2015-06-01

    Full Text Available The regulation of expression of X-box-binding protein-1 (XBP1, a transcriptional factor, involves an unconventional mRNA splicing that removes the 26 nucleotides intron. In contrast to the conventional splicing that exclusively takes place in the nucleus, determining the location of unconventional splicing still remains controversial. This study was designed to examine whether the unconventional spicing of XBP1 mRNA could occur in the nucleus and its possible biological relevance. We use RT-PCR reverse transcription system and the expand high fidelity PCR system to detect spliced XBP1 mRNA, and fraction cells to determine the location of the unconventional splicing of XBP1 mRNA. We employ reporter constructs to show the presence of unconventional splicing machinery in mammal cells independently of acute endoplasmic reticulum (ER stress. Our results reveal the presence of basal unconventional splicing of XBP1 mRNA in the nucleus that also requires inositol-requiring transmembrane kinase and endonuclease 1α (IRE1α and can occur independently of acute ER stress. Furthermore, we confirm that acute ER stress induces the splicing of XBP1 mRNA predominantly occurring in the cytoplasm, but it also promotes the splicing in the nucleus. The deletion of 5′-nucleotides in XBP1 mRNA significantly increases its basal unconventional splicing, suggesting that the secondary structure of XBP1 mRNA may determine the location of unconventional splicing. These results suggest that the unconventional splicing of XBP1 mRNA can take place in the nucleus and/or cytoplasm, which possibly depends on the elaborate regulation. The acute ER stress-independent unconventional splicing in the nucleus is most likely required for the maintaining of day-to-day folding protein homeostasis.

  8. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  9. Human Splicing Finder: an online bioinformatics tool to predict splicing signals

    OpenAIRE

    Desmet, Francois-Olivier; Hamroun, Dalil; Lalande, Marine; Collod-Beroud, Gwenaelle; Claustres, Mireille; Beroud, Christophe

    2009-01-01

    International audience; Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effec...

  10. Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis

    KAUST Repository

    Ding, Feng

    2014-06-04

    Background: Alternative splicing (AS) of precursor mRNA (pre-mRNA) is an important gene regulation process that potentially regulates many physiological processes in plants, including the response to abiotic stresses such as salt stress.Results: To analyze global changes in AS under salt stress, we obtained high-coverage (~200 times) RNA sequencing data from Arabidopsis thaliana seedlings that were treated with different concentrations of NaCl. We detected that ~49% of all intron-containing genes were alternatively spliced under salt stress, 10% of which experienced significant differential alternative splicing (DAS). Furthermore, AS increased significantly under salt stress compared with under unstressed conditions. We demonstrated that most DAS genes were not differentially regulated by salt stress, suggesting that AS may represent an independent layer of gene regulation in response to stress. Our analysis of functional categories suggested that DAS genes were associated with specific functional pathways, such as the pathways for the responses to stresses and RNA splicing. We revealed that serine/arginine-rich (SR) splicing factors were frequently and specifically regulated in AS under salt stresses, suggesting a complex loop in AS regulation for stress adaptation. We also showed that alternative splicing site selection (SS) occurred most frequently at 4 nucleotides upstream or downstream of the dominant sites and that exon skipping tended to link with alternative SS.Conclusions: Our study provided a comprehensive view of AS under salt stress and revealed novel insights into the potential roles of AS in plant response to salt stress. 2014 Ding et al.; licensee BioMed Central Ltd.

  11. Zebrafish usp39 mutation leads to rb1 mRNA splicing defect and pituitary lineage expansion.

    Directory of Open Access Journals (Sweden)

    Yesenia Ríos

    2011-01-01

    Full Text Available Loss of retinoblastoma (Rb tumor suppressor function is associated with human malignancies. Molecular and genetic mechanisms responsible for tumorigenic Rb downregulation are not fully defined. Through a forward genetic screen and positional cloning, we identified and characterized a zebrafish ubiquitin specific peptidase 39 (usp39 mutation, the yeast and human homolog of which encodes a component of RNA splicing machinery. Zebrafish usp39 mutants exhibit microcephaly and adenohypophyseal cell lineage expansion without apparent changes in major hypothalamic hormonal and regulatory signals. Gene expression profiling of usp39 mutants revealed decreased rb1 and increased e2f4, rbl2 (p130, and cdkn1a (p21 expression. Rb1 mRNA overexpression, or antisense morpholino knockdown of e2f4, partially reversed embryonic pituitary expansion in usp39 mutants. Analysis of pre-mRNA splicing status of critical cell cycle regulators showed misspliced Rb1 pre-mRNA resulting in a premature stop codon. These studies unravel a novel mechanism for rb1 regulation by a neuronal mRNA splicing factor, usp39. Zebrafish usp39 regulates embryonic pituitary homeostasis by targeting rb1 and e2f4 expression, respectively, contributing to increased adenohypophyseal sensitivity to these altered cell cycle regulators. These results provide a mechanism for dysregulated rb1 and e2f4 pathways that may result in pituitary tumorigenesis.

  12. Mammalian tissues defective in nonsense-mediated mRNA decay display highly aberrant splicing patterns

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim Lütken; Waage, Johannes Eichler; Tian, Geng

    2012-01-01

    ABSTRACT: BACKGROUND: Nonsense-mediated mRNA decay (NMD) affects the outcome of alternative splicing by degrading mRNA isoforms with premature termination codons. Splicing regulators constitute important NMD targets; however, the extent to which loss of NMD causes extensive deregulation...... of alternative splicing has not previously been assayed in a global, unbiased manner. Here, we combine mouse genetics and RNA-seq to provide the first in vivo analysis of the global impact of NMD on splicing patterns in two primary mouse tissues ablated for the NMD factor UPF2. RESULTS: We developed...... importance, the latter events are associated with high intronic conservation. CONCLUSIONS: Our data demonstrate that NMD regulates alternative splicing outcomes through an intricate web of splicing regulators and that its loss leads to the deregulation of a panoply of splicing events, providing novel...

  13. Alternative RNA splicing and cancer

    Science.gov (United States)

    Liu, Sali; Cheng, Chonghui

    2015-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells. PMID:23765697

  14. Human papillomavirus type 16 E2 and E6 are RNA-binding proteins and inhibit in vitro splicing of pre-mRNAs with suboptimal splice sites

    International Nuclear Information System (INIS)

    Bodaghi, Sohrab; Jia Rong; Zheng Zhiming

    2009-01-01

    Human papillomavirus type 16 (HPV16) genome expresses six regulatory proteins (E1, E2, E4, E5, E6, and E7) which regulate viral DNA replication, gene expression, and cell function. We expressed HPV16 E2, E4, E6, and E7 from bacteria as GST fusion proteins and examined their possible functions in RNA splicing. Both HPV16 E2, a viral transactivator protein, and E6, a viral oncoprotein, inhibited splicing of pre-mRNAs containing an intron with suboptimal splice sites, whereas HPV5 E2 did not. The N-terminal half and the hinge region of HPV16 E2 as well as the N-terminal and central portions of HPV16 E6 are responsible for the suppression. HPV16 E2 interacts with pre-mRNAs through its C-terminal DNA-binding domain. HPV16 E6 binds pre-mRNAs via nuclear localization signal (NLS3) in its C-terminal half. Low-risk HPV6 E6, a cytoplasmic protein, does not bind RNA. Notably, both HPV16 E2 and E6 selectively bind to the intron region of pre-mRNAs and interact with a subset of cellular SR proteins. Together, these findings suggest that HPV16 E2 and E6 are RNA binding proteins and might play roles in posttranscriptional regulation during virus infection

  15. Splicing Analysis of Exonic OCRL Mutations Causing Lowe Syndrome or Dent-2 Disease

    Directory of Open Access Journals (Sweden)

    Lorena Suarez-Artiles

    2018-01-01

    Full Text Available Mutations in the OCRL gene are associated with both Lowe syndrome and Dent-2 disease. Patients with Lowe syndrome present congenital cataracts, mental disabilities and a renal proximal tubulopathy, whereas patients with Dent-2 disease exhibit similar proximal tubule dysfunction but only mild, or no additional clinical defects. It is not yet understood why some OCRL mutations cause the phenotype of Lowe syndrome, while others develop the milder phenotype of Dent-2 disease. Our goal was to gain new insights into the consequences of OCRL exonic mutations on pre-mRNA splicing. Using predictive bioinformatics tools, we selected thirteen missense mutations and one synonymous mutation based on their potential effects on splicing regulatory elements or splice sites. These mutations were analyzed in a minigene splicing assay. Results of the RNA analysis showed that three presumed missense mutations caused alterations in pre-mRNA splicing. Mutation c.741G>T; p.(Trp247Cys generated splicing silencer sequences and disrupted splicing enhancer motifs that resulted in skipping of exon 9, while mutations c.2581G>A; p.(Ala861Thr and c.2581G>C; p.(Ala861Pro abolished a 5′ splice site leading to skipping of exon 23. Mutation c.741G>T represents the first OCRL exonic variant outside the conserved splice site dinucleotides that results in alteration of pre-mRNA splicing. Our results highlight the importance of evaluating the effects of OCRL exonic mutations at the mRNA level.

  16. RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes

    KAUST Repository

    Lee, Keh Chien

    2017-04-11

    The RNA recognition motif of Arabidopsis splicing factor SF1 affects the alternative splicing of FLOWERING LOCUS M pre-mRNA and a heat shock transcription factor HsfA2 pre-mRNA. Splicing factor 1 (SF1) plays a crucial role in 3\\' splice site recognition by binding directly to the intron branch point. Although plant SF1 proteins possess an RNA recognition motif (RRM) domain that is absent in its fungal and metazoan counterparts, the role of the RRM domain in SF1 function has not been characterized. Here, we show that the RRM domain differentially affects the full function of the Arabidopsis thaliana AtSF1 protein under different experimental conditions. For example, the deletion of RRM domain influences AtSF1-mediated control of flowering time, but not the abscisic acid sensitivity response during seed germination. The alternative splicing of FLOWERING LOCUS M (FLM) pre-mRNA is involved in flowering time control. We found that the RRM domain of AtSF1 protein alters the production of alternatively spliced FLM-β transcripts. We also found that the RRM domain affects the alternative splicing of a heat shock transcription factor HsfA2 pre-mRNA, thereby mediating the heat stress response. Taken together, our results suggest the importance of RRM domain for AtSF1-mediated alternative splicing of a subset of genes involved in the regulation of flowering and adaptation to heat stress.

  17. A five' splice-region G → C mutation in exon 1 of the human β-globin gene inhibits pre-mRNA splicing: A mechanism for β+-thalassemia

    International Nuclear Information System (INIS)

    Vidaud, M.; Vidaud, D.; Amselem, S.; Rosa, J.; Goossens, M.; Gattoni, R.; Stevenin, J.; Chibani, J.

    1989-01-01

    The authors have characterized a Mediterranean β-thalassemia allele containing a sequence change at codon 30 that alters both β-globin pre-mRNA splicing and the structure of the homoglobin product. Presumably, this G → C transversion at position -1 of intron 1 reduces severely the utilization of the normal 5' splice site since the level of the Arg → Thr mutant hemoglobin (designated hemoglobin Kairouan) found in the erythrocytes of the patient is very low (2% of total hemoglobin). Since no natural mutations of the guanine located at position -1 of the CAG/GTAAGT consensus sequence had been isolated previously. They investigated the role of this nucleotide in the constitution of an active 5' splice site by studying the splicing of the pre-mRNA in cell-free extracts. They demonstrate that correct splicing of the mutant pre-mRNA is 98% inhibited. Their results provide further insights into the mechanisms of pre-mRNA maturation by revealing that the last residue of the exon plays a role at least equivalent to that of the intron residue at position +5

  18. ZmbZIP60 mRNA is spliced in maize in response to ER stress

    Directory of Open Access Journals (Sweden)

    Li Yanjie

    2012-03-01

    Full Text Available Abstract Background Adverse environmental conditions produce ER stress and elicit the unfolded protein response (UPR in plants. Plants are reported to have two "arms" of the ER stress signaling pathway-one arm involving membrane-bound transcription factors and the other involving a membrane-associated RNA splicing factor, IRE1. IRE1 in yeast to mammals recognizes a conserved twin loop structure in the target RNA. Results A segment of the mRNA encoding ZmbZIP60 in maize can be folded into a twin loop structure, and in response to ER stress this mRNA is spliced, excising a 20b intron. Splicing converts the predicted protein from a membrane-associated transcription factor to one that is targeted to the nucleus. Splicing of ZmbZIP60 can be elicited in maize seedlings by ER stress agents such as dithiothreitol (DTT or tunicamycin (TM or by heat treatment. Younger, rather than older seedlings display a more robust splicing response as do younger parts of leaf, along a developmental gradient in a leaf. The molecular signature of an ER stress response in plants includes the upregulation of Binding Protein (BIP genes. Maize has numerous BIP-like genes, and ER stress was found to upregulate one of these, ZmBIPb. Conclusions The splicing of ZmbZIP60 mRNA is an indicator of ER stress in maize seedlings resulting from adverse environmental conditions such as heat stress. ZmbZIP60 mRNA splicing in maize leads predictively to the formation of active bZIP transcription factor targeted to the nucleus to upregulate stress response genes. Among the genes upregulated by ER stress in maize is one of 22 BIP-like genes, ZmBIPb.

  19. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    International Nuclear Information System (INIS)

    Toki, Yasumichi; Sasaki, Katsunori; Tanaka, Hiroki; Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro; Torimoto, Yoshihiro; Ohtake, Takaaki; Kohgo, Yutaka

    2016-01-01

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.

  20. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Toki, Yasumichi [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp [Department of Gastrointestinal Immunology and Regenerative Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Tanaka, Hiroki [Department of Legal Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Torimoto, Yoshihiro [Oncology Center, Asahikawa Medical University Hospital, Hokkaido 078-8510 (Japan); Ohtake, Takaaki; Kohgo, Yutaka [Department of Gastroenterology, International University of Health and Welfare Hospital, Tochigi 329-2763 (Japan)

    2016-08-05

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.

  1. Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3' Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes.

    Directory of Open Access Journals (Sweden)

    Cornelius Schneider

    Full Text Available Little is known about contacts in the spliceosome between proteins and intron nucleotides surrounding the pre-mRNA branch-site and their dynamics during splicing. We investigated protein-pre-mRNA interactions by UV-induced crosslinking of purified yeast B(act spliceosomes formed on site-specifically labeled pre-mRNA, and analyzed their changes after conversion to catalytically-activated B* and step 1 C complexes, using a purified splicing system. Contacts between nucleotides upstream and downstream of the branch-site and the U2 SF3a/b proteins Prp9, Prp11, Hsh49, Cus1 and Hsh155 were detected, demonstrating that these interactions are evolutionarily conserved. The RES proteins Pml1 and Bud13 were shown to contact the intron downstream of the branch-site. A comparison of the B(act crosslinking pattern versus that of B* and C complexes revealed that U2 and RES protein interactions with the intron are dynamic. Upon step 1 catalysis, Cwc25 contacts with the branch-site region, and enhanced crosslinks of Prp8 and Prp45 with nucleotides surrounding the branch-site were observed. Cwc25's step 1 promoting activity was not dependent on its interaction with pre-mRNA, indicating it acts via protein-protein interactions. These studies provide important insights into the spliceosome's protein-pre-mRNA network and reveal novel RNP remodeling events during the catalytic activation of the spliceosome and step 1 of splicing.

  2. Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa

    Science.gov (United States)

    Pan, Xinyuan; Chen, Xue; Liu, Xiaoxing; Gao, Xiang; Kang, Xiaoli; Xu, Qihua; Chen, Xuejuan; Zhao, Kanxing; Zhang, Xiumei; Chu, Qiaomei; Wang, Xiuying

    2014-01-01

    Purpose Seven genes involved in precursor mRNA (pre-mRNA) splicing have been implicated in autosomal dominant retinitis pigmentosa (adRP). We sought to detect mutations in all seven genes in Chinese families with RP, to characterize the relevant phenotypes, and to evaluate the prevalence of mutations in splicing genes in patients with adRP. Methods Six unrelated families from our adRP cohort (42 families) and two additional families with RP with uncertain inheritance mode were clinically characterized in the present study. Targeted sequence capture with next-generation massively parallel sequencing (NGS) was performed to screen mutations in 189 genes including all seven pre-mRNA splicing genes associated with adRP. Variants detected with NGS were filtered with bioinformatics analyses, validated with Sanger sequencing, and prioritized with pathogenicity analysis. Results Mutations in pre-mRNA splicing genes were identified in three individual families including one novel frameshift mutation in PRPF31 (p.Leu366fs*1) and two known mutations in SNRNP200 (p.Arg681His and p.Ser1087Leu). The patients carrying SNRNP200 p.R681H showed rapid disease progression, and the family carrying p.S1087L presented earlier onset ages and more severe phenotypes compared to another previously reported family with p.S1087L. In five other families, we identified mutations in other RP-related genes, including RP1 p. Ser781* (novel), RP2 p.Gln65* (novel) and p.Ile137del (novel), IMPDH1 p.Asp311Asn (recurrent), and RHO p.Pro347Leu (recurrent). Conclusions Mutations in splicing genes identified in the present and our previous study account for 9.5% in our adRP cohort, indicating the important role of pre-mRNA splicing deficiency in the etiology of adRP. Mutations in the same splicing gene, or even the same mutation, could correlate with different phenotypic severities, complicating the genotype–phenotype correlation and clinical prognosis. PMID:24940031

  3. BAP1 missense mutation c.2054 A>T (p.E685V completely disrupts normal splicing through creation of a novel 5' splice site in a human mesothelioma cell line.

    Directory of Open Access Journals (Sweden)

    Arianne Morrison

    Full Text Available BAP1 is a tumor suppressor gene that is lost or deleted in diverse cancers, including uveal mela¬noma, malignant pleural mesothelioma (MPM, clear cell renal carcinoma, and cholangiocarcinoma. Recently, BAP1 germline mutations have been reported in families with combinations of these same cancers. A particular challenge for mutation screening is the classification of non-truncating BAP1 sequence variants because it is not known whether these subtle changes can affect the protein function sufficiently to predispose to cancer development. Here we report mRNA splicing analysis on a homozygous substitution mutation, BAP1 c. 2054 A&T (p.Glu685Val, identified in an MPM cell line derived from a mesothelioma patient. The mutation occurred at the 3rd nucleotide from the 3' end of exon 16. RT-PCR, cloning and subsequent sequencing revealed several aberrant splicing products not observed in the controls: 1 a 4 bp deletion at the end of exon 16 in all clones derived from the major splicing product. The BAP1 c. 2054 A&T mutation introduced a new 5' splice site (GU, which resulted in the deletion of 4 base pairs and presumably protein truncation; 2 a variety of alternative splicing products that led to retention of different introns: introns 14-16; introns 15-16; intron 14 and intron 16; 3 partial intron 14 and 15 retentions caused by activation of alternative 3' splice acceptor sites (AG in the introns. Taken together, we were unable to detect any correctly spliced mRNA transcripts in this cell line. These results suggest that aberrant splicing caused by this mutation is quite efficient as it completely abolishes normal splicing through creation of a novel 5' splice site and activation of cryptic splice sites. These data support the conclusion that BAP1 c.2054 A&T (p.E685V variant is a pathogenic mutation and contributes to MPM through disruption of normal splicing.

  4. Decreased alternative splicing of estrogen receptor-α mRNA in the Alzheimer's disease brain

    NARCIS (Netherlands)

    Ishunina, Tatjana A.; Swaab, Dick F.

    2012-01-01

    In this study we identified 62 estrogen receptor alpha (ERα) mRNA splice variants in different human brain areas of Alzheimer's disease (AD) and control cases and classified them into 12 groups. Forty-eight of these splice forms were identified for the first time. The distribution of alternatively

  5. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information

    DEFF Research Database (Denmark)

    Hebsgaard, Stefan M.; Korning, Peter G.; Tolstrup, Niels

    1996-01-01

    Artificial neural networks have been combined with a rule based system to predict intron splice sites in the dicot plant Arabidopsis thaliana. A two step prediction scheme, where a global prediction of the coding potential regulates a cutoff level for a local predicition of splice sites, is refin...

  6. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs

    Science.gov (United States)

    Zhang, Xiao-Ou; Dong, Rui; Zhang, Yang; Zhang, Jia-Lin; Luo, Zheng; Zhang, Jun; Chen, Ling-Ling; Yang, Li

    2016-01-01

    Circular RNAs (circRNAs) derived from back-spliced exons have been widely identified as being co-expressed with their linear counterparts. A single gene locus can produce multiple circRNAs through alternative back-splice site selection and/or alternative splice site selection; however, a detailed map of alternative back-splicing/splicing in circRNAs is lacking. Here, with the upgraded CIRCexplorer2 pipeline, we systematically annotated different types of alternative back-splicing and alternative splicing events in circRNAs from various cell lines. Compared with their linear cognate RNAs, circRNAs exhibited distinct patterns of alternative back-splicing and alternative splicing. Alternative back-splice site selection was correlated with the competition of putative RNA pairs across introns that bracket alternative back-splice sites. In addition, all four basic types of alternative splicing that have been identified in the (linear) mRNA process were found within circRNAs, and many exons were predominantly spliced in circRNAs. Unexpectedly, thousands of previously unannotated exons were detected in circRNAs from the examined cell lines. Although these novel exons had similar splice site strength, they were much less conserved than known exons in sequences. Finally, both alternative back-splicing and circRNA-predominant alternative splicing were highly diverse among the examined cell lines. All of the identified alternative back-splicing and alternative splicing in circRNAs are available in the CIRCpedia database (http://www.picb.ac.cn/rnomics/circpedia). Collectively, the annotation of alternative back-splicing and alternative splicing in circRNAs provides a valuable resource for depicting the complexity of circRNA biogenesis and for studying the potential functions of circRNAs in different cells. PMID:27365365

  7. Genome-wide survey of allele-specific splicing in humans

    Directory of Open Access Journals (Sweden)

    Scheffler Konrad

    2008-06-01

    Full Text Available Abstract Background Accurate mRNA splicing depends on multiple regulatory signals encoded in the transcribed RNA sequence. Many examples of mutations within human splice regulatory regions that alter splicing qualitatively or quantitatively have been reported and allelic differences in mRNA splicing are likely to be a common and important source of phenotypic diversity at the molecular level, in addition to their contribution to genetic disease susceptibility. However, because the effect of a mutation on the efficiency of mRNA splicing is often difficult to predict, many mutations that cause disease through an effect on splicing are likely to remain undiscovered. Results We have combined a genome-wide scan for sequence polymorphisms likely to affect mRNA splicing with analysis of publicly available Expressed Sequence Tag (EST and exon array data. The genome-wide scan uses published tools and identified 30,977 SNPs located within donor and acceptor splice sites, branch points and exonic splicing enhancer elements. For 1,185 candidate splicing polymorphisms the difference in splicing between alternative alleles was corroborated by publicly available exon array data from 166 lymphoblastoid cell lines. We developed a novel probabilistic method to infer allele-specific splicing from EST data. The method uses SNPs and alternative mRNA isoforms mapped to EST sequences and models both regulated alternative splicing as well as allele-specific splicing. We have also estimated heritability of splicing and report that a greater proportion of genes show evidence of splicing heritability than show heritability of overall gene expression level. Our results provide an extensive resource that can be used to assess the possible effect on splicing of human polymorphisms in putative splice-regulatory sites. Conclusion We report a set of genes showing evidence of allele-specific splicing from an integrated analysis of genomic polymorphisms, EST data and exon array

  8. Spliceman2: a computational web server that predicts defects in pre-mRNA splicing.

    Science.gov (United States)

    Cygan, Kamil Jan; Sanford, Clayton Hendrick; Fairbrother, William Guy

    2017-09-15

    Most pre-mRNA transcripts in eukaryotic cells must undergo splicing to remove introns and join exons, and splicing elements present a large mutational target for disease-causing mutations. Splicing elements are strongly position dependent with respect to the transcript annotations. In 2012, we presented Spliceman, an online tool that used positional dependence to predict how likely distant mutations around annotated splice sites were to disrupt splicing. Here, we present an improved version of the previous tool that will be more useful for predicting the likelihood of splicing mutations. We have added industry-standard input options (i.e. Spliceman now accepts variant call format files), which allow much larger inputs than previously available. The tool also can visualize the locations-within exons and introns-of sequence variants to be analyzed and the predicted effects on splicing of the pre-mRNA transcript. In addition, Spliceman2 integrates with RNAcompete motif libraries to provide a prediction of which trans -acting factors binding sites are disrupted/created and links out to the UCSC genome browser. In summary, the new features in Spliceman2 will allow scientists and physicians to better understand the effects of single nucleotide variations on splicing. Freely available on the web at http://fairbrother.biomed.brown.edu/spliceman2 . Website implemented in PHP framework-Laravel 5, PostgreSQL, Apache, and Perl, with all major browsers supported. william_fairbrother@brown.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Human Splicing Finder: an online bioinformatics tool to predict splicing signals.

    Science.gov (United States)

    Desmet, François-Olivier; Hamroun, Dalil; Lalande, Marine; Collod-Béroud, Gwenaëlle; Claustres, Mireille; Béroud, Christophe

    2009-05-01

    Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-beta Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5' and 3' splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project.

  10. Deletions in cox2 mRNA result in loss of splicing and RNA editing and gain of novel RNA editing sites.

    Directory of Open Access Journals (Sweden)

    Stefanie Grüttner

    Full Text Available As previously demonstrated, the maize cox2 RNA is fully edited in cauliflower mitochondria. Use of constructs with a deleted cox2 intron, however, led to a loss of RNA editing at almost all editing sites, with only a few sites still partially edited. Likewise, one deletion in exon 1 and three in exon 2 abolish RNA editing at all cox2 sites analyzed. Furthermore, intron splicing is abolished using these deletions. Mutation of a cytosine residue, which is normally edited and localized directly adjacent to the intron, to thymidine did not result in restoration of splicing, indicating that the loss of splicing was not due to loss of RNA editing. One deletion in exon 2 did not lead to loss of splicing. Instead, most editing sites were found to be edited, only three were not edited. Unexpectedly, we observed additional RNA editing events at new sites. Thus it appears that deletions in the cox2 RNA sequence can have a strong effect on RNA processing, leading to loss of splicing, loss of editing at all sites, or even to a gain of new editing sites. As these effects are not limited to the vicinity of the respective deletions, but appear to be widespread or even affect all editing sites, they may not be explained by the loss of PPR binding sites. Instead, it appears that several parts of the cox2 transcript are required for proper RNA processing. This indicates the roles of the RNA sequence and structural elements in the recognition of the editing sites.

  11. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.

    Science.gov (United States)

    Anvar, Seyed Yahya; Allard, Guy; Tseng, Elizabeth; Sheynkman, Gloria M; de Klerk, Eleonora; Vermaat, Martijn; Yin, Raymund H; Johansson, Hans E; Ariyurek, Yavuz; den Dunnen, Johan T; Turner, Stephen W; 't Hoen, Peter A C

    2018-03-29

    The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing. In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells. Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA processing.

  12. Alternative splicing of cyclooxygenase-1 mRNA in the human iris

    NARCIS (Netherlands)

    Dröge, M.J; van Sorge, A.A; van Haeringen, N.J; Quax, Wim; Zaagsma, Hans; Droge, MJ

    2003-01-01

    dIn homogenates of the human iris, the nonsteroidal antiinflammatory drug (NSAID) S(+)flurbiprofen has been reported to inhibit cyclooxygenase-1 (COX-1) 70-fold more potently than in human whole blood. We hypothesized that this difference may be due to alternative splicing of COX-1 mRNA in the human

  13. Position dependence of the rous sarcoma virus negative regulator of splicing element reflects proximity to a 5' splice site

    International Nuclear Information System (INIS)

    Wang Yuedi; McNally, Mark T.

    2003-01-01

    Rous sarcoma virus (RSV) requires incomplete splicing of its viral transcripts to maintain efficient replication. A splicing inhibitor element, the negative regulator of splicing (NRS), is located near the 5' end of the RNA but the significance of this positioning is not known. In a heterologous intron the NRS functions optimally when positioned close to the authentic 5' splice site. This observation led us to investigate the basis of the position dependence. Four explanations were put forth and stressed the role of three major elements involved in splicing, the 3' splice site, the 5' splice site, and the 5' end cap structure. NRS function was unrelated to its position relative to the 3' splice site or the cap structure and appeared to depend on its position relative to the authentic 5' splice site. We conclude that position dependence may reflect distance constraints necessary for competition of the NRS with the authentic 5' splice site for pairing with the 3' splice sites

  14. Quantitative evaluation of alternatively spliced mRNA isoforms by label-free real-time plasmonic sensing.

    Science.gov (United States)

    Huertas, César S; Carrascosa, L G; Bonnal, S; Valcárcel, J; Lechuga, L M

    2016-04-15

    Alternative splicing of mRNA precursors enables cells to generate different protein outputs from the same gene depending on their developmental or homeostatic status. Its deregulation is strongly linked to disease onset and progression. Current methodologies for monitoring alternative splicing demand elaborate procedures and often present difficulties in discerning between closely related isoforms, e.g. due to cross-hybridization during their detection. Herein, we report a general methodology using a Surface Plasmon Resonance (SPR) biosensor for label-free monitoring of alternative splicing events in real-time, without any cDNA synthesis or PCR amplification requirements. We applied this methodology to RNA isolated from HeLa cells for the quantification of alternatively spliced isoforms of the Fas gene, involved in cancer progression through regulation of programmed cell death. We demonstrate that our methodology is isoform-specific, with virtually no cross-hybridization, achieving limits of detection (LODs) in the picoMolar (pM) range. Similar results were obtained for the detection of the BCL-X gene mRNA isoforms. The results were independently validated by RT-qPCR, with excellent concordance in the determination of isoform ratios. The simplicity and robustness of this biosensor technology can greatly facilitate the exploration of alternative splicing biomarkers in disease diagnosis and therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans.

    Directory of Open Access Journals (Sweden)

    Ganesh Ambigapathy

    Full Text Available Brain-derived neurotrophic factor (BDNF has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.

  16. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans.

    Science.gov (United States)

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.

  17. Features generated for computational splice-site prediction correspond to functional elements

    Directory of Open Access Journals (Sweden)

    Wilbur W John

    2007-10-01

    Full Text Available Abstract Background Accurate selection of splice sites during the splicing of precursors to messenger RNA requires both relatively well-characterized signals at the splice sites and auxiliary signals in the adjacent exons and introns. We previously described a feature generation algorithm (FGA that is capable of achieving high classification accuracy on human 3' splice sites. In this paper, we extend the splice-site prediction to 5' splice sites and explore the generated features for biologically meaningful splicing signals. Results We present examples from the observed features that correspond to known signals, both core signals (including the branch site and pyrimidine tract and auxiliary signals (including GGG triplets and exon splicing enhancers. We present evidence that features identified by FGA include splicing signals not found by other methods. Conclusion Our generated features capture known biological signals in the expected sequence interval flanking splice sites. The method can be easily applied to other species and to similar classification problems, such as tissue-specific regulatory elements, polyadenylation sites, promoters, etc.

  18. SmD1 Modulates the miRNA Pathway Independently of Its Pre-mRNA Splicing Function.

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Xiong

    2015-08-01

    Full Text Available microRNAs (miRNAs are a class of endogenous regulatory RNAs that play a key role in myriad biological processes. Upon transcription, primary miRNA transcripts are sequentially processed by Drosha and Dicer ribonucleases into ~22-24 nt miRNAs. Subsequently, miRNAs are incorporated into the RNA-induced silencing complexes (RISCs that contain Argonaute (AGO family proteins and guide RISC to target RNAs via complementary base pairing, leading to post-transcriptional gene silencing by a combination of translation inhibition and mRNA destabilization. Select pre-mRNA splicing factors have been implicated in small RNA-mediated gene silencing pathways in fission yeast, worms, flies and mammals, but the underlying molecular mechanisms are not well understood. Here, we show that SmD1, a core component of the Drosophila small nuclear ribonucleoprotein particle (snRNP implicated in splicing, is required for miRNA biogenesis and function. SmD1 interacts with both the microprocessor component Pasha and pri-miRNAs, and is indispensable for optimal miRNA biogenesis. Depletion of SmD1 impairs the assembly and function of the miRISC without significantly affecting the expression of major canonical miRNA pathway components. Moreover, SmD1 physically and functionally associates with components of the miRISC, including AGO1 and GW182. Notably, miRNA defects resulting from SmD1 silencing can be uncoupled from defects in pre-mRNA splicing, and the miRNA and splicing machineries are physically and functionally distinct entities. Finally, photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP analysis identifies numerous SmD1-binding events across the transcriptome and reveals direct SmD1-miRNA interactions. Our study suggests that SmD1 plays a direct role in miRNA-mediated gene silencing independently of its pre-mRNA splicing activity and indicates that the dual roles of splicing factors in post-transcriptional gene regulation may be

  19. Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Pleiss

    2007-04-01

    Full Text Available Appropriate expression of most eukaryotic genes requires the removal of introns from their pre-messenger RNAs (pre-mRNAs, a process catalyzed by the spliceosome. In higher eukaryotes a large family of auxiliary factors known as SR proteins can improve the splicing efficiency of transcripts containing suboptimal splice sites by interacting with distinct sequences present in those pre-mRNAs. The yeast Saccharomyces cerevisiae lacks functional equivalents of most of these factors; thus, it has been unclear whether the spliceosome could effectively distinguish among transcripts. To address this question, we have used a microarray-based approach to examine the effects of mutations in 18 highly conserved core components of the spliceosomal machinery. The kinetic profiles reveal clear differences in the splicing defects of particular pre-mRNA substrates. Most notably, the behaviors of ribosomal protein gene transcripts are generally distinct from other intron-containing transcripts in response to several spliceosomal mutations. However, dramatically different behaviors can be seen for some pairs of transcripts encoding ribosomal protein gene paralogs, suggesting that the spliceosome can readily distinguish between otherwise highly similar pre-mRNAs. The ability of the spliceosome to distinguish among its different substrates may therefore offer an important opportunity for yeast to regulate gene expression in a transcript-dependent fashion. Given the high level of conservation of core spliceosomal components across eukaryotes, we expect that these results will significantly impact our understanding of how regulated splicing is controlled in higher eukaryotes as well.

  20. Characterization of an apparently synonymous F5 mutation causing aberrant splicing and factor V deficiency.

    Science.gov (United States)

    Nuzzo, F; Bulato, C; Nielsen, B I; Lee, K; Wielders, S J; Simioni, P; Key, N S; Castoldi, E

    2015-03-01

    Coagulation factor V (FV) deficiency is a rare autosomal recessive bleeding disorder. We investigated a patient with severe FV deficiency (FV:C mutation in exon 4 (c.578G>C, p.Cys193Ser), predicting the abolition of a conserved disulphide bridge, and an apparently synonymous variant in exon 8 (c.1281C>G). The observation that half of the patient's F5 mRNA lacked the last 18 nucleotides of exon 8 prompted us to re-evaluate the c.1281C>G variant for its possible effects on splicing. Bioinformatics sequence analysis predicted that this transversion would activate a cryptic donor splice site and abolish an exonic splicing enhancer. Characterization in a F5 minigene model confirmed that the c.1281C>G variant was responsible for the patient's splicing defect, which could be partially corrected by a mutation-specific morpholino antisense oligonucleotide. The aberrantly spliced F5 mRNA, whose stability was similar to that of the normal mRNA, encoded a putative FV mutant lacking amino acids 427-432. Expression in COS-1 cells indicated that the mutant protein is poorly secreted and not functional. In conclusion, the c.1281C>G mutation, which was predicted to be translationally silent and hence neutral, causes FV deficiency by impairing pre-mRNA splicing. This finding underscores the importance of cDNA analysis for the correct assessment of exonic mutations. © 2014 John Wiley & Sons Ltd.

  1. Muscle-specific splicing factors ASD-2 and SUP-12 cooperatively switch alternative pre-mRNA processing patterns of the ADF/cofilin gene in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Genta Ohno

    Full Text Available Pre-mRNAs are often processed in complex patterns in tissue-specific manners to produce a variety of protein isoforms from single genes. However, mechanisms orchestrating the processing of the entire transcript are not well understood. Muscle-specific alternative pre-mRNA processing of the unc-60 gene in Caenorhabditis elegans, encoding two tissue-specific isoforms of ADF/cofilin with distinct biochemical properties in regulating actin organization, provides an excellent in vivo model of complex and tissue-specific pre-mRNA processing; it consists of a single first exon and two separate series of downstream exons. Here we visualize the complex muscle-specific processing pattern of the unc-60 pre-mRNA with asymmetric fluorescence reporter minigenes. By disrupting juxtaposed CUAAC repeats and UGUGUG stretch in intron 1A, we demonstrate that these elements are required for retaining intron 1A, as well as for switching the processing patterns of the entire pre-mRNA from non-muscle-type to muscle-type. Mutations in genes encoding muscle-specific RNA-binding proteins ASD-2 and SUP-12 turned the colour of the unc-60 reporter worms. ASD-2 and SUP-12 proteins specifically and cooperatively bind to CUAAC repeats and UGUGUG stretch in intron 1A, respectively, to form a ternary complex in vitro. Immunohistochemical staining and RT-PCR analyses demonstrate that ASD-2 and SUP-12 are also required for switching the processing patterns of the endogenous unc-60 pre-mRNA from UNC-60A to UNC-60B in muscles. Furthermore, systematic analyses of partially spliced RNAs reveal the actual orders of intron removal for distinct mRNA isoforms. Taken together, our results demonstrate that muscle-specific splicing factors ASD-2 and SUP-12 cooperatively promote muscle-specific processing of the unc-60 gene, and provide insight into the mechanisms of complex pre-mRNA processing; combinatorial regulation of a single splice site by two tissue-specific splicing regulators

  2. AthMethPre: a web server for the prediction and query of mRNA m6A sites in Arabidopsis thaliana.

    Science.gov (United States)

    Xiang, Shunian; Yan, Zhangming; Liu, Ke; Zhang, Yaou; Sun, Zhirong

    2016-10-18

    N 6 -Methyladenosine (m 6 A) is the most prevalent and abundant modification in mRNA that has been linked to many key biological processes. High-throughput experiments have generated m 6 A-peaks across the transcriptome of A. thaliana, but the specific methylated sites were not assigned, which impedes the understanding of m 6 A functions in plants. Therefore, computational prediction of mRNA m 6 A sites becomes emergently important. Here, we present a method to predict the m 6 A sites for A. thaliana mRNA sequence(s). To predict the m 6 A sites of an mRNA sequence, we employed the support vector machine to build a classifier using the features of the positional flanking nucleotide sequence and position-independent k-mer nucleotide spectrum. Our method achieved good performance and was applied to a web server to provide service for the prediction of A. thaliana m 6 A sites. The server also provides a comprehensive database of predicted transcriptome-wide m 6 A sites and curated m 6 A-seq peaks from the literature for query and visualization. The AthMethPre web server is the first web server that provides a user-friendly tool for the prediction and query of A. thaliana mRNA m 6 A sites, which is freely accessible for public use at .

  3. A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification

    Science.gov (United States)

    Florio, Marta; Namba, Takashi; Pääbo, Svante; Hiller, Michael; Huttner, Wieland B.

    2016-01-01

    The gene ARHGAP11B promotes basal progenitor amplification and is implicated in neocortex expansion. It arose on the human evolutionary lineage by partial duplication of ARHGAP11A, which encodes a Rho guanosine triphosphatase–activating protein (RhoGAP). However, a lack of 55 nucleotides in ARHGAP11B mRNA leads to loss of RhoGAP activity by GAP domain truncation and addition of a human-specific carboxy-terminal amino acid sequence. We show that these 55 nucleotides are deleted by mRNA splicing due to a single C→G substitution that creates a novel splice donor site. We reconstructed an ancestral ARHGAP11B complementary DNA without this substitution. Ancestral ARHGAP11B exhibits RhoGAP activity but has no ability to increase basal progenitors during neocortex development. Hence, a single nucleotide substitution underlies the specific properties of ARHGAP11B that likely contributed to the evolutionary expansion of the human neocortex. PMID:27957544

  4. A novel AVPR2 splice site mutation leads to partial X-linked nephrogenic diabetes insipidus in two brothers.

    Science.gov (United States)

    Schernthaner-Reiter, Marie Helene; Adams, David; Trivellin, Giampaolo; Ramnitz, Mary Scott; Raygada, Margarita; Golas, Gretchen; Faucz, Fabio R; Nilsson, Ola; Nella, Aikaterini A; Dileepan, Kavitha; Lodish, Maya; Lee, Paul; Tifft, Cynthia; Markello, Thomas; Gahl, William; Stratakis, Constantine A

    2016-05-01

    X-linked nephrogenic diabetes insipidus (NDI, OMIM#304800) is caused by mutations in the arginine vasopressin (AVP, OMIM*192340) receptor type 2 (AVPR2, OMIM*300538) gene. A 20-month-old boy and his 8-year-old brother presented with polyuria, polydipsia, and failure to thrive. Both boys demonstrated partial DDAVP (1-desamino-8-D AVP or desmopressin) responses; thus, NDI diagnosis was delayed. While routine sequencing of AVPR2 showed a potential splice site variant, it was not until exome sequencing confirmed the AVPR2 splice site variant and did not reveal any more likely candidates that the patients' diagnosis was made and proper treatment was instituted. Both patients were hemizygous for two AVPR2 variants predicted in silico to affect AVPR2 messenger RNA (mRNA) splicing. A minigene assay revealed that the novel AVPR2 c.276A>G mutation creates a novel splice acceptor site leading to 5' truncation of AVPR2 exon 2 in HEK293 human kidney cells. Both patients have been treated with high-dose DDAVP with a remarkable improvement of their symptoms and accelerated linear growth and weight gain. We present here a unique case of partial X-linked NDI due to an AVPR2 splice site mutation; patients with diabetes insipidus of unknown etiology may harbor splice site mutations that are initially underestimated in their pathogenicity on sequence analysis. • X-linked nephrogenic diabetes insipidus is caused by AVPR2 mutations, and disease severity can vary depending on the functional effect of the mutation. What is New: • We demonstrate here that a splice site mutation in AVPR2 leads to partial X-linked NDI in two brothers. • Treatment with high-dose DDAVP led to improvement of polyuria and polydipsia, weight gain, and growth.

  5. Systematic Analysis of Splice-Site-Creating Mutations in Cancer

    Directory of Open Access Journals (Sweden)

    Reyka G. Jayasinghe

    2018-04-01

    Full Text Available Summary: For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases. : Jayasinghe et al. identify nearly 2,000 splice-site-creating mutations (SCMs from over 8,000 tumor samples across 33 cancer types. They provide a more accurate interpretation of previously mis-annotated mutations, highlighting the importance of integrating data types to understand the functional and the clinical implications of splicing mutations in human disease. Keywords: splicing, RNA, mutations of clinical relevance

  6. Human Splice-Site Prediction with Deep Neural Networks.

    Science.gov (United States)

    Naito, Tatsuhiko

    2018-04-18

    Accurate splice-site prediction is essential to delineate gene structures from sequence data. Several computational techniques have been applied to create a system to predict canonical splice sites. For classification tasks, deep neural networks (DNNs) have achieved record-breaking results and often outperformed other supervised learning techniques. In this study, a new method of splice-site prediction using DNNs was proposed. The proposed system receives an input sequence data and returns an answer as to whether it is splice site. The length of input is 140 nucleotides, with the consensus sequence (i.e., "GT" and "AG" for the donor and acceptor sites, respectively) in the middle. Each input sequence model is applied to the pretrained DNN model that determines the probability that an input is a splice site. The model consists of convolutional layers and bidirectional long short-term memory network layers. The pretraining and validation were conducted using the data set tested in previously reported methods. The performance evaluation results showed that the proposed method can outperform the previous methods. In addition, the pattern learned by the DNNs was visualized as position frequency matrices (PFMs). Some of PFMs were very similar to the consensus sequence. The trained DNN model and the brief source code for the prediction system are uploaded. Further improvement will be achieved following the further development of DNNs.

  7. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

    Directory of Open Access Journals (Sweden)

    Katja Meyer

    2015-07-01

    Full Text Available Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.

  8. Pre-mRNA mis-splicing of sarcomeric genes in heart failure.

    Science.gov (United States)

    Zhu, Chaoqun; Chen, Zhilong; Guo, Wei

    2017-08-01

    Pre-mRNA splicing is an important biological process that allows production of multiple proteins from a single gene in the genome, and mainly contributes to protein diversity in eukaryotic organisms. Alternative splicing is commonly governed by RNA binding proteins to meet the ever-changing demands of the cell. However, the mis-splicing may lead to human diseases. In the heart of human, mis-regulation of alternative splicing has been associated with heart failure. In this short review, we focus on alternative splicing of sarcomeric genes and review mis-splicing related heart failure with relatively well studied Sarcomeric genes and splicing mechanisms with identified regulatory factors. The perspective of alternative splicing based therapeutic strategies in heart failure has also been discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Purification of ribonucleoproteins by a novel approach: isolation of the SSB1 ribonucleoprotein from yeast and demonstration that it has no role in mRNA splicing.

    Science.gov (United States)

    Cusick, M E

    1992-12-29

    A novel approach is described to purify potential ribonucleoproteins (RNP) of yeast. The method assays a yeast RNP complex, assembled in vitro on actin pre-mRNA, by low-ionic strength acrylamide gel electrophoresis. The minimal protein components of this RNP complex were three proteins, one of 30 kDa and two at 42-44 kDa, defined by formation of the complex on biotinylated-RNA, binding of this complex to avidin-agarose, and salt elution of the protein in the biotinylated-RNP complex. Using the assay for RNP complex formation, an RNP protein was purified to homogeneity on the basis of its affinity towards single-stranded DNA and RNA. This RNP protein turned out to be identical to a known RNP protein, the single-stranded binding protein 1 (ssb1) of yeast, on the basis of identical gel electrophoretic migration, antibody cross-reactivity, and identical properties on the gel complex formation assay. In vitro mRNA splicing was normal in extracts made from a yeast strain missing ssb1 (ssb1- strain). Addition of anti-ssb1 antibody to splicing extracts made from a wild type strain did not inhibit or diminish splicing. Instead, mRNA splicing was reproducibly stimulated several fold, indicating competition between ssb1 and splicing factors for binding to single-stranded RNA in the extracts. RNP complexes still formed in the ssb1- strain, demonstrating that it would be possible to purify other RNP proteins from this strain using the gel complex formation assay.

  10. Identification and characterization of a novel XK splice site mutation in a patient with McLeod syndrome.

    Science.gov (United States)

    Arnaud, Lionel; Salachas, François; Lucien, Nicole; Maisonobe, Thierry; Le Pennec, Pierre-Yves; Babinet, Jérôme; Cartron, Jean-Pierre

    2009-03-01

    McLeod syndrome is a rare X-linked neuroacanthocytosis syndrome with hematologic, muscular, and neurologic manifestations. McLeod syndrome is caused by mutations in the XK gene whose product is expressed at the red blood cell (RBC) surface but whose function is currently unknown. A variety of XK mutations has been reported but no clear phenotype-genotype correlation has been found, especially for the point mutations affecting splicing sites. A man suspected of neuroacanthocytosis was evaluated by neurologic examination, electromyography, muscle biopsy, muscle computed tomography, and cerebral magnetic resonance imaging. The McLeod RBC phenotype was disclosed by blood smear and immunohematology analyses and then confirmed at the biochemical level by Western blot analysis. The responsible XK mutation was characterized at the mRNA level by reverse transcription-polymerase chain reaction (PCR), identified by genomic DNA sequencing, and verified by allele-specific PCR. A novel XK splice site mutation (IVS1-1G>A) has been identified in a McLeod patient who has developed hematologic, neuromuscular, and neurologic symptoms. This is the first reported example of a XK point mutation affecting the 3' acceptor splice site of Intron 1, and it was demonstrated that this mutation indeed induces aberrant splicing of XK RNA and lack of XK protein at the RBC membrane. The detailed characterization at the molecular biology level of this novel XK splice site mutation associated with the clinical description of the patient contributes to a better understanding of the phenotype-genotype correlation in the McLeod syndrome.

  11. Intravitreal Injection of Splice-switching Oligonucleotides to Manipulate Splicing in Retinal Cells

    Directory of Open Access Journals (Sweden)

    Xavier Gérard

    2015-01-01

    Full Text Available Leber congenital amaurosis is a severe hereditary retinal dystrophy responsible for neonatal blindness. The most common disease-causing mutation (c.2991+1655A>G; 10–15% creates a strong splice donor site that leads to insertion of a cryptic exon encoding a premature stop codon. Recently, we reported that splice-switching oligonucleotides (SSO allow skipping of the mutant cryptic exon and the restoration of ciliation in fibroblasts of affected patients, supporting the feasibility of a SSO-mediated exon skipping strategy to correct the aberrant splicing. Here, we present data in the wild-type mouse, which demonstrate that intravitreal administration of 2’-OMePS-SSO allows selective alteration of Cep290 splicing in retinal cells, including photoreceptors as shown by successful alteration of Abca4 splicing using the same approach. We show that both SSOs and Cep290 skipped mRNA were detectable for at least 1 month and that intravitreal administration of oligonucleotides did not provoke any serious adverse event. These data suggest that intravitreal injections of SSO should be considered to bypass protein truncation resulting from the c.2991+1655A>G mutation as well as other truncating mutations in genes which like CEP290 or ABCA4 have a mRNA size that exceed cargo capacities of US Food and Drug Administration (FDA-approved adeno-associated virus (AAV-vectors, thus hampering gene augmentation therapy.

  12. HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels

    DEFF Research Database (Denmark)

    Hviid, Thomas Vauvert F; Hylenius, Sine; Rørbye, Christina

    2003-01-01

    between mother and fetus in several ways. Finally, the expression of membrane-bound HLA-G and soluble HLA-G has been proposed to influence the outcome of pregnancy, and an aberrant HLA-G expression in pre-eclamptic placentas and spontaneous abortions has been reported. Here, an association between certain...... HLA-G polymorphisms and the mRNA levels of the different alternatively spliced HLA-G isoforms in first trimester trophoblast cell populations is reported. Several alternatively spliced HLA-G mRNA isoforms, including a 14-bp polymorphism in the 3'UTR end (exon 8) of the HLA-G gene, are expressed...

  13. HIV-1 splicing is controlled by local RNA structure and binding of splicing regulatory proteins at the major 5' splice site

    NARCIS (Netherlands)

    Mueller, Nancy; Berkhout, Ben; Das, Atze T.

    2015-01-01

    The 5' leader region of the human immunodeficiency virus 1 (HIV-1) RNA genome contains the major 5' splice site (ss) that is used in the production of the many spliced viral RNAs. This splice-donor (SD) region can fold into a stable stem-loop structure and the thermodynamic stability of this RNA

  14. Systematic Analysis of Splice-Site-Creating Mutations in Cancer.

    Science.gov (United States)

    Jayasinghe, Reyka G; Cao, Song; Gao, Qingsong; Wendl, Michael C; Vo, Nam Sy; Reynolds, Sheila M; Zhao, Yanyan; Climente-González, Héctor; Chai, Shengjie; Wang, Fang; Varghese, Rajees; Huang, Mo; Liang, Wen-Wei; Wyczalkowski, Matthew A; Sengupta, Sohini; Li, Zhi; Payne, Samuel H; Fenyö, David; Miner, Jeffrey H; Walter, Matthew J; Vincent, Benjamin; Eyras, Eduardo; Chen, Ken; Shmulevich, Ilya; Chen, Feng; Ding, Li

    2018-04-03

    For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs) across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Approaches to link RNA secondary structures with splicing regulation

    DEFF Research Database (Denmark)

    Plass, Mireya; Eyras, Eduardo

    2014-01-01

    In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either by facilitat...... describes the steps in the analysis of the secondary structure of the pre-mRNA and its possible relation to splicing. As a working example, we use the case of yeast and the problem of the recognition of the 3' splice site (3'ss).......In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either...

  16. Aberrant and alternative splicing in skeletal system disease.

    Science.gov (United States)

    Fan, Xin; Tang, Liling

    2013-10-01

    The main function of skeletal system is to support the body and help movement. A variety of factors can lead to skeletal system disease, including age, exercise, and of course genetic makeup and expression. Pre-mRNA splicing plays a crucial role in gene expression, by creating multiple protein variants with different biological functions. The recent studies show that several skeletal system diseases are related to pre-mRNA splicing. This review focuses on the relationship between pre-mRNA splicing and skeletal system disease. On the one hand, splice site mutation that leads to aberrant splicing often causes genetic skeletal system disease, like COL1A1, SEDL and LRP5. On the other hand, alternative splicing without genomic mutation may generate some marker protein isoforms, for example, FN, VEGF and CD44. Therefore, understanding the relationship between pre-mRNA splicing and skeletal system disease will aid in uncovering the mechanism of disease and contribute to the future development of gene therapy. © 2013 Elsevier B.V. All rights reserved.

  17. A donor splice site mutation in CISD2 generates multiple truncated, non-functional isoforms in Wolfram syndrome type 2 patients.

    Science.gov (United States)

    Cattaneo, Monica; La Sala, Lucia; Rondinelli, Maurizio; Errichiello, Edoardo; Zuffardi, Orsetta; Puca, Annibale Alessandro; Genovese, Stefano; Ceriello, Antonio

    2017-12-13

    Mutations in the gene that encodes CDGSH iron sulfur domain 2 (CISD2) are causative of Wolfram syndrome type 2 (WFS2), a rare autosomal recessive neurodegenerative disorder mainly characterized by diabetes mellitus, optic atrophy, peptic ulcer bleeding and defective platelet aggregation. Four mutations in the CISD2 gene have been reported. Among these mutations, the homozygous c.103 + 1G > A substitution was identified in the donor splice site of intron 1 in two Italian sisters and was predicted to cause a exon 1 to be skipped. Here, we employed molecular assays to characterize the c.103 + 1G > A mutation using the patient's peripheral blood mononuclear cells (PBMCs). 5'-RACE coupled with RT-PCR were used to analyse the effect of the c.103 + 1G > A mutation on mRNA splicing. Western blot analysis was used to analyse the consequences of the CISD2 mutation on the encoded protein. We demonstrated that the c.103 + 1G > A mutation functionally impaired mRNA splicing, producing multiple splice variants characterized by the whole or partial absence of exon 1, which introduced amino acid changes and a premature stop. The affected mRNAs resulted in either predicted targets for nonsense mRNA decay (NMD) or non-functional isoforms. We concluded that the c.103 + 1G > A mutation resulted in the loss of functional CISD2 protein in the two Italian WFS2 patients.

  18. Identification of alternatively spliced TIMP-1 mRNA in cancer cell lines and colon cancer tissue

    DEFF Research Database (Denmark)

    Usher, Pernille Autzen; Sieuwerts, A.M.; Bartels, Annette

    2007-01-01

    TIMP-1 is a promising new candidate as a prognostic marker in colorectal and breast cancer. We now describe the discovery of two alternatively spliced variants of TIMP-1 mRNA. The two variants lacking exon 2 (del-2) and 5 (del-5), respectively, were identified in human cancer cell lines by RT......-PCR. The del-2 variant was, furthermore, detected in extracts from 12 colorectal cancer tissue samples. By western blotting additional bands of lower molecular mass than full-length TIMP-1 were identified in tumor tissue, but not in plasma samples obtained from cancer patients. The two splice variants of TIMP...

  19. A novel T→G splice site mutation of CRYBA1/A3 associated with autosomal dominant nuclear cataracts in a Chinese family.

    Science.gov (United States)

    Yang, Zhenfei; Su, Dongmei; Li, Qian; Yang, Fan; Ma, Zicheng; Zhu, Siquan; Ma, Xu

    2012-01-01

    The purpose of this study was to identify the disease-causing mutation and the molecular phenotype that are responsible for the presence of an autosomal dominant congenital nuclear cataract disease in a Chinese family. The family history and clinical data were recorded. The patients were given a physical examination and their blood samples were collected for DNA extraction. Direct sequencing was used to detect the mutation. Transcription analysis of the mutant crystallin, beta A1 (CRYBA1/A3) gene was performed to verify whether the defective mutation had influenced the splice of the mature mRNA. The phenotype of the congenital cataract in the family was identified as a nuclear cataract type, by using slit-lamp photography. Direct sequencing revealed a novel mutation IVS3+2 T→G in CRYBA1/A3. This mutation co-segregated with all affected individuals in the family, but was not found in unaffected family members nor in the 100 unrelated controls. Transcription analysis of the mutant CRYBA1/A3 gene indicated that this mutation had influenced the splice of the mature mRNA. Our study identified a novel splice site mutation in CRYBA1/A3. This mutation was responsible for aberrant splicing of the mature mRNA and had caused the congenital nuclear cataracts in the family. This is the first report relating an IVS3+2 T→G mutation of CRYBA1/A3 to congenital cataracts.

  20. Structural Basis for Polypyrimidine Tract Recognition by the Essential Pre-mRNA Splicing Factor U2AF65

    International Nuclear Information System (INIS)

    Sickmier, E.; Frato, K.; Shen, H.; Paranawithana, S.; Green, M.; Kielkopf, C.

    2006-01-01

    The essential pre-mRNA splicing factor, U2AF 65 , guides the early stages of splice site choice by recognizing a polypyrimidine (Py)-tract consensus sequence near the 3'-splice site. Since Py-tracts are relatively poorly conserved in higher eukaryotes, U2AF 65 is faced with the problem of specifying uridine-rich sequences, yet tolerating a variety of nucleotide substitutions found in natural Py-tracts. To better understand these apparently contradictory RNA binding characteristics, the X-ray structure of the U2AF 65 RNA binding domain bound to a Py-tract composed of seven uridines has been determined at 2.5Angstroms resolution. Specific hydrogen bonds between U2AF 65 and the uracil bases provide an explanation for polyuridine recognition. Flexible sidechains and bound water molecules form the majority of the base contacts, and potentially could rearrange when the U2AF 65 structure adapts to different Py-tract sequences. The energetic importance of conserved residues for Py-tract binding is established by analysis of site-directed mutant U2AF 65 proteins using surface plasmon resonance

  1. A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Kahns, Søren; Lykke-Andersen, Søren

    2008-01-01

    RNAs, harboring wild-type or various 5′ splice site mutations, we demonstrate a strong positive correlation between splicing efficiency and transcription activity. Interestingly, a 5′ splice site can stimulate transcription even in the absence of splicing. Chromatin immunoprecipitation experiments show enhanced...... a promoter-proximal 5′ splice site via its U1 snRNA interaction can feed back to stimulate transcription initiation by enhancing preinitiation complex assembly....

  2. Human-specific protein isoforms produced by novel splice sites in the human genome after the human-chimpanzee divergence

    Directory of Open Access Journals (Sweden)

    Kim Dong Seon

    2012-11-01

    Full Text Available Abstract Background Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. Results We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Conclusions Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution.

  3. RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes

    KAUST Repository

    Lee, Keh Chien; Jang, Yun Hee; Kim, SoonKap; Park, Hyo-Young; Thu, May Phyo; Lee, Jeong Hwan; Kim, Jeong-Kook

    2017-01-01

    , but not the abscisic acid sensitivity response during seed germination. The alternative splicing of FLOWERING LOCUS M (FLM) pre-mRNA is involved in flowering time control. We found that the RRM domain of AtSF1 protein alters the production of alternatively spliced FLM

  4. FoxP3 mRNA splice forms in synovial CD4+ T cells in rheumatoid arthritis and psoriatic arthritis

    DEFF Research Database (Denmark)

    Ryder, L Rebekka; Bartels, Else Marie; Woetmann, Anders

    2012-01-01

    Our aim was to elucidate the relative amount of the different splice forms of FoxP3 mRNA in CD4+ T cells in peripheral blood (PB) compared to synovial fluid (SF) in RA and PsA patients. FoxP3 mRNA was measured using a quantitative real-time PCR method. CD4+ T cells were isolated from 17 paired...... samples of PB and SF from RA and PsA patients, and PB from 10 controls. FoxP3fl and FoxP3Δ2 mRNA was significantly increased (6.7 and 2.1-fold, respectively) in PB CD4+ T cells from RA patients compared to controls. FoxP3fl and Δ2 mRNA in SF CD4+ T cells was increased compared to controls in sero......-negative RA and PsA, but not in sero-positive RA patients, who had a high FoxP3 expression in both PB and SF. The FoxP3Δ2Δ7 mRNA was barely detectable in patient samples, and not at all in healthy individuals. We provide evidence of an increased expression of FoxP3 splice forms in synovial CD4+ T cells from...

  5. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor

    KAUST Repository

    Nagashima, Yukihiro

    2011-07-01

    IRE1 plays an essential role in the endoplasmic reticulum (ER) stress response in yeast and mammals. We found that a double mutant of Arabidopsis IRE1A and IRE1B (ire1a/ire1b) is more sensitive to the ER stress inducer tunicamycin than the wild-type. Transcriptome analysis revealed that genes whose induction was reduced in ire1a/ire1b largely overlapped those in the bzip60 mutant. We observed that the active form of bZIP60 protein detected in the wild-type was missing in ire1a/ire1b. We further demonstrated that bZIP60 mRNA is spliced by ER stress, removing 23 ribonucleotides and therefore causing a frameshift that replaces the C-terminal region of bZIP60 including the transmembrane domain (TMD) with a shorter region without a TMD. This splicing was detected in ire1a and ire1b single mutants, but not in the ire1a/ire1b double mutant. We conclude that IRE1A and IRE1B catalyse unconventional splicing of bZIP60 mRNA to produce the active transcription factor.

  6. HOLLYWOOD: a comparative relational database of alternative splicing.

    Science.gov (United States)

    Holste, Dirk; Huo, George; Tung, Vivian; Burge, Christopher B

    2006-01-01

    RNA splicing is an essential step in gene expression, and is often variable, giving rise to multiple alternatively spliced mRNA and protein isoforms from a single gene locus. The design of effective databases to support experimental and computational investigations of alternative splicing (AS) is a significant challenge. In an effort to integrate accurate exon and splice site annotation with current knowledge about splicing regulatory elements and predicted AS events, and to link information about the splicing of orthologous genes in different species, we have developed the Hollywood system. This database was built upon genomic annotation of splicing patterns of known genes derived from spliced alignment of complementary DNAs (cDNAs) and expressed sequence tags, and links features such as splice site sequence and strength, exonic splicing enhancers and silencers, conserved and non-conserved patterns of splicing, and cDNA library information for inferred alternative exons. Hollywood was implemented as a relational database and currently contains comprehensive information for human and mouse. It is accompanied by a web query tool that allows searches for sets of exons with specific splicing characteristics or splicing regulatory element composition, or gives a graphical or sequence-level summary of splicing patterns for a specific gene. A streamlined graphical representation of gene splicing patterns is provided, and these patterns can alternatively be layered onto existing information in the UCSC Genome Browser. The database is accessible at http://hollywood.mit.edu.

  7. U2AF1 mutations alter splice site recognition in hematological malignancies.

    Science.gov (United States)

    Ilagan, Janine O; Ramakrishnan, Aravind; Hayes, Brian; Murphy, Michele E; Zebari, Ahmad S; Bradley, Philip; Bradley, Robert K

    2015-01-01

    Whole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 alter its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure. U2AF1 mutations cause differential splicing of hundreds of genes, affecting biological pathways such as DNA methylation (DNMT3B), X chromosome inactivation (H2AFY), the DNA damage response (ATR, FANCA), and apoptosis (CASP8). We show that U2AF1 mutations alter the preferred 3' splice site motif in patients, in cell culture, and in vitro. Mutations affecting the first and second zinc fingers give rise to different alterations in splice site preference and largely distinct downstream splicing programs. These allele-specific effects are consistent with a computationally predicted model of U2AF1 in complex with RNA. Our findings suggest that U2AF1 mutations contribute to pathogenesis by causing quantitative changes in splicing that affect diverse cellular pathways, and give insight into the normal function of U2AF1's zinc finger domains. © 2015 Ilagan et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Comparison of mRNA splicing assay protocols across multiple laboratories: recommendations for best practice in standardized clinical testing.

    Science.gov (United States)

    Whiley, Phillip J; de la Hoya, Miguel; Thomassen, Mads; Becker, Alexandra; Brandão, Rita; Pedersen, Inge Sokilde; Montagna, Marco; Menéndez, Mireia; Quiles, Francisco; Gutiérrez-Enríquez, Sara; De Leeneer, Kim; Tenés, Anna; Montalban, Gemma; Tserpelis, Demis; Yoshimatsu, Toshio; Tirapo, Carole; Raponi, Michela; Caldes, Trinidad; Blanco, Ana; Santamariña, Marta; Guidugli, Lucia; de Garibay, Gorka Ruiz; Wong, Ming; Tancredi, Mariella; Fachal, Laura; Ding, Yuan Chun; Kruse, Torben; Lattimore, Vanessa; Kwong, Ava; Chan, Tsun Leung; Colombo, Mara; De Vecchi, Giovanni; Caligo, Maria; Baralle, Diana; Lázaro, Conxi; Couch, Fergus; Radice, Paolo; Southey, Melissa C; Neuhausen, Susan; Houdayer, Claude; Fackenthal, Jim; Hansen, Thomas Van Overeem; Vega, Ana; Diez, Orland; Blok, Rien; Claes, Kathleen; Wappenschmidt, Barbara; Walker, Logan; Spurdle, Amanda B; Brown, Melissa A

    2014-02-01

    Accurate evaluation of unclassified sequence variants in cancer predisposition genes is essential for clinical management and depends on a multifactorial analysis of clinical, genetic, pathologic, and bioinformatic variables and assays of transcript length and abundance. The integrity of assay data in turn relies on appropriate assay design, interpretation, and reporting. We conducted a multicenter investigation to compare mRNA splicing assay protocols used by members of the ENIGMA (Evidence-Based Network for the Interpretation of Germline Mutant Alleles) consortium. We compared similarities and differences in results derived from analysis of a panel of breast cancer 1, early onset (BRCA1) and breast cancer 2, early onset (BRCA2) gene variants known to alter splicing (BRCA1: c.135-1G>T, c.591C>T, c.594-2A>C, c.671-2A>G, and c.5467+5G>C and BRCA2: c.426-12_8delGTTTT, c.7988A>T, c.8632+1G>A, and c.9501+3A>T). Differences in protocols were then assessed to determine which elements were critical in reliable assay design. PCR primer design strategies, PCR conditions, and product detection methods, combined with a prior knowledge of expected alternative transcripts, were the key factors for accurate splicing assay results. For example, because of the position of primers and PCR extension times, several isoforms associated with BRCA1, c.594-2A>C and c.671-2A>G, were not detected by many sites. Variation was most evident for the detection of low-abundance transcripts (e.g., BRCA2 c.8632+1G>A Δ19,20 and BRCA1 c.135-1G>T Δ5q and Δ3). Detection of low-abundance transcripts was sometimes addressed by using more analytically sensitive detection methods (e.g., BRCA2 c.426-12_8delGTTTT ins18bp). We provide recommendations for best practice and raise key issues to consider when designing mRNA assays for evaluation of unclassified sequence variants.

  9. Triiodothyronine affects the alternative splicing of thyroid hormone receptor alpha mRNA

    NARCIS (Netherlands)

    Timmer, D. C.; Bakker, O.; Wiersinga, W. M.

    2003-01-01

    The c-erbAalpha gene encodes two thyroid hormone receptors, TRalpha1 and TRalpha2, that arise from alternative splicing of the TRalpha pre-mRNA. TRalpha2 is not able to bind triiodothyronine (T-3) and acts as a weak antagonist of TRs. It has been suggested that the balance of TRalpha1 to TRalpha2 is

  10. Analysis of 30 putative BRCA1 splicing mutations in hereditary breast and ovarian cancer families identifies exonic splice site mutations that escape in silico prediction.

    Directory of Open Access Journals (Sweden)

    Barbara Wappenschmidt

    Full Text Available Screening for pathogenic mutations in breast and ovarian cancer genes such as BRCA1/2, CHEK2 and RAD51C is common practice for individuals from high-risk families. However, test results may be ambiguous due to the presence of unclassified variants (UCV in the concurrent absence of clearly cancer-predisposing mutations. Especially the presence of intronic or exonic variants within these genes that possibly affect proper pre-mRNA processing poses a challenge as their functional implications are not immediately apparent. Therefore, it appears necessary to characterize potential splicing UCV and to develop appropriate classification tools. We investigated 30 distinct BRCA1 variants, both intronic and exonic, regarding their spliceogenic potential by commonly used in silico prediction algorithms (HSF, MaxEntScan along with in vitro transcript analyses. A total of 25 variants were identified spliceogenic, either causing/enhancing exon skipping or activation of cryptic splice sites, or both. Except from a single intronic variant causing minor effects on BRCA1 pre-mRNA processing in our analyses, 23 out of 24 intronic variants were correctly predicted by MaxEntScan, while HSF was less accurate in this cohort. Among the 6 exonic variants analyzed, 4 severely impair correct pre-mRNA processing, while the remaining two have partial effects. In contrast to the intronic alterations investigated, only half of the spliceogenic exonic variants were correctly predicted by HSF and/or MaxEntScan. These data support the idea that exonic splicing mutations are commonly disease-causing and concurrently prone to escape in silico prediction, hence necessitating experimental in vitro splicing analysis.

  11. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    International Nuclear Information System (INIS)

    Alvarez, Enrique; Castello, Alfredo; Carrasco, Luis; Izquierdo, Jose M.

    2011-01-01

    Highlights: → Novel role for poliovirus 2A protease as splicing modulator. → Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. → Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A pro modulating the alternative splicing of pre-mRNAs. Expression of 2A pro potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A pro abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A pro , leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A pro on splicing is to selectively block the second catalytic step.

  12. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Enrique, E-mail: ealvarez@cbm.uam.es [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Nicolas Cabrera, 1 Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Castello, Alfredo; Carrasco, Luis; Izquierdo, Jose M. [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Nicolas Cabrera, 1 Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2011-10-14

    Highlights: {yields} Novel role for poliovirus 2A protease as splicing modulator. {yields} Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. {yields} Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A{sup pro} modulating the alternative splicing of pre-mRNAs. Expression of 2A{sup pro} potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A{sup pro} abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A{sup pro}, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A{sup pro} on splicing is to selectively block the second catalytic step.

  13. Severe fluoropyrimidine toxicity due to novel and rare DPYD missense mutations, deletion and genomic amplification affecting DPD activity and mRNA splicing

    DEFF Research Database (Denmark)

    van Kuilenburg, André B P; Meijer, Judith; Maurer, Dirk

    2017-01-01

    Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-fluorouracil (5FU). Genetic variations in DPD have emerged as predictive risk factors for severe fluoropyrimidine toxicity. Here, we report novel and rare genetic variants underlying DPD deficiency...... in 9 cancer patients presenting with severe fluoropyrimidine-associated toxicity. All patients possessed a strongly reduced DPD activity, ranging from 9 to 53% of controls. Analysis of the DPD gene (DPYD) showed the presence of 21 variable sites including 4 novel and 4 very rare aberrations: 3 missense...... of exon 4 immediately upstream of the mutated splice-donor site in the process of DPD pre-mRNA splicing. A lethal toxicity in two DPD patients suggests that fluoropyrimidines combined with other therapies such as radiotherapy might be particularly toxic for DPD deficient patients. Our study advocates...

  14. Analysis and prediction of gene splice sites in four Aspergillus genomes

    DEFF Research Database (Denmark)

    Wang, Kai; Ussery, David; Brunak, Søren

    2009-01-01

    Several Aspergillus fungal genomic sequences have been published, with many more in progress. Obviously, it is essential to have high-quality, consistently annotated sets of proteins from each of the genomes, in order to make meaningful comparisons. We have developed a dedicated, publicly available......, splice site prediction program called NetAspGene, for the genus Aspergillus. Gene sequences from Aspergillus fumigatus, the most common mould pathogen, were used to build and test our model. Compared to many animals and plants, Aspergillus contains smaller introns; thus we have applied a larger window...... better splice site prediction than other available tools. NetAspGene will be very helpful for the study in Aspergillus splice sites and especially in alternative splicing. A webpage for NetAspGene is publicly available at http://www.cbs.dtu.dk/services/NetAspGene....

