WorldWideScience

Sample records for pre-mirna processing enzyme

  1. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    are affected (in a positive or negative way) by the presence of the other enzymes and compounds in the media. In this thesis the concept of multi-enzyme in-pot term is adopted for processes that are carried out by the combination of enzymes in a single reactor and implemented at pilot or industrial scale...... features of the process and provides the information required to structure the process model by using a step-by-step procedure with the required tools and methods. In this way, this framework increases efficiency of the model development process with respect to time and resources needed (fast and effective....... In this way the model parameters that drives the main dynamic behavior can be identified and thus a better understanding of this type of processes. In order to develop, test and verify the methodology, three case studies were selected, specifically the bi-enzyme process for the production of lactobionic acid...

  2. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  3. Protein engineering of enzymes for process applications

    DEFF Research Database (Denmark)

    Woodley, John M

    2013-01-01

    opportunities will be targeted on modification to enable process application. This article discusses the challenges involved in enzyme modification focused on process requirements, such as the need to fulfill reaction thermodynamics, specific activity under the required conditions, kinetics at required...... concentrations, and stability. Finally, future research directions are discussed, including the integration of biocatalysis with neighboring chemical steps....

  4. Process for preparing multilayer enzyme coating on a fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  5. Nedd8 processing enzymes in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    O'Donoghue, Jean; Bech-Otschir, Dawadschargal; Larsen, Ida

    2013-01-01

    Conjugation of the ubiquitin-like modifier Nedd8 to cullins is critical for the function of SCF-type ubiquitin ligases and thus facilitates ubiquitin conjugation and ultimately degradation of SCF substrates, including several cell cycle regulators. Like ubiquitin, Nedd8 is produced as a precursor...... that must first be processed before it becomes active. In Saccharomyces cerevisiae this is carried out exclusively by the enzyme Yuh1....

  6. PROCESS FOR DUST-FREE ENZYME MANUFACTURE

    NARCIS (Netherlands)

    Andela, C.; Feijen, Jan; Dillissen, Marc

    1994-01-01

    New enzyme granules are provided with improved properties. The granules are based on core particles having a good pore size and pore size distribution to allow an enzyme solution to enter into the particle. Accordingly, the core material comprises the enzyme in liquid form, thus eliminating the

  7. The Amborella vacuolar processing enzyme family

    Directory of Open Access Journals (Sweden)

    Valérie ePoncet

    2015-08-01

    Full Text Available Most vacuolar proteins are synthesized on rough endoplasmic reticulum as proprotein precursors and then transported to the vacuoles, where they are converted into their respective mature forms by vacuolar processing enzymes (VPEs. In the case of the seed storage proteins, this process is of major importance, as it conditions the establishment of vigorous seedlings. Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type of seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013. In the present study, proteomic and genomic approaches were used to characterize the VPE family in this species. Three genes were found to encode VPEs in the Amborella’s genome. Phylogenetic analyses showed that the Amborella sequences grouped within two major clades of angiosperm VPEs, indicating that the duplication that generated the ancestors of these clades occurred before the most recent common ancestor of living angiosperms. A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella. An analysis of natural genetic variation for each of the three Amborella VPE genes revealed the absence of selective forces acting on intronic and exonic single-nucleotide polymorphisms among several natural Amborella populations of in New Caledonia.

  8. Enzymes- An Existing and Promising Tool of Food Processing Industry.

    Science.gov (United States)

    Ray, Lalitagauri; Pramanik, Sunita; Bera, Debabrata

    2016-01-01

    The enzyme catalyzed process technology has enormous potential in the food sectors as indicated by the recent patents studies. It is very well realized that the adaptation of the enzyme catalyzed process depends on the availability of enzyme in affordable prices. Enzymes may be used in different food sectors like dairy, fruits & vegetable processing, meat tenderization, fish processing, brewery and wine making, starch processing and many other. Commercially only a small number of enzymes are used because of several factors including instability of enzymes during processing and high cost. More and more enzymes for food technology are now derived from specially selected or genetically modified microorganisms grown in industrial scale fermenters. Enzymes with microbial source have commercial advantages of using microbial fermentation rather than animal and plant extraction to produce food enzymes. At present only a relatively small number of enzymes are used commercially in food processing. But the number is increasing day by day and field of application will be expanded more and more in near future. The purpose of this review is to describe the practical applications of enzymes in the field of food processing.

  9. Enzymes as Biocatalysts for Lipid-based Bioproducts Processing

    DEFF Research Database (Denmark)

    Cheong, Ling-Zhi; Guo, Zheng; Fedosov, Sergey

    2012-01-01

    Bioproducts are materials, chemicals and energy derived from renewable biological resources such as agriculture, forestry, and biologically-derived wastes. To date, the use of enzymes as biocatalysts for lipid-based bioproducts processing has shown marked increase. This is mainly due to the fact...... that cost benefit derived from enzymatic processing such as enzyme specificity, higher product purity and lesser or none toxic waste disposal has surpassed the cost of biocatalysts itself. This chapter provided insights into distinct enzymes characteristics essential in industrial processing especially...... enzymes kinetics. Understanding of enzyme kinetics is important especially in designing efficient reaction set-ups including type of bioreactors, reaction conditions and reusability of biocatalysts to ensure efficient running cost. A brief review of state-of-the-art in industrial applications of enzymes...

  10. Applications of Enzymes in Oil and Oilseed Processing

    DEFF Research Database (Denmark)

    Xu, Xuebing

    Enzymes, through the last 20-30 years research and development, have been widely explored for the uses in oil and oilseed processing. Following the conventional processing technology from oilseeds, the oil can be produced through pressing or solvent extraction. The crude oil is then refined to meet...... edible requirements. The oil can be also modified to meet functional or even nutritional needs. In each of those steps, enzymes have been used in industry successfully. For the oil processing stage, enzymes have been used to destroy the cell structure so that makes the oil release easier, where...... conventionally high temperature conditioning or cooking is necessary. The good story in industry is the fish oil and olive oil processing. Good quality and higher oil yield have been achieved through the use of enzymes in the processing stages. For the refining stage, the use of enzymes for degumming has...

  11. Enzyme technology for precision functional food ingredient processes

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2010-01-01

    modification of potato starch processing residues. Such targeted enzyme-catalyzed reactions provide new invention opportunities for designing functional foods with significant health benefits. The provision of well-defined naturally structured compounds can, moreover, assist in obtaining the much...

  12. Process for teating whey by enzymic hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nocquet, J L

    1980-01-01

    In the process lactose is converted into glucose and galactose, with demineralization to a level of at least 50%, before the hydrolysis. A bacteriologically stable hydrolysed whey is obtained and may be used in foods for human consumption.

  13. Enzyme clustering accelerates processing of intermediates through metabolic channeling

    Science.gov (United States)

    Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.

    2015-01-01

    We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299

  14. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  15. Recent Advances in Marine Enzymes for Biotechnological Processes.

    Science.gov (United States)

    Lima, R N; Porto, A L M

    In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds. © 2016 Elsevier Inc. All rights reserved.

  16. Enzyme Assay: An Investigative Approach to Enhance Science Process Skills

    Science.gov (United States)

    Vartak, Rekha; Ronad, Anupama; Ghanekar, Vikrant

    2013-01-01

    Scientific investigations play a vital role in teaching and learning the process of science. An investigative task that was developed for pre-university students is described here. The task involves extraction of an enzyme from a vegetable source and its detection by biochemical method. At the beginning of the experiment, a hypothesis is presented…

  17. Modeling physiological processes in plankton on enzyme kinetic principles

    Directory of Open Access Journals (Sweden)

    Ted Packard

    2004-04-01

    Full Text Available Many ecologically important chemical transformations in the ocean are controlled by biochemical enzyme reactions in plankton. Nitrogenase regulates the transformation of N2 to ammonium in some cyanobacteria and serves as the entryway for N2 into the ocean biosphere. Nitrate reductase controls the reduction of NO3 to NO2 and hence new production in phytoplankton. The respiratory electron transfer system in all organisms links the carbon oxidation reactions of intermediary metabolism with the reduction of oxygen in respiration. Rubisco controls the fixation of CO2 into organic matter in phytoplankton and thus is the major entry point of carbon into the oceanic biosphere. In addition to these, there are the enzymes that control CO2 production, NH4 excretion and the fluxes of phosphate. Some of these enzymes have been recognized and researched by marine scientists in the last thirty years. However, until recently the kinetic principles of enzyme control have not been exploited to formulate accurate mathematical equations of the controlling physiological expressions. Were such expressions available they would increase our power to predict the rates of chemical transformations in the extracellular environment of microbial populations whether this extracellular environment is culture media or the ocean. Here we formulate from the principles of bisubstrate enzyme kinetics, mathematical expressions for the processes of NO3 reduction, O2 consumption, N2 fixation, total nitrogen uptake.

  18. Proglobulin processing enzyme in vacuoles isolated from developing pumpkin cotyledons

    International Nuclear Information System (INIS)

    Hara-Nishimura, I.; Nishimura, M.

    1987-01-01

    The enzymic conversion of proglobulin to globulin catalyzed by the extracts of vacuoles isolated from developing pumpkin (Cucurbita sp. cv Kurokawa Amakuri Nankin) cotyledons was investigated. The endoplasmic reticulum fraction isolated from the developing cotyledons pulse-labeled with [ 35 S]methionine was shown to contain mainly the radiolabeled proglobulin, which was used as a substrate for assaying the proteolytic processing in vitro. The vacuolar extracts catalyzed the proteolytic processing of the proglobulin molecule to produce globulin containing two kinds of polypeptide chains, γ and δ. The pH optimum for the vacuole-mediated conversion was at pH 5.0. The proteolytic processing of proglobulin by the vacuolar extracts was inhibited in the presence of various thiol reagents, e.g. p-chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, Hg 2+ , and Cu 2+ , but not phenylmethylsulfonyl fluoride, EDTA, o-phenanthroline, leupeptin, antipain, pepstatin, chymostatin, or pumpkin trypsin inhibitor, and was activated in the presence of dithiothreitol and cysteine, indicating that the processing enzyme is a thiol protease. The suborganellar fractionation of the vacuoles showed that the processing activity was localized in the matrix fraction, but not in the membrane or crystalloid fractions. During the seed development, the enzyme was shown to increase, exhibiting the maximal activity at the late developmental stage. The matrix fraction of the protein bodies isolated from the dry castor bean (Ricinus communis) exhibited the processing activity toward the pumpkin proglobulin molecules in the same manner as that by the matrix fraction of pumpkin vacuoles

  19. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes: Targeted quantification of functional enzyme dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Qian, Wei-Jun [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Shi, Liang [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nelson, William C. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nicora, Carrie D. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Resch, Charles T. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Thompson, Christopher [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Yan, Sen [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Fredrickson, James K. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055 People' s Republic of China

    2017-07-13

    Microbially mediated biogeochemical processes are catalyzed by enzymes that control the transformation of carbon, nitrogen, and other elements in environment. The dynamic linkage between enzymes and biogeochemical species transformation has, however, rarely been investigated because of the lack of analytical approaches to efficiently and reliably quantify enzymes and their dynamics in soils and sediments. Herein, we developed a signature peptide-based technique for sensitively quantifying dissimilatory and assimilatory enzymes using nitrate-reducing enzymes in a hyporheic zone sediment as an example. Moreover, the measured changes in enzyme concentration were found to correlate with the nitrate reduction rate in a way different from that inferred from biogeochemical models based on biomass or functional genes as surrogates for functional enzymes. This phenomenon has important implications for understanding and modeling the dynamics of microbial community functions and biogeochemical processes in environments. Our results also demonstrate the importance of enzyme quantification for the identification and interrogation of those biogeochemical processes with low metabolite concentrations as a result of faster enzyme-catalyzed consumption of metabolites than their production. The dynamic enzyme behaviors provide a basis for the development of enzyme-based models to describe the relationship between the microbial community and biogeochemical processes.

  20. Enzyme technology for precision functional food ingredient processes.

    Science.gov (United States)

    Meyer, Anne S

    2010-03-01

    A number of naturally occurring dietary substances may exert physiological benefits. The production of enhanced levels or particularly tailored versions of such candidate functional compounds can be targeted by enzymatic catalysis. The recent literature contains examples of enhancing bioavailability of iron via enzyme-catalyzed degradation of phytate in wheat bran, increasing diacyl-glycerol and conjugated linoleic acid levels by lipase action, enhancing the absorption of the citrus flavonoid hesperetin via rhamnosidase treatment, and obtaining solubilized dietary fiber via enzymatic modification of potato starch processing residues. Such targeted enzyme-catalyzed reactions provide new invention opportunities for designing functional foods with significant health benefits. The provision of well-defined naturally structured compounds can, moreover, assist in obtaining the much-needed improved understanding of the physiological benefits of complex natural substances.

  1. Application of residual polysaccharide-degrading enzymes in dried shiitake mushrooms as an enzyme preparation in food processing.

    Science.gov (United States)

    Tatsumi, E; Konishi, Y; Tsujiyama, S

    2016-11-01

    To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing. Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C. Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.

  2. Vacuolar processing enzyme: an executor of plant cell death.

    Science.gov (United States)

    Hara-Nishimura, Ikuko; Hatsugai, Noriyuki; Nakaune, Satoru; Kuroyanagi, Miwa; Nishimura, Mikio

    2005-08-01

    Apoptotic cell death in animals is regulated by cysteine proteinases called caspases. Recently, vacuolar processing enzyme (VPE) was identified as a plant caspase. VPE deficiency prevents cell death during hypersensitive response and cell death of limited cell layers at the early stage of embryogenesis. Because plants do not have macrophages, dying cells must degrade their materials by themselves. VPE plays an essential role in the regulation of the lytic system of plants during the processes of defense and development. VPE is localized in the vacuoles, unlike animal caspases, which are localized in the cytosol. Thus, plants might have evolved a regulated cellular suicide strategy that, unlike animal apoptosis, is mediated by VPE and the vacuoles.

  3. Multi-enzyme catalyzed processes: Next generation biocatalysis

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia; Sin, Gürkan; Gernaey, Krist

    2011-01-01

    Biocatalysis has been attracting increasing interest in recent years. Nevertheless, most studies concerning biocatalysis have been carried out using single enzymes (soluble or immobilized). Currently, multiple enzyme mixtures are attractive for the production of many compounds at an industrial...

  4. Vacuolar processing enzyme in plant programmed cell death

    Directory of Open Access Journals (Sweden)

    Noriyuki eHatsugai

    2015-04-01

    Full Text Available Vacuolar processing enzyme (VPE is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an orthologue of animal asparaginyl endopeptidase (AEP/VPE/legumain. VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1.

  5. Optimization of a novel enzyme treatment process for early-stage processing of sheepskins.

    Science.gov (United States)

    Lim, Y F; Bronlund, J E; Allsop, T F; Shilton, A N; Edmonds, R L

    2010-01-01

    An enzyme treatment process for early-stage processing of sheepskins has been previously reported by the Leather and Shoe Research Association of New Zealand (LASRA) as an alternative to current industry operations. The newly developed process had marked benefits over conventional processing in terms of a lowered energy usage (73%), processing time (47%) as well as water use (49%), but had been developed as a "proof of principle''. The objective of this work was to develop the process further to a stage ready for adoption by industry. Mass balancing was used to investigate potential modifications for the process based on the understanding developed from a detailed analysis of preliminary design trials. Results showed that a configuration utilising a 2 stage counter-current system for the washing stages and segregation and recycling of enzyme float prior to dilution in the neutralization stage was a significant improvement. Benefits over conventional processing include a reduction of residual TDS by 50% at the washing stages and 70% savings on water use overall. Benefits over the un-optimized LASRA process are reduction of solids in product after enzyme treatment and neutralization stages by 30%, additional water savings of 21%, as well as 10% savings of enzyme usage.

  6. Process Simulation of enzymatic biodiesel production -at what cost can biodiesel be made with enzymes?

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Christensen, Knud Villy; Rong, Benguang

    as well as environmental impacts of the alternative process must be evaluated towards the conventional process. With process simulation tools, an evaluation will be carried out looking at what it will cost to produce biodiesel with enzymes. Different scenarios will be taken into account with variations...... in raw material prices, process designs and enzyme cost and performance....

  7. PRODUCTION AND USES OF MICROBIAL ENZYMES FOR DAIRY PROCESSING

    International Nuclear Information System (INIS)

    EL-KABBANY, H.M.I.

    2008-01-01

    The isolation and identification of fungal producer from various Egyptian dairy products samples was studied. Among fungi testes, only one out of the 48 isolates was found to be positive yielded a suitable enzyme substitute (rennet) and identified as Cryphonectria parasitica (C. parasitica) and was found to be negative for mycotoxins. The highest growth and production of the crude enzyme were obtained from barley medium after an incubation period for 6-8 days at 25 0 C and pH 5. It was found also to be sensitive to gamma rays, since 2.5 kGy completely inactivated the germination of the spores while very low doses up to 0.05 kGy did not affect the production of rennet like enzyme (RLE). Precipitation of the crude enzyme produced by C. parasitica using ammonium sulphate (NH 4 ) 2 SO 4 gave the highest milk clotting activity (MCA) at 50 0 C. Further purification was achieved by using Sephadex G-100 to give pure RLE. MCA of the fungal and animal rennin proved to be essentially identical in milk containing various concentrations of CaCl 2 . An addition of 160 ppm of CaCl 2 increased the enzyme activity. The optimum temperature was 60 0 C while pre-heating thermophiles at 15 0 C for 10 minutes complete inactivation. Both rennins manifested comparable clotting activities in milk at pH 6

  8. Microbial enzyme-catalyzed processes in soils and their analysis

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr

    2009-01-01

    Roč. 55, č. 9 (2009), s. 370-378 ISSN 1214-1178 R&D Projects: GA MŠk LC06066; GA MŠk OC 155; GA MŠk OC08050; GA MZe QH72216 Institutional research plan: CEZ:AV0Z50200510 Keywords : assay methods * extracellular enzymes * ecology Subject RIV: EE - Microbiology, Virology Impact factor: 0.697, year: 2009

  9. Multivariate Statistical Process Optimization in the Industrial Production of Enzymes

    DEFF Research Database (Denmark)

    Klimkiewicz, Anna

    of productyield. The potential of NIR technology to monitor the activity of the enzyme has beenthe subject of a feasibility study presented in PAPER I. It included (a) evaluation onwhich of the two real-time NIR flow cell configurations is the preferred arrangementfor monitoring of the retentate stream downstream...... strategies for theorganization of these datasets, with varying number of timestamps, into datastructures fit for latent variable (LV) modeling, have been compared. The ultimateaim of the data mining steps is the construction of statistical ‘soft models’ whichcapture the principle or latent behavior...

  10. Considerations for implementation of novel enzyme-based processes

    DEFF Research Database (Denmark)

    Deslauriers, Maria Gundersen

    Biocatalysis is the use of enzymes to catalyze chemical reactions. It is an established synthesisroute in chemical synthesis, alongside conventional chemistry. Biocatalysis is often applied due to excellent regio and stereoselectivity, in addition to its environmentally benign properties....... This thesis aims at increasing the potential use of industrial biocatalysis, both in terms of broadening its current use and expanding it to new applications. This academic study is carried out through two case studies. These two case studies were chosen because they represent each end of the spectra...... learned from these two case studies justify general conclusions for biocatalysis, irrespective of their application. The work in this thesis therefore contributes, not only to industrial biocatalysis in these two areas, but also increases the understanding of biocatalysis as a whole....

  11. Processing of poultry feathers by alkaline keratin hydrolyzing enzyme from Serratia sp. HPC 1383.

    Science.gov (United States)

    Khardenavis, Anshuman A; Kapley, Atya; Purohit, Hemant J

    2009-04-01

    The present study describes the production and characterization of a feather hydrolyzing enzyme by Serratia sp. HPC 1383 isolated from tannery sludge, which was identified by the ability to form clear zones around colonies on milk agar plates. The proteolytic activity was expressed in terms of the micromoles of tyrosine released from substrate casein per ml per min (U/mL min). Induction of the inoculum with protein was essential to stimulate higher activity of the enzyme, with 0.03% feathermeal in the inoculum resulting in increased enzyme activity (45U/mL) that further increased to 90U/mL when 3d old inoculum was used. The highest enzyme activity, 130U/mL, was observed in the presence of 0.2% yeast extract. The optimum assay temperature and pH for the enzyme were found to be 60 degrees C and 10.0, respectively. The enzyme had a half-life of 10min at 60 degrees C, which improved slightly to 18min in presence of 1mM Ca(2+). Inhibition of the enzyme by phenylmethyl sulfonyl fluoride (PMSF) indicated that the enzyme was a serine protease. The enzyme was also partially inhibited (39%) by the reducing agent beta-mercaptoethanol and by divalent metal ions such as Zn(2+) (41% inhibition). However, Ca(2+) and Fe(2+) resulted in increases in enzyme activity of 15% and 26%, respectively. The kinetic constants of the keratinase were found to be 3.84 microM (K(m)) and 108.7 microM/mLmin (V(max)). These results suggest that this extracellular keratinase may be a useful alternative and eco-friendly route for handling the abundant amount of waste feathers or for applications in other industrial processes.

  12. The contribution of enzymes and process chemicals to the life cycle of ethanol

    International Nuclear Information System (INIS)

    MacLean, Heather L; Spatari, Sabrina

    2009-01-01

    Most life cycle studies of biofuels have not examined the impact of process chemicals and enzymes, both necessary inputs to biochemical production and which vary depending upon the technology platform (feedstock, pretreatment and hydrolysis system). We examine whether this omission is warranted for sugar-platform technologies. We develop life cycle ('well-to-tank') case studies for a corn dry-mill and for one 'mature' and two near-term lignocellulosic ethanol technologies. Process chemical and enzyme inputs contribute only 3% of fossil energy use and greenhouse gas (GHG) emissions for corn ethanol. Assuming considerable improvement compared to current enzyme performance, the inputs for the near-term lignocellulosic technologies studied are found to be responsible for 30%-40% of fossil energy use and 30%-35% of GHG emissions, not an insignificant fraction given that these models represent technology developers' nth plant performance. Mature technologies which assume lower chemical and enzyme loadings, high enzyme specific activity and on-site production utilizing renewable energy would significantly improve performance. Although the lignocellulosic technologies modeled offer benefits over today's corn ethanol through reducing life cycle fossil energy demand and GHG emissions by factors of three and six, achieving those performance levels requires continued research into and development of the manufacture of low dose, high specific activity enzyme systems. Realizing the benefits of low carbon fuels through biological conversion will otherwise not be possible. Tracking the technological performance of process conversion materials remains an important step in measuring the life cycle performance of biofuels.

  13. Descriptive and predictive assessment of enzyme activity and enzyme related processes in biorefinery using IR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Baum, Andreas

    the understanding of the structural properties of the extracted pectin. Secondly, enzyme kinetics of biomass converting enzymes was examined in terms of measuring enzyme activity by spectral evolution profiling utilizing FTIR. Chemometric multiway methods were used to analyze the tensor datasets enabling the second......-order calibration advantage (reference Theory of Analytical chemistry). As PAPER 3 illustrates the method is universally applicable without the need of any external standards and was exemplified by performing quantitative enzyme activity determinations for glucose oxidase, pectin lyase and a cellolytic enzyme blend...... (Celluclast 1.5L). In PAPER 4, the concept is extended to quantify enzyme activity of two simultaneously acting enzymes, namely pectin lyase and pectin methyl esterase. By doing so the multiway methods PARAFAC, TUCKER3 and NPLS were compared and evaluated towards accuracy and precision....

  14. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School; Qian, Wei-jun [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Shi, Liang [School; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; School

    2017-09-28

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes as time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates

  15. Process development of continuous glycerolysis in an immobilized enzyme-packed reactor for industrial monoacylglycerol production

    DEFF Research Database (Denmark)

    Damstrup, Marianne; Kiil, Søren; Jensen, Anker Degn

    2007-01-01

    Continuous and easily operated glycerolysis was studied in different lipase-packed columns to evaluate the most potential process set-ups for industrial monoacylglycerol (MAG) production. Practical design-related issues such as enzyme-filling degree, required reaction time, mass transfer investig......Continuous and easily operated glycerolysis was studied in different lipase-packed columns to evaluate the most potential process set-ups for industrial monoacylglycerol (MAG) production. Practical design-related issues such as enzyme-filling degree, required reaction time, mass transfer...

  16. Influence of fungal morphology on the performance of industrial fermentation processes for enzyme production

    DEFF Research Database (Denmark)

    Quintanilla Hernandez, Daniela Alejandra

    Production of industrial enzymes is usually carried out as submerged aerobic fermentations. Filamentous microorganisms are widely used as hosts in these processes due to multiple advantages. Nevertheless, they also present major drawbacks, due to the unavoidable oxygen transfer limitations...... in this work, along with its correlation to viscosity and other process variables. Considerable research work has been conducted through the years to study fungal morphology and its relation to productivity. However, the work reported in the literature lacks relevant industrial data. In this work, a platform...... was developed which was able to produce high enzyme titers in comparison with what has been reported thus far in fed-batch fermentation using a soluble inducer (lactose). Different nitrogen sources were compared, and it was found that soy meal allowed for higher enzyme titers compared to what has been reported...

  17. BIOINSPIRED DESIGN AND DIRECTED EVOLUTION OF IRON CONTAINING ENZYMES FOR GREENSYNTHETIC PROCESSES AND BIOREMEDIATION

    Science.gov (United States)

    SU833912Title: Bioinspired Design and Directed Evolution of Iron Containing Enzymes for Green Synthetic Processes and BioremediationEdward I. Solomon, Shaun D. Wong, Lei Liu, Caleb B. Bell, IIICynthia Nolt-HelmsProject Period: August 15, 2008 - August 14,...

  18. A model-based framework for design of intensified enzyme-based processes

    DEFF Research Database (Denmark)

    Román-Martinez, Alicia

    This thesis presents a generic and systematic model-based framework to design intensified enzyme-based processes. The development of the presented methodology was motivated by the needs of the bio-based industry for a more systematic approach to achieve intensification in its production plants...... in enzyme-based processes which have found significant application in the pharmaceutical, food, and renewable fuels sector. The framework uses model-based strategies for (bio)-chemical process design and optimization, including the use of a superstructure to generate all potential reaction......(s)-separation(s) options according to a desired performance criteria and a generic mathematical model represented by the superstructure to derive the specific models corresponding to a specific process option. In principle, three methods of intensification of bioprocess are considered in this thesis: 1. enzymatic one...

  19. Composition and microstructure alteration of triticale grain surface after processing by enzymes of cellulase complex

    Directory of Open Access Journals (Sweden)

    Elena Kuznetsova

    2016-01-01

    Full Text Available It is found that the pericarp tissue of grain have considerable strength and stiffness, that has an adverse effect on quality of whole-grain bread. Thereby, there exists the need for preliminary chemical and biochemical processing of durable cell walls before industrial use. Increasingly used in the production of bread finds an artificial hybrid of the traditional grain crops of wheat and rye - triticale, grain which has high nutritional value. The purpose of this research was to evaluate the influence of cellulose complex (Penicillium canescens enzymes on composition and microstructure alteration of triticale grain surface, for grain used in baking. Triticale grain was processed by cellulolytic enzyme preparations with different composition (producer is Penicillium canescens. During experiment it is found that triticale grain processing by enzymes of cellulase complex leads to an increase in the content of water-soluble pentosans by 36.3 - 39.2%. The total amount of low molecular sugars increased by 3.8 - 10.5 %. Studies show that under the influence of enzymes the microstructure of the triticale grain surface is changing. Microphotographs characterizing grain surface structure alteration in dynamic (every 2 hours during 10 hours of substrate hydrolysis are shown. It is found that the depth and direction of destruction process for non-starch polysaccharides of grain integument are determined by the composition of the enzyme complex preparation and duration of exposure. It is found, that xylanase involved in the modification of hemicelluloses fiber having both longitudinal and radial orientation. Hydrolysis of non-starch polysaccharides from grain shells led to increase of antioxidant activity. Ferulic acid was identified in alcoholic extract of triticale grain after enzymatic hydrolysis under the influence of complex preparation containing cellulase, xylanase and β-glucanase. Grain processing by independent enzymes containing in complex

  20. Cellulosic ethanol: interactions between cultivar and enzyme loading in wheat straw processing

    Directory of Open Access Journals (Sweden)

    Felby Claus

    2010-11-01

    Full Text Available Abstract Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield from straw of five winter wheat cultivars at three enzyme loadings (2.5, 5 and 10 FPU g-1 dm pretreated straw and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher yields than coarse particles. The amount of coarse particles from the cultivar with lowest sugar yield was negatively correlated with sugar conversion. Conclusions We conclude that genetic differences in sugar yield and response to enzyme loading exist for wheat straw at pilot scale, depending on differences in removal of hemicellulose, accumulation of ash and particle-size distribution introduced by the pretreatment.

  1. Multifunctional Cellulolytic Enzymes Outperform Processive Fungal Cellulases for Coproduction of Nanocellulose and Biofuels.

    Science.gov (United States)

    Yarbrough, John M; Zhang, Ruoran; Mittal, Ashutosh; Vander Wall, Todd; Bomble, Yannick J; Decker, Stephen R; Himmel, Michael E; Ciesielski, Peter N

    2017-03-28

    Producing fuels, chemicals, and materials from renewable resources to meet societal demands remains an important step in the transition to a sustainable, clean energy economy. The use of cellulolytic enzymes for the production of nanocellulose enables the coproduction of sugars for biofuels production in a format that is largely compatible with the process design employed by modern lignocellulosic (second generation) biorefineries. However, yields of enzymatically produced nanocellulose are typically much lower than those achieved by mineral acid production methods. In this study, we compare the capacity for coproduction of nanocellulose and fermentable sugars using two vastly different cellulase systems: the classical "free enzyme" system of the saprophytic fungus, Trichoderma reesei (T. reesei) and the complexed, multifunctional enzymes produced by the hot springs resident, Caldicellulosiruptor bescii (C. bescii). We demonstrate by comparative digestions that the C. bescii system outperforms the fungal enzyme system in terms of total cellulose conversion, sugar production, and nanocellulose production. In addition, we show by multimodal imaging and dynamic light scattering that the nanocellulose produced by the C. bescii cellulase system is substantially more uniform than that produced by the T. reesei system. These disparities in the yields and characteristics of the nanocellulose produced by these disparate systems can be attributed to the dramatic differences in the mechanisms of action of the dominant enzymes in each system.

  2. Utilization of cellulosic materials through enzymic hydrolysis. 11. Preliminary assessment of an integrated processing scheme

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C R; Cysewski, G R; Yang, R D

    1976-01-01

    An integrated processing scheme is described for the conversion of a cellulose waste (newsprint) to sugars by enzymic hydrolysis and then to ethanol and yeast by fermentation. The unconverted solids are burned to produce process energy requirements and surplus electric power. With the preliminary design at an estimate total capital investment of $33.4 x 10/sup 6/, 95% ethanol may be produced FOB (free on board) the plant for approx.61 cents/gal, assuming zero cost for cellulosic feed; taking into account interest rates and taxes and a cellulose feed cost of $20/ton the figure becomes $1.67/gal.

  3. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding.

    Science.gov (United States)

    Sandikci, Arzu; Gloge, Felix; Martinez, Michael; Mayer, Matthias P; Wade, Rebecca; Bukau, Bernd; Kramer, Günter

    2013-07-01

    Newly synthesized polypeptides undergo various cotranslational maturation steps, including N-terminal enzymatic processing, chaperone-assisted folding and membrane targeting, but the spatial and temporal coordination of these steps is unclear. We show that Escherichia coli methionine aminopeptidase (MAP) associates with ribosomes through a charged loop that is crucial for nascent-chain processing and cell viability. MAP competes with peptide deformylase (PDF), the first enzyme to act on nascent chains, for binding sites at the ribosomal tunnel exit. PDF has extremely fast association and dissociation kinetics, which allows it to frequently sample ribosomes and ensure the processing of nascent chains after their emergence. Premature recruitment of the chaperone trigger factor, or polypeptide folding, negatively affect processing efficiency. Thus, the fast ribosome association kinetics of PDF and MAP are crucial for the temporal separation of nascent-chain processing from later maturation events, including chaperone recruitment and folding.

  4. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes.

    Science.gov (United States)

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-05-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the (14)C-labeled crystalline polymeric substrates (14)C chitin nanowhiskers and (14)C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki (obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki (obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. DYNAMIC MODELLING AND ADVANCED PREDICTIVE CONTROL OF A CONTINUOUS PROCESS OF ENZYME PURIFICATION

    Directory of Open Access Journals (Sweden)

    Dechechi E.C.

    1997-01-01

    Full Text Available A dynamic mathematical model, simulation and computer control of a Continuous Affinity Recycle Extraction (CARE process, a protein purification technique based on protein adsorption on solid-phase adsorbents is described in this work. This process, consisting of three reactors, is a multivariable process with considerable time delay in the on-line analyses of the controlled variable. An advanced predictive control configuration, specifically the Dynamic Matrix Control (DMC, was applied. The DMC algorithm was applied in process schemes where the aim was to maintain constant the enzyme concentration in the outlet of the third reactor. The performance of the DMC controller was analyzed in the feed-flow disturbances and the results are presented.

  6. Bio-processing of Agro-industrial Wastes for Production of Food-grade Enzymes: Progress and Prospects

    Directory of Open Access Journals (Sweden)

    Parmjit S Panesar

    2016-10-01

    Full Text Available Background and Objectives: In the era of global industrialization, enzymes are being used extensively in the various sectors including food processing. Owing to the high price of enzymes, various initiatives have been undertaken by the R&D sector for the development of new processes or improvement in the existing processes for production of cost effective enzymes. With the advancement in the field of biotechnology, different bioprocesses are being used for utilization of different agro-industrial residues for the production of various enzymes. This review focuses on different types of agro-industrial wastes and their utilization in the production of enzymes. The present scenario as well as the future scope of utilization of enzymes in the food industry has also been discussed.Results and Conclusion: The regulations from the various governmental as well as environmental agencies for the demand of cleaner environment have led to the advancement in various technologies for utilization of the wastes for the production of value-added products such as enzymes. Among the different types of fermentation, maximum work has been carried under solid state conditions by batch fermentation. The research has indicated the significant potential of agro-industrial wastes for production of food-grade enzymes in order to improve the economics of the process.Conflict of interests: The authors declare no conflict of interest.

  7. Proteinaceous inhibitors of carbohydrate-active enzymes in cereals – Implication in agriculture, cereal-processing and nutrition

    DEFF Research Database (Denmark)

    Juge, N.; Svensson, Birte

    2006-01-01

    Enzymes that degrade, modify, or create glycosidic bonds are involved in carbohydrate biosynthesis and remodelling. Microbial carbohydrate-active enzymes form the basis of current green technology in the food, feed, starch, paper and pulp industries and the revolution in genomics may offer long...... knowledge on their structure, function, and implication in cereal processing, agriculture and nutrition. (c) 2006 Society of Chemical Industry...

  8. Fermentation Process of Cocoa Based on Optimum Condition of Pulp PectinDepolymerization by Endogenous Pectolityc Enzymes

    OpenAIRE

    Ganda-Putra, G.P; Wrasiati, L.P; Wartini, N.M

    2010-01-01

    Pulp degradation during cocoa fermentation can be carried out by depolymerization process of pulp pectin using endogenous pectolytic enzymes at optimum condition. The objectives of this research were to study the effect of fermentation process based on optimum condition in terms of temperature and pH of pulp pectin depolymerization using endogenous pectolytic enzymes polygalakturonase (PG) and pectin metyl esterase (PME) and fermentation period in cocoa processing on quality characteristics o...

  9. Materials And Carbon Flow In A Waste Refinery Process Using Enzymes

    DEFF Research Database (Denmark)

    Tonini, Davide; Woods, M.; Astrup, Thomas

    2011-01-01

    Recovery of resources from mixed Municipal Solid Waste (MSW) is a crucial aspect of waste management practices. In this paper the materials and carbon flows of an innovative waste refinery process using enzymes are presented. Through enzymatic treatment the process produces two main streams from...... the initial mixed MSW: a bioslurry (liquefied paper and organics) and a solid fraction (non-degradable materials). The discussion is based on the performance of the process in separating recyclables and recovery Cbiogenic as well as nutrients from the input MSW. The results of MFA and SFA illustrate...... that the waste refinery has great potential for resource recovery: about 100% of the Cbiogenic and up to 90% of N and P can potentially be recovered in the bioslurry and returned to land after anaerobic digestion. Recovery of ferrous and non-ferrous material is estimated double compared to recovering the same...

  10. Enzyme-based solutions for textile processing and dye contaminant biodegradation-a review.

    Science.gov (United States)

    Chatha, Shahzad Ali Shahid; Asgher, Muhammad; Iqbal, Hafiz M N

    2017-06-01

    The textile industry, as recognized conformist and stake industry in the world's economy, is facing serious environmental challenges. In numerous industries, in practice, various chemical-based processes from initial sizing to final washing are fascinating harsh environment concerns. Some of these chemicals are corrosive to equipment and cause serious damage itself. Therefore, in the twenty-first century, chemical and allied industries quest a paradigm transition from traditional chemical-based concepts to a greener, sustainable, and environmentally friendlier catalytic alternative, both at the laboratory and industrial scales. Bio-based catalysis offers numerous benefits in the context of biotechnological industry and environmental applications. In recent years, bio-based processing has received particular interest among the scientist for inter- and multi-disciplinary investigations in the areas of natural and engineering sciences for the application in biotechnology sector at large and textile industries in particular. Different enzymatic processes such as chemical substitution have been developed or in the process of development for various textile wet processes. In this context, the present review article summarizes current developments and highlights those areas where environment-friendly enzymatic textile processing might play an increasingly important role in the textile industry. In the first part of the review, a special focus has been given to a comparative discussion of the chemical-based "classical/conventional" treatments and the modern enzyme-based treatment processes. Some relevant information is also reported to identify the major research gaps to be worked out in future.

  11. High throughput, high resolution enzymatic lithography process: effect of crystallite size, moisture, and enzyme concentration.

    Science.gov (United States)

    Mao, Zhantong; Ganesh, Manoj; Bucaro, Michael; Smolianski, Igor; Gross, Richard A; Lyons, Alan M

    2014-12-08

    By bringing enzymes into contact with predefined regions of a surface, a polymer film can be selectively degraded to form desired patterns that find a variety of applications in biotechnology and electronics. This so-called "enzymatic lithography" is an environmentally friendly process as it does not require actinic radiation or synthetic chemicals to develop the patterns. A significant challenge to using enzymatic lithography has been the need to restrict the mobility of the enzyme in order to maintain control of feature sizes. Previous approaches have resulted in low throughput and were limited to polymer films only a few nanometers thick. In this paper, we demonstrate an enzymatic lithography system based on Candida antartica lipase B (CALB) and poly(ε-caprolactone) (PCL) that can resolve fine-scale features, (<1 μm across) in thick (0.1-2.0 μm) polymer films. A Polymer Pen Lithography (PPL) tool was developed to deposit an aqueous solution of CALB onto a spin-cast PCL film. Immobilization of the enzyme on the polymer surface was monitored using fluorescence microscopy by labeling CALB with FITC. The crystallite size in the PCL films was systematically varied; small crystallites resulted in significantly faster etch rates (20 nm/min) and the ability to resolve smaller features (as fine as 1 μm). The effect of printing conditions and relative humidity during incubation is also presented. Patterns formed in the PCL film were transferred to an underlying copper foil demonstrating a "Green" approach to the fabrication of printed circuit boards.