  15. Method of predicting Splice Sites based on signal interactions

    Directory of Open Access Journals (Sweden)

    Deogun Jitender S

    2006-04-01

    Full Text Available Abstract Background Predicting and proper ranking of canonical splice sites (SSs is a challenging problem in bioinformatics and machine learning communities. Any progress in SSs recognition will lead to better understanding of splicing mechanism. We introduce several new approaches of combining a priori knowledge for improved SS detection. First, we design our new Bayesian SS sensor based on oligonucleotide counting. To further enhance prediction quality, we applied our new de novo motif detection tool MHMMotif to intronic ends and exons. We combine elements found with sensor information using Naive Bayesian Network, as implemented in our new tool SpliceScan. Results According to our tests, the Bayesian sensor outperforms the contemporary Maximum Entropy sensor for 5' SS detection. We report a number of putative Exonic (ESE and Intronic (ISE Splicing Enhancers found by MHMMotif tool. T-test statistics on mouse/rat intronic alignments indicates, that detected elements are on average more conserved as compared to other oligos, which supports our assumption of their functional importance. The tool has been shown to outperform the SpliceView, GeneSplicer, NNSplice, Genio and NetUTR tools for the test set of human genes. SpliceScan outperforms all contemporary ab initio gene structural prediction tools on the set of 5' UTR gene fragments. Conclusion Designed methods have many attractive properties, compared to existing approaches. Bayesian sensor, MHMMotif program and SpliceScan tools are freely available on our web site. Reviewers This article was reviewed by Manyuan Long, Arcady Mushegian and Mikhail Gelfand.

  16. Large exon size does not limit splicing in vivo.

    Science.gov (United States)

    Chen, I T; Chasin, L A

    1994-03-01

    Exon sizes in vertebrate genes are, with a few exceptions, limited to less than 300 bases. It has been proposed that this limitation may derive from the exon definition model of splice site recognition. In this model, a downstream donor site enhances splicing at the upstream acceptor site of the same exon. This enhancement may require contact between factors bound to each end of the exon; an exon size limitation would promote such contact. To test the idea that proximity was required for exon definition, we inserted random DNA fragments from Escherichia coli into a central exon in a three-exon dihydrofolate reductase minigene and tested whether the expanded exons were efficiently spliced. DNA from a plasmid library of expanded minigenes was used to transfect a CHO cell deletion mutant lacking the dhfr locus. PCR analysis of DNA isolated from the pooled stable cotransfectant populations displayed a range of DNA insert sizes from 50 to 1,500 nucleotides. A parallel analysis of the RNA from this population by reverse transcription followed by PCR showed a similar size distribution. Central exons as large as 1,400 bases could be spliced into mRNA. We also tested individual plasmid clones containing exon inserts of defined sizes. The largest exon included in mRNA was 1,200 bases in length, well above the 300-base limit implied by the survey of naturally occurring exons. We conclude that a limitation in exon size is not part of the exon definition mechanism.

  17. On splice site prediction using weight array models: a comparison of smoothing techniques

    International Nuclear Information System (INIS)

    Taher, Leila; Meinicke, Peter; Morgenstern, Burkhard

    2007-01-01

    In most eukaryotic genes, protein-coding exons are separated by non-coding introns which are removed from the primary transcript by a process called 'splicing'. The positions where introns are cut and exons are spliced together are called 'splice sites'. Thus, computational prediction of splice sites is crucial for gene finding in eukaryotes. Weight array models are a powerful probabilistic approach to splice site detection. Parameters for these models are usually derived from m-tuple frequencies in trusted training data and subsequently smoothed to avoid zero probabilities. In this study we compare three different ways of parameter estimation for m-tuple frequencies, namely (a) non-smoothed probability estimation, (b) standard pseudo counts and (c) a Gaussian smoothing procedure that we recently developed

  18. The emerging role of alternative splicing in senescence and aging.

    Science.gov (United States)

    Deschênes, Mathieu; Chabot, Benoit

    2017-10-01

    Deregulation of precursor mRNA splicing is associated with many illnesses and has been linked to age-related chronic diseases. Here we review recent progress documenting how defects in the machinery that performs intron removal and controls splice site selection contribute to cellular senescence and organismal aging. We discuss the functional association linking p53, IGF-1, SIRT1, and ING-1 splice variants with senescence and aging, and review a selection of splicing defects occurring in accelerated aging (progeria), vascular aging, and Alzheimer's disease. Overall, it is becoming increasingly clear that changes in the activity of splicing factors and in the production of key splice variants can impact cellular senescence and the aging phenotype. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Human intronless genes: Functional groups, associated diseases, evolution, and mRNA processing in absence of splicing

    International Nuclear Information System (INIS)

    Grzybowska, Ewa A.

    2012-01-01

    Highlights: ► Functional characteristics of intronless genes (IGs). ► Diseases associated with IGs. ► Origin and evolution of IGs. ► mRNA processing without splicing. -- Abstract: Intronless genes (IGs) constitute approximately 3% of the human genome. Human IGs are essentially different in evolution and functionality from the IGs of unicellular eukaryotes, which represent the majority in their genomes. Functional analysis of IGs has revealed a massive over-representation of signal transduction genes and genes encoding regulatory proteins important for growth, proliferation, and development. IGs also often display tissue-specific expression, usually in the nervous system and testis. These characteristics translate into IG-associated diseases, mainly neuropathies, developmental disorders, and cancer. IGs represent recent additions to the genome, created mostly by retroposition of processed mRNAs with retained functionality. Processing, nuclear export, and translation of these mRNAs should be hampered dramatically by the lack of splice factors, which normally tightly cover mature transcripts and govern their fate. However, natural IGs manage to maintain satisfactory expression levels. Different mechanisms by which IGs solve the problem of mRNA processing and nuclear export are discussed here, along with their possible impact on reporter studies.

  20. Mutations in the human adenosine deaminase gene that affect protein structure and RNA splicing

    International Nuclear Information System (INIS)

    Akeson, A.L.; Wiginton, D.A.; States, C.J.; Perme, C.M.; Dusing, M.R.; Hutton, J.J.

    1987-01-01

    Adenosine deaminase deficiency is one cause of the genetic disease severe combined immunodeficiency. To identify mutations responsible for ADA deficiency, the authors synthesized cDNAs to ADA mRNAs from two cell lines, GM2756 and GM2825A, derived from ADA-deficient immunodeficient patients. Sequence analysis of GM2756 cDNA clones revealed a different point mutation in each allele that causes amino acid changes of alanine to valine and arginine to histidine. One allele of GM2825A also has a point mutation that causes an alanine to valine substitution. The other allele of GM2825A was found to produce an mRNA in which exon 4 had been spliced out but had no other detrimental mutations. S1 nuclease mapping of GM2825A mRNA showed equal abundance of the full-length ADA mRNA and the ADA mRNA that was missing exon 4. Several of the ADA cDNA clones extended 5' of the major initiation start site, indicating multiple start sites for ADA transcription. The point mutations in GM2756 and GM2825A and the absence of exon 4 in GM2825A appear to be directly responsible for the ADA deficiency. Comparison of a number of normal and mutant ADA cDNA sequences showed a number of changes in the third base of codons. These change do not affect the amino acid sequence. Analyses of ADA cDNAs from different cell lines detected aberrant RNA species that either included intron 7 or excluded exon 7. Their presence is a result of aberrant splicing of pre-mRNAs and is not related to mutations that cause ADA deficiency

  1. Suppression of HPV-16 late L1 5′-splice site SD3632 by binding of hnRNP D proteins and hnRNP A2/B1 to upstream AUAGUA RNA motifs

    Science.gov (United States)

    Li, Xiaoze; Johansson, Cecilia; Glahder, Jacob; Mossberg, Ann-Kristin; Schwartz, Stefan

    2013-01-01

    Human papillomavirus type 16 (HPV-16) 5′-splice site SD3632 is used exclusively to produce late L1 mRNAs. We identified a 34-nt splicing inhibitory element located immediately upstream of HPV-16 late 5′-splice site SD3632. Two AUAGUA motifs located in these 34 nt inhibited SD3632. Two nucleotide substitutions in each of the HPV-16 specific AUAGUA motifs alleviated splicing inhibition and induced late L1 mRNA production from episomal forms of the HPV-16 genome in primary human keratinocytes. The AUAGUA motifs bind specifically not only to the heterogeneous nuclear RNP (hnRNP) D family of RNA-binding proteins including hnRNP D/AUF, hnRNP DL and hnRNP AB but also to hnRNP A2/B1. Knock-down of these proteins induced HPV-16 late L1 mRNA expression, and overexpression of hnRNP A2/B1, hnRNP AB, hnRNP DL and the two hnRNP D isoforms hnRNP D37 and hnRNP D40 further suppressed L1 mRNA expression. This inhibition may allow HPV-16 to hide from the immune system and establish long-term persistent infections with enhanced risk at progressing to cancer. There is an inverse correlation between expression of hnRNP D proteins and hnRNP A2/B1 and HPV-16 L1 production in the cervical epithelium, as well as in cervical cancer, supporting the conclusion that hnRNP D proteins and A2/B1 inhibit HPV-16 L1 mRNA production. PMID:24013563

  2. Thorough in silico and in vitro cDNA analysis of 21 putative BRCA1 and BRCA2 splice variants and a complex tandem duplication in BRCA2 allowing the identification of activated cryptic splice donor sites in BRCA2 exon 11.

    Science.gov (United States)

    Baert, Annelot; Machackova, Eva; Coene, Ilse; Cremin, Carol; Turner, Kristin; Portigal-Todd, Cheryl; Asrat, Marie Jill; Nuk, Jennifer; Mindlin, Allison; Young, Sean; MacMillan, Andree; Van Maerken, Tom; Trbusek, Martin; McKinnon, Wendy; Wood, Marie E; Foulkes, William D; Santamariña, Marta; de la Hoya, Miguel; Foretova, Lenka; Poppe, Bruce; Vral, Anne; Rosseel, Toon; De Leeneer, Kim; Vega, Ana; Claes, Kathleen B M

    2018-04-01

    For 21 putative BRCA1 and BRCA2 splice site variants, the concordance between mRNA analysis and predictions by in silico programs was evaluated. Aberrant splicing was confirmed for 12 alterations. In silico prediction tools were helpful to determine for which variants cDNA analysis is warranted, however, predictions for variants in the Cartegni consensus region but outside the canonical sites, were less reliable. Learning algorithms like Adaboost and Random Forest outperformed the classical tools. Further validations are warranted prior to implementation of these novel tools in clinical settings. Additionally, we report here for the first time activated cryptic donor sites in the large exon 11 of BRCA2 by evaluating the effect at the cDNA level of a novel tandem duplication (5' breakpoint in intron 4; 3' breakpoint in exon 11) and of a variant disrupting the splice donor site of exon 11 (c.6841+1G > C). Additional sites were predicted, but not activated. These sites warrant further research to increase our knowledge on cis and trans acting factors involved in the conservation of correct transcription of this large exon. This may contribute to adequate design of ASOs (antisense oligonucleotides), an emerging therapy to render cancer cells sensitive to PARP inhibitor and platinum therapies. © 2017 Wiley Periodicals, Inc.

  3. A short in-frame deletion in NTRK1 tyrosine kinase domain caused by a novel splice site mutation in a patient with congenital insensitivity to pain with anhidrosis

    Directory of Open Access Journals (Sweden)

    Arístegui Javier

    2011-06-01

    Full Text Available Abstract Background Congenital insensitivity to pain with anhidrosis (CIPA is a rare autosomal recessive genetic disease characterized by the lack of reaction to noxious stimuli and anhidrosis. It is caused by mutations in the NTRK1 gene, which encodes the high affinity tyrosine kinase receptor I for Neurotrophic Growth Factor (NGF. Case Presentation We present the case of a female patient diagnosed with CIPA at the age of 8 months. The patient is currently 6 years old and her psychomotor development conforms to her age (RMN, SPECT and psychological study are in the range of normality. PCR amplification of DNA, followed by direct sequencing, was used to investigate the presence of NTRK1 gene mutations. Reverse transcriptase (RT-PCR amplification of RNA, followed by cloning and sequencing of isolated RT-PCR products was used to characterize the effect of the mutations on NTRK1 mRNA splicing. The clinical diagnosis of CIPA was confirmed by the detection of two splice-site mutations in NTRK1, revealing that the patient was a compound heterozygote at this gene. One of these alterations, c.574+1G>A, is located at the splice donor site of intron 5. We also found a second mutation, c.2206-2 A>G, not previously reported in the literature, which is located at the splice acceptor site of intron 16. Each parent was confirmed to be a carrier for one of the mutations by DNA sequencing analysis. It has been proposed that the c.574+1G>A mutation would cause exon 5 skipping during NTRK1 mRNA splicing. We could confirm this prediction and, more importantly, we provide evidence that the novel c.2206-2A>G mutation also disrupts normal NTRK1 splicing, leading to the use of an alternative splice acceptor site within exon 17. As a consequence, this mutation would result in the production of a mutant NTRK1 protein with a seven aminoacid in-frame deletion in its tyrosine kinase domain. Conclusions We present the first description of a CIPA-associated NTRK1 mutation

  4. Nuclear pre-mRNA processing in plants

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.S.N. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Biology and Program in Molecular Plant Biology; Golovkin, M. (eds.) [Thomas Jefferson Univ., Philadelphia, PA (United States). Dept. of Microbiology

    2008-07-01

    This volume of CTMI, entitled Nuclear premRNA Processing in Plants, with 16 chapters from leading scientists in this area, summarizes recent advances in nuclear pre-mRNA processing and its role in plant growth and development. It provides researchers in the field, as well as those in related areas, with an up-to-date and comprehensive, yet concise, overview of the current status and future potential of this research in understanding plant biology. The first four chapters focus on spliceosome composition, genome-wide alternative splicing, and splice site requirements for U1 and U12 introns using computational and empirical approaches. Analysis of sequenced plant genomes has revealed that 80% of all protein-coding nuclear genes contain one or more introns. The lack of an in vitro plant splicing system has made it difficult to identify general and plant-specific components of splicing machinery in plants. The next three chapters focus on serine/arginine-rich (SR) proteins, a family of highly conserved proteins, which are known to play key roles in constitutive and regulated splicing of pre-mRNA and other aspects of RNA metabolism in metazoans. These proteins engage both in RNA binding and protein.protein interactions and function as splicing regulators at multiple stages of spliceosome assembly. This family of proteins has expanded considerably in plants with several plant-specific SR proteins. Several serendipitous discoveries made using forward genetics are indicating that RNA metabolism (alternative splicing, alternative polyadenylation, mRNA transport) plays an important role in many aspects of plant growth and development and in plant responses to biotic and abiotic stresses. The next seven chapters focus on these aspects of RNA metabolism. The plant hormone abscisic acid (ABA) regulates a number of physiological processes during plant growth and development. The next chapter or A.B. Rose discusses the ways introns affect gene expression both positively and

  5. Nuclear pre-mRNA processing in plants

    International Nuclear Information System (INIS)

    Reddy, A.S.N.; Golovkin, M.

    2008-01-01

    This volume of CTMI, entitled Nuclear premRNA Processing in Plants, with 16 chapters from leading scientists in this area, summarizes recent advances in nuclear pre-mRNA processing and its role in plant growth and development. It provides researchers in the field, as well as those in related areas, with an up-to-date and comprehensive, yet concise, overview of the current status and future potential of this research in understanding plant biology. The first four chapters focus on spliceosome composition, genome-wide alternative splicing, and splice site requirements for U1 and U12 introns using computational and empirical approaches. Analysis of sequenced plant genomes has revealed that 80% of all protein-coding nuclear genes contain one or more introns. The lack of an in vitro plant splicing system has made it difficult to identify general and plant-specific components of splicing machinery in plants. The next three chapters focus on serine/arginine-rich (SR) proteins, a family of highly conserved proteins, which are known to play key roles in constitutive and regulated splicing of pre-mRNA and other aspects of RNA metabolism in metazoans. These proteins engage both in RNA binding and protein.protein interactions and function as splicing regulators at multiple stages of spliceosome assembly. This family of proteins has expanded considerably in plants with several plant-specific SR proteins. Several serendipitous discoveries made using forward genetics are indicating that RNA metabolism (alternative splicing, alternative polyadenylation, mRNA transport) plays an important role in many aspects of plant growth and development and in plant responses to biotic and abiotic stresses. The next seven chapters focus on these aspects of RNA metabolism. The plant hormone abscisic acid (ABA) regulates a number of physiological processes during plant growth and development. The next chapter or A.B. Rose discusses the ways introns affect gene expression both positively and

  6. Modification of the Creator recombination system for proteomics applications--improved expression by addition of splice sites.

    Science.gov (United States)

    Colwill, Karen; Wells, Clark D; Elder, Kelly; Goudreault, Marilyn; Hersi, Kadija; Kulkarni, Sarang; Hardy, W Rod; Pawson, Tony; Morin, Gregg B

    2006-03-06

    Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors. To date, we have developed over 20 novel acceptor vectors that employ a variety of promoters and epitope tags commonly employed for proteomics applications and gene function analysis. We also made several enhancements to the donor vectors including addition of different multiple cloning sites to allow shuttling from pre-existing vectors and introduction of the lacZ alpha reporter gene to allow for selection. Importantly, in order to ameliorate any effects on protein expression of the loxP site between a 5' tag and ORF, we introduced a splicing event into our expression vectors. The message produced from the resulting 'Creator Splice' vector undergoes splicing in mammalian systems to remove the loxP site. Upon analysis of our Creator Splice constructs, we discovered that protein expression levels were also significantly increased. The development of new donor and acceptor vectors has increased versatility during the cloning process and made this system compatible with a wider variety of downstream applications. The modifications introduced in our Creator Splice system were designed to remove extraneous sequences due to recombination but also aided in downstream analysis by increasing protein expression levels. As a result, we can now employ epitope tags that are detected less efficiently and reduce our assay scale to allow for higher throughput. The Creator Splice system appears to be an extremely

  7. Sequence, 'subtle' alternative splicing and expression of the CYYR1 (cysteine/tyrosine-rich 1) mRNA in human neuroendocrine tumors

    International Nuclear Information System (INIS)

    Vitale, Lorenza; Coppola, Domenico; Strippoli, Pierluigi; Frabetti, Flavia; Huntsman, Shane A; Canaider, Silvia; Casadei, Raffaella; Lenzi, Luca; Facchin, Federica; Carinci, Paolo; Zannotti, Maria

    2007-01-01

    CYYR1 is a recently identified gene located on human chromosome 21 whose product has no similarity to any known protein and is of unknown function. Analysis of expressed sequence tags (ESTs) have revealed high human CYYR1 expression in cells belonging to the diffuse neuroendocrine system (DNES). These cells may be the origin of neuroendocrine (NE) tumors. The aim of this study was to conduct an initial analysis of sequence, splicing and expression of the CYYR1 mRNA in human NE tumors. The CYYR1 mRNA coding sequence (CDS) was studied in 32 NE tumors by RT-PCR and sequence analysis. A subtle alternative splicing was identified generating two isoforms of CYYR1 mRNA differing in terms of the absence (CAG - isoform, the first described mRNA for CYYR1 locus) or the presence (CAG + isoform) of a CAG codon. When present, this specific codon determines the presence of an alanine residue, at the exon 3/exon 4 junction of the CYYR1 mRNA. The two mRNA isoform amounts were determined by quantitative relative RT-PCR in 29 NE tumors, 2 non-neuroendocrine tumors and 10 normal tissues. A bioinformatic analysis was performed to search for the existence of the two CYYR1 isoforms in other species. The CYYR1 CDS did not show differences compared to the reference sequence in any of the samples, with the exception of an NE tumor arising in the neck region. Sequence analysis of this tumor identified a change in the CDS 333 position (T instead of C), leading to the amino acid mutation P111S. NE tumor samples showed no significant difference in either CYYR1 CAG - or CAG + isoform expression compared to control tissues. CYYR1 CAG - isoform was significantly more expressed than CAG + isoform in NE tumors as well as in control samples investigated. Bioinformatic analysis revealed that only the genomic sequence of Pan troglodytes CYYR1 is consistent with the possible existence of the two described mRNA isoforms. A new 'subtle' splicing isoform (CAG + ) of CYYR1 mRNA, the sequence and

  8. The peculiarities of large intron splicing in animals.

    Directory of Open Access Journals (Sweden)

    Samuel Shepard

    Full Text Available In mammals a considerable 92% of genes contain introns, with hundreds and hundreds of these introns reaching the incredible size of over 50,000 nucleotides. These "large introns" must be spliced out of the pre-mRNA in a timely fashion, which involves bringing together distant 5' and 3' acceptor and donor splice sites. In invertebrates, especially Drosophila, it has been shown that larger introns can be spliced efficiently through a process known as recursive splicing-a consecutive splicing from the 5'-end at a series of combined donor-acceptor splice sites called RP-sites. Using a computational analysis of the genomic sequences, we show that vertebrates lack the proper enrichment of RP-sites in their large introns, and, therefore, require some other method to aid splicing. We analyzed over 15,000 non-redundant, large introns from six mammals, 1,600 from chicken and zebrafish, and 560 non-redundant large introns from five invertebrates. Our bioinformatic investigation demonstrates that, unlike the studied invertebrates, the studied vertebrate genomes contain consistently abundant amounts of direct and complementary strand interspersed repetitive elements (mainly SINEs and LINEs that may form stems with each other in large introns. This examination showed that predicted stems are indeed abundant and stable in the large introns of mammals. We hypothesize that such stems with long loops within large introns allow intron splice sites to find each other more quickly by folding the intronic RNA upon itself at smaller intervals and, thus, reducing the distance between donor and acceptor sites.

  9. Supraspliceosomes at Defined Functional States Portray the Pre-Assembled Nature of the Pre-mRNA Processing Machine in the Cell Nucleus

    Directory of Open Access Journals (Sweden)

    Hani Kotzer-Nevo

    2014-06-01

    Full Text Available When isolated from mammalian cell nuclei, all nuclear pre-mRNAs are packaged in multi-subunit large ribonucleoprotein complexes—supraspliceosomes—composed of four native spliceosomes interconnected by the pre-mRNA. Supraspliceosomes contain all five spliceosomal U snRNPs, together with other splicing factors, and are functional in splicing. Supraspliceosomes studied thus far represent the steady-state population of nuclear pre-mRNAs that were isolated at different stages of the splicing reaction. To analyze specific splicing complexes, here, we affinity purified Pseudomonas aeruginosa phage 7 (PP7-tagged splicing complexes assembled in vivo on Adenovirus Major Late (AdML transcripts at specific functional stages, and characterized them using molecular techniques including mass spectrometry. First, we show that these affinity purified splicing complexes assembled on PP7-tagged AdML mRNA or on PP7-tagged AdML pre-mRNA are assembled in supraspliceosomes. Second, similar to the general population of supraspliceosomes, these defined supraspliceosomes populations are assembled with all five U snRNPs at all splicing stages. This study shows that dynamic changes in base-pairing interactions of U snRNA:U snRNA and U snRNA:pre-mRNA that occur in vivo during the splicing reaction do not require changes in U snRNP composition of the supraspliceosome. Furthermore, there is no need to reassemble a native spliceosome for the splicing of each intron, and rearrangements of the interactions will suffice.

  10. Autosomal dominant pseudohypoaldosteronism type 1 with a novel splice site mutation in MR gene

    Directory of Open Access Journals (Sweden)

    Kaito Hiroshi

    2009-11-01

    Full Text Available Abstract Background Autosomal dominant pseudohypoaldosteronism type 1 (PHA1 is a rare inherited condition that is characterized by renal resistance to aldosterone as well as salt wasting, hyperkalemia, and metabolic acidosis. Renal PHA1 is caused by mutations of the human mineralcorticoid receptor gene (MR, but it is a matter of debate whether MR mutations cause mineralcorticoid resistance via haploinsufficiency or dominant negative mechanism. It was previously reported that in a case with nonsense mutation the mutant mRNA was absent in lymphocytes because of nonsense mediated mRNA decay (NMD and therefore postulated that haploinsufficiency alone can give rise to the PHA1 phenotype in patients with truncated mutations. Methods and Results We conducted genomic DNA analysis and mRNA analysis for familial PHA1 patients extracted from lymphocytes and urinary sediments and could detect one novel splice site mutation which leads to exon skipping and frame shift result in premature termination at the transcript level. The mRNA analysis showed evidence of wild type and exon-skipped RT-PCR products. Conclusion mRNA analysis have been rarely conducted for PHA1 because kidney tissues are unavailable for this disease. However, we conducted RT-PCR analysis using mRNA extracted from urinary sediments. We could demonstrate that NMD does not fully function in kidney cells and that haploinsufficiency due to NMD with premature termination is not sufficient to give rise to the PHA1 phenotype at least in this mutation of our patient. Additional studies including mRNA analysis will be needed to identify the exact mechanism of the phenotype of PHA.

  11. Characterization of a novel splicing variant in the RAPTOR gene

    International Nuclear Information System (INIS)

    Sun Chang; Southard, Catherine; Di Rienzo, Anna

    2009-01-01

    The mammalian target of rapamycin (mTOR) plays an essential role in the regulation of cell growth, proliferation and apoptosis. Raptor, the regulatory associated protein of mTOR, is an important member in this signaling pathway. In the present report, we identified and characterized a novel splicing variant of this gene, RAPTOR v 2, in which exons 14-17, 474 bp in total, are omitted from the mRNA. This deletion does not change the open reading frame, but causes a nearly complete absence of HEAT repeats, which were shown to be involved in the binding of mTOR substrates. Real time PCR performed on 48 different human tissues demonstrated the ubiquitous presence of this splice variant. Quantification of mRNA levels in lymphoblastoid cell lines (LCL) from 56 unrelated HapMap individuals revealed that the expression of this splicing form is quite variable. One synonymous SNP, rs2289759 in exon 14, was predicted by ESEfinder to cause a significant gain/loss of SRp55 and/or SF2/ASF binding sites, and thus potentially influence splicing. This prediction was confirmed by linear regression analysis between the ratio of RAPTOR v 2 to total RAPTOR mRNA levels and the SNP genotype in the above 56 individuals (r = 0.281 and P = 0.036). Moreover, the functional evaluation indicated that this splicing isoform is expected to retain the ability to bind mTOR, but is unlikely to bind mTOR substrates, hence affecting signal transduction and further cell proliferation

  12. Alternative Splicing in Neurogenesis and Brain Development.

    Science.gov (United States)

    Su, Chun-Hao; D, Dhananjaya; Tarn, Woan-Yuh

    2018-01-01

    Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.

  13. Alternative Splicing in Neurogenesis and Brain Development

    Directory of Open Access Journals (Sweden)

    Chun-Hao Su

    2018-02-01

    Full Text Available Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.

  14. Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays

    Directory of Open Access Journals (Sweden)

    Nixon Tamara J

    2008-05-01

    Full Text Available Abstract Background Tumor-predominant splice isoforms were identified during comparative in silico sequence analysis of EST clones, suggesting that global aberrant alternative pre-mRNA splicing may be an epigenetic phenomenon in cancer. We used an exon expression array to perform an objective, genome-wide survey of glioma-specific splicing in 24 GBM and 12 nontumor brain samples. Validation studies were performed using RT-PCR on glioma cell lines, patient tumor and nontumor brain samples. Results In total, we confirmed 14 genes with glioma-specific splicing; seven were novel events identified by the exon expression array (A2BP1, BCAS1, CACNA1G, CLTA, KCNC2, SNCB, and TPD52L2. Our data indicate that large changes (> 5-fold in alternative splicing are infrequent in gliomagenesis ( Conclusion While we observed some tumor-specific alternative splicing, the number of genes showing exclusive tumor-specific isoforms was on the order of tens, rather than the hundreds suggested previously by in silico mining. Given the important role of alternative splicing in neural differentiation, there may be selective pressure to maintain a majority of splicing events in order to retain glial-like characteristics of the tumor cells.

  15. A novel CDX2 isoform regulates alternative splicing.

    Directory of Open Access Journals (Sweden)

    Matthew E Witek

    Full Text Available Gene expression is a dynamic and coordinated process coupling transcription with pre-mRNA processing. This regulation enables tissue-specific transcription factors to induce expression of specific transcripts that are subsequently amplified by alternative splicing allowing for increased proteome complexity and functional diversity. The intestine-specific transcription factor CDX2 regulates development and maintenance of the intestinal epithelium by inducing expression of genes characteristic of the mature enterocyte phenotype. Here, sequence analysis of CDX2 mRNA from colonic mucosa-derived tissues revealed an alternatively spliced transcript (CDX2/AS that encodes a protein with a truncated homeodomain and a novel carboxy-terminal domain enriched in serine and arginine residues (RS domain. CDX2 and CDX2/AS exhibited distinct nuclear expression patterns with minimal areas of co-localization. CDX2/AS did not activate the CDX2-dependent promoter of guanylyl cyclase C nor inhibit transcriptional activity of CDX2. Unlike CDX2, CDX2/AS co-localized with the putative splicing factors ASF/SF2 and SC35. CDX2/AS altered splicing patterns of CD44v5 and Tra2-β1 minigenes in Lovo colon cancer cells independent of CDX2 expression. These data demonstrate unique dual functions of the CDX2 gene enabling it to regulate gene expression through both transcription (CDX2 and pre-mRNA processing (CDX2/AS.

  16. Poliovirus 2A protease triggers a selective nucleo-cytoplasmic redistribution of splicing factors to regulate alternative pre-mRNA splicing.

    Directory of Open Access Journals (Sweden)

    Enrique Álvarez

    Full Text Available Poliovirus protease 2A (2A(pro obstructs host gene expression by reprogramming transcriptional and post-transcriptional regulatory events during infection. Here we demonstrate that expression of 2A(pro induces a selective nucleo-cytoplasm translocation of several important RNA binding proteins and splicing factors. Subcellular fractionation studies, together with immunofluorescence microscopy revealed an asymmetric distribution of HuR and TIA1/TIAR in 2A(pro expressing cells, which modulates splicing of the human Fas exon 6. Consistent with this result, knockdown of HuR or overexpression of TIA1/TIAR, leads to Fas exon 6 inclusion in 2A(pro-expressing cells. Therefore, poliovirus 2A(pro can target alternative pre-mRNA splicing by regulating protein shuttling between the nucleus and the cytoplasm.

  17. Modification of the Creator recombination system for proteomics applications – improved expression by addition of splice sites

    Science.gov (United States)

    Colwill, Karen; Wells, Clark D; Elder, Kelly; Goudreault, Marilyn; Hersi, Kadija; Kulkarni, Sarang; Hardy, W Rod; Pawson, Tony; Morin, Gregg B

    2006-01-01

    Background Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors. Results To date, we have developed over 20 novel acceptor vectors that employ a variety of promoters and epitope tags commonly employed for proteomics applications and gene function analysis. We also made several enhancements to the donor vectors including addition of different multiple cloning sites to allow shuttling from pre-existing vectors and introduction of the lacZ alpha reporter gene to allow for selection. Importantly, in order to ameliorate any effects on protein expression of the loxP site between a 5' tag and ORF, we introduced a splicing event into our expression vectors. The message produced from the resulting 'Creator Splice' vector undergoes splicing in mammalian systems to remove the loxP site. Upon analysis of our Creator Splice constructs, we discovered that protein expression levels were also significantly increased. Conclusion The development of new donor and acceptor vectors has increased versatility during the cloning process and made this system compatible with a wider variety of downstream applications. The modifications introduced in our Creator Splice system were designed to remove extraneous sequences due to recombination but also aided in downstream analysis by increasing protein expression levels. As a result, we can now employ epitope tags that are detected less efficiently and reduce our assay scale to allow for higher throughput. The Creator Splice

  18. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    Science.gov (United States)

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends. © 2016 Müller-McNicoll et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Resveratrol, by modulating RNA processing factor levels, can influence the alternative splicing of pre-mRNAs.

    Science.gov (United States)

    Markus, M Andrea; Marques, Francine Z; Morris, Brian J

    2011-01-01

    Alternative pre-mRNA splicing defects can contribute to, or result from, various diseases, including cancer. Aberrant mRNAs, splicing factors and other RNA processing factors have therefore become targets for new therapeutic interventions. Here we report that the natural polyphenol resveratrol can modulate alternative splicing in a target-specific manner. We transfected minigenes of several alternatively spliceable primary mRNAs into HEK293 cells in the presence or absence of 1, 5, 20 and 50 µM resveratrol and measured exon levels by semi-quantitative PCR after separation by agarose gel electrophoresis. We found that 20 µg/ml and 50 µg/ml of resveratrol affected exon inclusion of SRp20 and SMN2 pre-mRNAs, but not CD44v5 or tau pre-mRNAs. By Western blotting and immunofluorescence we showed that this effect may be due to the ability of resveratrol to change the protein level but not the localization of several RNA processing factors. The processing factors that increased significantly were ASF/SF2, hnRNPA1 and HuR, but resveratrol did not change the levels of RBM4, PTBP1 and U2AF35. By means of siRNA-mediated knockdown we depleted cells of SIRT1, regarded as a major target of resveratrol, and showed that the effect on splicing was not dependent on SIRT1. Our results suggest that resveratrol might be an attractive small molecule to treat diseases in which aberrant splicing has been implicated, and justify more extensive research on the effects of resveratrol on the splicing machinery.

  20. CYP3A5 mRNA degradation by nonsense-mediated mRNA decay.

    Science.gov (United States)

    Busi, Florent; Cresteil, Thierry

    2005-09-01

    The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.

  1. Usher syndrome type 1 due to missense mutations on both CDH23 alleles: investigation of mRNA splicing.

    Science.gov (United States)

    Becirovic, Elvir; Ebermann, Inga; Nagy, Ditta; Zrenner, Eberhart; Seeliger, Mathias Wolfgang; Bolz, Hanno Jörn

    2008-03-01

    Usher syndrome (USH) is an autosomal recessive condition characterized by sensorineural hearing loss, vestibular dysfunction, and visual impairment due to retinitis pigmentosa. Truncating mutations in the cadherin-23 gene (CDH23) result in Usher syndrome type 1D (USH1D), whereas missense mutations affecting strongly conserved motifs of the CDH23 protein cause non-syndromic deafness (DFNB12). Four missense mutations constitute an exception from this genotype-phenotype correlation: they have been described in USH1 patients in homozygous state. Using a minigene assay, we have investigated these changes (c.1450G>C, p.A484P; c.3625A>G, p.T1209A; c.4520G>A, p.R1507Q; and c.5237G>A, p.R1746Q) for a possible impact on mRNA splicing which could explain the syndromic phenotype. While in silico analysis suggested impairment of splicing in all four cases, we found aberrant splicing for only one mutation, p.R1746Q. However, splicing was normal in case of p.A484P, p.T1209A and p.R1507Q. These three latter CDH23 missense mutations could interfere with functions of both, the auditory and the visual system. Alternatively, they could represent rare non-pathogenic polymorphisms.

  2. HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Directory of Open Access Journals (Sweden)

    Purcell Damian FJ

    2008-02-01

    Full Text Available Abstract Background Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1 differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2 control of HIV-1 alternative splicing, which is essential for optimal viral replication. Results Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins and inhibitory factors (members of the hnRNP family. While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. Conclusion While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative

  3. Modulation of splicing of the preceding intron by antisense oligonucleotide complementary to intra-exon sequence deleted in dystrophin Kobe

    Energy Technology Data Exchange (ETDEWEB)

    Takeshima, Y.; Matuso, M.; Sakamoto, H.; Nishio, H. [Kobe Univ. School of Medicine and Science (Japan)

    1994-09-01

    Molecular analysis of dystrophin Kobe showed that exon 19 of the dystrophin gene bearing a 52 bp deletion was skipped during splicing, although the known consensus sequences at the 5{prime} and 3{prime} splice site of exon 19 were maintained. These data suggest that the deleted sequence of exon 19 may function as a cis-acting factor for exact splicing for the upstream intron. To investigate this potential role, an in vitro splicing system using dystrophin precursors was established. A two-exon precursor containing exon 18, truncated intron 18, and exon 19 was accurately spliced. However, splicing of intron 18 was dramatically inhibited when wild exon 19 was replaced with mutated exon 19. Even though the length of exon 19 was restored to normal by replacing the deleted sequence with other sequence, splicing of intron 18 was not fully reactivated. Characteristically, splicing of intron 18 was inactivated more markedly when the replaced sequence contained less polypurine stretches. These data suggested that modification of the exon sequence would result in a splicing abnormality. Antisense 31 mer 2`-O-methyl ribonucleotide was targeted against 5{prime} end of deleted region of exon 19 to modulate splicing of the mRNA precursor. Splicing of intron 18 was inhibited in a dose- and time-dependent manner. This is the first in vitro evidence to show splicing of dystrophin pre-mRNA can be managed by antisense oligonucleotides. These experiments represent an approach in which antisense oligonucleotides are used to restore the function of a defective dystrophin gene in Duchenne muscular dystrophy by inducing skipping of certain exons during splicing.

  4. Resveratrol, by modulating RNA processing factor levels, can influence the alternative splicing of pre-mRNAs.

    Directory of Open Access Journals (Sweden)

    M Andrea Markus

    Full Text Available Alternative pre-mRNA splicing defects can contribute to, or result from, various diseases, including cancer. Aberrant mRNAs, splicing factors and other RNA processing factors have therefore become targets for new therapeutic interventions. Here we report that the natural polyphenol resveratrol can modulate alternative splicing in a target-specific manner. We transfected minigenes of several alternatively spliceable primary mRNAs into HEK293 cells in the presence or absence of 1, 5, 20 and 50 µM resveratrol and measured exon levels by semi-quantitative PCR after separation by agarose gel electrophoresis. We found that 20 µg/ml and 50 µg/ml of resveratrol affected exon inclusion of SRp20 and SMN2 pre-mRNAs, but not CD44v5 or tau pre-mRNAs. By Western blotting and immunofluorescence we showed that this effect may be due to the ability of resveratrol to change the protein level but not the localization of several RNA processing factors. The processing factors that increased significantly were ASF/SF2, hnRNPA1 and HuR, but resveratrol did not change the levels of RBM4, PTBP1 and U2AF35. By means of siRNA-mediated knockdown we depleted cells of SIRT1, regarded as a major target of resveratrol, and showed that the effect on splicing was not dependent on SIRT1. Our results suggest that resveratrol might be an attractive small molecule to treat diseases in which aberrant splicing has been implicated, and justify more extensive research on the effects of resveratrol on the splicing machinery.

  5. Novel compound heterozygous Thyroglobulin mutations c.745+1G>A/c.7036+2T>A associated with congenital goiter and hypothyroidism in a Vietnamese family. Identification of a new cryptic 5' splice site in the exon 6.

    Science.gov (United States)

    Citterio, Cintia E; Morales, Cecilia M; Bouhours-Nouet, Natacha; Machiavelli, Gloria A; Bueno, Elena; Gatelais, Frédérique; Coutant, Regis; González-Sarmiento, Rogelio; Rivolta, Carina M; Targovnik, Héctor M

    2015-03-15

    Several patients were identified with dyshormonogenesis caused by mutations in the thyroglobulin (TG) gene. These defects are inherited in an autosomal recessive manner and affected individuals are either homozygous or compound heterozygous for the mutations. The aim of the present study was to identify new TG mutations in a patient of Vietnamese origin affected by congenital hypothyroidism, goiter and low levels of serum TG. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the maternal mutation consists of a novel c.745+1G>A (g.IVS6 + 1G>A), whereas the hypothetical paternal mutation consists of a novel c.7036+2T>A (g.IVS40 + 2T>A). The father was not available for segregation analysis. Ex-vivo splicing assays and subsequent RT-PCR analyses were performed on mRNA isolated from the eukaryotic-cells transfected with normal and mutant expression vectors. Minigene analysis of the c.745+1G>A mutant showed that the exon 6 is skipped during pre-mRNA splicing or partially included by use of a cryptic 5' splice site located to 55 nucleotides upstream of the authentic exon 6/intron 6 junction site. The functional analysis of c.7036+2T>A mutation showed a complete skipping of exon 40. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool NNSplice, Fsplice, SPL, SPLM and MaxEntScan programs were investigated and evaluated in relation with the experimental evidence. These analyses predicted that both mutant alleles would result in the abolition of the authentic splice donor sites. The c.745+1G>A mutation originates two putative truncated proteins of 200 and 1142 amino acids, whereas c.7036+2T>A mutation results in a putative truncated protein of 2277 amino acids. In conclusion, we show that the c.745+1G>A mutation promotes the activation of a new cryptic donor splice site in the exon 6 of the TG gene. The functional consequences of these mutations could be structural changes in the protein

  6. Hereditary cancer genes are highly susceptible to splicing mutations

    Science.gov (United States)

    Soemedi, Rachel; Maguire, Samantha; Murray, Michael F.; Monaghan, Sean F.

    2018-01-01

    Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5′ and 3′ splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36%) of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing. PMID:29505604

  7. Hereditary cancer genes are highly susceptible to splicing mutations.

    Directory of Open Access Journals (Sweden)

    Christy L Rhine

    2018-03-01

    Full Text Available Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5' and 3' splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77% of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36% of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing.

  8. Single Molecule Cluster Analysis Identifies Signature Dynamic Conformations along the Splicing Pathway

    Science.gov (United States)

    Blanco, Mario R.; Martin, Joshua S.; Kahlscheuer, Matthew L.; Krishnan, Ramya; Abelson, John; Laederach, Alain; Walter, Nils G.

    2016-01-01

    The spliceosome is the dynamic RNA-protein machine responsible for faithfully splicing introns from precursor messenger RNAs (pre-mRNAs). Many of the dynamic processes required for the proper assembly, catalytic activation, and disassembly of the spliceosome as it acts on its pre-mRNA substrate remain poorly understood, a challenge that persists for many biomolecular machines. Here, we developed a fluorescence-based Single Molecule Cluster Analysis (SiMCAn) tool to dissect the manifold conformational dynamics of a pre-mRNA through the splicing cycle. By clustering common dynamic behaviors derived from selectively blocked splicing reactions, SiMCAn was able to identify signature conformations and dynamic behaviors of multiple ATP-dependent intermediates. In addition, it identified a conformation adopted late in splicing by a 3′ splice site mutant, invoking a mechanism for substrate proofreading. SiMCAn presents a novel framework for interpreting complex single molecule behaviors that should prove widely useful for the comprehensive analysis of a plethora of dynamic cellular machines. PMID:26414013

  9. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma.

    Directory of Open Access Journals (Sweden)

    Justina McEvoy

    Full Text Available Retinoblastoma is a childhood cancer of the developing retina that begins in utero and is diagnosed in the first years of life. Biallelic RB1 gene inactivation is the initiating genetic lesion in retinoblastoma. The p53 gene is intact in human retinoblastoma but the pathway is believed to be suppressed by increased expression of MDM4 (MDMX and MDM2. Here we quantify the expression of MDM4 and MDM2 mRNA and protein in human fetal retinae, primary retinoblastomas, retinoblastoma cell lines and several independent orthotopic retinoblastoma xenografts. We found that MDM4 is the major p53 antagonist expressed in retinoblastoma and in the developing human retina. We also discovered that MDM4 protein steady state levels are much higher in retinoblastoma than in human fetal retinae. This increase would not have been predicted based on the mRNA levels. We explored several possible post-transcriptional mechanisms that may contribute to the elevated levels of MDM4 protein. A proportion of MDM4 transcripts are alternatively spliced to produce protein products that are reported to be more stable and oncogenic. We also discovered that a microRNA predicted to target MDM4 (miR191 was downregulated in retinoblastoma relative to human fetal retinae and a subset of samples had somatic mutations that eliminated the miR-191 binding site in the MDM4 mRNA. Taken together, these data suggest that post-transcriptional mechanisms may contribute to stabilization of the MDM4 protein in retinoblastoma.

  10. Roles of viral and cellular proteins in the expression of alternatively spliced HTLV-1 pX mRNAs

    International Nuclear Information System (INIS)

    Princler, Gerald L.; Julias, John G.; Hughes, Stephen H.; Derse, David

    2003-01-01

    The human T cell leukemia virus type 1 (HTLV-1) genome contains a cluster of at least five open reading frames (ORFs) near the 3' terminus within the pX region. The pX ORFs are encoded by mono- or bicistronic mRNAs that are generated by alternative splicing. The various pX mRNAs result from skipping of the internal exon (2-exon versus 3-exon isofoms) or from the utilization of alternative splice acceptor sites in the terminal exon. The Rex and Tax proteins, encoded by ORFs X-III and X-IV, have been studied intensively and are encoded by the most abundant of the alternative 3-exon mRNAs. The protein products of the other pX ORFs have not been detected in HTLV-1-infected cell lines and the levels of the corresponding mRNAs have not been accurately established. We have used real-time RT-PCR with splice-site specific primers to accurately measure the levels of individual pX mRNA species in chronically infected T cell lines. We have asked whether virus regulatory proteins or ectopic expression of cellular factors influence pX mRNA splicing in cells that were transfected with HTLV-1 provirus clones. In chronically infected cell lines, the pX-tax/rex mRNA was present at 500- to 2500-fold higher levels than the pX-tax-orfII mRNA and at approximately 1000-fold higher levels than pX-rex-orfI mRNA. Chronically infected cell lines that contain numerous defective proviruses expressed 2-exon forms of pX mRNAs at significantly higher levels compared to cell lines that contain a single full-length provirus. Cells transfected with provirus expression plasmids expressed similar relative amounts of 3-exon pX mRNAs but lower levels of 2-exon mRNA forms compared to cells containing a single, full-length provirus. The pX mRNA expression patterns were nearly identical in cells transfected with wild-type, Tax-minus, or Rex-minus proviruses. Cotransfection of cells with HTLV-1 provirus in combination with SF2/ASF expression plasmid resulted in a relative increase in pX-tax/rex mRNA

  11. TBX3 regulates splicing in vivo: a novel molecular mechanism for Ulnar-mammary syndrome.

    Directory of Open Access Journals (Sweden)

    Pavan Kumar P

    2014-03-01

    Full Text Available TBX3 is a member of the T-box family of transcription factors with critical roles in development, oncogenesis, cell fate, and tissue homeostasis. TBX3 mutations in humans cause complex congenital malformations and Ulnar-mammary syndrome. Previous investigations into TBX3 function focused on its activity as a transcriptional repressor. We used an unbiased proteomic approach to identify TBX3 interacting proteins in vivo and discovered that TBX3 interacts with multiple mRNA splicing factors and RNA metabolic proteins. We discovered that TBX3 regulates alternative splicing in vivo and can promote or inhibit splicing depending on context and transcript. TBX3 associates with alternatively spliced mRNAs and binds RNA directly. TBX3 binds RNAs containing TBX binding motifs, and these motifs are required for regulation of splicing. Our study reveals that TBX3 mutations seen in humans with UMS disrupt its splicing regulatory function. The pleiotropic effects of TBX3 mutations in humans and mice likely result from disrupting at least two molecular functions of this protein: transcriptional regulation and pre-mRNA splicing.

  12. TBX3 regulates splicing in vivo: a novel molecular mechanism for Ulnar-mammary syndrome.

    Science.gov (United States)

    Kumar P, Pavan; Franklin, Sarah; Emechebe, Uchenna; Hu, Hao; Moore, Barry; Lehman, Chris; Yandell, Mark; Moon, Anne M

    2014-03-01

    TBX3 is a member of the T-box family of transcription factors with critical roles in development, oncogenesis, cell fate, and tissue homeostasis. TBX3 mutations in humans cause complex congenital malformations and Ulnar-mammary syndrome. Previous investigations into TBX3 function focused on its activity as a transcriptional repressor. We used an unbiased proteomic approach to identify TBX3 interacting proteins in vivo and discovered that TBX3 interacts with multiple mRNA splicing factors and RNA metabolic proteins. We discovered that TBX3 regulates alternative splicing in vivo and can promote or inhibit splicing depending on context and transcript. TBX3 associates with alternatively spliced mRNAs and binds RNA directly. TBX3 binds RNAs containing TBX binding motifs, and these motifs are required for regulation of splicing. Our study reveals that TBX3 mutations seen in humans with UMS disrupt its splicing regulatory function. The pleiotropic effects of TBX3 mutations in humans and mice likely result from disrupting at least two molecular functions of this protein: transcriptional regulation and pre-mRNA splicing.

  13. Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid) conjugates targeting intron-exon junctions

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Eysturskard, Jonhard; Nielsen, Peter E

    2010-01-01

    ABSTRACT: BACKGROUND: Modulation of pre-mRNA splicing by antisense molecules is a promising mechanism of action for gene therapeutic drugs. In this study, we have examined the potential of peptide nucleic acid (PNA) 9-aminoacridine conjugates to modulate the pre-mRNA splicing of the mdm2 human ca...

  14. Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia.

    Science.gov (United States)

    Hulse, R P; Beazley-Long, N; Hua, J; Kennedy, H; Prager, J; Bevan, H; Qiu, Y; Fernandes, E S; Gammons, M V; Ballmer-Hofer, K; Gittenberger de Groot, A C; Churchill, A J; Harper, S J; Brain, S D; Bates, D O; Donaldson, L F

    2014-11-01

    Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform. We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking the proximal splicing event - leading to the preferential expression of VEGF-A165b over VEGF165a - prevents pain in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a. After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicing mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain. We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic strategy. Copyright © 2014. Published by Elsevier Inc.

  15. Alternative splicing of mutually exclusive exons--a review.

    Science.gov (United States)

    Pohl, Martin; Bortfeldt, Ralf H; Grützmann, Konrad; Schuster, Stefan

    2013-10-01

    Alternative splicing (AS) of pre-mRNAs in higher eukaryotes and several viruses is one major source of protein diversity. Usually, the following major subtypes of AS are distinguished: exon skipping, intron retention, and alternative 3' and 5' splice sites. Moreover, mutually exclusive exons (MXEs) represent a rare subtype. In the splicing of MXEs, two (or more) splicing events are not independent anymore, but are executed or disabled in a coordinated manner. In this review, several bioinformatics approaches for analyzing MXEs are presented and discussed. In particular, we revisit suitable definitions and nomenclatures, and bioinformatics tools for finding MXEs, adjacent and non-adjacent MXEs, clustered and grouped MXEs. Moreover, the molecular mechanisms for splicing MXEs proposed in the literature are reviewed and discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.

    Science.gov (United States)

    Sun, Xiaoyong; Zuo, Fenghua; Ru, Yuanbin; Guo, Jiqiang; Yan, Xiaoyan; Sablok, Gaurav

    2015-04-01

    Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Functional analysis of U1-70K interacting SR proteins in pre-mRNA splicing in Arabidopsis

    International Nuclear Information System (INIS)

    Reddy, A.S.N.

    2008-01-01

    Proteins of a serine/arginine-rich (SR) family are part of the spliceosome and are implicated in both constitutive and alternative splicing of pre-mRNAs. With the funding from DOE we have been studying alternative of splicing of genes encoding serine/arginine-rich (SR) proteins and the roles of SR proteins that interact with U1-70K in regulating basic and alternative splicing. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins and its regulation by hormones and stresses: We analyzed the splicing of all 19 Arabidopsis genes in different tissues, during different seedling stages and in response to various hormonal and stress treatments. Remarkably, about 90 different transcripts are produced from 15 SR genes, thereby increasing the transcriptome complexity of SR genes by about five fold. Using the RNA isolated from polysomes we have shown that most of the splice variants are recruited for translation. Alternative splicing of some SR genes is controlled in a developmental and tissue-specific manner (Palusa et al., 2007). Interestingly, among the various hormones and abiotic stresses tested, temperature stress (cold and heat) and ultraviolet light dramatically altered alternative splicing of pre-mRNAs of several SR genes whereas hormones altered the splicing of only two SR genes (Palusa et al., 2007). Localization and dynamics of a novel serine/arginine-rich protein that interacts with U1-70K: We analyzed the intranuclear movement of SR45 fused to GFP by fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP). We demonstrate that the movement of GFP-SR45 is ATP-dependent. Interestingly, inhibition of transcription or phosphorylation slowed the mobility of GFP-SR45 (Ali et al., 2006). Our studies have revealed that the nuclear localization signals are located in arg/ser-rich domains (RS) 1 and 2, whereas the speckle targeting signals are exclusively present in RS2 (Ali et al., 2006). The regulation of

  18. Novel BRCA1 splice-site mutation in ovarian cancer patients of Slavic origin.

    Science.gov (United States)

    Krivokuca, Ana; Dragos, Vita Setrajcic; Stamatovic, Ljiljana; Blatnik, Ana; Boljevic, Ivana; Stegel, Vida; Rakobradovic, Jelena; Skerl, Petra; Jovandic, Stevo; Krajc, Mateja; Magic, Mirjana Brankovic; Novakovic, Srdjan

    2018-04-01

    Mutations in breast cancer susceptibility gene 1 (BRCA1) lead to defects in a number of cellular pathways including DNA damage repair and transcriptional regulation, resulting in the elevated genome instability and predisposing to breast and ovarian cancers. We report a novel mutation LRG_292t1:c.4356delA,p.(Ala1453Glnfs*3) in the 12th exon of BRCA1, in the splice site region near the donor site of intron 12. It is a frameshift mutation with the termination codon generated on the third amino acid position from the site of deletion. Human Splice Finder 3.0 and MutationTaster have assessed this variation as disease causing, based on the alteration of splicing, creation of premature stop codon and other potential alterations initiated by nucleotide deletion. Among the most important alterations are frameshift and splice site changes (score of the newly created donor splice site: 0.82). c.4356delA was associated with two ovarian cancer cases in two families of Slavic origin. It was detected by next generation sequencing, and confirmed with Sanger sequencing in both cases. Because of the fact that it changes the reading frame of the protein, novel mutation c.4356delA p.(Ala1453Glnfs*3) in BRCA1 gene might be of clinical significance for hereditary ovarian cancer. Further functional as well as segregation analyses within the families are necessary for appropriate clinical classification of this variant. Since it has been detected in two ovarian cancer patients of Slavic origin, it is worth investigating founder effect of this mutation in Slavic populations.

  19. Role of a redox-based methylation switch in mRNA life cycle ( pre- & post- transcriptional maturation and protein turnover : Implications in neurological disorders

    Directory of Open Access Journals (Sweden)

    MALAV SUCHIN TRIVEDI

    2012-06-01

    Full Text Available Homeostatic synaptic scaling in response to neuronal stimulus or activation, as well as due to changes in cellular niche, is an important phenomenon for memory consolidation, retrieval, and other similar cognitive functions. Neurological disorders and cognitive disabilities in autism, Rett syndrome, schizophrenia, dementia etc., are strongly correlated to alterations in protein expression (both synaptic and cytoplasmic. This correlation suggests that efficient temporal regulation of synaptic protein expression is important for synaptic plasticity. In addition, equilibrium between mRNA processing, protein translation and protein turnover is a critical sensor/trigger for recording synaptic information, normal cognition and behavior. Thus a regulatory switch, controlling the lifespan, maturation and processing of mRNA, might influence cognition and adaptive behavior. Here, we propose a two part novel hypothesis that methylation might act as this suggested coordinating switch to critically regulate mRNA maturation at 1.The pre-transcription level, by regulating precursor-RNA (pre-RNA processing into mRNA, via other non-coding RNAs and their influence on splicing phenomenon, and 2. the post-transcription level by modulating the regulatory functions of ribonucleoproteins (RNP and RNA binding proteins (RNABP in mRNA translation, dendritic translocation as well as protein synthesis and synaptic turnover. DNA methylation changes are well recognized and highly correlated to gene expression levels as well as, learning and memory; however, RNA methylation changes are recently characterized and yet their functional implications are not established. This review article provides some insight on the intriguing consequences of changes in methylation levels on mRNA life-cycle. We also suggest that, since methylation is under the control of glutathione antioxidant levels, the redox status of neurons might be the central regulatory switch for methylation

  20. Studies on the role of NonA in mRNA biogenesis

    International Nuclear Information System (INIS)

    Kozlova, Natalia; Braga, Jose; Lundgren, Josefin; Rino, Jose; Young, Patrick; Carmo-Fonseca, Maria; Visa, Neus

    2006-01-01

    The NonA protein of Drosophila melanogaster is an abundant nuclear protein that belongs to the DBHS (Drosophila behavior, human splicing) protein family. The DBHS proteins bind both DNA and RNA in vitro and have been involved in different aspects of gene expression, including pre-mRNA splicing, transcription regulation and nuclear retention of mRNA. We have used double-stranded RNA interference in Drosophila S2 cells to silence the expression of NonA and to investigate its role in mRNA biogenesis. We show that knockdown of NonA does not affect transcription nor splicing. We demonstrate that NonA forms a complex with the essential nuclear export factor NXF1 in an RNA-dependent manner. We have constructed stable S2 cell lines that express full-length and truncated NXF1 fused to GFP in order to perform fluorescence recovery after photobleaching experiments. We show that knockdown of NonA reduces the intranuclear mobility of NXF1-GFP associated with poly(A) + RNA in vivo, while the mobility of the truncated NXF1-GFP that does not bind RNA is not affected. Our data suggest that NonA facilitates the intranuclear mobility of mRNP particles

  1. Identification of a chemical inhibitor for nuclear speckle formation: Implications for the function of nuclear speckles in regulation of alternative pre-mRNA splicing

    Energy Technology Data Exchange (ETDEWEB)

    Kurogi, Yutaro; Matsuo, Yota; Mihara, Yuki; Yagi, Hiroaki; Shigaki-Miyamoto, Kaya; Toyota, Syukichi; Azuma, Yuko [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan); Igarashi, Masayuki [Laboratory of Disease Biology, Institute of Microbial Chemistry, Shinagawa-ku, Tokyo 141-0021 (Japan); Tani, Tokio, E-mail: ttani@sci.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan)

    2014-03-28

    Highlights: • We identified tubercidin as a compound inducing aberrant formation of the speckles. • Tubercidin causes delocalization of poly (A){sup +}RNAs from nuclear speckles. • Tubercidin induces dispersion of splicing factors from nuclear speckles. • Tubercidin affects alternative pre-mRNA splicing. • Nuclear speckles play a role in regulation of alternative pre-mRNA splicing. - Abstract: Nuclear speckles are subnuclear structures enriched with RNA processing factors and poly (A){sup +} RNAs comprising mRNAs and poly (A){sup +} non-coding RNAs (ncRNAs). Nuclear speckles are thought to be involved in post-transcriptional regulation of gene expression, such as pre-mRNA splicing. By screening 3585 culture extracts of actinomycetes with in situ hybridization using an oligo dT probe, we identified tubercidin, an analogue of adenosine, as an inhibitor of speckle formation, which induces the delocalization of poly (A){sup +} RNA and dispersion of splicing factor SRSF1/SF2 from nuclear speckles in HeLa cells. Treatment with tubercidin also decreased steady-state MALAT1 long ncRNA, thought to be involved in the retention of SRSF1/SF2 in nuclear speckles. In addition, we found that tubercidin treatment promoted exon skipping in the alternative splicing of Clk1 pre-mRNA. These results suggest that nuclear speckles play a role in modulating the concentration of splicing factors in the nucleoplasm to regulate alternative pre-mRNA splicing.

  2. Pre-mRNA trans-splicing: from kinetoplastids to mammals, an easy language for life diversity

    Directory of Open Access Journals (Sweden)

    Mario Gustavo Mayer

    2005-08-01

    Full Text Available Since the discovery that genes are split into intron and exons, the studies of the mechanisms involved in splicing pointed to presence of consensus signals in an attempt to generalize the process for all living cells. However, as discussed in the present review, splicing is a theme full of variations. The trans-splicing of pre-mRNAs, the joining of exons from distinct transcripts, is one of these variations with broad distribution in the phylogenetic tree. The biological meaning of this phenomenon is discussed encompassing reactions resembling a possible noise to mechanisms of gene expression regulation. All of them however, can contribute to the generation of life diversity.

  3. Characterization of the ptr5+ gene involved in nuclear mRNA export in fission yeast

    International Nuclear Information System (INIS)

    Watanabe, Nobuyoshi; Ikeda, Terumasa; Mizuki, Fumitaka; Tani, Tokio

    2012-01-01

    Highlights: ► We cloned the ptr5 + gene involved in nuclear mRNA export in fission yeast. ► The ptr5 + gene was found to encode nucleoporin 85 (Nup85). ► Seh1p and Mlo3p are multi-copy suppressors for the ptr5 mutation. ► Ptr5p/Nup85p functions in nuclear mRNA export through the mRNA export factor Rae1p. ► Ptr5p/Nup85p interacts genetically with pre-mRNA splicing factors. -- Abstract: To analyze the mechanisms of mRNA export from the nucleus to the cytoplasm, we have isolated eleven mutants, ptr [poly(A) + RNA transport] 1 to 11, which accumulate poly(A) + RNA in the nucleus at a nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr5–1 mutant shows dots- or a ring-like accumulation of poly(A) + RNA at the nuclear periphery after shifting to the nonpermissive temperature. We cloned the ptr5 + gene and found that it encodes a component of the nuclear pore complex (NPC), nucleoporin 85 (Nup85). The ptr5–1 mutant shows no defects in protein transport, suggesting the specific involvement of Ptr5p/Nup85p in nuclear mRNA export in S. pombe. We identified Seh1p, a nucleoporin interacting with Nup85p, an mRNA-binding protein Mlo3p, and Sac3p, a component of the TREX-2 complex involved in coupling of nuclear mRNA export with transcription, as multi-copy suppressors for the ptr5–1 mutation. In addition, we found that the ptr5–1 mutation is synthetically lethal with a mutation of the mRNA export factor Rae1p, and that the double mutant exaggerates defective nuclear mRNA export, suggesting that Ptr5p/Nup85p is involved in nuclear mRNA export through Rae1p. Interestingly, the ptr5–1 mutation also showed synthetic effects with several prp pre-mRNA splicing mutations, suggesting a functional linkage between the NPCs and the splicing apparatus in the yeast nucleus.

  4. A Systems-Level Analysis Reveals Circadian Regulation of Splicing in Colorectal Cancer.

    Science.gov (United States)

    El-Athman, Rukeia; Fuhr, Luise; Relógio, Angela

    2018-06-20

    Accumulating evidence points to a significant role of the circadian clock in the regulation of splicing in various organisms, including mammals. Both dysregulated circadian rhythms and aberrant pre-mRNA splicing are frequently implicated in human disease, in particular in cancer. To investigate the role of the circadian clock in the regulation of splicing in a cancer progression context at the systems-level, we conducted a genome-wide analysis and compared the rhythmic transcriptional profiles of colon carcinoma cell lines SW480 and SW620, derived from primary and metastatic sites of the same patient, respectively. We identified spliceosome components and splicing factors with cell-specific circadian expression patterns including SRSF1, HNRNPLL, ESRP1, and RBM 8A, as well as altered alternative splicing events and circadian alternative splicing patterns of output genes (e.g., VEGFA, NCAM1, FGFR2, CD44) in our cellular model. Our data reveals a remarkable interplay between the circadian clock and pre-mRNA splicing with putative consequences in tumor progression and metastasis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. The 0.3-kb fragment containing the R-U5-5'leader sequence of Friend murine leukemia virus influences the level of protein expression from spliced mRNA.

    Science.gov (United States)

    Choo, Yeng Cheng; Seki, Yohei; Machinaga, Akihito; Ogita, Nobuo; Takase-Yoden, Sayaka

    2013-04-19

    A neuropathogenic variant of Friend murine leukemia virus (Fr-MLV) clone A8 induces spongiform neurodegeneration when infected into neonatal rats. Studies with chimeras constructed from the A8 virus and the non-neuropathogenic Fr-MLV clone 57 identified a 0.3-kb KpnI-AatII fragment containing a R-U5-5'leader sequence as an important determinant for inducing spongiosis, in addition to the env gene of A8 as the primary determinant. This 0.3-kb fragment contains a 17-nucleotide difference between the A8 and 57 sequences. We previously showed that the 0.3-kb fragment influences expression levels of Env protein in both cultured cells and rat brain, but the corresponding molecular mechanisms are not well understood. Studies with expression vectors constructed from the full-length proviral genome of Fr-MLV that incorporated the luciferase (luc) gene instead of the env gene found that the vector containing the A8-0.3-kb fragment yielded a larger amount of spliced luc-mRNA and showed higher expression of luciferase when compared to the vector containing the 57-0.3-kb fragment. The amount of total transcripts from the vectors, the poly (A) tail length of their mRNAs, and the nuclear-cytoplasm distribution of luc-mRNA in transfected cells were also evaluated. The 0.3-kb fragment did not influence transcription efficiency, mRNA polyadenylation or nuclear export of luc-mRNA. Mutational analyses were carried out to determine the importance of nucleotides that differ between the A8 and 57 sequences within the 0.3-kb fragment. In particular, seven nucleotides upstream of the 5'splice site (5'ss) were found to be important in regulating the level of protein expression from spliced messages. Interestingly, these nucleotides reside within the stem-loop structure that has been speculated to limit the recognition of 5'ss. The 0.3-kb fragment containing the R-U5-5'leader sequence of Fr-MLV influences the level of protein expression from the spliced-mRNA by regulating the splicing

  6. New splice site acceptor mutation in AIRE gene in autoimmune polyendocrine syndrome type 1.

    Directory of Open Access Journals (Sweden)

    Mireia Mora

    Full Text Available Autoimmune polyglandular syndrome type 1 (APS-1, OMIM 240300 is a rare autosomal recessive disorder, characterized by the presence of at least two of three major diseases: hypoparathyroidism, Addison's disease, and chronic mucocutaneous candidiasis. We aim to identify the molecular defects and investigate the clinical and mutational characteristics in an index case and other members of a consanguineous family. We identified a novel homozygous mutation in the splice site acceptor (SSA of intron 5 (c.653-1G>A in two siblings with different clinical outcomes of APS-1. Coding DNA sequencing revealed that this AIRE mutation potentially compromised the recognition of the constitutive SSA of intron 5, splicing upstream onto a nearby cryptic SSA in intron 5. Surprisingly, the use of an alternative SSA entails the uncovering of a cryptic donor splice site in exon 5. This new transcript generates a truncated protein (p.A214fs67X containing the first 213 amino acids and followed by 68 aberrant amino acids. The mutation affects the proper splicing, not only at the acceptor but also at the donor splice site, highlighting the complexity of recognizing suitable splicing sites and the importance of sequencing the intron-exon junctions for a more precise molecular diagnosis and correct genetic counseling. As both siblings were carrying the same mutation but exhibited a different APS-1 onset, and one of the brothers was not clinically diagnosed, our finding highlights the possibility to suspect mutations in the AIRE gene in cases of childhood chronic candidiasis and/or hypoparathyroidism otherwise unexplained, especially when the phenotype is associated with other autoimmune diseases.

  7. Characterization of intronic uridine-rich sequence elements acting as possible targets for nuclear proteins during pre-mRNA splicing in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Gniadkowski, M; Hemmings-Mieszczak, M; Klahre, U; Liu, H X; Filipowicz, W

    1996-02-15

    Introns of nuclear pre-mRNAs in dicotyledonous plants, unlike introns in vertebrates or yeast, are distinctly rich in A+U nucleotides and this feature is essential for their processing. In order to define more precisely sequence elements important for intron recognition in plants, we investigated the effects of short insertions, either U-rich or A-rich, on splicing of synthetic introns in transfected protoplast of Nicotiana plumbaginifolia. It was found that insertions of U-rich (sequence UUUUUAU) but not A-rich (AUAAAAA) segments can activate splicing of a GC-rich synthetic infron, and that U-rich segments, or multimers thereof, can function irrespective of the site of insertion within the intron. Insertions of multiple U-rich segments, either at the same or different locations, generally had an additive, stimulatory effect on splicing. Mutational analysis showed that replacement of one or two U residues in the UUUUUAU sequence with A or C residues had only a small effect on splicing, but replacement with G residues was strongly inhibitory. Proteins that interact with fragments of natural and synthetic pre-mRNAs in vitro were identified in nuclear extracts of N.plumbaginifolia by UV cross- linking. The profile of cross-linked plant proteins was considerably less complex than that obtained with a HeLa cell nuclear extract. Two major cross-linkable plant proteins had apparent molecular mass of 50 and 54 kDa and showed affinity for oligouridilates present in synGC introns or for poly(U).

  8. Specificity in endoplasmic reticulum-stress signaling in yeast entails a step-wise engagement of HAC1 mRNA to clusters of the stress sensor Ire1.

    Science.gov (United States)

    van Anken, Eelco; Pincus, David; Coyle, Scott; Aragón, Tomás; Osman, Christof; Lari, Federica; Gómez Puerta, Silvia; Korennykh, Alexei V; Walter, Peter

    2014-12-30

    Insufficient protein-folding capacity in the endoplasmic reticulum (ER) induces the unfolded protein response (UPR). In the ER lumen, accumulation of unfolded proteins activates the transmembrane ER-stress sensor Ire1 and drives its oligomerization. In the cytosol, Ire1 recruits HAC1 mRNA, mediating its non-conventional splicing. The spliced mRNA is translated into Hac1, the key transcription activator of UPR target genes that mitigate ER-stress. In this study, we report that oligomeric assembly of the ER-lumenal domain is sufficient to drive Ire1 clustering. Clustering facilitates Ire1's cytosolic oligomeric assembly and HAC1 mRNA docking onto a positively charged motif in Ire1's cytosolic linker domain that tethers the kinase/RNase to the transmembrane domain. By the use of a synthetic bypass, we demonstrate that mRNA docking per se is a pre-requisite for initiating Ire1's RNase activity and, hence, splicing. We posit that such step-wise engagement between Ire1 and its mRNA substrate contributes to selectivity and efficiency in UPR signaling.

  9. Features of 5'-splice-site efficiency derived from disease-causing mutations and comparative genomics

    DEFF Research Database (Denmark)

    Roca, Xavier; Olson, Andrew J; Rao, Atmakuri R

    2008-01-01

    Many human diseases, including Fanconi anemia, hemophilia B, neurofibromatosis, and phenylketonuria, can be caused by 5'-splice-site (5'ss) mutations that are not predicted to disrupt splicing, according to position weight matrices. By using comparative genomics, we identify pairwise dependencies...

  10. Characterization of the ptr5{sup +} gene involved in nuclear mRNA export in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Nobuyoshi; Ikeda, Terumasa; Mizuki, Fumitaka [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555 (Japan); Tani, Tokio, E-mail: ttani@sci.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555 (Japan)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We cloned the ptr5{sup +} gene involved in nuclear mRNA export in fission yeast. Black-Right-Pointing-Pointer The ptr5{sup +} gene was found to encode nucleoporin 85 (Nup85). Black-Right-Pointing-Pointer Seh1p and Mlo3p are multi-copy suppressors for the ptr5 mutation. Black-Right-Pointing-Pointer Ptr5p/Nup85p functions in nuclear mRNA export through the mRNA export factor Rae1p. Black-Right-Pointing-Pointer Ptr5p/Nup85p interacts genetically with pre-mRNA splicing factors. -- Abstract: To analyze the mechanisms of mRNA export from the nucleus to the cytoplasm, we have isolated eleven mutants, ptr [poly(A){sup +} RNA transport] 1 to 11, which accumulate poly(A){sup +} RNA in the nucleus at a nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr5-1 mutant shows dots- or a ring-like accumulation of poly(A){sup +} RNA at the nuclear periphery after shifting to the nonpermissive temperature. We cloned the ptr5{sup +} gene and found that it encodes a component of the nuclear pore complex (NPC), nucleoporin 85 (Nup85). The ptr5-1 mutant shows no defects in protein transport, suggesting the specific involvement of Ptr5p/Nup85p in nuclear mRNA export in S. pombe. We identified Seh1p, a nucleoporin interacting with Nup85p, an mRNA-binding protein Mlo3p, and Sac3p, a component of the TREX-2 complex involved in coupling of nuclear mRNA export with transcription, as multi-copy suppressors for the ptr5-1 mutation. In addition, we found that the ptr5-1 mutation is synthetically lethal with a mutation of the mRNA export factor Rae1p, and that the double mutant exaggerates defective nuclear mRNA export, suggesting that Ptr5p/Nup85p is involved in nuclear mRNA export through Rae1p. Interestingly, the ptr5-1 mutation also showed synthetic effects with several prp pre-mRNA splicing mutations, suggesting a functional linkage between the NPCs and the splicing apparatus in the yeast nucleus.

  11. Permanent Neonatal Diabetes Caused by Creation of an Ectopic Splice Site within the INS Gene

    Science.gov (United States)

    Gastaldo, Elena; Harries, Lorna W.; Rubio-Cabezas, Oscar; Castaño, Luis

    2012-01-01

    Background The aim of this study was to characterize the genetic etiology in a patient who presented with permanent neonatal diabetes at 2 months of age. Methodology/Principal Findings Regulatory elements and coding exons 2 and 3 of the INS gene were amplified and sequenced from genomic and complementary DNA samples. A novel heterozygous INS mutation within the terminal intron of the gene was identified in the proband and her affected father. This mutation introduces an ectopic splice site leading to the insertion of 29 nucleotides from the intronic sequence into the mature mRNA, which results in a longer and abnormal transcript. Conclusions/Significance This study highlights the importance of routinely sequencing the exon-intron boundaries and the need to carry out additional studies to confirm the pathogenicity of any identified intronic genetic variants. PMID:22235272

  12. mRNA processing in yeast

    International Nuclear Information System (INIS)

    Stevens, A.

    1982-01-01

    Investigations in this laboratory center on basic enzymatic reactions of RNA. Still undefined are reactions involved in the conversion of precursors of mRA (pre-mRNA) to mRNA in eukaryotes. The pre-mRNA is called heterogeneous nuclear RNA and is 2 to 6 times larger than mRNA. The conversion, called splicing, involves a removal of internal sequences called introns by endoribonuclease action followed by a rejoining of the 3'- and 5'-end fragments, called exons, by ligating activity. It has not been possible yet to study the enzymes involved in vitro. Also undefined are reactions involved in the turnover or discarding of certain of the pre-mRNA molecules. Yeast is a simple eukaryote and may be expected to have the same, but perhaps simpler, processing reactions as the higher eukaryotes. Two enzymes involved in the processing of pre-mRNA and mRNA in yeast are under investigation. Both enzymes have been partially purified from ribonucleoprotein particles of yeast. The first is a unique decapping enzyme which cleaves [ 3 H]m 7 Gppp [ 14 C]RNA-poly (A) of yeast, yielding [ 3 H]m 7 GDP and is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed. The second enzyme is an endoribonuclease which converts both the [ 3 H] and [ 14 C] labels of [ 3 H]m 7 Gppp[ 14 C]RNA-poly(A) from an oligo(dT)-cellulose bound form to an unbound, acid-insoluble form. Results show that the stimulation involves an interaction of the labeled RNA with the small nuclear RNA. The inhibition of the enzyme by ethidium bromide and its stimulation by small nuclear RNA suggest that it may be a processing ribonuclease, requiring specific double-stranded features in its substrate. The characterization of the unique decapping enzyme and endoribonuclease may help to understand reactions involved in the processing of pre-mRNA and mRNA in eukaryotes

  13. Homologous SV40 RNA trans-splicing: Special case or prime example of viral RNA trans-splicing?

    Directory of Open Access Journals (Sweden)

    Sushmita Poddar

    2014-06-01

    Full Text Available To date the Simian Virus 40 (SV40 is the only proven example of a virus that recruits the mechanism of RNA trans-splicing to diversify its sequences and gene products. Thereby, two identical viral transcripts are efficiently joined by homologous trans-splicing triggering the formation of a highly transforming 100 kDa super T antigen. Sequences of other viruses including HIV-1 and the human adenovirus type 5 were reported to be involved in heterologous trans-splicing towards cellular or viral sequences but the meaning of these events remains unclear. We computationally and experimentally investigated molecular features associated with viral RNA trans-splicing and identified a common pattern: Viral RNA trans-splicing occurs between strong cryptic or regular viral splice sites and strong regular or cryptic splice sites of the trans-splice partner sequences. The majority of these splice sites are supported by exonic splice enhancers. Splice sites that could compete with the trans-splicing sites for cis-splice reactions are weaker or inexistent. Finally, all but one of the trans-splice reactions seem to be facilitated by one or more complementary binding domains of 11 to 16 nucleotides in length which, however occur with a statistical probability close to one for the given length of the involved sequences. The chimeric RNAs generated via heterologous viral RNA trans-splicing either did not lead to fusion proteins or led to proteins of unknown function. Our data suggest that distinct viral RNAs are highly susceptible to trans-splicing and that heterologous viral trans-splicing, unlike homologous SV40 trans-splicing, represents a chance event.

  14. Characterization of a splicing mutation in group A xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Satokata, Ichiro; Tanaka, Kiyoji; Miura, Naoyuki; Miyamoto, Iwai; Okada, Yoshio; Satoh, Yoshiaki; Kondo, Seiji

    1990-01-01

    The molecular basis of group A xeroderma pigmentosum (WP) was investigated by comparison of the nucleotide sequences of multiple clones of the XP group A complementing gene (XPAC) from a patient with group A XP with that of a normal gene. The clones showed a G → C substitution at the 3' splice acceptor site of intron 3, which altered the obligatory AG acceptor dinucleotide to AC. Nucleotide sequencing of cDNAs amplified by the polymerase chain reaction revealed that this single base substitution abolishes the canonical 3' splice site, thus creating two abnormally spliced mRNA forms. The larger form is identical with normal mRNA except for a dinucleotide deletion at the 5' end of exon 4. This deletion results in a frameshift with premature translation termination in exon 4. The smaller form has a deletion of the entire exon 3 and the dinucleotide at the 5' end of exon 4. The result of a transfection study provided additional evidence that this single base substitution is the disease-causing mutation. This single base substitution creates a new cleavage site for the restriction nuclease AlwNI. Analysis of AlwNI restriction fragment length polymorphism showed a high frequency of this mutation in Japanese patients with group A XP: 16 of 21 unrelated Japanese patients were homozygous and 4 were heterozygous for this mutation. However, 11 Caucasians and 2 Blacks with group A XP did not have this mutant allele. The polymorphic AlwNI restriction fragments are concluded to be useful for diagnosis of group A XP in Japanese subjects, including prenatal cases and carriers

  15. Dietary Fat Quantity and Type Induce Transcriptome-Wide Effects on Alternative Splicing of Pre-mRNA in Rat Skeletal Muscle.

    Science.gov (United States)

    Black, Adam J; Ravi, Suhana; Jefferson, Leonard S; Kimball, Scot R; Schilder, Rudolf J

    2017-09-01

    Background: Fat-enriched diets produce metabolic changes in skeletal muscle, which in turn can mediate changes in gene regulation. Objective: We examined the high-fat-diet-induced changes in skeletal muscle gene expression by characterizing variations in pre-mRNA alternative splicing. Methods: Affymetrix Exon Array analysis was performed on the transcriptome of the gastrocnemius/plantaris complex of male obesity-prone Sprague-Dawley rats fed a 10% or 60% fat (lard) diet for 2 or 8 wk. The validation of exon array results was focused on troponin T ( Tnnt3 ). Tnnt3 splice form analyses were extended in studies of rats fed 10% or 30% fat diets across 1- to 8-wk treatment periods and rats fed 10% or 45% fat diets with fat sources from lard or mono- or polyunsaturated fats for 2 wk. Nuclear magnetic resonance (NMR) was used to measure body composition. Results: Consumption of a 60% fat diet for 2 or 8 wk resulted in alternative splicing of 668 and 726 pre-mRNAs, respectively, compared with rats fed a 10% fat diet. Tnnt3 transcripts were alternatively spliced in rats fed a 60% fat diet for either 2 or 8 wk. The high-fat-diet-induced changes in Tnnt3 alternative splicing were observed in rats fed a 30% fat diet across 1- to 8-wk treatment periods. Moreover, this effect depended on fat type, because Tnnt3 alternative splicing occurred in response to 45% fat diets enriched with lard but not in response to diets enriched with mono- or polyunsaturated fatty acids. Fat mass (a proxy for obesity as measured by NMR) did not differ between groups in any study. Conclusions: Rat skeletal muscle responds to overconsumption of dietary fat by modifying gene expression through pre-mRNA alternative splicing. Variations in Tnnt3 alternative splicing occur independently of obesity and are dependent on dietary fat quantity and suggest a role for saturated fatty acids in the high-fat-diet-induced modifications in Tnnt3 alternative splicing. © 2017 American Society for Nutrition.

  16. Novel splice site mutation in the growth hormone receptor gene in Turkish patients with Laron-type dwarfism.

    Science.gov (United States)

    Arman, Ahmet; Ozon, Alev; Isguven, Pinar S; Coker, Ajda; Peker, Ismail; Yordam, Nursen

    2008-01-01

    Growth hormone (GH) is involved in growth, and fat and carbohydrate metabolism. Interaction of GH with the GH receptor (GHR) is necessary for systemic and local production of insulin-like growth factor-I (IGF-I) which mediates GH actions. Mutations in the GHR cause severe postnatal growth failure; the disorder is an autosomal recessive genetic disease resulting in GH insensitivity, called Laron syndrome. It is characterized by dwarfism with elevated serum GH and low levels of IGF-I. We analyzed the GHR gene for mutations and polymorphisms in eight patients with Laron-type dwarfism from six families. We found three missense mutations (S40L, V125A, I526L), one nonsense mutation (W157X), and one splice site mutation in the extracellular domain of GHR. Furthermore, G168G and exon 3 deletion polymorphisms were detected in patients with Laron syndrome. The splice site mutation, which is a novel mutation, was located at the donor splice site of exon 2/ intron 2 within GHR. Although this mutation changed the highly conserved donor splice site consensus sequence GT to GGT by insertion of a G residue, the intron splicing between exon 2 and exon 3 was detected in the patient. These results imply that the splicing occurs arthe GT site in intron 2, leaving the extra inserted G residue at the end of exon 2, thus changing the open reading frame of GHR resulting in a premature termination codon in exon 3.

  17. Computational Recognition of RNA Splice Sites by Exact Algorithms for the Quadratic Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Anja Fischer

    2015-06-01

    Full Text Available One fundamental problem of bioinformatics is the computational recognition of DNA and RNA binding sites. Given a set of short DNA or RNA sequences of equal length such as transcription factor binding sites or RNA splice sites, the task is to learn a pattern from this set that allows the recognition of similar sites in another set of DNA or RNA sequences. Permuted Markov (PM models and permuted variable length Markov (PVLM models are two powerful models for this task, but the problem of finding an optimal PM model or PVLM model is NP-hard. While the problem of finding an optimal PM model or PVLM model of order one is equivalent to the traveling salesman problem (TSP, the problem of finding an optimal PM model or PVLM model of order two is equivalent to the quadratic TSP (QTSP. Several exact algorithms exist for solving the QTSP, but it is unclear if these algorithms are capable of solving QTSP instances resulting from RNA splice sites of at least 150 base pairs in a reasonable time frame. Here, we investigate the performance of three exact algorithms for solving the QTSP for ten datasets of splice acceptor sites and splice donor sites of five different species and find that one of these algorithms is capable of solving QTSP instances of up to 200 base pairs with a running time of less than two days.

  18. Sequence variants of KHDRBS1 as high penetrance susceptibility risks for primary ovarian insufficiency by mis-regulating mRNA alternative splicing.

    Science.gov (United States)

    Wang, Binbin; Li, Lin; Zhu, Ying; Zhang, Wei; Wang, Xi; Chen, Beili; Li, Tengyan; Pan, Hong; Wang, Jing; Kee, Kehkooi; Cao, Yunxia

    2017-10-01

    Does a novel heterozygous KHDRBS1 variant, identified using whole-exome sequencing (WES) in two patients with primary ovarian insufficiency (POI) in a pedigree, cause defects in mRNA alternative splicing? The heterozygous variant of KHDRBS1 was confirmed to cause defects in alternative splicing of many genes involved in DNA replication and repair. Studies in mice revealed that Khdrbs1 deficient females are subfertile, which manifests as delayed sexual maturity and significantly reduced numbers of secondary and pre-antral follicles. No mutation of KHDRBS1, however, has been reported in patients with POI. This genetic and functional study used WES to find putative mutations in a POI pedigree. Altogether, 215 idiopathic POI patients and 400 healthy controls were screened for KHDRBS1 mutations. Two POI patients were subjected to WES to identify sequence variants. Mutational analysis of the KHDRBS1 gene in 215 idiopathic POI patients and 400 healthy controls were performed. RNA-sequencing was carried out to find the mis-regulation of gene expression due to KHDRBS1 mutation. Bioinformatics was used to analyze the change in alternative splicing events. We identified a heterozygous mutation (c.460A > G, p.M154V) in KHDRBS1 in two patients. Further mutational analysis of 215 idiopathic POI patients with the KHDRBS1 gene found one heterozygous mutation (c.263C > T, p.P88L). We failed to find these two mutations in 400 healthy control women. Using RNA-sequencing, we found that the KGN cells expressing the M154V KHDRBS1 mutant had different expression of 66 genes compared with wild-type (WT) cells. Furthermore, 145 genes were alternatively spliced in M154V cells, and these genes were enriched for DNA replication and repair function, revealing a potential underlying mechanism of the pathology that leads to POI. Although the in vitro assays demonstrated the effect of the KHDRBS1 variant on alternative splicing, further studies are needed to validate the in vivo effects on germ

  19. Tools to covisualize and coanalyze proteomic data with genomes and transcriptomes: validation of genes and alternative mRNA splicing.

    Science.gov (United States)

    Pang, Chi Nam Ignatius; Tay, Aidan P; Aya, Carlos; Twine, Natalie A; Harkness, Linda; Hart-Smith, Gene; Chia, Samantha Z; Chen, Zhiliang; Deshpande, Nandan P; Kaakoush, Nadeem O; Mitchell, Hazel M; Kassem, Moustapha; Wilkins, Marc R

    2014-01-03

    Direct links between proteomic and genomic/transcriptomic data are not frequently made, partly because of lack of appropriate bioinformatics tools. To help address this, we have developed the PG Nexus pipeline. The PG Nexus allows users to covisualize peptides in the context of genomes or genomic contigs, along with RNA-seq reads. This is done in the Integrated Genome Viewer (IGV). A Results Analyzer reports the precise base position where LC-MS/MS-derived peptides cover genes or gene isoforms, on the chromosomes or contigs where this occurs. In prokaryotes, the PG Nexus pipeline facilitates the validation of genes, where annotation or gene prediction is available, or the discovery of genes using a "virtual protein"-based unbiased approach. We illustrate this with a comprehensive proteogenomics analysis of two strains of Campylobacter concisus . For higher eukaryotes, the PG Nexus facilitates gene validation and supports the identification of mRNA splice junction boundaries and splice variants that are protein-coding. This is illustrated with an analysis of splice junctions covered by human phosphopeptides, and other examples of relevance to the Chromosome-Centric Human Proteome Project. The PG Nexus is open-source and available from https://github.com/IntersectAustralia/ap11_Samifier. It has been integrated into Galaxy and made available in the Galaxy tool shed.

  20. Splicing of a C. elegans myosin pre-mRNA in a human nuclear extract

    Energy Technology Data Exchange (ETDEWEB)

    Ogg, S C; Anderson, P; Wickens, M P [Univ. of Wisconsin, Madison (USA)

    1990-01-11

    Splicing of mammalian introns requires that the intron possess at least 80 nucleotides. This length requirement presumably reflects the constraints of accommodating multiple snRNPs simultaneously in the same intro. In the free-living nematode, C. elegans, introns typically are 45 to 55 nucleotides in length. In this report, the authors determine whether C. elegans introns can obviate the mammalian length requirement by virtue of their structure or sequence. They demonstrate that a 53 nucleotide intron from the unc-54 gene of C. elegans does not undergo splicing in a mammalian (HeLa) nuclear extract. However, insertion of 31 nucleotides of foreign, prokaryotic sequence into the same intron results in efficient splicing. The observed splicing proceeds by the same two-step mechanism observed with mammalian introns, and exploits the same 3{prime} and 5{prime} sites as are used in C. elegans. The branch point used lies in the inserted sequences. They conclude that C. elegans splicing components are either fewer in number or smaller than their mammalian counterparts.

  1. Expanding the action of duplex RNAs into the nucleus: redirecting alternative splicing

    Science.gov (United States)

    Liu, Jing; Hu, Jiaxin; Corey, David R.

    2012-01-01

    Double-stranded RNAs are powerful agents for silencing gene expression in the cytoplasm of mammalian cells. The potential for duplex RNAs to control expression in the nucleus has received less attention. Here, we investigate the ability of small RNAs to redirect splicing. We identify RNAs targeting an aberrant splice site that restore splicing and production of functional protein. RNAs can target sequences within exons or introns and affect the inclusion of exons within SMN2 and dystrophin, genes responsible for spinal muscular atrophy and Duchenne muscular dystrophy, respectively. Duplex RNAs recruit argonaute 2 (AGO2) to pre-mRNA transcripts and altered splicing requires AGO2 expression. AGO2 promotes transcript cleavage in the cytoplasm, but recruitment of AGO2 to pre-mRNAs does not reduce transcript levels, exposing a difference between cytoplasmic and nuclear pathways. Involvement of AGO2 in splicing, a classical nuclear process, reinforces the conclusion from studies of RNA-mediated transcriptional silencing that RNAi pathways can be adapted to function in the mammalian nucleus. These data provide a new strategy for controlling splicing and expand the reach of small RNAs within the nucleus of mammalian cells. PMID:21948593

  2. Prenatal diagnosis and a donor splice site mutation in fibrillin in a family with Marfan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, M.; Vandemark, N.; Wang, M.; Han, J.; Rao, V.H. (Univ. of Nebraska Medical Center, Omaha (United States)); Velinov, M.; Tsipouras, P. (Univ. of Connecticut Health Sciences Center, Farmington (United States)); Wargowski, D.; Becker, J.; Robertson, W.; Droste, S. (Univ. of Wisconsin, Madison (United States))

    1993-08-01

    The Marfan syndrome, an autosomal dominant connective tissue disorder, is manifested by abnormalities in the cardiovascular, skeletal, and ocular systems. Recently, fibrillin, an elastic-associated microfibrillar glycoprotein, has been linked to the Marfan syndrome, and fibrillin mutations in affected individuals have been documented. In this study, genetic linkage analysis with fibrillin-specific markers was used to establish the prenatal diagnosis in an 11-wk-gestation fetus in a four-generation Marfan kindred. At birth, skeletal changes suggestive of the Marfan syndrome were observed. Reverse transcription-PCR amplification of the fibrillin gene mRNA detected a deletion of 123 bp in one allele in affected relatives. This deletion corresponds to an exon encoding an epidermal growth factor-like motif. Examination of genomic DNA showed a G[yields]C transversion at the +1 consensus donor splice site. 45 refs., 7 figs.

  3. Detection and Quantization of the Expression of Two mu-Opioid Receptor Splice Variants mRNA (hMOR-1A and hMOR-1O in Peripheral Blood Lymphocytes of Long-Term Abstinent Former Opioid Addicts

    Directory of Open Access Journals (Sweden)

    N Vousooghi, Pharm

    2012-05-01

    Full Text Available

    Background and Objectives

    The mu-Opioid receptor (MOR exerts a critical role on effects of opiodis. The objective of this study is to find a peripheral bio-marker in addiction studies through quantization of the expression of two MOR splice variants mRNA (hMOR-1A and hMOR-1O in peripheral blood lymphocytes (PBLs of long-term abstinent former opioids addicts.

    Methods

    In this case-control study, case and control people were male and divided in two groups: people who gave up addiction to opioids (case and healthy individuals without history of addiction (control. The mRNA expression in PBLs of participants was detected and measured by real-time Polymerase Chain Reaction (PCR using SYBR Green Dye.

    Results

    The hMOR-1A mRNA expression in PBLs of abstinent group was significantly reduced and reached to 0.33 of the control group (p<0.001. Similar results were obtained for the other splice variant with the mRNA expression of hMOR-1O in PBLs of abstinent group reaching to 0.38 of that of the control group (p < 0.001.

    Conclusion

    mRNA expression deficiency of two mu-opioid receptor splice variants, hMOR-1A and nMOR-1O, seams to be a risk factor making individuals vulnerable to drug addiction. Based on this analysis measuring the amount of mRNA expression of these two splice variants in PBLs can serve as a peripheral bio-marker for detecting people at risk.

  4. Retinitis Pigmentosa Mutations of SNRNP200 Enhance Cryptic Splice-Site Recognition

    Czech Academy of Sciences Publication Activity Database

    Cvačková, Zuzana; Matějů, Daniel; Staněk, David

    2014-01-01

    Roč. 35, č. 3 (2014), s. 308-317 ISSN 1059-7794 R&D Projects: GA ČR GPP301/12/P425; GA ČR GAP302/11/1910; GA AV ČR KAN200520801 Institutional support: RVO:68378050 Keywords : Retinitis pigmentosa * pre-mRNA splicing * fidelity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.144, year: 2014

  5. Cytoplasmic viral RNA-dependent RNA polymerase disrupts the intracellular splicing machinery by entering the nucleus and interfering with Prp8.

    Directory of Open Access Journals (Sweden)

    Yen-Chin Liu

    2014-06-01

    Full Text Available The primary role of cytoplasmic viral RNA-dependent RNA polymerase (RdRp is viral genome replication in the cellular cytoplasm. However, picornaviral RdRp denoted 3D polymerase (3D(pol also enters the host nucleus, where its function remains unclear. In this study, we describe a novel mechanism of viral attack in which 3D(pol enters the nucleus through the nuclear localization signal (NLS and targets the pre-mRNA processing factor 8 (Prp8 to block pre-mRNA splicing and mRNA synthesis. The fingers domain of 3D(pol associates with the C-terminal region of Prp8, which contains the Jab1/MPN domain, and interferes in the second catalytic step, resulting in the accumulation of the lariat form of the splicing intermediate. Endogenous pre-mRNAs trapped by the Prp8-3D(pol complex in enterovirus-infected cells were identified and classed into groups associated with cell growth, proliferation, and differentiation. Our results suggest that picornaviral RdRp disrupts pre-mRNA splicing processes, that differs from viral protease shutting off cellular transcription and translation which contributes to the pathogenesis of viral infection.

  6. Involvement of the catalytic subunit of protein kinase A and of HA95 in pre-mRNA splicing

    International Nuclear Information System (INIS)

    Kvissel, Anne-Katrine; Orstavik, Sigurd; Eikvar, Sissel; Brede, Gaute; Jahnsen, Tore; Collas, Philippe; Akusjaervi, Goeran; Skalhegg, Bjorn Steen

    2007-01-01

    Protein kinase A (PKA) is a holoenzyme consisting of two catalytic (C) subunits bound to a regulatory (R) subunit dimer. Stimulation by cAMP dissociates the holoenzyme and causes translocation to the nucleus of a fraction of the C subunit. Apart from transcription regulation, little is known about the function of the C subunit in the nucleus. In the present report, we show that both Cα and Cβ are localized to spots in the mammalian nucleus. Double immunofluorescence analysis of splicing factor SC35 with the C subunit indicated that these spots are splicing factor compartments (SFCs). Using the E1A in vivo splicing assay, we found that catalytically active C subunits regulate alternative splicing and phosphorylate several members of the SR-protein family of splicing factors in vitro. Furthermore, nuclear C subunits co-localize with the C subunit-binding protein homologous to AKAP95, HA95. HA95 also regulates E1A alternative splicing in vivo, apparently through its N-terminal domain. Localization of the C subunit to SFCs and the E1A splicing pattern were unaffected by cAMP stimulation. Our findings demonstrate that the nuclear PKA C subunit co-locates with HA95 in SFCs and regulates pre-mRNA splicing, possibly through a cAMP-independent mechanism

  7. Alternative Pre-mRNA Splicing in Mammals and Teleost Fish: A Effective Strategy for the Regulation of Immune Responses Against Pathogen Infection.

    Science.gov (United States)

    Chang, Ming Xian; Zhang, Jie

    2017-07-15

    Pre-mRNA splicing is the process by which introns are removed and the protein coding elements assembled into mature mRNAs. Alternative pre-mRNA splicing provides an important source of transcriptome and proteome complexity through selectively joining different coding elements to form mRNAs, which encode proteins with similar or distinct functions. In mammals, previous studies have shown the role of alternative splicing in regulating the function of the immune system, especially in the regulation of T-cell activation and function. As lower vertebrates, teleost fish mainly rely on a large family of pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) from various invading pathogens. In this review, we summarize recent advances in our understanding of alternative splicing of piscine PRRs including peptidoglycan recognition proteins (PGRPs), nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) and their downstream signaling molecules, compared to splicing in mammals. We also discuss what is known and unknown about the function of splicing isoforms in the innate immune responses against pathogens infection in mammals and teleost fish. Finally, we highlight the consequences of alternative splicing in the innate immune system and give our view of important directions for future studies.

  8. A KH-Domain RNA-Binding Protein Interacts with FIERY2/CTD Phosphatase-Like 1 and Splicing Factors and Is Important for Pre-mRNA Splicing in Arabidopsis

    KAUST Repository

    Chen, Tao; Cui, Peng; Chen, Hao; Ali, Shahjahan; Zhang, ShouDong; Xiong, Liming

    2013-01-01

    Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges. © 2013 Chen et al.

  9. A KH-Domain RNA-Binding Protein Interacts with FIERY2/CTD Phosphatase-Like 1 and Splicing Factors and Is Important for Pre-mRNA Splicing in Arabidopsis

    KAUST Repository

    Chen, Tao

    2013-10-17

    Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges. © 2013 Chen et al.

  10. Modelling reveals kinetic advantages of co-transcriptional splicing.

    Directory of Open Access Journals (Sweden)

    Stuart Aitken

    2011-10-01

    Full Text Available Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.

  11. Modelling reveals kinetic advantages of co-transcriptional splicing.

    Science.gov (United States)

    Aitken, Stuart; Alexander, Ross D; Beggs, Jean D

    2011-10-01

    Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.

  12. The role of polypyrimidine tract-binding proteins and other hnRNP proteins in plant splicing regulation

    Directory of Open Access Journals (Sweden)

    Andreas eWachter

    2012-05-01

    Full Text Available Alternative precursor mRNA splicing is a widespread phenomenon in multicellular eukaryotes and represents a major means for functional expansion of the transcriptome. While several recent studies have revealed an important link between splicing regulation and fundamental biological processes in plants, many important aspects, such as the underlying splicing regulatory mechanisms, are so far not well understood. Splicing decisions are in general based on a splicing code that is determined by the dynamic interplay of splicing-controlling factors and cis-regulatory elements. Several members of the group of heterogeneous nuclear ribonucleoprotein (hnRNP proteins are well-known regulators of splicing in animals and the comparatively few reports on some of their plant homologues revealed similar functions. This also applies to polypyrimidine tract-binding proteins (PTBs, a thoroughly investigated class of hnRNP proteins with splicing regulatory functions in both animals and plants. Further examples from plants are auto- and cross-regulatory splicing circuits of glycine-rich RNA-binding proteins (GRPs and splicing enhancement by oligouridylatebinding proteins. Besides their role in defining splice site choice, hnRNP proteins are also involved in multiple other steps of nucleic acid metabolism, highlighting the functional versatility of this group of proteins in higher eukaryotes.

  13. Expression of full-length and splice forms of FoxP3 in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Ryder, L R; Woetmann, A; Madsen, H O

    2010-01-01

    OBJECTIVE: The aim of our study was to compare the presence of full-length and alternative splice forms of FoxP3 mRNA in CD4 cells from rheumatoid arthritis (RA) patients and healthy controls. METHODS: A quantitative real-time polymerase chain reaction (QRT-PCR) method was used to measure...... the amount of FoxP3 mRNA full-length and splice forms. CD4-positive T cells were isolated from peripheral blood from 50 RA patients by immunomagnetic separation, and the FoxP3 mRNA expression was compared with the results from 10 healthy controls. RESULTS: We observed an increased expression of full......-length FoxP3 mRNA in RA patients when compared to healthy controls, as well as an increase in CD25 mRNA expression, but no corresponding increase in CTLA-4 mRNA expression. The presence of an alternative splice form of FoxP3 lacking exon 2 was confirmed in both RA patients and healthy controls...

  14. Alteration of introns in a hyaluronan synthase 1 (HAS1 minigene convert Pre-mRNA [corrected] splicing to the aberrant pattern in multiple myeloma (MM: MM patients harbor similar changes.

    Directory of Open Access Journals (Sweden)

    Jitra Kriangkum

    Full Text Available Aberrant pre-mRNA splice variants of hyaluronan synthase 1 (HAS1 have been identified in malignant cells from cancer patients. Bioinformatic analysis suggests that intronic sequence changes can underlie aberrant splicing. Deletions and mutations were introduced into HAS1 minigene constructs to identify regions that can influence aberrant intronic splicing, comparing the splicing pattern in transfectants with that in multiple myeloma (MM patients. Introduced genetic variations in introns 3 and 4 of HAS1 as shown here can promote aberrant splicing of the type detected in malignant cells from MM patients. HAS1Vd is a novel intronic splice variant first identified here. HAS1Vb, an intronic splice variant previously identified in patients, skips exon 4 and utilizes the same intron 4 alternative 3'splice site as HAS1Vd. For transfected constructs with unaltered introns 3 and 4, HAS1Vd transcripts are readily detectable, frequently to the exclusion of HAS1Vb. In contrast, in MM patients, HAS1Vb is more frequent than HAS1Vd. In the HAS1 minigene, combining deletion in intron 4 with mutations in intron 3 leads to a shift from HAS1Vd expression to HAS1Vb expression. The upregulation of aberrant splicing, exemplified here by the expression of HAS1Vb, is shown here to be influenced by multiple genetic changes in intronic sequences. For HAS1Vb, this includes enhanced exon 4 skipping and increased usage of alternative 3' splice sites. Thus, the combination of introduced mutations in HAS1 intron3 with introduced deletions in HAS1 intron 4 promoted a shift to an aberrant splicing pattern previously shown to be clinically significant. Most MM patients harbor genetic variations in intron 4, and as shown here, nearly half harbor recurrent mutations in HAS1 intron 3. Our work suggests that aberrant intronic HAS1 splicing in MM patients may rely on intronic HAS1 deletions and mutations that are frequent in MM patients but absent from healthy donors.

  15. Genome-wide data-mining of candidate human splice translational efficiency polymorphisms (STEPs and an online database.

    Directory of Open Access Journals (Sweden)

    Christopher A Raistrick

    2010-10-01

    Full Text Available Variation in pre-mRNA splicing is common and in some cases caused by genetic variants in intronic splicing motifs. Recent studies into the insulin gene (INS discovered a polymorphism in a 5' non-coding intron that influences the likelihood of intron retention in the final mRNA, extending the 5' untranslated region and maintaining protein quality. Retention was also associated with increased insulin levels, suggesting that such variants--splice translational efficiency polymorphisms (STEPs--may relate to disease phenotypes through differential protein expression. We set out to explore the prevalence of STEPs in the human genome and validate this new category of protein quantitative trait loci (pQTL using publicly available data.Gene transcript and variant data were collected and mined for candidate STEPs in motif regions. Sequences from transcripts containing potential STEPs were analysed for evidence of splice site recognition and an effect in expressed sequence tags (ESTs. 16 publicly released genome-wide association data sets of common diseases were searched for association to candidate polymorphisms with HapMap frequency data. Our study found 3324 candidate STEPs lying in motif sequences of 5' non-coding introns and further mining revealed 170 with transcript evidence of intron retention. 21 potential STEPs had EST evidence of intron retention or exon extension, as well as population frequency data for comparison.Results suggest that the insulin STEP was not a unique example and that many STEPs may occur genome-wide with potentially causal effects in complex disease. An online database of STEPs is freely accessible at http://dbstep.genes.org.uk/.

  16. RNA splicing in a new rhabdovirus from Culex mosquitoes.

    Science.gov (United States)

    Kuwata, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko

    2011-07-01

    Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae.

  17. Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA.

    Science.gov (United States)

    Wahba, Amy; Ryan, Michael C; Shankavaram, Uma T; Camphausen, Kevin; Tofilon, Philip J

    2018-01-02

    Alternative splicing is a critical event in the posttranscriptional regulation of gene expression. To investigate whether this process influences radiation-induced gene expression we defined the effects of ionizing radiation on the generation of alternative transcripts in total cellular mRNA (the transcriptome) and polysome-bound mRNA (the translatome) of the human glioblastoma stem-like cell line NSC11. For these studies, RNA-Seq profiles from control and irradiated cells were compared using the program SpliceSeq to identify transcripts and splice variations induced by radiation. As compared to the transcriptome (total RNA) of untreated cells, the radiation-induced transcriptome contained 92 splice events suggesting that radiation induced alternative splicing. As compared to the translatome (polysome-bound RNA) of untreated cells, the radiation-induced translatome contained 280 splice events of which only 24 were overlapping with the radiation-induced transcriptome. These results suggest that radiation not only modifies alternative splicing of precursor mRNA, but also results in the selective association of existing mRNA isoforms with polysomes. Comparison of radiation-induced alternative transcripts to radiation-induced gene expression in total RNA revealed little overlap (about 3%). In contrast, in the radiation-induced translatome, about 38% of the induced alternative transcripts corresponded to genes whose expression level was affected in the translatome. This study suggests that whereas radiation induces alternate splicing, the alternative transcripts present at the time of irradiation may play a role in the radiation-induced translational control of gene expression and thus cellular radioresponse.

  18. Landscape of the spliced leader trans-splicing mechanism in Schistosoma mansoni.

    Science.gov (United States)

    Boroni, Mariana; Sammeth, Michael; Gava, Sandra Grossi; Jorge, Natasha Andressa Nogueira; Macedo, Andréa Mara; Machado, Carlos Renato; Mourão, Marina Moraes; Franco, Glória Regina

    2018-03-01

    Spliced leader dependent trans-splicing (SLTS) has been described as an important RNA regulatory process that occurs in different organisms, including the trematode Schistosoma mansoni. We identified more than seven thousand putative SLTS sites in the parasite, comprising genes with a wide spectrum of functional classes, which underlines the SLTS as a ubiquitous mechanism in the parasite. Also, SLTS gene expression levels span several orders of magnitude, showing that SLTS frequency is not determined by the expression level of the target gene, but by the presence of particular gene features facilitating or hindering the trans-splicing mechanism. Our in-depth investigation of SLTS events demonstrates widespread alternative trans-splicing (ATS) acceptor sites occurring in different regions along the entire gene body, highlighting another important role of SLTS generating alternative RNA isoforms in the parasite, besides the polycistron resolution. Particularly for introns where SLTS directly competes for the same acceptor substrate with cis-splicing, we identified for the first time additional and important features that might determine the type of splicing. Our study substantially extends the current knowledge of RNA processing by SLTS in S. mansoni, and provide basis for future studies on the trans-splicing mechanism in other eukaryotes.

  19. Aberrant alternative splicing is another hallmark of cancer.

    Science.gov (United States)

    Ladomery, Michael

    2013-01-01

    The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks.

  20. Aberrant Alternative Splicing Is Another Hallmark of Cancer

    OpenAIRE

    Ladomery, Michael

    2013-01-01

    The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks.

  1. Multiple splicing defects in an intronic false exon.

    Science.gov (United States)

    Sun, H; Chasin, L A

    2000-09-01

    Splice site consensus sequences alone are insufficient to dictate the recognition of real constitutive splice sites within the typically large transcripts of higher eukaryotes, and large numbers of pseudoexons flanked by pseudosplice sites with good matches to the consensus sequences can be easily designated. In an attempt to identify elements that prevent pseudoexon splicing, we have systematically altered known splicing signals, as well as immediately adjacent flanking sequences, of an arbitrarily chosen pseudoexon from intron 1 of the human hprt gene. The substitution of a 5' splice site that perfectly matches the 5' consensus combined with mutation to match the CAG/G sequence of the 3' consensus failed to get this model pseudoexon included as the central exon in a dhfr minigene context. Provision of a real 3' splice site and a consensus 5' splice site and removal of an upstream inhibitory sequence were necessary and sufficient to confer splicing on the pseudoexon. This activated context also supported the splicing of a second pseudoexon sequence containing no apparent enhancer. Thus, both the 5' splice site sequence and the polypyrimidine tract of the pseudoexon are defective despite their good agreement with the consensus. On the other hand, the pseudoexon body did not exert a negative influence on splicing. The introduction into the pseudoexon of a sequence selected for binding to ASF/SF2 or its replacement with beta-globin exon 2 only partially reversed the effect of the upstream negative element and the defective polypyrimidine tract. These results support the idea that exon-bridging enhancers are not a prerequisite for constitutive exon definition and suggest that intrinsically defective splice sites and negative elements play important roles in distinguishing the real splicing signal from the vast number of false splicing signals.

  2. Alternative Splicing Control of Abiotic Stress Responses.

    Science.gov (United States)

    Laloum, Tom; Martín, Guiomar; Duque, Paula

    2018-02-01

    Alternative splicing, which generates multiple transcripts from the same gene, is an important modulator of gene expression that can increase proteome diversity and regulate mRNA levels. In plants, this post-transcriptional mechanism is markedly induced in response to environmental stress, and recent studies have identified alternative splicing events that allow rapid adjustment of the abundance and function of key stress-response components. In agreement, plant mutants defective in splicing factors are severely impaired in their response to abiotic stress. Notably, mounting evidence indicates that alternative splicing regulates stress responses largely by targeting the abscisic acid (ABA) pathway. We review here current understanding of post-transcriptional control of plant stress tolerance via alternative splicing and discuss research challenges for the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Reversion of the Arabidopsis rpn12a-1 exon-trap mutation by an intragenic suppressor that weakens the chimeric 5’ splice site [v2; ref status: indexed, http://f1000r.es/18y

    Directory of Open Access Journals (Sweden)

    Jasmina Kurepa

    2013-06-01

    Full Text Available Background: In the Arabidopsis 26S proteasome mutant rpn12a-1, an exon-trap T-DNA is inserted 531 base pairs downstream of the RPN12a STOP codon. We have previously shown that this insertion activates a STOP codon-associated latent 5' splice site that competes with the polyadenylation signal during processing of the pre-mRNA. As a result of this dual input from splicing and polyadenylation in the rpn12a-1 mutant, two RPN12a transcripts are produced and they encode the wild-type RPN12a and a chimeric RPN12a-NPTII protein. Both proteins form complexes with other proteasome subunits leading to the formation of wild-type and mutant proteasome versions. The net result of this heterogeneity of proteasome particles is a reduction of total cellular proteasome activity. One of the consequences of reduced proteasomal activity is decreased sensitivity to the major plant hormone cytokinin. Methods: We performed ethyl methanesulfonate mutagenesis of rpn12a-1 and isolated revertants with wild-type cytokinin sensitivity. Results: We describe the isolation and analyses of suppressor of rpn12a-1 (sor1. The sor1 mutation is intragenic and located at the fifth position of the chimeric intron. This mutation weakens the activated 5' splice site associated with the STOP codon and tilts the processing of the RPN12a mRNA back towards polyadenylation. Conclusions: These results validate our earlier interpretation of the unusual nature of the rpn12a-1 mutation. Furthermore, the data show that optimal 26S proteasome activity requires RPN12a accumulation beyond a critical threshold. Finally, this finding reinforces our previous conclusion that proteasome function is critical for the cytokinin-dependent regulation of plant growth.

  4. CDKL5 influences RNA splicing activity by its association to the nuclear speckle molecular machinery.

    Science.gov (United States)

    Ricciardi, Sara; Kilstrup-Nielsen, Charlotte; Bienvenu, Thierry; Jacquette, Aurélia; Landsberger, Nicoletta; Broccoli, Vania

    2009-12-01

    Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been shown to cause severe neurodevelopmental disorders including infantile spasms, encephalopathy, West-syndrome and an early-onset variant of Rett syndrome. CDKL5 is a serine/threonine kinase whose involvement in Rett syndrome can be inferred by its ability to directly bind and mediate phosphorylation of MeCP2. However, it remains to be elucidated how CDKL5 exerts its function. Here, we report that CDKL5 localizes to specific nuclear foci referred to as nuclear speckles in both cell lines and tissues. These sub-nuclear structures are traditionally considered as storage/modification sites of pre-mRNA splicing factors. Interestingly, we provide evidence that CDKL5 regulates the dynamic behaviour of nuclear speckles. Indeed, CDKL5 overexpression leads to nuclear speckle disassembly, and this event is strictly dependent on its kinase activity. Conversely, its down-regulation affects nuclear speckle morphology leading to abnormally large and uneven speckles. Similar results were obtained for primary adult fibroblasts isolated from CDKL5-mutated patients. Altogether, these findings indicate that CDKL5 controls nuclear speckle morphology probably by regulating the phosphorylation state of splicing regulatory proteins. Nuclear speckles are dynamic sites that can continuously supply splicing factors to active transcription sites, where splicing occurs. Notably, we proved that CDKL5 influences alternative splicing, at least as proved in heterologous minigene assays. In conclusion, we provide evidence that CDKL5 is involved indirectly in pre-mRNA processing, by controlling splicing factor dynamics. These findings identify a biological process whose disregulation might affect neuronal maturation and activity in CDKL5-related disorders.

  5. Mutual interdependence of splicing and transcription elongation.

    Science.gov (United States)

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  6. Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA

    International Nuclear Information System (INIS)

    Indik, Z.; Yeh, H.; Ornstein-goldstein, N.; Sheppard, P.; Anderson, N.; Rosenbloom, J.C.; Peltonen, L.; Rosenbloom, J.

    1987-01-01

    Poly(A) + RNA, isolated from a single 7-mo fetal human aorta, was used to synthesize cDNA by the RNase H method, and the cDNA was inserted into λgt10. Recombinant phage containing elastin sequences were identified by hybridization with cloned, exon-containing fragments of the human elastin gene. Three clones containing inserts of 3.3, 2.7, and 2.3 kilobases were selected for further analysis. Three overlapping clones containing 17.8 kilobases of the human elastin gene were also isolated from genomic libraries. Complete sequence analysis of the six clones demonstrated that: (i) the cDNA encompassed the entire translated portion of the mRNA encoding 786 amino acids, including several unusual hydrophilic amino acid sequences not previously identified in porcine tropoelastin, (ii) exons encoding either hydrophobic or crosslinking domains in the protein alternated in the gene, and (iii) a great abundance of Alu repetitive sequences occurred throughout the introns. The data also indicated substantial alternative splicing of the mRNA. These results suggest the potential for significant variation in the precise molecular structure of the elastic fiber in the human population

  7. UBL5 is essential for pre-mRNA splicing and sister chromatid cohesion in human cells

    DEFF Research Database (Denmark)

    Oka, Yasuyoshi; Varmark, Hanne; Vitting-Seerup, Kristoffer

    2014-01-01

    UBL5 is an atypical ubiquitin-like protein, whose function in metazoans remains largely unexplored. We show that UBL5 is required for sister chromatid cohesion maintenance in human cells. UBL5 primarily associates with spliceosomal proteins, and UBL5 depletion decreases pre-mRNA splicing efficien...

  8. Evaluation of MYBPC3 trans-Splicing and Gene Replacement as Therapeutic Options in Human iPSC-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Maksymilian Prondzynski

    2017-06-01

    Full Text Available Gene therapy is a promising option for severe forms of genetic diseases. We previously provided evidence for the feasibility of trans-splicing, exon skipping, and gene replacement in a mouse model of hypertrophic cardiomyopathy (HCM carrying a mutation in MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C. Here we used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs from an HCM patient carrying a heterozygous c.1358-1359insC MYBPC3 mutation and from a healthy donor. HCM hiPSC-CMs exhibited ∼50% lower MYBPC3 mRNA and cMyBP-C protein levels than control, no truncated cMyBP-C, larger cell size, and altered gene expression, thus reproducing human HCM features. We evaluated RNA trans-splicing and gene replacement after transducing hiPSC-CMs with adeno-associated virus. trans-splicing with 5′ or 3′ pre-trans-splicing molecules represented ∼1% of total MYBPC3 transcripts in healthy hiPSC-CMs. In contrast, gene replacement with the full-length MYBPC3 cDNA resulted in ∼2.5-fold higher MYBPC3 mRNA levels in HCM and control hiPSC-CMs. This restored the cMyBP-C level to 81% of the control level, suppressed hypertrophy, and partially restored gene expression to control level in HCM cells. This study provides evidence for (1 the feasibility of trans-splicing, although with low efficiency, and (2 efficient gene replacement in hiPSC-CMs with a MYBPC3 mutation.

  9. Changes in Cellular mRNA Stability, Splicing, and Polyadenylation through HuR Protein Sequestration by a Cytoplasmic RNA Virus

    Directory of Open Access Journals (Sweden)

    Michael D. Barnhart

    2013-11-01

    Full Text Available The impact of RNA viruses on the posttranscriptional regulation of cellular gene expression is unclear. Sindbis virus causes a dramatic relocalization of the cellular HuR protein from the nucleus to the cytoplasm in infected cells. This is to the result of the expression of large amounts of viral RNAs that contain high-affinity HuR binding sites in their 3′ UTRs effectively serving as a sponge for the HuR protein. Sequestration of HuR by Sindbis virus is associated with destabilization of cellular mRNAs that normally bind HuR and rely on it to regulate their expression. Furthermore, significant changes can be observed in nuclear alternative polyadenylation and splicing events on cellular pre-mRNAs as a result of sequestration of HuR protein by the 3′ UTR of transcripts of this cytoplasmic RNA virus. These studies suggest a molecular mechanism of virus-host interaction that probably has a significant impact on virus replication, cytopathology, and pathogenesis.

  10. Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR.

    Science.gov (United States)

    Barberán-Soler, Sergio; Fontrodona, Laura; Ribó, Anna; Lamm, Ayelet T; Iannone, Camilla; Cerón, Julián; Lehner, Ben; Valcárcel, Juan

    2014-09-25

    Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363) is associated with (1) accumulation of endo-small interfering RNAs (siRNAs) against an embedded Helitron transposon and (2) activation of an alternative 3' splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3' splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a "nonself" intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance.

    Directory of Open Access Journals (Sweden)

    Nadia Bakkour

    2007-10-01

    Full Text Available The development of multidrug-resistant viruses compromises antiretroviral therapy efficacy and limits therapeutic options. Therefore, it is an ongoing task to identify new targets for antiretroviral therapy and to develop new drugs. Here, we show that an indole derivative (IDC16 that interferes with exonic splicing enhancer activity of the SR protein splicing factor SF2/ASF suppresses the production of key viral proteins, thereby compromising subsequent synthesis of full-length HIV-1 pre-mRNA and assembly of infectious particles. IDC16 inhibits replication of macrophage- and T cell-tropic laboratory strains, clinical isolates, and strains with high-level resistance to inhibitors of viral protease and reverse transcriptase. Importantly, drug treatment of primary blood cells did not alter splicing profiles of endogenous genes involved in cell cycle transition and apoptosis. Thus, human splicing factors represent novel and promising drug targets for the development of antiretroviral therapies, particularly for the inhibition of multidrug-resistant viruses.

  12. Fine-scale variation and genetic determinants of alternative splicing across individuals.

    Directory of Open Access Journals (Sweden)

    Jasmin Coulombe-Huntington

    2009-12-01

    Full Text Available Recently, thanks to the increasing throughput of new technologies, we have begun to explore the full extent of alternative pre-mRNA splicing (AS in the human transcriptome. This is unveiling a vast layer of complexity in isoform-level expression differences between individuals. We used previously published splicing sensitive microarray data from lymphoblastoid cell lines to conduct an in-depth analysis on splicing efficiency of known and predicted exons. By combining publicly available AS annotation with a novel algorithm designed to search for AS, we show that many real AS events can be detected within the usually unexploited, speculative majority of the array and at significance levels much below standard multiple-testing thresholds, demonstrating that the extent of cis-regulated differential splicing between individuals is potentially far greater than previously reported. Specifically, many genes show subtle but significant genetically controlled differences in splice-site usage. PCR validation shows that 42 out of 58 (72% candidate gene regions undergo detectable AS, amounting to the largest scale validation of isoform eQTLs to date. Targeted sequencing revealed a likely causative SNP in most validated cases. In all 17 incidences where a SNP affected a splice-site region, in silico splice-site strength modeling correctly predicted the direction of the micro-array and PCR results. In 13 other cases, we identified likely causative SNPs disrupting predicted splicing enhancers. Using Fst and REHH analysis, we uncovered significant evidence that 2 putative causative SNPs have undergone recent positive selection. We verified the effect of five SNPs using in vivo minigene assays. This study shows that splicing differences between individuals, including quantitative differences in isoform ratios, are frequent in human populations and that causative SNPs can be identified using in silico predictions. Several cases affected disease-relevant genes and

  13. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.

    Science.gov (United States)

    Bai, Yongsheng; Kinne, Jeff; Donham, Brandon; Jiang, Feng; Ding, Lizhong; Hassler, Justin R; Kaufman, Randal J

    2016-08-22

    Most existing tools for detecting next-generation sequencing-based splicing events focus on generic splicing events. Consequently, special types of non-canonical splicing events of short mRNA regions (IRE1α targeted) have not yet been thoroughly addressed at a genome-wide level using bioinformatics approaches in conjunction with next-generation technologies. During endoplasmic reticulum (ER) stress, the gene encoding the RNase Ire1α is known to splice out a short 26 nt region from the mRNA of the transcription factor Xbp1 non-canonically within the cytosol. This causes an open reading frame-shift that induces expression of many downstream genes in reaction to ER stress as part of the unfolded protein response (UPR). We previously published an algorithm termed "Read-Split-Walk" (RSW) to identify non-canonical splicing regions using RNA-Seq data and applied it to ER stress-induced Ire1α heterozygote and knockout mouse embryonic fibroblast cell lines. In this study, we have developed an improved algorithm "Read-Split-Run" (RSR) for detecting genome-wide Ire1α-targeted genes with non-canonical spliced regions at a faster speed. We applied the RSR algorithm using different combinations of several parameters to the previously RSW tested mouse embryonic fibroblast cells (MEF) and the human Encyclopedia of DNA Elements (ENCODE) RNA-Seq data. We also compared the performance of RSR with two other alternative splicing events identification tools (TopHat (Trapnell et al., Bioinformatics 25:1105-1111, 2009) and Alt Event Finder (Zhou et al., BMC Genomics 13:S10, 2012)) utilizing the context of the spliced Xbp1 mRNA as a positive control in the data sets we identified it to be the top cleavage target present in Ire1α (+/-) but absent in Ire1α (-/-) MEF samples and this comparison was also extended to human ENCODE RNA-Seq data. Proof of principle came in our results by the fact that the 26 nt non-conventional splice site in Xbp1 was detected as the top hit by our new RSR

  14. The fitness cost of mis-splicing is the main determinant of alternative splicing patterns.

    Science.gov (United States)

    Saudemont, Baptiste; Popa, Alexandra; Parmley, Joanna L; Rocher, Vincent; Blugeon, Corinne; Necsulea, Anamaria; Meyer, Eric; Duret, Laurent

    2017-10-30

    Most eukaryotic genes are subject to alternative splicing (AS), which may contribute to the production of protein variants or to the regulation of gene expression via nonsense-mediated messenger RNA (mRNA) decay (NMD). However, a fraction of splice variants might correspond to spurious transcripts and the question of the relative proportion of splicing errors to functional splice variants remains highly debated. We propose a test to quantify the fraction of AS events corresponding to errors. This test is based on the fact that the fitness cost of splicing errors increases with the number of introns in a gene and with expression level. We analyzed the transcriptome of the intron-rich eukaryote Paramecium tetraurelia. We show that in both normal and in NMD-deficient cells, AS rates strongly decrease with increasing expression level and with increasing number of introns. This relationship is observed for AS events that are detectable by NMD as well as for those that are not, which invalidates the hypothesis of a link with the regulation of gene expression. Our results show that in genes with a median expression level, 92-98% of observed splice variants correspond to errors. We observed the same patterns in human transcriptomes and we further show that AS rates correlate with the fitness cost of splicing errors. These observations indicate that genes under weaker selective pressure accumulate more maladaptive substitutions and are more prone to splicing errors. Thus, to a large extent, patterns of gene expression variants simply reflect the balance between selection, mutation, and drift.

  15. Widespread alternative and aberrant splicing revealed by lariat sequencing

    Science.gov (United States)

    Stepankiw, Nicholas; Raghavan, Madhura; Fogarty, Elizabeth A.; Grimson, Andrew; Pleiss, Jeffrey A.

    2015-01-01

    Alternative splicing is an important and ancient feature of eukaryotic gene structure, the existence of which has likely facilitated eukaryotic proteome expansions. Here, we have used intron lariat sequencing to generate a comprehensive profile of splicing events in Schizosaccharomyces pombe, amongst the simplest organisms that possess mammalian-like splice site degeneracy. We reveal an unprecedented level of alternative splicing, including alternative splice site selection for over half of all annotated introns, hundreds of novel exon-skipping events, and thousands of novel introns. Moreover, the frequency of these events is far higher than previous estimates, with alternative splice sites on average activated at ∼3% the rate of canonical sites. Although a subset of alternative sites are conserved in related species, implying functional potential, the majority are not detectably conserved. Interestingly, the rate of aberrant splicing is inversely related to expression level, with lowly expressed genes more prone to erroneous splicing. Although we validate many events with RNAseq, the proportion of alternative splicing discovered with lariat sequencing is far greater, a difference we attribute to preferential decay of aberrantly spliced transcripts. Together, these data suggest the spliceosome possesses far lower fidelity than previously appreciated, highlighting the potential contributions of alternative splicing in generating novel gene structures. PMID:26261211

  16. Accumulation of GC donor splice signals in mammals

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2008-07-01

    Full Text Available Abstract The GT dinucleotide in the first two intron positions is the most conserved element of the U2 donor splice signals. However, in a small fraction of donor sites, GT is replaced by GC. A substantial enrichment of GC in donor sites of alternatively spliced genes has been observed previously in human, nematode and Arabidopsis, suggesting that GC signals are important for regulation of alternative splicing. We used parsimony analysis to reconstruct evolution of donor splice sites and inferred 298 GT > GC conversion events compared to 40 GC > GT conversion events in primate and rodent genomes. Thus, there was substantive accumulation of GC donor splice sites during the evolution of mammals. Accumulation of GC sites might have been driven by selection for alternative splicing. Reviewers This article was reviewed by Jerzy Jurka and Anton Nekrutenko. For the full reviews, please go to the Reviewers' Reports section.

  17. Ab initio prediction of mutation-induced cryptic splice-site activation and exon skipping

    Czech Academy of Sciences Publication Activity Database

    Divina, Petr; Kvitkovicova, Andrea; Buratti, E.; Vorechovsky, I.

    2009-01-01

    Roč. 17, č. 6 (2009), s. 759-765 ISSN 1018-4813 Institutional research plan: CEZ:AV0Z50520514 Keywords : mutation * cryptic splice site * exon skipping Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.564, year: 2009

  18. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp

    Science.gov (United States)

    Gotic, Ivana; Omidi, Saeed; Fleury-Olela, Fabienne; Molina, Nacho; Naef, Felix; Schibler, Ueli

    2016-01-01

    In mammals, body temperature fluctuates diurnally around a mean value of 36°C–37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells’ circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide “approach to steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression. PMID:27633015

  19. RNA Splicing in a New Rhabdovirus from Culex Mosquitoes▿†

    Science.gov (United States)

    Kuwata, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko

    2011-01-01

    Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae. PMID:21507977

  20. An empirical study of ensemble-based semi-supervised learning approaches for imbalanced splice site datasets.

    Science.gov (United States)

    Stanescu, Ana; Caragea, Doina

    2015-01-01

    Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging problem, due to the highly imbalanced distribution of the data, i.e., small number of splice sites as compared to the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised classifiers, specifically self-training and co-training classifiers. Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99, showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations show improvements over the corresponding supervised ensemble baselines. In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data distributions. Given that such distributions are common for many biological sequence classification problems, our work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological sequence annotation in a semi-supervised framework.

  1. SRSF1 Prevents DNA Damage and Promotes Tumorigenesis through Regulation of DBF4B Pre-mRNA Splicing

    Directory of Open Access Journals (Sweden)

    Linlin Chen

    2017-12-01

    Full Text Available Dysregulated alternative splicing events have been implicated in many types of cancer, but the underlying molecular mechanisms remain unclear. Here, we observe that the splicing factor SRSF1 regulates DBF4B exon6 splicing by specifically binding and promoting its inclusion. Knockdown of the exon6-containing isoform (DBF4B-FL significantly inhibits the tumorigenic potential of colon cancer cells in vitro and in mice, and SRSF1 inactivation phenocopies DBF4B-FL depletion. DBF4B-FL and SRSF1 are required for cancer cell proliferation and for the maintenance of genomic stability. Overexpression of DBF4B-FL can protect against DNA damage induced by SRSF1 knockdown and rescues growth defects in SRSF1-depleted cells. Increased DBF4B exon6 inclusion parallels SRSF1 upregulation in clinical colorectal cancer samples. Taken together, our findings identify SRSF1 as a key regulator of DBF4B pre-mRNA splicing dysregulation in colon cancer, with possible clinical implications as candidate prognostic factors in cancer patients.

  2. Novel splice mutation in microthalmia-associated transcription factor in Waardenburg Syndrome.

    Science.gov (United States)

    Brenner, Laura; Burke, Kelly; Leduc, Charles A; Guha, Saurav; Guo, Jiancheng; Chung, Wendy K

    2011-01-01

    Waardenburg Syndrome (WS) is a syndromic form of hearing loss associated with mutations in six different genes. We identified a large family with WS that had previously undergone clinical testing, with no reported pathogenic mutation. Using linkage analysis, a region on 3p14.1 with an LOD score of 6.6 was identified. Microthalmia-Associated Transcription Factor, a gene known to cause WS, is located within this region of linkage. Sequencing of Microthalmia-Associated Transcription Factor demonstrated a c.1212 G>A synonymous variant that segregated with the WS in the family and was predicted to cause a novel splicing site that was confirmed with expression analysis of the mRNA. This case illustrates the need to computationally analyze novel synonymous sequence variants for possible effects on splicing to maximize the clinical sensitivity of sequence-based genetic testing.

  3. Detection of alternative splice variants at the proteome level in Aspergillus flavus.

    Science.gov (United States)

    Chang, Kung-Yen; Georgianna, D Ryan; Heber, Steffen; Payne, Gary A; Muddiman, David C

    2010-03-05

    Identification of proteins from proteolytic peptides or intact proteins plays an essential role in proteomics. Researchers use search engines to match the acquired peptide sequences to the target proteins. However, search engines depend on protein databases to provide candidates for consideration. Alternative splicing (AS), the mechanism where the exon of pre-mRNAs can be spliced and rearranged to generate distinct mRNA and therefore protein variants, enable higher eukaryotic organisms, with only a limited number of genes, to have the requisite complexity and diversity at the proteome level. Multiple alternative isoforms from one gene often share common segments of sequences. However, many protein databases only include a limited number of isoforms to keep minimal redundancy. As a result, the database search might not identify a target protein even with high quality tandem MS data and accurate intact precursor ion mass. We computationally predicted an exhaustive list of putative isoforms of Aspergillus flavus proteins from 20 371 expressed sequence tags to investigate whether an alternative splicing protein database can assign a greater proportion of mass spectrometry data. The newly constructed AS database provided 9807 new alternatively spliced variants in addition to 12 832 previously annotated proteins. The searches of the existing tandem MS spectra data set using the AS database identified 29 new proteins encoded by 26 genes. Nine fungal genes appeared to have multiple protein isoforms. In addition to the discovery of splice variants, AS database also showed potential to improve genome annotation. In summary, the introduction of an alternative splicing database helps identify more proteins and unveils more information about a proteome.

  4. Abnormalities in alternative splicing of angiogenesis-related genes and their role in HIV-related cancers

    Directory of Open Access Journals (Sweden)

    Mthembu NN

    2017-03-01

    Full Text Available Nonkululeko N Mthembu,1 Zukile Mbita,2 Rodney Hull,1 Zodwa Dlamini1 1Research, Innovation and Engagements, Mangosuthu University of Technology, Durban, 2Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa Abstract: Alternative splicing of mRNA leads to an increase in proteome biodiversity by allowing the generation of multiple mRNAs, coding for multiple protein isoforms of various structural and functional properties from a single primary pre-mRNA transcript. The protein isoforms produced are tightly regulated in normal development but are mostly deregulated in various cancers. In HIV-infected individuals with AIDS, there is an increase in aberrant alternative splicing, resulting in an increase in HIV/AIDS-related cancers, such as Kaposi’s sarcoma, non-Hodgkin’s lymphoma, and cervical cancer. This aberrant splicing leads to abnormal production of protein and is caused by mutations in cis-acting elements or trans-acting factors in angiogenesis-related genes. Restoring the normal regulation of alternative splicing of angiogenic genes would alter the expression of protein isoforms and may confer normal cell physiology in patients with these cancers. This review highlights the abnormalities in alternative splicing of angiogenesis-related genes and their implication in HIV/AIDS-related cancers. This allows us to gain an insight into the pathogenesis of HIV/AIDS-related cancer and in turn elucidate the therapeutic potential of alternatively spliced genes in HIV/AIDS-related malignancies. Keywords: vascular endothelial growth factor, oncogenic viruses, hypoxia induced factor 1, Kaposi’s sarcoma, non-Hodgkin’s lymphoma, therapies targeting alternative splicing

  5. A synonymous polymorphic variation in ACADM exon 11 affects splicing efficiency and may affect fatty acid oxidation

    DEFF Research Database (Denmark)

    Bruun, Gitte Hoffmann; Doktor, Thomas Koed; Andresen, Brage Storstein

    2013-01-01

    beta-oxidation of medium-chain fatty acids. We examined the functional basis for this association and identified linkage between rs211718 and the intragenic synonymous polymorphic variant c.1161A>G in ACADM exon 11 (rs1061337). Employing minigene studies we show that the c.1161A allele is associated......, perhaps due to improved splicing. This study is a proof of principle that synonymous SNPs are not neutral. By changing the binding sites for splicing regulatory proteins they can have significant effects on pre-mRNA splicing and thus protein function. In addition, this study shows that for a sequence...

  6. A mild form of SLC29A3 disorder: a frameshift deletion leads to the paradoxical translation of an otherwise noncoding mRNA splice variant.

    Directory of Open Access Journals (Sweden)

    Alexandre Bolze

    Full Text Available We investigated two siblings with granulomatous histiocytosis prominent in the nasal area, mimicking rhinoscleroma and Rosai-Dorfman syndrome. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous frameshift deletion in SLC29A3, which encodes human equilibrative nucleoside transporter-3 (hENT3. Germline mutations in SLC29A3 have been reported in rare patients with a wide range of overlapping clinical features and inherited disorders including H syndrome, pigmented hypertrichosis with insulin-dependent diabetes, and Faisalabad histiocytosis. With the exception of insulin-dependent diabetes and mild finger and toe contractures in one sibling, the two patients with nasal granulomatous histiocytosis studied here displayed none of the many SLC29A3-associated phenotypes. This mild clinical phenotype probably results from a remarkable genetic mechanism. The SLC29A3 frameshift deletion prevents the expression of the normally coding transcripts. It instead leads to the translation, expression, and function of an otherwise noncoding, out-of-frame mRNA splice variant lacking exon 3 that is eliminated by nonsense-mediated mRNA decay (NMD in healthy individuals. The mutated isoform differs from the wild-type hENT3 by the modification of 20 residues in exon 2 and the removal of another 28 amino acids in exon 3, which include the second transmembrane domain. As a result, this new isoform displays some functional activity. This mechanism probably accounts for the narrow and mild clinical phenotype of the patients. This study highlights the 'rescue' role played by a normally noncoding mRNA splice variant of SLC29A3, uncovering a new mechanism by which frameshift mutations can be hypomorphic.

  7. Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids

    DEFF Research Database (Denmark)

    Chin, Joanna Y; Kuan, Jean Y; Lonkar, Pallavi S

    2008-01-01

    Splice-site mutations in the beta-globin gene can lead to aberrant transcripts and decreased functional beta-globin, causing beta-thalassemia. Triplex-forming DNA oligonucleotides (TFOs) and peptide nucleic acids (PNAs) have been shown to stimulate recombination in reporter gene loci in mammalian...... DNA fragments, can promote single base-pair modification at the start of the second intron of the beta-globin gene, the site of a common thalassemia-associated mutation. This single base pair change was detected by the restoration of proper splicing of transcripts produced from a green fluorescent...

  8. Novel Splicing Mutation in B3GAT3 Associated with Short Stature, GH Deficiency, Hypoglycaemia, Developmental Delay, and Multiple Congenital Anomalies

    Directory of Open Access Journals (Sweden)

    Samuel Bloor

    2017-01-01

    Full Text Available B3GAT3, encoding β-1,3-glucuronyltransferase 3, has an important role in proteoglycan biosynthesis. Homozygous B3GAT3 mutations have been associated with short stature, skeletal deformities, and congenital heart defects. We describe for the first time a novel heterozygous splice site mutation in B3GAT3 contributing to severe short stature, growth hormone (GH deficiency, recurrent ketotic hypoglycaemia, facial dysmorphism, and congenital heart defects. A female infant, born at 34 weeks’ gestation to nonconsanguineous Caucasian parents with a birth weight of 1.9 kg, was noted to have cloacal abnormality, ventricular septal defect, pulmonary stenosis, and congenital sensorineural deafness. At 4 years of age, she was diagnosed with GH deficiency due to her short stature (height G in the invariant “GT” splice donor site was identified. This variant is considered to be pathogenic as it decreases the splicing efficiency in the mRNA.

  9. Promoter proximal polyadenylation sites reduce transcription activity

    DEFF Research Database (Denmark)

    Andersen, Pia Kjølhede; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site......, which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites...... on transcription requires promoter proximity, as demonstrated using artificial constructs and supported by a genome-wide data set. Importantly, transcription down-regulation can be recapitulated in a gene context devoid of splice sites by placing a functional bona fide pA site/transcription terminator within ∼500...

  10. Chemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG) transcripts

    Science.gov (United States)

    Kumar, Amit; Parkesh, Raman; Sznajder, Lukasz J.; Childs-Disney, Jessica; Sobczak, Krzysztof; Disney, Matthew D.

    2012-01-01

    Recently, it was reported that expanded r(CAG) triplet repeats (r(CAG)exp) associated with untreatable neurological diseases cause pre-mRNA mis-splicing likely due to sequestration of muscleblind-like 1 (MBNL1) splicing factor. Bioactive small molecules that bind the 5’CAG/3’GAC motif found in r(CAG)exp hairpin structure were identified by using RNA binding studies and virtual screening/chemical similarity searching. Specifically, a benzylguanidine-containing small molecule was found to improve pre-mRNA alternative splicing of MBNL1-sensitive exons in cells expressing the toxic r(CAG)exp. The compound was identified by first studying the binding of RNA 1×1 nucleotide internal loops to small molecules known to have affinity for nucleic acids. Those studies identified 4',6-diamidino-2-phenylindole (DAPI) as a specific binder to RNAs with the 5’CAG/3’GAC motif. DAPI was then used as a query molecule in a shape- and chemistry alignment-based virtual screen to identify compounds with improved properties, which identified 4-guanidinophenyl 4-guanidinobenzoate as small molecule capable of improving pre-mRNA splicing defects associated with the r(CAG)exp-MBNL1 complex. This compound may facilitate the development of therapeutics to treat diseases caused by r(CAG)exp and could serve as a useful chemical tool to dissect the mechanisms of r(CAG)exp toxicity. The approach used in these studies, defining the small RNA motifs that bind known nucleic acid binders and then using virtual screening to optimize them for bioactivity, may be generally applicable for designing small molecules that target other RNAs in human genomic sequence. PMID:22252896

  11. Connecting the dots: chromatin and alternative splicing in EMT.

    Science.gov (United States)

    Warns, Jessica A; Davie, James R; Dhasarathy, Archana

    2016-02-01

    Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.

  12. Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain.

    Directory of Open Access Journals (Sweden)

    Helen M Wise

    Full Text Available Segment 7 of influenza A virus produces up to four mRNAs. Unspliced transcripts encode M1, spliced mRNA2 encodes the M2 ion channel, while protein products from spliced mRNAs 3 and 4 have not previously been identified. The M2 protein plays important roles in virus entry and assembly, and is a target for antiviral drugs and vaccination. Surprisingly, M2 is not essential for virus replication in a laboratory setting, although its loss attenuates the virus. To better understand how IAV might replicate without M2, we studied the reversion mechanism of an M2-null virus. Serial passage of a virus lacking the mRNA2 splice donor site identified a single nucleotide pseudoreverting mutation, which restored growth in cell culture and virulence in mice by upregulating mRNA4 synthesis rather than by reinstating mRNA2 production. We show that mRNA4 encodes a novel M2-related protein (designated M42 with an antigenically distinct ectodomain that can functionally replace M2 despite showing clear differences in intracellular localisation, being largely retained in the Golgi compartment. We also show that the expression of two distinct ion channel proteins is not unique to laboratory-adapted viruses but, most notably, was also a feature of the 1983 North American outbreak of H5N2 highly pathogenic avian influenza virus. In identifying a 14th influenza A polypeptide, our data reinforce the unexpectedly high coding capacity of the viral genome and have implications for virus evolution, as well as for understanding the role of M2 in the virus life cycle.

  13. Global identification of hnRNP A1 binding sites for SSO-based splicing modulation

    DEFF Research Database (Denmark)

    Bruun, Gitte H; Doktor, Thomas K; Borch-Jensen, Jonas

    2016-01-01

    for this deregulation by blocking other SREs with splice-switching oligonucleotides (SSOs). However, the location and sequence of most SREs are not well known. RESULTS: Here, we used individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) to establish an in vivo binding map for the key splicing...... regulatory factor hnRNP A1 and to generate an hnRNP A1 consensus binding motif. We find that hnRNP A1 binding in proximal introns may be important for repressing exons. We show that inclusion of the alternative cassette exon 3 in SKA2 can be significantly increased by SSO-based treatment which blocks an i...... downstream of the 5' splice site can be blocked by SSOs to activate the exon. CONCLUSIONS: The hnRNP A1 binding map can be used to identify potential targets for SSO-based therapy. Moreover, together with the hnRNP A1 consensus binding motif, the binding map may be used to predict whether disease...

  14. Vitamin D and alternative splicing of RNA.

    Science.gov (United States)

    Zhou, Rui; Chun, Rene F; Lisse, Thomas S; Garcia, Alejandro J; Xu, Jianzhong; Adams, John S; Hewison, Martin

    2015-04-01

    The active form of vitamin D (1α,25-dihydroxyvitamin D, 1,25(OH)2D) exerts its genomic effects via binding to a nuclear high-affinity vitamin D receptor (VDR). Recent deep sequencing analysis of VDR binding locations across the complete genome has significantly expanded our understanding of the actions of vitamin D and VDR on gene transcription. However, these studies have also promoted appreciation of the extra-transcriptional impact of vitamin D on gene expression. It is now clear that vitamin D interacts with the epigenome via effects on DNA methylation, histone acetylation, and microRNA generation to maintain normal biological functions. There is also increasing evidence that vitamin D can influence pre-mRNA constitutive splicing and alternative splicing, although the mechanism for this remains unclear. Pre-mRNA splicing has long been thought to be a post-transcription RNA processing event, but current data indicate that this occurs co-transcriptionally. Several steroid hormones have been recognized to coordinately control gene transcription and pre-mRNA splicing through the recruitment of nuclear receptor co-regulators that can both control gene transcription and splicing. The current review will discuss this concept with specific reference to vitamin D, and the potential role of heterogeneous nuclear ribonucleoprotein C (hnRNPC), a nuclear factor with an established function in RNA splicing. hnRNPC, has been shown to be involved in the VDR transcriptional complex as a vitamin D-response element-binding protein (VDRE-BP), and may act as a coupling factor linking VDR-directed gene transcription with RNA splicing. In this way hnRNPC may provide an additional mechanism for the fine-tuning of vitamin D-regulated target gene expression. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob Lewin; Roy, Scott William

    2009-01-01

    and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5' splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little...