  12. Effect of Bacillus cereus Enzymes on Milk Quality following Ultra High Temperature Processing

    Directory of Open Access Journals (Sweden)

    B. Janštová

    2006-01-01

    Full Text Available Using a model case of contamination of long-life semi-skimmed milk with the spores of six B. cereus strains, isolated from the farm environment and raw milk, proteolysis was monitored by measuring changes in protein content by infra-red spectroscopy; free tyrosine was measured by the Lowry method according to Juffs, and the reduction in casein fractions by SDS-PAGE. Lipolysis was monitored by the dilution extractive method. At a storage temperature of 4 °C for 4 months no enzyme processes were observed, whereas at a storage temperature of 24 °C a marked enzyme activity was found during maximum 3 weeks as well as sensory changes of UHT milk. After three weeks of storage, a reduction in protein content from 34.55 g l-1 milk to 29.46 ± 2.00 g l-1 milk, and a reduction in the free tyrosine from 0.65 to 2.13 ± 0.28 mg ml-1 was found, as well as increased molar contents of free fatty acids (FFA from 41.97 to 1617.22 ± 68.17 mmol kg-1 milk fat. After six days of storage, α-casein, β-casein and κ-casein dropped to 69 ± 10%, 56 ± 16% and 43 ± 10%, respectively. Majority of changes in UHT milk depended on the B. cereus strain used, initial microbial counts and the method of heat inactivation of spores.

  13. Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Shanavas, S.; Padmaja, G.; Moorthy, S.N.; Sajeev, M.S.; Sheriff, J.T. [Division of Crop Utilization, Central Tuber Crops Research Institute, Thiruvananthapuram, 695 017 Kerala (India)

    2011-02-15

    Although cassava (Manihot esculenta Crantz) is a potential bioethanol crop, high operational costs resulted in a negative energy balance in the earlier processes. The present study aimed at optimizing the bioethanol production from cassava starch using new enzymes like Spezyme {sup registered} Xtra and Stargen trademark 001. The liquefying enzyme Spezyme was optimally active at 90 C and pH 5.5 on a 10% (w/v) starch slurry at levels of 20.0 mg (280 Amylase Activity Units) for 30 min. Stargen levels of 100 mg (45.6 Granular Starch Hydrolyzing Units) were sufficient to almost completely hydrolyze 10% (w/v) starch at room temperature (30 {+-} 1 C). Ethanol yield and fermentation efficiency were very high (533 g/kg and 94.0% respectively) in the Stargen + yeast process with 10% (w/v) starch for 48 h. Raising Spezyme and Stargen levels to 560 AAU and 91.2 GSHU respectively for a two step loading [initial 20% (w/v) followed by 20% starch after Spezyme thinning]/initial higher loading of starch (40% w/v) resulted in poor fermentation efficiency. Upscaling experiments using 1.0 kg starch showed that Stargen to starch ratio of 1:100 (w/w) could yield around 558 g ethanol/kg starch, with a high fermentation efficiency of 98.4%. The study showed that Spezyme level beyond 20.0 mg for a 10% (w/v) starch slurry was not critical for optimizing bioethanol yield from cassava starch, although an initial thinning of starch for 30 min by Spezyme facilitated rapid saccharification-fermentation by Stargen + yeast system. The specific advantage of the new process was that the reaction could be completed within 48.5 h at 30 {+-} 1 C. (author)

  14. Enzyme-substrate binding landscapes in the process of nitrile biodegradation mediated by nitrile hydratase and amidase.

    Science.gov (United States)

    Zhang, Yu; Zeng, Zhuotong; Zeng, Guangming; Liu, Xuanming; Chen, Ming; Liu, Lifeng; Liu, Zhifeng; Xie, Gengxin

    2013-08-01

    The continuing discharge of nitriles in various industrial processes has caused serious environmental consequences of nitrile pollution. Microorganisms possess several nitrile-degrading pathways by direct interactions of nitriles with nitrile-degrading enzymes. However, these interactions are largely unknown and difficult to experimentally determine but important for interpretation of nitrile metabolisms and design of nitrile-degrading enzymes with better nitrile-converting activity. Here, we undertook a molecular modeling study of enzyme-substrate binding modes in the bi-enzyme pathway for degradation of nitrile to acid. Docking results showed that the top substrates having favorable interactions with nitrile hydratase from Rhodococcus erythropolis AJ270 (ReNHase), nitrile hydratase from Pseudonocardia thermophila JCM 3095 (PtNHase), and amidase from Rhodococcus sp. N-771 (RhAmidase) were benzonitrile, 3-cyanopyridine, and L-methioninamide, respectively. We further analyzed the interactional profiles of these top poses with corresponding enzymes, showing that specific residues within the enzyme's binding pockets formed diverse contacts with substrates. This information on binding landscapes and interactional profiles is of great importance for the design of nitrile-degrading enzyme mutants with better oxidation activity toward nitriles or amides in the process of pollutant treatments.

  15. Vacuolar processing enzyme plays an essential role in the crystalline structure of glutelin in rice seed.

    Science.gov (United States)

    Kumamaru, Toshihiro; Uemura, Yuji; Inoue, Yoshimi; Takemoto, Yoko; Siddiqui, Sadar Uddin; Ogawa, Masahiro; Hara-Nishimura, Ikuko; Satoh, Hikaru

    2010-01-01

    To identify the function of genes that regulate the processing of proglutelin, we performed an analysis of glup3 mutants, which accumulates excess amounts of proglutelin and lack the vacuolar processing enzyme (VPE). VPE activity in developing seeds from glup3 lines was reduced remarkably compared with the wild type. DNA sequencing of the VPE gene in glup3 mutants revealed either amino acid substitutions or the appearance of a stop codon within the coding region. Microscopic observations showed that alpha-globulin and proglutelin were distributed homogeneously within glup3 protein storage vacuoles (PSVs), and that glup3 PSVs lacked the crystalline lattice structure typical of wild-type PSVs. This suggests that the processing of proglutelin by VPE in rice is essential for proper PSV structure and compartmentalization of storage proteins. Growth retardation in glup3 seedlings was also observed, indicating that the processing of proglutelin influences early seedling development. These findings indicate that storage of glutelin in its mature form as a crystalline structure in PSVs is required for the rapid use of glutelin as a source of amino acids during early seedling development. In conclusion, VPE plays an important role in the formation of protein crystalline structures in PSVs.

  16. Thermodynamics of information processing based on enzyme kinetics: An exactly solvable model of an information pump.

    Science.gov (United States)

    Cao, Yuansheng; Gong, Zongping; Quan, H T

    2015-06-01

    Motivated by the recent proposed models of the information engine [Proc. Natl. Acad. Sci. USA 109, 11641 (2012)] and the information refrigerator [Phys. Rev. Lett. 111, 030602 (2013)], we propose a minimal model of the information pump and the information eraser based on enzyme kinetics. This device can either pump molecules against the chemical potential gradient by consuming the information to be encoded in the bit stream or (partially) erase the information initially encoded in the bit stream by consuming the Gibbs free energy. The dynamics of this model is solved exactly, and the "phase diagram" of the operation regimes is determined. The efficiency and the power of the information machine is analyzed. The validity of the second law of thermodynamics within our model is clarified. Our model offers a simple paradigm for the investigating of the thermodynamics of information processing involving the chemical potential in small systems.

  17. Processing of Snake Venom Metalloproteinases: Generation of Toxin Diversity and Enzyme Inactivation

    Directory of Open Access Journals (Sweden)

    Ana M. Moura-da-Silva

    2016-06-01

    Full Text Available Snake venom metalloproteinases (SVMPs are abundant in the venoms of vipers and rattlesnakes, playing important roles for the snake adaptation to different environments, and are related to most of the pathological effects of these venoms in human victims. The effectiveness of SVMPs is greatly due to their functional diversity, targeting important physiological proteins or receptors in different tissues and in the coagulation system. Functional diversity is often related to the genetic diversification of the snake venom. In this review, we discuss some published evidence that posit that processing and post-translational modifications are great contributors for the generation of functional diversity and for maintaining latency or inactivation of enzymes belonging to this relevant family of venom toxins.

  18. Thermodynamics of information processing based on enzyme kinetics: An exactly solvable model of an information pump

    Science.gov (United States)

    Cao, Yuansheng; Gong, Zongping; Quan, H. T.

    2015-06-01

    Motivated by the recent proposed models of the information engine [Proc. Natl. Acad. Sci. USA 109, 11641 (2012), 10.1073/pnas.1204263109] and the information refrigerator [Phys. Rev. Lett. 111, 030602 (2013), 10.1103/PhysRevLett.111.030602], we propose a minimal model of the information pump and the information eraser based on enzyme kinetics. This device can either pump molecules against the chemical potential gradient by consuming the information to be encoded in the bit stream or (partially) erase the information initially encoded in the bit stream by consuming the Gibbs free energy. The dynamics of this model is solved exactly, and the "phase diagram" of the operation regimes is determined. The efficiency and the power of the information machine is analyzed. The validity of the second law of thermodynamics within our model is clarified. Our model offers a simple paradigm for the investigating of the thermodynamics of information processing involving the chemical potential in small systems.

  19. EFFECT OF ENDOSPERM HARDNESS ON AN ETHANOL PROCESS USING A GRANULAR STARCH HYDROLYZING ENZYME

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P; W Liu, D B; Johnston, K D; Rausch, S J; Schmidt, M E; Tumbleson, V Singh

    2010-01-01

    Granular starch hydrolyzing enzymes (GSHE) can hydrolyze starch at low temperature (32°C). The dry grind process using GSHE (GSH process) has fewer unit operations and no changes in process conditions (pH 4.0 and 32°C) compared to the conventional process because it dispenses with the cooking and liquefaction step. In this study, the effects of endosperm hardness, protease, urea, and GSHE levels on GSH process were evaluated. Ground corn, soft endosperm, and hard endosperm were processed using two GSHE levels (0.1 and 0.4 mL per 100 g ground material) and four treatments of protease and urea addition. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from a dry milling pilot plant; classifications were confirmed using scanning electron microscopy. During 72 h of simultaneous granular starch hydrolysis and fermentation (GSHF), ethanol and glucose profiles were determined using HPLC. Soft endosperm resulted in higher final ethanol concentrations compared to ground corn or hard endosperm. Addition of urea increased final ethanol concentrations for soft and hard endosperm. Protease addition increased ethanol concentrations and fermentation rates for soft endosperm, hard endosperm, and ground corn. The effect of protease addition on ethanol concentrations and fermentation rates was most predominant for soft endosperm, less for hard endosperm, and least for ground corn. Samples (soft endosperm, hard endosperm, or corn) with protease resulted in higher (1.0% to 10.5% v/v) ethanol concentration compared to samples with urea. The GSH process with protease requires little or no urea addition. For fermentation of soft endosperm, GSHE dose can be reduced. Due to nutrients (lipids, minerals, and soluble proteins) present in corn that enhance yeast growth, ground corn fermented faster at the beginning than hard and soft endosperm.

  20. Molecular dynamics of formation of TD lesioned DNA complexed with repair enzyme - onset of the enzymatic repair process

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, Miroslav [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    To describe the first step of the enzymatic repair process (formation of complex enzyme-DNA), in which the thymine dimer (TD) part is removed from DNA, the 500 picosecond (ps) molecular dynamics (MD) simulation of TD lesioned DNA and part of repair enzyme cell (inclusive of catalytic center - Arg-22, Glu-23, Arg-26 and Thr-2) was performed. TD is UV originated lesion in DNA and T4 Endonuclease V is TD specific repair enzyme. Both molecules were located in the same simulation cell and their relative movement was examined. During the simulation the research was focused on the role of electrostatic energy in formation of complex enzyme-DNA. It is found, that during the first 100 ps of MD, the part of enzyme approaches the DNA surface at the TD lesion, interacts extensively by electrostatic and van der Walls interactions with TD part of DNA and forms complex that lasts stabile for 500 ps of MD. In the beginning of MD, the positive electrostatic interaction energy between part of enzyme and TD ({approx} +10 kcal/mol) drives enzyme towards the DNA molecule. Water-mediated hydrogen bonds between enzyme and DNA help to keep complex stabile. As a reference, the MD simulation of the identical system with native DNA molecule (two native thymines (TT) instead of TD) was performed. In this system the negative electrostatic interaction energy between part of enzyme and TT ({approx} -11 kcal/mol), in contrary to the positive one in the system with TD, doesn't drive enzyme towards DNA and complex is not formed. (author)

  1. Molecular dynamics of formation of TD lesioned DNA complexed with repair enzyme - onset of the enzymatic repair process

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    1999-12-01

    To describe the first step of the enzymatic repair process (formation of complex enzyme-DNA), in which the thymine dimer (TD) part is removed from DNA, the 500 picosecond (ps) molecular dynamics (MD) simulation of TD lesioned DNA and part of repair enzyme cell (inclusive of catalytic center - Arg-22, Glu-23, Arg-26 and Thr-2) was performed. TD is UV originated lesion in DNA and T4 Endonuclease V is TD specific repair enzyme. Both molecules were located in the same simulation cell and their relative movement was examined. During the simulation the research was focused on the role of electrostatic energy in formation of complex enzyme-DNA. It is found, that during the first 100 ps of MD, the part of enzyme approaches the DNA surface at the TD lesion, interacts extensively by electrostatic and van der Walls interactions with TD part of DNA and forms complex that lasts stabile for 500 ps of MD. In the beginning of MD, the positive electrostatic interaction energy between part of enzyme and TD (∼ +10 kcal/mol) drives enzyme towards the DNA molecule. Water-mediated hydrogen bonds between enzyme and DNA help to keep complex stabile. As a reference, the MD simulation of the identical system with native DNA molecule (two native thymines (TT) instead of TD) was performed. In this system the negative electrostatic interaction energy between part of enzyme and TT (∼ -11 kcal/mol), in contrary to the positive one in the system with TD, doesn't drive enzyme towards DNA and complex is not formed. (author)

  2. A sensitive enzyme-linked immunosorbent assay for the determination of fish protein in processed foods.

    Science.gov (United States)

    Shibahara, Yusuke; Uesaka, Yoshihiko; Wang, Jun; Yamada, Shoichi; Shiomi, Kazuo

    2013-01-15

    Fish is one of the most common causes of food allergy and its major allergen is parvalbumin, a 12 kDa muscular protein. In this study, a sandwich enzyme-linked immunosorbent assay (ELISA) for the determination of fish protein in processed foods was developed using a polyclonal antibody raised against Pacific mackerel parvalbumin. The developed sandwich ELISA showed 22.6-99.0% reactivity (based on the reactivity to Pacific mackerel parvalbumin) to parvalbumins from various species of fish. The limits of detection and quantitation were estimated to be 0.23 and 0.70 μg protein per g of food, respectively. When the sandwich ELISA was subjected to inter-laboratory validation, spiked fish protein was recovered from five model processed foods in the range of 69.4-84.8% and the repeatability and reproducibility relative standard deviations were satisfactorily low (≤ 10.5%). Thus, the sandwich ELISA was judged to be a useful tool to determine fish protein in processed foods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area.

    Science.gov (United States)

    Ciarkowska, Krystyna; Sołek-Podwika, Katarzyna; Wieczorek, Jerzy

    2014-01-01

    The activities of soil enzymes in relation to the changes occurring in the soil on a degraded area in southern Poland after zinc and lead mining were analyzed. An evaluation of the usefulness of urease and invertase activities for estimating the progress of the rehabilitation processes in degraded soil was performed. The data show that the soil samples differed significantly in organic carbon (0.68-104.0 g kg(-1)) and total nitrogen (0.03-8.64 g kg(-1)) content in their surface horizons. All of the soil samples (apart from one covered with forest) had very high total concentrations of zinc (4050-10,884 mg kg(-1)), lead (959-6661 mg kg(-1)) and cadmium (24.4-174.3 mg kg(-1)) in their surface horizons, and similar concentrations in their deeper horizons. Nevertheless, the amounts of the soluble forms of the above-mentioned heavy metals were quite low and they accounted for only a small percentage of the total concentrations: 1.4% for Zn, 0.01% for Pb and 2.6% for Cd. Urease activities were ranked as follows: soil from flotation settler (0.88-1.78 μg N-NH4(+) 2h(-1) g(-1))slag heaps (1.77-2.51 μg N-NH4(+) 2h(-1) g(-1))slag heaps, ranging from 20.5 to 77.1mg of the inverted sugar, but they were much lower in soil from the flotation settler (0.12-6.95 mg of the inverted sugar). The results demonstrated that heavy pollution with Zn, Pb and Cd slightly decreased the activities of urease and invertase. It is thought that it resulted from the enzyme reactions occurring in slightly acidic or alkaline soil conditions. Under such conditions, heavy metals occur mainly in insoluble forms. The activities of these enzymes are strongly dependent on the content and decomposition of organic matter in the soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Improving digestive utilization of fiber-rich feedstuffs in pigs and poultry by processing and enzyme technologies: A review

    NARCIS (Netherlands)

    Vries, de S.; Pustjens, A.M.; Schols, H.A.; Hendriks, W.H.; Gerrits, W.J.J.

    2012-01-01

    The effects of processing technologies, whether or not combined with cell wall degrading enzymes, on the physicochemical properties of non-starch polysaccharides (NSP) and the resulting effects on NSP degradation in both pigs and poultry were reviewed. Evaluation of the effects of processing

  5. Copper stressed anaerobic fermentation: biogas properties, process stability, biodegradation and enzyme responses.

    Science.gov (United States)

    Hao, He; Tian, Yonglan; Zhang, Huayong; Chai, Yang

    2017-12-01

    The effect of copper (added as CuCl 2 ) on the anaerobic co-digestion of Phragmites straw and cow dung was studied in pilot experiments by investigating the biogas properties, process stability, substrate degradation and enzyme activities at different stages of mesophilic fermentation. The results showed that 30 and 100 mg/L Cu 2+ addition increased the cumulative biogas yields by up to 43.62 and 20.77% respectively, and brought forward the daily biogas yield peak, while 500 mg/L Cu 2+ addition inhibited biogas production. Meanwhile, the CH 4 content in the 30 and 100 mg/L Cu 2+ -added groups was higher than that in the control group. Higher pH values (close to pH 7) and lower oxidation-reduction potential (ORP) values in the Cu 2+ -added groups after the 8th day indicated better process stability compared to the control group. In the presence of Cu 2+ , the degradation of volatile fatty acids (VFAs) and other organic molecules (represented by chemical oxygen demand, COD) generated from hydrolysis was enhanced, and the ammonia nitrogen (NH 4 + -N) concentrations were more stable than in the control group. The contents of lignin and hemicellulose in the substrate declined in the Cu 2+ -added groups while the cellulose contents did not. Neither the cellulase nor the coenzyme F 420 activities could determine the biogas producing efficiency. Taking the whole fermentation process into account, the promoting effect of Cu 2+ addition on biogas yields was mainly attributable to better process stability, the enhanced degradation of lignin and hemicellulose, the transformation of intermediates into VFA, and the generation of CH 4 from VFA.