  16. Feature selection for splice site prediction: A new method using EDA-based feature ranking

    Directory of Open Access Journals (Sweden)

    Rouzé Pierre

    2004-05-01

    Full Text Available Abstract Background The identification of relevant biological features in large and complex datasets is an important step towards gaining insight in the processes underlying the data. Other advantages of feature selection include the ability of the classification system to attain good or even better solutions using a restricted subset of features, and a faster classification. Thus, robust methods for fast feature selection are of key importance in extracting knowledge from complex biological data. Results In this paper we present a novel method for feature subset selection applied to splice site prediction, based on estimation of distribution algorithms, a more general framework of genetic algorithms. From the estimated distribution of the algorithm, a feature ranking is derived. Afterwards this ranking is used to iteratively discard features. We apply this technique to the problem of splice site prediction, and show how it can be used to gain insight into the underlying biological process of splicing. Conclusion We show that this technique proves to be more robust than the traditional use of estimation of distribution algorithms for feature selection: instead of returning a single best subset of features (as they normally do this method provides a dynamical view of the feature selection process, like the traditional sequential wrapper methods. However, the method is faster than the traditional techniques, and scales better to datasets described by a large number of features.

  17. Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5' splice site

    DEFF Research Database (Denmark)

    Martínez-Pizarro, Ainhoa; Dembic, Maja; Pérez, Belén

    2018-01-01

    Phenylketonuria (PKU), one of the most common inherited diseases of amino acid metabolism, is caused by mutations in the phenylalanine hydroxylase (PAH) gene. Recently, PAH exon 11 was identified as a vulnerable exon due to a weak 3' splice site, with different exonic mutations affecting exon 11 ...

  18. Diversity in mRNA expression of the serine-type carboxypeptidase ocpG in Aspergillus oryzae through intron retention.

    Science.gov (United States)

    Ishida, Ken; Kuboshima, Megumi; Morita, Hiroto; Maeda, Hiroshi; Okamoto, Ayako; Takeuchi, Michio; Yamagata, Youhei

    2014-01-01

    Alternative splicing is thought to be a means for diversification of products by mRNA modification. Although some intron retentions are predicted by transcriptome analysis in Aspergillus oryzae, its physiological significance remains unknown. We found that intron retention occurred occasionally in the serine-type carboxypeptidase gene, ocpG. Analysis under various culture conditions revealed that extracellular nitrogen conditions influence splicing patterns; this suggested that there might be a correlation between splicing efficiency and the necessity of OcpG activity for obtaining a nitrogen source. Since further analysis showed that splicing occurred independently in each intron, we constructed ocpG intron-exchanging strain by interchanging the positions of intron-1 and intron-2. The splicing pattern indicated the probability that ocpG intron retention was affected by the secondary structures of intronic mRNA.

  19. LSM Proteins Provide Accurate Splicing and Decay of Selected Transcripts to Ensure Normal Arabidopsis Development[W

    Science.gov (United States)

    Perea-Resa, Carlos; Hernández-Verdeja, Tamara; López-Cobollo, Rosa; Castellano, María del Mar; Salinas, Julio

    2012-01-01

    In yeast and animals, SM-like (LSM) proteins typically exist as heptameric complexes and are involved in different aspects of RNA metabolism. Eight LSM proteins, LSM1 to 8, are highly conserved and form two distinct heteroheptameric complexes, LSM1-7 and LSM2-8,that function in mRNA decay and splicing, respectively. A search of the Arabidopsis thaliana genome identifies 11 genes encoding proteins related to the eight conserved LSMs, the genes encoding the putative LSM1, LSM3, and LSM6 proteins being duplicated. Here, we report the molecular and functional characterization of the Arabidopsis LSM gene family. Our results show that the 11 LSM genes are active and encode proteins that are also organized in two different heptameric complexes. The LSM1-7 complex is cytoplasmic and is involved in P-body formation and mRNA decay by promoting decapping. The LSM2-8 complex is nuclear and is required for precursor mRNA splicing through U6 small nuclear RNA stabilization. More importantly, our results also reveal that these complexes are essential for the correct turnover and splicing of selected development-related mRNAs and for the normal development of Arabidopsis. We propose that LSMs play a critical role in Arabidopsis development by ensuring the appropriate development-related gene expression through the regulation of mRNA splicing and decay. PMID:23221597

  20. Structure, dynamics and RNA binding of the multi-domain splicing factor TIA-1

    Science.gov (United States)

    Wang, Iren; Hennig, Janosch; Jagtap, Pravin Kumar Ankush; Sonntag, Miriam; Valcárcel, Juan; Sattler, Michael

    2014-01-01

    Alternative pre-messenger ribonucleic acid (pre-mRNA) splicing is an essential process in eukaryotic gene regulation. The T-cell intracellular antigen-1 (TIA-1) is an apoptosis-promoting factor that modulates alternative splicing of transcripts, including the pre-mRNA encoding the membrane receptor Fas. TIA-1 is a multi-domain ribonucleic acid (RNA) binding protein that recognizes poly-uridine tract RNA sequences to facilitate 5′ splice site recognition by the U1 small nuclear ribonucleoprotein (snRNP). Here, we characterize the RNA interaction and conformational dynamics of TIA-1 by nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC) and small angle X-ray scattering (SAXS). Our NMR-derived solution structure of TIA-1 RRM2–RRM3 (RRM2,3) reveals that RRM2 adopts a canonical RNA recognition motif (RRM) fold, while RRM3 is preceded by an non-canonical helix α0. NMR and SAXS data show that all three RRMs are largely independent structural modules in the absence of RNA, while RNA binding induces a compact arrangement. RRM2,3 binds to pyrimidine-rich FAS pre-mRNA or poly-uridine (U9) RNA with nanomolar affinities. RRM1 has little intrinsic RNA binding affinity and does not strongly contribute to RNA binding in the context of RRM1,2,3. Our data unravel the role of binding avidity and the contributions of the TIA-1 RRMs for recognition of pyrimidine-rich RNAs. PMID:24682828

  1. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kuk; Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr

    2016-02-05

    Gene expression is regulated at multiple steps, such as transcription, splicing, export, degradation and translation. Considering diverse roles of SR proteins, we determined whether the tumor-related splicing factor SRSF3 regulates the expression of the tumor-suppressor protein, PDCD4, at multiple steps. As we have reported previously, knockdown of SRSF3 increased the PDCD4 protein level in SW480 colon cancer cells. More interestingly, here we showed that the alternative splicing and the nuclear export of minor isoforms of pdcd4 mRNA were repressed by SRSF3, but the translation step was unaffected. In contrast, only the translation step of the major isoform of pdcd4 mRNA was repressed by SRSF3. Therefore, overexpression of SRSF3 might be relevant to the repression of all isoforms of PDCD4 protein levels in most types of cancer cell. We propose that SRSF3 could act as a coordinator of the expression of PDCD4 protein via two mechanisms on two alternatively spliced mRNA isoforms.

  2. Regulation of mRNA Levels by Decay-Promoting Introns that Recruit the Exosome Specificity Factor Mmi1

    Directory of Open Access Journals (Sweden)

    Cornelia Kilchert

    2015-12-01

    Full Text Available In eukaryotic cells, inefficient splicing is surprisingly common and leads to the degradation of transcripts with retained introns. How pre-mRNAs are committed to nuclear decay is unknown. Here, we uncover a mechanism by which specific intron-containing transcripts are targeted for nuclear degradation in fission yeast. Sequence elements within these “decay-promoting” introns co-transcriptionally recruit the exosome specificity factor Mmi1, which induces degradation of the unspliced precursor and leads to a reduction in the levels of the spliced mRNA. This mechanism negatively regulates levels of the RNA helicase DDX5/Dbp2 to promote cell survival in response to stress. In contrast, fast removal of decay-promoting introns by co-transcriptional splicing precludes Mmi1 recruitment and relieves negative expression regulation. We propose that decay-promoting introns facilitate the regulation of gene expression. Based on the identification of multiple additional Mmi1 targets, including mRNAs, long non-coding RNAs, and sn/snoRNAs, we suggest a general role in RNA regulation for Mmi1 through transcript degradation.

  3. A Gene Gun-mediated Nonviral RNA trans-splicing Strategy for Col7a1 Repair

    Directory of Open Access Journals (Sweden)

    Patricia Peking

    2016-01-01

    Full Text Available RNA trans-splicing represents an auspicious option for the correction of genetic mutations at RNA level. Mutations within COL7A1 causing strong reduction or absence of type VII collagen are associated with the severe skin blistering disease dystrophic epidermolysis bullosa. The human COL7A1 mRNA constitutes a suitable target for this RNA therapy approach, as only a portion of the almost 9 kb transcript has to be delivered into the target cells. Here, we have proven the feasibility of 5′ trans-splicing into the Col7a1 mRNA in vitro and in vivo. We designed a 5′ RNA trans-splicing molecule, capable of replacing Col7a1 exons 1–15 and verified it in a fluorescence-based trans-splicing model system. Specific and efficient Col7a1 trans-splicing was confirmed in murine keratinocytes. To analyze trans-splicing in vivo, we used gene gun delivery of a minicircle expressing a FLAG-tagged 5′ RNA trans-splicing molecule into the skin of wild-type mice. Histological and immunofluorescence analysis of bombarded skin sections revealed vector delivery and expression within dermis and epidermis. Furthermore, we have detected trans-spliced type VII collagen protein using FLAG-tag antibodies. In conclusion, we describe a novel in vivo nonviral RNA therapy approach to restore type VII collagen expression for causative treatment of dystrophic epidermolysis bullosa.

  4. Spliced XBP1 promotes macrophage survival and autophagy by interacting with Beclin-1

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ping-Ge [Southern Medical University, Guangzhou, Guangdong 510515 (China); Jiang, Zhi-Xin [Centre Laboratory, The 305th Hospital of the People' s Liberation Army, Beijing 100017 (China); Li, Jian-Hua [Department of Geriatric Cardiology, Chinese PLA General Hosptial, Beijing 100853 (China); Zhou, Zhe, E-mail: zhouzhe76@126.com [Laboratory of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Zhang, Qing-Hua, E-mail: 1056055170@qq.com [Department of Cardiology, The 305th Hospital of the People' s Liberation Army, Beijing 100017 (China)

    2015-08-07

    Macrophage autophagy plays an important role in the development of atherosclerosis, but the precise mechanism mediating this process is unclear. The potential role of the X-box binding protein 1 (XBP1), a crucial transduction factor that is involved in endoplasmic reticulum stress and the unfolded protein response, in bone marrow-derived macrophage autophagy is unknown. This study mainly explores the roles of XBP1 mRNA splicing in bone marrow-derived macrophage autophagy. The present study shows that the transient overexpression of spliced XBP1 via adenovirus-mediated gene transfer induces autophagy and promotes proliferation in bone marrow-derived macrophages via the down-regulation of Beclin-1, but that the sustained overexpression of spliced XBP1 leads to apoptosis. When XBP1 is down-regulated in bone marrow-derived macrophages using siRNA, rapamycin-induced autophagosome formation is ablated. Furthermore, we have detected the overexpression of XBP1 in areas of atherosclerotic plaques in the arteries of ApoE−/− mice. These results demonstrate that XBP1 mRNA splicing plays an important role in maintaining the function of bone marrow-derived macrophages and provide new insight into the study and treatment of atherosclerosis. - Highlights: • XBP1 was up-regulated in atherosclerotic plaques of ApoE−/− mice. • Transient spliced XBP1 overexpression induced macrophages autophagy via Beclin-1. • Sustained spliced XBP1 overexpression triggered macrophages apoptosis. • Spliced XBP1 plays a key role in maintaining the macrophages survival.

  5. Systematic profiling of alternative splicing signature reveals prognostic predictor for ovarian cancer.

    Science.gov (United States)

    Zhu, Junyong; Chen, Zuhua; Yong, Lei

    2018-02-01

    The majority of genes are alternatively spliced and growing evidence suggests that alternative splicing is modified in cancer and is associated with cancer progression. Systematic analysis of alternative splicing signature in ovarian cancer is lacking and greatly needed. We profiled genome-wide alternative splicing events in 408 ovarian serous cystadenocarcinoma (OV) patients in TCGA. Seven types of alternative splicing events were curated and prognostic analyses were performed with predictive models and splicing network built for OV patients. Among 48,049 mRNA splicing events in 10,582 genes, we detected 2,611 alternative splicing events in 2,036 genes which were significant associated with overall survival of OV patients. Exon skip events were the most powerful prognostic factors among the seven types. The area under the curve of the receiver-operator characteristic curve for prognostic predictor, which was built with top significant alternative splicing events, was 0.937 at 2,000 days of overall survival, indicating powerful efficiency in distinguishing patient outcome. Interestingly, splicing correlation network suggested obvious trends in the role of splicing factors in OV. In summary, we built powerful prognostic predictors for OV patients and uncovered interesting splicing networks which could be underlying mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The Cancer Exome Generated by Alternative mRNA Splicing Dilutes Predicted HLA Class I Epitope Density

    DEFF Research Database (Denmark)

    Stranzl, Thomas; Larsen, Mette Voldby; Lund, Ole

    2012-01-01

    Several studies have shown that cancers actively regulate alternative splicing. Altered splicing mechanisms in cancer lead to cancer-specific transcripts different from the pool of transcripts occurring only in healthy tissue. At the same time, altered presentation of HLA class I epitopes...... is frequently observed in various types of cancer. Down-regulation of genes related to HLA class I antigen processing has been observed in several cancer types, leading to fewer HLA class I antigens on the cell surface. Here, we use a peptidome wide analysis of predicted alternative splice forms, based...... on a publicly available database, to show that peptides over-represented in cancer splice variants comprise significantly fewer predicted HLA class I epitopes compared to peptides from normal transcripts. Peptides over-represented in cancer transcripts are in the case of the three most common HLA class I...

  7. An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway.

    Directory of Open Access Journals (Sweden)

    Mariana Serpeloni

    Full Text Available In eukaryotic cells, different RNA species are exported from the nucleus via specialized pathways. The mRNA export machinery is highly integrated with mRNA processing, and includes a different set of nuclear transport adaptors as well as other mRNA binding proteins, RNA helicases, and NPC-associated proteins. The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, a widespread and neglected human disease which is endemic to Latin America. Gene expression in Trypanosoma has unique characteristics, such as constitutive polycistronic transcription of protein-encoding genes and mRNA processing by trans-splicing. In general, post-transcriptional events are the major points for regulation of gene expression in these parasites. However, the export pathway of mRNA from the nucleus is poorly understood. The present study investigated the function of TcSub2, which is a highly conserved protein ortholog to Sub2/ UAP56, a component of the Transcription/Export (TREX multiprotein complex connecting transcription with mRNA export in yeast/human. Similar to its orthologs, TcSub2 is a nuclear protein, localized in dispersed foci all over the nuclei -except the fibrillar center of nucleolus- and at the interface between dense and non-dense chromatin areas, proposing the association of TcSub2 with transcription/processing sites. These findings were analyzed further by BrUTP incorporation assays and confirmed that TcSub2 is physically associated with active RNA polymerase II (RNA pol II, but not RNA polymerase I (RNA pol I or Spliced Leader (SL transcription, demonstrating participation particularly in nuclear mRNA metabolism in T. cruzi. The double knockout of the TcSub2 gene is lethal in T. cruzi, suggesting it has an essential function. Alternatively, RNA interference assays were performed in Trypanosoma brucei. It allowed demonstrating that besides being an essential protein, its knockdown causes mRNA accumulation in the nucleus and

  8. Sequences within the 5' untranslated region regulate the levels of a kinetoplast DNA topoisomerase mRNA during the cell cycle.

    Science.gov (United States)

    Pasion, S G; Hines, J C; Ou, X; Mahmood, R; Ray, D S

    1996-12-01

    Gene expression in trypanosomatids appears to be regulated largely at the posttranscriptional level and involves maturation of mRNA precursors by trans splicing of a 39-nucleotide miniexon sequence to the 5' end of the mRNA and cleavage and polyadenylation at the 3' end of the mRNA. To initiate the identification of sequences involved in the periodic expression of DNA replication genes in trypanosomatids, we have mapped splice acceptor sites in the 5' flanking region of the TOP2 gene, which encodes the kinetoplast DNA topoisomerase, and have carried out deletion analysis of this region on a plasmid-encoded TOP2 gene. Block deletions within the 5' untranslated region (UTR) identified two regions (-608 to -388 and -387 to -186) responsible for periodic accumulation of the mRNA. Deletion of one or the other of these sequences had no effect on periodic expression of the mRNA, while deletion of both regions resulted in constitutive expression of the mRNA throughout the cell cycle. Subcloning of these sequences into the 5' UTR of a construct lacking both regions of the TOP2 5' UTR has shown that an octamer consensus sequence present in the 5' UTR of the TOP2, RPA1, and DHFR-TS mRNAs is required for normal cycling of the TOP2 mRNA. Mutation of the consensus octamer sequence in the TOP2 5' UTR in a plasmid construct containing only a single consensus octamer and that shows normal cycling of the plasmid-encoded TOP2 mRNA resulted in substantial reduction of the cycling of the mRNA level. These results imply a negative regulation of TOP2 mRNA during the cell cycle by a mechanism involving redundant elements containing one or more copies of a conserved octamer sequence within the 5' UTR of TOP2 mRNA.

  9. RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication.

    Science.gov (United States)

    Ganaie, Safder S; Chen, Aaron Yun; Huang, Chun; Xu, Peng; Kleiboeker, Steve; Du, Aifang; Qiu, Jianming

    2018-04-15

    Human parvovirus B19 (B19V) expresses a single precursor mRNA (pre-mRNA), which undergoes alternative splicing and alternative polyadenylation to generate 12 viral mRNA transcripts that encode two structural proteins (VP1 and VP2) and three nonstructural proteins (NS1, 7.5-kDa protein, and 11-kDa protein). Splicing at the second 5' donor site (D2 site) of the B19V pre-mRNA is essential for the expression of VP2 and the 11-kDa protein. We previously identified that cis -acting intronic splicing enhancer 2 (ISE2) that lies immediately after the D2 site facilitates the recognition of the D2 donor for its efficient splicing. In this study, we report that ISE2 is critical for the expression of the 11-kDa viral nonstructural protein. We found that ISE2 harbors a consensus RNA binding motif protein 38 (RBM38) binding sequence, 5'-UGUGUG-3'. RBM38 is expressed during the middle stage of erythropoiesis. We first confirmed that RBM38 binds specifically with the ISE2 element in vitro The knockdown of RBM38 significantly decreases the level of spliced mRNA at D2 that encodes the 11-kDa protein but not that of the D2-spliced mRNA that encodes VP2. Importantly, we found that the 11-kDa protein enhances viral DNA replication and virion release. Accordingly, the knockdown of RBM38 decreases virus replication via downregulating 11-kDa protein expression. Taken together, these results suggest that the 11-kDa protein facilitates B19V DNA replication and that RBM38 is an essential host factor for B19V pre-mRNA splicing and for the expression of the 11-kDa protein. IMPORTANCE B19V is a human pathogen that can cause fifth disease, arthropathy, anemia in immunocompromised patients and sickle cell disease patients, myocarditis, and hydrops fetalis in pregnant women. Human erythroid progenitor cells (EPCs) are most susceptible to B19V infection and fully support viral DNA replication. The exclusive tropism of B19V for erythroid-lineage cells is dependent not only on the expression of viral

  10. Splicing of phenylalanine hydroxylase (PAH) exon 11 is vulnerable - Molecular pathology of mutations in PAH exon 11

    DEFF Research Database (Denmark)

    Heintz, Caroline; Dobrowolski, Steven F.; Andersen, Henriette Skovgaard

    2012-01-01

    as a vulnerable exon and used patient derived lymphoblast cell lines and PAH minigenes to study the molecular defect that impacted pre-mRNA processing. We showed that the c.1144T>C and c.1066-3C>T mutations cause exon 11 skipping, while the c.1139C>T mutation is neutral or slightly beneficial. The c.1144T......In about 20-30% of phenylketonuria (PKU) patients, phenylalanine (Phe) levels can be controlled by cofactor 6R-tetrahydrobiopterin (BH(4)) administration. The phenylalanine hydroxylase (PAH) genotype has a predictive value concerning BH(4)-response and therefore a correct assessment of the mutation...... molecular pathology is important. Mutations that disturb the splicing of exons (e.g. interplay between splice site strength and regulatory sequences like exon splicing enhancers (ESEs)/exon splicing silencers (ESSs)) may cause different severity of PKU. In this study, we identified PAH exon 11...

  11. LAMMER kinase Kic1 is involved in pre-mRNA processing

    International Nuclear Information System (INIS)

    Tang, Zhaohua; Luca, Maria; Portillio, Jessica; Ngo, Benson; Chang, Cathey; Wen, Teresa; Murray, Johanne; Carr, Antony

    2011-01-01

    The LAMMER kinases are conserved through evolution. They play vital roles in cell growth/differentiation, development, and metabolism. One of the best known functions of the kinases in animal cells is the regulation of pre-mRNA splicing. Kic1 is the LAMMER kinase in fission yeast Schizosaccharomyces pombe. Despite the reported pleiotropic effects of kic1 + deletion/overexpression on various cellular processes the involvement of Kic1 in splicing remains elusive. In this study, we demonstrate for the first time that Kic1 not only is required for efficient splicing but also affects mRNA export, providing evidence for the conserved roles of LAMMER kinases in the unicellular context of fission yeast. Consistent with the hypothesis of its direct participation in multiple steps of pre-mRNA processing, Kic1 is predominantly present in the nucleus during interphase. In addition, the kinase activity of Kic1 plays a role in modulating its own cellular partitioning. Interestingly, Kic1 expression oscillates in a cell cycle-dependent manner and the peak level coincides with mitosis and cytokinesis, revealing a potential mechanism for controlling the kinase activity during the cell cycle. The novel information about the in vivo functions and regulation of Kic1 offers insights into the conserved biological roles fundamental to LAMMER kinases in eukaryotes.

  12. PGC1α −1 Nucleosome Position and Splice Variant Expression and Cardiovascular Disease Risk in Overweight and Obese Individuals

    Directory of Open Access Journals (Sweden)

    Tara M. Henagan

    2014-01-01

    Full Text Available PGC1α, a transcriptional coactivator, interacts with PPARs and others to regulate skeletal muscle metabolism. PGC1α undergoes splicing to produce several mRNA variants, with the NTPGC1α variant having a similar biological function to the full length PGC1α (FLPGC1α. CVD is associated with obesity and T2D and a lower percentage of type 1 oxidative fibers and impaired mitochondrial function in skeletal muscle, characteristics determined by PGC1α expression. PGC1α expression is epigenetically regulated in skeletal muscle to determine mitochondrial adaptations, and epigenetic modifications may regulate mRNA splicing. We report in this paper that skeletal muscle PGC1α  −1 nucleosome (−1N position is associated with splice variant NTPGC1α but not FLPGC1α expression. Division of participants based on the −1N position revealed that those individuals with a −1N phased further upstream from the transcriptional start site (UP expressed lower levels of NTPGC1α than those with the −1N more proximal to TSS (DN. UP showed an increase in body fat percentage and serum total and LDL cholesterol. These findings suggest that the −1N may be a potential epigenetic regulator of NTPGC1α splice variant expression, and −1N position and NTPGC1α variant expression in skeletal muscle are linked to CVD risk. This trial is registered with clinicaltrials.gov, identifier NCT00458133.

  13. Pancreatic α-cell hyperplasia and hyperglucagonemia due to a glucagon receptor splice mutation

    Directory of Open Access Journals (Sweden)

    Etienne Larger

    2016-11-01

    Full Text Available Glucagon stimulates hepatic glucose production by activating specific glucagon receptors in the liver, which in turn increase hepatic glycogenolysis as well as gluconeogenesis and ureagenesis from amino acids. Conversely, glucagon secretion is regulated by concentrations of glucose and amino acids. Disruption of glucagon signaling in rodents results in grossly elevated circulating glucagon levels but no hypoglycemia. Here, we describe a patient carrying a homozygous G to A substitution in the invariant AG dinucleotide found in a 3′ mRNA splice junction of the glucagon receptor gene. Loss of the splice site acceptor consensus sequence results in the deletion of 70 nucleotides encoded by exon 9, which introduces a frame shift and an early termination signal in the receptor mRNA sequence. The mutated receptor neither bound 125I-labeled glucagon nor induced cAMP production upon stimulation with up to 1 μM glucagon. Despite the mutation, the only obvious pathophysiological trait was hyperglucagonemia, hyperaminoacidemia and massive hyperplasia of the pancreatic α-cells assessed by histology. Our case supports the notion of a hepato–pancreatic feedback system, which upon disruption leads to hyperglucagonemia and α-cell hyperplasia, as well as elevated plasma amino acid levels. Together with the glucagon-induced hypoaminoacidemia in glucagonoma patients, our case supports recent suggestions that amino acids may provide the feedback link between the liver and the pancreatic α-cells.

  14. MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies

    Science.gov (United States)

    Trabzuni, Daniah; Wray, Selina; Vandrovcova, Jana; Ramasamy, Adaikalavan; Walker, Robert; Smith, Colin; Luk, Connie; Gibbs, J. Raphael; Dillman, Allissa; Hernandez, Dena G.; Arepalli, Sampath; Singleton, Andrew B.; Cookson, Mark R.; Pittman, Alan M.; de Silva, Rohan; Weale, Michael E.; Hardy, John; Ryten, Mina

    2012-01-01

    The MAPT (microtubule-associated protein tau) locus is one of the most remarkable in neurogenetics due not only to its involvement in multiple neurodegenerative disorders, including progressive supranuclear palsy, corticobasal degeneration, Parksinson's disease and possibly Alzheimer's disease, but also due its genetic evolution and complex alternative splicing features which are, to some extent, linked and so all the more intriguing. Therefore, obtaining robust information regarding the expression, splicing and genetic regulation of this gene within the human brain is of immense importance. In this study, we used 2011 brain samples originating from 439 individuals to provide the most reliable and coherent information on the regional expression, splicing and regulation of MAPT available to date. We found significant regional variation in mRNA expression and splicing of MAPT within the human brain. Furthermore, at the gene level, the regional distribution of mRNA expression and total tau protein expression levels were largely in agreement, appearing to be highly correlated. Finally and most importantly, we show that while the reported H1/H2 association with gene level expression is likely to be due to a technical artefact, this polymorphism is associated with the expression of exon 3-containing isoforms in human brain. These findings would suggest that contrary to the prevailing view, genetic risk factors for neurodegenerative diseases at the MAPT locus are likely to operate by changing mRNA splicing in different brain regions, as opposed to the overall expression of the MAPT gene. PMID:22723018

  15. Structural Insights into RNA Recognition by the Alternate-Splicing Regulator CUG-Binding Protein 1

    Energy Technology Data Exchange (ETDEWEB)

    M Teplova; J Song; H Gaw; A Teplov; D Patel

    2011-12-31

    CUG-binding protein 1 (CUGBP1) regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of myotonic dystrophy. CUGBP1 harbors three RRM domains and preferentially targets UGU-rich mRNA elements. We describe crystal structures of CUGBP1 RRM1 and tandem RRM1/2 domains bound to RNAs containing tandem UGU(U/G) elements. Both RRM1 in RRM1-RNA and RRM2 in RRM1/2-RNA complexes use similar principles to target UGU(U/G) elements, with recognition mediated by face-to-edge stacking and water-mediated hydrogen-bonding networks. The UG step adopts a left-handed Z-RNA conformation, with the syn guanine recognized through Hoogsteen edge-protein backbone hydrogen-bonding interactions. NMR studies on the RRM1/2-RNA complex establish that both RRM domains target tandem UGUU motifs in solution, whereas filter-binding assays identify a preference for recognition of GU over AU or GC steps. We discuss the implications of CUGBP1-mediated targeting and sequestration of UGU(U/G) elements on pre-mRNA alternative-splicing regulation, translational regulation, and mRNA decay.

  16. OCA2 splice site variant in German Spitz dogs with oculocutaneous albinism.

    Science.gov (United States)

    Caduff, Madleina; Bauer, Anina; Jagannathan, Vidhya; Leeb, Tosso

    2017-01-01

    We investigated a German Spitz family where the mating of a black male to a white female had yielded three puppies with an unexpected light brown coat color, lightly pigmented lips and noses, and blue eyes. Combined linkage and homozygosity analysis based on a fully penetrant monogenic autosomal recessive mode of inheritance identified a critical interval of 15 Mb on chromosome 3. We obtained whole genome sequence data from one affected dog, three wolves, and 188 control dogs. Filtering for private variants revealed a single variant with predicted high impact in the critical interval in LOC100855460 (XM_005618224.1:c.377+2T>G LT844587.1:c.-45+2T>G). The variant perfectly co-segregated with the phenotype in the family. We genotyped 181 control dogs with normal pigmentation from diverse breeds including 22 unrelated German Spitz dogs, which were all homozygous wildtype. Comparative sequence analyses revealed that LOC100855460 actually represents the 5'-end of the canine OCA2 gene. The CanFam 3.1 reference genome assembly is incorrect and separates the first two exons from the remaining exons of the OCA2 gene. We amplified a canine OCA2 cDNA fragment by RT-PCR and determined the correct full-length mRNA sequence (LT844587.1). Variants in the OCA2 gene cause oculocutaneous albinism type 2 (OCA2) in humans, pink-eyed dilution in mice, and similar phenotypes in corn snakes, medaka and Mexican cave tetra fish. We therefore conclude that the observed oculocutaneous albinism in German Spitz is most likely caused by the identified variant in the 5'-splice site of the first intron of the canine OCA2 gene.

  17. Genome-wide association between DNA methylation and alternative splicing in an invertebrate

    Directory of Open Access Journals (Sweden)

    Flores Kevin

    2012-09-01

    Full Text Available Abstract Background Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee and Nasonia vitripennis (jewel wasp analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. Results We generated RNA deep sequencing data (RNA-seq to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation. Conclusions This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice

  18. Blocking of an intronic splicing silencer completely rescues IKBKAP exon 20 splicing in familial dysautonomia patient cells

    DEFF Research Database (Denmark)

    Bruun, Gitte H; Bang, Jeanne Mv; Christensen, Lise L

    2018-01-01

    designed splice switching oligonucleotides (SSO) that blocks the intronic hnRNP A1 binding site, and demonstrate that this completely rescues splicing of IKBKAP exon 20 in FD patient fibroblasts and increases the amounts of IKAP protein. We propose that this may be developed into a potential new specific...

  19. Reference: 391 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 5A gene. Our results show that STA1 is a pre-mRNA splicing factor required not only for splicing but also for the turnover...ses. STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, an

  20. Depolarization-mediated regulation of alternative splicing

    Directory of Open Access Journals (Sweden)

    Alok eSharma

    2011-12-01

    Full Text Available Alternative splicing in eukaryotes plays an important role in regulating gene expression by selectively including alternative exons. A wealth of information has been accumulated that explains how alternative exons are selected in a developmental stage- or tissue-specific fashion. However, our knowledge of how cells respond to environmental changes to alter alternative splicing is very limited. For example, although a number of alternative exons have been shown to be regulated by calcium level alterations, the underlying mechanisms are not well understood. As calcium signaling in neurons plays a crucial role in essential neuronal functions such as learning and memory formation, it is important to understand how this process is regulated at every level in gene expression. The significance of the dynamic control of alternative splicing in response to changes of calcium levels has been largely unappreciated. In this communication, we will summarize the recent advances in calcium signaling-mediated alternative splicing that have provided some insights into the important regulatory mechanisms. In addition to describing the cis-acting RNA elements on the pre-mRNA molecules that respond to changes of intracellular calcium levels, we will summarize how splicing regulators change and affect alternative splicing in this process. We will also discuss a novel mode of calcium-mediated splicing regulation at the level of chromatin structure and transcription.

  1. Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982

    OpenAIRE

    Drury, Anna Joy; Westerhold, Thomas; Hodell, David; Röhl, Ursula

    2018-01-01

    Ocean Drilling Program (ODP) Site 982 represents a key location for understanding the evolution of climate in the North Atlantic over the past 12 Ma. However, concerns exist about the validity and robustness of the underlying stratigraphy and astrochronology, which currently limits the adequacy of this site for high-resolution climate studies. To resolve this uncertainty, we verify and extend the early Pliocene to late Miocene shipboard composite splice at Site 982 using hig...

  2. Co-evolution of SNF spliceosomal proteins with their RNA targets in trans-splicing nematodes.

    Science.gov (United States)

    Strange, Rex Meade; Russelburg, L Peyton; Delaney, Kimberly J

    2016-08-01

    Although the mechanism of pre-mRNA splicing has been well characterized, the evolution of spliceosomal proteins is poorly understood. The U1A/U2B″/SNF family (hereafter referred to as the SNF family) of RNA binding spliceosomal proteins participates in both the U1 and U2 small interacting nuclear ribonucleoproteins (snRNPs). The highly constrained nature of this system has inhibited an analysis of co-evolutionary trends between the proteins and their RNA binding targets. Here we report accelerated sequence evolution in the SNF protein family in Phylum Nematoda, which has allowed an analysis of protein:RNA co-evolution. In a comparison of SNF genes from ecdysozoan species, we found a correlation between trans-splicing species (nematodes) and increased phylogenetic branch lengths of the SNF protein family, with respect to their sister clade Arthropoda. In particular, we found that nematodes (~70-80 % of pre-mRNAs are trans-spliced) have experienced higher rates of SNF sequence evolution than arthropods (predominantly cis-spliced) at both the nucleotide and amino acid levels. Interestingly, this increased evolutionary rate correlates with the reliance on trans-splicing by nematodes, which would alter the role of the SNF family of spliceosomal proteins. We mapped amino acid substitutions to functionally important regions of the SNF protein, specifically to sites that are predicted to disrupt protein:RNA and protein:protein interactions. Finally, we investigated SNF's RNA targets: the U1 and U2 snRNAs. Both are more divergent in nematodes than arthropods, suggesting the RNAs have co-evolved with SNF in order to maintain the necessarily high affinity interaction that has been characterized in other species.

  3. Analysis of Maxi-K alpha subunit splice variants in human myometrium

    Directory of Open Access Journals (Sweden)

    Morrison John J

    2004-09-01

    Full Text Available Abstract Background Large-conductance, calcium-activated potassium (Maxi-K channels are implicated in the modulation of human uterine contractions and myometrial Ca2+ homeostasis. However, the regulatory mechanism(s governing the expression of Maxi-K channels with decreased calcium sensitivity at parturition are unclear. The objectives of this study were to investigate mRNA expression of the Maxi-K alpha subunit, and that of its splice variants, in human non-pregnant and pregnant myometrium, prior to and after labour onset, to determine whether altered expression of these splice variants is associated with decreased calcium sensitivity observed at labour onset. Methods Myometrial biopsies were obtained at hysterectomy (non-pregnant, NP, and at Caesarean section, at elective (pregnant not-in-labour, PNL and intrapartum (pregnant in-labour, PL procedures. RNA was extracted from all biopsies and quantitative real-time RT-PCR was used to investigate for possible differential expression of the Maxi-K alpha subunit, and that of its splice variants, between these functionally-distinct myometrial tissue sets. Results RT-PCR analysis identified the presence of a 132 bp and an 87 bp spliced exon of the Maxi-K alpha subunit in all three myometrial tissue sets. Quantitative real-time PCR indicated a decrease in the expression of the Maxi-K alpha subunit with labour onset. While there was no change in the proportion of Maxi-K alpha subunits expressing the 87 bp spliced exon, the proportion of alpha subunits expressing the 132 bp spliced exon was significantly increased with labour onset, compared to both non-pregnant and pregnant not-in-labour tissues. An increased proportion of 132 bp exon-containing alpha subunit variants with labour onset is of interest, as channels expressing this spliced exon have decreased calcium and voltage sensitivities. Conclusions Our findings suggest that decreased Maxi-K alpha subunit mRNA expression in human myometrium at

  4. Alternative splicing affects the targeting sequence of peroxisome proteins in Arabidopsis.

    Science.gov (United States)

    An, Chuanjing; Gao, Yuefang; Li, Jinyu; Liu, Xiaomin; Gao, Fuli; Gao, Hongbo

    2017-07-01

    A systematic analysis of the Arabidopsis genome in combination with localization experiments indicates that alternative splicing affects the peroxisomal targeting sequence of at least 71 genes in Arabidopsis. Peroxisomes are ubiquitous eukaryotic cellular organelles that play a key role in diverse metabolic functions. All peroxisome proteins are encoded by nuclear genes and target to peroxisomes mainly through two types of targeting signals: peroxisomal targeting signal type 1 (PTS1) and PTS2. Alternative splicing (AS) is a process occurring in all eukaryotes by which a single pre-mRNA can generate multiple mRNA variants, often encoding proteins with functional differences. However, the effects of AS on the PTS1 or PTS2 and the targeting of the protein were rarely studied, especially in plants. Here, we systematically analyzed the genome of Arabidopsis, and found that the C-terminal targeting sequence PTS1 of 66 genes and the N-terminal targeting sequence PTS2 of 5 genes are affected by AS. Experimental determination of the targeting of selected protein isoforms further demonstrated that AS at both the 5' and 3' region of a gene can affect the inclusion of PTS2 and PTS1, respectively. This work underscores the importance of AS on the global regulation of peroxisome protein targeting.

  5. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells.

    Science.gov (United States)

    Xia, Heng; Chen, Dong; Wu, Qijia; Wu, Gang; Zhou, Yanhong; Zhang, Yi; Zhang, Libin

    2017-09-01

    The current RIP-seq approach has been developed for the identification of genome-wide interaction between RNA binding protein (RBP) and the bound RNA transcripts, but still rarely for identifying its binding sites. In this study, we performed RIP-seq experiments in HeLa cells using a monoclonal antibody against CELF1. Mapping of the RIP-seq reads showed a biased distribution at the 3'UTR and intronic regions. A total of 15,285 and 1384 CELF1-specific sense and antisense peaks were identified using the ABLIRC software tool. Our bioinformatics analyses revealed that 5' and 3' splice site motifs and GU-rich motifs were highly enriched in the CELF1-bound peaks. Furthermore, transcriptome analyses revealed that alternative splicing was globally regulated by CELF1 in HeLa cells. For example, the inclusion of exon 16 of LMO7 gene, a marker gene of breast cancer, is positively regulated by CELF1. Taken together, we have shown that RIP-seq data can be used to decipher RBP binding sites and reveal an unexpected landscape of the genome-wide CELF1-RNA interactions in HeLa cells. In addition, we found that CELF1 globally regulates the alternative splicing by binding the exon-intron boundary in HeLa cells, which will deepen our understanding of the regulatory roles of CELF1 in the pre-mRNA splicing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Investigation of tissue-specific human orthologous alternative splice events in pig

    DEFF Research Database (Denmark)

    Hillig, Ann-Britt Nygaard; Jørgensen, Claus Bøttcher; Salicio, Susanna Cirera

    2010-01-01

    Alternative splicing of pre-mRNA can contribute to differences between tissues or cells either by regulating gene expression or creating proteins with various functions encoded by one gene. The number of investigated alternative splice events in pig has so far been limited. In this study we have ...... in preservation of open reading frame are indicative of a functional significance of the splice variants of the gene....

  7. Primate-specific spliced PMCHL RNAs are non-protein coding in human and macaque tissues

    Directory of Open Access Journals (Sweden)

    Delerue-Audegond Audrey

    2008-12-01

    Full Text Available Abstract Background Brain-expressed genes that were created in primate lineage represent obvious candidates to investigate molecular mechanisms that contributed to neural reorganization and emergence of new behavioural functions in Homo sapiens. PMCHL1 arose from retroposition of a pro-melanin-concentrating hormone (PMCH antisense mRNA on the ancestral human chromosome 5p14 when platyrrhines and catarrhines diverged. Mutations before divergence of hylobatidae led to creation of new exons and finally PMCHL1 duplicated in an ancestor of hominids to generate PMCHL2 at the human chromosome 5q13. A complex pattern of spliced and unspliced PMCHL RNAs were found in human brain and testis. Results Several novel spliced PMCHL transcripts have been characterized in human testis and fetal brain, identifying an additional exon and novel splice sites. Sequencing of PMCHL genes in several non-human primates allowed to carry out phylogenetic analyses revealing that the initial retroposition event took place within an intron of the brain cadherin (CDH12 gene, soon after platyrrhine/catarrhine divergence, i.e. 30–35 Mya, and was concomitant with the insertion of an AluSg element. Sequence analysis of the spliced PMCHL transcripts identified only short ORFs of less than 300 bp, with low (VMCH-p8 and protein variants or no evolutionary conservation. Western blot analyses of human and macaque tissues expressing PMCHL RNA failed to reveal any protein corresponding to VMCH-p8 and protein variants encoded by spliced transcripts. Conclusion Our present results improve our knowledge of the gene structure and the evolutionary history of the primate-specific chimeric PMCHL genes. These genes produce multiple spliced transcripts, bearing short, non-conserved and apparently non-translated ORFs that may function as mRNA-like non-coding RNAs.

  8. A mRNA and cognate microRNAs localize in the nucleolus.

    Science.gov (United States)

    Reyes-Gutierrez, Pablo; Ritland Politz, Joan C; Pederson, Thoru

    2014-01-01

    We previously discovered that a set of 5 microRNAs are concentrated in the nucleolus of rat myoblasts. We now report that several mRNAs are also localized in the nucleoli of these cells as determined by microarray analysis of RNA from purified nucleoli. Among the most abundant of these nucleolus-localized mRNAs is that encoding insulin-like growth factor 2 (IGF2), a regulator of myoblast proliferation and differentiation. The presence of IGF2 mRNA in nucleoli was confirmed by fluorescence in situ hybridization, and RT-PCR experiments demonstrated that these nucleolar transcripts are spliced, thus arriving from the nucleoplasm. Bioinformatics analysis predicted canonically structured, highly thermodynamically stable interactions between IGF2 mRNA and all 5 of the nucleolus-localized microRNAs. These results raise the possibility that the nucleolus is a staging site for setting up particular mRNA-microRNA interactions prior to export to the cytoplasm.

  9. A splice site mutation in laminin-α2 results in a severe muscular dystrophy and growth abnormalities in zebrafish.

    Directory of Open Access Journals (Sweden)

    Vandana A Gupta

    Full Text Available Congenital muscular dystrophy (CMD is a clinically and genetically heterogeneous group of inherited muscle disorders. In patients, muscle weakness is usually present at or shortly after birth and is progressive in nature. Merosin deficient congenital muscular dystrophy (MDC1A is a form of CMD caused by a defect in the laminin-α2 gene (LAMA2. Laminin-α2 is an extracellular matrix protein that interacts with the dystrophin-dystroglycan (DGC complex in membranes providing stability to muscle fibers. In an N-ethyl-N-nitrosourea mutagenesis screen to develop zebrafish models of neuromuscular diseases, we identified a mutant fish that exhibits severe muscular dystrophy early in development. Genetic mapping identified a splice site mutation in the lama2 gene. This splice site is highly conserved in humans and this mutation results in mis-splicing of RNA and a loss of protein function. Homozygous lama2 mutant zebrafish, designated lama2(cl501/cl501, exhibited reduced motor function and progressive degeneration of skeletal muscles and died at 8-15 days post fertilization. The skeletal muscles exhibited damaged myosepta and detachment of myofibers in the affected fish. Laminin-α2 deficiency also resulted in growth defects in the brain and eye of the mutant fish. This laminin-α2 deficient mutant fish represents a novel disease model to develop therapies for modulating splicing defects in congenital muscular dystrophies and to restore the muscle function in human patients with CMD.

  10. Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing

    International Nuclear Information System (INIS)

    Ri, M; Tashiro, E; Oikawa, D; Shinjo, S; Tokuda, M; Yokouchi, Y; Narita, T; Masaki, A; Ito, A; Ding, J; Kusumoto, S; Ishida, T; Komatsu, H; Shiotsu, Y; Ueda, R; Iwawaki, T; Imoto, M; Iida, S

    2012-01-01

    The IRE1α-XBP1 pathway, a key component of the endoplasmic reticulum (ER) stress response, is considered to be a critical regulator for survival of multiple myeloma (MM) cells. Therefore, the availability of small-molecule inhibitors targeting this pathway would offer a new chemotherapeutic strategy for MM. Here, we screened small-molecule inhibitors of ER stress-induced XBP1 activation, and identified toyocamycin from a culture broth of an Actinomycete strain. Toyocamycin was shown to suppress thapsigargin-, tunicamycin- and 2-deoxyglucose-induced XBP1 mRNA splicing in HeLa cells without affecting activating transcription factor 6 (ATF6) and PKR-like ER kinase (PERK) activation. Furthermore, although toyocamycin was unable to inhibit IRE1α phosphorylation, it prevented IRE1α-induced XBP1 mRNA cleavage in vitro. Thus, toyocamycin is an inhibitor of IRE1α-induced XBP1 mRNA cleavage. Toyocamycin inhibited not only ER stress-induced but also constitutive activation of XBP1 expression in MM lines as well as primary samples from patients. It showed synergistic effects with bortezomib, and induced apoptosis of MM cells including bortezomib-resistant cells at nanomolar levels in a dose-dependent manner. It also inhibited growth of xenografts in an in vivo model of human MM. Taken together, our results suggest toyocamycin as a lead compound for developing anti-MM therapy and XBP1 as an appropriate molecular target for anti-MM therapy

  11. An essential role for trimethylguanosine RNA caps in Saccharomyces cerevisiae meiosis and their requirement for splicing of SAE3 and PCH2 meiotic pre-mRNAs.

    Science.gov (United States)

    Qiu, Zhicheng R; Shuman, Stewart; Schwer, Beate

    2011-07-01

    Tgs1 is the enzyme that converts m(7)G RNA caps to the 2,2,7-trimethylguanosine (TMG) caps characteristic of spliceosomal snRNAs. Fungi grow vegetatively without TMG caps, thereby raising the question of what cellular transactions, if any, are TMG cap-dependent. Here, we report that Saccharomyces cerevisiae Tgs1 methyltransferase activity is essential for meiosis. tgs1Δ cells are specifically defective in splicing PCH2 and SAE3 meiotic pre-mRNAs. The TMG requirement for SAE3 splicing is alleviated by two intron mutations: a UAUUAAC to UACUAAC change that restores a consensus branchpoint and disruption of a stem-loop encompassing the branchpoint. The TMG requirement for PCH2 splicing is alleviated by a CACUAAC to UACUAAC change restoring a consensus branchpoint and by shortening the PCH2 5' exon. Placing the SAE3 and PCH2 introns within a HIS3 reporter confers Tgs1-dependent histidine prototrophy, signifying that the respective introns are portable determinants of TMG-dependent gene expression. Analysis of in vitro splicing in extracts of TGS1 versus tgs1Δ cells showed that SAE3 intron removal was enfeebled without TMG caps, whereas splicing of ACT1 was unaffected. Our findings illuminate a new mode of tunable splicing, a reliance on TMG caps for an essential developmental RNA transaction, and three genetically distinct meiotic splicing regulons in budding yeast.

  12. Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982

    Science.gov (United States)

    Drury, Anna Joy; Westerhold, Thomas; Hodell, David; Röhl, Ursula

    2018-03-01

    Ocean Drilling Program (ODP) Site 982 represents a key location for understanding the evolution of climate in the North Atlantic over the past 12 Ma. However, concerns exist about the validity and robustness of the underlying stratigraphy and astrochronology, which currently limits the adequacy of this site for high-resolution climate studies. To resolve this uncertainty, we verify and extend the early Pliocene to late Miocene shipboard composite splice at Site 982 using high-resolution XRF core scanning data and establish a robust high-resolution benthic foraminiferal stable isotope stratigraphy and astrochronology between 8.0 and 4.5 Ma. Splice revisions and verifications resulted in ˜ 11 m of gaps in the original Site 982 isotope stratigraphy, which were filled with 263 new isotope analyses. This new stratigraphy reveals previously unseen benthic δ18O excursions, particularly prior to 6.65 Ma. The benthic δ18O record displays distinct, asymmetric cycles between 7.7 and 6.65 Ma, confirming that high-latitude climate is a prevalent forcing during this interval. An intensification of the 41 kyr beat in both the benthic δ13C and δ18O is also observed ˜ 6.4 Ma, marking a strengthening in the cryosphere-carbon cycle coupling. A large ˜ 0.7 ‰ double excursion is revealed ˜ 6.4-6.3 Ma, which also marks the onset of an interval of average higher δ18O and large precession and obliquity-dominated δ18O excursions between 6.4 and 5.4 Ma, coincident with the culmination of the late Miocene cooling. The two largest benthic δ18O excursions ˜ 6.4-6.3 Ma and TG20/22 coincide with the coolest alkenone-derived sea surface temperature (SST) estimates from Site 982, suggesting a strong connection between the late Miocene global cooling, and deep-sea cooling and dynamic ice sheet expansion. The splice revisions and revised astrochronology resolve key stratigraphic issues that have hampered correlation between Site 982, the equatorial Atlantic and the Mediterranean

  13. Conditional Toxin Splicing Using a Split Intein System.

    Science.gov (United States)

    Alford, Spencer C; O'Sullivan, Connor; Howard, Perry L

    2017-01-01

    Protein toxin splicing mediated by split inteins can be used as a strategy for conditional cell ablation. The approach requires artificial fragmentation of a potent protein toxin and tethering each toxin fragment to a split intein fragment. The toxin-intein fragments are, in turn, fused to dimerization domains, such that addition of a dimerizing agent reconstitutes the split intein. These chimeric toxin-intein fusions remain nontoxic until the dimerizer is added, resulting in activation of intein splicing and ligation of toxin fragments to form an active toxin. Considerations for the engineering and implementation of conditional toxin splicing (CTS) systems include: choice of toxin split site, split site (extein) chemistry, and temperature sensitivity. The following method outlines design criteria and implementation notes for CTS using a previously engineered system for splicing a toxin called sarcin, as well as for developing alternative CTS systems.

  14. Variation in alternative splicing across human tissues

    OpenAIRE

    Yeo, Gene; Holste, Dirk; Kreiman, Gabriel; Burge, Christopher B

    2004-01-01

    Background: Alternative pre-mRNA splicing (AS) is widely used by higher eukaryotes to generate different protein isoforms in specific cell or tissue types. To compare AS events across human tissues, we analyzed the splicing patterns of genomically aligned expressed sequence tags (ESTs) derived from libraries of cDNAs from different tissues. Results: Controlling for differences in EST coverage among tissues, we found that the brain and testis had the highest levels of exon skipping. The most p...

  15. Splice site mutations in mismatch repair genes and risk of cancer in the general population

    DEFF Research Database (Denmark)

    Thomsen, Mette; Nordestgaard, Børge G; Tybjærg-Hansen, Anne

    2013-01-01

    We tested the hypothesis that splice site variations in MSH2 and MLH1 are associated with increased risk of hereditary non-polyposis colorectal cancer (HNPCC) and of cancer in general in the general population. In a cohort of 154 HNPCC patients with sequenced MSH2 and MLH1, we identified four...... possible splice-site mutations, which we subsequently genotyped in more than 9,000 individuals from the general population. Allele frequencies in the general population were 0 % for 942+3A>T in MSH2, 0.05 % for 307-19A>G, 0.005 % for 1,667+(2-8)del(taaatca);ins(attt), and 4.4 % for 1039-8T>A in MLH1. Odds...... ratios for HNPCC in a case-control design were 419 (95 % CI: 53-18,900) for 942+3A>T in MSH2, 19 (5-72) for 307-19A>G, 194 (21-1,768) for 1,667+(2-8)del(taaatca); ins(attt), and 0.3 (0.1-0.7) for 1,039-8T>A in MLH1. In the general population, incidence rate ratios for 1,039-8T>A carriers versus...

  16. OCA2 splice site variant in German Spitz dogs with oculocutaneous albinism.

    Directory of Open Access Journals (Sweden)

    Madleina Caduff

    Full Text Available We investigated a German Spitz family where the mating of a black male to a white female had yielded three puppies with an unexpected light brown coat color, lightly pigmented lips and noses, and blue eyes. Combined linkage and homozygosity analysis based on a fully penetrant monogenic autosomal recessive mode of inheritance identified a critical interval of 15 Mb on chromosome 3. We obtained whole genome sequence data from one affected dog, three wolves, and 188 control dogs. Filtering for private variants revealed a single variant with predicted high impact in the critical interval in LOC100855460 (XM_005618224.1:c.377+2T>G LT844587.1:c.-45+2T>G. The variant perfectly co-segregated with the phenotype in the family. We genotyped 181 control dogs with normal pigmentation from diverse breeds including 22 unrelated German Spitz dogs, which were all homozygous wildtype. Comparative sequence analyses revealed that LOC100855460 actually represents the 5'-end of the canine OCA2 gene. The CanFam 3.1 reference genome assembly is incorrect and separates the first two exons from the remaining exons of the OCA2 gene. We amplified a canine OCA2 cDNA fragment by RT-PCR and determined the correct full-length mRNA sequence (LT844587.1. Variants in the OCA2 gene cause oculocutaneous albinism type 2 (OCA2 in humans, pink-eyed dilution in mice, and similar phenotypes in corn snakes, medaka and Mexican cave tetra fish. We therefore conclude that the observed oculocutaneous albinism in German Spitz is most likely caused by the identified variant in the 5'-splice site of the first intron of the canine OCA2 gene.

  17. NeuN/Rbfox3 nuclear and cytoplasmic isoforms differentially regulate alternative splicing and nonsense-mediated decay of Rbfox2.

    Directory of Open Access Journals (Sweden)

    B Kate Dredge

    Full Text Available Anti-NeuN (Neuronal Nuclei is a monoclonal antibody used extensively to specifically detect post-mitotic neurons. Anti-NeuN reactivity is predominantly nuclear; by western it detects multiple bands ranging in molecular weight from 45 kDa to >75 kDa. Expression screening putatively identified R3hdm2 as NeuN; however immunoprecipitation and mass spectrometry of the two major NeuN species at 45-50 kDa identified both as the RNA binding protein Rbfox3 (a member of the Fox family of alternative splicing factors, confirming and extending the identification of the 45 kDa band as Rbfox3 by Kim et al. Mapping of the anti-NeuN reactive epitopes in both R3hdm2 and Rbfox3 reveals a common proline- and glutamine-rich domain that lies at the N-terminus of the Rbfox3 protein. Our data suggests that alternative splicing of the Rbfox3 pre-mRNA itself leads to the production of four protein isoforms that migrate in the 45-50 kDa range, and that one of these splicing choices regulates Rbfox3/NeuN sub-cellular steady-state distribution, through the addition or removal of a short C-terminal extension containing the second half of a bipartite hydrophobic proline-tyrosine nuclear localization signal. Rbfox3 regulates alternative splicing of the Rbfox2 pre-mRNA, producing a message encoding a dominant negative form of the Rbfox2 protein. We show here that nuclear Rbfox3 isoforms can also enhance the inclusion of cryptic exons in the Rbfox2 mRNA, resulting in nonsense-mediated decay of the message, thereby contributing to the negative regulation of Rbfox2 by Rbfox3 through a novel mechanism.

  18. [RNA polymerase II and pre-mRNA splicing factors in diplotene oocyte nuclei of the giant African gastropod Achatina fulica].

    Science.gov (United States)

    Stepanova, I S; Bogoliubov, D S

    2003-01-01

    The nuclear distribution of pre-mRNA splicing factors (snRNPs and SR-protein SC35) and unphosphorylated from of RNA polymerase II (Pol II) was studied using fluorescent and immunoelectron cytochemistry in diplotene oocytes of the gastropod Achatina fulica. Association of Pol II and splicing factors with oocyte nuclear structures was analysed. The antibodies against splicing factors and Pol II were shown to label perichromatin fibrils at the periphery of condensed chromatin blocks as well as those in interchromatin regions of nucleoplasm. The revealed character of distribution of snRNPs, SC35 protein, and Pol II, together with the decondensed chromatin and absence of karyosphere, enable us to suggest that oocyte chromosomes maintain their transcriptional activity at the diplotene stage of oogenesis. In A. fulica oocytes, sparse nuclear bodies (NBs) of a complex morphological structure were revealed. These NBs contain snRNPs rather than SC35 protein. NBs are associated with a fibrogranular material (FGM), which contains SC35 protein. No snRNPs were revealed in this material. Homology of A. fulica oocyte nuclear structures to Cajal bodies and interchromatin granule clusters is discussed.

  19. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity

    Directory of Open Access Journals (Sweden)

    Janna eBlechman

    2013-05-01

    Full Text Available Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.

  20. Alternative Splicing as a Target for Cancer Treatment.

    Science.gov (United States)

    Martinez-Montiel, Nancy; Rosas-Murrieta, Nora Hilda; Anaya Ruiz, Maricruz; Monjaraz-Guzman, Eduardo; Martinez-Contreras, Rebeca

    2018-02-11

    Alternative splicing is a key mechanism determinant for gene expression in metazoan. During alternative splicing, non-coding sequences are removed to generate different mature messenger RNAs due to a combination of sequence elements and cellular factors that contribute to splicing regulation. A different combination of splicing sites, exonic or intronic sequences, mutually exclusive exons or retained introns could be selected during alternative splicing to generate different mature mRNAs that could in turn produce distinct protein products. Alternative splicing is the main source of protein diversity responsible for 90% of human gene expression, and it has recently become a hallmark for cancer with a full potential as a prognostic and therapeutic tool. Currently, more than 15,000 alternative splicing events have been associated to different aspects of cancer biology, including cell proliferation and invasion, apoptosis resistance and susceptibility to different chemotherapeutic drugs. Here, we present well established and newly discovered splicing events that occur in different cancer-related genes, their modification by several approaches and the current status of key tools developed to target alternative splicing with diagnostic and therapeutic purposes.

  1. A novel splice variant in the N-propeptide of COL5A1 causes an EDS phenotype with severe kyphoscoliosis and eye involvement.

    Directory of Open Access Journals (Sweden)

    Sofie Symoens

    Full Text Available BACKGROUND: The Ehlers-Danlos Syndrome (EDS is a heritable connective tissue disorder characterized by hyperextensible skin, joint hypermobility and soft tissue fragility. The classic subtype of EDS is caused by mutations in one of the type V collagen genes (COL5A1 and COL5A2. Most mutations affect the type V collagen helical domain and lead to a diminished or structurally abnormal type V collagen protein. Remarkably, only two mutations were reported to affect the extended, highly conserved N-propeptide domain, which plays an important role in the regulation of the heterotypic collagen fibril diameter. We identified a novel COL5A1 N-propeptide mutation, resulting in an unusual but severe classic EDS phenotype and a remarkable splicing outcome. METHODOLOGY/PRINCIPAL FINDINGS: We identified a novel COL5A1 N-propeptide acceptor-splice site mutation (IVS6-2A>G, NM_000093.3_c.925-2A>G in a patient with cutaneous features of EDS, severe progressive scoliosis and eye involvement. Two mutant transcripts were identified, one with an exon 7 skip and one in which exon 7 and the upstream exon 6 are deleted. Both transcripts are expressed and secreted into the extracellular matrix, where they can participate in and perturb collagen fibrillogenesis, as illustrated by the presence of dermal collagen cauliflowers. Determination of the order of intron removal and computational analysis showed that simultaneous skipping of exons 6 and 7 is due to the combined effect of delayed splicing of intron 7, altered pre-mRNA secondary structure, low splice site strength and possibly disturbed binding of splicing factors. CONCLUSIONS/SIGNIFICANCE: We report a novel COL5A1 N-propeptide acceptor-splice site mutation in intron 6, which not only affects splicing of the adjacent exon 7, but also causes a splicing error of the upstream exon 6. Our findings add further insights into the COL5A1 splicing order and show for the first time that a single COL5A1 acceptor-splice site

  2. A non-inflammatory form of immune competence prevails in acute pre-pubescent malnutrition: new evidence based on critical mRNA transcripts in the mouse.

    Science.gov (United States)

    Monk, Jennifer M; Richard, Cynthia L; Woodward, Bill

    2012-05-01

    The declining inflammatory immune competence of acute (i.e. wasting) pre-pubescent protein-energy malnutrition has been regarded as reflecting an unregulated immunological disintegration. Recent evidence, however, suggests that malnutrition stimulates a regulated immunological reconfiguration to achieve a non-inflammatory form of competence, perhaps offering protection against autoimmune reactions - the 'Tolerance Model'. Our objective was to determine the influence of acute pre-pubescent malnutrition on the expression of genes critical to tolerogenic regulation. Male and female C57BL/6J mice, initially 19 d old, consumed a complete purified diet either ad libitum (age-matched controls) or in restricted daily quantities (mimicking marasmus), or consumed an isoenergetic low-protein diet ad libitum (mimicking incipient kwashiorkor) for 14 d (six animals per dietary group). Gene expression in the spleen, typically an inflammatory organ, and in the small intestine, a site designed for non-inflammatory defence, was assessed by real-time quantitative RT-PCR, and normalised to β-actin. In the spleen of the malnourished groups, both IL-10 and transforming growth factor-β1 mRNA expression increased compared with controls (P 0.05). Moreover, forkhead box P3 mRNA expression, indicative of cell-based tolerogenic potential, was sustained in both the spleen and intestine of the malnourished groups (P>0.05). Thus, despite limited supplies of energy and substrates, the spleen shifted towards a non-inflammatory character and the intestine was sustained in this mode in advanced pre-pubescent weight loss. These findings provide the first support for the Tolerance Model at the level of mRNA transcript expression.

  3. Alternative splicing of T cell receptor (TCR) alpha chain transcripts containing V alpha 1 or V alpha 14 elements.

    Science.gov (United States)

    Mahotka, C; Hansen-Hagge, T E; Bartram, C R

    1995-10-01

    Human acute lymphoblastic leukemia cell lines represent valuable tools to investigate distinct steps of the complex regulatory pathways underlying T cell receptor recombination and expression. A case in point are V delta 2D delta 3 and subsequent V delta 2D delta 3J alpha rearrangements observed in human leukemic pre-B cells as well as in normal lymphopoiesis. The functional expression of these unusual (VD) delta (JC) alpha hybrids is almost exclusively prevented by alternative splicing events. In this report we show that alternative splicing at cryptic splice donor sites within V elements is not a unique feature of hybrid TCR delta/alpha transcripts. Among seven V alpha families analyzed by RT-PCR, alternatively spliced products were observed in TCR alpha recombinations containing V alpha 1 or V alpha 14 elements. In contrast to normal peripheral blood cells and thymocytes, the leukemia cell line JM expressing functional V alpha 1J alpha 3C alpha transcripts lacked evidence of aberrant TCR alpha RNA species.

  4. The determinants of alternative RNA splicing in human cells.

    Science.gov (United States)

    Ramanouskaya, Tatsiana V; Grinev, Vasily V

    2017-12-01

    Alternative splicing represents an important level of the regulation of gene function in eukaryotic organisms. It plays a critical role in virtually every biological process within an organism, including regulation of cell division and cell death, differentiation of tissues in the embryo and the adult organism, as well as in cellular response to diverse environmental factors. In turn, studies of the last decade have shown that alternative splicing itself is controlled by different mechanisms. Unfortunately, there is no clear understanding of how these diverse mechanisms, or determinants, regulate and constrain the set of alternative RNA species produced from any particular gene in every cell of the human body. Here, we provide a consolidated overview of alternative splicing determinants including RNA-protein interactions, epigenetic regulation via chromatin remodeling, coupling of transcription-to-alternative splicing, effect of secondary structures in pre-RNA, and function of the RNA quality control systems. We also extensively and critically discuss some mechanistic insights on coordinated inclusion/exclusion of exons during the formation of mature RNA molecules. We conclude that the final structure of RNA is pre-determined by a complex interplay between cis- and trans-acting factors. Altogether, currently available empirical data significantly expand our understanding of the functioning of the alternative splicing machinery of cells in normal and pathological conditions. On the other hand, there are still many blind spots that require further deep investigations.

  5. From General Aberrant Alternative Splicing in Cancers and Its Therapeutic Application to the Discovery of an Oncogenic DMTF1 Isoform

    Directory of Open Access Journals (Sweden)

    Na Tian

    2017-03-01

    Full Text Available Alternative pre-mRNA splicing is a crucial process that allows the generation of diversified RNA and protein products from a multi-exon gene. In tumor cells, this mechanism can facilitate cancer development and progression through both creating oncogenic isoforms and reducing the expression of normal or controllable protein species. We recently demonstrated that an alternative cyclin D-binding myb-like transcription factor 1 (DMTF1 pre-mRNA splicing isoform, DMTF1β, is increasingly expressed in breast cancer and promotes mammary tumorigenesis in a transgenic mouse model. Aberrant pre-mRNA splicing is a typical event occurring for many cancer-related functional proteins. In this review, we introduce general aberrant pre-mRNA splicing in cancers and discuss its therapeutic application using our recent discovery of the oncogenic DMTF1 isoform as an example. We also summarize new insights in designing novel targeting strategies of cancer therapies based on the understanding of deregulated pre-mRNA splicing mechanisms.

  6. Interplay between estrogen receptor and AKT in estradiol-induced alternative splicing.

    Science.gov (United States)

    Bhat-Nakshatri, Poornima; Song, Eun-Kyung; Collins, Nikail R; Uversky, Vladimir N; Dunker, A Keith; O'Malley, Bert W; Geistlinger, Tim R; Carroll, Jason S; Brown, Myles; Nakshatri, Harikrishna

    2013-06-11

    Alternative splicing is critical for generating complex proteomes in response to extracellular signals. Nuclear receptors including estrogen receptor alpha (ERα) and their ligands promote alternative splicing. The endogenous targets of ERα:estradiol (E2)-mediated alternative splicing and the influence of extracellular kinases that phosphorylate ERα on E2-induced splicing are unknown. MCF-7 and its anti-estrogen derivatives were used for the majority of the assays. CD44 mini gene was used to measure the effect of E2 and AKT on alternative splicing. ExonHit array analysis was performed to identify E2 and AKT-regulated endogenous alternatively spliced apoptosis-related genes. Quantitative reverse transcription polymerase chain reaction was performed to verify alternative splicing. ERα binding to alternatively spliced genes was verified by chromatin immunoprecipitation assay. Bromodeoxyuridine incorporation-ELISA and Annexin V labeling assays were done to measure cell proliferation and apoptosis, respectively. We identified the targets of E2-induced alternative splicing and deconstructed some of the mechanisms surrounding E2-induced splicing by combining splice array with ERα cistrome and gene expression array. E2-induced alternatively spliced genes fall into at least two subgroups: coupled to E2-regulated transcription and ERα binding to the gene without an effect on rate of transcription. Further, AKT, which phosphorylates both ERα and splicing factors, influenced ERα:E2 dependent splicing in a gene-specific manner. Genes that are alternatively spliced include FAS/CD95, FGFR2, and AXIN-1. E2 increased the expression of FGFR2 C1 isoform but reduced C3 isoform at mRNA level. E2-induced alternative splicing of FAS and FGFR2 in MCF-7 cells correlated with resistance to FAS activation-induced apoptosis and response to keratinocyte growth factor (KGF), respectively. Resistance of MCF-7 breast cancer cells to the anti-estrogen tamoxifen was associated with ER

  7. Pre-mRNA splicing repression triggers abiotic stress signaling in plants

    KAUST Repository

    Ling, Yu

    2016-09-24

    Alternative splicing (AS) of precursor RNAs enhances transcriptome plasticity and proteome diversity in response to diverse growth and stress cues. Recent work has shown that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various inhibitors of AS. Here, we show that the macrolide pladienolide B (PB) inhibits constitutive splicing and AS in plants. Also, our RNA sequencing (RNA-seq) data revealed that PB mimics abiotic stress signals including salt, drought and abscisic acid (ABA). PB activates the abiotic stress- and ABA-responsive reporters RD29A

  8. Pre-mRNA splicing repression triggers abiotic stress signaling in plants

    KAUST Repository

    Ling, Yu; Alshareef, Sahar; Butt, Haroon; Lozano-Juste, Jorge; Li, Lixin; Galal, Aya A.; Moustafa, Ahmed; Momin, Afaque Ahmad Imtiyaz; Tashkandi, Manal; Richardson, Dale N.; Fujii, Hiroaki; Arold, Stefan T.; Rodriguez, Pedro L.; Duque, Paula; Mahfouz, Magdy M.

    2016-01-01

    Alternative splicing (AS) of precursor RNAs enhances transcriptome plasticity and proteome diversity in response to diverse growth and stress cues. Recent work has shown that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various inhibitors of AS. Here, we show that the macrolide pladienolide B (PB) inhibits constitutive splicing and AS in plants. Also, our RNA sequencing (RNA-seq) data revealed that PB mimics abiotic stress signals including salt, drought and abscisic acid (ABA). PB activates the abiotic stress- and ABA-responsive reporters RD29A

  9. The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation.

    Science.gov (United States)

    Yabas, Mehmet; Elliott, Hannah; Hoyne, Gerard F

    2015-12-22

    Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system.

  10. Using a minigene approach to characterize a novel splice site mutation in human F7 gene causing inherited factor VII deficiency in a Chinese pedigree.

    Science.gov (United States)

    Yu, T; Wang, X; Ding, Q; Fu, Q; Dai, J; Lu, Y; Xi, X; Wang, H

    2009-11-01

    Factor VII deficiency which transmitted as an autosomal recessive disorder is a rare haemorrhagic condition. The aim of this study was to identify the molecular genetic defect and determine its functional consequences in a Chinese pedigree with FVII deficiency. The proband was diagnosed as inherited coagulation FVII deficiency by reduced plasma levels of FVII activity (4.4%) and antigen (38.5%). All nine exons and their flanking sequence of F7 gene were amplified by polymerase chain reaction (PCR) for the proband and the PCR products were directly sequenced. The compound heterozygous mutations of F7 (NM_000131.3) c.572-1G>A and F7 (NM_000131.3) c.1165T>G; p.Cys389Gly were identified in the proband's F7 gene. To investigate the splicing patterns associated with F7 c.572-1G>A, ectopic transcripts in leucocytes of the proband were analyzed. F7 minigenes, spanning from intron 4 to intron 7 and carrying either an A or a G at position -1 of intron 5, were constructed and transiently transfected into human embryonic kidney (HEK) 293T cells, followed by RT-PCR analysis. The aberrant transcripts from the F7 c.572-1G>A mutant allele were not detected by ectopic transcription study. Sequencing of the RT-PCR products from the mutant transfectant demonstrated the production of an erroneously spliced mRNA with exon 6 skipping, whereas a normal splicing occurred in the wide type transfectant. The aberrant mRNA produced from the F7 c.572-1G>A mutant allele is responsible for the factor VII deficiency in this pedigree.

  11. Single-Molecule Analysis of Pre-mRNA Splicing with Colocalization Single-Molecule Spectroscopy (CoSMoS).

    Science.gov (United States)

    Braun, Joerg E; Serebrov, Victor

    2017-01-01

    Recent development of single-molecule techniques to study pre-mRNA splicing has provided insights into the dynamic nature of the spliceosome. Colocalization single-molecule spectroscopy (CoSMoS) allows following spliceosome assembly in real time at single-molecule resolution in the full complexity of cellular extracts. A detailed protocol of CoSMoS has been published previously (Anderson and Hoskins, Methods Mol Biol 1126:217-241, 2014). Here, we provide an update on the technical advances since the first CoSMoS studies including slide surface treatment, data processing, and representation. We describe various labeling strategies to generate RNA reporters with multiple dyes (or other moieties) at specific locations.