  6. Quality-related enzymes in plant-based products: effects of novel food processing technologies part 2: pulsed electric field processing.

    Science.gov (United States)

    Terefe, Netsanet Shiferaw; Buckow, Roman; Versteeg, Cornelis

    2015-01-01

    Pulsed electric field (PEF) processing is an effective technique for the preservation of pumpable food products as it inactivates vegetative microbial cells at ambient to moderate temperature without significantly affecting the nutritional and sensorial quality of the product. However, conflicting views are expressed about the effect of PEF on enzymes. In this review, which is part 2 of a series of reviews dealing with the effectiveness of novel food preservation technologies for controlling enzymes, the scientific literature over the last decade on the effect of PEF on plant enzymes is critically reviewed to shed more light on the issue. The existing evidence indicates that PEF can result in substantial inactivation of most enzymes, although a much more intense process is required compared to microbial inactivation. Depending on the processing condition and the origin of the enzyme, up to 97% inactivation of pectin methylesterase, polyphenol oxidase, and peroxidase as well as no inactivation have been reported following PEF treatment. Both electrochemical effects and Ohmic heating appear to contribute to the observed inactivation, although the relative contribution depends on a number of factors including the origin of the enzyme, the design of the PEF treatment chamber, the processing condition, and the composition of the medium.

  7. Structural Basis of Multifunctionality in a Vitamin B[subscript 12]-processing Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Gherasim, Carmen; Smith, Janet L.; Banerjee, Ruma (Michigan)

    2012-07-11

    An early step in the intracellular processing of vitamin B{sub 12} involves CblC, which exhibits dual reactivity, catalyzing the reductive decyanation of cyanocobalamin (vitamin B{sub 12}), and the dealkylation of alkylcobalamins (e.g. methylcobalamin; MeCbl). Insights into how the CblC scaffold supports this chemical dichotomy have been unavailable despite it being the most common locus of patient mutations associated with inherited cobalamin disorders that manifest in both severe homocystinuria and methylmalonic aciduria. Herein, we report structures of human CblC, with and without bound MeCbl, which provide novel biochemical insights into its mechanism of action. Our results reveal that CblC is the most divergent member of the NADPH-dependent flavin reductase family and can use FMN or FAD as a prosthetic group to catalyze reductive decyanation. Furthermore, CblC is the first example of an enzyme with glutathione transferase activity that has a sequence and structure unrelated to the GST superfamily. CblC thus represents an example of evolutionary adaptation of a common structural platform to perform diverse chemistries. The CblC structure allows us to rationalize the biochemical basis of a number of pathological mutations associated with severe clinical phenotypes.

  8. Mutagenic Organized Recombination Process by Homologous IN vivo Grouping (MORPHING) for directed enzyme evolution.

    Science.gov (United States)

    Gonzalez-Perez, David; Molina-Espeja, Patricia; Garcia-Ruiz, Eva; Alcalde, Miguel

    2014-01-01

    Approaches that depend on directed evolution require reliable methods to generate DNA diversity so that mutant libraries can focus on specific target regions. We took advantage of the high frequency of homologous DNA recombination in Saccharomyces cerevisiae to develop a strategy for domain mutagenesis aimed at introducing and in vivo recombining random mutations in defined segments of DNA. Mutagenic Organized Recombination Process by Homologous IN vivo Grouping (MORPHING) is a one-pot random mutagenic method for short protein regions that harnesses the in vivo recombination apparatus of yeast. Using this approach, libraries can be prepared with different mutational loads in DNA segments of less than 30 amino acids so that they can be assembled into the remaining unaltered DNA regions in vivo with high fidelity. As a proof of concept, we present two eukaryotic-ligninolytic enzyme case studies: i) the enhancement of the oxidative stability of a H2O2-sensitive versatile peroxidase by independent evolution of three distinct protein segments (Leu28-Gly57, Leu149-Ala174 and Ile199-Leu268); and ii) the heterologous functional expression of an unspecific peroxygenase by exclusive evolution of its native 43-residue signal sequence.

  9. Characterization of the aroma of a meatlike process flavoring from soybean-based enzyme-hydrolyzed vegetable protein.

    Science.gov (United States)

    Wu, Yi-Fang G; Cadwallader, Keith R

    2002-05-08

    Defatted soybean meal was converted into enzyme-hydrolyzed vegetable protein (E-HVP) using the proteolytic enzyme Flavorzyme. Total free amino acids increased by 40-fold after enzyme hydrolysis, with leucine being the most abundant, followed by phenylalanine, lysine, glutamine/glutamic acid, and alanine. Volatile components from a meatlike process flavoring made from E-HVP were isolated by direct solvent extraction (DSE)-high vacuum transfer (HVT), dynamic headspace sampling and static headspace sampling and analyzed by gas chromatography (GC)-mass spectrometry and GC-olfactometry. Aroma extract dilution analysis was used to establish a flavor dilution chromatogram of the DSE-HVT extract. Results of these complementary techniques indicated the importance of odorants of high (hydrogen sulfide and methanethiol), intermediate (2-methyl-3-furanthiol, 3-mercapto-2-pentanone, 2-furanmethanethiol, and 3-(methylthiol)propanal) and low volatility (maltol and Furaneol) in the overall aroma of the meatlike process flavoring.

  10. Influence of enzymes on the oil extraction processes in aqueous media

    Directory of Open Access Journals (Sweden)

    Ricochon Guillaume

    2010-11-01

    Full Text Available The methods of oil aqueous extraction process (AEP assisted by enzymes are, over the last 50 years, an alternative designed to replace traditional methods of extraction using organic solvents. To extract the oil using an AEP, the use of specific enzymes, able to hydrolyze some or all components of seeds, can significantly increase the yields of extraction. Hydrolyzing the different constituents of cell walls (cellulose, hemicellulose, pectins, proteins, etc., enzymes are able to enhance the liberation of the oil. A number of physico-chemical parameters must also be considered for the better expression of the enzymatic mixture, while maintaining the quality of oils and meals. This article presents the various factors influencing the release of oil in aqueous media and the main results obtained by this process on various substrates.

  11. Regulation-Structured Dynamic Metabolic Model Provides a Potential Mechanism for Delayed Enzyme Response in Denitrification Process

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun-Seob; Thomas, Dennis G.; Stegen, James C.; Li, Minjing; Liu, Chongxuan; Song, Xuehang; Chen, Xingyuan; Fredrickson, Jim K.; Zachara, John M.; Scheibe, Timothy D.

    2017-09-29

    In a recent study of denitrification dynamics in hyporheic zone sediments, we observed a significant time lag (up to several days) in enzymatic response to the changes in substrate concentration. To explore an underlying mechanism and understand the interactive dynamics between enzymes and nutrients, we developed a trait-based model that associates a community’s traits with functional enzymes, instead of typically used species guilds (or functional guilds). This enzyme-based formulation allows to collectively describe biogeochemical functions of microbial communities without directly parameterizing the dynamics of species guilds, therefore being scalable to complex communities. As a key component of modeling, we accounted for microbial regulation occurring through transcriptional and translational processes, the dynamics of which was parameterized based on the temporal profiles of enzyme concentrations measured using a new signature peptide-based method. The simulation results using the resulting model showed several days of a time lag in enzymatic responses as observed in experiments. Further, the model showed that the delayed enzymatic reactions could be primarily controlled by transcriptional responses and that the dynamics of transcripts and enzymes are closely correlated. The developed model can serve as a useful tool for predicting biogeochemical processes in natural environments, either independently or through integration with hydrologic flow simulators.

  12. Process control of an ethanol fermentation with an enzyme thermistor as a sucrose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Mandenius, C F; Danielsson, B; Mattiasson, B

    1981-01-01

    An enzyme thermistor was used to monitor and control the sucrose concentration in a conversion of sucrose to EtOH with immobilized yeast. A continuous stirred tank reactor containing Ca alginate-immobilized Saccharomyces cerevisiae was used. The enzyme thermistor continuously measured the sucrose concentration in the fermentor with an online arrangement giving stable and reproducible heat signals. The control of the sucrose concentration level was performed with an analog P1-controller.

  13. Processing of Nonconjugative Resistance Plasmids by Conjugation Nicking Enzyme of Staphylococci

    Energy Technology Data Exchange (ETDEWEB)

    Pollet, Rebecca M.; Ingle, James D.; Hymes, Jeff P.; Eakes, Thomas C.; Eto, Karina Yui; Kwong, Stephen M.; Ramsay, Joshua P.; Firth, Neville; Redinbo, Matthew R. (Curtin U.); (Sydney); (UNC)

    2016-01-04

    mechanism of antimicrobial resistance transfer in bacteria such asStaphylococcus aureusis an important step toward potentially slowing the spread of antimicrobial-resistant infections. This work establishes protein-DNA interactions essential for the transfer of theStaphylococcus aureusmultiresistance plasmid pSK41 by its relaxase, NES. This enzyme also processed variantoriT-like sequences found on numerous plasmids previously considered nontransmissible, suggesting that in conjunction with an uncharacterized accessory protein, these plasmids may be transferred horizontally via a relaxase intransmechanism. These findings have important implications for our understanding of staphylococcal resistance plasmid evolution.

  14. Dry-grind processing using amylase corn and superior yeast to reduce the exogenous enzyme requirements in bioethanol production.

    Science.gov (United States)

    Kumar, Deepak; Singh, Vijay

    2016-01-01

    Conventional corn dry-grind ethanol production process requires exogenous alpha and glucoamylases enzymes to breakdown starch into glucose, which is fermented to ethanol by yeast. This study evaluates the potential use of new genetically engineered corn and yeast, which can eliminate or minimize the use of these external enzymes, improve the economics and process efficiencies, and simplify the process. An approach of in situ ethanol removal during fermentation was also investigated for its potential to improve the efficiency of high-solid fermentation, which can significantly reduce the downstream ethanol and co-product recovery cost. The fermentation of amylase corn (producing endogenous α-amylase) using conventional yeast and no addition of exogenous α-amylase resulted in ethanol concentration of 4.1 % higher compared to control treatment (conventional corn using exogenous α-amylase). Conventional corn processed with exogenous α-amylase and superior yeast (producing glucoamylase or GA) with no exogenous glucoamylase addition resulted in ethanol concentration similar to control treatment (conventional yeast with exogenous glucoamylase addition). Combination of amylase corn and superior yeast required only 25 % of recommended glucoamylase dose to complete fermentation and achieve ethanol concentration and yield similar to control treatment (conventional corn with exogenous α-amylase, conventional yeast with exogenous glucoamylase). Use of superior yeast with 50 % GA addition resulted in similar increases in yield for conventional or amylase corn of approximately 7 % compared to that of control treatment. Combination of amylase corn, superior yeast, and in situ ethanol removal resulted in a process that allowed complete fermentation of 40 % slurry solids with only 50 % of exogenous GA enzyme requirements and 64.6 % higher ethanol yield compared to that of conventional process. Use of amylase corn and superior yeast in the dry-grind processing industry

  15. Serine proteases as candidates for proteolytic processing of angiotensin-I converting enzyme.

    Science.gov (United States)

    Aragão, Danielle S; de Andrade, Maria Claudina C; Ebihara, Fabiana; Watanabe, Ingrid K M; Magalhães, Dayane C B P; Juliano, Maria Aparecida; Hirata, Izaura Yoshico; Casarini, Dulce Elena

    2015-01-01

    Somatic angiotensin-I converting enzyme (sACE) is a broadly distributed peptidase which plays a role in blood pressure and electrolyte homeostasis by the conversion of angiotensin I into angiotensin II. N-domain isoforms (nACE) with 65 and 90 kDa have been described in body fluids, tissues and mesangial cells (MC), and a 90 kDa nACE has been described only in spontaneously hypertensive rats. The aim of this study was to investigate the existence of proteolytic enzymes that may act in the hydrolysis of sACE generating nACEs in MC. After the confirmation of the presence of ACE sheddases in Immortalized MC (IMC), we purified and characterized these enzymes using fluorogenic substrates specifically designed for ACE sheddases. Purified enzyme identified as a serine protease by N-terminal sequence was able to generate nACE. In the present study, we described for the first time the presence of ACE sheddases in IMC, identified as serine proteases able to hydrolyze sACE in vitro. Further investigations are necessary to elucidate the mechanisms responsible for the expression and regulation of ACE sheddases in MC and their roles in the generation of nACEs, especially the 90 kDa form possibly related to hypertension. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Development and process optimization of an enzyme membrane reactor for lactose hydrolysis. Entwicklung und verfahrenstechnische Optimierung eines Enzym-Membranreaktors fuer die Hydrolyse von Laktose

    Energy Technology Data Exchange (ETDEWEB)

    Czermak, P

    1990-01-01

    The development and process optimization up to the production stage of a vapour sterilizable hollow-fiber membrane reactor for dialysis is illustrated by the example of enzymatic hydrolysis of lactose. The expected conversion efficiency of the membrane reactor is a function of the mass transfer resistance and by the deviations from the defined hydrodynamic status. The transport/reaction behaviour of membrane reactors is therefore described by a model for real reactors which takes account of the non-linear kinetics of the native enzyme, the real mixing conditions inside the reactor, and the mass transfer through the membrane. A coupled numerical solution is used for the calculations. The reaction kinetics, the mass transfer inside the membrane, the hydrodynamics and the conversion rate are determined experimentally. The model can calculate important design data from selected data of the reaction system. Measurements of conversion rates show that the results obtained with real substances, e.g. milk, are well compatible with the model calculations. (orig.) With 85 figs., 25 tabs.

  17. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.

    Science.gov (United States)

    Florencio, Camila; Cunha, Fernanda M; Badino, Alberto C; Farinas, Cristiane S; Ximenes, Eduardo; Ladisch, Michael R

    2016-08-01

    Cellulases and hemicellulases from Trichoderma reesei and Aspergillus niger have been shown to be powerful enzymes for biomass conversion to sugars, but the production costs are still relatively high for commercial application. The choice of an effective microbial cultivation process employed for enzyme production is important, since it may affect titers and the profile of protein secretion. We used proteomic analysis to characterize the secretome of T. reesei and A. niger cultivated in submerged and sequential fermentation processes. The information gained was key to understand differences in hydrolysis of steam exploded sugarcane bagasse for enzyme cocktails obtained from two different cultivation processes. The sequential process for cultivating A. niger gave xylanase and β-glucosidase activities 3- and 8-fold higher, respectively, than corresponding activities from the submerged process. A greater protein diversity of critical cellulolytic and hemicellulolytic enzymes were also observed through secretome analyses. These results helped to explain the 3-fold higher yield for hydrolysis of non-washed pretreated bagasse when combined T. reesei and A. niger enzyme extracts from sequential fermentation were used in place of enzymes obtained from submerged fermentation. An enzyme loading of 0.7 FPU cellulase activity/g glucan was surprisingly effective when compared to the 5-15 times more enzyme loadings commonly reported for other cellulose hydrolysis studies. Analyses showed that more than 80% consisted of proteins other than cellulases whose role is important to the hydrolysis of a lignocellulose substrate. Our work combined proteomic analyses and enzymology studies to show that sequential and submerged cultivation methods differently influence both titers and secretion profile of key enzymes required for the hydrolysis of sugarcane bagasse. The higher diversity of feruloyl esterases, xylanases and other auxiliary hemicellulolytic enzymes observed in the enzyme

  18. Production of Biodiesel from High Acid Value Waste Cooking Oil Using an Optimized Lipase Enzyme/Acid-Catalyzed Hybrid Process

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2009-01-01

    Full Text Available The present study is aimed at developing an enzymatic/acid-catalyzed hybrid process for biodiesel production using waste cooking oil with high acid value (poor quality as feedstock. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes. Further enhancement was achieved by three phase partitioning (TPP method. The results on the lipase enzyme which was subjected to pH tuning and TPP, indicated remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. The optimized enzyme was used for hydrolysis and 88% of the oil taken initially was hydrolyzed by the lipase. The hydrolysate was further used in acid-catalyzed esterification for biodiesel production. By using a feedstock to methanol molar ratio of 1:15 and a sulphuric acid concentration of 2.5%, a biodiesel conversion of 88% was obtained at 50 °C for an hour reaction time. This hybrid process may open a way for biodiesel production using unrefined and used oil with high acid value as feedstock.

  19. Use of a proteolytic enzyme in cocoa (Theobroma cacao L.) processing

    OpenAIRE

    Brito,Edy Sousa de; Pezoa García,Nelson Horacio; Amancio,Allan César

    2004-01-01

    Protein hydrolysis using an exogenous protease on cocoa nibs was performed to verify the formation of precursors and the effect on cocoa flavour. An experimental design was used to check the influence of temperature (30 to 70 ºC) and enzyme : substrate ratio [E/S] (97.5 to 1267.5 U g-1 of protein). The % Degree of Hydrolysis (% DH) was affected mainly by [E/S] leading to a 4-fold increase (from 5 to 20 %) after 6 hours of treatment. During cocoa nibs roasting, there was a greater consumption ...

  20. Design and modelling of enzyme/poly-pyrrole modified electrodes for bio-catalyzed electro-synthesis processes

    International Nuclear Information System (INIS)

    Gros, Pierre

    1996-01-01

    This research thesis reports a study which aims at developing, analyzing and integrating an electrode-enzyme interface within an electro-enzymatic reactor to develop electrochemical biosensors. The adopted method comprises a confinement of the enzyme at the electrode surface by means of an electro-formed poly-pyrrole film. The author reports an experimental and theoretical study of the coupling between electrochemical reaction, enzymatic reaction and matter transfer in the polymer in order to better understand the operation of so-modified electrodes. Different parameters have an influence on the reaction rate. A numerical model (validated by experiments) allows the identification of the reaction limiting stages. A new elaboration protocol allows the polymer permeability to be increased. The interface is first applied to the reduction of the NAD coenzyme, and the process is also applied to the production of gluconic acid [fr

  1. Spatiotemporal expression of endogenous opioid processing enzymes in mouse uterus at peri-implantation.

    Science.gov (United States)

    Wu, Weiwei; Kong, Shuangbo; Wang, Bingyan; Chen, Yongjie; Wang, Haibin

    2016-02-01

    Successful implantation requires intimate interactions between a competent blastocyst and a receptive uterus. We recently demonstrated that the aberrant activation of opioid signaling by exogenous ligands adversely affects preimplantation embryonic development and subsequent implantation in mice. However, the underlying machinery governing the dynamic homeostasis of the endogenous opioid system in the uterus during early pregnancy remains elusive. We now show that all three major endogenous opioid precursors are spatiotemporally expressed in the uterus during early pregnancy. Moreover, we observe the well-coordinated expression of the synthetic enzyme prohormone convertases 1/3 (PC1/3) at lower levels and of its inhibitor proprotein convertase subtilisin/kexin type 1 inhibitor (Pcsk1n) and the degrading enzyme membrane metallo-endopeptidase (MME) at higher levels in the receptive uterus. Both estrogen and progestin tend to reduce the uterine levels of opioid ligand precursors in the ovariectomized mouse model. This tight regulation of the endogenous opioid system by PC1/3, Pcsk1n and MME has been further confirmed in physiologically related pseudopregnancy and delayed implantation mouse models. The coordinated regulation of opioid precursor biosynthesis and metabolism helps to create appropriate opioid signaling ensuring uterine receptivity for implantation. Thus, endogenous uterine opioid levels are primarily determined by the coordinated expressions of PC1/3, Pcsk1n and MME under the influence of ovarian progestin and estrogen. Our findings raise an additional cautionary note regarding the effects of opioid abuse on early pregnancy events.