  12. Fox-2 protein regulates the alternative splicing of scleroderma-associated lysyl hydroxylase 2 messenger RNA.

    Science.gov (United States)

    Seth, Puneet; Yeowell, Heather N

    2010-04-01

    Scleroderma (systemic sclerosis [SSc]) is a complex connective tissue disorder characterized by hardening and thickening of the skin. One hallmark of scleroderma is excessive accumulation of collagen accompanied by increased levels of pyridinoline collagen crosslinks derived from hydroxylysine residues in the collagen telopeptide domains. Lysyl hydroxylase 2 (LH2), an important alternatively spliced enzyme in collagen biosynthesis, acts as a collagen telopeptide hydroxylase. Changes in the pattern of LH2 alternative splicing, favoring increased inclusion of the alternatively spliced LH2 exon 13A, thereby increasing the levels of the long transcript of LH2 (LH2[long]), are linked to scleroderma disease. This study was undertaken to examine the role played by RNA binding protein Fox-2 in regulating exon 13A inclusion, which leads to the generation of scleroderma-associated LH2(long) messenger RNA (mRNA). Phylogenetic sequence analysis of introns flanking exon 13A was performed. A tetracycline-inducible system in T-Rex 293 cells was used to induce Fox-2 protein, and endogenous LH2(long) mRNA was determined by reverse transcriptase-polymerase chain reaction. An LH2 minigene was designed, validated, and used in Fox-2 overexpression and mutagenesis experiments. Knockdown of Fox-2 was performed in mouse embryonic fibroblasts and in fibroblasts from SSc patients. Overexpression of Fox-2 enhanced the inclusion of exon 13A and increased the generation of LH2(long) mRNA, whereas knockdown of Fox-2 decreased LH2(long) transcripts. Mutational analysis of an LH2 minigene demonstrated that 2 of the 4 Fox binding motifs flanking LH2 exon 13A are required for inclusion of exon 13A. In early passage fibroblasts derived from patients with scleroderma, the knockdown of Fox-2 protein significantly decreased the endogenous levels of LH2(long) mRNA. Our findings indicate that Fox-2 plays an integral role in the regulation of LH2 splicing. Knockdown of Fox-2 and other methods to decrease

  13. Diversification of the muscle proteome through alternative splicing.

    Science.gov (United States)

    Nakka, Kiran; Ghigna, Claudia; Gabellini, Davide; Dilworth, F Jeffrey

    2018-03-06

    Skeletal muscles express a highly specialized proteome that allows the metabolism of energy sources to mediate myofiber contraction. This muscle-specific proteome is partially derived through the muscle-specific transcription of a subset of genes. Surprisingly, RNA sequencing technologies have also revealed a significant role for muscle-specific alternative splicing in generating protein isoforms that give specialized function to the muscle proteome. In this review, we discuss the current knowledge with respect to the mechanisms that allow pre-mRNA transcripts to undergo muscle-specific alternative splicing while identifying some of the key trans-acting splicing factors essential to the process. The importance of specific splicing events to specialized muscle function is presented along with examples in which dysregulated splicing contributes to myopathies. Though there is now an appreciation that alternative splicing is a major contributor to proteome diversification, the emergence of improved "targeted" proteomic methodologies for detection of specific protein isoforms will soon allow us to better appreciate the extent to which alternative splicing modifies the activity of proteins (and their ability to interact with other proteins) in the skeletal muscle. In addition, we highlight a continued need to better explore the signaling pathways that contribute to the temporal control of trans-acting splicing factor activity to ensure specific protein isoforms are expressed in the proper cellular context. An understanding of the signal-dependent and signal-independent events driving muscle-specific alternative splicing has the potential to provide us with novel therapeutic strategies to treat different myopathies.

  14. Synonymous mutations in RNASEH2A create cryptic splice sites impairing RNase H2 enzyme function in Aicardi-Goutières syndrome.

    Science.gov (United States)

    Rice, Gillian I; Reijns, Martin A M; Coffin, Stephanie R; Forte, Gabriella M A; Anderson, Beverley H; Szynkiewicz, Marcin; Gornall, Hannah; Gent, David; Leitch, Andrea; Botella, Maria P; Fazzi, Elisa; Gener, Blanca; Lagae, Lieven; Olivieri, Ivana; Orcesi, Simona; Swoboda, Kathryn J; Perrino, Fred W; Jackson, Andrew P; Crow, Yanick J

    2013-08-01

    Aicardi-Goutières syndrome is an inflammatory disorder resulting from mutations in TREX1, RNASEH2A/2B/2C, SAMHD1, or ADAR1. Here, we provide molecular, biochemical, and cellular evidence for the pathogenicity of two synonymous variants in RNASEH2A. Firstly, the c.69G>A (p.Val23Val) mutation causes the formation of a splice donor site within exon 1, resulting in an out of frame deletion at the end of exon 1, leading to reduced RNase H2 protein levels. The second mutation, c.75C>T (p.Arg25Arg), also introduces a splice donor site within exon 1, and the internal deletion of 18 amino acids. The truncated protein still forms a heterotrimeric RNase H2 complex, but lacks catalytic activity. However, as a likely result of leaky splicing, a small amount of full-length active protein is apparently produced in an individual homozygous for this mutation. Recognition of the disease causing status of these variants allows for diagnostic testing in relevant families. © 2013 WILEY PERIODICALS, INC.

  15. Organ-Specific and Age-Dependent Expression of Insulin-like Growth Factor-I (IGF-I) mRNA Variants: IGF-IA and IB mRNAs in the Mouse

    OpenAIRE

    Ohtsuki, Takashi; Otsuki, Mariko; Murakami, Yousuke; Maekawa, Tetsuya; Yamamoto, Takashi; Akasaka, Koji; Takeuchi, Sakae; Takahashi, Sumio

    2005-01-01

    Insulin-like growth factor-I (IGF-I) gene generates several IGF-I mRNA variants by alternative splicing. Two promoters are present in mouse IGF-I gene. Each promoter encodes two IGF-I mRNA variants (IGF-IA and IGF-IB mRNAs). Variants differ by the presence (IGF-IB) or absence (IGF-IA) of a 52-bp insert in the E domain-coding region. Functional differences among IGF-I mRNAs, and regulatory mechanisms for alternative splicing of IGF-I mRNA are not yet known. We analyzed the expression of mouse ...

  16. [Genetic diagnostics of pathogenic splicing abnormalities in the clinical laboratory--pitfalls and screening approaches].

    Science.gov (United States)

    Niimi, Hideki; Ogawa, Tomomi; Note, Rhougou; Hayashi, Shirou; Ueno, Tomohiro; Harada, Kenu; Uji, Yoshinori; Kitajima, Isao

    2010-12-01

    In recent years, genetic diagnostics of pathogenic splicing abnormalities are increasingly recognized as critically important in the clinical genetic diagnostics. It is reported that approximately 10% of pathogenic mutations causing human inherited diseases are splicing mutations. Nonetheless, it is still difficult to identify splicing abnormalities in routine genetic diagnostic settings. Here, we studied two different kinds of cases with splicing abnormalities. The first case is a protein S deficiency. Nucleotide analyses revealed that the proband had a previously reported G to C substitution in the invariant AG dinucleotide at the splicing acceptor site of intronl/exon2, which produces multiple splicing abnormalities resulting in protein S deficiency. The second case is an antithrombin (AT) deficiency. This proband had a previously reported G to A substitution, at nucleotide position 9788 in intron 4, 14 bp in front of exon 5, which created a de novo exon 5 splice site and resulted in AT deficiency. From a practical standpoint, we discussed the pitfalls, attentions, and screening approaches in genetic diagnostics of pathogenic splicing abnormalities. Due to the difficulty with full-length sequence analysis of introns, and the lack of RNA samples, splicing mutations may escape identification. Although current genetic testing remains to be improved, to screen for splicing abnormalities more efficiently, it is significant to use an appropriate combination of various approaches such as DNA and/or RNA samples, splicing mutation databases, bioinformatic tools to detect splice sites and cis-regulatory elements, and in vitro and/or in vivo experimentally methods as needed.

  17. A functional alternative splicing mutation in AIRE gene causes autoimmune polyendocrine syndrome type 1.

    Directory of Open Access Journals (Sweden)

    Junyu Zhang

    Full Text Available Autoimmune polyendocrine syndrome type 1 (APS-1 is a rare autosomal recessive disease defined by the presence of two of the three conditions: mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Loss-of-function mutations of the autoimmune regulator (AIRE gene have been linked to APS-1. Here we report mutational analysis and functional characterization of an AIRE mutation in a consanguineous Chinese family with APS-1. All exons of the AIRE gene and adjacent exon-intron sequences were amplified by PCR and subsequently sequenced. We identified a homozygous missense AIRE mutation c.463G>A (p.Gly155Ser in two siblings with different clinical features of APS-1. In silico splice-site prediction and minigene analysis were carried out to study the potential pathological consequence. Minigene splicing analysis and subsequent cDNA sequencing revealed that the AIRE mutation potentially compromised the recognition of the splice donor of intron 3, causing alternative pre-mRNA splicing by intron 3 retention. Furthermore, the aberrant AIRE transcript was identified in a heterozygous carrier of the c.463G>A mutation. The aberrant intron 3-retaining transcript generated a truncated protein (p.G155fsX203 containing the first 154 AIRE amino acids and followed by 48 aberrant amino acids. Therefore, our study represents the first functional characterization of the alternatively spliced AIRE mutation that may explain the pathogenetic role in APS-1.

  18. Generation of iPSC line from desmin-related cardiomyopathy patient carrying splice site mutation of DES gene

    Directory of Open Access Journals (Sweden)

    Aleksandr Khudiakov

    2017-10-01

    Full Text Available Human iPSC line was generated from patient-specific adipose tissue-derived mesenchymal multipotent stromal cells carrying desmin (DES gene heterozygous splice site mutation using non-integrative reprogramming method. Reprogramming factors OCT4, KLF4, SOX2, CMYC were delivered using Sendai viruses. iPSCs were characterized by sequencing, karyotype analysis, STR analysis, immunocytochemistry, RT-PCR and teratoma formation.

  19. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay.

    Directory of Open Access Journals (Sweden)

    Jennifer L Anderson

    2017-11-01

    Full Text Available As model organism-based research shifts from forward to reverse genetics approaches, largely due to the ease of genome editing technology, a low frequency of abnormal phenotypes is being observed in lines with mutations predicted to lead to deleterious effects on the encoded protein. In zebrafish, this low frequency is in part explained by compensation by genes of redundant or similar function, often resulting from the additional round of teleost-specific whole genome duplication within vertebrates. Here we offer additional explanations for the low frequency of mutant phenotypes. We analyzed mRNA processing in seven zebrafish lines with mutations expected to disrupt gene function, generated by CRISPR/Cas9 or ENU mutagenesis methods. Five of the seven lines showed evidence of altered mRNA processing: one through a skipped exon that did not lead to a frame shift, one through nonsense-associated splicing that did not lead to a frame shift, and three through the use of cryptic splice sites. These results highlight the need for a methodical analysis of the mRNA produced in mutant lines before making conclusions or embarking on studies that assume loss of function as a result of a given genomic change. Furthermore, recognition of the types of adaptations that can occur may inform the strategies of mutant generation.

  20. A study of alternative splicing in the pig

    Directory of Open Access Journals (Sweden)

    Jørgensen Claus B

    2010-05-01

    Full Text Available Abstract Background Since at least half of the genes in mammalian genomes are subjected to alternative splicing, alternative pre-mRNA splicing plays an important contribution to the complexity of the mammalian proteome. Expressed sequence tags (ESTs provide evidence of a great number of possible alternative isoforms. With the EST resource for the domestic pig now containing more than one million porcine ESTs, it is possible to identify alternative splice forms of the individual transcripts in this species from the EST data with some confidence. Results The pig EST data generated by the Sino-Danish Pig Genome project has been assembled with publicly available ESTs and made available in the PigEST database. Using the Distiller package 2,515 EST clusters with candidate alternative isoforms were identified in the EST data with high confidence. In agreement with general observations in human and mouse, we find putative splice variants in about 30% of the contigs with more than 50 ESTs. Based on the criteria that a minimum of two EST sequences confirmed each splice event, a list of 100 genes with the most distinct tissue-specific alternative splice events was generated from the list of candidates. To confirm the tissue specificity of the splice events, 10 genes with functional annotation were randomly selected from which 16 individual splice events were chosen for experimental verification by quantitative PCR (qPCR. Six genes were shown to have tissue specific alternatively spliced transcripts with expression patterns matching those of the EST data. The remaining four genes had tissue-restricted expression of alternative spliced transcripts. Five out of the 16 splice events that were experimentally verified were found to be putative pig specific. Conclusions In accordance with human and rodent studies we estimate that approximately 30% of the porcine genes undergo alternative splicing. We found a good correlation between EST predicted tissue

  1. LOX-1 and Its Splice Variants: A New Challenge for Atherosclerosis and Cancer-Targeted Therapies

    Science.gov (United States)

    Rizzacasa, Barbara; Morini, Elena; Pucci, Sabina; Murdocca, Michela; Novelli, Giuseppe; Amati, Francesca

    2017-01-01

    Alternative splicing (AS) is a process in which precursor messenger RNA (pre-mRNA) splicing sites are differentially selected to diversify the protein isoform population. Changes in AS patterns have an essential role in normal development, differentiation and response to physiological stimuli. It is documented that AS can generate both “risk” and “protective” splice variants that can contribute to the pathogenesis of several diseases including atherosclerosis. The main endothelial receptor for oxidized low-density lipoprotein (ox-LDLs) is LOX-1 receptor protein encoded by the OLR1 gene. When OLR1 undergoes AS events, it generates three variants: OLR1, OLR1D4 and LOXIN. The latter lacks exon 5 and two-thirds of the functional domain. Literature data demonstrate a protective role of LOXIN in pathologies correlated with LOX-1 overexpression such as atherosclerosis and tumors. In this review, we summarize recent developments in understanding of OLR1 AS while also highlighting data warranting further investigation of this process as a novel therapeutic target. PMID:28146073

  2. Tissue-specific splicing pattern of fibronectin messenger RNA precursor during development and aging in rat

    OpenAIRE

    1991-01-01

    Fibronectin isoforms are generated by the alternative splicing of a primary transcript derived from a single gene. In rat at least three regions of the molecule are involved: EIIIA, EIIIB, and V. This study investigated the splicing patterns of these regions during development and aging, by means of ribonuclease protection analysis. Between fetal and adult rat, the extent of inclusion of the EIIIA and/or EIIIB region in fibronectin mRNA varied according to the type of tissue analyzed; but the...

  3. Regulation of Neurexin 1[beta] Tertiary Structure and Ligand Binding through Alternative Splicing

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Kaiser C.; Kuczynska, Dorota A.; Wu, Irene J.; Murray, Beverly H.; Sheckler, Lauren R.; Rudenko, Gabby (Michigan)

    2008-08-04

    Neurexins and neuroligins play an essential role in synapse function, and their alterations are linked to autistic spectrum disorder. Interactions between neurexins and neuroligins regulate inhibitory and excitatory synaptogenesis in vitro through a splice-insert signaling code. In particular, neurexin 1{beta} carrying an alternative splice insert at site SS{number_sign}4 interacts with neuroligin 2 (found predominantly at inhibitory synapses) but much less so with other neuroligins (those carrying an insert at site B and prevalent at excitatory synapses). The structure of neurexin 1{beta}+SS{number_sign}4 reveals dramatic rearrangements to the 'hypervariable surface', the binding site for neuroligins. The splice insert protrudes as a long helix into space, triggers conversion of loop {beta}10-{beta}11 into a helix rearranging the binding site for neuroligins, and rearranges the Ca{sup 2+}-binding site required for ligand binding, increasing its affinity. Our structures reveal the mechanism by which neurexin 1{beta} isoforms acquire neuroligin splice isoform selectivity.

  4. Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982

    Directory of Open Access Journals (Sweden)

    A. J. Drury

    2018-03-01

    Full Text Available Ocean Drilling Program (ODP Site 982 represents a key location for understanding the evolution of climate in the North Atlantic over the past 12 Ma. However, concerns exist about the validity and robustness of the underlying stratigraphy and astrochronology, which currently limits the adequacy of this site for high-resolution climate studies. To resolve this uncertainty, we verify and extend the early Pliocene to late Miocene shipboard composite splice at Site 982 using high-resolution XRF core scanning data and establish a robust high-resolution benthic foraminiferal stable isotope stratigraphy and astrochronology between 8.0 and 4.5 Ma. Splice revisions and verifications resulted in  ∼  11 m of gaps in the original Site 982 isotope stratigraphy, which were filled with 263 new isotope analyses. This new stratigraphy reveals previously unseen benthic δ18O excursions, particularly prior to 6.65 Ma. The benthic δ18O record displays distinct, asymmetric cycles between 7.7 and 6.65 Ma, confirming that high-latitude climate is a prevalent forcing during this interval. An intensification of the 41 kyr beat in both the benthic δ13C and δ18O is also observed  ∼  6.4 Ma, marking a strengthening in the cryosphere–carbon cycle coupling. A large  ∼  0.7 ‰ double excursion is revealed  ∼  6.4–6.3 Ma, which also marks the onset of an interval of average higher δ18O and large precession and obliquity-dominated δ18O excursions between 6.4 and 5.4 Ma, coincident with the culmination of the late Miocene cooling. The two largest benthic δ18O excursions  ∼  6.4–6.3 Ma and TG20/22 coincide with the coolest alkenone-derived sea surface temperature (SST estimates from Site 982, suggesting a strong connection between the late Miocene global cooling, and deep-sea cooling and dynamic ice sheet expansion. The splice revisions and revised astrochronology resolve key stratigraphic issues that

  5. Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar

    2017-03-27

    Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  6. Alternative splicing: a novel mechanism of regulation identified in the chorismate mutase gene of the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Lu, Shun-Wen; Tian, Duanhua; Borchardt-Wier, Harmony B; Wang, Xiaohong

    2008-11-01

    Chorismate mutase (CM) secreted from the stylet of plant-parasitic nematodes plays an important role in plant parasitism. We isolated and characterized a new nematode CM gene (Gr-cm-1) from the potato cyst nematode, Globodera rostochiensis. The Gr-cm-1 gene was found to exist in the nematode genome as a single-copy gene that has two different alleles, Gr-cm-1A and Gr-cm-1B, both of which could give rise to two different mRNA transcripts of Gr-cm-1 and Gr-cm-1-IRII. In situ mRNA hybridization showed that the Gr-cm-1 gene was exclusively expressed within the subventral oesophageal gland cells of the nematode. Gr-cm-1 was demonstrated to encode a functional CM (GR-CM-1) potentially having a dimeric structure as the secreted bacterial *AroQ CMs. Gr-cm-1-IRII, generated by retention of intron 2 of the Gr-cm-1 pre-mRNA through alternative splicing (AS), would encode a truncated protein (GR-CM-1t) lacking the CM domain with no CM activity. The quantitative real-time reverse transcription-PCR assay revealed that splicing of the Gr-cm-1 gene was developmentally regulated; Gr-cm-1 was up-regulated whereas Gr-cm-1-IRII was down-regulated in early nematode parasitic stages compared to the preparasitic juvenile stage. Low-temperature SDS-PAGE analysis revealed that GR-CM-1 could form homodimers when expressed in Escherichia coli and the dimerization domain was retained in the truncated GR-CM-1t protein. The specific interaction between the two proteins was demonstrated in yeast. Our data suggested that the novel splice variant might function as a dominant negative isoform through heterodimerization with the full-length GR-CM-1 protein and that AS may represent an important mechanism for regulating CM activity during nematode parasitism.

  7. Two tandem RNase III cleavage sites determine betT mRNA stability in response to osmotic stress in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Minji Sim

    Full Text Available While identifying genes regulated by ribonuclease III (RNase III in Escherichia coli, we observed that steady-state levels of betT mRNA, which encodes a transporter mediating the influx of choline, are dependent on cellular concentrations of RNase III. In the present study, we also observed that steady-state levels of betT mRNA are dependent on RNase III activity upon exposure to osmotic stress, indicating the presence of cis-acting elements controlled by RNase III in betT mRNA. Primer extension analyses of betT mRNA revealed two tandem RNase III cleavage sites in its stem-loop region, which were biochemically confirmed via in vitro cleavage assays. Analyses of cleavage sites suggested the stochastic selection of cleavage sites by RNase III, and mutational analyses indicated that RNase III cleavage at either site individually is insufficient for efficient betT mRNA degradation. In addition, both the half-life and abundance of betT mRNA were significantly increased in association with decreased RNase III activity under hyper-osmotic stress conditions. Our findings demonstrate that betT mRNA stability is controlled by RNase III at the post-transcriptional level under conditions of osmotic stress.

  8. The SPF27 homologue Num1 connects splicing and kinesin 1-dependent cytoplasmic trafficking in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Nikola Kellner

    2014-01-01

    Full Text Available The conserved NineTeen protein complex (NTC is an integral subunit of the spliceosome and required for intron removal during pre-mRNA splicing. The complex associates with the spliceosome and participates in the regulation of conformational changes of core spliceosomal components, stabilizing RNA-RNA- as well as RNA-protein interactions. In addition, the NTC is involved in cell cycle checkpoint control, response to DNA damage, as well as formation and export of mRNP-particles. We have identified the Num1 protein as the homologue of SPF27, one of NTC core components, in the basidiomycetous fungus Ustilago maydis. Num1 is required for polarized growth of the fungal hyphae, and, in line with the described NTC functions, the num1 mutation affects the cell cycle and cell division. The num1 deletion influences splicing in U. maydis on a global scale, as RNA-Seq analysis revealed increased intron retention rates. Surprisingly, we identified in a screen for Num1 interacting proteins not only NTC core components as Prp19 and Cef1, but several proteins with putative functions during vesicle-mediated transport processes. Among others, Num1 interacts with the motor protein Kin1 in the cytoplasm. Similar phenotypes with respect to filamentous and polar growth, vacuolar morphology, as well as the motility of early endosomes corroborate the genetic interaction between Num1 and Kin1. Our data implicate a previously unidentified connection between a component of the splicing machinery and cytoplasmic transport processes. As the num1 deletion also affects cytoplasmic mRNA transport, the protein may constitute a novel functional interconnection between the two disparate processes of splicing and trafficking.

  9. Alternative-splicing in the exon-10 region of GABA(A receptor beta(2 subunit gene: relationships between novel isoforms and psychotic disorders.

    Directory of Open Access Journals (Sweden)

    Cunyou Zhao

    Full Text Available BACKGROUND: Non-coding single nucleotide polymorphisms (SNPs in GABRB2, the gene for beta(2-subunit of gamma-aminobutyric acid type A (GABA(A receptor, have been associated with schizophrenia (SCZ and quantitatively correlated to mRNA expression and alternative splicing. METHODS AND FINDINGS: Expression of the Exon 10 region of GABRB2 from minigene constructs revealed this region to be an "alternative splicing hotspot" that readily gave rise to differently spliced isoforms depending on intron sequences. This led to a search in human brain cDNA libraries, and the discovery of two novel isoforms, beta(2S1 and beta(2S2, bearing variations in the neighborhood of Exon-10. Quantitative real-time PCR analysis of postmortem brain samples showed increased beta(2S1 expression and decreased beta(2S2 expression in both SCZ and bipolar disorder (BPD compared to controls. Disease-control differences were significantly correlated with SNP rs187269 in BPD males for both beta(2S1 and beta(2S2 expressions, and significantly correlated with SNPs rs2546620 and rs187269 in SCZ males for beta(2S2 expression. Moreover, site-directed mutagenesis indicated that Thr(365, a potential phosphorylation site in Exon-10, played a key role in determining the time profile of the ATP-dependent electrophysiological current run-down. CONCLUSION: This study therefore provided experimental evidence for the importance of non-coding sequences in the Exon-10 region in GABRB2 with respect to beta(2-subunit splicing diversity and the etiologies of SCZ and BPD.

  10. Polypyrimidine Tract Binding Protein Homologs from Arabidopsis Are Key Regulators of Alternative Splicing with Implications in Fundamental Developmental Processes[W

    Science.gov (United States)

    Rühl, Christina; Stauffer, Eva; Kahles, André; Wagner, Gabriele; Drechsel, Gabriele; Rätsch, Gunnar; Wachter, Andreas

    2012-01-01

    Alternative splicing (AS) generates transcript variants by variable exon/intron definition and massively expands transcriptome diversity. Changes in AS patterns have been found to be linked to manifold biological processes, yet fundamental aspects, such as the regulation of AS and its functional implications, largely remain to be addressed. In this work, widespread AS regulation by Arabidopsis thaliana Polypyrimidine tract binding protein homologs (PTBs) was revealed. In total, 452 AS events derived from 307 distinct genes were found to be responsive to the levels of the splicing factors PTB1 and PTB2, which predominantly triggered splicing of regulated introns, inclusion of cassette exons, and usage of upstream 5′ splice sites. By contrast, no major AS regulatory function of the distantly related PTB3 was found. Dependent on their position within the mRNA, PTB-regulated events can both modify the untranslated regions and give rise to alternative protein products. We find that PTB-mediated AS events are connected to diverse biological processes, and the functional implications of selected instances were further elucidated. Specifically, PTB misexpression changes AS of PHYTOCHROME INTERACTING FACTOR6, coinciding with altered rates of abscisic acid–dependent seed germination. Furthermore, AS patterns as well as the expression of key flowering regulators were massively changed in a PTB1/2 level-dependent manner. PMID:23192226

  11. Functional characterization of the spf/ash splicing variation in OTC deficiency of mice and man.

    Directory of Open Access Journals (Sweden)

    Ana Rivera-Barahona

    Full Text Available The spf/ash mouse model of ornithine transcarbamylase (OTC deficiency, a severe urea cycle disorder, is caused by a mutation (c.386G>A; p.R129H in the last nucleotide of exon 4 of the Otc gene, affecting the 5' splice site and resulting in partial use of a cryptic splice site 48 bp into the adjacent intron. The equivalent nucleotide change and predicted amino acid change is found in OTC deficient patients. Here we have used liver tissue and minigene assays to dissect the transcriptional profile resulting from the "spf/ash" mutation in mice and man. For the mutant mouse, we confirmed liver transcripts corresponding to partial intron 4 retention by the use of the c.386+48 cryptic site and to normally spliced transcripts, with exon 4 always containing the c.386G>A (p.R129H variant. In contrast, the OTC patient exhibited exon 4 skipping or c.386G>A (p.R129H-variant exon 4 retention by using the natural or a cryptic splice site at nucleotide position c.386+4. The corresponding OTC tissue enzyme activities were between 3-6% of normal control in mouse and human liver. The use of the cryptic splice sites was reproduced in minigenes carrying murine or human mutant sequences. Some normally spliced transcripts could be detected in minigenes in both cases. Antisense oligonucleotides designed to block the murine cryptic +48 site were used in minigenes in an attempt to redirect splicing to the natural site. The results highlight the relevance of in depth investigations of the molecular mechanisms of splicing mutations and potential therapeutic approaches. Notably, they emphasize the fact that findings in animal models may not be applicable for human patients due to the different genomic context of the mutations.

  12. Chemotherapy induces alternative transcription and splicing: Facts and hopes for cancer treatment.

    Science.gov (United States)

    Lambert, Charles A; Garbacki, Nancy; Colige, Alain C

    2017-10-01

    Alternative promoter usage, alternative splicing and alternative cleavage/polyadenylation (referred here as to alternative transcription and splicing) are main instruments to diversify the transcriptome from a limited set of genes. There is a good deal of evidence that chemotherapeutic drugs affect these processes, but the therapeutic incidence of these effects is poorly documented. The scope of this study is to review the impact of chemotherapy on alternative transcription and splicing and to discuss potential implications in cancer therapy. A literature survey identified >2200 events induced by chemotherapeutic drugs. The molecular pathways involved in these regulations are briefly discussed. The GO terms associated with the alternative transcripts are mainly related to cell cycle/division, mRNA processing, DNA repair, macromolecules catabolism and chromatin. A large fraction (43%) of transcripts are also related to the new hallmarks of cancer, mostly genetic instability and replicative immortality. Finally, we ask the question of the impact of alternative transcription and splicing on drug efficacy and of the possible curative benefit of combining chemotherapy and pharmaceutical regulation of this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Identification of evolutionarily conserved exons as regulated targets for the splicing activator tra2β in development.

    Directory of Open Access Journals (Sweden)

    Sushma Grellscheid

    2011-12-01

    Full Text Available Alternative splicing amplifies the information content of the genome, creating multiple mRNA isoforms from single genes. The evolutionarily conserved splicing activator Tra2β (Sfrs10 is essential for mouse embryogenesis and implicated in spermatogenesis. Here we find that Tra2β is up-regulated as the mitotic stem cell containing population of male germ cells differentiate into meiotic and post-meiotic cells. Using CLIP coupled to deep sequencing, we found that Tra2β binds a high frequency of exons and identified specific G/A rich motifs as frequent targets. Significantly, for the first time we have analysed the splicing effect of Sfrs10 depletion in vivo by generating a conditional neuronal-specific Sfrs10 knock-out mouse (Sfrs10(fl/fl; Nestin-Cre(tg/+. This mouse has defects in brain development and allowed correlation of genuine physiologically Tra2β regulated exons. These belonged to a novel class which were longer than average size and importantly needed multiple cooperative Tra2β binding sites for efficient splicing activation, thus explaining the observed splicing defects in the knockout mice. Regulated exons included a cassette exon which produces a meiotic isoform of the Nasp histone chaperone that helps monitor DNA double-strand breaks. We also found a previously uncharacterised poison exon identifying a new pathway of feedback control between vertebrate Tra2 proteins. Both Nasp-T and the Tra2a poison exon are evolutionarily conserved, suggesting they might control fundamental developmental processes. Tra2β protein isoforms lacking the RRM were able to activate specific target exons indicating an additional functional role as a splicing co-activator. Significantly the N-terminal RS1 domain conserved between flies and humans was essential for the splicing activator function of Tra2β. Versions of Tra2β lacking this N-terminal RS1 domain potently repressed the same target exons activated by full-length Tra2β protein.

  14. Advanced cell-based modeling of the royal disease: characterization of the mutated F9 mRNA.

    Science.gov (United States)

    Martorell, L; Luce, E; Vazquez, J L; Richaud-Patin, Y; Jimenez-Delgado, S; Corrales, I; Borras, N; Casacuberta-Serra, S; Weber, A; Parra, R; Altisent, C; Follenzi, A; Dubart-Kupperschmitt, A; Raya, A; Vidal, F; Barquinero, J

    2017-11-01

    Essentials The Royal disease (RD) is a form of hemophilia B predicted to be caused by a splicing mutation. We generated an iPSC-based model of the disease allowing mechanistic studies at the RNA level. F9 mRNA analysis in iPSC-derived hepatocyte-like cells showed the predicted abnormal splicing. Mutated F9 mRNA level was very low but we also found traces of wild type transcripts. Background The royal disease is a form of hemophilia B (HB) that affected many descendants of Queen Victoria in the 19th and 20th centuries. It was found to be caused by the mutation F9 c.278-3A>G. Objective To generate a physiological cell model of the disease and to study F9 expression at the RNA level. Methods Using fibroblasts from skin biopsies of a previously identified hemophilic patient bearing the F9 c.278-3A>G mutation and his mother, we generated induced pluripotent stem cells (iPSCs). Both the patient's and mother's iPSCs were differentiated into hepatocyte-like cells (HLCs) and their F9 mRNA was analyzed using next-generation sequencing (NGS). Results and Conclusion We demonstrated the previously predicted aberrant splicing of the F9 transcript as a result of an intronic nucleotide substitution leading to a frameshift and the generation of a premature termination codon (PTC). The F9 mRNA level in the patient's HLCs was significantly reduced compared with that of his mother, suggesting that mutated transcripts undergo nonsense-mediated decay (NMD), a cellular mechanism that degrades PTC-containing mRNAs. We also detected small proportions of correctly spliced transcripts in the patient's HLCs, which, combined with genetic variability in splicing and NMD machineries, could partially explain some clinical variability among affected members of the European royal families who had lifespans above the average. This work allowed the demonstration of the pathologic consequences of an intronic mutation in the F9 gene and represents the first bona fide cellular model of HB allowing the

  15. Antisense Oligonucleotide-based Splice Correction for USH2A-associated Retinal Degeneration Caused by a Frequent Deep-intronic Mutation

    Directory of Open Access Journals (Sweden)

    Radulfus WN Slijkerman

    2016-01-01

    Full Text Available Usher syndrome (USH is the most common cause of combined deaf-blindness in man. The hearing loss can be partly compensated by providing patients with hearing aids or cochlear implants, but the loss of vision is currently untreatable. In general, mutations in the USH2A gene are the most frequent cause of USH explaining up to 50% of all patients worldwide. The first deep-intronic mutation in the USH2A gene (c.7595-2144A>G was reported in 2012, leading to the insertion of a pseudoexon (PE40 into the mature USH2A transcript. When translated, this PE40-containing transcript is predicted to result in a truncated non-functional USH2A protein. In this study, we explored the potential of antisense oligonucleotides (AONs to prevent aberrant splicing of USH2A pre-mRNA as a consequence of the c.7595-2144A>G mutation. Engineered 2'-O-methylphosphorothioate AONs targeting the PE40 splice acceptor site and/or exonic splice enhancer regions displayed significant splice correction potential in both patient derived fibroblasts and a minigene splice assay for USH2A c.7595-2144A>G, whereas a non-binding sense oligonucleotide had no effect on splicing. Altogether, AON-based splice correction could be a promising approach for the development of a future treatment for USH2A-associated retinitis pigmentosa caused by the deep-intronic c.7595-2144A>G mutation.

  16. Mismatched single stranded antisense oligonucleotides can induce efficient dystrophin splice switching

    Directory of Open Access Journals (Sweden)

    Kole Ryszard

    2011-10-01

    Full Text Available Abstract Background Antisense oligomer induced exon skipping aims to reduce the severity of Duchenne muscular dystrophy by redirecting splicing during pre-RNA processing such that the causative mutation is by-passed and a shorter but partially functional Becker muscular dystrophy-like dystrophin isoform is produced. Normal exons are generally targeted to restore the dystrophin reading frame however, an appreciable subset of dystrophin mutations are intra-exonic and therefore have the potential to compromise oligomer efficiency, necessitating personalised oligomer design for some patients. Although antisense oligomers are easily personalised, it remains unclear whether all patient polymorphisms within antisense oligomer target sequences will require the costly process of producing and validating patient specific compounds. Methods Here we report preclinical testing of a panel of splice switching antisense oligomers, designed to excise exon 25 from the dystrophin transcript, in normal and dystrophic patient cells. These patient cells harbour a single base insertion in exon 25 that lies within the target sequence of an oligomer shown to be effective at removing exon 25. Results It was anticipated that such a mutation would compromise oligomer binding and efficiency. However, we show that, despite the mismatch an oligomer, designed and optimised to excise exon 25 from the normal dystrophin mRNA, removes the mutated exon 25 more efficiently than the mutation-specific oligomer. Conclusion This raises the possibility that mismatched AOs could still be therapeutically applicable in some cases, negating the necessity to produce patient-specific compounds.

  17. Alternative RNA splicing and gastric cancer.

    Science.gov (United States)

    Li, Ying; Yuan, Yuan

    2017-07-01

    Alternative splicing (AS) linked to diseases, especially to tumors. Recently, more and more studies focused on the relationship between AS and gastric cancer (GC). This review surveyed the hot topic from four aspects: First, the common types of AS in cancer, including exon skipping, intron retention, mutually exclusive exon, alternative 5 ' or 3' splice site, alternative first or last exon and alternative 3' untranslated regions. Second, basic mechanisms of AS and its relationship with cancer. RNA splicing in eukaryotes follows the GT-AG rule by both cis-elements and trans-acting factors regulatory. Through RNA splicing, different proteins with different forms and functions can be produced and may be associated with carcinogenesis. Third, AS types of GC-related genes and their splicing variants. In this paper, we listed 10 common genes with AS and illustrated its possible molecular mechanisms owing to genetic variation (mutation and /or polymorphism). Fourth, the splicing variants of GC-associated genes and gastric carcinogenesis, invasion and metastasis. Many studies have found that the different splicing variants of the same gene are differentially expressed in GC and its precancerous diseases, suggesting AS has important implications in GC development. Taking together, this review highlighted the role of AS and splicing variants in the process of GC. We hope that this is not only beneficial to advances in the study field of GC, but also can provide valuable information to other similar tumor research.Although we already know some gene splicing and splicing variants play an important role in the development of GC, but many phenomena and mechanisms are still unknown. For example, how the tumor microenvironment and signal transduction pathway effect the forming and function of AS? Unfortunately, this review did not cover the contents because the current study is limited. It is no doubt that clarifying the phenomena and mechanisms of these unknown may help to reveal

  18. An Intron 9 CYP19 Gene Variant (IVS9+5G>A), Present in an Aromatase-Deficient Girl, Affects Normal Splicing and Is Also Present in Normal Human Steroidogenic Tissues.

    Science.gov (United States)

    Saraco, Nora; Nesi-Franca, Suzana; Sainz, Romina; Marino, Roxana; Marques-Pereira, Rosana; La Pastina, Julia; Perez Garrido, Natalia; Sandrini, Romolo; Rivarola, Marco Aurelio; de Lacerda, Luiz; Belgorosky, Alicia

    2015-01-01

    Splicing CYP19 gene variants causing aromatase deficiency in 46,XX disorder of sexual development (DSD) patients have been reported in a few cases. A misbalance between normal and aberrant splicing variants was proposed to explain spontaneous pubertal breast development but an incomplete sex maturation progress. The aim of this study was to functionally characterize a novel CYP19A1 intronic homozygote mutation (IVS9+5G>A) in a 46,XX DSD girl presenting spontaneous breast development and primary amenorrhea, and to evaluate similar splicing variant expression in normal steroidogenic tissues. Genomic DNA analysis, splicing prediction programs, splicing assays, and in vitro protein expression and enzyme activity analyses were carried out. CYP19A1 mRNA expression in human steroidogenic tissues was also studied. A novel IVS9+5G>A homozygote mutation was found. In silico analysis predicts the disappearance of the splicing donor site in intron 9, confirmed by patient peripheral leukocyte cP450arom and in vitro studies. Protein analysis showed a shorter and inactive protein. The intron 9 transcript variant was also found in human steroidogenic tissues. The mutation IVS9+5G>A generates a splicing variant that includes intron 9 which is also present in normal human steroidogenic tissues, suggesting that a misbalance between normal and aberrant splicing variants might occur in target tissues, explaining the clinical phenotype in the affected patient. © 2015 S. Karger AG, Basel.

  19. Pig StAR: mRNA expression and alternative splicing in testis and Leydig cells, and association analyses with testicular morphology traits.

    Science.gov (United States)

    Zhang, Yanghai; Cui, Yang; Zhang, Xuelian; Wang, Yimin; Gao, Jiayang; Yu, Ting; Lv, Xiaoyan; Pan, Chuanying

    2018-05-31

    Steroidogenic acute regulatory protein (StAR), primarily expressed in Leydig cells (LCs) in the mammalian testes, is essential for testosterone biosynthesis and male fertility. However, no previous reports have explored the expression profiles, alternative splicing and genetic variations of StAR gene in pig. The aim of current study was to explore the expression profiles in different tissues and different types of testicular cells (LCs; spermatogonial stem cells, SSCs; Sertoli cells, SCs), to identify different splice variants and their expression levels, as well as to detect the indel polymorphism in pig StAR gene. Expression analysis results revealed that StAR was widely expressed in all tested tissues and the expression level in testis was significantly higher than that in other tissues (P StAR mRNA expression level was significantly higher in LCs than others (P StAR-a, StAR-b and StAR-c, were first found in pig. Further study showed StAR-a was highly expressed in both testis and LCs when compared with other variants (P StAR-a was the primary variant at StAR gene post-transcription and may facilitate the combination and transportation of cholesterol with StAR. In addition, a 5-bp duplicated deletion (NC_010457.5:g.5524-5528 delACTTG) was verified in the porcine StAR gene, which was closely related to male testicular morphology traits (P StAR gene might be a positive allele. Briefly, the current findings suggest that StAR and StAR-a play imperative roles in male fertility and the 5-bp indel can be a potential DNA marker for the marker-assisted selection in boar. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. An intronic mutation c.6430-3C>G in the F8 gene causes splicing efficiency and premature termination in hemophilia A.

    Science.gov (United States)

    Xia, Zunjing; Lin, Jie; Lu, Lingping; Kim, Chol; Yu, Ping; Qi, Ming

    2018-06-01

    : Hemophilia A is a bleeding disorder caused by coagulation factor VIII protein deficiency or dysfunction, which is classified into severe, moderate, and mild according to factor clotting activity. An overwhelming majority of missense and nonsense mutations occur in exons of F8 gene, whereas mutations in introns can also be pathogenic. This study aimed to investigate the effect of an intronic mutation, c.6430-3C>G (IVS22-3C>G), on pre-mRNA splicing of the F8 gene. We applied DNA and cDNA sequencing in a Chinese boy with hemophilia A to search if any pathogenic mutation in the F8 gene. Functional analysis was performed to investigate the effect of an intronic mutation at the transcriptional level. Human Splicing Finder and PyMol were also used to predict its effect. We found the mutation c.6430-3C>G (IVS22-3C>G) in the F8 gene in the affected boy, with his mother being a carrier. cDNA from the mother and pSPL3 splicing assay showed that the mutation IVS22-3C>G results in a two-nucleotide AG inclusion at the 3' end of intron 22 and leads to a truncated coagulation factor VIII protein, with partial loss of the C1 domain and complete loss of the C2 domain. The in-silico tool predicted that the mutation induces altered pre-mRNA splicing by using a cryptic acceptor site in intron 22. The IVS22-3C>G mutation was confirmed to affect pre-mRNA splicing and produce a truncated protein, which reduces the stability of binding between the F8 protein and von Willebrand factor carrier protein due to the loss of an interaction domain.

  1. Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of exons

    Science.gov (United States)

    Gelfman, Sahar; Burstein, David; Penn, Osnat; Savchenko, Anna; Amit, Maayan; Schwartz, Schraga; Pupko, Tal; Ast, Gil

    2012-01-01

    Exon–intron architecture is one of the major features directing the splicing machinery to the short exons that are located within long flanking introns. However, the evolutionary dynamics of exon–intron architecture and its impact on splicing is largely unknown. Using a comparative genomic approach, we analyzed 17 vertebrate genomes and reconstructed the ancestral motifs of both 3′ and 5′ splice sites, as also the ancestral length of exons and introns. Our analyses suggest that vertebrate introns increased in length from the shortest ancestral introns to the longest primate introns. An evolutionary analysis of splice sites revealed that weak splice sites act as a restrictive force keeping introns short. In contrast, strong splice sites allow recognition of exons flanked by long introns. Reconstruction of the ancestral state suggests these phenomena were not prevalent in the vertebrate ancestor, but appeared during vertebrate evolution. By calculating evolutionary rate shifts in exons, we identified cis-acting regulatory sequences that became fixed during the transition from early vertebrates to mammals. Experimental validations performed on a selection of these hexamers confirmed their regulatory function. We additionally revealed many features of exons that can discriminate alternative from constitutive exons. These features were integrated into a machine-learning approach to predict whether an exon is alternative. Our algorithm obtains very high predictive power (AUC of 0.91), and using these predictions we have identified and successfully validated novel alternatively spliced exons. Overall, we provide novel insights regarding the evolutionary constraints acting upon exons and their recognition by the splicing machinery. PMID:21974994

  2. SplicePlot: a utility for visualizing splicing quantitative trait loci.

    Science.gov (United States)

    Wu, Eric; Nance, Tracy; Montgomery, Stephen B

    2014-04-01

    RNA sequencing has provided unprecedented resolution of alternative splicing and splicing quantitative trait loci (sQTL). However, there are few tools available for visualizing the genotype-dependent effects of splicing at a population level. SplicePlot is a simple command line utility that produces intuitive visualization of sQTLs and their effects. SplicePlot takes mapped RNA sequencing reads in BAM format and genotype data in VCF format as input and outputs publication-quality Sashimi plots, hive plots and structure plots, enabling better investigation and understanding of the role of genetics on alternative splicing and transcript structure. Source code and detailed documentation are available at http://montgomerylab.stanford.edu/spliceplot/index.html under Resources and at Github. SplicePlot is implemented in Python and is supported on Linux and Mac OS. A VirtualBox virtual machine running Ubuntu with SplicePlot already installed is also available.

  3. Identification of genome-wide non-canonical spliced regions and analysis of biological functions for spliced sequences using Read-Split-Fly.

    Science.gov (United States)

    Bai, Yongsheng; Kinne, Jeff; Ding, Lizhong; Rath, Ethan C; Cox, Aaron; Naidu, Siva Dharman

    2017-10-03

    It is generally thought that most canonical or non-canonical splicing events involving U2- and U12 spliceosomes occur within nuclear pre-mRNAs. However, the question of whether at least some U12-type splicing occurs in the cytoplasm is still unclear. In recent years next-generation sequencing technologies have revolutionized the field. The "Read-Split-Walk" (RSW) and "Read-Split-Run" (RSR) methods were developed to identify genome-wide non-canonical spliced regions including special events occurring in cytoplasm. As the significant amount of genome/transcriptome data such as, Encyclopedia of DNA Elements (ENCODE) project, have been generated, we have advanced a newer more memory-efficient version of the algorithm, "Read-Split-Fly" (RSF), which can detect non-canonical spliced regions with higher sensitivity and improved speed. The RSF algorithm also outputs the spliced sequences for further downstream biological function analysis. We used open access ENCODE project RNA-Seq data to search spliced intron sequences against the U12-type spliced intron sequence database to examine whether some events could occur as potential signatures of U12-type splicing. The check was performed by searching spliced sequences against 5'ss and 3'ss sequences from the well-known orthologous U12-type spliceosomal intron database U12DB. Preliminary results of searching 70 ENCODE samples indicated that the presence of 5'ss with U12-type signature is more frequent than U2-type and prevalent in non-canonical junctions reported by RSF. The selected spliced sequences have also been further studied using miRBase to elucidate their functionality. Preliminary results from 70 samples of ENCODE datasets show that several miRNAs are prevalent in studied ENCODE samples. Two of these are associated with many diseases as suggested in the literature. Specifically, hsa-miR-1273 and hsa-miR-548 are associated with many diseases and cancers. Our RSF pipeline is able to detect many possible junctions

  4. Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems.

    Science.gov (United States)

    Gallego-Paez, L M; Bordone, M C; Leote, A C; Saraiva-Agostinho, N; Ascensão-Ferreira, M; Barbosa-Morais, N L

    2017-09-01

    Alternative pre-mRNA splicing is a tightly controlled process conducted by the spliceosome, with the assistance of several regulators, resulting in the expression of different transcript isoforms from the same gene and increasing both transcriptome and proteome complexity. The differences between alternative isoforms may be subtle but enough to change the function or localization of the translated proteins. A fine control of the isoform balance is, therefore, needed throughout developmental stages and adult tissues or physiological conditions and it does not come as a surprise that several diseases are caused by its deregulation. In this review, we aim to bring the splicing machinery on stage and raise the curtain on its mechanisms and regulation throughout several systems and tissues of the human body, from neurodevelopment to the interactions with the human microbiome. We discuss, on one hand, the essential role of alternative splicing in assuring tissue function, diversity, and swiftness of response in these systems or tissues, and on the other hand, what goes wrong when its regulatory mechanisms fail. We also focus on the possibilities that splicing modulation therapies open for the future of personalized medicine, along with the leading techniques in this field. The final act of the spliceosome, however, is yet to be fully revealed, as more knowledge is needed regarding the complex regulatory network that coordinates alternative splicing and how its dysfunction leads to disease.

  5. TUMOR-SPECIFIC EXPRESSION AND ALTERNATIVE SPLICING OF THE COL6A3 GENE IN PANCREATIC CANCER

    Science.gov (United States)

    Arafat, Hwyda; Lazar, Melissa; Salem, Khalifa; Chipitsyna, Galina; Gong, Qiaoke; Pan, Te-Cheng; Zhang, Rui-Zhu; Yeo, Charles J.; Chu, Mon-Li

    2011-01-01

    Introduction Pancreatic ductal adenocarcinoma (PDA) is a highly lethal disease in which a prominent desmoplastic reaction is a defining characteristic. Fibrillar collagens, such as collagen I and to a lesser extent, collagen III and V comprise the majority of this stromal fibrosis. Type VI collagen (COL6) forms a microfibrillar network associated with type I collagen fibrils. The expression of COL6 has been linked to inflammation and survival. Importantly, tumor-specific alternative splicing in COL6A3 has been identified in several cancers by genome exon arrays. We evaluated the expression and localization of COL6A3 in PDA and premalignant lesions and explored the presence of alternative splicing events. Methods We analyzed paired PDA-normal (n=18), IPMN (n=5), pancreatic cystadenoma (n=5), and eight PDA cell lines with RT-PCR, using unique primers that identify total COL6A3 gene and alternative splicing sites in several of its exons. Western blot analysis and immunohistochemistry were used to analyze the expression levels and localization of COL6A3 protein in the different lesions, and in two animal models of PDA. Results COL6A3 protein levels were significantly upregulated in 77% of the paired PDA-adjacent tissue examined. COL6A3 was mainly present in the desmoplastic stroma of PDA, with high deposition around the malignant ducts and in between the sites of stromal fatty infiltration. Analysis of the COL6A3 splice variants showed tumor-specific consistent inclusion of exons 3 and 6 in 17 of the 18 (94%) paired PDA-adjacent tissues. Inclusion of exon 4 was exclusively tumor-specific, with barely detectable expression in the adjacent tissues. IPMN and pancreatic cystadenomas showed no expression of any of the examined exons. Total COL6A3 mRNA and exon 6 were identified in six PDA cell lines, but only two cell lines (MIA PACA-2 and ASPC-1) expressed exons 3 and 4. In both the xenograft and transgenic models of PDA, COL6A3 immunoreactivity was present in the stroma

  6. X-linked Alport syndrome associated with a synonymous p.Gly292Gly mutation alters the splicing donor site of the type IV collagen alpha chain 5 gene.

    Science.gov (United States)

    Fu, Xue Jun; Nozu, Kandai; Eguchi, Aya; Nozu, Yoshimi; Morisada, Naoya; Shono, Akemi; Taniguchi-Ikeda, Mariko; Shima, Yuko; Nakanishi, Koichi; Vorechovsky, Igor; Iijima, Kazumoto

    2016-10-01

    X-linked Alport syndrome (XLAS) is a progressive hereditary nephropathy caused by mutations in the type IV collagen alpha chain 5 gene (COL4A5). Although many COL4A5 mutations have previously been identified, pathogenic synonymous mutations have not yet been described. A family with XLAS underwent mutational analyses of COL4A5 by PCR and direct sequencing, as well as transcript analysis of potential splice site mutations. In silico analysis was also conducted to predict the disruption of splicing factor binding sites. Immunohistochemistry (IHC) of kidney biopsies was used to detect α2 and α5 chain expression. We identified a hemizygous point mutation, c.876A>T, in exon 15 of COL4A5 in the proband and his brother, which is predicted to result in a synonymous amino acid change, p.(Gly292Gly). Transcript analysis showed that this mutation potentially altered splicing because it disrupted the splicing factor binding site. The kidney biopsy of the proband showed lamellation of the glomerular basement membrane (GBM), while IHC revealed negative α5(IV) staining in the GBM and Bowman's capsule, which is typical of XLAS. This is the first report of a synonymous COL4A5 substitution being responsible for XLAS. Our findings suggest that transcript analysis should be conducted for the future correct assessment of silent mutations.

  7. Alternative REST Splicing Underappreciated

    OpenAIRE

    Chen, Guo-Lin; Miller, Gregory

    2017-01-01

    As a major orchestrator of the cellular epigenome, the repressor element-1 silencing transcription factor (REST) can either repress or activate thousands of genes depending on cellular context, suggesting a highly context-dependent REST function tuned by environmental cues. While REST shows cell-type non-selective active transcription, an N-terminal REST4 isoform caused by alternative splicing - inclusion of an extra exon (N3c) which introduces a pre-mature stop codon - has been implicated in...

  8. The Spliced Leader Trans-Splicing Mechanism in Different Organisms: Molecular Details and Possible Biological Roles

    Directory of Open Access Journals (Sweden)

    Mainá eBitar

    2013-10-01

    Full Text Available The spliced leader (SL is a gene that generates a functional ncRNA that is composed of two regions: an intronic region of unknown function (SLi and an exonic region (SLe, which is transferred to the 5’ end of independent transcripts yielding mature mRNAs, in a process known as spliced leader trans-splicing (SLTS. The best described function for SLTS is to solve polycistronic transcripts into monocistronic units, specifically in Trypanosomatids. In other metazoans, it is speculated that the SLe addition could lead to increased mRNA stability, differential recruitment of the translational machinery, modification of the 5' region or a combination of these effects. Although important aspects of this mechanism have been revealed, several features remain to be elucidated. We have analyzed 157 SLe sequences from 148 species from 7 phyla and found a high degree of conservation among the sequences of species from the same phylum, although no considerable similarity seems to exist between sequences of species from different phyla. When analyzing case studies, we found evidence that a given SLe will always be related to a given set of transcripts in different species from the same phylum, and therefore, different SLe sequences from the same species would regulate different sets of transcripts. In addition, we have observed distinct transcript categories to be preferential targets for the SLe addition in different phyla. This work sheds light into crucial and controversial aspects of the SLTS mechanism. It represents a comprehensive study concerning various species and different characteristics of this important post-transcriptional regulatory mechanism.

  9. A family with hereditary hemochromatosis carrying HFE gene splice site mutation: a case report

    Directory of Open Access Journals (Sweden)

    NING Huibin

    2017-01-01

    Full Text Available ObjectiveTo investigate a new type of HFE gene mutation in a family with hereditary hemochromatosis (HH. MethodsThe analysis of HFE gene was performed for one patient with a confirmed diagnosis of HH and five relatives. Blood genomic DNA was extracted and PCR multiplication was performed for the exon and intron splice sequences of related HFE, HJV, HAMP, transferrin receptor 2 (TfR2, and SLC40A1 genes. After agarose gel electrophoresis and purification, bi-directional direct sequencing was performed to detect mutation sites. ResultsThe proband had abnormal liver function and increases in serum iron, total iron binding capacity, serum ferritin, and transferrin saturation, as well as T→C homozygous mutation in the fourth base of intron 2 in the intervening sequence of the exon EXON2 of HFE gene (IVs 2+4T→C, C/C homozygous, splicing, abnormal. There were no abnormalities in HJV, HAMP, TfR2, and SLC40A1 genes. The proband′s son had the same homozygous mutation, three relatives had heterozygous mutations, and one relative had no abnormal mutations. ConclusionGene detection plays an important role in the diagnosis of hemochromatosis, and IVs 2+4T→C mutation may be a new pathogenic mutation for HH in China.

  10. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala, and Striatum Following Long-Term Spatial Memory Retrieval.

    Science.gov (United States)

    Vanelzakker, Michael B; Zoladz, Phillip R; Thompson, Vanessa M; Park, Collin R; Halonen, Joshua D; Spencer, Robert L; Diamond, David M

    2011-01-01

    We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval.

  11. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala and Striatum Following Long-Term Spatial Memory Retrieval

    Directory of Open Access Journals (Sweden)

    Michael B VanElzakker

    2011-06-01

    Full Text Available We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 hr later. Rat brains were extracted 30 min after the 24 hr memory test trial for analysis of c-fos mRNA. Four groups were tested: 1 Rats given standard training (Standard; 2 Rats given cat exposure (Predator Stress 30 min prior to training (Pre-Training Stress; 3 Rats given water exposure only (Water Yoked; and 4 Rats given no water exposure (Home Cage. The Standard trained group exhibited excellent 24 hr memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA. The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval.

  12. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala, and Striatum Following Long-Term Spatial Memory Retrieval

    Science.gov (United States)

    VanElzakker, Michael B.; Zoladz, Phillip R.; Thompson, Vanessa M.; Park, Collin R.; Halonen, Joshua D.; Spencer, Robert L.; Diamond, David M.

    2011-01-01

    We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval. PMID:21738501

  13. An Alternate Splicing Variant of the Human Telomerase Catalytic Subunit Inhibits Telomerase Activity

    Directory of Open Access Journals (Sweden)

    Xiaoming Yi

    2000-09-01

    Full Text Available Telomerase, a cellular reverse transcriptase, adds telomeric repeats to chromosome ends. In normal human somatic cells, telomerase is repressed and telomeres progressively shorten, leading to proliferative senescence. Introduction of the telomerase (hTERT cDNA is sufficient to produce telomerase activity and immortalize normal human cells, suggesting that the repression of telomerase activity is transcriptional. The telomerase transcript has been shown to have at least six alternate splicing sites (four insertion sites and two deletion sites, and variants containing both or either of the deletion sites are present during development and in a panel of cancer cell lines we surveyed. One deletion (β site and all four insertions cause premature translation terminations, whereas the other deletion (α site is 36 by and lies within reverse transcriptase (RT motif A, suggesting that this deletion variant may be a candidate as a dominant-negative inhibitor of telomerase. We have cloned three alternately spliced hTERT variants that contain the α,β or both α and,β deletion sites. These alternate splicing variants along with empty vector and wild-type hTERT were introduced into normal human fibroblasts and several telomerase-positive immortal and tumor cell lines. Expression of the α site deletion variant (hTERT α− construct was confirmed by Western blotting. We found that none of the three alternate splicing variants reconstitutes telomerase activity in fibroblasts. However, hTERT α− inhibits telomerase activities in telomerase-positive cells, causes telomere shortening and eventually cell death. This alternately spliced dominant-negative variant may be important in understanding telomerase regulation during development, differentiation and in cancer progression.

  14. Antitumorigenic potential of STAT3 alternative splicing modulation.

    Science.gov (United States)

    Zammarchi, Francesca; de Stanchina, Elisa; Bournazou, Eirini; Supakorndej, Teerawit; Martires, Kathryn; Riedel, Elyn; Corben, Adriana D; Bromberg, Jacqueline F; Cartegni, Luca

    2011-10-25

    Signal transducer and activator of transcription 3 (STAT3) plays a central role in the activation of multiple oncogenic pathways. Splicing variant STAT3β uses an alternative acceptor site within exon 23 that leads to a truncated isoform lacking the C-terminal transactivation domain. Depending on the context, STAT3β can act as a dominant-negative regulator of transcription and promote apoptosis. We show that modified antisense oligonucleotides targeted to a splicing enhancer that regulates STAT3 exon 23 alternative splicing specifically promote a shift of expression from STAT3α to STAT3β. Induction of endogenous STAT3β leads to apoptosis and cell-cycle arrest in cell lines with persistent STAT3 tyrosine phosphorylation compared with total STAT3 knockdown obtained by forced splicing-dependent nonsense-mediated decay (FSD-NMD). Comparison of the molecular effects of splicing redirection to STAT3 knockdown reveals a unique STAT3β signature, with a down-regulation of specific targets (including lens epithelium-derived growth factor, p300/CBP-associated factor, CyclinC, peroxisomal biogenesis factor 1, and STAT1β) distinct from canonical STAT3 targets typically associated with total STAT3 knockdown. Furthermore, similar in vivo redirection of STAT3 alternative splicing leads to tumor regression in a xenograft cancer model, demonstrating how pharmacological manipulation of a single key splicing event can manifest powerful antitumorigenic properties and validating endogenous splicing reprogramming as an effective cancer therapeutic approach.

  15. Multidrug resistance in epilepsy and polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A: correlation among phenotype, genotype, and mRNA expression.

    Science.gov (United States)

    Kwan, Patrick; Poon, Wai Sang; Ng, Ho-Keung; Kang, David E; Wong, Virginia; Ng, Ping Wing; Lui, Colin H T; Sin, Ngai Chuen; Wong, Ka S; Baum, Larry

    2008-11-01

    Many antiepileptic drugs (AEDs) prevent seizures by blocking voltage-gated brain sodium channels. However, treatment is ineffective in 30% of epilepsy patients, which might, at least in part, result from polymorphisms of the sodium channel genes. We investigated the association of AED responsiveness with genetic polymorphisms and correlated any association with mRNA expression of the neuronal sodium channels. We performed genotyping of tagging and candidate single nucleotide polymorphisms (SNPs) of SCN1A, 2A, and 3A in 471 Chinese epilepsy patients (272 drug responsive and 199 drug resistant). A total of 27 SNPs were selected based on the HapMap database. Genotype distributions in drug-responsive and drug-resistant patients were compared. SCN2A mRNA was quantified by real-time PCR in 24 brain and 57 blood samples. Its level was compared between patients with different genotypes of an SCN2A SNP found to be associated with drug responsiveness. SCN2A IVS7-32A>G (rs2304016) A alleles were associated with drug resistance (odds ratio = 2.1, 95% confidence interval: 1.2-3.7, P=0.007). Haplotypes containing the IVS7-32A>G allele A were also associated with drug resistance. IVS7-32A>G is located within the putative splicing branch site for splicing exons 7 and 9. PCR of reverse-transcribed RNA from blood or brain of patients with different IVS7-32A>G genotypes using primers in exons 7 and 9 showed no skipping of exon 8, and real-time PCR showed no difference in SCN2A mRNA levels among genotypes. Results of this study suggest an association between SCN2A IVS7-32A>G and AED responsiveness, without evidence of an effect on splicing or mRNA expression.

  16. Single base mutation in the proα2(I) collagen gene that causes efficient splicing of RNA from exon 27 to exon 29 and synthesis of a shortened but in-frame proα2(I) chain

    International Nuclear Information System (INIS)

    Tromp, G.; Prockop, D.J.

    1988-01-01

    Previous observations demonstrated that a lethal variant of osteogenesis imperfecta had two altered alleles for proα2(I) chains of type I procollagen. One mutation produced a nonfunctioning allele in that there was synthesis of mRNA but no detectable synthesis of proα2(I) chains from the allele. The mutation in the other allele caused synthesis of shortened proα2(I) chains that lacked most or all of the 18 amino acids encoded by exon 28. Subclones of the proα2(I) gene were prepared from the proband's DNA and the DNA sequence was determined for a 582-base-pair (bp) region that extended from the last 30 bp of intervening sequence 26 to the first 26 bp of intervening sequence 29. Data from six independent subclones demonstrated that all had the same sequence as a previously isolated normal clone for the proα2(I) gene except that four subclones had a single base mutation at the 3' end of intervening sequence 27. The mutation was a substitution of guanine for adenine that changed the universal consensus sequence for the 3' splicing site of RNA from -AG- to -GG-. S1 nuclease experiments demonstrated that about half the proα2(I) mRNA in the proband's fibroblasts was abnormally spliced and that the major species of abnormal proα2(I) mRNA was completely spliced from the last codon of exon 27 to the first codon of exon 29. The mutation is apparently unique among RNA splicing mutations of mammalian systems in producing a shortened polypeptide chain that is in-frame in terms of coding sequences, that is used in the subunit assembly of a protein, and that contributes to a lethal phenotype

  17. regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution.

    Science.gov (United States)

    Zhang, Xinjun; Li, Meng; Lin, Hai; Rao, Xi; Feng, Weixing; Yang, Yuedong; Mort, Matthew; Cooper, David N; Wang, Yue; Wang, Yadong; Wells, Clark; Zhou, Yaoqi; Liu, Yunlong

    2017-09-01

    While synonymous single-nucleotide variants (sSNVs) have largely been unstudied, since they do not alter protein sequence, mounting evidence suggests that they may affect RNA conformation, splicing, and the stability of nascent-mRNAs to promote various diseases. Accurately prioritizing deleterious sSNVs from a pool of neutral ones can significantly improve our ability of selecting functional genetic variants identified from various genome-sequencing projects, and, therefore, advance our understanding of disease etiology. In this study, we develop a computational algorithm to prioritize sSNVs based on their impact on mRNA splicing and protein function. In addition to genomic features that potentially affect splicing regulation, our proposed algorithm also includes dozens structural features that characterize the functions of alternatively spliced exons on protein function. Our systematical evaluation on thousands of sSNVs suggests that several structural features, including intrinsic disorder protein scores, solvent accessible surface areas, protein secondary structures, and known and predicted protein family domains, show significant differences between disease-causing and neutral sSNVs. Our result suggests that the protein structure features offer an added dimension of information while distinguishing disease-causing and neutral synonymous variants. The inclusion of structural features increases the predictive accuracy for functional sSNV prioritization.

  18. Translation initiation in bacterial polysomes through ribosome loading on a standby site on a highly translated mRNA

    Science.gov (United States)

    Andreeva, Irena

    2018-01-01

    During translation, consecutive ribosomes load on an mRNA and form a polysome. The first ribosome binds to a single-stranded mRNA region and moves toward the start codon, unwinding potential mRNA structures on the way. In contrast, the following ribosomes can dock at the start codon only when the first ribosome has vacated the initiation site. Here we show that loading of the second ribosome on a natural 38-nt-long 5′ untranslated region of lpp mRNA, which codes for the outer membrane lipoprotein from Escherichia coli, takes place before the leading ribosome has moved away from the start codon. The rapid formation of this standby complex depends on the presence of ribosomal proteins S1/S2 in the leading ribosome. The early recruitment of the second ribosome to the standby site before translation by the leading ribosome and the tight coupling between translation elongation by the first ribosome and the accommodation of the second ribosome can contribute to high translational efficiency of the lpp mRNA. PMID:29632209

  19. The translation initiation factor eIF4E regulates the sex-specific expression of the master switch gene Sxl in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Patricia L Graham

    2011-07-01

    Full Text Available In female fruit flies, Sex-lethal (Sxl turns off the X chromosome dosage compensation system by a mechanism involving a combination of alternative splicing and translational repression of the male specific lethal-2 (msl-2 mRNA. A genetic screen identified the translation initiation factor eif4e as a gene that acts together with Sxl to repress expression of the Msl-2 protein. However, eif4e is not required for Sxl mediated repression of msl-2 mRNA translation. Instead, eif4e functions as a co-factor in Sxl-dependent female-specific alternative splicing of msl-2 and also Sxl pre-mRNAs. Like other factors required for Sxl regulation of splicing, eif4e shows maternal-effect female-lethal interactions with Sxl. This female lethality can be enhanced by mutations in other co-factors that promote female-specific splicing and is caused by a failure to properly activate the Sxl-positive autoregulatory feedback loop in early embryos. In this feedback loop Sxl proteins promote their own synthesis by directing the female-specific alternative splicing of Sxl-Pm pre-mRNAs. Analysis of pre-mRNA splicing when eif4e activity is compromised demonstrates that Sxl-dependent female-specific splicing of both Sxl-Pm and msl-2 pre-mRNAs requires eif4e activity. Consistent with a direct involvement in Sxl-dependent alternative splicing, eIF4E is associated with unspliced Sxl-Pm pre-mRNAs and is found in complexes that contain early acting splicing factors--the U1/U2 snRNP protein Sans-fils (Snf, the U1 snRNP protein U1-70k, U2AF38, U2AF50, and the Wilms' Tumor 1 Associated Protein Fl(2d--that have been directly implicated in Sxl splicing regulation.

  20. CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome.

    Science.gov (United States)

    Zhang, Zijun; Xing, Yi

    2017-09-19

    Crosslinking or RNA immunoprecipitation followed by sequencing (CLIP-seq or RIP-seq) allows transcriptome-wide discovery of RNA regulatory sites. As CLIP-seq/RIP-seq reads are short, existing computational tools focus on uniquely mapped reads, while reads mapped to multiple loci are discarded. We present CLAM (CLIP-seq Analysis of Multi-mapped reads). CLAM uses an expectation-maximization algorithm to assign multi-mapped reads and calls peaks combining uniquely and multi-mapped reads. To demonstrate the utility of CLAM, we applied it to a wide range of public CLIP-seq/RIP-seq datasets involving numerous splicing factors, microRNAs and m6A RNA methylation. CLAM recovered a large number of novel RNA regulatory sites inaccessible by uniquely mapped reads. The functional significance of these sites was demonstrated by consensus motif patterns and association with alternative splicing (splicing factors), transcript abundance (AGO2) and mRNA half-life (m6A). CLAM provides a useful tool to discover novel protein-RNA interactions and RNA modification sites from CLIP-seq and RIP-seq data, and reveals the significant contribution of repetitive elements to the RNA regulatory landscape of the human transcriptome. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Benzo[a]pyrene treatment leads to changes in nuclear protein expression and alternative splicing

    Energy Technology Data Exchange (ETDEWEB)

    Yan Chunlan; Wu Wei [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Li Haiyan [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Huzhou Maternity and Child Care Hospital, Huzhou, Zhejiang 313000 (China); Zhang Guanglin [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Duerksen-Hughes, Penelope J. [Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354 (United States); Zhu Xinqiang, E-mail: zhuxq@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Yang Jun, E-mail: gastate@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Zhejiang-California International Nanosystems Institute, Hangzhou, Zhejiang 310029 (China)

    2010-04-01

    Benzo[a]pyrene (BaP) is a potent pro-carcinogen generated from the combustion of fossil fuel and cigarette smoke. Previously, using a proteomic approach, we have shown that BaP can induce changes in the expression of many cellular proteins, including transcription regulators. In the present study, using a similar approach, we examined the nuclear protein response to BaP in HeLa cells and found that BaP treatment caused expression changes in many nuclear proteins. Twenty-four of these proteins were successfully identified, several of which are involved in the alternative splicing of mRNA, DNA replication, recombination, and repair. The changed expression levels were further confirmed by immunoblot analysis using specific antibodies for two proteins, Lamin A and mitotic checkpoint protein Bub3. The nuclear localization of these two proteins was also confirmed by confocal microscopy. To determine whether alternative splicing was activated following BaP treatment, we examined Fas and CD44, two genes previously shown to be targets of alternative splicing in respond to DNA damage. While no significant activation of alternative splicing was observed for Fas, CD44 splicing variants were found after BaP treatment. Together, these data show that DNA damage induces dramatic changes in nuclear protein expression, and that alternative splicing might be involved in the cellular response to DNA damage.

  2. Mechanical rebar splicing

    Directory of Open Access Journals (Sweden)

    Milosavljević Branko

    2014-01-01

    Full Text Available Different mechanical rebar splicing systems are presented, and design situations where mechanical splicing has advantage over reinforcement splicing by overlapping and welding are defined in this paper. New international standards for testing and proof of systems for mechanical rebar splicing quality are considered. Mechanical splicing system for rebar and bolt connection, usable in steel and reinforced concrete structural elements connections, is presented in this paper. There are only few examples of mechanical rebar splicing in our country. The most significant one - the pylon and beam connection at Ada Bridge in Belgrade is presented in the paper. Intensive development of production and use of mechanical rebar splicing systems, research in this area, as well as the publication of international standards prescribing requirements for quality and procedures for proof of quality, represent very good base for development of the corresponding technical norms in Serbia. The legislation in this area would quicken proof of quality procedures, attest and approval issuing for individual products, leading to wider use of this system in all situations where it is in advantage over the classical reinforcement splicing.

  3. Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar; Ling, Yu; Butt, Haroon; Mariappan, Kiruthiga G.; Benhamed, Moussa; Mahfouz, Magdy M.

    2017-01-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small

  4. Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export.