  2. A model system for targeted drug release triggered by biomolecular signals logically processed through enzyme logic networks.

    Science.gov (United States)

    Mailloux, Shay; Halámek, Jan; Katz, Evgeny

    2014-03-07

    A new Sense-and-Act system was realized by the integration of a biocomputing system, performing analytical processes, with a signal-responsive electrode. A drug-mimicking release process was triggered by biomolecular signals processed by different logic networks, including three concatenated AND logic gates or a 3-input OR logic gate. Biocatalytically produced NADH, controlled by various combinations of input signals, was used to activate the electrochemical system. A biocatalytic electrode associated with signal-processing "biocomputing" systems was electrically connected to another electrode coated with a polymer film, which was dissolved upon the formation of negative potential releasing entrapped drug-mimicking species, an enzyme-antibody conjugate, operating as a model for targeted immune-delivery and consequent "prodrug" activation. The system offers great versatility for future applications in controlled drug release and personalized medicine.

  3. Regulations of enzymes in animals: effects of developmental processes, cancer, and radiation. Final report. [Analysis of enzymes in human cancer tissue

    Energy Technology Data Exchange (ETDEWEB)

    Knox, W.E.

    1978-09-01

    Low grade tumors of various origins are chemically very different. High grade tumors, whatever their origin, are chemically very similar to one another and to embryonic tissues. Analyses of human tumor tissues and sera from cancer patients were conducted for two new groups of enzymes expected to be informative about the physiological state of the tissue. The enzymes measured in tumors and sera were chosen because they were characteristic of fetal tissues and high grade neoplasms in rats, and could, therefore, be expected to exist in human cancers (and fetuses) and to predominate more in those of higher grade malignancies. Results indicated that the classification of enzymes (or isozymes) as fetal or adult types in the rat could be extended to man. Human cancers do contain most of the enzymes expected, and lack others, as expected. Analyses of the same enzymes in sera gave less clear results. It was recognized at the outset that no simple proportionality existed between tissue and serum levels. The tendency existed in cancer patients to have in serum elevated amounts of those enzymes characteristic of undifferentiated tissues. The abnormalities in a specific patient are conditioned by his physiological state, by the grade of his tumor, and by the mass of tumor present. The tumor mass had a very significant effect, so that monitoring this tumor burden by chemical means should be quite possible. The latest work focused on particular enzymes that have not previously been measured in cancer patients. These studies concentrated on pyrroline-5-carboxylate (P-5-C) reductase and its inhibition and on lysosomal glucosidases and phosphatases. Both groups are relatively high in fetal and neoplastic tissues.

  4. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes.

    Science.gov (United States)

    Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2013-12-01

    The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes.

    Science.gov (United States)

    Panda, Sandeep K; Mishra, Swati S; Kayitesi, Eugenie; Ray, Ramesh C

    2016-04-01

    Wastes generated from fruits and vegetables are organic in nature and contribute a major share in soil and water pollution. Also, green house gas emission caused by fruit and vegetable wastes (FVWs) is a matter of serious environmental concern. This review addresses the developments over the last one decade on microbial processing technologies for production of enzymes and organic acids from FVWs. The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Extracellular Enzyme Composition and Functional Characteristics of Aspergillus niger An-76 Induced by Food Processing Byproducts and Based on Integrated Functional Omics.

    Science.gov (United States)

    Liu, Lin; Gong, Weili; Sun, Xiaomeng; Chen, Guanjun; Wang, Lushan

    2018-02-07

    Byproducts of food processing can be utilized for the production of high-value-added enzyme cocktails. In this study, we utilized integrated functional omics technology to analyze composition and functional characteristics of extracellular enzymes produced by Aspergillus niger grown on food processing byproducts. The results showed that oligosaccharides constituted by arabinose, xylose, and glucose in wheat bran were able to efficiently induce the production of extracellular enzymes of A. niger. Compared with other substrates, wheat bran was more effective at inducing the secretion of β-glucosidases from GH1 and GH3 families, as well as >50% of proteases from A1-family aspartic proteases. Compared with proteins induced by single wheat bran or soybean dregs, the protein yield induced by their mixture was doubled, and the time required to reach peak enzyme activity was shortened by 25%. This study provided a technical platform for the complex formulation of various substrates and functional analysis of extracellular enzymes.

  7. A processing enzyme cleaving avian progastrin at post-Phe bonds

    DEFF Research Database (Denmark)

    Jensen, H; Ørskov, C; Rehfeld, J F

    2001-01-01

    Neuroendocrine peptides mature partly through endoproteolytic processing of long precursor forms. Best characterised is cleavage at mono- and dibasic residues, but additional sites also exist. Among these is post-Phe cleavage, first suggested to participate in the processing of chicken progastrin...

  8. Multiple RNA processing defects and impaired chloroplast function in plants deficient in the organellar protein-only RNase P enzyme.

    Directory of Open Access Journals (Sweden)

    Wenbin Zhou

    Full Text Available Transfer RNA (tRNA precursors undergo endoribonucleolytic processing of their 5' and 3' ends. 5' cleavage of the precursor transcript is performed by ribonuclease P (RNase P. While in most organisms RNase P is a ribonucleoprotein that harbors a catalytically active RNA component, human mitochondria and the chloroplasts (plastids and mitochondria of seed plants possess protein-only RNase P enzymes (PRORPs. The plant organellar PRORP (PRORP1 has been characterized to some extent in vitro and by transient gene silencing, but the molecular, phenotypic and physiological consequences of its down-regulation in stable transgenic plants have not been assessed. Here we have addressed the function of the dually targeted organellar PRORP enzyme in vivo by generating stably transformed Arabidopsis plants in which expression of the PRORP1 gene was suppressed by RNA interference (RNAi. PRORP1 knock-down lines show defects in photosynthesis, while mitochondrial respiration is not appreciably affected. In both plastids and mitochondria, the effects of PRORP1 knock-down on the processing of individual tRNA species are highly variable. The drastic reduction in the levels of mature plastid tRNA-Phe(GAA and tRNA-Arg(ACG suggests that these two tRNA species limit plastid gene expression in the PRORP1 mutants and, hence, are causally responsible for the mutant phenotype.

  9. Enzymes and microorganisms in food industry waste processing and conversion to useful products: literature review

    Energy Technology Data Exchange (ETDEWEB)

    Carroad, P A [Univ. of California, Davis; Wilke, C R

    1978-01-01

    Bioconversion of food processing wastes is receiving increased attention with the realization that waste components represent an available and utilizable resource for conversion to useful products. Liquid wastes are characterized as dilute streams containing sugars, starches, proteins and fats. Solid wastes are generally cellulosic, but may contain other polymers. The greatest potential for economic bioconversion is represented by processes to convert cellulose to glucose, glucose to alcohol and protein, starch to invert sugar, and dilute waste streams to methane by anaerobic digestion. Microbial or enzymatic processes to accomplish these conversions are described.

  10. Use of a proteolytic enzyme in cocoa (Theobroma cacao L. processing

    Directory of Open Access Journals (Sweden)

    Edy Sousa de Brito

    2004-08-01

    Full Text Available Protein hydrolysis using an exogenous protease on cocoa nibs was performed to verify the formation of precursors and the effect on cocoa flavour. An experimental design was used to check the influence of temperature (30 to 70 ºC and enzyme : substrate ratio [E/S] (97.5 to 1267.5 U g-1 of protein. The % Degree of Hydrolysis (% DH was affected mainly by [E/S] leading to a 4-fold increase (from 5 to 20 % after 6 hours of treatment. During cocoa nibs roasting, there was a greater consumption of hydrolysis compounds in the sample treated with protease as compared to the control, indicating their participation in the Maillard reaction. An increased perception of chocolate flavour and bitter taste was observed in a product formulated with protease treated cocoa.Foi feita uma hidrólise da proteína dos nibs de cacau usando-se uma protease para verificar a formação de precursores e o efeito sobre o sabor do cacau. Um desenho experimental foi usado para verificar a influência da temperatura (30 a 70 ºC e razão enzima : substrato [E/S] (97,5 a 1267,5 U g-1 de proteína. O grau de hidrólise % (%DH foi afetado principalmente pela [E/S], tendo sofrido um aumento de 4 vezes (de 5 para 20 % após 6 horas de tratamento. Durante a torração dos nibs houve um consumo maior dos compostos de hidrólise na amostra tratada com protease em comparação com o controle, indicando a participação desses compostos na reação de Maillard. Foi observado um aumento na percepção do sabor de chocolate e do gosto amargo em um produto formulado com o cacau tratado com a protease.

  11. The application of ultrasound and enzymes in textile processing of greige cotton

    Science.gov (United States)

    Research progress made at the USDA’s Southern Regional Research Center to provide an ultrasound and enzymatic alternative to the current textile processing method of scouring greige cotton textile with caustic chemicals is reported. The review covers early efforts to measure pectin and wax removal ...

  12. Optimization of drying process of Zea Mays malt to use as alternative source of amylolytics enzymes

    Directory of Open Access Journals (Sweden)

    Joana Paula Menezes Biazus

    2005-06-01

    Full Text Available This work aimed to study the drying process optimization of maize (Zea Mays malt for obtaining maize malt, without affecting enzymatic activity of alpha e beta-amylases from maize malt. Results showed that dryer operation must occur in zone at 54°C and 5.18-6 h process time. The maize malt obtained had good enzymatic properties.Este trabalho objetivou a otimização da secagem do malte de milho (Zea Mays para obter um malte sem afetar a atividade das enzimas presentes neste, alfa e beta -amilases. Os resultados mostraram que a operação do secador deve ser feita a 54°C e entre 5,18-6 h de processo. O malte obtido possuiu boas propriedades enzimáticas.

  13. Investigation of some characteristics of enzymes that ensure the process of membrane digestion in paddlefish and Russian sturgeon

    Directory of Open Access Journals (Sweden)

    A. N. Nevalennyy

    2010-01-01

    Full Text Available Complex research of characteristics of some enzymes which are carrying out membrane hydrolysis of food at a spoonbilled cat and Russian sturgeon is carried out. High thermostability enzymes the squirrel of all investigated enzymes is marked.

  14. Molecular motors that digest their track to rectify Brownian motion: processive movement of exonuclease enzymes.

    Science.gov (United States)

    Xie, Ping

    2009-09-16

    A general model is presented for the processive movement of molecular motors such as λ-exonuclease, RecJ and exonuclease I that use digestion of a DNA track to rectify Brownian motion along this track. Using this model, the translocation dynamics of these molecular motors is studied. The sequence-dependent pausing of λ-exonuclease, which results from a site-specific high affinity DNA interaction, is also studied. The theoretical results are consistent with available experimental data. Moreover, the model is used to predict the lifetime distribution and force dependence of these paused states.

  15. Molecular motors that digest their track to rectify Brownian motion: processive movement of exonuclease enzymes

    International Nuclear Information System (INIS)

    Xie Ping

    2009-01-01

    A general model is presented for the processive movement of molecular motors such as λ-exonuclease, RecJ and exonuclease I that use digestion of a DNA track to rectify Brownian motion along this track. Using this model, the translocation dynamics of these molecular motors is studied. The sequence-dependent pausing of λ-exonuclease, which results from a site-specific high affinity DNA interaction, is also studied. The theoretical results are consistent with available experimental data. Moreover, the model is used to predict the lifetime distribution and force dependence of these paused states.

  16. Towards continuous enzyme-catalysed processes for the production of biodiesel

    DEFF Research Database (Denmark)

    Nordblad, Mathias; Pedersen, Anders Kristian; Meyland, Lene Have

    The application of lipases in the production of biodiesel can find several roles: in pretreating high FFA oils via esterification, transesterification for converting oil to biodiesel and polishing via esterification to ensure the product is within specification. In all these cases the potential...... size of the process plants, suggest that continuous operation would be highly beneficial due to the economies of scale. To investigate this, we have examined both oil pretreatment via esterification and biodiesel production via transesterification in batch stirred tank reactors (BSTRs), continuous...

  17. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  18. Impact of pH and Total Soluble Solids on Enzyme Inactivation Kinetics during High Pressure Processing of Mango (Mangifera indica) Pulp.

    Science.gov (United States)

    Kaushik, Neelima; Nadella, Tejaswi; Rao, P Srinivasa

    2015-11-01

    This study was undertaken with an aim to enhance the enzyme inactivation during high pressure processing (HPP) with pH and total soluble solids (TSS) as additional hurdles. Impact of mango pulp pH (3.5, 4.0, 4.5) and TSS (15, 20, 25 °Brix) variations on the inactivation of pectin methylesterase (PME), polyphenol oxidase (PPO), and peroxidase (POD) enzymes were studied during HPP at 400 to 600 MPa pressure (P), 40 to 70 °C temperature (T), and 6- to 20-min pressure-hold time (t). The enzyme inactivation (%) was modeled using second order polynomial equations with a good fit that revealed that all the enzymes were significantly affected by HPP. Response surface and contour models predicted the kinetic behavior of mango pulp enzymes adequately as indicated by the small error between predicted and experimental data. The predicted kinetics indicated that for a fixed P and T, higher pulse pressure effect and increased isobaric inactivation rates were possible at lower levels of pH and TSS. In contrast, at a fixed pH or TSS level, an increase in P or T led to enhanced inactivation rates, irrespective of the type of enzyme. PPO and POD were found to have similar barosensitivity, whereas PME was found to be most resistant to HPP. Furthermore, simultaneous variation in pH and TSS levels of mango pulp resulted in higher enzyme inactivation at lower pH and TSS during HPP, where the effect of pH was found to be predominant than TSS within the experimental domain. Exploration of additional hurdles such as pH, TSS, and temperature for enzyme inactivation during high pressure processing of fruits is useful from industrial point of view, as these parameters play key role in preservation process design. © 2015 Institute of Food Technologists®

  19. Positive regulation of prostate cancer cell growth by lipid droplet forming and processing enzymes DGAT1 and ABHD5.

    Science.gov (United States)

    Mitra, Ranjana; Le, Thuc T; Gorjala, Priyatham; Goodman, Oscar B

    2017-09-06

    in the synthesis of triacylglycerol where as ABHD5 is a hydrolase and participates in the fatty acid oxidation process, yet inhibition of both enzymes similarly promotes prostate cancer cell death. Inhibition of either DGAT1 or ABHD5 leads to prostate cancer cell death. Both DGAT1 and ABHD5 can be selectively targeted to block prostate cancer cell growth.

  20. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  1. Improvement of phenolic antioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing

    Energy Technology Data Exchange (ETDEWEB)

    Inconomou, D.; Arapoglou, D.; Israilides, C.

    2010-07-01

    The evolution of phenolic compounds and their contribution to the quality characteristics in virgin olive oil during fruit processing was studied with the addition of a combination of various commercial enzymes containing pectinases, polygalacturonases, cellulase and {beta}-glucanase with or without nitrogen flush. Olive fruits (Olea europaea, L.) of the cultivar Megaritiki, at the semi black pigmentation stage of maturity, were used in a 3-phase extraction system in an experiment at industrial scale. The addition of enzymes in the olive paste during processing increased the total phenol and ortho-diphenol contents, as well as some simple phenolic compounds (3,4-DHPEA, p-HPEA) and the secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEAEA) in olive oil and therefore improved its oxidative stability. Furthermore, enzyme treatment ameliorated the quality parameters of the produced olive oil (acidity and peroxide value) and their sensory attributes. The use of additional N{sub 2} flush with the enzyme treatments did not improve the quality parameters of olive oil any further; however it did not affect the concentration of individual and total sterols or most of the fatty acid composition. Consequently, olive paste treatment with enzymes not only improved the quality characteristics of olive oil and enhanced the overall organoleptic quality, but also increased the olive oil yield. (Author) 33 refs.

  2. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 309 (FGE.309): Sodium Diacetate

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate sodium diacetate [FL-no: 16.073] in the Flavouring Group Evaluation 309, using the Procedure in Commission Regulation (EC) No 1565/2000. However, although...

  3. Expression of genes for microRNA-processing enzymes is altered in advanced non-alcoholic fatty liver disease.

    Science.gov (United States)

    Sharma, Haveesh; Estep, Michael; Birerdinc, Aybike; Afendy, Arian; Moazzez, Amir; Elariny, Hazem; Goodman, Zachary; Chandhoke, Vikas; Baranova, Ancha; Younossi, Zobair M

    2013-08-01

    Recently, microRNAs (miRNA) have been linked to the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and its progression to non-alcoholic steatohepatitis (NASH). First transcribed as pri-miRNA, these molecules are further processed by a complex of endonuclear and cytosolic RNA binding molecules to form mature miRNAs. The aim of this study is to investigate mechanisms of miRNA regulation in the visceral adipose of obese NAFLD patients via measuring expression of miRNA processing enzymes and pri-miRNA. Total RNAs were extracted from visceral adipose tissue (VAT) samples collected from patients undergoing bariatric surgery. All patients had biopsy-proven NAFLD (NASH patients [n = 12] and non-NASH NAFLD [n = 12]). For each patient, we profiled mRNA levels for three miRNA processing elements (Drosha, DGCR8, and Dicer1) and seven pri-miRNAs (pri-miR-125b-2, pri-miR-16-2, pri-miR-26a-1, pri-miR-26a-2, pri-miR-7-1, pri-miR-7-2, and pri-miR-7-3). Expression of Dicer1, Drosha and DGCR8 was significantly increased within the NASH cohort along with expression of pri-miR-7-1. The presence of focal necrosis on the liver biopsy correlated significantly with levels of Dicer1 and DGRC8. Both NASH and ballooning degeneration of hepatocytes correlated negatively with the expression levels of hsa-miR-125b. Histologic NASH correlated positively with the expression levels of pri-miR-16-2 and pri-miR-7-1. The presence of the hepatocyte's ballooning degeneration in the liver biopsy correlated positively with pri-miR-26a-1 and pri-miR-7-1. The expression profile of pri-miR-125b-2 also correlated positively with body mass index. Our findings support the hypothesis that VAT-derived miRNA may contribute to the pathogenesis of NASH in obese patients. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  4. Primary structure of the precursor for the anthozoan neuropeptide Antho-RFamide from Renilla köllikeri: Evidence for unusual processing enzymes

    DEFF Research Database (Denmark)

    Reinscheid, R K; Grimmelikhuijzen, C J

    1994-01-01

    distributed over the precursor protein. Of the 36 Antho-RFamide sequences, 29 copies are separated by the five amino acid spacer sequence Arg-Glu/Gly-Asn/Ser/Asp-Glu/Lys-Glu. This implicates processing at single Arg and single Glu residues. Endoproteolytic cleavage at the C-terminal side of paired or single......, and possibly also at other residues, and thus liberate all Antho-RFamide sequences. The processing of one precursor molecule probably yields 38 neuropeptides.(ABSTRACT TRUNCATED AT 250 WORDS)...... basic residues is a well known initial step in the maturation of precursor proteins. Cleavage at the C-terminal side of acidic residues, however, is unusual and must be catalyzed by a new type of processing enzyme. This processing enzyme is most likely to be an endoprotease, because the simplest way...

  5. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  6. Scaling Down the Analysis of Environmental Processes: Monitoring Enzyme Activity in Natural Substrates on a Millimeter Resolution Scale

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Větrovský, Tomáš

    2012-01-01

    Roč. 78, č. 9 (2012), s. 3473-3475 ISSN 0099-2240 R&D Projects: GA MŠk(CZ) LA10001; GA MŠk(CZ) ME10152 Institutional support: RVO:61388971 Keywords : enzyme activity * fungal colonies * soil Subject RIV: EE - Microbiology, Virology Impact factor: 3.678, year: 2012

  7. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings.