    Science.gov (United States)

    Neumann, Bettina; Wu, Haijia; Hackmann, Alexandra; Krebber, Heike

    2016-01-01

    The DEAD-box RNA-helicase Dbp5/Rat8 is known for its function in nuclear mRNA export, where it displaces the export receptor Mex67 from the mRNA at the cytoplasmic side of the nuclear pore complex (NPC). Here we show that Dbp5 is also required for the nuclear export of both pre-ribosomal subunits. Yeast temperature-sensitive dbp5 mutants accumulate both ribosomal particles in their nuclei. Furthermore, Dbp5 genetically and physically interacts with known ribosomal transport factors such as Nmd3. Similar to mRNA export we show that also for ribosomal transport Dbp5 is required at the cytoplasmic side of the NPC. However, unlike its role in mRNA export, Dbp5 does not seem to undergo its ATPase cycle for this function, as ATPase-deficient dbp5 mutants that selectively inhibit mRNA export do not affect ribosomal transport. Furthermore, mutants of GLE1, the ATPase stimulating factor of Dbp5, show no major ribosomal export defects. Consequently, while Dbp5 uses its ATPase cycle to displace the export receptor Mex67 from the translocated mRNAs, Mex67 remains bound to ribosomal subunits upon transit to the cytoplasm, where it is detectable on translating ribosomes. Therefore, we propose a model, in which Dbp5 supports ribosomal transport by capturing ribosomal subunits upon their cytoplasmic appearance at the NPC, possibly by binding export factors such as Mex67. Thus, our findings reveal that although different ribonucleoparticles, mRNAs and pre-ribosomal subunits, use shared export factors, they utilize different transport mechanisms.

  5. The 20S proteasome splicing activity discovered by SpliceMet.

    Directory of Open Access Journals (Sweden)

    Juliane Liepe

    2010-06-01

    Full Text Available The identification of proteasome-generated spliced peptides (PSP revealed a new unpredicted activity of the major cellular protease. However, so far characterization of PSP was entirely dependent on the availability of patient-derived cytotoxic CD8+ T lymphocytes (CTL thus preventing a systematic investigation of proteasome-catalyzed peptide splicing (PCPS. For an unrestricted PSP identification we here developed SpliceMet, combining the computer-based algorithm ProteaJ with in vitro proteasomal degradation assays and mass spectrometry. By applying SpliceMet for the analysis of proteasomal processing products of four different substrate polypeptides, derived from human tumor as well as viral antigens, we identified fifteen new spliced peptides generated by PCPS either by cis or from two separate substrate molecules, i.e., by trans splicing. Our data suggest that 20S proteasomes represent a molecular machine that, due to its catalytic and structural properties, facilitates the generation of spliced peptides, thereby providing a pool of qualitatively new peptides from which functionally relevant products may be selected.

  6. Flexural behavior of concrete beam with mechanical splices of reinforcement subjected to cyclic loading

    International Nuclear Information System (INIS)

    Nab, H. S.; Kim, W. B.

    2008-01-01

    In nuclear power plant structures, the mechanical rebar splices are designated and constructed on the basis of ACI and ASME code. Regardless of good performance on mechanical rebar splices, these splicing methods that did not be registered on ASME code have not restricted to apply to construction site. In this study, the main candidate splice is cold roll formed parallel threaded splice. This was registered newly in ASME Section III division 2 CC 4333 'Mechanical Splices' in 2004. To compare the traditional rebar splice with mechanical rebar splices, concrete beams were made to evaluate the ductility of spliced reinforcing bars. Based on Experimental results, it was identified that the mechanical rebar splices by parallel threaded coupler had better accumulated dissipation energy capacity to resist seismic behavior than the traditional lapping splices. It showed that concrete specimens with D36 reinforcing bar coupler are 1.8 times better performance and that concrete specimens with D22 reinforcing bar coupler are 2.8 times better performance. (authors)

  7. Identification of a novel alternative splicing variant of hemocyanin from shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Zhao, Shan; Lu, Xin; Zhang, Yueling; Zhao, Xianliang; Zhong, Mingqi; Li, Shengkang; Lun, Jingsheng

    2013-01-01

    Recent evidences suggest that invertebrates express families of immune molecules with high levels of sequence diversity. Hemocyanin is an important non-specific immune molecule present in the hemolymph of both mollusks and arthropods. In the present study, we characterized a novel alternative splicing variant of hemocyanin (cHE1) from Litopenaeus vannamei that produced mRNA transcript of 2579 bp in length. The isoform contained two additional sequences of 296 and 267 bp in the 5'- and 3'-terminus respectively, in comparison to that of wild type hemocyanin (cHE). Sequence of cHE1 shows 100% identity to that of hemocyanin genomic DNA (HE, which does not form an open reading frame), suggesting that cHE1 might be an alternative splicing variant due to intron retention. Moreover, cHE1 could be detected by RT-PCR from five tissues (heart, gill, stomach, intestine and brain), and from shrimps at stages from nauplius to mysis larva. Further, cHE1 mRNA transcripts were significantly increased in hearts after 12h of infection with Vibrio parahemolyticus or poly I: C, while no significant difference in the transcript levels of hepatopancreas cHE was detected in the pathogen-treated shrimps during the period. In summary, these studies suggested a novel splicing variant of hemocyanin in shrimp, which might be involved in shrimp resistance to pathogenic infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. RNA polyadenylation sites on the genomes of microorganisms, animals, and plants.

    Directory of Open Access Journals (Sweden)

    Xiu-Qing Li

    Full Text Available Pre-messenger RNA (mRNA 3'-end cleavage and subsequent polyadenylation strongly regulate gene expression. In comparison with the upstream or downstream motifs, relatively little is known about the feature differences of polyadenylation [poly(A] sites among major kingdoms. We suspect that the precise poly(A sites are very selective, and we therefore mapped mRNA poly(A sites on complete and nearly complete genomes using mRNA sequences available in the National Center for Biotechnology Information (NCBI Nucleotide database. In this paper, we describe the mRNA nucleotide [i.e., the poly(A tail attachment position] that is directly in attachment with the poly(A tail and the pre-mRNA nucleotide [i.e., the poly(A tail starting position] that corresponds to the first adenosine of the poly(A tail in the 29 most-mapped species (2 fungi, 2 protists, 18 animals, and 7 plants. The most representative pre-mRNA dinucleotides covering these two positions were UA, CA, and GA in 17, 10, and 2 of the species, respectively. The pre-mRNA nucleotide at the poly(A tail starting position was typically an adenosine [i.e., A-type poly(A sites], sometimes a uridine, and occasionally a cytidine or guanosine. The order was U>C>G at the attachment position but A>>U>C≥G at the starting position. However, in comparison with the mRNA nucleotide composition (base composition, the poly(A tail attachment position selected C over U in plants and both C and G over U in animals, in both A-type and non-A-type poly(A sites. Animals, dicot plants, and monocot plants had clear differences in C/G ratios at the poly(A tail attachment position of the non-A-type poly(A sites. This study of poly(A site evolution indicated that the two positions within poly(A sites had distinct nucleotide compositions and were different among kingdoms.

  9. Exome Sequencing Identified a Splice Site Mutation in FHL1 that Causes Uruguay Syndrome, an X-Linked Disorder With Skeletal Muscle Hypertrophy and Premature Cardiac Death.

    Science.gov (United States)

    Xue, Yuan; Schoser, Benedikt; Rao, Aliz R; Quadrelli, Roberto; Vaglio, Alicia; Rupp, Verena; Beichler, Christine; Nelson, Stanley F; Schapacher-Tilp, Gudrun; Windpassinger, Christian; Wilcox, William R

    2016-04-01

    Previously, we reported a rare X-linked disorder, Uruguay syndrome in a single family. The main features are pugilistic facies, skeletal deformities, and muscular hypertrophy despite a lack of exercise and cardiac ventricular hypertrophy leading to premature death. An ≈19 Mb critical region on X chromosome was identified through identity-by-descent analysis of 3 affected males. Exome sequencing was conducted on one affected male to identify the disease-causing gene and variant. A splice site variant (c.502-2A>G) in the FHL1 gene was highly suspicious among other candidate genes and variants. FHL1A is the predominant isoform of FHL1 in cardiac and skeletal muscle. Sequencing cDNA showed the splice site variant led to skipping of exons 6 of the FHL1A isoform, equivalent to the FHL1C isoform. Targeted analysis showed that this splice site variant cosegregated with disease in the family. Western blot and immunohistochemical analysis of muscle from the proband showed a significant decrease in protein expression of FHL1A. Real-time polymerase chain reaction analysis of different isoforms of FHL1 demonstrated that the FHL1C is markedly increased. Mutations in the FHL1 gene have been reported in disorders with skeletal and cardiac myopathy but none has the skeletal or facial phenotype seen in patients with Uruguay syndrome. Our data suggest that a novel FHL1 splice site variant results in the absence of FHL1A and the abundance of FHL1C, which may contribute to the complex and severe phenotype. Mutation screening of the FHL1 gene should be considered for patients with uncharacterized myopathies and cardiomyopathies. © 2016 American Heart Association, Inc.

  10. Clinical, in silico, and experimental evidence for pathogenicity of two novel splice site mutations in the SH3TC2 gene

    Czech Academy of Sciences Publication Activity Database

    Laššuthová, P.; Gregor, Martin; Sarnová, Lenka; Machalová, Eliška; Sedláček, Radislav; Seeman, P.

    2012-01-01

    Roč. 26, 3-4 (2012), s. 413-420 ISSN 0167-7063 R&D Projects: GA ČR GAP303/10/2044 Institutional support: RVO:68378050 Keywords : exon trapping * peripheral neuropathy * SH3TC2 gene * splice site mutation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.159, year: 2012

  11. Histone and RNA-binding protein interaction creates crosstalk network for regulation of alternative splicing.

    Science.gov (United States)

    Kim, Yong-Eun; Park, Chungoo; Kim, Kyoon Eon; Kim, Kee K

    2018-04-30

    Alternative splicing is an essential process in eukaryotes, as it increases the complexity of gene expression by generating multiple proteins from a single pre-mRNA. However, information on the regulatory mechanisms for alternative splicing is lacking, because splicing occurs over a short period via the transient interactions of proteins within functional complexes of the spliceosome. Here, we investigated in detail the molecular mechanisms connecting alternative splicing with epigenetic mechanisms. We identified interactions between histone proteins and splicing factors such as Rbfox2, Rbfox3, and splicing factor proline and glutamine rich protein (SFPQ) by in vivo crosslinking and immunoprecipitation. Furthermore, we confirmed that splicing factors were bound to specific modified residues of histone proteins. Additionally, changes in histone methylation due to histone methyltransferase inhibitor treatment notably affected alternative splicing in selected genes. Therefore, we suggested that there may be crosstalk mechanisms connecting histone modifications and RNA-binding proteins that increase the local concentration of RNA-binding proteins in alternative exon loci of nucleosomes by binding specific modified histone proteins, leading to alternative splicing. This crosstalk mechanism may play a major role in epigenetic processes such as histone modification and the regulation of alternative splicing. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Rare Drosha Splice Variants Are Deficient in MicroRNA Processing but Do Not Affect General MicroRNA Expression in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Stefanie E. Grund

    2012-03-01

    Full Text Available Drosha is a key enzyme in microRNA biogenesis, generating the precursor miRNA (pre-miRNA by excising the stem-loop embedded in the primary transcripts (pri-miRNA. The specificity for the pri-miRNAs and determination of the cleavage site are provided by its binding partner DGCR8, which is necessary for efficient processing. The crucial Drosha domains for pri-miRNA cleavage are the middle part, the two enzymatic RNase III domains (RIIID, and the dsRNA binding domain (dsRBD in the C-terminus. Here, we identify alternatively spliced transcripts in human melanoma and NT2 cell lines, encoding C-terminally truncated Drosha proteins lacking part of the RIIIDb and the entire dsRBD. Proteins generated from these alternative splice variants fail to bind to DGCR8 but still interact with Ewing sarcoma protein (EWS. In vitro as well as in vivo, the Drosha splice variants are deficient in pri-miRNA processing. However, the aberrant transcripts in melanoma cells do not consistently reduce mature miRNA levels compared with melanoma cell lines lacking those splice variants, possibly owing to their limited abundance. Our findings show that alternative processing-deficient Drosha splice variants exist in melanoma cells. In elevated amounts, these alternatively spliced transcripts could provide one potential mechanism accounting for the deregulation of miRNAs in cancer cells. On the basis of our results, the search for alternative inactive splice variants might be fruitful in different tumor entities to unravel the molecular basis of the previously observed decreased microRNA processing efficiency in cancer.

  13. High expression of PTBP1 promote invasion of colorectal cancer by alternative splicing of cortactin.

    Science.gov (United States)

    Wang, Zhi-Na; Liu, Dan; Yin, Bin; Ju, Wen-Yi; Qiu, Hui-Zhong; Xiao, Yi; Chen, Yuan-Jia; Peng, Xiao-Zhong; Lu, Chong-Mei

    2017-05-30

    Polypyrimidine tract-binding protein 1 (PTBP1) involving in almost all steps of mRNA regulation including alternative splicing metabolism during tumorigenesis due to its RNA-binding activity. Initially, we found that high expressed PTBP1 and poor prognosis was interrelated in colorectal cancer (CRC) patients with stages II and III CRC, which widely different in prognosis and treatment, by immunohistochemistry. PTBP1 was also upregulated in colon cancer cell lines. In our study, knockdown of PTBP1 by siRNA transfection decreased cell proliferation and invasion in vitro. Denovirus shRNA knockdown of PTBP1 inhibited colorectal cancer growth in vivo. Furthermore, PTBP1 regulates alternative splicing of many target genes involving in tumorgenesis in colon cancer cells. We confirmed that the splicing of cortactin exon 11 which was only contained in cortactin isoform-a, as a PTBP1 target. Knockdown of PTBP1 decreased the expression of cortactin isoform-a by exclusion of exon 11. Also the mRNA levels of PTBP1 and cortactin isoform-a were cooperatively expressed in colorectal cancer tissues. Knocking down cortactin isoform-a significantly decreased cell migration and invasion in colorectal cancer cells. Overexpression of cortactin isoform-a could rescue PTBP1-knockdown effect of cell motility. In summary the study revealed that PTBP1 facilitates colorectal cancer migration and invasion activities by inclusion of cortactin exon 11.

  14. Diversification of the Histone Acetyltransferase GCN5 through Alternative Splicing in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Alexandre Martel

    2017-12-01

    Full Text Available The epigenetic modulatory SAGA complex is involved in various developmental and stress responsive pathways in plants. Alternative transcripts of the SAGA complex's enzymatic subunit GCN5 have been identified in Brachypodium distachyon. These splice variants differ based on the presence and integrity of their conserved domain sequences: the histone acetyltransferase domain, responsible for catalytic activity, and the bromodomain, involved in acetyl-lysine binding and genomic loci targeting. GCN5 is the wild-type transcript, while alternative splice sites result in the following transcriptional variants: L-GCN5, which is missing the bromodomain and S-GCN5, which lacks the bromodomain as well as certain motifs of the histone acetyltransferase domain. Absolute mRNA quantification revealed that, across eight B. distachyon accessions, GCN5 was the dominant transcript isoform, accounting for up to 90% of the entire transcript pool, followed by L-GCN5 and S-GCN5. A cycloheximide treatment further revealed that the S-GCN5 splice variant was degraded through the nonsense-mediated decay pathway. All alternative BdGCN5 transcripts displayed similar transcript profiles, being induced during early exposure to heat and displaying higher levels of accumulation in the crown, compared to aerial tissues. All predicted protein isoforms localize to the nucleus, which lends weight to their purported epigenetic functions. S-GCN5 was incapable of forming an in vivo protein interaction with ADA2, the transcriptional adaptor that links the histone acetyltransferase subunit to the SAGA complex, while both GCN5 and L-GCN5 interacted with ADA2, which suggests that a complete histone acetyltransferase domain is required for BdGCN5-BdADA2 interaction in vivo. Thus, there has been a diversification in BdGCN5 through alternative splicing that has resulted in differences in conserved domain composition, transcript fate and in vivo protein interaction partners. Furthermore, our

  15. Supplementary Material for: Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar; Ling, Yu; Butt, Haroon; Mariappan, Kiruthiga; Benhamed, Moussa; Mahfouz, Magdy

    2017-01-01

    Abstract Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  16. Targeting Micrornas With Small Molecules: A Novel Approach to Treating Breast Cancer

    Science.gov (United States)

    2010-10-01

    DNAzyme, or deoxyribozyme, is a catalytic DNA that site-specifically cleaves the target RNA Watson – Crick base pairing to a complementary target...conserved antiparallel RNA A-helix fold among the selected pre- miRNA targets (Fig. 1a). Furthermore, 3D characteristics including Watson - Crick base pairs... Watson – Crick binding, leading to RNAse-H- mediated cleavage of the mRNA of the target gene. The ASOs also inhibit transcription, splicing, and

  17. LEMONS - A Tool for the Identification of Splice Junctions in Transcriptomes of Organisms Lacking Reference Genomes.

    Directory of Open Access Journals (Sweden)

    Liron Levin

    Full Text Available RNA-seq is becoming a preferred tool for genomics studies of model and non-model organisms. However, DNA-based analysis of organisms lacking sequenced genomes cannot rely on RNA-seq data alone to isolate most genes of interest, as DNA codes both exons and introns. With this in mind, we designed a novel tool, LEMONS, that exploits the evolutionary conservation of both exon/intron boundary positions and splice junction recognition signals to produce high throughput splice-junction predictions in the absence of a reference genome. When tested on multiple annotated vertebrate mRNA data, LEMONS accurately identified 87% (average of the splice-junctions. LEMONS was then applied to our updated Mediterranean chameleon transcriptome, which lacks a reference genome, and predicted a total of 90,820 exon-exon junctions. We experimentally verified these splice-junction predictions by amplifying and sequencing twenty randomly selected genes from chameleon DNA templates. Exons and introns were detected in 19 of 20 of the positions predicted by LEMONS. To the best of our knowledge, LEMONS is currently the only experimentally verified tool that can accurately predict splice-junctions in organisms that lack a reference genome.

  18. Opioid inhibition of N-type Ca2+ channels and spinal analgesia couple to alternative splicing.

    Science.gov (United States)

    Andrade, Arturo; Denome, Sylvia; Jiang, Yu-Qiu; Marangoudakis, Spiro; Lipscombe, Diane

    2010-10-01

    Alternative pre-mRNA splicing occurs extensively in the nervous systems of complex organisms, including humans, considerably expanding the potential size of the proteome. Cell-specific alternative pre-mRNA splicing is thought to optimize protein function for specialized cellular tasks, but direct evidence for this is limited. Transmission of noxious thermal stimuli relies on the activity of N-type Ca(V)2.2 calcium channels in nociceptors. Using an exon-replacement strategy in mice, we show that mutually exclusive splicing patterns in the Ca(V)2.2 gene modulate N-type channel function in nociceptors, leading to a change in morphine analgesia. Exon 37a (e37a) enhances μ-opioid receptor-mediated inhibition of N-type calcium channels by promoting activity-independent inhibition. In the absence of e37a, spinal morphine analgesia is weakened in vivo but the basal response to noxious thermal stimuli is not altered. Our data suggest that highly specialized, discrete cellular responsiveness in vivo can be attributed to alternative splicing events regulated at the level of individual neurons.

  19. [Polyadenylated RNA and mRNA export factors in extrachromosomal nuclear domains of vitellogenic oocytes of the insect Tenebrio molitor].

    Science.gov (United States)

    Bogoliubov, D S; Kiselev, A M; Shabel'nikov, S V; Parfenov, V N

    2012-01-01

    The nucleus ofvitellogenic oocytes of the yellow mealworm, Tenebrio molitor, contains a karyosphere that consists of the condensed chromatin embedded in an extrachromosomal fibrogranular material. Numerous nuclear bodies located freely in the nucleoplasm are also observed. Amongst these bodies, counterparts of nuclear speckles (= interchromatin granule clusters, IGCs) can be identified by the presence of the marker protein SC35. Microinjections of fluorescently tagged methyloligoribonucleotide probes 2'-O-Me(U)22, complementary to poly(A) tails of RNAs, revealed poly(A)+ RNA in the vast majority of IGCs. We found that all T. molitor oocyte IGCs contain heterogeneous ribonucleoprotein (hnRNP) core protein Al that localizes to IGCs in an RNA-dependent manner. The extrachromosomal material of the karyosphere and a part of nucleoplasmic IGCs also contain the adapter protein Aly that is known to provide a link between pre-mRNA splicing and mRNA export. The essential mRNA export factor/receptor NXF1 was observed to colocalize with Aly. In nucleoplasmic IGCs, NXF1 was found to localize in an RNA-dependent manner whereas it is RNA-independently located in the extrachromosomal material of the karyosphere. We believe our data suggest on a role of the nucleoplasmic IGCs in mRNA biogenesis and retention in a road to nuclear export.

  20. Control of HIV-1 env RNA splicing and transport: investigating the role of hnRNP A1 in exon splicing silencer (ESS3a) function

    International Nuclear Information System (INIS)

    Asai, Kengo; Platt, Craig; Cochrane, Alan

    2003-01-01

    The control of HIV-1 viral RNA splicing and transport plays an important role in the successful replication of the virus. Previous studies have identified both an exon splicing enhancer (ESE) and a bipartite exon splicing silencer (ESS3a and ESS3b) within the terminal exon of HIV-1 that are involved in modulating both splicing and Rev-mediated export of viral RNA. To define the mechanism of ESS3a function, experiments were carried out to better define the cis and trans components required for ESS3a activity. Mutations throughout the 30-nt element resulted in partial loss of ESS function. Combining mutations was found to have an additive effect, suggesting the presence of multiple binding sites. Analysis of interacting factors identified hnRNP A1 as one component of the complex that modulates ESS3a activity. However, subsequent binding analyses determined that hnRNP A1 interacts with only one portion of ESS3a, suggesting the involvement of another host factor. Parallel analysis of the effect of the mutations on Rev-mediated export determined that there is not a direct correlation between the effect of the mutations on splicing and RNA transport. Consistent with this hypothesis, replacement of ESS3a with consensus hnRNP A1 binding sites was found to be insufficient to block Rev-mediated RNA export

  1. Reflections on protein splicing: structures, functions and mechanisms

    Science.gov (United States)

    Anraku, Yasuhiro; Satow, Yoshinori

    2009-01-01

    Twenty years ago, evidence that one gene produces two enzymes via protein splicing emerged from structural and expression studies of the VMA1 gene in Saccharomyces cerevisiae. VMA1 consists of a single open reading frame and contains two independent genetic information for Vma1p (a catalytic 70-kDa subunit of the vacuolar H+-ATPase) and VDE (a 50-kDa DNA endonuclease) as an in-frame spliced insert in the gene. Protein splicing is a posttranslational cellular process, in which an intervening polypeptide termed as the VMA1 intein is self-catalytically excised out from a nascent 120-kDa VMA1 precursor and two flanking polypeptides of the N- and C-exteins are ligated to produce the mature Vma1p. Subsequent studies have demonstrated that protein splicing is not unique to the VMA1 precursor and there are many operons in nature, which implement genetic information editing at protein level. To elucidate its structure-directed chemical mechanisms, a series of biochemical and crystal structural studies has been carried out with the use of various VMA1 recombinants. This article summarizes a VDE-mediated self-catalytic mechanism for protein splicing that is triggered and terminated solely via thiazolidine intermediates with tetrahedral configurations formed within the splicing sites where proton ingress and egress are driven by balanced protonation and deprotonation. PMID:19907126

  2. Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thaliana

    KAUST Repository

    Gu, Jinbao

    2017-12-01

    Soil salinity is a significant threat to sustainable agricultural production worldwide. Plants must adjust their developmental and physiological processes to cope with salt stress. Although the capacity for adaptation ultimately depends on the genome, the exceptional versatility in gene regulation provided by the spliceosome-mediated alternative splicing (AS) is essential in these adaptive processes. However, the functions of the spliceosome in plant stress responses are poorly understood. Here, we report the in-depth characterization of a U1 spliceosomal protein, AtU1A, in controlling AS of pre-mRNAs under salt stress and salt stress tolerance in Arabidopsis thaliana. The atu1a mutant was hypersensitive to salt stress and accumulated more reactive oxygen species (ROS) than the wild-type under salt stress. RNA-seq analysis revealed that AtU1A regulates AS of many genes, presumably through modulating recognition of 5′ splice sites. We showed that AtU1A is associated with the pre-mRNA of the ROS detoxification-related gene ACO1 and is necessary for the regulation of ACO1 AS. ACO1 is important for salt tolerance because ectopic expression of ACO1 in the atu1a mutant can partially rescue its salt hypersensitive phenotype. Our findings highlight the critical role of AtU1A as a regulator of pre-mRNA processing and salt tolerance in plants.

  3. Computational Analysis of an Evolutionarily Conserved VertebrateMuscle Alternative Splicing Program

    Energy Technology Data Exchange (ETDEWEB)

    Das, Debopriya; Clark, Tyson A.; Schweitzer, Anthony; Marr,Henry; Yamamoto, Miki L.; Parra, Marilyn K.; Arribere, Josh; Minovitsky,Simon; Dubchak, Inna; Blume, John E.; Conboy, John G.

    2006-06-15

    A novel exon microarray format that probes gene expression with single exon resolution was employed to elucidate critical features of a vertebrate muscle alternative splicing program. A dataset of 56 microarray-defined, muscle-enriched exons and their flanking introns were examined computationally in order to investigate coordination of the muscle splicing program. Candidate intron regulatory motifs were required to meet several stringent criteria: significant over-representation near muscle-enriched exons, correlation with muscle expression, and phylogenetic conservation among genomes of several vertebrate orders. Three classes of regulatory motifs were identified in the proximal downstream intron, within 200nt of the target exons: UGCAUG, a specific binding site for Fox-1 related splicing factors; ACUAAC, a novel branchpoint-like element; and UG-/UGC-rich elements characteristic of binding sites for CELF splicing factors. UGCAUG was remarkably enriched, being present in nearly one-half of all cases. These studies suggest that Fox and CELF splicing factors play a major role in enforcing the muscle-specific alternative splicing program, facilitating expression of a set of unique isoforms of cytoskeletal proteins that are critical to muscle cell differentiation. Supplementary materials: There are four supplementary tables and one supplementary figure. The tables provide additional detailed information concerning the muscle-enriched datasets, and about over-represented oligonucleotide sequences in the flanking introns. The supplementary figure shows RT-PCR data confirming the muscle-enriched expression of exons predicted from the microarray analysis.

  4. A family of splice variants of CstF-64 expressed in vertebrate nervous systems

    Science.gov (United States)

    Shankarling, Ganesh S; Coates, Penelope W; Dass, Brinda; MacDonald, Clinton C

    2009-01-01

    Background Alternative splicing and polyadenylation are important mechanisms for creating the proteomic diversity necessary for the nervous system to fulfill its specialized functions. The contribution of alternative splicing to proteomic diversity in the nervous system has been well documented, whereas the role of alternative polyadenylation in this process is less well understood. Since the CstF-64 polyadenylation protein is known to be an important regulator of tissue-specific polyadenylation, we examined its expression in brain and other organs. Results We discovered several closely related splice variants of CstF-64 – collectively called βCstF-64 – that could potentially contribute to proteomic diversity in the nervous system. The βCstF-64 splice variants are found predominantly in the brains of several vertebrate species including mice and humans. The major βCstF-64 variant mRNA is generated by inclusion of two alternate exons (that we call exons 8.1 and 8.2) found between exons 8 and 9 of the CstF-64 gene, and contains an additional 147 nucleotides, encoding 49 additional amino acids. Some variants of βCstF-64 contain only the first alternate exon (exon 8.1) while other variants contain both alternate exons (8.1 and 8.2). In mice, the predominant form of βCstF-64 also contains a deletion of 78 nucleotides from exon 9, although that variant is not seen in any other species examined, including rats. Immunoblot and 2D-PAGE analyses of mouse nuclear extracts indicate that a protein corresponding to βCstF-64 is expressed in brain at approximately equal levels to CstF-64. Since βCstF-64 splice variant family members were found in the brains of all vertebrate species examined (including turtles and fish), this suggests that βCstF-64 has an evolutionarily conserved function in these animals. βCstF-64 was present in both pre- and post-natal mice and in different regions of the nervous system, suggesting an important role for βCstF-64 in neural gene

  5. Targeting Splicing in Prostate Cancer

    OpenAIRE

    Effrosyni Antonopoulou; Michael Ladomery

    2018-01-01

    Over 95% of human genes are alternatively spliced, expressing splice isoforms that often exhibit antagonistic functions. We describe genes whose alternative splicing has been linked to prostate cancer; namely VEGFA, KLF6, BCL2L2, ERG, and AR. We discuss opportunities to develop novel therapies that target specific splice isoforms, or that target the machinery of splicing. Therapeutic approaches include the development of small molecule inhibitors of splice factor kinases, splice isoform speci...

  6. Study of USH1 splicing variants through minigenes and transcript analysis from nasal epithelial cells.

    Directory of Open Access Journals (Sweden)

    María José Aparisi

    Full Text Available Usher syndrome type I (USH1 is an autosomal recessive disorder characterized by congenital profound deafness, vestibular areflexia and prepubertal retinitis pigmentosa. The first purpose of this study was to determine the pathologic nature of eighteen USH1 putative splicing variants found in our series and their effect in the splicing process by minigene assays. These variants were selected according to bioinformatic analysis. The second aim was to analyze the USH1 transcripts, obtained from nasal epithelial cells samples of our patients, in order to corroborate the observed effect of mutations by minigenes in patient's tissues. The last objective was to evaluate the nasal ciliary beat frequency in patients with USH1 and compare it with control subjects. In silico analysis were performed using four bioinformatic programs: NNSplice, Human Splicing Finder, NetGene2 and Spliceview. Afterward, minigenes based on the pSPL3 vector were used to investigate the implication of selected changes in the mRNA processing. To observe the effect of mutations in the patient's tissues, RNA was extracted from nasal epithelial cells and RT-PCR analyses were performed. Four MYO7A (c.470G>A, c.1342_1343delAG, c.5856G>A and c.3652G>A, three CDH23 (c.2289+1G>A, c.6049G>A and c.8722+1delG and one PCDH15 (c.3717+2dupTT variants were observed to affect the splicing process by minigene assays and/or transcripts analysis obtained from nasal cells. Based on our results, minigenes are a good approach to determine the implication of identified variants in the mRNA processing, and the analysis of RNA obtained from nasal epithelial cells is an alternative method to discriminate neutral Usher variants from those with a pathogenic effect on the splicing process. In addition, we could observe that the nasal ciliated epithelium of USH1 patients shows a lower ciliary beat frequency than control subjects.

  7. Identification of a novel splice variant of human PD-L1 mRNA encoding an isoform-lacking Igv-like domain.

    Science.gov (United States)

    He, Xian-hui; Xu, Li-hui; Liu, Yi

    2005-04-01

    To investigate the expression and regulation of PD-1 ligand 1 (PD-L1) in peripheral blood mononuclear cells (PBMC). The cDNA encoding human PD-L1 precursor was cloned from the total RNA extracted from the resting and phorbol dibutyrate plus ionomycin- or phytohemagglutinin-activated PBMC, by reverse transcription polymerase chain reaction (RT-PCR), and independent clones were sequenced and analyzed. The expression and subcellular localization were examined in transiently transfected cells. The PD-L1 gene expression in different PBMC was also analyzed by RT-PCR. A novel human PD-L1 splice variant was identified from the activated PBMC. It was generated by splicing out exon? encoding an immunoglobulin variable domain (Igv)-like domain but retaining all other exons without a frame-shift. Consequently, the putative translated protein contained all other domains including the transmembrane region except for the Igv-like domain. Furthermore, the conventional isoform was expressed on the plasma surface whereas the novel isoform showed a pattern of intracellular membrane distribution in transiently transfected K562 cells. In addition, the expression pattern of the PD-L1 splice variant was variable in different individuals and in different cellular status. PD-L1 expression may be regulated at the posttranscriptional level through alternative splicing, and modulation of the PD-L1 isoform expression may influence the outcome of specific immune responses in the peripheral tissues.

  8. Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans

    DEFF Research Database (Denmark)

    Heintz, Caroline; Doktor, Thomas K; Lanjuin, Anne

    2017-01-01

    via splicing factor 1 (SFA-1; the C. elegans homologue of SF1, also known as branchpoint binding protein, BBP). We show that SFA-1 is specifically required for lifespan extension by dietary restriction and by modulation of the TORC1 pathway components AMPK, RAGA-1 and RSKS-1/S6 kinase. We also...... homeostasis is a biomarker and predictor of life expectancy in Caenorhabditis elegans. Using transcriptomics and in-depth splicing analysis in young and old animals fed ad libitum or subjected to dietary restriction, we find defects in global pre-mRNA splicing with age that are reduced by dietary restriction...

  9. Evaluating the cost of adult voluntary medical male circumcision in a mixed (surgical and PrePex site compared to a hypothetical PrePex-only site in South Africa

    Directory of Open Access Journals (Sweden)

    Hae-Young Kim

    2015-12-01

    Full Text Available Background: Several circumcision devices have been evaluated for a safe and simplified male circumcision among adults. The PrePex device was prequalified for voluntary male medical circumcision (VMMC in May 2013 by the World Health Organization and is expected to simplify the procedure safely while reducing cost. South Africa is scaling up VMMC. Objective: To evaluate the overall unit cost of VMMC at a mixed site vs. a hypothetical PrePex-only site in South Africa. Design: We evaluated the overall unit cost of VMMC at a mixed site where PrePex VMMC procedure was added to routine forceps-guided scalpel-based VMMC in Soweto, South Africa. We abstracted costs and then modeled these costs for a hypothetical PrePex-only site, at which 9,600 PrePex circumcisions per year could be done. We examined cost drivers and modeled costs, varying the price of the PrePex device. The healthcare system perspective was used. Results: In both sites, the main contributors of cost were personnel and consumables. If 10% of all VMMC were by PrePex at the mixed site, the overall costs of the surgical method and PrePex were similar – US$59.62 and $59.53, respectively. At the hypothetical PrePex-only site, the unit cost was US$51.10 with PrePex circumcisions having markedly lower personnel and biohazardous waste management costs. In sensitivity analysis with the cost of PrePex kit reduced to US$10 and $2, the cost of VMMC was further reduced. Conclusions: Adding PrePex to an existing site did not necessarily reduce the overall costs of VMMC. However, starting a new PrePex-only site is feasible and may significantly reduce the overall cost by lowering both personnel and capital costs, thus being cost-effective in the long term. Achieving a lower cost for PrePex will be an important contributor to the scale-up of VMMC.

  10. Alternative splice variants of the human PD-1 gene

    DEFF Research Database (Denmark)

    Nielsen, Christian; Ohm-Laursen, Line; Barington, Torben

    2005-01-01

    PD-1 is an immunoregulatory receptor expressed on the surface of activated T cells, B cells, and monocytes. We describe four alternatively spliced PD-1 mRNA transcripts (PD-1Deltaex2, PD-1Deltaex3, PD-1Deltaex2,3, and PD-1Deltaex2,3,4) in addition to the full length isoform. PD-1Deltaex2 and PD-1...... and flPD-1 upon activation suggests an important interplay between the putative soluble PD-1 and flPD-1 possibly involved in maintenance of peripheral self-tolerance and prevention of autoimmunity....

  11. The Associations between RNA Splicing Complex Gene SF3A1 Polymorphisms and Colorectal Cancer Risk in a Chinese Population.

    Directory of Open Access Journals (Sweden)

    Xiaohua Chen

    Full Text Available Aberrant alternative splicing included alterations in components of the mRNA splicing machinery often occurred in colon cancer. However, the role of SF3A1, one key component of the mRNA splicing machinery, on colorectal cancer (CRC risk was still not elucidated.We performed a hospital-based case-control study containing 801 CRC patients and 817 cancer-free controls to examine the association between SF3A1 polymorphisms and CRC risk in a Chinese population. Four candidate SNPs (rs10376, rs5753073, rs2839998 and rs2074733 were selected based on bioinformatics analysis and previous findings. The results showed no significant associations between these SNPs and CRC risk (P > 0.05. Besides, the stratified analysis based on the smoking and alcohol use status obtained no statistically significant results.Our study was the first one to investigate the association between SF3A1 polymorphisms and CRC risk. The results suggested these four SNPs in SF3A1 were not associated with CRC risk in a Chinese population, however, further more studies are needed to confirm our findings.

  12. Entropic contributions to the splicing process

    International Nuclear Information System (INIS)

    Osella, Matteo; Caselle, Michele

    2009-01-01

    It has been recently argued that depletion attraction may play an important role in different aspects of cellular organization, ranging from the organization of transcriptional activity in transcription factories to the formation of nuclear bodies. In this paper, we suggest a new application of these ideas in the context of the splicing process, a crucial step of messenger RNA maturation in eukaryotes. We shall show that entropy effects and the resulting depletion attraction may explain the relevance of the aspecific intron length variable in the choice of splice-site recognition modality. On top of that, some qualitative features of the genome architecture of higher eukaryotes can find evolutionary realistic motivation in the light of our model

  13. Co-localisation studies of Arabidopsis SR splicing factors reveal different types of speckles in plant cell nuclei

    International Nuclear Information System (INIS)

    Lorkovic, Zdravko J.; Hilscher, Julia; Barta, Andrea

    2008-01-01

    SR proteins are multidomain splicing factors which are important for spliceosome assembly and for regulation of alternative splicing. In mammalian nuclei these proteins localise to speckles from where they are recruited to transcription sites. By using fluorescent protein fusion technology and different experimental approaches it has been shown that Arabidopsis SR proteins, in addition to diffuse nucleoplasmic staining, localise into an irregular nucleoplasmic network resembling speckles in mammalian cells. As Arabidopsis SR proteins fall into seven conserved sub-families we investigated co-localisation of members of the different sub-families in transiently transformed tobacco protoplast. Here we demonstrate the new finding that members of different SR protein sub-families localise into distinct populations of nuclear speckles with no, partial or complete co-localisation. This is particularly interesting as we also show that these proteins do interact in a yeast two-hybrid assay as well as in pull-down and in co-immunopreciptiation assays. Our data raise the interesting possibility that SR proteins are partitioned into distinct populations of nuclear speckles to allow a more specific recruitment to the transcription/pre-mRNA processing sites of particular genes depending on cell type and developmental stage

  14. FOX-2 Dependent Splicing of Ataxin-2 Transcript Is Affected by Ataxin-1 Overexpression

    Science.gov (United States)

    Welzel, Franziska; Kaehler, Christian; Isau, Melanie; Hallen, Linda; Lehrach, Hans; Krobitsch, Sylvia

    2012-01-01

    Alternative splicing is a fundamental posttranscriptional mechanism for controlling gene expression, and splicing defects have been linked to various human disorders. The splicing factor FOX-2 is part of a main protein interaction hub in a network related to human inherited ataxias, however, its impact remains to be elucidated. Here, we focused on the reported interaction between FOX-2 and ataxin-1, the disease-causing protein in spinocerebellar ataxia type 1. In this line, we further evaluated this interaction by yeast-2-hybrid analyses and co-immunoprecipitation experiments in mammalian cells. Interestingly, we discovered that FOX-2 localization and splicing activity is affected in the presence of nuclear ataxin-1 inclusions. Moreover, we observed that FOX-2 directly interacts with ataxin-2, a protein modulating spinocerebellar ataxia type 1 pathogenesis. Finally, we provide evidence that splicing of pre-mRNA of ataxin-2 depends on FOX-2 activity, since reduction of FOX-2 levels led to increased skipping of exon 18 in ataxin-2 transcripts. Most striking, we observed that ataxin-1 overexpression has an effect on this splicing event as well. Thus, our results demonstrate that FOX-2 is involved in splicing of ataxin-2 transcripts and that this splicing event is altered by overexpression of ataxin-1. PMID:22666429

  15. Pre-1970 transuranic solid waste at the Hanford Site

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1995-01-01

    The document is based on a search of pre-1970 Hanford Solid Waste Records. The available data indicates seven out of thirty-one solid waste burial sites used for pre-1970 waste appear to be Transuranic (TRU). A burial site defined to be TRU contains >100 nCi/gm Transuranic nuclides

  16. Intrasplicing coordinates alternative first exons with alternative splicing in the protein 4.1R gene

    Energy Technology Data Exchange (ETDEWEB)

    Conboy, John G.; Parra, Marilyn K.; Tan, Jeff S.; Mohandas, Narla; Conboy, John G.

    2008-11-07

    In the protein 4.1R gene, alternative first exons splice differentially to alternative 3' splice sites far downstream in exon 2'/2 (E2'/2). We describe a novel intrasplicing mechanism by which exon 1A (E1A) splices exclusively to the distal E2'/2 acceptor via two nested splicing reactions regulated by novel properties of exon 1B (E1B). E1B behaves as an exon in the first step, using its consensus 5' donor to splice to the proximal E2'/2 acceptor. A long region of downstream intron is excised, juxtaposing E1B with E2'/2 to generate a new composite acceptor containing the E1B branchpoint/pyrimidine tract and E2 distal 3' AG-dinucleotide. Next, the upstream E1A splices over E1B to this distal acceptor, excising the remaining intron plus E1B and E2' to form mature E1A/E2 product. We mapped branch points for both intrasplicing reactions and demonstrated that mutation of the E1B 5' splice site or branchpoint abrogates intrasplicing. In the 4.1R gene, intrasplicing ultimately determines N-terminal protein structure and function. More generally, intrasplicing represents a new mechanism whereby alternative promoters can be coordinated with downstream alternative splicing.

  17. MRN1 implicates chromatin remodeling complexes and architectural factors in mRNA maturation

    DEFF Research Database (Denmark)

    Düring, Louis; Thorsen, Michael; Petersen, Darima

    2012-01-01

    A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6¿¿ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin....... Genetic interactions are observed between 2 µm-MRN1 and the splicing deficient mutants snt309¿, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing....

  18. Chinmo prevents transformer alternative splicing to maintain male sex identity.

    Science.gov (United States)

    Grmai, Lydia; Hudry, Bruno; Miguel-Aliaga, Irene; Bach, Erika A

    2018-02-01

    Reproduction in sexually dimorphic animals relies on successful gamete production, executed by the germline and aided by somatic support cells. Somatic sex identity in Drosophila is instructed by sex-specific isoforms of the DMRT1 ortholog Doublesex (Dsx). Female-specific expression of Sex-lethal (Sxl) causes alternative splicing of transformer (tra) to the female isoform traF. In turn, TraF alternatively splices dsx to the female isoform dsxF. Loss of the transcriptional repressor Chinmo in male somatic stem cells (CySCs) of the testis causes them to "feminize", resembling female somatic stem cells in the ovary. This somatic sex transformation causes a collapse of germline differentiation and male infertility. We demonstrate this feminization occurs by transcriptional and post-transcriptional regulation of traF. We find that chinmo-deficient CySCs upregulate tra mRNA as well as transcripts encoding tra-splice factors Virilizer (Vir) and Female lethal (2)d (Fl(2)d). traF splicing in chinmo-deficient CySCs leads to the production of DsxF at the expense of the male isoform DsxM, and both TraF and DsxF are required for CySC sex transformation. Surprisingly, CySC feminization upon loss of chinmo does not require Sxl but does require Vir and Fl(2)d. Consistent with this, we show that both Vir and Fl(2)d are required for tra alternative splicing in the female somatic gonad. Our work reveals the need for transcriptional regulation of tra in adult male stem cells and highlights a previously unobserved Sxl-independent mechanism of traF production in vivo. In sum, transcriptional control of the sex determination hierarchy by Chinmo is critical for sex maintenance in sexually dimorphic tissues and is vital in the preservation of fertility.

  19. Chinmo prevents transformer alternative splicing to maintain male sex identity.

    Directory of Open Access Journals (Sweden)

    Lydia Grmai

    2018-02-01

    Full Text Available Reproduction in sexually dimorphic animals relies on successful gamete production, executed by the germline and aided by somatic support cells. Somatic sex identity in Drosophila is instructed by sex-specific isoforms of the DMRT1 ortholog Doublesex (Dsx. Female-specific expression of Sex-lethal (Sxl causes alternative splicing of transformer (tra to the female isoform traF. In turn, TraF alternatively splices dsx to the female isoform dsxF. Loss of the transcriptional repressor Chinmo in male somatic stem cells (CySCs of the testis causes them to "feminize", resembling female somatic stem cells in the ovary. This somatic sex transformation causes a collapse of germline differentiation and male infertility. We demonstrate this feminization occurs by transcriptional and post-transcriptional regulation of traF. We find that chinmo-deficient CySCs upregulate tra mRNA as well as transcripts encoding tra-splice factors Virilizer (Vir and Female lethal (2d (Fl(2d. traF splicing in chinmo-deficient CySCs leads to the production of DsxF at the expense of the male isoform DsxM, and both TraF and DsxF are required for CySC sex transformation. Surprisingly, CySC feminization upon loss of chinmo does not require Sxl but does require Vir and Fl(2d. Consistent with this, we show that both Vir and Fl(2d are required for tra alternative splicing in the female somatic gonad. Our work reveals the need for transcriptional regulation of tra in adult male stem cells and highlights a previously unobserved Sxl-independent mechanism of traF production in vivo. In sum, transcriptional control of the sex determination hierarchy by Chinmo is critical for sex maintenance in sexually dimorphic tissues and is vital in the preservation of fertility.

  20. PAP-1, the mutated gene underlying the RP9 form of dominant retinitis pigmentosa, is a splicing factor

    International Nuclear Information System (INIS)

    Maita, Hiroshi; Kitaura, Hirotake; Keen, T. Jeffrey; Inglehearn, Chris F.; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M.M.

    2004-01-01

    PAP-1 is an in vitro phosphorylation target of the Pim-1 oncogene. Although PAP-1 binds to Pim-1, it is not a substrate for phosphorylation by Pim-1 in vivo. PAP-1 has recently been implicated as the defective gene in RP9, one type of autosomal dominant retinitis pigmentosa (adRP). However, RP9 is a rare disease and only two missense mutations have been described, so the report of a link between PAP-1 and RP9 was tentative. The precise cellular role of PAP-1 was also unknown at that time. We now report that PAP-1 localizes in nuclear speckles containing the splicing factor SC35 and interacts directly with another splicing factor, U2AF35. Furthermore, we used in vitro and in vivo splicing assays to show that PAP-1 has an activity, which alters the pattern of pre-mRNA splicing and that this activity is dependent on the phosphorylation state of PAP-1. We used the same splicing assay to examine the activities of two mutant forms of PAP-1 found in RP9 patients. The results showed that while one of the mutations, H137L, had no effect on splicing activity compared with that of wild-type PAP-1, the other, D170G, resulted in both a defect in splicing activity and a decreased proportion of phosphorylated PAP-1. The D170G mutation may therefore cause RP by altering splicing of retinal genes through a decrease in PAP-1 phosphorylation. These results demonstrate that PAP-1 has a role in pre-mRNA splicing and, given that three other splicing factors have been implicated in adRP, this finding provides compelling further evidence that PAP-1 is indeed the RP9 gene

  1. Identification and characterization of NAGNAG alternative splicing in the moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Bolte Kathrin

    2010-04-01

    Full Text Available Abstract Background Alternative splicing (AS involving tandem acceptors that are separated by three nucleotides (NAGNAG is an evolutionarily widespread class of AS, which is well studied in Homo sapiens (human and Mus musculus (mouse. It has also been shown to be common in the model seed plants Arabidopsis thaliana and Oryza sativa (rice. In one of the first studies involving sequence-based prediction of AS in plants, we performed a genome-wide identification and characterization of NAGNAG AS in the model plant Physcomitrella patens, a moss. Results Using Sanger data, we found 295 alternatively used NAGNAG acceptors in P. patens. Using 31 features and training and test datasets of constitutive and alternative NAGNAGs, we trained a classifier to predict the splicing outcome at NAGNAG tandem splice sites (alternative splicing, constitutive at the first acceptor, or constitutive at the second acceptor. Our classifier achieved a balanced specificity and sensitivity of ≥ 89%. Subsequently, a classifier trained exclusively on data well supported by transcript evidence was used to make genome-wide predictions of NAGNAG splicing outcomes. By generation of more transcript evidence from a next-generation sequencing platform (Roche 454, we found additional evidence for NAGNAG AS, with altogether 664 alternative NAGNAGs being detected in P. patens using all currently available transcript evidence. The 454 data also enabled us to validate the predictions of the classifier, with 64% (80/125 of the well-supported cases of AS being predicted correctly. Conclusion NAGNAG AS is just as common in the moss P. patens as it is in the seed plants A. thaliana and O. sativa (but not conserved on the level of orthologous introns, and can be predicted with high accuracy. The most informative features are the nucleotides in the NAGNAG and in its immediate vicinity, along with the splice sites scores, as found earlier for NAGNAG AS in animals. Our results suggest that the

  2. Systematic profiling of poly(A+ transcripts modulated by core 3' end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation.

    Directory of Open Access Journals (Sweden)

    Wencheng Li

    2015-04-01

    Full Text Available Alternative cleavage and polyadenylation (APA results in mRNA isoforms containing different 3' untranslated regions (3'UTRs and/or coding sequences. How core cleavage/polyadenylation (C/P factors regulate APA is not well understood. Using siRNA knockdown coupled with deep sequencing, we found that several C/P factors can play significant roles in 3'UTR-APA. Whereas Pcf11 and Fip1 enhance usage of proximal poly(A sites (pAs, CFI-25/68, PABPN1 and PABPC1 promote usage of distal pAs. Strong cis element biases were found for pAs regulated by CFI-25/68 or Fip1, and the distance between pAs plays an important role in APA regulation. In addition, intronic pAs are substantially regulated by splicing factors, with U1 mostly inhibiting C/P events in introns near the 5' end of gene and U2 suppressing those in introns with features for efficient splicing. Furthermore, PABPN1 inhibits expression of transcripts with pAs near the transcription start site (TSS, a property possibly related to its role in RNA degradation. Finally, we found that groups of APA events regulated by C/P factors are also modulated in cell differentiation and development with distinct trends. Together, our results support an APA code where an APA event in a given cellular context is regulated by a number of parameters, including relative location to the TSS, splicing context, distance between competing pAs, surrounding cis elements and concentrations of core C/P factors.

  3. [Analysis of USH2A gene mutation in a Chinese family affected with Usher syndrome].

    Science.gov (United States)

    Li, Pengcheng; Liu, Fei; Zhang, Mingchang; Wang, Qiufen; Liu, Mugen

    2015-08-01

    To investigate the disease-causing mutation in a Chinese family affected with Usher syndrome type II. All of the 11 members from the family underwent comprehensive ophthalmologic examination and hearing test, and their genomic DNA were isolated from venous leukocytes. PCR and direct sequencing of USH2A gene were performed for the proband. Wild type and mutant type minigene vectors containing exon 42, intron 42 and exon 43 of the USH2A gene were constructed and transfected into Hela cells by lipofectamine reagent. Reverse transcription (RT)-PCR was carried out to verify the splicing of the minigenes. Pedigree analysis and clinical diagnosis indicated that the patients have suffered from autosomal recessive Usher syndrome type II. DNA sequencing has detected a homozygous c.8559-2A>G mutation of the USH2A gene in the proband, which has co-segregated with the disease in the family. The mutation has affected a conserved splice site in intron 42, which has led to inactivation of the splice site. Minigene experiment has confirmed the retaining of intron 42 in mature mRNA. The c.8559-2A>G mutation in the USH2A gene probably underlies the Usher syndrome type II in this family. The splice site mutation has resulted in abnormal splicing of USH2A pre-mRNA.

  4. Dynamics of co-transcriptional pre-mRNA folding influences the induction of dystrophin exon skipping by antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Keng Boon Wee

    Full Text Available Antisense oligonucleotides (AONs mediated exon skipping offers potential therapy for Duchenne muscular dystrophy. However, the identification of effective AON target sites remains unsatisfactory for lack of a precise method to predict their binding accessibility. This study demonstrates the importance of co-transcriptional pre-mRNA folding in determining the accessibility of AON target sites for AON induction of selective exon skipping in DMD. Because transcription and splicing occur in tandem, AONs must bind to their target sites before splicing factors. Furthermore, co-transcriptional pre-mRNA folding forms transient secondary structures, which redistributes accessible binding sites. In our analysis, to approximate transcription elongation, a "window of analysis" that included the entire targeted exon was shifted one nucleotide at a time along the pre-mRNA. Possible co-transcriptional secondary structures were predicted using the sequence in each step of transcriptional analysis. A nucleotide was considered "engaged" if it formed a complementary base pairing in all predicted secondary structures of a particular step. Correlation of frequency and localisation of engaged nucleotides in AON target sites accounted for the performance (efficacy and efficiency of 94% of 176 previously reported AONs. Four novel insights are inferred: (1 the lowest frequencies of engaged nucleotides are associated with the most efficient AONs; (2 engaged nucleotides at 3' or 5' ends of the target site attenuate AON performance more than at other sites; (3 the performance of longer AONs is less attenuated by engaged nucleotides at 3' or 5' ends of the target site compared to shorter AONs; (4 engaged nucleotides at 3' end of a short target site attenuates AON efficiency more than at 5' end.

  5. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types.

    Science.gov (United States)

    Kilian, A; Bowtell, D D; Abud, H E; Hime, G R; Venter, D J; Keese, P K; Duncan, E L; Reddel, R R; Jefferson, R A

    1997-11-01

    Telomerase is a multicomponent reverse transcriptase enzyme that adds DNA repeats to the ends of chromosomes using its RNA component as a template for synthesis. Telomerase activity is detected in the germline as well as the majority of tumors and immortal cell lines, and at low levels in several types of normal cells. We have cloned a human gene homologous to a protein from Saccharomyces cerevisiae and Euplotes aediculatus that has reverse transcriptase motifs and is thought to be the catalytic subunit of telomerase in those species. This gene is present in the human genome as a single copy sequence with a dominant transcript of approximately 4 kb in a human colon cancer cell line, LIM1215. The cDNA sequence was determined using clones from a LIM1215 cDNA library and by RT-PCR, cRACE and 3'RACE on mRNA from the same source. We show that the gene is expressed in several normal tissues, telomerase-positive post-crisis (immortal) cell lines and various tumors but is not expressed in the majority of normal tissues analyzed, pre-crisis (non-immortal) cells and telomerase-negative immortal (ALT) cell lines. Multiple products were identified by RT-PCR using primers within the reverse transcriptase domain. Sequencing of these products suggests that they arise by alternative splicing. Strikingly, various tumors, cell lines and even normal tissues (colonic crypt and testis) showed considerable differences in the splicing patterns. Alternative splicing of the telomerase catalytic subunit transcript may be important for the regulation of telomerase activity and may give rise to proteins with different biochemical functions.

  6. TGFβ1-mediated expression and alternative splicing of Fibronectin Extra Domain A in human podocyte culture.

    Science.gov (United States)

    Madne, Tarunkumar Hemraj; Dockrell, Mark Edward Carl

    2018-02-28

    Alternative splicing is a fundamental phenomenon to build protein diversity in health and diseases. Extra Domain A+ Fibronectin (EDA+Fn) is an alternatively spliced form of fibronectin protein present in the extra cellular matrix (ECM) in renal fibrosis. Podocytes are spectacular cell type and play a key role in filtration and synthesise ECM proteins in renal physiology and pathology. TGFβ1 is a strong stimulator of ECM proteins in renal injury. In this study, we have investigated alternative splicing of EDA+ Fn in human podocytes in response to TGFβ1. We have performed western blotting and immunofluorescence to characterise the expression of the EDA+Fn protein, real-time PCR for RNA expression and RT-PCR to look for alternative splicing of EDA+Fn in conditionally immortalised human podocytes culture.We used TGFβ1 as a stimulator and SB431542 and SRPIN340 for inhibitory studies. In this work, for the first time we have demonstrated in human podocytes culture EDA+Fn is expressed in the basal condition and TGFβ1 2.5ng/ml induced the Fn mRNA and EDA+Fn protein expression demonstrated by real-time PCR, western blotting and immunofluorescence. TGFβ1 2.5ng/ml induced the alternative splicing of EDA+Fn shown by conventional RT-PCR. Studies with ALK5 inhibitor SB431542 and SRPIN340 show that TGFβ1 induced alternative splicing of EDA+Fn was by the ALK5 receptor and the SR proteins.  In human podocytes culture, alternative splicing of EDA+Fn occurs at basal conditions and TGFβ1 further induced the alternative splicing of EDA+Fn via ALK5 receptor activation and SR proteins. This is the first evidence of basal and TGFβ1 mediated alternative splicing of EDA+Fn in human podocytes culture.

  7. ISVASE: identification of sequence variant associated with splicing event using RNA-seq data.

    Science.gov (United States)

    Aljohi, Hasan Awad; Liu, Wanfei; Lin, Qiang; Yu, Jun; Hu, Songnian

    2017-06-28

    Exon recognition and splicing precisely and efficiently by spliceosome is the key to generate mature mRNAs. About one third or a half of disease-related mutations affect RNA splicing. Software PVAAS has been developed to identify variants associated with aberrant splicing by directly using RNA-seq data. However, it bases on the assumption that annotated splicing site is normal splicing, which is not true in fact. We develop the ISVASE, a tool for specifically identifying sequence variants associated with splicing events (SVASE) by using RNA-seq data. Comparing with PVAAS, our tool has several advantages, such as multi-pass stringent rule-dependent filters and statistical filters, only using split-reads, independent sequence variant identification in each part of splicing (junction), sequence variant detection for both of known and novel splicing event, additional exon-exon junction shift event detection if known splicing events provided, splicing signal evaluation, known DNA mutation and/or RNA editing data supported, higher precision and consistency, and short running time. Using a realistic RNA-seq dataset, we performed a case study to illustrate the functionality and effectiveness of our method. Moreover, the output of SVASEs can be used for downstream analysis such as splicing regulatory element study and sequence variant functional analysis. ISVASE is useful for researchers interested in sequence variants (DNA mutation and/or RNA editing) associated with splicing events. The package is freely available at https://sourceforge.net/projects/isvase/ .

  8. spliceR

    DEFF Research Database (Denmark)

    Vitting-Seerup, Kristoffer; Porse, Bo Torben; Sandelin, Albin

    2014-01-01

    RNA-seq data is currently underutilized, in part because it is difficult to predict the functional impact of alternate transcription events. Recent software improvements in full-length transcript deconvolution prompted us to develop spliceR, an R package for classification of alternative splicing...

  9. Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay

    Directory of Open Access Journals (Sweden)

    Zavolan Mihaela

    2010-10-01

    Full Text Available Abstract Background In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. Results In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs. Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1's role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3' UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. Conclusions Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels.

  10. SOAPsplice: genome-wide ab initio detection of splice junctions from RNA-Seq data

    Directory of Open Access Journals (Sweden)

    Songbo eHuang

    2011-07-01

    Full Text Available RNA-Seq, a method using next generation sequencing technologies to sequence the transcriptome, facilitates genome-wide analysis of splice junction sites. In this paper, we introduce SOAPsplice, a robust tool to detect splice junctions using RNA-Seq data without using any information of known splice junctions. SOAPsplice uses a novel two-step approach consisting of first identifying as many reasonable splice junction candidates as possible, and then, filtering the false positives with two effective filtering strategies. In both simulated and real datasets, SOAPsplice is able to detect many reliable splice junctions with low false positive rate. The improvement gained by SOAPsplice, when compared to other existing tools, becomes more obvious when the depth of sequencing is low. SOAPsplice is freely available at http://soap.genomics.org.cn/soapsplice.html.

  11. Unprecedented multiplicity of Ig transmembrane and secretory mRNA forms in the cartilaginous fish.

    Science.gov (United States)

    Rumfelt, Lynn L; Diaz, Marilyn; Lohr, Rebecca L; Mochon, Evonne; Flajnik, Martin F

    2004-07-15

    In most jawed vertebrates including cartilaginous fish, membrane-bound IgM is expressed as a five Ig superfamily (Igsf)-domain H chain attached to a transmembrane (Tm) region. Heretofore, bony fish IgM was the one exception with IgM mRNA spliced to produce a four-domain Tm H chain. We now demonstrate that the Tm and secretory (Sec) mRNAs of the novel cartilaginous fish Ig isotypes, IgW and IgNAR, are present in multiple forms, most likely generated by alternative splicing. In the nurse shark, Ginglymostoma cirratum, and horn shark, Heterodontus francisci, alternative splicing of Tm exons to the second or the fourth constant (C(H)) exons produces two distinct IgW Tm cDNAs. Although the seven-domain IgW Sec cDNA form contains a canonical secretory tail shared with IgM, IgNAR, and IgA, we report a three-domain cDNA form of shark IgW (IgW(short)) having an unusual Sec tail, which is orthologous to skate IgX(short) cDNA. The IgW and IgW(short) Sec transcripts are restricted in their tissue distribution and expression levels vary among individual sharks, with all forms expressed early in ontogeny. IgNAR mRNA is alternatively spliced to produce a truncated four-domain Tm cDNA and a second Tm cDNA is expressed identical in Igsf domains as the Sec form. PBL is enriched in the Tm cDNA of these Igs. These molecular data suggest that cartilaginous fish have augmented their humoral immune repertoire by diversifying the sizes of their Ig isotypes. Furthermore, these Tm cDNAs are prototypical and the truncated variants may translate as more stable protein at the cell surface.

  12. Systematic Profiling of Poly(A)+ Transcripts Modulated by Core 3’ End Processing and Splicing Factors Reveals Regulatory Rules of Alternative Cleavage and Polyadenylation

    Science.gov (United States)

    Li, Wencheng; You, Bei; Hoque, Mainul; Zheng, Dinghai; Luo, Wenting; Ji, Zhe; Park, Ji Yeon; Gunderson, Samuel I.; Kalsotra, Auinash; Manley, James L.; Tian, Bin

    2015-01-01

    Alternative cleavage and polyadenylation (APA) results in mRNA isoforms containing different 3’ untranslated regions (3’UTRs) and/or coding sequences. How core cleavage/polyadenylation (C/P) factors regulate APA is not well understood. Using siRNA knockdown coupled with deep sequencing, we found that several C/P factors can play significant roles in 3’UTR-APA. Whereas Pcf11 and Fip1 enhance usage of proximal poly(A) sites (pAs), CFI-25/68, PABPN1 and PABPC1 promote usage of distal pAs. Strong cis element biases were found for pAs regulated by CFI-25/68 or Fip1, and the distance between pAs plays an important role in APA regulation. In addition, intronic pAs are substantially regulated by splicing factors, with U1 mostly inhibiting C/P events in introns near the 5’ end of gene and U2 suppressing those in introns with features for efficient splicing. Furthermore, PABPN1 inhibits expression of transcripts with pAs near the transcription start site (TSS), a property possibly related to its role in RNA degradation. Finally, we found that groups of APA events regulated by C/P factors are also modulated in cell differentiation and development with distinct trends. Together, our results support an APA code where an APA event in a given cellular context is regulated by a number of parameters, including relative location to the TSS, splicing context, distance between competing pAs, surrounding cis elements and concentrations of core C/P factors. PMID:25906188

  13. Characterization of a spliced exon product of herpes simplex type-1 latency-associated transcript in productively infected cells

    International Nuclear Information System (INIS)

    Kang, Wen; Mukerjee, Ruma; Gartner, Jared J.; Hatzigeorgiou, Artemis G.; Sandri-Goldin, Rozanne M.; Fraser, Nigel W.

    2006-01-01

    The latency-associated transcripts (LATs) of herpes simplex virus type-1 (HSV-1) are the only viral RNAs accumulating during latent infections in the sensory ganglia of the peripheral nervous system. The major form of LAT that accumulates in latently infected neurons is a 2 kb intron, spliced from a much less abundant 8.3 primary transcript. The spliced exon mRNA has been hard to detect. However, in this study, we have examined the spliced exon RNA in productively infected cells using ribonuclease protection (RPA), and quantitative RT-PCR (q-PCR) assays. We were able to detect the LAT exon RNA in productively infected SY5Y cells (a human neuronal cell line). The level of the LAT exon RNA was found to be approximately 5% that of the 2 kb intron RNA and thus is likely to be relatively unstable. Quantitative RT-PCR (q-PCR) assays were used to examine the LAT exon RNA and its properties. They confirmed that the LAT exon mRNA is present at a very low level in productively infected cells, compared to the levels of other viral transcripts. Furthermore, experiments showed that the LAT exon mRNA is expressed as a true late gene, and appears to be polyadenylated. In SY5Y cells, in contrast to most late viral transcripts, the LAT exon RNA was found to be mainly nuclear localized during the late stage of a productive infection. Interestingly, more LAT exon RNA was found in the cytoplasm in differentiated compared to undifferentiated SY5Y cells, suggesting the nucleocytoplasmic distribution of the LAT exon RNA and its related function may be influenced by the differentiation state of cells

  14. SPA: a probabilistic algorithm for spliced alignment.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    -canonical splice site that we also find in the mouse dataset. The SPA software package is available at http://www.biozentrum.unibas.ch/personal/nimwegen/cgi-bin/spa.cgi.

  15. Sexy splicing: regulatory interplays governing sex determination from Drosophila to mammals.

    Science.gov (United States)

    Lalli, Enzo; Ohe, Kenji; Latorre, Elisa; Bianchi, Marco E; Sassone-Corsi, Paolo

    2003-02-01

    A remarkable array of strategies is used to produce sexual differentiation in different species. Complex gene hierarchies govern sex determination pathways, as exemplified by the classic D. melanogaster paradigm, where an interplay of transcriptional, splicing and translational mechanisms operate. Molecular studies support the hypothesis that genetic sex determination pathways evolved in reverse order, from downstream to upstream genes, in the cascade. The recent identification of a role for the key regulatory factors SRY and WT1(+KTS) in pre-mRNA splicing indicates that important steps in the mammalian sex determination process are likely to operate at the post-transcriptional level.

  16. Two novel exonic point mutations in HEXA identified in a juvenile Tay-Sachs patient: role of alternative splicing and nonsense-mediated mRNA decay.

    Science.gov (United States)

    Levit, A; Nutman, D; Osher, E; Kamhi, E; Navon, R

    2010-06-01

    We have identified three mutations in the beta-hexoseaminidase A (HEXA) gene in a juvenile Tay-Sachs disease (TSD) patient, which exhibited a reduced level of HEXA mRNA. Two mutations are novel, c.814G>A (p.Gly272Arg) and c.1305C>T (p.=), located in exon 8 and in exon 11, respectively. The third mutation, c.1195A>G (p.Asn399Asp) in exon 11, has been previously characterized as a common polymorphism in African-Americans. Hex A activity measured in TSD Glial cells, transfected with HEXA cDNA constructs bearing these mutations, was unaltered from the activity level measured in normal HEXA cDNA. Analysis of RT-PCR products revealed three aberrant transcripts in the patient, one where exon 8 was absent, one where exon 11 was absent and a third lacking both exons 10 and 11. All three novel transcripts contain frameshifts resulting in premature termination codons (PTCs). Transfection of mini-gene constructs carrying the c.814G>A and c.1305C>T mutations proved that the two mutations result in exon skipping. mRNAs that harbor a PTC are detected and degraded by the nonsense-mediated mRNA decay (NMD) pathway to prevent synthesis of abnormal proteins. However, although NMD is functional in the patient's fibroblasts, aberrant transcripts are still present. We suggest that the level of correctly spliced transcripts as well as the efficiency in which NMD degrade the PTC-containing transcripts, apparently plays an important role in the phenotype severity of the unique patient and thus should be considered as a potential target for drug therapy.

  17. Effects of eccentric cycling exercise on IGF-I splice variant expression in the muscles of young and elderly people

    DEFF Research Database (Denmark)

    Hameed, M.; Toft, A.D.; Harridge, S.D.

    2008-01-01

    growth factor (MGF) were studied in response to 1 h of eccentric cycling exercise in young and old individuals. Subjects (nine young, aged 20-27 years and eight elderly, aged 67-75 years) completed an eccentric exercise protocol that consisted of 60 min of reverse pedal cycling. Workloads were chosen......Recovery from micro damage resulting from intensive exercise has been shown to take longer in older muscles. To investigate the factors that may contribute to muscle repair, we have studied the expression of two splice variants of the insulin-like growth factor-I (IGF-I) gene. IGF-IEa and mechano....... No difference was observed between the baseline levels of the two splice variants between the two subject groups. Eccentric cycling exercise resulted in a significant increase in the mean MGF mRNA in both young and old subjects but did not alter IGF-IEa mRNA levels in either age group. As reported previously...

  18. MDS shows a higher expression of hTERT and alternative splice variants in unactivated T-cells.

    Science.gov (United States)

    Dong, Wen; Wu, Lei; Sun, Houfang; Ren, Xiubao; Epling-Burnette, Pearlie K; Yang, Lili

    2016-11-01

    Telomere instability and telomerase reactivation are believed to play an important role in the development of myelodysplastic syndromes (MDS). Abnormal enzymatic activity of human telomerase reverse transcriptase (hTERT), and its alternative splice variants have been reported to account for deregulated telomerase function in many cancers. In this study, we aim to compare the differences in expression of hTERT and hTERT splice variants, as well as telomere length and telomerase activity in unstimulated T-cells between MDS subgroups and healthy controls. Telomere length in MDS cases was significantly shorter than controls (n = 20, pMDS using World Health Organization classification (WHO subgroups versus control: RARS, p= 0.009; RCMD, p=0.0002; RAEB1/2, p=0.004, respectively) and the International Prognostic Scoring System (IPSS subgroups: Low+Int-1, pMDS patients (n=20) had significantly higher telomerase activity (p=0.002), higher total hTERT mRNA levels (p=0.001) and hTERT α+β- splice variant expression (pMDS (r=0.58, p=0.007). This data is in sharp contrast to data published previously by our group showing a reduction in telomerase and hTERT mRNA in MDS T-cells after activation. In conclusion, this study provides additional insight into hTERT transcript patterns and activity in peripheral T-cells of MDS patients. Additional studies are necessary to better understand the role of this pathway in MDS development and progression.

  19. Functional characterisation of an intron retaining K+ transporter of barley reveals intron-mediated alternate splicing

    KAUST Repository

    Shahzad, K.; Rauf, M.; Ahmed, M.; Malik, Z. A.; Habib, I.; Ahmed, Z.; Mahmood, K.; Ali, R.; Masmoudi, K.; Lemtiri-Chlieh, Fouad; Gehring, Christoph A; Berkowitz, G. A.; Saeed, N. A.

    2015-01-01

    Intron retention in transcripts and the presence of 5 and 3 splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K+ transporter, HvHKT2;1, with stably

  20. MeCP2 regulates Tet1-catalyzed demethylation, CTCF binding, and learning-dependent alternative splicing of the BDNF gene in Turtle

    Science.gov (United States)

    Zheng, Zhaoqing; Ambigapathy, Ganesh; Keifer, Joyce

    2017-01-01

    MECP2 mutations underlying Rett syndrome cause widespread misregulation of gene expression. Functions for MeCP2 other than transcriptional are not well understood. In an ex vivo brain preparation from the pond turtle Trachemys scripta elegans, an intraexonic splicing event in the brain-derived neurotrophic factor (BDNF) gene generates a truncated mRNA transcript in naïve brain that is suppressed upon classical conditioning. MeCP2 and its partners, splicing factor Y-box binding protein 1 (YB-1) and methylcytosine dioxygenase 1 (Tet1), bind to BDNF chromatin in naïve but dissociate during conditioning; the dissociation correlating with decreased DNA methylation. Surprisingly, conditioning results in new occupancy of BDNF chromatin by DNA insulator protein CCCTC-binding factor (CTCF), which is associated with suppression of splicing in conditioning. Knockdown of MeCP2 shows it is instrumental for splicing and inhibits Tet1 and CTCF binding thereby negatively impacting DNA methylation and conditioning-dependent splicing regulation. Thus, mutations in MECP2 can have secondary effects on DNA methylation and alternative splicing. DOI: http://dx.doi.org/10.7554/eLife.25384.001 PMID:28594324

  1. Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2 transcripts

    Directory of Open Access Journals (Sweden)

    Brewster Brooke L

    2010-05-01

    Full Text Available Abstract Background Genetic screening of breast cancer patients and their families have identified a number of variants of unknown clinical significance in the breast cancer susceptibility genes, BRCA1 and BRCA2. Evaluation of such unclassified variants may be assisted by web-based bioinformatic prediction tools, although accurate prediction of aberrant splicing by unclassified variants affecting exonic splice enhancers (ESEs remains a challenge. Methods This study used a combination of RT-PCR analysis and splicing reporter minigene assays to assess five unclassified variants in the BRCA2 gene that we had previously predicted to disrupt an ESE using bioinformatic approaches. Results Analysis of BRCA2 c.8308 G > A (p.Ala2770Thr by mRNA analysis, and BRCA2 c.8962A > G (p.Ser2988Gly, BRCA2 c.8972G > A (p.Arg2991His, BRCA2 c.9172A > G (p.Ser3058Gly, and BRCA2 c.9213G > T (p.Glu3071Asp by a minigene assay, revealed no evidence for aberrant splicing. Conclusions These results illustrate the need for improved methods for predicting functional ESEs and the potential consequences of sequence variants contained therein.