    Science.gov (United States)

    Zhang, Wangxiang; Fan, Junjun; Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25-47.4% and increased the rooting percentages of cuttings by 0.9-1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting.

  8. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 21, Revision 4 (FGE.21Rev4)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 59 flavouring substances in the Flavouring Group Evaluation 21, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision...... of these flavouring substances, the specifications for the materials of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the materials of commerce have been provided for all 41 candidate substances...

  9. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 76, Revision 1 (FGE.76Rev1)

    OpenAIRE

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz; Lund, Pia; Nørby, Karin Kristiane

    2013-01-01

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), and to decide whether further evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present opinion concerns a group of 26 sulphur-containing heterocyclic compounds evaluated by the JECFA at the 59th m...

  10. Indicators: Sediment Enzymes

    Science.gov (United States)

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  11. Optimization of Processing Parameters for Extraction of Amylase Enzyme from Dragon (Hylocereus polyrhizus Peel Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Mehrnoush Amid

    2014-01-01

    Full Text Available The main goal of this study was to investigate the effect of extraction conditions on the enzymatic properties of thermoacidic amylase enzyme derived from dragon peel. The studied extraction variables were the buffer-to-sample (B/S ratio (1 : 2 to 1 : 6, w/w, temperature (−18°C to 25°, mixing time (60 to 180 seconds, and the pH of the buffer (2.0 to 8.0. The results indicate that the enzyme extraction conditions exhibited the least significant (P<0.05 effect on temperature stability. Conversely, the extraction conditions had the most significant (P<0.05 effect on the specific activity and pH stability. The results also reveal that the main effect of the B/S ratio, followed by its interaction with the pH of the buffer, was significant (P<0.05 among most of the response variables studied. The optimum extraction condition caused the amylase to achieve high enzyme activity (648.4 U, specific activity (14.2 U/mg, temperature stability (88.4%, pH stability (85.2%, surfactant agent stability (87.2%, and storage stability (90.3%.

  12. Effects of moisture enhancement, enzyme treatment, and blade tenderization on the processing characteristics and tenderness of beef semimembranosus steaks.

    Science.gov (United States)

    Pietrasik, Z; Shand, P J

    2011-05-01

    The individual and combined effects of moisture enhancement with a salt/phosphate solution (ME), blade tenderization (BT), and enzyme injection with proteinases derived from Aspergillus oryzae or Bacillus subtilis on cooking properties, Warner-Bratzler shear force (WBSF), and sensory characteristics of beef semimembranosus were investigated. ME significantly (P < 0.01) reduced WBSF and increased (P < 0.05) sensory scores for juiciness and tenderness. BT increased (P < 0.05) initial and overall tenderness scores and made connective tissue less perceptible. BT combined with ME resulted in the highest initial and overall tenderness scores, however, combining ME with either proteinase was as effective for reducing WBSF and increasing tenderness, particularly at 20 (vs. 10) ppm enzyme inclusion. Tenderness of enzyme-injected steaks was increased without compromising other palatability attributes. All treatments increased the frequency of steaks rated slightly tender or higher, with the ME+BT combination, or ME with inclusion of 20 ppm of either proteinase, being most effective. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  13. [Effect of melaxen on free radical processes intensity and some antioxidant enzymes activity in rats liver and blood serum under type 2 diabetes mellitus].

    Science.gov (United States)

    Verevkin, A N; Popova, T N; Agarkov, A A; Semenikhina, A V

    2015-01-01

    The effect of melaxen on free radical processes and activity of superoxide dismutase and catalase in rats with type 2 diabetes mellitus (T2DM) has been investigated. It was established that melaxen administration to diabetic rats caused a decrease of the intensity of free radical processes as evidenced a decrease of the lipid peroxidation primary products content and biochemiluminescence parameters. The activity of the antioxidant enzymes changed towards normal values. These effects were probably induced by the correction of the melatonin level at the result of the melaxen action.

  14. Production of specifically structured lipids by enzymatic interesterification in a pilot enzyme bed reactor: process optimization by response surface methodology

    DEFF Research Database (Denmark)

    Xu, Xuebing; Mu, Huiling; Høy, Carl-Erik

    1999-01-01

    Pilot production of specifically structured lipids by Lipozyme IM-catalyzed interesterification was carried out in a continuous enzyme bed reactor without the use of solvent. Medium chain triacylglycerols and oleic acid were used as model substrates. Response surface methodology was applied...... and the production of mono-incorporated and di-incorporated structured lipids with multiple regression and backward elimination. The coefficient of determination (R2) for the incorporation was 0.93, and that for the di-incorporated products was 0.94. The optimal conditions were flow rate, 2 ml/min; temperature, 65...

  15. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J J; Brand, J C

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  16. EFSA EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 304 (FGE.304): Five carboxamides from chemical group 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate five flavouring substances in the Flavouring Group Evaluation 304, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the substances...... data are required. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Specifications including complete purity criteria and identity for the materials of commerce have been provided for all five candidate substances....

  17. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) ; Scientific Opinion on Flavouring Group Evaluation 305 (FGE.305): L - Methionylglycine of chemical group 34

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    use in foods that are not heated or intended to be heated. Besides the safety assessment of the flavouring substance, the specifications for the material of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the material of commerce have......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate one flavouring substance, the dipeptide L-methionylglycine [FL-no: 17.037], in the Flavouring Group Evaluation 305, using the Procedure in Commission...... been provided for the candidate substance. © European Food Safety Authority, 2013...

  18. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 24, Revision 2 (FGE.24Rev2)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 24 flavouring substances in the Flavouring Group Evaluation 24, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision...... the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the materials of commerce have been provided for all 24 candidate substances....

  19. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 21, Revision 4 (FGE.21Rev4)

    OpenAIRE

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz; Lund, Pia; Nørby, Karin Kristiane

    2013-01-01

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 59 flavouring substances in the Flavouring Group Evaluation 21, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision is made due to the inclusion of the assessment of new toxicity data on one supporting substance 5,6-dihydro-2,4,6-tris(2-methylpropyl)-4H-1,3,5-dithiazine [FL-no: 15.113], which is considered to be str...

  20. Comparative study of pulsed electric field and thermal processing of apple juice with particular consideration of juice quality and enzyme deactivation.

    Science.gov (United States)

    Schilling, Susanne; Schmid, Sandra; Jäger, Henry; Ludwig, Michael; Dietrich, Helmut; Toepfl, Stefan; Knorr, Dietrich; Neidhart, Sybille; Schieber, Andreas; Carle, Reinhold

    2008-06-25

    As an alternative to thermal pasteurization, pulsed electric fields (PEF) were applied to apple juices on laboratory and pilot plant scale, investigating the effects on juice quality. PEF application still falls under the EU Novel Food Regulation. Consequently, extensive investigation of quality parameters is a prerequisite to prove substantial equivalence of juices resulting from the novel process and conventional production, respectively. Juice composition was not affected by PEF treatment. However, browning of the juices provided evidence of residual enzyme activities. On laboratory scale, complete deactivation of peroxidase (POD) and polyphenoloxidase (PPO) was achieved when PEF treatment and preheating of the juices to 60 degrees C were combined. Under these conditions, a synergistic effect of heat and PEF was observed. On pilot plant scale, maximum PPO deactivation of 48% was achieved when the juices were preheated to 40 degrees C and PEF-treated at 30 kV/cm (100 kJ/kg). Thus, minimally processed juices resulted from PEF processing, when applied without additional conventional thermal preservation. Since this product type was characterized by residual native enzyme activities and nondetectable levels of 5-hydroxymethylfurfural, also when preheating up to 40 degrees C was included, it ranged between fresh and pasteurized juices regarding consumers' expectation of freshness and shelf life. Consistent with comparable iron contents among all juice samples, no electrode corrosion was observed under the PEF conditions applied.

  1. Furin is a chemokine-modifying enzyme: in vitro and in vivo processing of CXCL10 generates a C-terminally truncated chemokine retaining full activity.

    Science.gov (United States)

    Hensbergen, Paul J; Verzijl, Dennis; Balog, Crina I A; Dijkman, Remco; van der Schors, Roel C; van der Raaij-Helmer, Elizabeth M H; van der Plas, Mariena J A; Leurs, Rob; Deelder, André M; Smit, Martine J; Tensen, Cornelis P

    2004-04-02

    Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the total spectrum of chemokine variants. We have recently shown that the native chemokine CXCL10 is processed at the C terminus, thereby shedding the last four amino acids. The present study was performed to elucidate the mechanism in vivo and in vitro and to study the biological activity of this novel isoform of CXCL10. Using a combination of protein purification and mass spectrometric techniques, we show that the production of C-terminally truncated CXCL10 by primary keratinocytes is inhibited in vivo by a specific inhibitor of pro-protein convertases (e.g. furin) but not by inhibition of matrix metalloproteinases. Moreover, CXCL10 is processed by furin in vitro, which is abrogated by a mutation in the furin recognition site. Using GTPgammaS binding, Ca(2+) mobilization, and chemotaxis assays, we demonstrate that the C-terminally truncated CXCL10 variant is a potent ligand for CXCR3. Moreover, the inverse agonist activity on the virally encoded receptor ORF74 and the direct antibacterial activity of CXCL10 are fully retained. Hence, we have identified furin as a novel chemokine-modifying enzyme in vitro and most probably also in vivo, generating a C-terminally truncated CXCL10, which fully retains its (inverse) agonistic properties.

  2. Effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro disappearance and gas production for feedlot cattle.

    Science.gov (United States)

    Tagawa, Shin-Ichi; Holtshausen, Lucia; McAllister, Tim A; Yang, Wen Zhu; Beauchemin, Karen Ann

    2017-04-01

    The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM) disappearance (DMD), gas production and fermentation pH were investigated for feedlot cattle. Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ) from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm) at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving) and ENZ addition (0, 1, and 2 mg/g) using dry-rolled barley and 2-mm ground barley. In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (pgas production and decreased (pgas production, and decreased (p<0.05) fermentation pH of dry-rolled barley, but not ground barley. We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed as in the case of dry-rolled barley. However, microwaving of barley grain offered no further improvements in ruminal fermentation of barley grain.

  3. Stabilization of red fruit-based smoothies by high-pressure processing. Part A. Effects on microbial growth, enzyme activity, antioxidant capacity and physical stability.

    Science.gov (United States)

    Hurtado, Adriana; Guàrdia, Maria Dolors; Picouet, Pierre; Jofré, Anna; Ros, José María; Bañón, Sancho

    2017-02-01

    Non-thermal pasteurization by high-pressure processing (HPP) is increasingly replacing thermal processing (TP) to maintain the properties of fresh fruit products. However, most of the research on HPP-fruit products only partially addresses fruit-pressure interaction, which limits its practical interest. The objective of this study was to assess the use of a mild HPP treatment to stabilize red fruit-based smoothies (microbial, enzymatic, oxidative and physical stability). HPP (350 MPa/10 °C/5 min) was slightly less effective than TP (85 °C/7 min) in inactivating microbes (mesophilic and psychrophilic bacteria, coliforms, yeasts and moulds) in smoothies kept at 4 °C for up to 28 days. The main limitation of using HPP was its low efficacy in inactivating oxidative (polyphenol oxidase and peroxidase) and hydrolytic (pectin methyl esterase) enzymes. Data on antioxidant status, colour parameters, browning index, transmittance, turbidity and viscosity confirmed that the HPP-smoothies have a greater tendency towards oxidation and clarification, which might lead to undesirable sensory and nutritional changes (see Part B). The microbial quality of smoothies was adequately controlled by mild HPP treatment without affecting their physical-chemical characteristics; however, oxidative and hydrolytic enzymes are highly pressure-resistant, which suggests that additional strategies should be used to stabilize smoothies. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Endogenous enzymes, heat, and pH affect flavone profiles in parsley (Petroselinum crispum var. neapolitanum) and celery (Apium graveolens) during juice processing.

    Science.gov (United States)

    Hostetler, Gregory L; Riedl, Ken M; Schwartz, Steven J

    2012-01-11

    Flavones are abundant in parsley and celery and possess unique anti-inflammatory properties in vitro and in animal models. However, their bioavailability and bioactivity depend in part on the conjugation of sugars and other functional groups to the flavone core. The effects of juice extraction, acidification, thermal processing, and endogenous enzymes on flavone glycoside profile and concentration in both parsley and celery were investigated. Parsley yielded 72% juice with 64% of the total flavones extracted, whereas celery yielded 79% juice with 56% of flavones extracted. Fresh parsley juice averaged 281 mg flavones/100 g and fresh celery juice, 28.5 mg/100 g. Flavones in steamed parsley and celery were predominantly malonyl apiosylglucoside conjugates, whereas those in fresh samples were primarily apiosylglucoside conjugates; this was apparently the result of endogenous malonyl esterases. Acidification and thermal processing of celery converted flavone apiosylglucosides to flavone glucosides, which may affect the intestinal absorption and metabolism of these compounds.

  5. Final Project Report - Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloriethylene Co-Metabolism: Co-Metabolic Enzyme Activity Probes and Modeling Co-Metabolism and Attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Starr, Robert C; Orr, Brennon R; Lee, M Hope; Delwiche, Mark

    2010-02-26

    Trichloroethene (TCE) (also known as trichloroethylene) is a common contaminant in groundwater. TCE is regulated in drinking water at a concentration of 5 µg/L, and a small mass of TCE has the potential to contaminant large volumes of water. The physical and chemical characteristics of TCE allow it to migrate quickly in most subsurface environments, and thus large plumes of contaminated groundwater can form from a single release. The migration and persistence of TCE in groundwater can be limited by biodegradation. TCE can be biodegraded via different processes under either anaerobic or aerobic conditions. Anaerobic biodegradation is widely recognized, but aerobic degradation is less well recognized. Under aerobic conditions, TCE can be oxidized to non hazardous conditions via cometabolic pathways. This study applied enzyme activity probes to demonstrate that cometabolic degradation of TCE occurs in aerobic groundwater at several locations, used laboratory microcosm studies to determine aerobic degradation rates, and extrapolated lab-measured rates to in situ rates based on concentrations of microorganisms with active enzymes involved in cometabolic TCE degradation. Microcosms were constructed using basalt chips that were inoculated with microorganisms to groundwater at the Idaho National Laboratory Test Area North TCE plume by filling a set of Flow-Through In Situ Reactors (FTISRs) with chips and placing the FTISRs into the open interval of a well for several months. A parametric study was performed to evaluate predicted degradation rates and concentration trends using a competitive inhibition kinetic model, which accounts for competition for enzyme active sites by both a growth substrate and a cometabolic substrate. The competitive inhibition kinetic expression was programmed for use in the RT3D reactive transport package. Simulations of TCE plume evolution using both competitive inhibition kinetics and first order decay were performed.

  6. Combined osmodehydration and high pressure processing on the enzyme stability and antioxidant capacity of a grapefruit jam

    Science.gov (United States)

    A combined osmodehydration process and high pressure treatment (OD-HHP) was developed for grapefruit jam preservation. The inactivation kinetics of pectinmethylesterase (PME) and peroxidase (POD) in the osmodehydrated (OD) jam treated by combined thermal (45-75°C) and high pressure (550–700 MPa) pro...

  7. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... for several batches of hydrolysis, and thereby reduces the overall cost associated with the hydrolysis. Research on this subject has been ongoing for many years and several promising technologies and methods have been developed and demonstrated. But only in a very few cases have these technologies been...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...

  8. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on xylanase from a genetically modified strain of Aspergillus oryzae (strain NZYM-FB)

    DEFF Research Database (Denmark)

    Poulsen, Morten; Binderup, Mona-Lise; Hallas-Møller, Torben

    . The xylanase is intended to be used in a number of food manufacturing processes, such as starch processing, beverage alcohol (distilling), brewing, baking and other cereal based processes. The dietary exposure was assessed according to the Budget method. The food enzyme did not induce gene mutations...

  9. Improvement of phenolic antioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing

    Directory of Open Access Journals (Sweden)

    Iconomou, D.

    2010-09-01

    Full Text Available The evolution of phenolic compounds and their contribution to the quality characteristics in virgin olive oil during fruit processing was studied with the addition of a combination of various commercial enzymes containing pectinases, polygalacturonases, cellulase and β-glucanase with or without nitrogen flush. Olive fruits (Olea europaea, L. of the cultivar Megaritiki, at the semi black pigmentation stage of maturity, were used in a 3-phase extraction system in an experiment at industrial scale. The addition of enzymes in the olive paste during processing increased the total phenol and ortho-diphenol contents, as well as some simple phenolic compounds (3,4-DHPEA, p-HPEA and the secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEAEA in olive oil and therefore improved its oxidative stability. Furthermore, enzyme treatment ameliorated the quality parameters of the produced olive oil (acidity and peroxide value and their sensory attributes. The use of additional N2 flush with the enzyme treatments did not improve the quality parameters of olive oil any further; however it did not affect the concentration of individual and total sterols or most of the fatty acid composition. Consequently, olive paste treatment with enzymes not only improved the quality characteristics of olive oil and enhanced the overall ogranoleptic quality, but also increased the olive oil yield.

    La evolución de los compuestos fenólicos y su contribución a las caracterísiticas de calidad de aceite de oliva virgen durante el procesado del fruto fue estudiado mediante la adición de una combinación de varias enzimas comerciales conteniendo pectinasas, poligalacturonasa, celulasa y β-glucanasa con y sin flujo de nitrógeno. Las aceitunas (Olea europaea, L. de la variedad Megaritiki, con un estado de madurez correspondiente a una pigmentación semi-negra, fueron usadas en un experimento a escala industrial mediante un sistema de extracción de 3-fase. La

  10. Antioxidant Enzyme Activities and Lipid Oxidation in Rape (Brassica campestris L. Bee Pollen Added to Salami during Processing

    Directory of Open Access Journals (Sweden)

    Yawei Zhang

    2016-10-01

    Full Text Available The present research investigated the antioxidant effect of rape (Brassica campestris L. bee pollen (RBP on salami during processing. Eight flavonoids in RBP ethanol extract were quantified by high-performance liquid chromatography-mass spectrometry (HPLC-MS analysis, and quercetin, rutin, and kaempferol were the major bioactive compounds. The RBP ethanol extract exhibited higher total antioxidant capacity than 6-hydroxy-2,5,7,8-tertramethylchromancarboxylic acid (trolox at the same concentration. The salami with 0.05% RBP extract had higher catalase (CAT, superoxide dismutase (SOD, and glutathione peroxidase (GSH-Px activities than that of the control throughout the processing time (p < 0.05. Significant decreases in peroxide value (POV and thiobarbituric acid-reactive substances (TBARS were obtained in the final salami product with 0.05% RBP ethanol extract or 1% RBP (p < 0.05. These results suggested that RBP could improve oxidative stability and had a good potential as a natural antioxidant for retarding lipid oxidation.

  11. Proteolytic enzymes involved in MHC class I antigen processing: A guerrilla army that partners with the proteasome.

    Science.gov (United States)

    Lázaro, Silvia; Gamarra, David; Del Val, Margarita

    2015-12-01

    Major histocompatibility complex class I proteins (MHC-I) load short peptides derived from proteolytic cleavage of endogenous proteins in any cell of the body, in a process termed antigen processing and presentation. When the source proteins are altered self or encoded by a pathogen, recognition of peptide/MHC-I complexes at the plasma membrane leads to CD8(+) T-lymphocyte responses that clear infections and probably underlie tumor immune surveillance. On the other hand, presentation of self peptides may cause some types of autoimmunity. The peptides that are presented determine the specificity and efficiency of pathogen clearance or, conversely, of immunopathology. In this review we highlight the growing number of peptidases which, as a by-product of their regular activity, can generate peptide epitopes for immune surveillance. These ∼20 peptidases collectively behave as a guerrilla army partnering with the regular proteasome army in generating a variety of peptides for presentation by MHC-I and thus optimally signaling infection. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Volatile compounds and changes in flavour-related enzymes during cold storage of high-intensity pulsed electric field- and heat-processed tomato juices.