  2. Role of Bmznf-2, a Bombyx mori CCCH zinc finger gene, in masculinisation and differential splicing of Bmtra-2.

    Science.gov (United States)

    Gopinath, Gajula; Arunkumar, Kallare P; Mita, Kazuei; Nagaraju, Javaregowda

    2016-08-01

    Deciphering the regulatory factors involved in Bombyx mori sex determination has been a puzzle, challenging researchers for nearly a century now. The pre-mRNA of B. mori doublesex (Bmdsx), a master regulator gene of sexual differentiation, is differentially spliced, producing Bmdsxm and Bmdsxf transcripts in males and females respectively. The putative proteins encoded by these differential transcripts orchestrate antagonistic functions, which lead to sexual differentiation. A recent study in B. mori illustrated the role of a W-derived fem piRNA in conferring femaleness. In females, the fem piRNA was shown to suppress the activity of a Z-linked CCCH type zinc finger (znf) gene, Masculiniser (masc), which indirectly promotes the Bmdsxm type of splicing. In this study, we report a novel autosomal (Chr 25) CCCH type znf motif encoding gene Bmznf-2 as one of the potential factors in the Bmdsx sex specific differential splicing, and we also provide insights into its role in the alternative splicing of Bmtra2 by using ovary derived BmN cells. Over-expression of Bmznf-2 induced Bmdsxm type of splicing (masculinisation) with a correspondingly reduced expression of Bmdsxf type isoform in BmN cells. Further, the site-directed mutational studies targeting the tandem CCCH znf motifs revealed their indispensability in the observed phenotype of masculinisation. Additionally, the dual luciferase assays in BmN cells using 5' UTR region of the Bmznf-2 strongly implied the existence of a translational repression over this gene. From these findings, we propose Bmznf-2 to be one of the potential factors of masculinisation similar to Masc. From the growing number of Bmdsx splicing regulators, we assume that the sex determination cascade of B. mori is quite intricate in nature; hence, it has to be further investigated for its comprehensive understanding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. RAGE splicing variants in mammals.

    Science.gov (United States)

    Sterenczak, Katharina Anna; Nolte, Ingo; Murua Escobar, Hugo

    2013-01-01

    The receptor for advanced glycation end products (RAGE) is a multiligand receptor of environmental stressors which plays key roles in pathophysiological processes, including immune/inflammatory disorders, Alzheimer's disease, diabetic arteriosclerosis, tumorigenesis, and metastasis. Besides the full-length RAGE protein in humans nearly 20 natural occurring RAGE splicing variants were described on mRNA and protein level. These naturally occurring isoforms are characterized by either N-terminally or C-terminally truncations and are discussed as possible regulators of the full-length RAGE receptor either by competitive ligand binding or by displacing the full-length protein in the membrane. Accordingly, expression deregulations of the naturally occurring isoforms were supposed to have significant effect on RAGE-mediated disorders. Thereby the soluble C-truncated RAGE isoforms present in plasma and tissues are the mostly focused isoforms in research and clinics. Deregulations of the circulating levels of soluble RAGE forms were reported in several RAGE-associated pathological disorders including for example atherosclerosis, diabetes, renal failure, Alzheimer's disease, and several cancer types. Regarding other mammalian species, the canine RAGE gene showed high similarities to the corresponding human structures indicating RAGE to be evolutionary highly conserved between both species. Similar to humans the canine RAGE showed a complex and extensive splicing activity leading to a manifold pattern of RAGE isoforms. Due to the similarities seen in several canine and human diseases-including cancer-comparative structural and functional analyses allow the development of RAGE and ligand-specific therapeutic approaches beneficial for human and veterinary medicine.

  4. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting

    Science.gov (United States)

    Piazza, Carol Lyn; Smith, Dorie

    2018-01-01

    Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis, inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. PMID:29905149

  5. Alternative Splicing of G9a Regulates Neuronal Differentiation

    Directory of Open Access Journals (Sweden)

    Ana Fiszbein

    2016-03-01

    Full Text Available Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10 through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10+ isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.

  6. A novel deletion in the splice donor site of MLH1 exon 6 in a Japanese colon cancer patient with Lynch syndrome.

    Science.gov (United States)

    Yamaguchi, Junya; Sato, Yuri; Kita, Mizuho; Nomura, Sachio; Yamamoto, Noriko; Kato, Yo; Ishikawa, Yuichi; Arai, Masami

    2015-10-01

    Lynch syndrome is an autosomal dominantly inherited disease that is characterized by a predisposition to cancers, mainly colorectal cancer. Germline mutations of DNA mismatch repair genes such as MLH1, MSH2, MSH6 and PMS2 have been described in patients with Lynch syndrome. Here, we report deletion of 2 bp in the splice donor site of the MLH1 exon 6 (c.545+4_545+5delCA) in a 48-year-old Japanese woman with Lynch syndrome. RT-PCR direct sequencing analysis revealed that this mutation led to an increase in the level of an MLH1 transcript in which exon 6 was skipped, and may cause a frameshift (p.E153FfsX8). Therefore, this mutation appears to be pathogenic and is responsible for Lynch syndrome. Additionally, analysis of the patient's tumor cells indicated microsatellite instability high phenotype and loss of the MLH1 and PMS2 proteins. To our knowledge, this is a germline splice site mutation of MLH1 that has not been reported previously. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Human thyroid peroxidase: complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNAs

    International Nuclear Information System (INIS)

    Kimura, S.; Kotani, T.; McBride, O.W.; Umeki, K.; Hirai, K.; Nakayama, T.; Ohtaki, S.

    1987-01-01

    Two forms of human thyroid peroxidase cDNAs were isolated from a λgt11 cDNA library, prepared from Graves disease thyroid tissue mRNA, by use of oligonucleotides. The longest complete cDNA, designated phTPO-1, has 3048 nucleotides and an open reading frame consisting of 933 amino acids, which would encode a protein with a molecular weight of 103,026. Five potential asparagine-linked glycosylation sites are found in the deduced amino acid sequence. The second peroxidase cDNA, designated phTPO-2, is almost identical to phTPO-1 beginning 605 base pairs downstream except that it contains 1-base-pair difference and lacks 171 base pairs in the middle of the sequence. This results in a loss of 57 amino acids corresponding to a molecular weight of 6282. Interestingly, this 171-nucleotide sequence has GT and AG at its 5' and 3' boundaries, respectively, that are in good agreement with donor and acceptor splice site consensus sequences. Using specific oligonucleotide probes for the mRNAs derived from the cDNA sequences hTOP-1 and hTOP-2, the authors show that both are expressed in all thyroid tissues examined and the relative level of two mRNAs is different in each sample. The results suggest that two thyroid peroxidase proteins might be generated through alternate splicing of the same gene. By using somatic cell hybrid lines, the thyroid peroxidase gene was mapped to the short arm of human chromosome 2

  8. Osteopontin and splice variant expression level in human malignant glioma: Radiobiologic effects and prognosis after radiotherapy

    International Nuclear Information System (INIS)

    Güttler, Antje; Giebler, Maria; Cuno, Peter; Wichmann, Henri; Keßler, Jacqueline; Ostheimer, Christian; Söling, Ariane; Strauss, Christian; Illert, Jörg; Kappler, Matthias; Vordermark, Dirk; Bache, Matthias

    2013-01-01

    Background and purpose: We investigated the role of the hypoxia-associated secreted glycoprotein osteopontin (OPN) in the response of malignant glioma to radiotherapy by characterizing OPN and its splice variants in vitro and in patient material. Material and methods: The effect of siRNA knockdown of OPN splice variants on cellular and radiobiologic behavior was analyzed in U251MG cells using OpnS siRNA (inhibition of all OPN splice variants) and OpnAC siRNA (knockdown only of OPNa and OPNc). OPN and splice variant mRNA levels were quantified in archival material of 41 glioblastoma tumor samples. Plasma OPN was prospectively measured in 33 malignant glioma patients. Results: Inhibition of OPNa and OPNc (OpnAC) reduced clonogenic survival in U251MG cells but did not affect proliferation, migration or apoptosis. Knockdown of all OPN splice variants (OpnS) resulted in an even stronger inhibition of clonogenic survival, while cell proliferation and migration were reduced and rate of apoptosis was increased. Additional irradiation had additive effects with both siRNAs. Plasma OPN increased continuously in malignant glioma patients and was associated with poor survival. Conclusions: OPNb is partially able to compensate the effects of OPNa and OPNc knockdown in U251MG cells. High OPN plasma levels at the end of radiotherapy are associated with poor survival

  9. Spliced RNA of woodchuck hepatitis virus.

    Science.gov (United States)

    Ogston, C W; Razman, D G

    1992-07-01

    Polymerase chain reaction was used to investigate RNA splicing in liver of woodchucks infected with woodchuck hepatitis virus (WHV). Two spliced species were detected, and the splice junctions were sequenced. The larger spliced RNA has an intron of 1300 nucleotides, and the smaller spliced sequence shows an additional downstream intron of 1104 nucleotides. We did not detect singly spliced sequences from which the smaller intron alone was removed. Control experiments showed that spliced sequences are present in both RNA and DNA in infected liver, showing that the viral reverse transcriptase can use spliced RNA as template. Spliced sequences were detected also in virion DNA prepared from serum. The upstream intron produces a reading frame that fuses the core to the polymerase polypeptide, while the downstream intron causes an inframe deletion in the polymerase open reading frame. Whereas the splicing patterns in WHV are superficially similar to those reported recently in hepatitis B virus, we detected no obvious homology in the coding capacity of spliced RNAs from these two viruses.

  10. Phosphoproteomics reveals that glycogen synthase kinase-3 phosphorylates multiple splicing factors and is associated with alternative splicing

    Science.gov (United States)

    Shinde, Mansi Y.; Sidoli, Simone; Kulej, Katarzyna; Mallory, Michael J.; Radens, Caleb M.; Reicherter, Amanda L.; Myers, Rebecca L.; Barash, Yoseph; Lynch, Kristen W.; Garcia, Benjamin A.; Klein, Peter S.

    2017-01-01

    Glycogen synthase kinase-3 (GSK-3) is a constitutively active, ubiquitously expressed protein kinase that regulates multiple signaling pathways. In vitro kinase assays and genetic and pharmacological manipulations of GSK-3 have identified more than 100 putative GSK-3 substrates in diverse cell types. Many more have been predicted on the basis of a recurrent GSK-3 consensus motif ((pS/pT)XXX(S/T)), but this prediction has not been tested by analyzing the GSK-3 phosphoproteome. Using stable isotope labeling of amino acids in culture (SILAC) and MS techniques to analyze the repertoire of GSK-3–dependent phosphorylation in mouse embryonic stem cells (ESCs), we found that ∼2.4% of (pS/pT)XXX(S/T) sites are phosphorylated in a GSK-3–dependent manner. A comparison of WT and Gsk3a;Gsk3b knock-out (Gsk3 DKO) ESCs revealed prominent GSK-3–dependent phosphorylation of multiple splicing factors and regulators of RNA biosynthesis as well as proteins that regulate transcription, translation, and cell division. Gsk3 DKO reduced phosphorylation of the splicing factors RBM8A, SRSF9, and PSF as well as the nucleolar proteins NPM1 and PHF6, and recombinant GSK-3β phosphorylated these proteins in vitro. RNA-Seq of WT and Gsk3 DKO ESCs identified ∼190 genes that are alternatively spliced in a GSK-3–dependent manner, supporting a broad role for GSK-3 in regulating alternative splicing. The MS data also identified posttranscriptional regulation of protein abundance by GSK-3, with ∼47 proteins (1.4%) whose levels increased and ∼78 (2.4%) whose levels decreased in the absence of GSK-3. This study provides the first unbiased analysis of the GSK-3 phosphoproteome and strong evidence that GSK-3 broadly regulates alternative splicing. PMID:28916722

  11. Splicing Regulatory Elements and mRNA-abundance of dlg1 and capt, Genetically Interacting with dFMRP in Drosophila Brain

    Directory of Open Access Journals (Sweden)

    Maria Petrova

    2014-09-01

    Full Text Available To further understand the molecular and cellular mechanisms underlying the disease, we used the Drososphila FraX model and investigated a not well studied role of Drosophila Fragile X Mental Retardation Protein (dFMRP in alternative splicing of neuronal mRNAs to which it binds via a G-quartet sequence. By means of qRT-PCR we established the relative abundance of some isoforms of the gene dlg1, resulting from alternative exon skipping nearby a G-quartet and an exonic ESE-sequence, both acting as exonic splicing enhancers. We also investigated the relative mRNA-abundance of all capt-isoforms and the pre-mRNAs of both genes. We proposed a possible involvement of dFMRP in alternative splicing of genes, interacting with dfmr1. In the absence of dFMRP in larval and pupal brains, we found a change in the mRNA-level of one of the studied isoforms of dlg1 and of its pre-mRNA.We also established previously reported splicing regulatory elements and predicted computationally novel hexamere sequences in the exonic/intronic ends of both genes with p upative regulatory roles in alternative splicing.

  12. Heterogeneity of rat tropoelastin mRNA revealed by cDNA cloning

    International Nuclear Information System (INIS)

    Pierce, R.A.; Deak, S.B.; Stolle, C.A.; Boyd, C.D.

    1990-01-01

    A λgt11 library constructed from poly(A+) RNA isolated from aortic tissue of neonatal rats was screened for rat tropoelastin cDNAs. The first, screen, utilizing a human tropoelastin cDNA clone, provided rat tropoelastin cDNAs spanning 2.3 kb of carboxy-terminal coding sequence and extended into the 3'-untranslated region. A subsequent screen using a 5' rat tropoelastin cDNA clone yielded clones extending into the amino-terminal signal sequence coding region. Sequence analysis of these clones has provided the complete derived amino acid sequence of rat tropoelastin and allowed alignment and comparison with published bovine cDNA sequence. While the overall structure of rat tropoelastin is similar to bovine sequence, numerous substitutions, deletions, and insertions demonstrated considerable heterogeneity between species. In particular, the pentapeptide repeat VPGVG, characteristic of all tropoelastins analyzed to date, is replaced in rat tropoelastin by a repeating pentapeptide, IPGVG. The hexapeptide repeat VGVAPG, the bovine elastin receptor binding peptide, is not encoded by rat tropoelastin cDNAs. Variations in coding sequence between rat tropoelastin CDNA clones were also found which may represent mRNA heterogeneity produced by alternative splicing of the rat tropoelastin pre-mRNA

  13. Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents.

    Science.gov (United States)

    Abes, Saïd; Moulton, Hong M; Clair, Philippe; Prevot, Paul; Youngblood, Derek S; Wu, Rebecca P; Iversen, Patrick L; Lebleu, Bernard

    2006-12-01

    The efficient and non-toxic nuclear delivery of steric-block oligonucleotides (ON) is a prerequisite for therapeutic strategies involving splice correction or exon skipping. Cationic cell penetrating peptides (CPPs) have given rise to much interest for the intracellular delivery of biomolecules, but their efficiency in promoting cytoplasmic or nuclear delivery of oligonucleotides has been hampered by endocytic sequestration and subsequent degradation of most internalized material in endocytic compartments. In the present study, we compared the splice correction activity of three different CPPs conjugated to PMO(705), a steric-block ON targeted against the mutated splicing site of human beta-globin pre-mRNA in the HeLa pLuc705 splice correction model. In contrast to Tat48-60 (Tat) and oligoarginine (R(9)F(2)) PMO(705) conjugates, the 6-aminohexanoic-spaced oligoarginine (R-Ahx-R)(4)-PMO(705) conjugate was able to promote an efficient splice correction in the absence of endosomolytic agents. Our mechanistic investigations about its uptake mechanisms lead to the conclusion that these three vectors are internalized using the same endocytic route involving proteoglycans, but that the (R-Ahx-R)(4)-PMO(705) conjugate has the unique ability to escape from lysosomial fate and to access to the nuclear compartment. This vector, which has displays an extremely low cytotoxicity, the ability to function without chloroquine adjunction and in the presence of serum proteins. It thus offers a promising lead for the development of vectors able to enhance the delivery of therapeutic steric-block ON in clinically relevant models.

  14. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development.

    Science.gov (United States)

    Hefti, Marco M; Farrell, Kurt; Kim, SoongHo; Bowles, Kathryn R; Fowkes, Mary E; Raj, Towfique; Crary, John F

    2018-01-01

    The microtubule associated protein tau plays a critical role in the pathogenesis of neurodegenerative disease. Recent studies suggest that tau also plays a role in disorders of neuronal connectivity, including epilepsy and post-traumatic stress disorder. Animal studies have shown that the MAPT gene, which codes for the tau protein, undergoes complex pre-mRNA alternative splicing to produce multiple isoforms during brain development. Human data, particularly on temporal and regional variation in tau splicing during development are however lacking. In this study, we present the first detailed examination of the temporal and regional sequence of MAPT alternative splicing in the developing human brain. We used a novel computational analysis of large transcriptomic datasets (total n = 502 patients), quantitative polymerase chain reaction (qPCR) and western blotting to examine tau expression and splicing in post-mortem human fetal, pediatric and adult brains. We found that MAPT exons 2 and 10 undergo abrupt shifts in expression during the perinatal period that are unique in the canonical human microtubule-associated protein family, while exon 3 showed small but significant temporal variation. Tau isoform expression may be a marker of neuronal maturation, temporally correlated with the onset of axonal growth. Immature brain regions such as the ganglionic eminence and rhombic lip had very low tau expression, but within more mature regions, there was little variation in tau expression or splicing. We thus demonstrate an abrupt, evolutionarily conserved shift in tau isoform expression during the human perinatal period that may be due to tau expression in maturing neurons. Alternative splicing of the MAPT pre-mRNA may play a vital role in normal brain development across multiple species and provides a basis for future investigations into the developmental and pathological functions of the tau protein.

  15. An in vivo genetic screen for genes involved in spliced leader trans-splicing indicates a crucial role for continuous de novo spliced leader RNP assembly.

    Science.gov (United States)

    Philippe, Lucas; Pandarakalam, George C; Fasimoye, Rotimi; Harrison, Neale; Connolly, Bernadette; Pettitt, Jonathan; Müller, Berndt

    2017-08-21

    Spliced leader (SL) trans-splicing is a critical element of gene expression in a number of eukaryotic groups. This process is arguably best understood in nematodes, where biochemical and molecular studies in Caenorhabditis elegans and Ascaris suum have identified key steps and factors involved. Despite this, the precise details of SL trans-splicing have yet to be elucidated. In part, this is because the systematic identification of the molecules involved has not previously been possible due to the lack of a specific phenotype associated with defects in this process. We present here a novel GFP-based reporter assay that can monitor SL1 trans-splicing in living C. elegans. Using this assay, we have identified mutants in sna-1 that are defective in SL trans-splicing, and demonstrate that reducing function of SNA-1, SNA-2 and SUT-1, proteins that associate with SL1 RNA and related SmY RNAs, impairs SL trans-splicing. We further demonstrate that the Sm proteins and pICln, SMN and Gemin5, which are involved in small nuclear ribonucleoprotein assembly, have an important role in SL trans-splicing. Taken together these results provide the first in vivo evidence for proteins involved in SL trans-splicing, and indicate that continuous replacement of SL ribonucleoproteins consumed during trans-splicing reactions is essential for effective trans-splicing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Mutant allele of rna14 in fission yeast affects pre-mRNA splicing

    Indian Academy of Sciences (India)

    transcript. Rna14 protein in budding yeast has been implicated in cleavage and ... Subsequently, genetic interaction of Rna14 with prp1 and physical .... molecular yeast techniques as described by Moreno et al. ..... To elucidate the role of Rna14 in splicing, RT-PCR analysis ..... design principles of a dynamic RNP machine.

  17. Site-Specific Covalent Conjugation of Modified mRNA by tRNA Guanine Transglycosylase.

    Science.gov (United States)

    Ehret, Fabian; Zhou, Cun Yu; Alexander, Seth C; Zhang, Dongyang; Devaraj, Neal K

    2018-03-05

    Modified mRNA (mod-mRNA) has recently been widely studied as the form of RNA useful for therapeutic applications due to its high stability and lowered immune response. Herein, we extend the scope of the recently established RNA-TAG (transglycosylation at guanosine) methodology, a novel approach for genetically encoded site-specific labeling of large mRNA transcripts, by employing mod-mRNA as substrate. As a proof of concept, we covalently attached a fluorescent probe to mCherry encoding mod-mRNA transcripts bearing 5-methylcytidine and/or pseudouridine substitutions with high labeling efficiencies. To provide a versatile labeling methodology with a wide range of possible applications, we employed a two-step strategy for functionalization of the mod-mRNA to highlight the therapeutic potential of this new methodology. We envision that this novel and facile labeling methodology of mod-RNA will have great potential in decorating both coding and noncoding therapeutic RNAs with a variety of diagnostic and functional moieties.

  18. Functional characterization of two novel splicing mutations in the OCA2 gene associated with oculocutaneous albinism type II.

    Science.gov (United States)

    Rimoldi, Valeria; Straniero, Letizia; Asselta, Rosanna; Mauri, Lucia; Manfredini, Emanuela; Penco, Silvana; Gesu, Giovanni P; Del Longo, Alessandra; Piozzi, Elena; Soldà, Giulia; Primignani, Paola

    2014-03-01

    Oculocutaneous albinism (OCA) is characterized by hypopigmentation of the skin, hair and eye, and by ophthalmologic abnormalities caused by a deficiency in melanin biosynthesis. OCA type II (OCA2) is one of the four commonly-recognized forms of albinism, and is determined by mutation in the OCA2 gene. In the present study, we investigated the molecular basis of OCA2 in two siblings and one unrelated patient. The mutational screening of the OCA2 gene identified two hitherto-unknown putative splicing mutations. The first one (c.1503+5G>A), identified in an Italian proband and her affected sibling, lies in the consensus sequence of the donor splice site of OCA2 intron 14 (IVS14+5G>A), in compound heterozygosity with a frameshift mutation, c.1450_1451insCTGCCCTGACA, which is predicted to determine the premature termination of the polypeptide chain (p.I484Tfs*19). In-silico prediction of the effect of the IVS14+5G>A mutation on splicing showed a score reduction for the mutant splice site and indicated the possible activation of a newly-created deep-intronic acceptor splice site. The second mutation is a synonymous transition (c.2139G>A, p.K713K) involving the last nucleotide of exon 20. This mutation was found in a young African albino patient in compound heterozygosity with a previously-reported OCA2 missense mutation (p.T404M). In-silico analysis predicted that the mutant c.2139G>A allele would result in the abolition of the splice donor site. The effects on splicing of these two novel mutations were investigated using an in-vitro hybrid-minigene approach that led to the demonstration of the causal role of the two mutations and to the identification of aberrant transcript variants. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Clinical values of AFP, GPC3 mRNA in peripheral blood for prediction of hepatocellular carcinoma recurrence following OLT: AFP, GPC3 mRNA for prediction of HCC.

    Science.gov (United States)

    Wang, Yuliang; Shen, Zhongyang; Zhu, Zhijun; Han, Ruifa; Huai, Mingsheng

    2011-03-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Annually, about 200,000 patients died of HCC in China. Liver transplantation (LT) holds great theoretical appeal in treating HCC. However, the high recurrence rate after transplantation is the most important limiting factor for long-term survival. To assess the value of alpha-fetoprotein (AFP) messenger RNA (mRNA), Glypican-3 (GPC3) mRNA-expressing cells in the peripheral blood (PB) for prediction of HCC recurrence following orthotopic liver transplantation (OLT). 29 patients with HCC who underwent OLT with a minimum clinical follow-up of 12 months were included in this retrospective study. We detected AFP mRNA, GPC3 mRNA-expressing cells in the PB by TaqMan real-time reverse transcriptase-polymerase chain reaction (RT-PCR), pre-, intra- and post-operatively. The early recurrence of patients was evaluated. 8 (28%), 15 (52%), and 9 (31%) patients had AFP mRNA detected pre-, intra-, and post-operatively, respectively. With 12 months of follow-up, HCC recurred in 7 (24%) patients. Univariate analysis revealed that positive pre- and post-operative AFP mRNA, TNM stage as well as vascular invasion were significant predictors for the HCC recurrence. Multivariate analysis revealed that being positive for AFP mRNA pre-operatively remained a significant risk factor for HCC recurrence after OLT. GPC3 mRNA was expressed in all PB samples. There was no significant difference in the expression levels of GPC3 mRNA between the HCC and control groups. There were no significant differences in GPC3 mRNA expression values between those patients with and without tumor recurrence. The pre-operative detection of circulating AFP mRNA-expressing cells could be a useful predictor for HCC recurrence following OLT. GPC3 mRNA-expressing cells in PB seem to have no diagnostic value.

  20. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    International Nuclear Information System (INIS)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting

    2014-01-01

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd 2+ uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance

  1. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting, E-mail: qixiaoting@cnu.edu.cn

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  2. VEGF(121)b, a new member of the VEGF(xxx)b family of VEGF-A splice isoforms, inhibits neovascularisation and tumour growth in vivo.

    Science.gov (United States)

    Rennel, E S; Varey, A H R; Churchill, A J; Wheatley, E R; Stewart, L; Mather, S; Bates, D O; Harper, S J

    2009-10-06

    The key mediator of new vessel formation in cancer and other diseases is VEGF-A. VEGF-A exists as alternatively spliced isoforms - the pro-angiogenic VEGF(xxx) family generated by exon 8 proximal splicing, and a sister family, termed VEGF(xxx)b, exemplified by VEGF(165)b, generated by distal splicing of exon 8. However, it is unknown whether this anti-angiogenic property of VEGF(165)b is a general property of the VEGF(xxx)b family of isoforms. The mRNA and protein expression of VEGF(121)b was studied in human tissue. The effect of VEGF(121)b was analysed by saturation binding to VEGF receptors, endothelial migration, apoptosis, xenograft tumour growth, pre-retinal neovascularisation and imaging of biodistribution in tumour-bearing mice with radioactive VEGF(121)b. The existence of VEGF(121)b was confirmed in normal human tissues. VEGF(121)b binds both VEGF receptors with similar affinity as other VEGF isoforms, but inhibits endothelial cell migration and is cytoprotective to endothelial cells through VEGFR-2 activation. Administration of VEGF(121)b normalised retinal vasculature by reducing both angiogenesis and ischaemia. VEGF(121)b reduced the growth of xenografted human colon tumours in association with reduced microvascular density, and an intravenous bolus of VEGF(121)b is taken up into colon tumour xenografts. Here we identify a second member of the family, VEGF(121)b, with similar properties to those of VEGF(165)b, and underline the importance of the six amino acids of exon 8b in the anti-angiogenic activity of the VEGF(xxx)b isoforms.

  3. A nucleotide substitution at the 5′ splice site of intron 1 of rice HEADING DATE 1 (HD1 gene homolog in foxtail millet, broadly found in landraces from Europe and Asia

    Directory of Open Access Journals (Sweden)

    Kenji Fukunaga

    2015-12-01

    Full Text Available We investigated genetic variation of a rice HEADING DATE 1(HD1 homolog in foxtail millet. First, we searched for a rice HD1 homolog in a foxtail millet genome sequence and designed primers to amplify the entire coding sequence of the gene. We compared full HD1 gene sequences of 11 accessions (including Yugu 1, a Chinese cultivar used for genome sequencing from various regions in Europe and Asia, found a nucleotide substitution at a putative splice site of intron 1, and designated the accessions with the nucleotide substitution as carrying a splicing variant. We verified by RT-PCR that this single nucleotide substitution causes aberrant splicing of intron 1. We investigated the geographical distribution of the splicing variant in 480 accessions of foxtail millet from various regions of Europe and Asia and part of Africa by dCAPS and found that the splicing variant is broadly distributed in Europe and Asia. Differences of heading times between accessions with wild type allele of the HD1 gene and those with the splicing variant allele were unclear. We also investigated variation in 13 accessions of ssp. viridis, the wild ancestor, and the results suggested that the wild type is predominant in the wild ancestor.

  4. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, C.N.; Worton, R.G. [Univ. of Toronto and the Hospital for Sick Children, Ontario (Canada)

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  5. hnRNP L regulates differences in expression of mouse integrin alpha2beta1.

    Science.gov (United States)

    Cheli, Yann; Kunicki, Thomas J

    2006-06-01

    There is a 2-fold variation in platelet integrin alpha2beta1 levels among inbred mouse strains. Decreased alpha2beta1 in 4 strains carrying Itga2 haplotype 2 results from decreased affinity of heterogeneous ribonucleoprotein L (hnRNP L) for a 6 CA repeat sequence (CA6) within intron 1. Seven strains bearing haplotype 1 and a 21 CA repeat sequence at this position (CA21) express twice the level of platelet alpha2beta1 and exhibit an equivalent gain of platelet function in vitro. By UV crosslinking and immunoprecipitation, hnRNP L binds more avidly to CA21, relative to CA6. By cell-free, in vitro mRNA splicing, decreased binding of hnRNP L results in decreased splicing efficiency and an increased proportion of alternatively spliced product. The splicing enhancer activity of CA21 in vivo is abolished by prior treatment with hnRNP L-specific siRNA. Thus, decreased surface alpha2beta1 results from decreased Itga2 pre-mRNA splicing regulated by hnRNP L and depends on CA repeat length at a specific site in intron 1.

  6. hnRNP L regulates differences in expression of mouse integrin α2β1

    Science.gov (United States)

    Cheli, Yann; Kunicki, Thomas J.

    2006-01-01

    There is a 2-fold variation in platelet integrin α2β1 levels among inbred mouse strains. Decreased α2β1 in 4 strains carrying Itga2 haplotype 2 results from decreased affinity of heterogeneous ribonucleoprotein L (hnRNP L) for a 6 CA repeat sequence (CA6) within intron 1. Seven strains bearing haplotype 1 and a 21 CA repeat sequence at this position (CA21) express twice the level of platelet α2β1 and exhibit an equivalent gain of platelet function in vitro. By UV crosslinking and immunoprecipitation, hnRNP L binds more avidly to CA21, relative to CA6. By cell-free, in vitro mRNA splicing, decreased binding of hnRNP L results in decreased splicing efficiency and an increased proportion of alternatively spliced product. The splicing enhancer activity of CA21 in vivo is abolished by prior treatment with hnRNP L–specific siRNA. Thus, decreased surface α2β1 results from decreased Itga2 pre-mRNA splicing regulated by hnRNP L and depends on CA repeat length at a specific site in intron 1. PMID:16455949

  7. CRE promoter sites modulate alternative splicing via p300-mediated histone acetylation

    Czech Academy of Sciences Publication Activity Database

    Dušková, Eva; Hnilicová, Jarmila; Staněk, David

    2014-01-01

    Roč. 11, č. 7 (2014), s. 865-874 ISSN 1547-6286 R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:68378050 Keywords : alternative splicing * fibronectin * p300 * histone acetylation * promoter Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.974, year: 2014

  8. The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms

    KAUST Repository

    Park, Hyo-Young

    2017-04-21

    The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms. These proteins also move rapidly and continuously in the nuclei, and their movements are affected by ATP depletion. The U2AF65 proteins are splicing factors that interact with SF1 and U2AF35 proteins to promote U2snRNP for the recognition of the pre-mRNA 3\\' splice site during early spliceosome assembly. We have determined the subcellular localization and movement of these proteins\\' Arabidopsis homologs. It was found that Arabidopsis U2AF65 homologs, AtU2AF65a, and AtU2AF65b proteins interact with AtU2AF35a and AtU2AF35b, which are Arabidopsis U2AF35 homologs. We have examined the mobility of these proteins including AtSF1 using fluorescence recovery after photobleaching and fluorescence loss in photobleaching analyses. These proteins displayed dynamic movements in nuclei and their movements were affected by ATP depletion. We have also demonstrated that these proteins shuttle between nuclei and cytoplasms, suggesting that they may also function in cytoplasm. These results indicate that such splicing factors show very similar characteristics to their human counterparts, suggesting evolutionary conservation.

  9. The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms

    KAUST Repository

    Park, Hyo-Young; Lee, Keh Chien; Jang, Yun Hee; Kim, SoonKap; Thu, May Phyo; Lee, Jeong Hwan; Kim, Jeong-Kook

    2017-01-01

    The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms. These proteins also move rapidly and continuously in the nuclei, and their movements are affected by ATP depletion. The U2AF65 proteins are splicing factors that interact with SF1 and U2AF35 proteins to promote U2snRNP for the recognition of the pre-mRNA 3' splice site during early spliceosome assembly. We have determined the subcellular localization and movement of these proteins' Arabidopsis homologs. It was found that Arabidopsis U2AF65 homologs, AtU2AF65a, and AtU2AF65b proteins interact with AtU2AF35a and AtU2AF35b, which are Arabidopsis U2AF35 homologs. We have examined the mobility of these proteins including AtSF1 using fluorescence recovery after photobleaching and fluorescence loss in photobleaching analyses. These proteins displayed dynamic movements in nuclei and their movements were affected by ATP depletion. We have also demonstrated that these proteins shuttle between nuclei and cytoplasms, suggesting that they may also function in cytoplasm. These results indicate that such splicing factors show very similar characteristics to their human counterparts, suggesting evolutionary conservation.

  10. Dwarfism with joint laxity in Friesian horses is associated with a splice site mutation in B4GALT7.

    Science.gov (United States)

    Leegwater, Peter A; Vos-Loohuis, Manon; Ducro, Bart J; Boegheim, Iris J; van Steenbeek, Frank G; Nijman, Isaac J; Monroe, Glen R; Bastiaansen, John W M; Dibbits, Bert W; van de Goor, Leanne H; Hellinga, Ids; Back, Willem; Schurink, Anouk

    2016-10-28

    Inbreeding and population bottlenecks in the ancestry of Friesian horses has led to health issues such as dwarfism. The limbs of dwarfs are short and the ribs are protruding inwards at the costochondral junction, while the head and back appear normal. A striking feature of the condition is the flexor tendon laxity that leads to hyperextension of the fetlock joints. The growth plates of dwarfs display disorganized and thickened chondrocyte columns. The aim of this study was to identify the gene defect that causes the recessively inherited trait in Friesian horses to understand the disease process at the molecular level. We have localized the genetic cause of the dwarfism phenotype by a genome wide approach to a 3 Mb region on the p-arm of equine chromosome 14. The DNA of two dwarfs and one control Friesian horse was sequenced completely and we identified the missense mutation ECA14:g.4535550C > T that cosegregated with the phenotype in all Friesians analyzed. The mutation leads to the amino acid substitution p.(Arg17Lys) of xylosylprotein beta 1,4-galactosyltransferase 7 encoded by B4GALT7. The protein is one of the enzymes that synthesize the tetrasaccharide linker between protein and glycosaminoglycan moieties of proteoglycans of the extracellular matrix. The mutation not only affects a conserved arginine codon but also the last nucleotide of the first exon of the gene and we show that it impedes splicing of the primary transcript in cultured fibroblasts from a heterozygous horse. As a result, the level of B4GALT7 mRNA in fibroblasts from a dwarf is only 2 % compared to normal levels. Mutations in B4GALT7 in humans are associated with Ehlers-Danlos syndrome progeroid type 1 and Larsen of Reunion Island syndrome. Growth retardation and ligamentous laxity are common manifestations of these syndromes. We suggest that the identified mutation of equine B4GALT7 leads to the typical dwarfism phenotype in Friesian horses due to deficient splicing of transcripts of

  11. Cellular organization of pre-mRNA splicing factors in several tissues. Changes in the uterus by hormone action.

    Science.gov (United States)

    George-Téllez, R; Segura-Valdez, M L; González-Santos, L; Jiménez-García, L F

    2002-05-01

    In the mammalian cell nucleus, splicing factors are distributed in nuclear domains known as speckles or splicing factor compartments (SFCs). In cultured cells, these domains are dynamic and reflect transcriptional and splicing activities. We used immunofluorescence and confocal microscopy to monitor whether splicing factors in differentiated cells display similar features. Speckled patterns are observed in rat hepatocytes, beta-cells, bronchial and intestine epithelia and also in three cell types of the uterus. Moreover, the number, distribution and sizes of the speckles vary among them. In addition, we studied variations in the circular form (shape) of speckles in uterine cells that are transcriptionally modified by a hormone action. During proestrus of the estral cycle, speckles are irregular in shape while in diestrus I they are circular. Experimentally, in castrated rats luminal epithelial cells show a pattern where speckles are dramatically rounded, but they recover their irregular shape rapidly after an injection of estradiol. The same results were observed in muscle and gland epithelial cells of the uterus. We concluded that different speckled patterns are present in various cells types in differentiated tissues and that these patterns change in the uterus depending upon the presence or absence of hormones such as estradiol.

  12. Expression of Herpes Simplex Virus Thymidine Kinase/Ganciclovir by RNA Trans-Splicing Induces Selective Killing of HIV-Producing Cells

    Directory of Open Access Journals (Sweden)

    Carin K. Ingemarsdotter

    2017-06-01

    Full Text Available Antiviral strategies targeting hijacked cellular processes are less easily evaded by the virus than viral targets. If selective for viral functions, they can have a high therapeutic index. We used RNA trans-splicing to deliver the herpes simplex virus thymidine kinase-ganciclovir (HSV-tk/GCV cell suicide system into HIV-producing cells. Using an extensive in silico bioinformatics and RNA structural analysis approach, ten HIV RNA trans-splicing constructs were designed targeting eight different HIV splice donor or acceptor sites and were tested in cells expressing HIV. Trans-spliced mRNAs were identified in HIV-expressing cells using qRT-PCR with successful detection of fusion RNA transcripts between HIV RNA and the HSV-tk RNA transcripts from six of ten candidate RNA trans-splicing constructs. Conventional PCR and Sanger sequencing confirmed RNA trans-splicing junctions. Measuring cell viability in the presence or absence of GCV expression of HSV-tk by RNA trans-splicing led to selective killing of HIV-producing cells using either 3′ exon replacement or 5′ exon replacement in the presence of GCV. Five constructs targeting four HIV splice donor and acceptor sites, D4, A5, A7, and A8, involved in regulating the generation of multiple HIV RNA transcripts proved to be effective for trans-splicing mediated selective killing of HIV-infected cells, within which individual constructs targeting D4 and A8 were the most efficient.

  13. RT-PCR analysis of dystrophin mRNA in DND/BMD patients

    Energy Technology Data Exchange (ETDEWEB)

    Ciafaloni, E.; Silva, H.A.R. de; Roses, A.D. [Duke Univ. Medical Center, Durham, NC (United States)

    1994-09-01

    Duchenne and Becker muscular dystrophies (DMD, BMD) are X-linked recessive disorders caused by mutations in the dystrophin (dys) gene. The majority of these mutations are intragenic deletions of duplications routinely detected by Southern biots and multiplex PCR. The remainder are very likely, smaller mutations, mostly point-mutations. Detection of these mutations is very difficult due to the size and complexity of the dys gene. We applied RT-PCR to analyse the entire dys mRNA of three DMD patients with no detectable genomic defect. In two unrelated patients, a duplication of the 62 bp exon 2 was identified. This causes a frameshift sufficient to explain the DMD phenotype. In the third patient, who had congenital DMD and severe mental retardation, a complex pattern of aberrant splicing at the 3-prime exons 67-79 was observed. Sural nerve biopsy in this patient showed the complete absence of Dp116. PCR-SSCP studies are presently in progress to identify the mutations responsible for the aberrant splicing patterns.

  14. Galactosemia caused by a point mutation that activates cryptic donor splice site in the galactose-1-phosphate uridyltransferase gene

    Energy Technology Data Exchange (ETDEWEB)

    Wadelius, C.; Lagerkvist, A. (Univ. Hospital, Uppsala (Sweden) Uppsala Univ. (Sweden)); Molin, A.K.; Larsson, A. (Univ. Hospital, Uppsala (Sweden)); Von Doebeln, U. (Karolinska Institute, Stockholm (Sweden))

    1993-08-01

    Galactosemia affects 1/84,000 in Sweden and is manifested in infancy when the child is exposed to galactose in the diet. If untreated there is a risk of severe early symptoms and, even with a lactose-free diet, late symptoms such as mental retardation and ovarial dysfunction may develop. In classical galactosemia, galactose-1-phosphate uridyltransferase (GALT) (EC 2.7.7.12) is defective and the normal cDNA sequence of this enzyme has been characterized. Recently eight mutations leading to galactosemia were published. Heparinized venous blood was drawn from a patient with classical galactosemia. In the cDNA from the patient examined, an insertion of 54 bp was found at position 1087. Amplification of the relevant genomic region of the patient's DNA was performed. Exon-intron boundaries and intronic sequences thus determined revealed that the 54-bp insertion was located immediately downstream of exon 10. It was further found that the patient was heterozygous for a point mutation, changing a C to a T (in 5 of 9 clones) at the second base in the intron downstream of the insertion. This alteration creates a sequence which, as well as the ordinary splice site, differs in only two positions from the consensus sequence. It was found that the mutation occurred in only one of the 20 alleles from galactosemic patients and in none of the 200 alleles from normal controls. The mutation is inherited from the mother, who also was found to express the 54-bp-long insertion at the mRNA level. Sequences from the 5[prime] end of the coding region were determined after genomic amplification, revealing a sequence identical to that reported. The mutation on the paternal allele has not been identified. 9 refs., 1 fig.

  15. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  16. Splice-Switching Therapy for Spinal Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Katharina E. Meijboom

    2017-06-01

    Full Text Available Spinal muscular atrophy (SMA is a genetic disorder with severity ranging from premature death in infants to restricted motor function in adult life. Despite the genetic cause of this disease being known for over twenty years, only recently has a therapy been approved to treat the most severe form of this disease. Here we discuss the genetic basis of SMA and the subsequent studies that led to the utilization of splice switching oligonucleotides to enhance production of SMN protein, which is absent in patients, through a mechanism of exon inclusion into the mature mRNA. Whilst approval of oligonucleotide-based therapies for SMA should be celebrated, we also discuss some of the limitations of this approach and alternate genetic strategies that are currently underway in clinical trials.

  17. New Insights into Functional Roles of the Polypyrimidine Tract-Binding Protein

    Directory of Open Access Journals (Sweden)

    Maria Grazia Romanelli

    2013-11-01

    Full Text Available Polypyrimidine Tract Binding Protein (PTB is an intensely studied RNA binding protein involved in several post-transcriptional regulatory events of gene expression. Initially described as a pre-mRNA splicing regulator, PTB is now widely accepted as a multifunctional protein shuttling between nucleus and cytoplasm. Accordingly, PTB can interact with selected RNA targets, structural elements and proteins. There is increasing evidence that PTB and its paralog PTBP2 play a major role as repressors of alternatively spliced exons, whose transcription is tissue-regulated. In addition to alternative splicing, PTB is involved in almost all steps of mRNA metabolism, including polyadenylation, mRNA stability and initiation of protein translation. Furthermore, it is well established that PTB recruitment in internal ribosome entry site (IRES activates the translation of picornaviral and cellular proteins. Detailed studies of the structural properties of PTB have contributed to our understanding of the mechanism of RNA binding by RNA Recognition Motif (RRM domains. In the present review, we will describe the structural properties of PTB, its paralogs and co-factors, the role in post-transcriptional regulation and actions in cell differentiation and pathogenesis. Defining the multifunctional roles of PTB will contribute to the understanding of key regulatory events in gene expression.

  18. Alternatively Spliced Methionine Synthase in SH-SY5Y Neuroblastoma Cells: Cobalamin and GSH Dependence and Inhibitory Effects of Neurotoxic Metals and Thimerosal

    Directory of Open Access Journals (Sweden)

    Mostafa Waly

    2016-01-01

    Full Text Available The folate and cobalamin (Cbl- dependent enzyme methionine synthase (MS is highly sensitive to oxidation and its activity affects all methylation reactions. Recent studies have revealed alternative splicing of MS mRNA in human brain and patient-derived fibroblasts. Here we show that MS mRNA in SH-SY5Y human neuroblastoma cells is alternatively spliced, resulting in three primary protein species, thus providing a useful model to examine cofactor dependence of these variant enzymes. MS activity was dependent upon methylcobalamin (MeCbl or the combination of hydroxocobalamin (OHCbl and S-adenosylmethionine (SAM. OHCbl-based activity was eliminated by depletion of the antioxidant glutathione (GSH but could be rescued by provision of either glutathionylcobalamin (GSCbl or MeCbl. Pretreatment of cells with lead, arsenic, aluminum, mercury, or the ethylmercury-containing preservative thimerosal lowered GSH levels and inhibited MS activity in association with decreased uptake of cysteine, which is rate-limiting for GSH synthesis. Thimerosal treatment decreased cellular levels of GSCbl and MeCbl. These findings indicate that the alternatively spliced form of MS expressed in SH-SY5Y human neuronal cells is sensitive to inhibition by thimerosal and neurotoxic metals, and lower GSH levels contribute to their inhibitory action.

  19. The neurogenetics of alternative splicing.

    Science.gov (United States)

    Vuong, Celine K; Black, Douglas L; Zheng, Sika

    2016-05-01

    Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that regulate splicing, both during development and in the adult brain.

  20. Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor.

    Science.gov (United States)

    Huertas, César S; Domínguez-Zotes, Santos; Lechuga, Laura M

    2017-01-25

    Personalized medicine is a promising tool not only for prevention, screening and development of more efficient treatment strategies, but also for diminishing the side effects caused by current therapies. Deciphering gene regulation pathways provides a reliable prognostic analysis to elucidate the origin of grave diseases and facilitate the selection of the most adequate treatment for each individual. Alternative splicing of mRNA precursors is one of these gene regulation pathways and enables cells to generate different protein outputs from the same gene depending on their developmental or homeostatic status. Its deregulation is strongly linked to disease onset and progression constituting a relevant and innovative class of biomarker. Herein we report a highly selective and sensitive nanophotonic biosensor based on the direct monitoring of the aberrant alternative splicing of Fas gene. Unlike conventional methods, the nanobiosensor performs a real-time detection of the specific isoforms in the fM-pM range without any cDNA synthesis or PCR amplification requirements. The nanobiosensor has been proven isoform-specific with no crosshybridization, greatly minimizing detection biases. The demonstrated high sensitivity and specificity make our nanobiosensor ideal for examining significant tumor-associated expression shifts of alternatively spliced isoforms for the early and accurate theranostics of cancer.

  1. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    Directory of Open Access Journals (Sweden)

    Penny David

    2007-10-01

    Full Text Available Abstract Background Alternative splicing has been reported in various eukaryotic groups including plants, apicomplexans, diatoms, amoebae, animals and fungi. However, whether widespread alternative splicing has evolved independently in the different eukaryotic groups or was inherited from their last common ancestor, and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional classes, cellular locations, intron/exon structures and evolutionary origins. Results For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants show high levels of alternative splicing. Genes with products expressed in the nucleus or plasma membrane are generally more alternatively spliced while those expressed in extracellular location show less alternative splicing. We find a clear correspondence between incidence of alternative splicing and intron number per gene both within and between genomes. In general, we find several similarities in patterns of alternative splicing across these diverse eukaryotes. Conclusion Along with previous studies indicating intron-rich genes with weak intron boundary consensus and complex spliceosomes in ancestral organisms, our results suggest that at least a simple form of alternative splicing may already have been present in the unicellular ancestor of plants, fungi and animals. A role for alternative splicing in the evolution of multicellularity then would largely have arisen by co-opting the preexisting process.

  2. Dynamic regulation of genome-wide pre-mRNA splicing and stress tolerance by the Sm-like protein LSm5 in Arabidopsis

    KAUST Repository

    Cui, Peng; Zhang, ShouDong; Ding, Feng; Ali, Shahjahan; Xiong, Liming

    2014-01-01

    alternative splicing. Further, SAD1 modulates the splicing of stress-responsive genes, particularly under salt-stress conditions. Finally, we find that overexpression of SAD1 in Arabidopsis improves salt tolerance in transgenic plants, which correlates

  3. Identification of interleukin-26 in the dromedary camel (Camelus dromedarius): Evidence of alternative splicing and isolation of novel splice variants.

    Science.gov (United States)

    Premraj, Avinash; Nautiyal, Binita; Aleyas, Abi G; Rasool, Thaha Jamal

    2015-10-01

    Interleukin-26 (IL-26) is a member of the IL-10 family of cytokines. Though conserved across vertebrates, the IL-26 gene is functionally inactivated in a few mammals like rat, mouse and horse. We report here the identification, isolation and cloning of the cDNA of IL-26 from the dromedary camel. The camel cDNA contains a 516 bp open reading frame encoding a 171 amino acid precursor protein, including a 21 amino acid signal peptide. Sequence analysis revealed high similarity with other mammalian IL-26 homologs and the conservation of IL-10 cytokine family domain structure including key amino acid residues. We also report the identification and cloning of four novel transcript variants produced by alternative splicing at the Exon 3-Exon 4 regions of the gene. Three of the alternative splice variants had premature termination codons and are predicted to code for truncated proteins. The transcript variant 4 (Tv4) having an insertion of an extra 120 bp nucleotides in the ORF was predicted to encode a full length protein product with 40 extra amino acid residues. The mRNA transcripts of all the variants were identified in lymph node, where as fewer variants were observed in other tissues like blood, liver and kidney. The expression of Tv2 and Tv3 were found to be up regulated in mitogen induced camel peripheral blood mononuclear cells. IL-26-Tv2 expression was also induced in camel fibroblast cells infected with Camel pox virus in-vitro. The identification of the transcript variants of IL-26 from the dromedary camel is the first report of alternative splicing for IL-26 in a species in which the gene has not been inactivated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. HIV-1 matrix dependent membrane targeting is regulated by Gag mRNA trafficking.

    Directory of Open Access Journals (Sweden)

    Jing Jin

    Full Text Available Retroviral Gag polyproteins are necessary and sufficient for virus budding. Productive HIV-1 Gag assembly takes place at the plasma membrane. However, little is known about the mechanisms by which thousands of Gag molecules are targeted to the plasma membrane. Using a bimolecular fluorescence complementation (BiFC assay, we recently reported that the cellular sites and efficiency of HIV-1 Gag assembly depend on the precise pathway of Gag mRNA export from the nucleus, known to be mediated by Rev. Here we describe an assembly deficiency in human cells for HIV Gag whose expression depends on hepatitis B virus (HBV post-transcriptional regulatory element (PRE mediated-mRNA nuclear export. PRE-dependent HIV Gag expressed well in human cells, but assembled with slower kinetics, accumulated intracellularly, and failed to associate with a lipid raft compartment where the wild-type Rev-dependent HIV-1 Gag efficiently assembles. Surprisingly, assembly and budding of PRE-dependent HIV Gag in human cells could be rescued in trans by co-expression of Rev-dependent Gag that provides correct membrane targeting signals, or in cis by replacing HIV matrix (MA with other membrane targeting domains. Taken together, our results demonstrate deficient membrane targeting of PRE-dependent HIV-1 Gag and suggest that HIV MA function is regulated by the trafficking pathway of the encoding mRNA.

  5. CRE promoter sites modulate alternative splicing via p300-mediated histone acetylation

    Czech Academy of Sciences Publication Activity Database

    Dušková, E.; Hnilicová, Jarmila; Staněk, D.

    2014-01-01

    Roč. 11, č. 7 (2014), s. 1-10 ISSN 1547-6286 R&D Projects: GA ČR(CZ) GBP305/12/G034 Grant - others:Charles University Prague(CZ) 274111 Institutional support: RVO:61388971 Keywords : alternative splicing * fibronectin * p300 Subject RIV: EE - Microbiology, Virology Impact factor: 4.974, year: 2014

  6. SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts.

    Science.gov (United States)

    Ryan, Michael C; Cleland, James; Kim, RyangGuk; Wong, Wing Chung; Weinstein, John N

    2012-09-15

    SpliceSeq is a resource for RNA-Seq data that provides a clear view of alternative splicing and identifies potential functional changes that result from splice variation. It displays intuitive visualizations and prioritized lists of results that highlight splicing events and their biological consequences. SpliceSeq unambiguously aligns reads to gene splice graphs, facilitating accurate analysis of large, complex transcript variants that cannot be adequately represented in other formats. SpliceSeq is freely available at http://bioinformatics.mdanderson.org/main/SpliceSeq:Overview. The application is a Java program that can be launched via a browser or installed locally. Local installation requires MySQL and Bowtie. mryan@insilico.us.com Supplementary data are available at Bioinformatics online.

  7. Pre-Shipment Preparations at the Savannah River Site

    International Nuclear Information System (INIS)

    Thomas, J.E.

    2000-01-01

    This paper will provide a detailed description of each of the pre-shipment process steps WSRC performs to produce the technical basis for approving the receipt and storage of spent nuclear fuel at the Savannah River Site. It is intended to be a guide to reactor operators who plan on returning ''U.S. origin'' SNF and to emphasize the need for accurate and timely completion of pre-shipment activities

  8. Axonal Transport of TDP-43 mRNA Granules Is Impaired by ALS-Causing Mutations

    OpenAIRE

    Alami, Nael H.; Smith, Rebecca B.; Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S.W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan

    2014-01-01

    The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. ...

  9. A specific pattern of splicing for the horse αS1-Casein mRNA and partial genomic characterization of the relevant locus

    Directory of Open Access Journals (Sweden)

    Guérin Gérard

    2002-07-01

    Full Text Available Abstract Mares' milk has a composition very different from that of cows' milk. It is much more similar to human milk, in particular in its casein fraction. This study reports on the sequence of a 994 bp amplified fragment corresponding to a horse αS1-Casein (αS1-Cn cDNA and its comparison with its caprine, pig, rabbit and human counterparts. The alignment of these sequences revealed a specific pattern of splicing for this horse primary transcript. As in humans, exons 3', 6' and 13' are present whereas exons 5, 13 and 14 are absent in this equine mRNA sequence. BAC clones, screened from a horse BAC library, containing the αS1-Cn gene allowed the mapping of its locus by FISH on equine chromosome 3q22.2-q22.3 which is in agreement with the Zoo-FISH results. Genomic analysis of the αS1-Cn gene showed that the region from the second exon to the last exon is scattered within a nucleotide stretch nearly 15-kb in length which is quite similar in size to its ruminant and rabbit counterparts. The region between αS1- and β-Cn genes, suspected to contain cis-acting elements involved in the expression of all clustered casein genes, is similar in size (ca. 15-kb to the caprine and mouse intergenic region.

  10. Conservation and Sex-Specific Splicing of the transformer Gene in the Calliphorids Cochliomyia hominivorax, Cochliomyia macellaria and Lucilia sericata

    Science.gov (United States)

    Li, Fang; Vensko, Steven P.; Belikoff, Esther J.; Scott, Maxwell J.

    2013-01-01

    Transformer (TRA) promotes female development in several dipteran species including the Australian sheep blowfly Lucilia cuprina, the Mediterranean fruit fly, housefly and Drosophila melanogaster. tra transcripts are sex-specifically spliced such that only the female form encodes full length functional protein. The presence of six predicted TRA/TRA2 binding sites in the sex-specific female intron of the L. cuprina gene suggested that tra splicing is auto-regulated as in medfly and housefly. With the aim of identifying conserved motifs that may play a role in tra sex-specific splicing, here we have isolated and characterized the tra gene from three additional blowfly species, L. sericata, Cochliomyia hominivorax and C. macellaria. The blowfly adult male and female transcripts differ in the choice of splice donor site in the first intron, with males using a site downstream of the site used in females. The tra genes all contain a single TRA/TRA2 site in the male exon and a cluster of four to five sites in the male intron. However, overall the sex-specific intron sequences are poorly conserved in closely related blowflies. The most conserved regions are around the exon/intron junctions, the 3′ end of the intron and near the cluster of TRA/TRA2 sites. We propose a model for sex specific regulation of tra splicing that incorporates the conserved features identified in this study. In L. sericata embryos, the male tra transcript was first detected at around the time of cellular blastoderm formation. RNAi experiments showed that tra is required for female development in L. sericata and C. macellaria. The isolation of the tra gene from the New World screwworm fly C. hominivorax, a major livestock pest, will facilitate the development of a “male-only” strain for genetic control programs. PMID:23409170

  11. Discovery of a Mammalian Splice Variant of Myostatin That Stimulates Myogenesis

    Science.gov (United States)

    Jeanplong, Ferenc; Falconer, Shelley J.; Oldham, Jenny M.; Thomas, Mark; Gray, Tarra S.; Hennebry, Alex; Matthews, Kenneth G.; Kemp, Frederick C.; Patel, Ketan; Berry, Carole; Nicholas, Gina; McMahon, Christopher D.

    2013-01-01

    Myostatin plays a fundamental role in regulating the size of skeletal muscles. To date, only a single myostatin gene and no splice variants have been identified in mammals. Here we describe the splicing of a cryptic intron that removes the coding sequence for the receptor binding moiety of sheep myostatin. The deduced polypeptide sequence of the myostatin splice variant (MSV) contains a 256 amino acid N-terminal domain, which is common to myostatin, and a unique C-terminus of 65 amino acids. Western immunoblotting demonstrated that MSV mRNA is translated into protein, which is present in skeletal muscles. To determine the biological role of MSV, we developed an MSV over-expressing C2C12 myoblast line and showed that it proliferated faster than that of the control line in association with an increased abundance of the CDK2/Cyclin E complex in the nucleus. Recombinant protein made for the novel C-terminus of MSV also stimulated myoblast proliferation and bound to myostatin with high affinity as determined by surface plasmon resonance assay. Therefore, we postulated that MSV functions as a binding protein and antagonist of myostatin. Consistent with our postulate, myostatin protein was co-immunoprecipitated from skeletal muscle extracts with an MSV-specific antibody. MSV over-expression in C2C12 myoblasts blocked myostatin-induced Smad2/3-dependent signaling, thereby confirming that MSV antagonizes the canonical myostatin pathway. Furthermore, MSV over-expression increased the abundance of MyoD, Myogenin and MRF4 proteins (Pmyostatin remained unchanged, which suggests that MSV may promote the growth of skeletal muscles. We conclude that MSV represents a unique example of intra-genic regulation in which a splice variant directly antagonizes the biological activity of the canonical gene product. PMID:24312578

  12. Upstream ORF affects MYCN translation depending on exon 1b alternative splicing

    International Nuclear Information System (INIS)

    Besançon, Roger; Puisieux, Alain; Valsesia-Wittmann, Sandrine; Locher, Clara; Delloye-Bourgeois, Céline; Furhman, Lydie; Tutrone, Giovani; Bertrand, Christophe; Jallas, Anne-Catherine; Garin, Elisabeth

    2009-01-01

    The MYCN gene is transcribed into two major mRNAs: one full-length (MYCN) and one exon 1b-spliced (MYCN Δ1b ) mRNA. But nothing is known about their respective ability to translate the MYCN protein. Plasmids were prepared to enable translation from the upstream (uORF) and major ORF of the two MYCN transcripts. Translation was studied after transfection in neuroblastoma SH-EP cell line. Impact of the upstream AUG on translation was evaluated after directed mutagenesis. Functional study with the two MYCN mRNAs was conducted by a cell viability assay. Existence of a new protein encoded by the MYCN Δ1b uORF was explored by designing a rabbit polyclonal antibody against a specific epitope of this protein. Both are translated, but higher levels of protein were seen with MYCN Δ1b mRNA. An upstream ORF was shown to have positive cis-regulatory activity on translation from MYCN but not from MYCN Δ1b mRNA. In transfected SH-EP neuroblastoma cells, high MYCN dosage obtained with MYCN Δ1b mRNA translation induces an antiapoptotic effect after serum deprivation that was not observed with low MYCN expression obtained with MYCN mRNA. Here, we showed that MYCNOT: MYCN Overlap Transcript, a new protein of unknown function is translated from the upstream AUG of MYCN Δ1b mRNA. Existence of upstream ORF in MYCN transcripts leads to a new level of MYCN regulation. The resulting MYCN dosage has a weak but significant anti-apoptotic activity after intrinsic apoptosis induction

  13. Sub-nuclear distribution and mobility of nuclear proteins involved in histone acetylation and pre-mRNA splicing

    International Nuclear Information System (INIS)

    Kruhlak, Michael John

    2001-01-01

    The mitotic relationship between levels of highly acetylated chromatin, chromatin condensation, and HAT/HDAC organization was examined. HATs and HDACs were found to dissociate from chromosomes along with a loss of highly acetylated histones in condensed chromatin in mitosis. We demonstrate that, rather than being enzymatically inactivated, HAT and HDAC activities are decreased in mitosis because the enzymes are sequestered to a non-chromatin domain. Highly acetylated histone species reappear coincident with the reassociation of HATs and HDACs in late telophase/early interphase and before reinitiation of transcription. We propose that HATs and HDACs are spatially regulated through the cell cycle and that this regulation influences which chromatin domains are available for acetylation and deacetylation. We examined the movement of a splicing factor, ASF, green fluorescent fusion protein (ASF:GFP) using timelapse microscopy and the technique fluorescence recovery after photobleaching (FRAP). We found that ASF:GFP moves significantly slower than free diffusion when it is associated with speckles and, surprisingly, also when it is dispersed in the nucleoplasm. The mobility of ASF is consistent with frequent but transient interactions with relatively immobile nuclear binding sites. This mobility is slightly increased in the presence of transcription inhibitors and the ASF molecules further enrich in speckles. We propose that the nonrandom organization of splicing factors reflects spatial differences in the concentration of relatively immobile binding sites. Through a careful analysis of HDAC4 expression we found that HDAC4-containing MAD bodies are not a consistent component of the interphase nucleus. By comparing MAD bodies to PML bodies we found that the assembly, maintenance and distribution of PML bodies is regulated. We investigated the involvement of chromatin condensation in establishing mitotic transcription repression, by analyzing transcriptional activity in

  14. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis.

    Science.gov (United States)

    Kwon, Young-Ju; Park, Mi-Jeong; Kim, Sang-Gyu; Baldwin, Ian T; Park, Chung-Mo

    2014-05-19

    The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5' splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock and environmental stress

  15. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis

    Science.gov (United States)

    2014-01-01

    Background The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. Results We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5′ splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Conclusion Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock

  16. Loss of Endocan tumorigenic properties after alternative splicing of exon 2

    International Nuclear Information System (INIS)

    Depontieu, Florence; Grigoriu, Bogdan-Dragos; Scherpereel, Arnaud; Adam, Estelle; Delehedde, Maryse; Gosset, Philippe; Lassalle, Philippe

    2008-01-01

    Endocan was originally described as a dermatan sulfate proteoglycan found freely circulating in the blood. Endocan expression confers tumorigenic properties to epithelial cell lines or accelerate the growth of already tumorigenic cells. This molecule is the product of a single gene composed of 3 exons. Previous data showed that endocan mRNA is subject to alternative splicing with possible generation of two protein products. In the present study we identified, and functionally characterized, the alternative spliced product of the endocan gene: the exon 2-deleted endocan, called endocanΔ2. Stable, endocanΔ2-overexpressing cell lines were generated to investigate the biological activities of this new alternatively spliced product of endocan gene. Tumorigenesis was studied by inoculating endocan and endocanΔ2 expressing cell lines subcutaneously in SCID mice. Biochemical properties of endocan and endocanΔ2 were studied after production of recombinant proteins in various cell lines of human and murine origin. Our results showed that the exon 2 deletion impairs synthesis of the glycan chain, known to be involved in the pro-tumoral effect of endocan. EndocanΔ2 did not promote tumor formation by 293 cells implanted in the skin of severe combined immunodeficient (SCID) mice. Our results emphasize the key role of the polypeptide sequence encoded by the exon 2 of endocan gene in tumorigenesis, and suggest that this sequence could be a target for future therapies against cancer

  17. Identification of a novel splice acceptor in the HIV-1 genome: independent expression of the cytoplasmic tail of the envelope protein

    NARCIS (Netherlands)

    Berkhout, B.; van Wamel, J. L.

    1996-01-01

    Multiple splicing sites exist in the RNA genome of the human immunodeficiency virus type 1 (HIV-1). In a screen for subgenomic forms of the HIV-1 genome that could be transferred to fresh cells by virus infection, we identified a novel spliced variant of HIV-1 RNA that uses a hitherto unknown splice

  18. Targeted modulation of alternative splicing by TALE-directed chromatin editing

    Czech Academy of Sciences Publication Activity Database

    Bieberstein, Nicole; Staněk, David

    2015-01-01

    Roč. 282, SI (2015), s. 210-210 ISSN 1742-464X. [40th Congress of the Federation-of-European-Biochemical-Societies (FEBS) - The Biochemical Basis of Life. 04.07.2015-09.07.2015, Berlín] R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:68378050 Keywords : histone methylation * pre-mRNA splicing * TALEN Subject RIV: EB - Genetics ; Molecular Biology

  19. Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing.

    Science.gov (United States)

    Castle, John; Garrett-Engele, Phil; Armour, Christopher D; Duenwald, Sven J; Loerch, Patrick M; Meyer, Michael R; Schadt, Eric E; Stoughton, Roland; Parrish, Mark L; Shoemaker, Daniel D; Johnson, Jason M

    2003-01-01

    Microarrays offer a high-resolution means for monitoring pre-mRNA splicing on a genomic scale. We have developed a novel, unbiased amplification protocol that permits labeling of entire transcripts. Also, hybridization conditions, probe characteristics, and analysis algorithms were optimized for detection of exons, exon-intron edges, and exon junctions. These optimized protocols can be used to detect small variations and isoform mixtures, map the tissue specificity of known human alternative isoforms, and provide a robust, scalable platform for high-throughput discovery of alternative splicing.

  20. Optimization of Peptide Nucleic Acid Antisense Oligonucleotides for Local and Systemic Dystrophin Splice Correction in the mdx Mouse

    Science.gov (United States)

    Yin, HaiFang; Betts, Corinne; Saleh, Amer F; Ivanova, Gabriela D; Lee, Hyunil; Seow, Yiqi; Kim, Dalsoo; Gait, Michael J; Wood, Matthew JA

    2010-01-01

    Antisense oligonucleotides (AOs) have the capacity to alter the processing of pre-mRNA transcripts in order to correct the function of aberrant disease-related genes. Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle degenerative disease that arises from mutations in the DMD gene leading to an absence of dystrophin protein. AOs have been shown to restore the expression of functional dystrophin via splice correction by intramuscular and systemic delivery in animal models of DMD and in DMD patients via intramuscular administration. Major challenges in developing this splice correction therapy are to optimize AO chemistry and to develop more effective systemic AO delivery. Peptide nucleic acid (PNA) AOs are an alternative AO chemistry with favorable in vivo biochemical properties and splice correcting abilities. Here, we show long-term splice correction of the DMD gene in mdx mice following intramuscular PNA delivery and effective splice correction in aged mdx mice. Further, we report detailed optimization of systemic PNA delivery dose regimens and PNA AO lengths to yield splice correction, with 25-mer PNA AOs providing the greatest splice correcting efficacy, restoring dystrophin protein in multiple peripheral muscle groups. PNA AOs therefore provide an attractive candidate AO chemistry for DMD exon skipping therapy. PMID:20068555

  1. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Stoehr, Andrea; Yang, Yanqin; Patel, Sajni; Evangelista, Alicia M; Aponte, Angel; Wang, Guanghui; Liu, Poching; Boylston, Jennifer; Kloner, Philip H; Lin, Yongshun; Gucek, Marjan; Zhu, Jun; Murphy, Elizabeth

    2016-06-01

    Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. This study provides the first extensive

  2. Alternative Splicing of AMPA subunits in Prefrontal Cortical Fields of Cynomolgus Monkeys following Chronic Ethanol Self-Administration

    Directory of Open Access Journals (Sweden)

    Glen eAcosta

    2012-01-01

    Full Text Available Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA subunit variant and kainate (GRIK subunit mRNA expression were studied in the orbitofrontal cortex (OFC, dorsolateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC of male cynomolgus monkeys. In DLPFC, total AMPA splice variant expression and total kainate receptor subunit expression were significantly decreased in alcohol drinking monkeys. Expression levels of GRIA3 flip and flop and GRIA4 flop mRNAs in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. In OFC, AMPA subunit splice variant expression was reduced in the alcohol treated group. GRIA2 flop mRNA levels in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. Results from these studies provide further evidence of transcriptional regulation of iGluR subunits in the primate brain following chronic alcohol self-administration. Additional studies examining the cellular localization of such effects in the framework of primate prefrontal cortical circuitry are warranted.

  3. Perturbation of m6A Writers Reveals Two Distinct Classes of mRNA Methylation at Internal and 5′ Sites

    Directory of Open Access Journals (Sweden)

    Schraga Schwartz

    2014-07-01

    Full Text Available N6-methyladenosine (m6A is a common modification of mRNA with potential roles in fine-tuning the RNA life cycle. Here, we identify a dense network of proteins interacting with METTL3, a component of the methyltransferase complex, and show that three of them (WTAP, METTL14, and KIAA1429 are required for methylation. Monitoring m6A levels upon WTAP depletion allowed the definition of accurate and near single-nucleotide resolution methylation maps and their classification into WTAP-dependent and -independent sites. WTAP-dependent sites are located at internal positions in transcripts, topologically static across a variety of systems we surveyed, and inversely correlated with mRNA stability, consistent with a role in establishing “basal” degradation rates. WTAP-independent sites form at the first transcribed base as part of the cap structure and are present at thousands of sites, forming a previously unappreciated layer of transcriptome complexity. Our data shed light on the proteomic and transcriptional underpinnings of this RNA modification.

  4. Postnatal Expression of V2 Vasopressin Receptor Splice Variants in the Rat Cerebellum

    Science.gov (United States)

    Vargas, Karina J.; Sarmiento, José M.; Ehrenfeld, Pamela; Añazco, Carolina C.; Villanueva, Carolina I.; Carmona, Pamela L.; Brenet, Marianne; Navarro, Javier; Müller-Esterl, Werner; Figueroa, Carlos D.; González, Carlos B.

    2010-01-01

    The V2 vasopressin receptor gene contains an alternative splice site in exon-3, which leads to the generation of two splice variants (V2a and V2b) first identified in the kidney. The open reading frame of the alternatively spliced V2b transcripten codes a truncated receptor, showing the same amino acid sequence as the canonical V2a receptor up to the 6th transmembrane segment, but displaying a distinct sequence to the corresponding 7th transmembrane segment and C-terminal domain relative to the V2a receptor. Here, we demonstrate the postnatal expression of V2a and V2b variants in the rat cerebellum. Most importantly, we showed by in situ hybridization and immunocytochemistry that both V2 splice variants were preferentially expressed in Purkinje cells, from early to late postnatal development. In addition, both variants were transiently expressed in the neuroblastic external granule cells and Bergmann fibers. These results indicate that the cellular distributions of both splice variants are developmentally regulated, and suggest that the transient expression of the V2 receptor is involved in the mechanisms of cerebellar cytodifferentiation by AVP. Finally, transfected CHO-K1 .expressing similar amounts of both V2 splice variants, as that found in the cerebellum, showed a significant reduction in the surface expression of V2a receptors, suggesting that the differential expression of the V2 splice variants regulate the vasopressin signaling in the cerebellum. PMID:19281786

  5. A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events.

    Directory of Open Access Journals (Sweden)

    Angela N Brooks

    Full Text Available Although recurrent somatic mutations in the splicing factor U2AF1 (also known as U2AF35 have been identified in multiple cancer types, the effects of these mutations on the cancer transcriptome have yet to be fully elucidated. Here, we identified splicing alterations associated with U2AF1 mutations across distinct cancers using DNA and RNA sequencing data from The Cancer Genome Atlas (TCGA. Using RNA-Seq data from 182 lung adenocarcinomas and 167 acute myeloid leukemias (AML, in which U2AF1 is somatically mutated in 3-4% of cases, we identified 131 and 369 splicing alterations, respectively, that were significantly associated with U2AF1 mutation. Of these, 30 splicing alterations were statistically significant in both lung adenocarcinoma and AML, including three genes in the Cancer Gene Census, CTNNB1, CHCHD7, and PICALM. Cell line experiments expressing U2AF1 S34F in HeLa cells and in 293T cells provide further support that these altered splicing events are caused by U2AF1 mutation. Consistent with the function of U2AF1 in 3' splice site recognition, we found that S34F/Y mutations cause preferences for CAG over UAG 3' splice site sequences. This report demonstrates consistent effects of U2AF1 mutation on splicing in distinct cancer cell types.