    Science.gov (United States)

    Aguiló-Aguayo, Ingrid; Soliva-Fortuny, Robert; Martín-Belloso, Olga

    2010-08-15

    The effects of high-intensity pulsed electric field (HIPEF) processing (35 kV cm(-1) for 1500 micros, using 4 micros bipolar pulses at 100 Hz) on the production of volatile compounds and flavour-related enzymes in tomato juice were investigated and compared with those of thermal processing (90 degrees C for 30 or 60 s). Tomato juice treated by HIPEF showed lower residual lipoxygenase (LOX) activity (70.2%) than juice heated at 90 degrees C for 60 s (80.1%) or 30 s (93.2%). In contrast, hydroperoxide lyase (HPL) was almost completely inactivated when the juice was subjected to 90 degrees C for 60 s, whereas roughly 50% of the control tomato juice was depleted after HIPEF treatment or thermal processing at 90 degrees C for 30 s. A slight decrease was observed in the initial LOX activity of treated and untreated samples during storage, whereas initial HPL activity was strongly affected over time. HIPEF-treated juice exhibited higher levels of compounds contributing to tomato aroma than untreated and heat-treated juices throughout storage. Thus HIPEF processing can preserve flavour quality and stability of tomato juice compared with conventional thermal treatments. Copyright (c) 2010 Society of Chemical Industry.

  13. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 310 (FGE.310): Rebaudioside A from chemical group 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate rebaudioside A [FL-no: 16.113], a steviol glycoside. The substance was not considered to have genotoxic potential. Since a comprehensive and adequate...... toxicological database, including human studies, is available for steviol glycosides, the Panel based its evaluation of rebaudioside A on a comparison of the ADI of 4 mg/kg bw, expressed as steviol, established by EFSA, with the estimated dietary exposure figures based on the MSDI and mTAMDI approaches....... The Panel concluded that rebaudioside A [FL-no: 16.113] would not give rise to safety concerns at the estimated level of intake arising from its use as flavouring substance....

  14. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 93, Revision 1 (FGE.93Rev1)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...... through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The two substances 5-ethyl-4-methyl-2-(2-methylpropyl)-thiazoline [FL-no: 15.130] and 5-ethyl-4-methyl-2...... and agrees with the JECFA conclusion, “No safety concern at estimated levels of intake as flavouring substances” based on the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered and for all five substances...

  15. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 76, Revision 1 (FGE.76Rev1)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), and to decide whether further...... by Industry for use as a flavouring substance in Europe and will therefore not be considered any further. The substances were evaluated through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data...... as flavouring substances, as these substances could not be evaluated because of concern with respect to genotoxicity. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered and for all 26 substances, the information is adequate....

  16. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 303 (FGE.303): Spilanthol from chemical group 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Scientific Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (the Panel) was asked to provide scientific advice to the Commission on the implications for human health of chemically defined flavouring substances used in or on foodstuffs in the Member States. In particular...... of the flavouring substances in Europe. However, when the Panel examined the information provided by the European Flavouring Industry on the use levels in various foods, it appeared obvious that the MSDI approach in a number of cases would grossly underestimate the intake by regular consumers of products flavoured...... whether the conclusion for the candidate substance can be applied to the material of commerce, it is necessary to consider the available specifications. Adequate specifications including complete purity criteria and identity for the material of commerce have been provided for the flavouring substance...

  17. Comparative genome-wide analysis and evolutionary history of haemoglobin-processing and haem detoxification enzymes in malarial parasites.

    Science.gov (United States)

    Ponsuwanna, Patrath; Kochakarn, Theerarat; Bunditvorapoom, Duangkamon; Kümpornsin, Krittikorn; Otto, Thomas D; Ridenour, Chase; Chotivanich, Kesinee; Wilairat, Prapon; White, Nicholas J; Miotto, Olivo; Chookajorn, Thanat

    2016-01-29

    Malaria parasites have evolved a series of intricate mechanisms to survive and propagate within host red blood cells. Intra-erythrocytic parasitism requires these organisms to digest haemoglobin and detoxify iron-bound haem. These tasks are executed by haemoglobin-specific proteases and haem biocrystallization factors that are components of a large multi-subunit complex. Since haemoglobin processing machineries are functionally and genetically linked to the modes of action and resistance mechanisms of several anti-malarial drugs, an understanding of their evolutionary history is important for drug development and drug resistance prevention. Maximum likelihood trees of genetic repertoires encoding haemoglobin processing machineries within Plasmodium species, and with the representatives of Apicomplexan species with various host tropisms, were created. Genetic variants were mapped onto existing three-dimensional structures. Genome-wide single nucleotide polymorphism data were used to analyse the selective pressure and the effect of these mutations at the structural level. Recent expansions in the falcipain and plasmepsin repertoires are unique to human malaria parasites especially in the Plasmodium falciparum and P. reichenowi lineage. Expansion of haemoglobin-specific plasmepsins occurred after the separation event of Plasmodium species, but the other members of the plasmepsin family were evolutionarily conserved with one copy for each sub-group in every Apicomplexan species. Haemoglobin-specific falcipains are separated from invasion-related falcipain, and their expansions within one specific locus arose independently in both P. falciparum and P. vivax lineages. Gene conversion between P. falciparum falcipain 2A and 2B was observed in artemisinin-resistant strains. Comparison between the numbers of non-synonymous and synonymous mutations suggests a strong selective pressure at falcipain and plasmepsin genes. The locations of amino acid changes from non

  18. Effects of particle size of processed barley grain, enzyme addition and microwave treatment on disappearance and gas production for feedlot cattle

    Directory of Open Access Journals (Sweden)

    Shin-ichi Tagawa

    2017-04-01

    Full Text Available Objective The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM disappearance (DMD, gas production and fermentation pH were investigated for feedlot cattle. Methods Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving and ENZ addition (0, 1, and 2 mg/g using dry-rolled barley and 2-mm ground barley. Results In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (p<0.01. The DMD (g/kg DM of the dry-rolled barley after 24 h incubation was considerably lower (p<0.05 than that of the ground barley (119.1 dry-rolled barley versus 284.8 for 4-mm, 341.7 for 2-mm; and 358.6 for 1-mm. In Experiment 2, addition of ENZ to dry-rolled barley increased DMD (p<0.01 and tended to increase (p = 0.09 gas production and decreased (p<0.01 fermentation pH, but these variables were not affected by ENZ addition to ground barley. In Experiment 3, there were no interactions between microwaving and ENZ addition after microwaving for any of the variables. Microwaving had minimal effects (except decreased fermentation pH, but consistent with Experiment 2, ENZ addition increased (p<0.01 DMD and gas production, and decreased (p<0.05 fermentation pH of dry-rolled barley, but not ground barley. Conclusion We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed

  19. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  20. A neuron-specific deletion of the microRNA-processing enzyme DICER induces severe but transient obesity in mice.

    Directory of Open Access Journals (Sweden)

    Géraldine M Mang

    Full Text Available MicroRNAs (miRNAs are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. MiRNAs are implicated in various biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. We used a neuronal-specific inhibition of miRNA maturation in adult mice to study the consequences of miRNA loss on obesity development. Camk2a-CreERT2 (Cre+ and floxed Dicer (Dicerlox/lox mice were crossed to generate tamoxifen-inducible conditional Dicer knockouts (cKO. Vehicle- and/or tamoxifen-injected Cre+;Dicerlox/lox and Cre+;Dicer+/+ served as controls. Four cohorts were used to a measure body composition, b follow food intake and body weight dynamics, c evaluate basal metabolism and effects of food deprivation, and d assess the brain transcriptome consequences of miRNA loss. cKO mice developed severe obesity and gained 18 g extra weight over the 5 weeks following tamoxifen injection, mainly due to increased fat mass. This phenotype was highly reproducible and observed in all 38 cKO mice recorded and in none of the controls, excluding possible effects of tamoxifen or the non-induced transgene. Development of obesity was concomitant with hyperphagia, increased food efficiency, and decreased activity. Surprisingly, after reaching maximum body weight, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Weight loss was accompanied by lowered O2-consumption and respiratory-exchange ratio. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling, as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin and in metabolism (e.g. Bmp4, Bmp7, Ptger1, Cox7a1. A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we

  1. Effect of cooking and in vitro digestion on the stability of co-enzyme Q10 in processed meat products.

    Science.gov (United States)

    Tobin, Brian D; O'Sullivan, Maurice G; Hamill, Ruth; Kerry, Joseph P

    2014-05-01

    The use of CoQ10 fortification in the production of a functional food has been demonstrated in the past but primarily for dairy products. This study aimed to determine the bio-accessibility of CoQ10 in processed meat products, beef patties and pork breakfast sausages, fortified with CoQ10. Both the patties and sausages were fortified with a micellarized form of CoQ10 to enhance solubility to a concentration of 1mg/g of sample (NovaSolQ®). An assay was developed combining in vitro digestion and HPLC analysis to quantify the CoQ10 present in fortified products (100mg/g). The cooking retention level of CoQ10 in the products was found to be 74±1.42% for patties and 79.69±0.75% for sausages. The digestibility for both products ranged between 93% and 95%, sausages did have a higher digestibility level than patties but this was not found to be significant (P<0.01). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Effects of thermal processing on the enzyme-linked immunosorbent assay (ELISA) detection of milk residues in a model food matrix.

    Science.gov (United States)

    Downs, Melanie L; Taylor, Steve L

    2010-09-22

    Food products and ingredients are frequently tested for the presence of undeclared allergenic food residues (including milk) using commercial enzyme-linked immunosorbent assays (ELISAs). However, little is understood about the efficacy of these kits with thermally processed foods. This study evaluated the performance of three milk ELISA kits with a model food processed by several methods. A model food (pastry dough squares) was spiked with nonfat dry milk at several concentrations. The pastry squares were processed by boiling (100 °C for 2 min), baking (190 °C for 30 min), frying (190 °C for 2 min), and retorting (121 °C for 20 min with 17 psi overpressure). Samples were analyzed with three commercial ELISA kits: Neogen Veratox Total Milk, ELISA Systems β-lactoglobulin, and ELISA Systems casein. The detection of milk residues depended upon the type of processing applied to the food and the specific milk analyte targeted by the ELISA kit. Poor recoveries were obtained in all processed samples (2-10% of expected values) using the β-lactoglobulin kit. Better recoveries were obtained in boiled samples (44 and 59%, respectively) using the total milk and casein kits. However, these kits performed poorly with baked (9 and 21%) and fried (7 and 18%) samples. Moderate recoveries were observed in retorted samples (23 and 28%). The decreased detection in processed samples is likely due to protein modifications, including aggregation and Maillard reactions, which affect the solubility and immunoreactivity of the antigens detected by the ELISA methods. The observed decreases in ELISA detection of milk are dramatic enough to affect risk-assessment decisions. However, a lower detection of milk residues does not necessarily indicate decreased allergenicity. These ELISA kits are not acceptable for all applications, and users should understand the strengths and limitations of each method.

  3. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  4. Regulations of enzymes in animals: effects of developmental processes, cancer, and radiation. Comprehensive three-year progress report, 1 May 1972--30 April 1975

    International Nuclear Information System (INIS)

    Knox, W.E.

    1975-01-01

    Controls by genes and by adaptive phenomena of the patterns of enzymes in several rat tissues were extended by systematic investigations during development, in neoplasms, and after x-irradiation. Newly developed quantitative assays for tryptophan pyrrolase and phenylalanine hydroxylase were used to study the mechanism of degradation after induction of the former enzyme. Systematic investigation of the isoenzymic variants and of the quantitative pattern of enzymes in numerous rat tissues led to the discovery of new variants, the determination of the functional role of certain enzymes in specific tissues, and the identification of enzymes whose amount provides sensitive indicators fo neoplastic growth in rat liver and spleen. X-irradiation of young postnatal rats interfered with the development of some hepatic enzymes. This effect was distinct from that of tumor-bearing, and from abnormal hormonal or nutritional conditions. (U.S.)

  5. Enzyme-linked immunosorbent assay gliadin assessment in processed food products available for persons with celiac disease: a feasibility study for developing a gluten-free food database.

    Science.gov (United States)

    Agakidis, Charalampos; Karagiozoglou-Lampoudi, Thomais; Kalaitsidou, Marina; Papadopoulos, Theodoros; Savvidou, Afroditi; Daskalou, Efstratia; Dimitrios, Triantafyllou

    2011-12-01

    Inappropriate food labeling and unwillingness of food companies to officially register their own gluten-free products in the Greek National Food Intolerance Database (NFID) result in a limited range of processed food products available for persons with celiac disease (CDP). The objective of the study was to evaluate the feasibility of developing a gluten-free food product database based on the assessment of the gluten content in processed foods available for CDP. Gluten was assessed in 41 processed food products available for CDP. Group A consisted of 26 products for CDP included in the NFID, and group B contained 15 food products for CDP not registered in the NFID but listed in the safe lists of the local Celiac Association (CA). High-sensitivity ω-gliadin enzyme-linked immunosorbent assay (ELISA) was used for analysis. Gluten was lower than 20 ppm in 37 of 41 analyzed products (90.2%): in 24 of 26 (92.3%) products in group A and in 13 of 15 (86.7%) products in group B (P = .61). No significant difference was found between the 2 groups regarding gluten content. No product in either group contained gluten in excess of 100 ppm. Most of the analyzed products included in the Greek NFID or listed in the lists of the local CA, even those not officially labeled "gluten free," can be safely consumed by CDP. The use of commercially available ω-gliadin ELISA is able to identify those products that contain inappropriate levels of gluten, making feasible it to develop an integrated gluten-free processed food database.

  6. Biochemical characterization of thermostable cellulase enzyme from ...

    African Journals Online (AJOL)

    user

    2012-05-29

    May 29, 2012 ... tested for their ability to produce cellulase complex enzyme by growing on a defined substrates as well ... In the current industrial processes, cellulolytic enzymes ... energy sources such as glucose, ethanol, hydrogen and.

  7. A Laboratory Exercise to Understand the Importance of Enzyme Technology in the Fruit-Processing Industry: Viscosity Decrease and Phenols Release from Apple Mash

    Science.gov (United States)

    Pinelo, Manuel; Nielsen, Michael K.; Meyer, Anne S.

    2011-01-01

    In a 4-h laboratory exercise, students accomplish a series of enzymatic macerations of apple mash, assess the viscosity of the mash during the maceration, extract the juice by centrifugation, and measure the levels of antioxidant phenols extracted into the juice after different enzyme treatments. The exercise shows the impact of enzyme-catalyzed…

  8. EFSA CEF Panel (Panel on Food Contac t Materials, Enzymes, Flavourings and Processing Aids , 2013. Scientific Opinion on Flavouring Group Evaluation 2 07 (FGE.2 07 )

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Lund, Pia

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the genotoxic potential of one flavouring substance, 2,6-dimethyl-2,5,7-octatriene-1-ol acetate [FL-no: 09.931], from subgroup 1.1.2 of FGE.19, which...... is considered to be representative for four substances, 12-beta-santalen-14-ol [FL-no: 02.216], 12-alpha-santalen-14-ol [FL-no: 02.217], santalyl acetate [FL-no: 09.034] and santalyl phenylacetate [FL-no: 09.712], from subgroup 2.1 of FGE.19. The Flavour Industry has provided genotoxicity studies......-no: 09.034] and santalyl phenylacetate [FL-no: 09.712] from FGE.19 subgroup 2.1 for which 2,6-dimethyl-2,5,7-octatriene-1-ol acetate [FL-no: 09.931] is representative. © European Food Safety Authority, 2013...

  9. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  10. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  12. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 215 (FGE.215): Seven α,β-Unsaturated Cinnamyl Ketones from subgroup 3.2 of FGE.19

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Lund, Pia

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the genotoxic potential of flavouring substances from subgroup 3.2 of FGE.19 in the Flavouring Group Evaluation 215 (FGE.215). The Flavour Industry has...

  13. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 96 (FGE.96): Consideration of 88 flavouring substances considered by EFSA for which EU production volumes / anticipated production volumes have been submitted

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...

  14. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 304, Revision 1 (FGE.304Rev1): Four carboxamides from Chemical Groups 30

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate four flavouring substances in the Flavouring Group Evaluation 304, Revision 1 (FGE.304Rev1) using the Procedure in Commission Regulation (EC) No 1565...... criteria and identity for the materials of commerce have been provided for all four candidate substances....

  15. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  16. Development of eco-friendly process for the production of bioethanol from banana peel using inhouse developed cocktail of thermo-alkali-stable depolymerizing enzymes.

    Science.gov (United States)

    Prakash, Heena; Chauhan, Prakram Singh; General, Thiyam; Sharma, A K

    2018-03-29

    Conversion of agro-industrial wastes to energy is an innovative approach for waste valorization and management which also mitigates environmental pollution. In this view, present study investigated the feasibility of producing bioethanol from banana peels using cocktail of depolymerizing enzyme/s. We isolated Geobacillus stearothermophilus HPA19 from natural resource which produces cocktail of thermo-alkali-stable xylano-pectino-cellulolytic enzyme/s using wheat bran within 24 h. The optimal temperature and pH for xylanase, filter paper cellulase and pectinase were 80, 70 and 80 °C, and 9.0, 8.0 and 9.0, respectively. Cocktail enzymes showed stability at high temperature (80 °C) and pH (10.0). Ni 2+ and Zn 2+ promoted the relative activity of xylanase and FPase, whereas Na + , Ca 2+ and K + promoted pectinase activity. Cocktail was assessed in saccharification of banana peel. Reducing sugar obtained (37.06 mg ml -1 ) after one variable at a time (OVAT) method is greatly influenced by enzyme dose. Further, response surface methodology was used to optimize saccharification leading to twofold increase in reducing sugar. Maximum ethanol production (21.1 gl -1 ) was achieved through fermentation giving the efficiency of 76.5% within 30 h. Hence utilization of waste biomass for production of value-added products through biotechnological intervention not only helps to combat environmental pollution but also contributes significantly to the economy.

  17. Cellulolytic enzyme compositions and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Prashant; Gaspar, Armindo Ribiero; Croonenberghs, James; Binder, Thomas P.

    2017-07-25

    The present invention relates enzyme composition comprising a cellulolytic preparation and an acetylxylan esterase (AXE); and the used of cellulolytic enzyme compositions for hydrolyzing acetylated cellulosic material. Finally the invention also relates to processes of producing fermentation products from acetylated cellulosic materials using a cellulolytic enzyme composition of the invention.

  18. Comparison of Surti goat milk with cow and buffalo milk for physicochemical characteristics, selected processing-related parameters and activity of selected enzymes

    Science.gov (United States)

    Prajapati, Darshna B.; Kapadiya, Dharti B.; Jain, Amit Kumar; Mehta, Bhavbhuti M.; Darji, Vijaykumar B.; Aparnathi, Kishorkumar D.