  6. Changes in Alternative Splicing in Apis Mellifera Bees Fed Apis Cerana Royal Jelly

    Directory of Open Access Journals (Sweden)

    Shi Yuan Yuan

    2014-12-01

    Full Text Available The Western honey bee (Apis mellifera is a social insect characterized by caste differentiation in which the queen bee and worker bees display marked differences in morphology, behavior, reproduction, and longevity despite their identical genomes. The main causative factor in caste differentiation is the food fed to queen larvae, termed royal jelly (RJ. Alternative splicing (AS is an important RNA-mediated post-transcriptional process in eukaryotes. Here we report AS changes in A. mellifera after being fed either A. mellifera RJ or A. cerana RJ. The results demonstrated that the RJ type affected 4 types of AS in adult A. mellifera: exon skipping, intron retention, alternative 5’ splice sites, and alternative 3’splice sites. After feeding with A. cerana RJ, AS occurred in many genes in adult A. mellifera that encode proteins involved in development, growth, the tricarboxylic acid cycle, and substance metabolism. This study provides the first evidence that heterospecific RJ can influence the AS of many genes related to honey bee development and growth.

  7. Dynamic ASXL1 Exon Skipping and Alternative Circular Splicing in Single Human Cells.

    Directory of Open Access Journals (Sweden)

    Winston Koh

    Full Text Available Circular RNAs comprise a poorly understood new class of noncoding RNA. In this study, we used a combination of targeted deletion, high-resolution splicing detection, and single-cell sequencing to deeply probe ASXL1 circular splicing. We found that efficient circular splicing required the canonical transcriptional start site and inverted AluSx elements. Sequencing-based interrogation of isoforms after ASXL1 overexpression identified promiscuous linear splicing between all exons, with the two most abundant non-canonical linear products skipping the exons that produced the circular isoforms. Single-cell sequencing revealed a strong preference for either the linear or circular ASXL1 isoforms in each cell, and found the predominant exon skipping product is frequently co-expressed with its reciprocal circular isoform. Finally, absolute quantification of ASXL1 isoforms confirmed our findings and suggests that standard methods overestimate circRNA abundance. Taken together, these data reveal a dynamic new view of circRNA genesis, providing additional framework for studying their roles in cellular biology.

  8. Common pathological mutations in PQBP1 induce nonsense-mediated mRNA decay and enhance exclusion of the mutant exon.

    Science.gov (United States)

    Musante, Luciana; Kunde, Stella-Amrei; Sulistio, Tina O; Fischer, Ute; Grimme, Astrid; Frints, Suzanna G M; Schwartz, Charles E; Martínez, Francisco; Romano, Corrado; Ropers, Hans-Hilger; Kalscheuer, Vera M

    2010-01-01

    The polyglutamine binding protein 1 (PQBP1) gene plays an important role in X-linked mental retardation (XLMR). Nine of the thirteen PQBP1 mutations known to date affect the AG hexamer in exon 4 and cause frameshifts introducing premature termination codons (PTCs). However, the phenotype in this group of patients is variable. To investigate the pathology of these PQBP1 mutations, we evaluated their consequences on mRNA and protein expression. RT-PCRs revealed mutation-specific reduction of PQBP1 mRNAs carrying the PTCs that can be partially restored by blocking translation, thus indicating a role for the nonsense-mediated mRNA decay pathway. In addition, these mutations resulted in altered levels of PQBP1 transcripts that skipped exon 4, probably as a result of altering important splicing motifs via nonsense-associated altered splicing (NAS). This hypothesis is supported by transfection experiments using wild-type and mutant PQBP1 minigenes. Moreover, we show that a truncated PQBP1 protein is indeed present in the patients. Remarkably, patients with insertion/deletion mutations in the AG hexamer express significantly increased levels of a PQBP1 isoform, which is very likely encoded by the transcripts without exon 4, confirming the findings at the mRNA level. Our study provides significant insight into the early events contributing to the pathogenesis of the PQBP1 related XLMR disease.

  9. Genetics of alternative splicing evolution during sunflower domestication.

    Science.gov (United States)

    Smith, Chris C R; Tittes, Silas; Mendieta, J Paul; Collier-Zans, Erin; Rowe, Heather C; Rieseberg, Loren H; Kane, Nolan C

    2018-06-11

    Alternative splicing enables organisms to produce the diversity of proteins necessary for multicellular life by using relatively few protein-coding genes. Although differences in splicing have been identified among divergent taxa, the shorter-term evolution of splicing is understudied. The origins of novel splice forms, and the contributions of alternative splicing to major evolutionary transitions, are largely unknown. This study used transcriptomes of wild and domesticated sunflowers to examine splice differentiation and regulation during domestication. We identified substantial splicing divergence between wild and domesticated sunflowers, mainly in the form of intron retention. Transcripts with divergent splicing were enriched for seed-development functions, suggesting that artificial selection impacted splicing patterns. Mapping of quantitative trait loci (QTLs) associated with 144 differential splicing cases revealed primarily trans -acting variation affecting splicing patterns. A large proportion of identified QTLs contain known spliceosome proteins and are associated with splicing variation in multiple genes. Examining a broader set of wild and domesticated sunflower genotypes revealed that most differential splicing patterns in domesticated sunflowers likely arose from standing variation in wild Helianthus annuus and gained frequency during the domestication process. However, several domesticate-associated splicing patterns appear to be introgressed from other Helianthus species. These results suggest that sunflower domestication involved selection on pleiotropic regulatory alleles. More generally, our findings indicate that substantial differences in isoform abundances arose rapidly during a recent evolutionary transition and appear to contribute to adaptation and population divergence.

  10. Placenta-specific novel splice variants of Rho GDP dissociation inhibitor β are highly expressed in cancerous cells

    Directory of Open Access Journals (Sweden)

    Hatakeyama Keiichi

    2012-12-01

    Full Text Available Abstract Background Alternative splicing of pre-mRNA transcripts not only plays a role in normal molecular processes but is also associated with cancer development. While normal transcripts are ubiquitously expressed in normal tissues, splice variants created through abnormal alternative splicing events are often expressed in cancer cells. Although the Rho GDP dissociation inhibitor β (ARHGDIB gene has been found to be ubiquitously expressed in normal tissues and involved in cancer development, the presence of splice variants of ARHGDIB has not yet been investigated. Results Validation analysis for the presence of and exon structures of splice variants of ARHGDIB, performed using reverse-transcriptase polymerase chain reaction and DNA sequencing, successfully identified novel splice variants of ARHGDIB, that is, 6a, 6b, and 6c, in colon, pancreas, stomach, and breast cancer cell lines. Quantitative real-time polymerase chain reaction analysis showed that these variants were also highly expressed in normal placental tissue but not in other types of normal tissue. Conclusions Expression of ARHGDIB variants 6a, 6b, and 6c appears to be restricted to cancer cells and normal placental tissue, suggesting that these variants possess cancer-specific functions and, as such, are potential cancer-related biomarkers.

  11. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob Lewin; Penny, David

    2007-01-01

    , and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional......, we find several similarities in patterns of alternative splicing across these diverse eukaryotes. CONCLUSION: Along with previous studies indicating intron-rich genes with weak intron boundary consensus and complex spliceosomes in ancestral organisms, our results suggest that at least a simple form...... of alternative splicing may already have been present in the unicellular ancestor of plants, fungi and animals. A role for alternative splicing in the evolution of multicellularity then would largely have arisen by co-opting the preexisting process....

  12. Alternative splicing and extensive RNA editing of human TPH2 transcripts.

    Directory of Open Access Journals (Sweden)

    Maik Grohmann

    Full Text Available Brain serotonin (5-HT neurotransmission plays a key role in the regulation of mood and has been implicated in a variety of neuropsychiatric conditions. Tryptophan hydroxylase (TPH is the rate-limiting enzyme in the biosynthesis of 5-HT. Recently, we discovered a second TPH isoform (TPH2 in vertebrates, including man, which is predominantly expressed in brain, while the previously known TPH isoform (TPH1 is primarly a non-neuronal enzyme. Overwhelming evidence now points to TPH2 as a candidate gene for 5-HT-related psychiatric disorders. To assess the role of TPH2 gene variability in the etiology of psychiatric diseases we performed cDNA sequence analysis of TPH2 transcripts from human post mortem amygdala samples obtained from individuals with psychiatric disorders (drug abuse, schizophrenia, suicide and controls. Here we show that TPH2 exists in two alternatively spliced variants in the coding region, denoted TPH2a and TPH2b. Moreover, we found evidence that the pre-mRNAs of both splice variants are dynamically RNA-edited in a mutually exclusive manner. Kinetic studies with cell lines expressing recombinant TPH2 variants revealed a higher activity of the novel TPH2B protein compared with the previously known TPH2A, whereas RNA editing was shown to inhibit the enzymatic activity of both TPH2 splice variants. Therefore, our results strongly suggest a complex fine-tuning of central nervous system 5-HT biosynthesis by TPH2 alternative splicing and RNA editing. Finally, we present molecular and large-scale linkage data evidencing that deregulated alternative splicing and RNA editing is involved in the etiology of psychiatric diseases, such as suicidal behaviour.

  13. Alternative splicing originates different domain structure organization of Lutzomyia longipalpis chitinases.

    Science.gov (United States)

    Ortigão-Farias, João Ramalho; Di-Blasi, Tatiana; Telleria, Erich Loza; Andorinho, Ana Carolina; Lemos-Silva, Thais; Ramalho-Ortigão, Marcelo; Tempone, Antônio Jorge; Traub-Csekö, Yara Maria

    2018-02-01

    BACKGROUND The insect chitinase gene family is composed by more than 10 paralogs, which can codify proteins with different domain structures. In Lutzomyia longipalpis, the main vector of visceral leishmaniasis in Brazil, a chitinase cDNA from adult female insects was previously characterized. The predicted protein contains one catalytic domain and one chitin-binding domain (CBD). The expression of this gene coincided with the end of blood digestion indicating a putative role in peritrophic matrix degradation. OBJECTIVES To determine the occurrence of alternative splicing in chitinases of L. longipalpis. METHODS We sequenced the LlChit1 gene from a genomic clone and the three spliced forms obtained by reverse transcription polymerase chain reaction (RT-PCR) using larvae cDNA. FINDINGS We showed that LlChit1 from L. longipalpis immature forms undergoes alternative splicing. The spliced form corresponding to the adult cDNA was named LlChit1A and the two larvae specific transcripts were named LlChit1B and LlChit1C. The B and C forms possess stop codons interrupting the translation of the CBD. The A form is present in adult females post blood meal, L4 larvae and pre-pupae, while the other two forms are present only in L4 larvae and disappear just before pupation. Two bands of the expected size were identified by Western blot only in L4 larvae. MAIN CONCLUSIONS We show for the first time alternative splicing generating chitinases with different domain structures increasing our understanding on the finely regulated digestion physiology and shedding light on a potential target for controlling L. longipalpis larval development.

  14. A heuristic model for computational prediction of human branch point sequence.

    Science.gov (United States)

    Wen, Jia; Wang, Jue; Zhang, Qing; Guo, Dianjing

    2017-10-24

    Pre-mRNA splicing is the removal of introns from precursor mRNAs (pre-mRNAs) and the concurrent ligation of the flanking exons to generate mature mRNA. This process is catalyzed by the spliceosome, where the splicing factor 1 (SF1) specifically recognizes the seven-nucleotide branch point sequence (BPS) and the U2 snRNP later displaces the SF1 and binds to the BPS. In mammals, the degeneracy of BPS motifs together with the lack of a large set of experimentally verified BPSs complicates the task of BPS prediction in silico. In this paper, we develop a simple and yet efficient heuristic model for human BPS prediction based on a novel scoring scheme, which quantifies the splicing strength of putative BPSs. The candidate BPS is restricted exclusively within a defined BPS search region to avoid the influences of other elements in the intron and therefore the prediction accuracy is improved. Moreover, using two types of relative frequencies for human BPS prediction, we demonstrate our model outperformed other current implementations on experimentally verified human introns. We propose that the binding energy contributes to the molecular recognition involved in human pre-mRNA splicing. In addition, a genome-wide human BPS prediction is carried out. The characteristics of predicted BPSs are in accordance with experimentally verified human BPSs, and branch site positions relative to the 3'ss and the 5'end of the shortened AGEZ are consistent with the results of published papers. Meanwhile, a webserver for BPS predictor is freely available at http://biocomputer.bio.cuhk.edu.hk/BPS .

  15. SL1 RNA gene recovery from Enterobius vermicularis ancient DNA in pre-Columbian human coprolites.

    Science.gov (United States)

    Iñiguez, Alena Mayo; Reinhard, Karl; Carvalho Gonçalves, Marcelo Luiz; Ferreira, Luiz Fernando; Araújo, Adauto; Paulo Vicente, Ana Carolina

    2006-11-01

    Enterobius vermicularis, pinworm, is one of the most common helminths worldwide, infecting nearly a billion people at all socio-economic levels. In prehistoric populations the paleoparasitological findings show a pinworm homogeneous distribution among hunter-gatherers in North America, intensified with the advent of agriculture. This same increase also occurred in the transition from nomad hunter-gatherers to sedentary farmers in South America, although E. vermicularis infection encompasses only the ancient Andean peoples, with no record among the pre-Colombian populations in the South American lowlands. However, the outline of pinworm paleoepidemiology has been supported by microscopic finding of eggs recovered from coprolites. Since molecular techniques are precise and sensitive in detecting pathogen ancient DNA (aDNA), and also could provide insights into the parasite evolutionary history, in this work we have performed a molecular paleoparasitological study of E. vermicularis. aDNA was recovered and pinworm 5S rRNA spacer sequences were determined from pre-Columbian coprolites (4110 BC-AD 900) from four different North and South American archaeological sites. The sequence analysis confirmed E. vermicularis identity and revealed a similarity among ancient and modern sequences. Moreover, polymorphisms were identified at the relative positions 160, 173 and 180, in independent coprolite samples from Tulán, San Pedro de Atacama, Chile (1080-950 BC). We also verified the presence of peculiarities (Splicing leader (SL1) RNA sequence, spliced donor site, the Sm antigen biding site, and RNA secondary structure) which characterise the SL1 RNA gene. The analysis shows that the SL1 RNA gene of contemporary pinworms was present in pre-Columbian E. vermicularis by 6110 years ago. We were successful in detecting E. vermicularis aDNA even in coprolites without direct microscopic evidence of the eggs, improving the diagnosis of helminth infections in the past and further

  16. Influenza A Virus NS1 Protein Promotes Efficient Nuclear Export of Unspliced Viral M1 mRNA.

    Science.gov (United States)

    Pereira, Carina F; Read, Eliot K C; Wise, Helen M; Amorim, Maria J; Digard, Paul

    2017-08-01

    Influenza A virus mRNAs are transcribed by the viral RNA-dependent RNA polymerase in the cell nucleus before being exported to the cytoplasm for translation. Segment 7 produces two major transcripts: an unspliced mRNA that encodes the M1 matrix protein and a spliced transcript that encodes the M2 ion channel. Export of both mRNAs is dependent on the cellular NXF1/TAP pathway, but it is unclear how they are recruited to the export machinery or how the intron-containing but unspliced M1 mRNA bypasses the normal quality-control checkpoints. Using fluorescent in situ hybridization to monitor segment 7 mRNA localization, we found that cytoplasmic accumulation of unspliced M1 mRNA was inefficient in the absence of NS1, both in the context of segment 7 RNPs reconstituted by plasmid transfection and in mutant virus-infected cells. This effect was independent of any major effect on steady-state levels of segment 7 mRNA or splicing but corresponded to a ∼5-fold reduction in the accumulation of M1. A similar defect in intronless hemagglutinin (HA) mRNA nuclear export was seen with an NS1 mutant virus. Efficient export of M1 mRNA required both an intact NS1 RNA-binding domain and effector domain. Furthermore, while wild-type NS1 interacted with cellular NXF1 and also increased the interaction of segment 7 mRNA with NXF1, mutant NS1 polypeptides unable to promote mRNA export did neither. Thus, we propose that NS1 facilitates late viral gene expression by acting as an adaptor between viral mRNAs and the cellular nuclear export machinery to promote their nuclear export. IMPORTANCE Influenza A virus is a major pathogen of a wide variety of mammalian and avian species that threatens public health and food security. A fuller understanding of the virus life cycle is important to aid control strategies. The virus has a small genome that encodes relatively few proteins that are often multifunctional. Here, we characterize a new function for the NS1 protein, showing that, as well as

  17. A splice-site mutation affecting the paired box of PAX3 in a three generation family with Waardenburg syndrome type I (WS1).

    Science.gov (United States)

    Attaie, A; Kim, E; Wilcox, E R; Lalwani, A K

    1997-06-01

    Waardenburg syndrome, an autosomal dominant disorder characterized by sensorineural hearing loss, pigmentary disturbances and other developmental defects, is the most frequent form of congenital deafness in humans. Mutations in the PAX3 gene, a transcription factor expressed during embryonic development, is associated with WS types I and III. Here we report the identification of a novel acceptor splice site mutation (86-2 A-->G) in the paired domain of the human PAX3 gene causing WS type I in a three generation family.

  18. Viperin mRNA is a novel target for the human RNase MRP/RNase P endoribonuclease.

    Science.gov (United States)

    Mattijssen, Sandy; Hinson, Ella R; Onnekink, Carla; Hermanns, Pia; Zabel, Bernhard; Cresswell, Peter; Pruijn, Ger J M

    2011-07-01

    RNase MRP is a conserved endoribonuclease, in humans consisting of a 267-nucleotide RNA associated with 7-10 proteins. Mutations in its RNA component lead to several autosomal recessive skeletal dysplasias, including cartilage-hair hypoplasia (CHH). Because the known substrates of mammalian RNase MRP, pre-ribosomal RNA, and RNA involved in mitochondrial DNA replication are not likely involved in CHH, we analyzed the effects of RNase MRP (and the structurally related RNase P) depletion on mRNAs using DNA microarrays. We confirmed the upregulation of the interferon-inducible viperin mRNA by RNAi experiments and this appeared to be independent of the interferon response. We detected two cleavage sites for RNase MRP/RNase P in the coding sequence of viperin mRNA. This is the first study providing direct evidence for the cleavage of a mRNA by RNase MRP/RNase P in human cells. Implications for the involvement in the pathophysiology of CHH are discussed.

  19. Leader-to-leader splicing is required for efficient production and accumulation of polyomavirus late mRNAs.

    OpenAIRE

    Adami, G R; Marlor, C W; Barrett, N L; Carmichael, G G

    1989-01-01

    Polyomavirus late mRNA molecules contain multiple, tandem copies of a noncoding 57-base "late leader" exon at their 5' ends. This exon is encoded only once in the genome. Leader multiplicity arises from leader-leader splicing in giant primary transcripts, which are the result of multiple circuits of the viral genome by RNA polymerase II. We have been interested in learning more about the role of the leader exon in late viral gene expression. We recently showed that an abbreviated-leader mutan...

  20. A method of predicting changes in human gene splicing induced by genetic variants in context of cis-acting elements

    Directory of Open Access Journals (Sweden)

    Hicks Chindo

    2010-01-01

    Full Text Available Abstract Background Polymorphic variants and mutations disrupting canonical splicing isoforms are among the leading causes of human hereditary disorders. While there is a substantial evidence of aberrant splicing causing Mendelian diseases, the implication of such events in multi-genic disorders is yet to be well understood. We have developed a new tool (SpliceScan II for predicting the effects of genetic variants on splicing and cis-regulatory elements. The novel Bayesian non-canonical 5'GC splice site (SS sensor used in our tool allows inference on non-canonical exons. Results Our tool performed favorably when compared with the existing methods in the context of genes linked to the Autism Spectrum Disorder (ASD. SpliceScan II was able to predict more aberrant splicing isoforms triggered by the mutations, as documented in DBASS5 and DBASS3 aberrant splicing databases, than other existing methods. Detrimental effects behind some of the polymorphic variations previously associated with Alzheimer's and breast cancer could be explained by changes in predicted splicing patterns. Conclusions We have developed SpliceScan II, an effective and sensitive tool for predicting the detrimental effects of genomic variants on splicing leading to Mendelian and complex hereditary disorders. The method could potentially be used to screen resequenced patient DNA to identify de novo mutations and polymorphic variants that could contribute to a genetic disorder.

  1. Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Kazushi Inoue

    2015-01-01

    Full Text Available Breast cancer (BC is the most common cause of cancer-related death among women under the age of 50 years. Established biomarkers, such as hormone receptors (estrogen receptor [ER]/progesterone receptor and human epidermal growth factor receptor 2 (HER2, play significant roles in the selection of patients for endocrine and trastuzumab therapies. However, the initial treatment response is often followed by tumor relapse with intrinsic resistance to the first-line therapy, so it has been expected to identify novel molecular markers to improve the survival and quality of life of patients. Alternative splicing of pre-messenger RNAs is a ubiquitous and flexible mechanism for the control of gene expression in mammalian cells. It provides cells with the opportunity to create protein isoforms with different, even opposing, functions from a single genomic locus. Aberrant alternative splicing is very common in cancer where emerging tumor cells take advantage of this flexibility to produce proteins that promote cell growth and survival. While a number of splicing alterations have been reported in human cancers, we focus on aberrant splicing of ER , HER2 , and CD44 genes from the viewpoint of BC development. ERα36 , a splice variant from the ER1 locus, governs nongenomic membrane signaling pathways triggered by estrogen and confers 4-hydroxytamoxifen resistance in BC therapy. The alternative spliced isoform of HER2 lacking exon 20 (Δ16HER2 has been reported in human BC; this isoform is associated with transforming ability than the wild-type HER2 and recapitulates the phenotypes of endocrine therapy-resistant BC. Although both CD44 splice isoforms ( CD44s , CD44v play essential roles in BC development, CD44v is more associated with those with favorable prognosis, such as luminal A subtype, while CD44s is linked to those with poor prognosis, such as HER2 or basal cell subtypes that are often metastatic. Hence, the detection of splice variants from these loci

  2. Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA decapping in neurodevelopment.

    Science.gov (United States)

    Ahmed, Iltaf; Buchert, Rebecca; Zhou, Mi; Jiao, Xinfu; Mittal, Kirti; Sheikh, Taimoor I; Scheller, Ute; Vasli, Nasim; Rafiq, Muhammad Arshad; Brohi, M Qasim; Mikhailov, Anna; Ayaz, Muhammad; Bhatti, Attya; Sticht, Heinrich; Nasr, Tanveer; Carter, Melissa T; Uebe, Steffen; Reis, André; Ayub, Muhammad; John, Peter; Kiledjian, Megerditch; Vincent, John B; Jamra, Rami Abou

    2015-06-01

    There are two known mRNA degradation pathways, 3' to 5' and 5' to 3'. We identified likely pathogenic variants in two genes involved in these two pathways in individuals with intellectual disability. In a large family with multiple branches, we identified biallelic variants in DCPS in three affected individuals; a splice site variant (c.636+1G>A) that results in an in-frame insertion of 45 nucleotides and a missense variant (c.947C>T; p.Thr316Met). DCPS decaps the cap structure generated by 3' to 5' exonucleolytic degradation of mRNA. In vitro decapping assays showed an ablation of decapping function for both variants in DCPS. In another family, we identified a homozygous mutation (c.161T>C; p.Phe54Ser) in EDC3 in two affected children. EDC3 stimulates DCP2, which decaps mRNAs at the beginning of the 5' to 3' degradation pathway. In vitro decapping assays showed that altered EDC3 is unable to enhance DCP2 decapping at low concentrations and even inhibits DCP2 decapping at high concentration. We show that individuals with biallelic mutations in these genes of seemingly central functions are viable and that these possibly lead to impairment of neurological functions linking mRNA decapping to normal cognition. Our results further affirm an emerging theme linking aberrant mRNA metabolism to neurological defects. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. A splice acceptor mutation in C. elegans daf-19/Rfx disrupts functional specialization of male-specific ciliated neurons but does not affect ciliogenesis.

    Science.gov (United States)

    Wells, Kristen L; Rowneki, Mazhgan; Killian, Darrell J

    2015-04-01

    RFX transcription factors are master regulators of ciliogenesis in diverse animal species. The sole Caenorhabditis elegans RFX homolog, DAF-19, plays at least two roles in the formation of functional cilia. The DAF-19(C) isoform is required for ciliogenesis and the DAF-19(M) isoform is required for the functional specialization of a subset of male-specific ciliated neurons called PKD neurons. Here we report the identification of a novel mutation, daf-19(sm129), which disrupts the functional specification of PKD neurons and thus suggests that daf-19m activity is compromised. However, ciliogenesis is not disrupted in daf-19(sm129) mutants suggesting that daf-19c activity is retained. The sm129 mutation disrupts a splice acceptor site adjacent to an exon common to the daf-19c and daf-19m isoforms resulting in aberrant splicing in a proportion of transcripts. While aberrant splicing of daf-19c to upstream cryptic sites results in in-frame and functional products, a large proportion of daf-19m mRNAs include the entire upstream intron, which introduces a frameshift and stop codons. At least 15% of disease-causing mutations affect splicing of the gene bearing the mutation, thus it is important to understand the consequences of splice site mutations on gene function. However, predicting the effects of a splice site mutation remains difficult and experimental determination is still required. Using daf-19(sm129) as a model, our results suggest that this problem is exacerbated when a splice acceptor mutation is used by multiple isoforms of the same gene because the effects on each isoform can be dramatically different. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Development of the NUMO pre-selection, site-specific safety case

    International Nuclear Information System (INIS)

    Fujiyama, Tetsuo; Suzuki, Satoru; Deguchi, Akira; Umeki, Hiroyuki

    2016-01-01

    Key conclusions: ◆ “The NUMO pre-selection, site-specific safety case” provides the basic structure for subsequent safety cases that will be applied to any selected site, emphasising practical approaches and methodology which will be applicable for the conditions/constraints during an actual siting process. ◆ The preliminary results of the design and safety assessment would underpin the feasibility and safety of geological disposal in Japan.

  5. Discovery of a mammalian splice variant of myostatin that stimulates myogenesis.

    Directory of Open Access Journals (Sweden)

    Ferenc Jeanplong

    Full Text Available Myostatin plays a fundamental role in regulating the size of skeletal muscles. To date, only a single myostatin gene and no splice variants have been identified in mammals. Here we describe the splicing of a cryptic intron that removes the coding sequence for the receptor binding moiety of sheep myostatin. The deduced polypeptide sequence of the myostatin splice variant (MSV contains a 256 amino acid N-terminal domain, which is common to myostatin, and a unique C-terminus of 65 amino acids. Western immunoblotting demonstrated that MSV mRNA is translated into protein, which is present in skeletal muscles. To determine the biological role of MSV, we developed an MSV over-expressing C2C12 myoblast line and showed that it proliferated faster than that of the control line in association with an increased abundance of the CDK2/Cyclin E complex in the nucleus. Recombinant protein made for the novel C-terminus of MSV also stimulated myoblast proliferation and bound to myostatin with high affinity as determined by surface plasmon resonance assay. Therefore, we postulated that MSV functions as a binding protein and antagonist of myostatin. Consistent with our postulate, myostatin protein was co-immunoprecipitated from skeletal muscle extracts with an MSV-specific antibody. MSV over-expression in C2C12 myoblasts blocked myostatin-induced Smad2/3-dependent signaling, thereby confirming that MSV antagonizes the canonical myostatin pathway. Furthermore, MSV over-expression increased the abundance of MyoD, Myogenin and MRF4 proteins (P<0.05, which indicates that MSV stimulates myogenesis through the induction of myogenic regulatory factors. To help elucidate a possible role in vivo, we observed that MSV protein was more abundant during early post-natal muscle development, while myostatin remained unchanged, which suggests that MSV may promote the growth of skeletal muscles. We conclude that MSV represents a unique example of intra-genic regulation in which a

  6. In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis.

    Science.gov (United States)

    Lim, Daniel A; Suárez-Fariñas, Mayte; Naef, Felix; Hacker, Coleen R; Menn, Benedicte; Takebayashi, Hirohide; Magnasco, Marcelo; Patil, Nila; Alvarez-Buylla, Arturo

    2006-01-01

    Neural stem cells and neurogenesis persist in the adult mammalian brain subventricular zone (SVZ). Cells born in the rodent SVZ migrate to the olfactory bulb (Ob) where they differentiate into interneurons. To determine the gene expression and functional profile of SVZ neurogenesis, we performed three complementary sets of transcriptional analysis experiments using Affymetrix GeneChips: (1) comparison of adult mouse SVZ and Ob gene expression profiles with those of the striatum, cerebral cortex, and hippocampus; (2) profiling of SVZ stem cells and ependyma isolated by fluorescent-activated cell sorting (FACS); and (3) analysis of gene expression changes during in vivo SVZ regeneration after anti-mitotic treatment. Gene Ontology (GO) analysis of data from these three separate approaches showed that in adult SVZ neurogenesis, RNA splicing and chromatin remodeling are biological processes as statistically significant as cell proliferation, transcription, and neurogenesis. In non-neurogenic brain regions, RNA splicing and chromatin remodeling were not prominent processes. Fourteen mRNA splicing factors including Sf3b1, Sfrs2, Lsm4, and Khdrbs1/Sam68 were detected along with 9 chromatin remodeling genes including Mll, Bmi1, Smarcad1, Baf53a, and Hat1. We validated the transcriptional profile data with Northern blot analysis and in situ hybridization. The data greatly expand the catalogue of cell cycle components, transcription factors, and migration genes for adult SVZ neurogenesis and reveal RNA splicing and chromatin remodeling as prominent biological processes for these germinal cells.

  7. Language study on Spliced Semigraph using Folding techniques

    Science.gov (United States)

    Thiagarajan, K.; Padmashree, J.

    2018-04-01

    In this paper, we proposed algorithm to identify cut vertices and cut edges for n-Cut Spliced Semigraph and splicing the n-Cut Spliced Semigraph using cut vertices else cut edges or combination of cut vertex and cut edge and applying sequence of folding to the spliced semigraph to obtain the semigraph quadruple η(S)=(2, 1, 1, 1). We observed that the splicing and folding using both cut vertices and cut edges is applicable only for n-Cut Spliced Semigraph where n > 2. Also, we transformed the spliced semigraph into tree structure and studied the language for the semigraph with n+2 vertices and n+1 semivertices using Depth First Edge Sequence algorithm and obtain the language structure with sequence of alphabet ‘a’ and ‘b’.

  8. Axonal transport of TDP-43 mRNA granules in neurons is impaired by ALS-causing mutations

    Science.gov (United States)

    Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S. W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan; Shaw, Christopher E.; Eggan, Kevin C.; Maniatis, Tom; Taylor, J. Paul

    2014-01-01

    Summary The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. Here we show that TDP-43 forms cytoplasmic mRNP granules that undergo bidirectional, microtubule-dependent transport in neurons in vitro and in vivo and facilitate delivery of target mRNA to distal neuronal compartments. TDP-43 mutations impair this mRNA transport function in vivo and in vitro, including in stem cell-derived motor neurons from ALS patients bearing any one of three different TDP-43 ALS-causing mutations. Thus, TDP43 mutations that cause ALS lead to partial loss of a novel cytoplasmic function of TDP-43. PMID:24507191

  9. The connection between splicing and cancer

    OpenAIRE

    Srebrow, Anabella; Kornblihtt, Alberto Rodolfo

    2017-01-01

    Alternative splicing is a crucial mechanism for generating protein diversity. Different splice variants of a given protein can display different and even antagonistic biological functions. Therefore, appropriate control of their synthesis is required to assure the complex orchestration of cellular processes within multicellular organisms. Mutations in cisacting splicing elements or changes in the activity of regulatory proteins that compromise the accuracy of either constitutive or alternativ...

  10. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data.

    Science.gov (United States)

    Shen, Shihao; Park, Juw Won; Lu, Zhi-xiang; Lin, Lan; Henry, Michael D; Wu, Ying Nian; Zhou, Qing; Xing, Yi

    2014-12-23

    Ultra-deep RNA sequencing (RNA-Seq) has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We previously developed multivariate analysis of transcript splicing (MATS), a statistical method for detecting differential alternative splicing between two RNA-Seq samples. Here we describe a new statistical model and computer program, replicate MATS (rMATS), designed for detection of differential alternative splicing from replicate RNA-Seq data. rMATS uses a hierarchical model to simultaneously account for sampling uncertainty in individual replicates and variability among replicates. In addition to the analysis of unpaired replicates, rMATS also includes a model specifically designed for paired replicates between sample groups. The hypothesis-testing framework of rMATS is flexible and can assess the statistical significance over any user-defined magnitude of splicing change. The performance of rMATS is evaluated by the analysis of simulated and real RNA-Seq data. rMATS outperformed two existing methods for replicate RNA-Seq data in all simulation settings, and RT-PCR yielded a high validation rate (94%) in an RNA-Seq dataset of prostate cancer cell lines. Our data also provide guiding principles for designing RNA-Seq studies of alternative splicing. We demonstrate that it is essential to incorporate biological replicates in the study design. Of note, pooling RNAs or merging RNA-Seq data from multiple replicates is not an effective approach to account for variability, and the result is particularly sensitive to outliers. The rMATS source code is freely available at rnaseq-mats.sourceforge.net/. As the popularity of RNA-Seq continues to grow, we expect rMATS will be useful for studies of alternative splicing in diverse RNA-Seq projects.

  11. The nuclear receptor ERβ engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading.

    Science.gov (United States)

    Tarallo, Roberta; Giurato, Giorgio; Bruno, Giuseppina; Ravo, Maria; Rizzo, Francesca; Salvati, Annamaria; Ricciardi, Luca; Marchese, Giovanna; Cordella, Angela; Rocco, Teresa; Gigantino, Valerio; Pierri, Biancamaria; Cimmino, Giovanni; Milanesi, Luciano; Ambrosino, Concetta; Nyman, Tuula A; Nassa, Giovanni; Weisz, Alessandro

    2017-10-06

    The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERβ) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERβ in gene regulation, we identify AGO2 as a novel partner of ERβ in human BC cells. ERβ-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERβ binding sites, and total and nascent RNA-Seq in ERβ + vs ERβ - cells, and before and after AGO2 knock-down in ERβ + cells, reveals a widespread involvement of this factor in ERβ-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERβ-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERβ, indicating that both factors are endowed with multiple roles in the control of key cellular functions.

  12. Recurrent Hyperparathyroidism Due to a Novel CDC73 Splice Mutation.

    Science.gov (United States)

    Hattangady, Namita Ganesh; Wilson, Tremika Le-Shan; Miller, Barbra Sue; Lerario, Antonio Marcondes; Giordano, Thomas James; Choksi, Palak; Else, Tobias

    2017-08-01

    The recognition of hereditary causes of primary hyperparathyroidism (pHPT) is important because clinical care and surveillance differ significantly between sporadic and hereditary pHPT. In addition, the increasing number of genetic tests poses a challenge to classify mutations as benign or pathogenic. Functional work-up of variants remains a mainstay to provide evidence for pathogenicity. We describe a 52-year-old male patient with recurrent pHPT since age 35 years. Despite several neck surgeries with complete parathyroidectomy, he experienced persistent pHPT, necessitating repeated surgery for a forearm autotransplant, which finally resulted in unmeasurable parathyroid hormone (PTH) levels. Genetic testing revealed a new CDC73 variant (c.238-8G>A [IVS2-8G>A]), initially classified as a variant of uncertain significance. Parathyroid tissue from the initial surgeries showed loss of heterozygosity. Using an RT-PCR approach, we show that the mutation leads to the use of a cryptic splice site in peripheral mononuclear cells. In addition, a minigene approach confirms the use of the cryptic splice site in a heterologous cell system. The novel c.238-8G>A CDC73 variant activates a cryptic splice site, and the functional data provided justify the classification as a likely pathogenic variant. Our results underscore the importance of functional work-up for variant classification in the absence of other available data, such as presence in disease-specific databases, other syndromic clinical findings, or family history. In addition, the presented case exemplifies the importance to consider a hereditary condition in young patients with pHPT, particularly those with multi-gland involvement. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  13. Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation.

    Science.gov (United States)

    Neve, Jonathan; Burger, Kaspar; Li, Wencheng; Hoque, Mainul; Patel, Radhika; Tian, Bin; Gullerova, Monika; Furger, Andre

    2016-01-01

    Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3' UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type-specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3' UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice. © 2016 Neve et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Temporal regulation of HTLV-2 expression in infected cell lines and patients: evidence for distinct expression kinetics with nuclear accumulation of APH-2 mRNA

    Directory of Open Access Journals (Sweden)

    Bender Cecilia

    2012-09-01

    Full Text Available Abstract Background Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2 are delta retroviruses with similar genetic organization. Although both viruses immortalize T-cells in vitro, they exhibit distinct pathogenic potential in vivo. To search for possible differences in its expression strategy with respect to HTLV-1, we investigated the pattern of HTLV-2 expression in infected cell lines and peripheral blood mononuclear cells (PBMCs from infected patients using splice site-specific quantitative RT-PCR. Findings A novel alternative splice acceptor site for exon 2 was identified; its usage in env transcripts was found to be subtype-specific. Time-course analysis revealed a two-phase expression kinetics in an infected cell line and in PBMCs of two of the three patients examined; this pattern was reminiscent of HTLV-1. In addition, the minus-strand APH2 transcript was mainly detected in the nucleus, a feature that was similar to its HTLV-1 orthologue HBZ. In contrast to HTLV-1, expression of the mRNA encoding the main regulatory proteins Tax and Rex and that of the mRNAs encoding the p28 and truncated Rex inhibitors is skewed towards p28/truncated Rex inhibitors in HTLV-2. Conclusion Our data suggest a general converging pattern of expression of HTLV-2 and HTLV-1 and highlight peculiar differences in the expression of regulatory proteins that might influence the pathobiology of these viruses.

  15. Protein trans-splicing of multiple atypical split inteins engineered from natural inteins.

    Directory of Open Access Journals (Sweden)

    Ying Lin

    Full Text Available Protein trans-splicing by split inteins has many uses in protein production and research. Splicing proteins with synthetic peptides, which employs atypical split inteins, is particularly useful for site-specific protein modifications and labeling, because the synthetic peptide can be made to contain a variety of unnatural amino acids and chemical modifications. For this purpose, atypical split inteins need to be engineered to have a small N-intein or C-intein fragment that can be more easily included in a synthetic peptide that also contains a small extein to be trans-spliced onto target proteins. Here we have successfully engineered multiple atypical split inteins capable of protein trans-splicing, by modifying and testing more than a dozen natural inteins. These included both S1 split inteins having a very small (11-12 aa N-intein fragment and S11 split inteins having a very small (6 aa C-intein fragment. Four of the new S1 and S11 split inteins showed high efficiencies (85-100% of protein trans-splicing both in E. coli cells and in vitro. Under in vitro conditions, they exhibited reaction rate constants ranging from ~1.7 × 10(-4 s(-1 to ~3.8 × 10(-4 s(-1, which are comparable to or higher than those of previously reported atypical split inteins. These findings should facilitate a more general use of trans-splicing between proteins and synthetic peptides, by expanding the availability of different atypical split inteins. They also have implications on understanding the structure-function relationship of atypical split inteins, particularly in terms of intein fragment complementation.

  16. Effect of confinement on bond strength of hot-dip galvanized lap splices in concrete structures

    International Nuclear Information System (INIS)

    Fakhran, Mazen

    2004-01-01

    Galvanizing the reinforcing steel is one of the methods used to protect bars against corrosion. Galvanizing is a hot dip process where the reinforcing bars are immersed in an aqueous pre flux solution of zinc ammonium chloride at a controlled temperature between 840 and 850 degrees F. In 2001, a research program was started at AUB to evaluate experimentally the effect of hot dip galvanizing on the bond capacity of tension lap splices anchored in full-scale beam specimens designed to fail in bond splitting mode. The test results indicated that the use of galvanized bars had a negligible effect on bond strength of reinforcement in normal strength. However, galvanizing caused an average of 20 percent decrease in bond strength of reinforcement in high strength concrete. The primary objective of research reported in this thesis, is the need to find a solution to eliminate the bond reduction of galvanized bars in high strength concrete. It is significant to evaluate the positive effect of the addition of transverse reinforcement in the splice region. The hypothesis to be tested is that such transverse reinforcement will insure uniform bond stress distribution over the entire splice region, thus mobilizing all bar lugs along the splice in the stress transfer mechanism between the bar and the surrounding concrete. Such mechanism might reduce the significant decrease in bond strength in high strength concrete due to galvanizing. To achieve this objective, eighteen full-scale beam specimens were tested in positive bending. Each beam was reinforced with bars spliced in a constant moment region at midspam. The splice length was chosen in such a way that the beams failed in bond splitting of the concrete cover in the splice region. The main variables were type of coating (black or galvanized bars), bar size (20, 25 and 32 mm), and amount of transverse reinforcement in the splice region (0, 2 or 4 stirrups). The test results indicated that confinement did not have a significant

  17. A splice site mutation in a gene encoding for PDK4, a mitochondrial protein, is associated with the development of dilated cardiomyopathy in the Doberman pinscher.

    Science.gov (United States)

    Meurs, Kathryn M; Lahmers, Sunshine; Keene, Bruce W; White, Stephen N; Oyama, Mark A; Mauceli, Evan; Lindblad-Toh, Kerstin

    2012-08-01

    Familial dilated cardiomyopathy is a primary myocardial disease that can result in the development of congestive heart failure and sudden cardiac death. Spontaneous animal models of familial dilated cardiomyopathy exist and the Doberman pinscher dog is one of the most commonly reported canine breeds. The objective of this study was to evaluate familial dilated cardiomyopathy in the Doberman pinscher dog using a genome-wide association study for a genetic alteration(s) associated with the development of this disease in this canine model. Genome-wide association analysis identified an area of statistical significance on canine chromosome 14 (p(raw) = 9.999e-05 corrected for genome-wide significance), fine-mapping of additional SNPs flanking this region localized a signal to 23,774,190-23,781,919 (p = 0.001) and DNA sequencing identified a 16-base pair deletion in the 5' donor splice site of intron 10 of the pyruvate dehydrogenase kinase 4 gene in affected dogs (p dilation, marked pleomorphic mitochondrial alterations with megamitochondria, scattered mitochondria with whorling and vacuolization and mild aggregates of lipofuscin granules. In conclusion, we report the identification of a splice site deletion in the PDK4 gene that is associated with the development of familial dilated cardiomyopathy in the Doberman pinscher dog.

  18. Thermopriming Triggers Splicing Memory in Arabidopsis

    KAUST Repository

    Ling, Yu

    2018-02-20

    Abiotic and biotic stresses limit crop productivity. Exposure to a non-lethal stress, referred to as priming, can allow plants to survive subsequent and otherwise lethal conditions; the priming effect persists even after a prolonged stress-free period. However, the molecular mechanisms underlying priming are not fully understood. Here, we investigated the molecular basis of heat shock memory and the role of priming in Arabidopsisthaliana. Comprehensive analysis of transcriptome-wide changes in gene expression and alternative splicing in primed and non-primed plants revealed that alternative splicing functions as a novel component of heat shock memory. We show that priming of plants with a non-lethal heat stress results in de-repression of splicing after a second exposure to heat stress. By contrast, non-primed plants showed significant repression of splicing. These observations link ‘splicing memory’ to the ability of plants to survive subsequent and otherwise lethal heat stress. This newly discovered priming-induced splicing memory may represent a general feature of heat stress responses in plants and other organisms as many of the key components of heat shock responses are conserved among eukaryotes. Furthermore, this finding could facilitate the development of novel approaches to improve plant survival under extreme heat stress.

  19. Predicting human splicing branchpoints by combining sequence-derived features and multi-label learning methods.

    Science.gov (United States)

    Zhang, Wen; Zhu, Xiaopeng; Fu, Yu; Tsuji, Junko; Weng, Zhiping

    2017-12-01

    Alternative splicing is the critical process in a single gene coding, which removes introns and joins exons, and splicing branchpoints are indicators for the alternative splicing. Wet experiments have identified a great number of human splicing branchpoints, but many branchpoints are still unknown. In order to guide wet experiments, we develop computational methods to predict human splicing branchpoints. Considering the fact that an intron may have multiple branchpoints, we transform the branchpoint prediction as the multi-label learning problem, and attempt to predict branchpoint sites from intron sequences. First, we investigate a variety of intron sequence-derived features, such as sparse profile, dinucleotide profile, position weight matrix profile, Markov motif profile and polypyrimidine tract profile. Second, we consider several multi-label learning methods: partial least squares regression, canonical correlation analysis and regularized canonical correlation analysis, and use them as the basic classification engines. Third, we propose two ensemble learning schemes which integrate different features and different classifiers to build ensemble learning systems for the branchpoint prediction. One is the genetic algorithm-based weighted average ensemble method; the other is the logistic regression-based ensemble method. In the computational experiments, two ensemble learning methods outperform benchmark branchpoint prediction methods, and can produce high-accuracy results on the benchmark dataset.

  20. Increase of prolactin mRNA in the rat hypothalamus after intracerebroventricular injection of VIP or PACAP.

    Science.gov (United States)

    Bredow, S; Kacsóh, B; Obál, F; Fang, J; Krueger, J M

    1994-10-17

    Vasoactive intestinal peptide (VIP), the structurally homologous pituitary adenylate cyclase-activating peptide (PACAP) and the pituitary hormone, prolactin (PRL) enhance rapid eye movement sleep (REMS). VIP and PACAP are both inducers of PRL gene expression and release in the pituitary gland. Little is known about PRL regulation in the brain although it is hypothesized that the REMS-promoting activity of i.c.v. administered VIP may be mediated via the activation of cerebral PRL. To test whether VIP or PACAP in fact increase intracerebral mRNA, the peptides (VIP: 30 or 300 pmol; PACAP: 220 pmol) were injected i.c.v. into rats at dark onset. 1 h later, cDNA was synthesized from purified hypothalamic mRNA. Standardized amounts were analysed for PRL using the polymerase chain reaction followed by Southern blotting and hybridization. Compared with beta-actin mRNA levels, both VIP and PACAP increased PRL mRNA levels in a dose-dependent fashion though VIP was more effective on a molar basis. The previously reported alternatively spliced PRL mRNA (lacking exon 4) was not detected. The data support the hypothesis that the REMS-promoting activity of central VIP and PACAP might be mediated by cerebral PRL.

  1. Investigations into the binding affinities of different human 5-HT4 receptor splice variants.

    Science.gov (United States)

    Irving, Helen R; Tochon-Danguy, Nathalie; Chinkwo, Kenneth A; Li, Jian G; Grabbe, Carmen; Shapiro, Marina; Pouton, Colin W; Coupar, Ian M

    2010-01-01

    This study examined whether the drug-receptor-binding sites of 5 selected human 5-HT(4) receptor splice variants [h5-HT4(a), h5-HT4(b), h5-HT4(c), h5-HT4(d) and h5-HT4(g)] display preferential affinities towards agonists. The agonists selected on the basis of chemical diversity and clinical relevance were: 5-HT4 benzamides, renzapride, zacopride and prucalopride; the benzimidazolones, DAU 6236 and BIMU 1; the aromatic ketone, RS67333, and the indole carbazimidamide tegaserod. The rank order of affinities ranging across the splice variants was: tegaserod (pKi: 7.38-7.91) > or = Y-36912 (pKi: 7.03-7.85) = BIMU 1 (pKi: 6.92-7.78) > or = DAU 6236 (pKi: 6.79-7.99) > or = 5-HT (pKi: 5.82-7.29) > or = 5-MeOT (pKi: 5.64-6.83) > or = renzapride (pKi: 4.85-5.56). We obtained affinity values for the 5-HT4(b), (d) and (g) variants for RS67333 (pKi: 7:48-8.29), prucalopride (pKi: 6.86-7.37) and zacopride (pKi: 5.88-7.0). These results indicate that the ligands interact with the same conserved site in each splice variant. Some splice variants have a higher affinity for certain agonists and the direction of selectivity followed a common trend of lowest affinity at the (d) variant. However, this trend was not evident in functional experiments. Our findings suggest that it may be possible to design splice variant selective ligands, which may be of relevance for experimental drugs but may be difficult to develop clinically. 2010 S. Karger AG, Basel.

  2. Expression of REST4 in human gliomas in vivo and influence of pioglitazone on REST in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Huan [Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008 (China); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078 (China); Gao, Zhangfeng [Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410008 (China); Wu, Nayiyuan; Zeng, Liu; Tang, Xinyue; Chen, Xiaoping; Liu, Zhaoqian; Zhang, Wei; Wang, Liansheng [Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008 (China); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078 (China); Li, Zhi, E-mail: lizhi489@163.com [Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008 (China); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078 (China)

    2015-08-07

    The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) has an irreplaceable role during the differentiation of neurons. REST has multiple splice variants which link to various types of cancer. Previous work had highlighted the role of REST in glioma, where the expression of REST is enhanced. But whether alternative splicing of REST is expressed in glioma has not been described. Here, we show that a specific isoform REST4 is expressed in glioma specimens, and will influence the mRNA level of REST in vivo. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists have a role of antineoplastic in various tumor cells, which including glioma cells. Moreover, study indicated that PPARγ agonist pioglitazone can promote alternative splicing of REST pre-mRNA. In this study, we selected pioglitazone as a tool drug to explore whether the role of pioglitazone in anti-glioma is mediated by regulating REST expression or promoting alternative splicing of REST in glioma cells. Results show that pioglitazone can inhibit proliferation and induce apoptosis of glioma cell in vitro, which may be mediated by down-regulating REST mRNA level but not by inducing alternative splicing of REST pre-mRNA. Our study firstly reports the expression of REST4 in glioma tissue samples. And we recommend that pioglitazone, which can reduce the expression level of REST, represents a promising drug for therapy of glioma. - Highlights: • A specific isoform REST4 is expressed in glioma specimens in vivo. • REST4 will influence the mRNA level of REST in vivo. • Pioglitazone can inhibit proliferation and induce apoptosis of glioma cells. • The role of pioglitazone in anti-glioma may be mediated by down-regulating REST.

  3. Expression of REST4 in human gliomas in vivo and influence of pioglitazone on REST in vitro

    International Nuclear Information System (INIS)

    Ren, Huan; Gao, Zhangfeng; Wu, Nayiyuan; Zeng, Liu; Tang, Xinyue; Chen, Xiaoping; Liu, Zhaoqian; Zhang, Wei; Wang, Liansheng; Li, Zhi

    2015-01-01

    The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) has an irreplaceable role during the differentiation of neurons. REST has multiple splice variants which link to various types of cancer. Previous work had highlighted the role of REST in glioma, where the expression of REST is enhanced. But whether alternative splicing of REST is expressed in glioma has not been described. Here, we show that a specific isoform REST4 is expressed in glioma specimens, and will influence the mRNA level of REST in vivo. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists have a role of antineoplastic in various tumor cells, which including glioma cells. Moreover, study indicated that PPARγ agonist pioglitazone can promote alternative splicing of REST pre-mRNA. In this study, we selected pioglitazone as a tool drug to explore whether the role of pioglitazone in anti-glioma is mediated by regulating REST expression or promoting alternative splicing of REST in glioma cells. Results show that pioglitazone can inhibit proliferation and induce apoptosis of glioma cell in vitro, which may be mediated by down-regulating REST mRNA level but not by inducing alternative splicing of REST pre-mRNA. Our study firstly reports the expression of REST4 in glioma tissue samples. And we recommend that pioglitazone, which can reduce the expression level of REST, represents a promising drug for therapy of glioma. - Highlights: • A specific isoform REST4 is expressed in glioma specimens in vivo. • REST4 will influence the mRNA level of REST in vivo. • Pioglitazone can inhibit proliferation and induce apoptosis of glioma cells. • The role of pioglitazone in anti-glioma may be mediated by down-regulating REST

  4. The hnRNP 2H9 gene, which is involved in the splicing reaction, is a multiply spliced gene

    DEFF Research Database (Denmark)

    Honoré, B

    2000-01-01

    The hnRNP 2H9 gene products are involved in the splicing process and participate in early heat shock-induced splicing arrest. By combining low/high stringency hybridisation, database search, Northern and Western blotting it is shown that the gene is alternatively spliced into at least six...

  5. Over-expression of SR-cyclophilin, an interaction partner of nuclear pinin, releases SR family splicing factors from nuclear speckles

    International Nuclear Information System (INIS)

    Lin, C.-L.; Leu, Steve; Lu, M.-C.; Ouyang Pin

    2004-01-01

    Pre-mRNA splicing takes place within a dynamic ribonucleoprotein particle called the spliceosome and occurs in an ordered pathway. Although it is known that spliceosome consists of five small nuclear RNAs and at least 50 proteins, little is known about how the interaction among the proteins changes during splicing. Here we identify that SR-cyp, a Moca family of nuclear cyclophilin, interacts and colocalizes with nuclear pinin (pnn), a SR-related protein involving in pre-mRNA splicing. Nuclear pnn interacts with SR-cyp via its C-terminal RS domain. Upon SR-cyp over-expression, however, the subnuclear distribution of nuclear pnn is altered, resulting in its redistribution from nuclear speckles to a diffuse nucleoplasmic form. The diffuse subnuclear distribution of nuclear pnn is not due to epitope masking, accelerated protein turnover or post-translational modification. Furthermore, we find that SR-cyp regulates the subnuclear distribution of other SR family proteins, including SC35 and SRm300, in a similar manner as it does on nuclear pnn. This result is significant because it suggests that SR-cyp plays a general role in modulating the distribution pattern of SR-like and SR proteins, similar to that of Clk (cdc2-like kinase)/STY on SR family splicing factors. SR-cyp might direct its effect via either alteration of protein folding/conformation or of protein-protein interaction and thus may add another control level of regulation of SR family proteins and modification of their functions

  6. NMR studies of two spliced leader RNAs using isotope labeling

    Energy Technology Data Exchange (ETDEWEB)

    Lapham, J.; Crothers, D.M. [Yale Univ., New Haven, CT (United States)

    1994-12-01

    Spliced leader RNAs are a class of RNA molecules (<200 nts) involved in the trans splicing of messenger RNA found in trypanosomes, nematodes, and other lower eukaryotes. The spliced leader RNA from the trypanosome Leptomonas Collosoma exists in two alternate structural forms with similar thermal stabilities. The 54 nucleotides on the 5{prime} end of the SL molecule is structurally independent from the 3{prime} half of the RNA, and displays the two structural forms. Furthermore, the favored of the two structures was shown to contain anomalous nuclease sensitivity and thermal stability features, which suggests that there may be tertiary interactions between the splice site and other nucleotides in the 5{prime} end. Multidimensional NMR studies are underway to elucidate the structural elements present in the SL RNAs that give rise to their physical properties. Two spliced leader sequences have been studied. The first, the 54 nucleotides on the 5{prime} end of the L. Collosoma sequence, was selected because of earlier studies in our laboratory. The second sequence is the 5{prime} end of the trypanosome Crithidia Fasciculata, which was chosen because of its greater sequence homology to other SL sequences. Given the complexity of the NMR spectra for RNA molecules of this size, we have incorporated {sup 15}N/{sup 13}C-labeled nucleotides into the RNA. One of the techniques we have developed to simplify the spectra of these RNA molecules is isotope labeling of specific regions of the RNA. This has been especially helpful in assigning the secondary structure of molecules that may be able to adopt multiple conformations. Using this technique one can examine a part of the molecule without spectral interference from the unlabeled portion. We hope this approach will promote an avenue for studying the structure of larger RNAs in their native surroundings.

  7. CIR, a corepressor of CBF1, binds to PAP-1 and effects alternative splicing

    International Nuclear Information System (INIS)

    Maita, Hiroshi; Kitaura, Hirotake; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M.M.

    2005-01-01

    We have reported that PAP-1, a product of a causative gene for autosomal retinitis pigmentosa, plays a role in splicing. In this study, CIR, a protein originally identified as a CBF1-interacting protein and reported to act as a transcriptional corepressor, was identified as a PAP-1 binding protein and its function as a splicing factor was investigated. In addition to a basic lysine and acidic serine-rich (BA) domain and a zinc knuckle-like motif, CIR has an arginine/serine dipeptide repeat (RS) domain in its C terminal region. The RS domain has been reported to be present in the superfamily of SR proteins, which are involved in splicing reactions. We generated CIR mutants with deletions of each BA and RS domain and studied their subcellular localizations and interactions with PAP-1 and other SR proteins, including SC35, SF2/ASF, and U2AF 35 . CIR was found to interact with U2AF 35 through the BA domain, with SC35 and SF2/ASF through the RS domain, and with PAP-1 outside the BA domain in vivo and in vitro. CIR was found to be colocalized with SC35 and PAP-1 in nuclear speckles. Then the effect of CIR on splicing was investigated using the E1a minigene as a reporter in HeLa cells. Ectopic expression of CIR with the E1a minigene changed the ratio of spliced isoforms of E1a that were produced by alternative selection of 5'-splice sites. These results indicate that CIR is a member of the family of SR-related proteins and that CIR plays a role in splicing regulation

  8. Capacity of columns with splice imperfections

    International Nuclear Information System (INIS)

    Popov, E.P.; Stephen, R.M.

    1977-01-01

    To study the behavior of spliced columns subjected to tensile forces simulating situations which may develop in an earthquake, all of the spliced specimens were tested to failure in tension after first having been subjected to large compressive loads. The results of these tests indicate that the lack of perfect contact at compression splices of columns may not be important, provided that the gaps are shimmed and welding is used to maintain the sections in alignment

  9. Splicing pattern - ASTRA | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us ASTRA Splicing pattern Data detail Data name Splicing pattern DOI 10.18908/lsdba.nbdc00371-0...04 Description of data contents The patterns of alternative splicing/transcriptional initiation Data file Fi...le name: astra_splicing_pattern.zip File URL: ftp://ftp.biosciencedbc.jp/archive/astra/LATEST/astra_splicing_patt...ogodb/view/astra_splicing_pattern#en Data acquisition method For the five organisms (H. sapiens, M. musculus...apping data into bit arrays, detection of splicing patterns and distribution to t

  10. A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts.

    Science.gov (United States)

    Asakura, Yukari; Barkan, Alice

    2007-12-01

    The CRM domain is a recently recognized RNA binding domain found in three group II intron splicing factors in chloroplasts, in a bacterial protein that associates with ribosome precursors, and in a family of uncharacterized proteins in plants. To elucidate the functional repertoire of proteins with CRM domains, we studied CFM2 (for CRM Family Member 2), which harbors four CRM domains. RNA coimmunoprecipitation assays showed that CFM2 in maize (Zea mays) chloroplasts is associated with the group I intron in pre-trnL-UAA and group II introns in the ndhA and ycf3 pre-mRNAs. T-DNA insertions in the Arabidopsis thaliana ortholog condition a defective-seed phenotype (strong allele) or chlorophyll-deficient seedlings with impaired splicing of the trnL group I intron and the ndhA, ycf3-int1, and clpP-int2 group II introns (weak alleles). CFM2 and two previously described CRM proteins are bound simultaneously to the ndhA and ycf3-int1 introns and act in a nonredundant fashion to promote their splicing. With these findings, CRM domain proteins are implicated in the activities of three classes of catalytic RNA: group I introns, group II introns, and 23S rRNA.

  11. High-Resolution RNA Maps Suggest Common Principles of Splicing and Polyadenylation Regulation by TDP-43

    Directory of Open Access Journals (Sweden)

    Gregor Rot

    2017-05-01

    Full Text Available Many RNA-binding proteins (RBPs regulate both alternative exons and poly(A site selection. To understand their regulatory principles, we developed expressRNA, a web platform encompassing computational tools for integration of iCLIP and RNA motif analyses with RNA-seq and 3′ mRNA sequencing. This reveals at nucleotide resolution the “RNA maps” describing how the RNA binding positions of RBPs relate to their regulatory functions. We use this approach to examine how TDP-43, an RBP involved in several neurodegenerative diseases, binds around its regulated poly(A sites. Binding close to the poly(A site generally represses, whereas binding further downstream enhances use of the site, which is similar to TDP-43 binding around regulated exons. Our RNAmotifs2 software also identifies sequence motifs that cluster together with the binding motifs of TDP-43. We conclude that TDP-43 directly regulates diverse types of pre-mRNA processing according to common position-dependent principles.

  12. Aberrant splicing in transgenes containing introns, exons, and V5 epitopes: lessons from developing an FSHD mouse model expressing a D4Z4 repeat with flanking genomic sequences.

    Directory of Open Access Journals (Sweden)

    Eugénie Ansseau

    Full Text Available The DUX4 gene, encoded within D4Z4 repeats on human chromosome 4q35, has recently emerged as a key factor in the pathogenic mechanisms underlying Facioscapulohumeral muscular dystrophy (FSHD. This recognition prompted development of animal models expressing the DUX4 open reading frame (ORF alone or embedded within D4Z4 repeats. In the first published model, we used adeno-associated viral vectors (AAV and strong viral control elements (CMV promoter, SV40 poly A to demonstrate that the DUX4 cDNA caused dose-dependent toxicity in mouse muscles. As a follow-up, we designed a second generation of DUX4-expressing AAV vectors to more faithfully genocopy the FSHD-permissive D4Z4 repeat region located at 4q35. This new vector (called AAV.D4Z4.V5.pLAM contained the D4Z4/DUX4 promoter region, a V5 epitope-tagged DUX4 ORF, and the natural 3' untranslated region (pLAM harboring two small introns, DUX4 exons 2 and 3, and the non-canonical poly A signal required for stabilizing DUX4 mRNA in FSHD. AAV.D4Z4.V5.pLAM failed to recapitulate the robust pathology of our first generation vectors following delivery to mouse muscle. We found that the DUX4.V5 junction sequence created an unexpected splice donor in the pre-mRNA that was preferentially utilized to remove the V5 coding sequence and DUX4 stop codon, yielding non-functional DUX4 protein with 55 additional residues on its carboxyl-terminus. Importantly, we further found that aberrant splicing could occur in any expression construct containing a functional splice acceptor and sequences resembling minimal splice donors. Our findings represent an interesting case study with respect to AAV.D4Z4.V5.pLAM, but more broadly serve as a note of caution for designing constructs containing V5 epitope tags and/or transgenes with downstream introns and exons.

  13. High-Risk Human Papillomavirus (hrHPV) E6/E7 mRNA Testing by PreTect HPV-Proofer for Detection of Cervical High-Grade Intraepithelial Neoplasia and Cancer among hrHPV DNA-Positive Women with Normal Cytology

    Science.gov (United States)

    Rijkaart, D. C.; Heideman, D. A. M.; Coupe, V. M. H.; Brink, A. A. T. P.; Verheijen, R. H. M.; Skomedal, H.; Karlsen, F.; Morland, E.; Snijders, P. J. F.

    2012-01-01

    Our aim was to investigate whether high-risk HPV (hrHPV) mRNA detection by PreTect HPV-Proofer can be used to stratify hrHPV DNA-positive women of different cytology classes for risk of high-grade cervical intraepithelial neoplasia or worse (cervical precancer or cancer, i.e., cervical intraepithelial neoplasia grade 2 or higher [≥CIN2]). A total of 375 women participating in population-based screening, with a GP5+/6+-PCR hrHPV DNA-positive cervical scrape with normal cytology (n = 202), borderline or mild dyskaryosis (BMD) (n = 88), or moderate dyskaryosis or worse (>BMD) (n = 85), were enrolled. Cervical scrapes were additionally subjected to HPV16/18/31/33/45 E6/E7 mRNA analysis by PreTect HPV-Proofer (mRNA test). Referral and follow-up policies were based on cytology, hrHPV DNA, and mRNA testing. The primary study endpoint was the number of ≥CIN2 detected within 3 years of follow-up. The mRNA positivity increased with the severity of cytological abnormality, ranging from 32% (64/202) in hrHPV DNA-positive women with normal cytology to 47% (41/88) in BMD and 68% (58/85) in >BMD groups (P cytology, i.e., 0.55 (95% confidence interval [95% CI], 0.34 to 0.76) in mRNA-positive versus 0.20 (95% CI, 0.07 to 0.33) in mRNA-negative women. In hrHPV DNA-positive women with BMD or >BMD, the result of the mRNA test did not influence the ≥CIN2 risk. In conclusion, mRNA testing by PreTect HPV-Proofer might be of value to select hrHPV DNA-positive women with normal cytology in need of immediate referral for colposcopy. PMID:22553244

  14. Analysis of a FANCE Splice Isoform in Regard to DNA Repair.

    Science.gov (United States)

    Bouffard, Frédérick; Plourde, Karine; Bélanger, Simon; Ouellette, Geneviève; Labrie, Yvan; Durocher, Francine

    2015-09-25

    The FANC-BRCA DNA repair pathway is activated in response to interstrand crosslinks formed in DNA. A homozygous mutation in 1 of the 17 Fanconi anemia (FA) genes results in malfunctions of this pathway and development of FA syndrome. The integrity of this protein network is essential for good maintenance of DNA repair process and genome stability. Following the identification of an alternatively splice isoform of FANCE (Fanconi anemia complementation group E) significantly expressed in breast cancer individuals from high-risk non-BRCA1/2 families, we studied the impact of this FANCE splice isoform (FANCEΔ4) on DNA repair processes. We have demonstrated that FANCEΔ4 mRNA was efficiently translated into a functional protein and expressed in normal and breast cancer cell lines. Following treatment with the crosslinking agent mitomycin C, EUFA130 (FANCE-deficient) cells infected with FANCEΔ4 were blocked into G2/M phase, while cell survival was significantly reduced compared with FANCE-infected EUFA130 cells. In addition, FANCEΔ4 did not allow FANCD2 and FANCI monoubiquitination, which represents a crucial step of the FANC-BRCA functional pathway. As observed for FANCE wild-type protein, localization of FANCEΔ4 protein was confined to the nucleus following mitomycin C treatment. Although FANCEΔ4 protein showed interaction with FANCE, FANCEΔ4 did not support normal function of FANCE protein in this pathway and could have deleterious effects on FANCE protein activity. We have demonstrated that FANCEΔ4 seems to act as a regulator of FANCD2 protein expression level by promoting its degradation. This study highlights the importance of an efficient regulation of alternative splicing expression of FA genes for proper DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A homozygote splice site PMS2 mutation as cause of Turcot syndrome gives rise to two different abnormal transcripts.

    Science.gov (United States)

    Sjursen, Wenche; Bjørnevoll, Inga; Engebretsen, Lars F; Fjelland, Kristine; Halvorsen, Tore; Myrvold, Helge E

    2009-01-01

    Turcot syndrome is a rare, inherited disease predisposing of tumours in the central nerve system and in the colorectal system. This report describes a Turcot patient with an extraordinary clinical history. The patient is still alive at the age of 43. She was operated at the age of 10 by brain tumour and at the age of 16 by colorectal cancer. She has since then been treated for multiple cancers (gastrointestinal, endometrial, basal cell carcinomas), and removal of adenomatous polyps at several occasions. The aim of this work was to investigate if there was any specific genotype that explains her remarkable clinical history. Microsatellite instability and immunohistochemistry analysis for four DNA mismatch repair proteins were performed. DNA mutation analysis was done for genes involved in polyposis and mismatch repair by denaturing high performance liquid chromatography and sequencing. cDNA analysis was carried out for the mismatch repair gene PMS2. The patients genotype was found to be a homozygous splice site mutation in the PMS2 gene, c.989-1Gsplicing mutations.

  16. PGC1? ?1 Nucleosome Position and Splice Variant Expression and Cardiovascular Disease Risk in Overweight and Obese Individuals

    OpenAIRE

    Henagan, Tara M.; Stewart, Laura K.; Forney, Laura A.; Sparks, Lauren M.; Johannsen, Neil; Church, Timothy S.

    2014-01-01

    PGC1α, a transcriptional coactivator, interacts with PPARs and others to regulate skeletal muscle metabolism. PGC1α undergoes splicing to produce several mRNA variants, with the NTPGC1α variant having a similar biological function to the full length PGC1α (FLPGC1α). CVD is associated with obesity and T2D and a lower percentage of type 1 oxidative fibers and impaired mitochondrial function in skeletal muscle, characteristics determined by PGC1α expression. PGC1α expression is epigenetically re...

  17. Alternative splicing in cancers: From aberrant regulation to new therapeutics.

    Science.gov (United States)

    Song, Xiaowei; Zeng, Zhenyu; Wei, Huanhuan; Wang, Zefeng

    2018-03-01

    Alternative splicing is one of the most common mechanisms for gene regulation in humans, and plays a vital role to increase the complexity of functional proteins. In this article, we seek to provide a general review on the relationships between alternative splicing and tumorigenesis. We briefly introduce the basic rules for regulation of alternative splicing, and discuss recent advances on dynamic regulation of alternative splicing in cancers by highlighting the roles of a variety of RNA splicing factors in tumorigenesis. We further discuss several important questions regarding the splicing of long noncoding RNAs and back-splicing of circular RNAs in cancers. Finally, we discuss the current technologies that can be used to manipulate alternative splicing and serve as potential cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana.

    Science.gov (United States)

    Howles, Paul A; Gebbie, Leigh K; Collings, David A; Varsani, Arvind; Broad, Ronan C; Ohms, Stephen; Birch, Rosemary J; Cork, Ann H; Arioli, Tony; Williamson, Richard E

    2016-05-01

    The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins.

  19. The Functional Impact of Alternative Splicing in Cancer.

    Science.gov (United States)

    Climente-González, Héctor; Porta-Pardo, Eduard; Godzik, Adam; Eyras, Eduardo

    2017-08-29

    Alternative splicing changes are frequently observed in cancer and are starting to be recognized as important signatures for tumor progression and therapy. However, their functional impact and relevance to tumorigenesis remain mostly unknown. We carried out a systematic analysis to characterize the potential functional consequences of alternative splicing changes in thousands of tumor samples. This analysis revealed that a subset of alternative splicing changes affect protein domain families that are frequently mutated in tumors and potentially disrupt protein-protein interactions in cancer-related pathways. Moreover, there was a negative correlation between the number of these alternative splicing changes in a sample and the number of somatic mutations in drivers. We propose that a subset of the alternative splicing changes observed in tumors may represent independent oncogenic processes that could be relevant to explain the functional transformations in cancer, and some of them could potentially be considered alternative splicing drivers (AS drivers). Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Splicing regulatory factors, ageing and age-related disease.

    Science.gov (United States)

    Latorre, Eva; Harries, Lorna W

    2017-07-01

    Alternative splicing is a co-transcriptional process, which allows for the production of multiple transcripts from a single gene and is emerging as an important control point for gene expression. Alternatively expressed isoforms often have antagonistic function and differential temporal or spatial expression patterns, yielding enormous plasticity and adaptability to cells and increasing their ability to respond to environmental challenge. The regulation of alternative splicing is critical for numerous cellular functions in both pathological and physiological conditions, and deregulated alternative splicing is a key feature of common chronic diseases. Isoform choice is controlled by a battery of splicing regulatory proteins, which include the serine arginine rich (SRSF) proteins and the heterogeneous ribonucleoprotein (hnRNP) classes of genes. These important splicing regulators have been implicated in age-related disease, and in the ageing process itself. This review will outline the important contribution of splicing regulator proteins to ageing and age-related disease. Copyright © 2017 Elsevier B.V. All rights reserved.