    2017-01-01

    Aim: The study was undertaken to find out the physicochemical characteristics, selected processing-related parameters and activity of selected enzymes in Surti goat milk. Materials and Methods: Milk samples from Surti goats and buffalo milk samples were collected during the period from July 2013 to January 2014 at Reproductive Biology Research Unit, Anand Agricultural University (AAU), Anand. Milk samples from Kankrej cows were collected from Livestock Research Station, AAU, Anand. Samples were analyzed for physicochemical characteristics such as acidity, viscosity, surface tension, specific gravity, refractive index, freezing point, and electrical conductivity. Samples were also analyzed for selected processing-related parameters such as heat coagulation time (HCT), rennet coagulation time (RCT), rate of acid production by starter culture, alcohol stability, and activity of selected enzymes such as alkaline phosphatase activity, catalase activity, proteolytic activity, and lipase activity. Results: Goat milk had the highest acidity, viscosity and surface tension, followed by cow milk and buffalo milk. However, the differences in acidity, specific gravity, surface tension, refractive index, electrical conductivity, HCT and lipase activity of three types of milk studied, viz., goat, cow, and buffalo milk were found statistically non-significant (pmilk had the highest specific gravity, followed by those found in cow and goat milk. The viscosity, freezing point and RCT of goat milk was significantly lower (p>0.05) than that of the buffalo milk. However, the difference in viscosity, freezing point and RCT of goat milk and that of the cow milk was statistically non-significant. The cow milk had the highest refractive index, followed by goat and buffalo milk. The cow milk had the highest proteolytic activity and heat coagulation time (HCT), followed by those found in buffalo and goat milk. The goat milk had the lowest freezing point, lipase activity, and RCT, followed by

  19. Comparison of Surti goat milk with cow and buffalo milk for physicochemical characteristics, selected processing-related parameters and activity of selected enzymes

    Directory of Open Access Journals (Sweden)

    Darshna B. Prajapati

    2017-05-01

    Full Text Available Aim: The study was undertaken to find out the physicochemical characteristics, selected processing-related parameters and activity of selected enzymes in Surti goat milk. Materials and Methods: Milk samples from Surti goats and buffalo milk samples were collected during the period from July 2013 to January 2014 at Reproductive Biology Research Unit, Anand Agricultural University (AAU, Anand. Milk samples from Kankrej cows were collected from Livestock Research Station, AAU, Anand. Samples were analyzed for physicochemical characteristics such as acidity, viscosity, surface tension, specific gravity, refractive index, freezing point, and electrical conductivity. Samples were also analyzed for selected processing-related parameters such as heat coagulation time (HCT, rennet coagulation time (RCT, rate of acid production by starter culture, alcohol stability, and activity of selected enzymes such as alkaline phosphatase activity, catalase activity, proteolytic activity, and lipase activity. Results: Goat milk had the highest acidity, viscosity and surface tension, followed by cow milk and buffalo milk. However, the differences in acidity, specific gravity, surface tension, refractive index, electrical conductivity, HCT and lipase activity of three types of milk studied, viz., goat, cow, and buffalo milk were found statistically non-significant (p0.05 than that of the buffalo milk. However, the difference in viscosity, freezing point and RCT of goat milk and that of the cow milk was statistically non-significant. The cow milk had the highest refractive index, followed by goat and buffalo milk. The cow milk had the highest proteolytic activity and heat coagulation time (HCT, followed by those found in buffalo and goat milk. The goat milk had the lowest freezing point, lipase activity, and RCT, followed by those found in cow and buffalo milk. The goat milk had the highest electrical conductivity, followed by those found in buffalo and cow milk. The

  20. BAKERY ENZYMES IN CEREAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Václav Koman

    2012-10-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Bread is the most common and traditional food in the world. For years, enzymes such as malt and fungal alpha-amylase have been used in bread making. Due to the changes in the baking industry and the ever-increasing demand for more natural products, enzymes have gained real importance in bread-making. If an enzyme is added, it is often destroyed by the heat during the baking process. For generations, enzymes have been used for the improvement of texture and appearance, enhancement of nutritional values and generation of appealing flavours and aromas. Enzymes used in bakery industry constitute nearly one third of the market. The bakery products have undergone radical improvements in quality over the past years in terms of flavour, texture and shelf-life. The the biggest contributor for these improvementsis the usage of enzymes. Present work seeks to systematically describe bakery enzymes, their classification, benefits, usage and chemical reactions in the bread making process.doi:10.5219/193

  1. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  2. Occurrence of a number of enzymes involved in either gluconeogenesis or other processes in the pericarp of three cultivars of grape (Vitis vinifera L.) during development.

    Science.gov (United States)

    Famiani, Franco; Moscatello, Stefano; Ferradini, Nicoletta; Gardi, Tiziano; Battistelli, Alberto; Walker, Robert P

    2014-11-01

    It is uncertain whether the enzymes pyruvate orthophosphate dikinase (PPDK) or isocitrate lyase (ICL) are present in the pericarp of grape, in which they could function in gluconeogenesis. The occurrence of these and other enzymes was investigated in the pericarp of three cultivars of grape (Vitis vinifera L.). In particular, the abundance of the enzymes aldolase, glutamine synthase (GS), acid invertase, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPC), PPDK and ICL were determined during the development of the pericarp of the cultivars Cabernet Sauvignon, Chardonnay and Zibibbo. PPDK and ICL were not detected at any stage of development. Each of the other enzymes showed different changes in abundance during development. However, for a given enzyme its changes in abundance were similar in each cultivar. In the ripe pericarp of Cabernet Sauvignon, PEPC, cytosolic GS and aldolase were equally distributed between the vasculature and parenchyma cells of the flesh and skin. The absence or very low abundance of PPDK provides strong evidence that any gluconeogenesis from malate utilises phosphoenolpyruvate carboxykinase (PEPCK). The absence or very low abundance of ICL in the pericarp precludes any gluconeogenesis from ethanol. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Enzymes: principles and biotechnological applications

    Science.gov (United States)

    Robinson, Peter K.

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249

  4. The use of enzymes for beer brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process.

  5. Changes in activity of industrial enzyme preparations irradiated with sterilizing doses. Part of a coordinated programme on factors influencing the utilization of food irradiation process

    International Nuclear Information System (INIS)

    Bachman, S.

    1984-03-01

    Experiments were carried out to investigate the efficacy of irradiation to sterilize enzyme preparations. Irradiation doses up to 25 kGy caused no changes in basic organoleptic properties of commercial rennin preparations. Dose rate (from 0.5 to 13.5 kGy/hr) has no influence on the changes in enzyme activity during the storage period of 3 months. Doses ranging from 8 to 12 kGy are sufficient to sterilize commercial enzyme preparations. Non-purified, crude rennin preparations appear to be more resistant to radiation than purified samples. Rennin preparations purified by dialysis and treated with 25 kGy resulted in a reduction of activity of 20%. The activity of preparations purified by gel filtration was reduced to 50% when treated with the same dose

  6. A Laboratory Exercise To Understand the Importance of Enzyme Technology in the Fruit-Processing Industry: Viscosity Decrease and Phenols Release from Apple Mash

    DEFF Research Database (Denmark)

    Pinelo, Manuel; Nielsen, Michael Krogsgaard; Meyer, Anne S.

    2011-01-01

    In a 4-h laboratory exercise, students accomplish a series of enzymatic macerations of apple mash, assess the viscosity of the mash during the maceration, extract the juice by centrifugation, and measure the levels of antioxidant phenols extracted into the juice after different enzyme treatments....

  7. Effects of Added Enzymes on Sorted, Unsorted and Sorted-Out Barley: A Model Study on Realtime Viscosity and Process Potentials Using Rapid Visco Analyser

    DEFF Research Database (Denmark)

    Shetty, Radhakrishna; Zhuang, Shiwen; Olsen, Rasmus Lyngsø

    2017-01-01

    Barley sorting is an important step for selecting grain of required quality for malting prior to brewing. However, brewing with unmalted barley with added enzymes has been thoroughly proven, raising the question of whether traditional sorting for high quality malting-barley is still necessary. To...

  8. Effect of gamma irradiation and environmental factors on the production of extracellular cellulase enzyme by trichoderma Spp. using banana waste under solid state bio processing

    International Nuclear Information System (INIS)

    El-Shafey, H.M.; Matar, Z.A.I.; Ghanem, S.M.A.

    2007-01-01

    Fungal strains were isolated from degraded banana waste including leaves, pseudo stems and skins. Many isolated strains showed cellulolytic activities using the plate screening medium. The hyper cellulolytic isolates were selected on the basis of the diameter of the hydrolysis zone surrounding the colonies and identified to the genus level. The identified strains were found to belong to one of the genera Trichoderma, Aspergillus, Pleurotus or Penicillium. The strain with the larger diameter of the hydrolysis zone was found to belong to the genus Trichoderma. It was further identified to be Trichoderma harzianum, which was selected to be studied. Banana waste including leaves and pseudo stems were inoculated by the selected fungus and the production of the carboxymethyl cellulase (CMCase) and filter paper cellulase (FPCase) was followed during changes of the growth conditions under solid state fermentation. It was found that the two enzymes shared the same incubation temperature (25 degree C) and incubation period (18 days) for the maximum enzyme production. The gamma radiation dose of 1.5 KGy increased the production of CMCase produced on leaves by 4.0% and on pseudo stems by 5.6% and the production of FPCase produced on leaves by 2.4% and on pseudo stems by 2.3%. The results also suggest that FPCase and CMCase enzymes produced on leaves were higher than those produced from pseudo stems and the level of CMCase enzyme produced was higher than that of FPCase

  9. Applications of Microbial Enzymes in Food Industry

    Directory of Open Access Journals (Sweden)

    Binod Parameswaran

    2018-01-01

    Full Text Available The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  10. The N-glycan processing enzymes α-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum

    Science.gov (United States)

    Ghosh, Sumit; Meli, Vijaykumar S.; Kumar, Anil; Thakur, Archana; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2011-01-01

    Excessive softening of fruits during the ripening process leads to deterioration. This is of significant global importance as softening-mediated deterioration leads to huge postharvest losses. N-glycan processing enzymes are reported to play an important role during climacteric fruit softening: however, to date these enzymes have not been characterized in non-climacteric fruit. Two ripening-specific N-glycan processing enzymes, α-mannosidase (α-Man) and β-D-N-acetylhexosaminidase (β-Hex), have been identified and targeted to enhance the shelf life in non-climacteric fruits such as capsicum (Capsicum annuum). The purification, cloning, and functional characterization of α-Man and β-Hex from capsicum, which belong to glycosyl hydrolase (GH) families 38 and 20, respectively, are described here. α-Man and β-Hex are cell wall glycoproteins that are able to cleave terminal α-mannose and β-D-N-acetylglucosamine residues of N-glycans, respectively. α-Man and β-Hex transcripts as well as enzyme activity increase with the ripening and/or softening of capsicum. The function of α-Man and β-Hex in capsicum softening is investigated through RNA interference (RNAi) in fruits. α-Man and β-Hex RNAi fruits were approximately two times firmer compared with the control and fruit deterioration was delayed by approximately 7 d. It is shown that silencing of α-Man and β-Hex enhances fruit shelf life due to the reduced degradation of N-glycoproteins which resulted in delayed softening. Altogether, the results provide evidence for the involvement of N-glycan processing in non-climacteric fruit softening. In conclusion, genetic engineering of N-glycan processing can be a common strategy in both climacteric and non-climacteric species to reduce the post-harvest crop losses. PMID:21030387

  11. Watching Individual Enzymes at Work

    Science.gov (United States)

    Blank, Kerstin; Rocha, Susana; De Cremer, Gert; Roeffaers, Maarten B. J.; Uji-i, Hiroshi; Hofkens, Johan

    Single-molecule fluorescence experiments are a powerful tool to analyze reaction mechanisms of enzymes. Because of their unique potential to detect heterogeneities in space and time, they have provided unprecedented insights into the nature and mechanisms of conformational changes related to the catalytic reaction. The most important finding from experiments with single enzymes is the generally observed phenomenon that the catalytic rate constants fluctuate over time (dynamic disorder). These fluctuations originate from conformational changes occurring on time scales, which are similar to or slower than that of the catalytic reaction. Here, we summarize experiments with enzymes that show dynamic disorder and introduce new experimental strategies showing how single-molecule fluorescence experiments can be applied to address other open questions in medical and industrial enzymology, such as enzyme inactivation processes, reactant transfer in cascade reactions, and the mechanisms of interfacial catalysis.

  12. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 11, Revision 3 (FGE.11Rev3): Aliphatic dialcohols, diketones, and hydroxyketones from chemical groups 8 and 10

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Frandsen, Henrik Lauritz; Nørby, Karin Kristiane

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 11 flavouring substances in the Flavouring Group Evaluation 11, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. The substances......, the specifications for the materials of commerce have also been considered. Specifications including complete purity criteria and identity for the materials of commerce have been provided for all candidate substances....

  13. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015. Scientific Opinion on Flavouring Group Evaluation 21, Revision 5 (FGE.21Rev5): Thiazoles, thiophenes, thiazoline and thienyl derivatives from chemical groups 29 and 30

    DEFF Research Database (Denmark)

    Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 41 flavouring substances in Flavouring Group Evaluation 21, Revision 5, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision...... have also been considered. Adequate specifications, including complete purity criteria and identity for the materials of commerce, have been provided for all 41 candidate substances....

  14. EFSA Panel on Food Contact Material, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 47, Revision 1: Bi- and tricyclic secondary, ketones and related esters from chemical groups 7 and 8

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate six flavouring substances in the Flavouring Group Evaluation 47, including an additional two substances in this Revision 1, using the Procedure in Commission...... of these flavouring substances, the specifications for the materials of commerce have also been considered. Adequate specifications including complete purity criteria and identity fo the materials of commerce have been provided for all six candidate substances....

  15. Enzyme-MOF (metal-organic framework) composites.

    Science.gov (United States)

    Lian, Xizhen; Fang, Yu; Joseph, Elizabeth; Wang, Qi; Li, Jialuo; Banerjee, Sayan; Lollar, Christina; Wang, Xuan; Zhou, Hong-Cai

    2017-06-06

    The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.

  16. Strain Improvement of Fungi by Induced Mutation through Gamma Irradiation and Selection for Animal Feed Enzymes Production and its Fermentation Process

    International Nuclear Information System (INIS)

    Konsue, Parichart; Piadang, Nattayana; Kitpreechavanich, Vichien

    2006-09-01

    Ten from eighty-nine strains of thermophilic fungi Thermomyces lanuginosus produced high level insoluble xylan degrading enzyme when cultured in submerge condition using untreated corncob as a substrate. Strain of T. lanuginosus THKU56 produced high level of insoluble xylan degrading enzyme with the most stable which was remained 28.2 and 58.9 % after treated at pH 3.5 and 70 o C for 1 h, respectively. To improve xylanase production, the strain was subjected to mutate using gamma ray at 0.4 - 1.6 kGy. The result showed the mutant strains produced insoluble xylanase activity lesser than wild type. Thus wild type strain THKU56 was then selected as potent strains for enzyme production and medium optimization was investigated using a central composite design. The four components, corncobs, yeast extract, KH 2 PO 4 and Tween 8 0, were parameters of this study. It was found that corncobs and yeast extract were discovered to affect on the xylanase production. The optimal concentration of the active nutrients for xylanase production were 41 g/l of corncobs and 24 g/l of yeast extract, which gave a predicted yield of 526.7 units/ml after 5 days culture at a temperature of 50 o C. The xylanase activity obtained from the experiment was 541 units/ml that was close to the predicted value

  17. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  18. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  19. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  20. Effect of NaHCO3 treatments on the activity of cell wall-degrading enzymes produced by Penicillium digitatum during the pathogenesis process on grapefruit.

    Science.gov (United States)

    Venditti, Tullio; D'hallewin, Guy; Ladu, Gianfranca; Petretto, Giacomo L; Pintore, Giorgio; Labavitch, John M

    2018-03-25

    The present study was performed to clarify the strategies of Penicillium digitatum during pathogenesis on citrus, assessing, on albedo plugs, the effects of treatment with NaHCO 3 , at two different pH (5 and 8.3), on cell wall-degrading enzymes activity, over a period of 72 h. The treatment with NaHCO 3 , under alkaline pH, delayed the polygalacturonase activity for 72 h, or 48 h in the case of the pectin lyase, if compared to the control or the same treatment at pH 5. On the contrary, the pectin methyl esterase activity rapidly increased after 24 h, in plugs dipped in the same solution. In this case, the activity remained higher than untreated or pH 5 treated plugs up to 72 h. The rapid increase in pectin methyl esterase activity, under alkaline conditions, is presumably the strategy of the pathogen to lower the pH, soon after the initiation of infection, in order to restore an optimal environment for the subsequent polygalacturonase and pectin lyase action. In fact at the same time, a low pH delayed the enzymatic activity of polygalacturonase and pectin lyase, the two enzymes that actually cleave the α-1,4-linkages between the galacturonic acid residues. This article is protected by copyright. All rights reserved.

  1. Electrophoretic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates: Application to proenkephalin processing enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, J.W.; Roberts, S.F.; Lindberg, I. (Louisiana State Univ. Medical Center, New Orleans (USA))

    1990-10-01

    A novel method is described for the zymographic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates such as ({sup 35}S)methionine-labeled proenkephalin or {sup 125}I-labeled proinsulin. After electrophoresis the enzyme is reactivated and cleaves the radiolabeled in situ substrate into smaller peptides. These small peptides are able to diffuse out of the gel, leaving clear areas against a dark background when visualized by autoradiography. The technique can be used to detect as little as 200 fg of trypsin using only 50 ng (1.25 microCi) of ({sup 35}S)proenkephalin. Soluble- and membrane-bound adrenal trypsin-like enzyme were isolated from bovine adrenal chromaffin granules. Both proteinases cleaved ({sup 35}S)methionine-labeled proenkephalin but not {sup 125}I-labeled proinsulin. Moreover, both had a Mr of approximately 30,000. The potential of this technique for general use is discussed. An additional method using the synthetic fluorogenic substrate t-butoxycarbonyl Glu-Lys-Lys aminomethylcoumarin is also described.

  2. Techno-economic analysis of the deacetylation and disk refining process: characterizing the effect of refining energy and enzyme usage on minimum sugar selling price and minimum ethanol selling price.

    Science.gov (United States)

    Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas; Sabourin, Marc; Tucker, Melvin P; Tao, Ling

    2015-01-01

    A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibility of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128-468 kWh/ODMT), cellulase (Novozyme's CTec3) loading (11.6-28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme's HTec3) loading (0-5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL's 2011 design report. The DDR process is

  3. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

    Science.gov (United States)

    Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul

    2015-01-01

    The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635

  4. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  5. Regulations of enzymes in animals: effects of developmental processes, cancer and radiation. Progress report IX, 1 May 1974--31 April 1975

    International Nuclear Information System (INIS)

    Knox, W.E.

    1975-01-01

    Investigations of the properties of variant forms of emnzymes in rat tissues were continued. Two glutamyltransferases, one which remains associated with glutamine synthetase and the other which can be separated from it, were purified. A new assay method forglutaminase activity was established which facilitated further characterization of the 3 isozymes and their concentration in normal and neoplastic tissues. Studies of arginase led to the demonstration of the role that the new variant of arginase plays in proline synthesis in mammary gland. An inhibitor of asparagine synthetase, which is absent from fetal liver and tumors, was discovered in adult rat liver. Peptidyl proline hydroxylase (an essential enzyme in collagen synthesis) was identified as one of the most sensitive indicators of neoplastic growth. The spectrum of experimental, transplantable rat tumors was extended to a series of salivary gland tumors and a radiation-induced lymphoma. (U.S.)

  6. Enzymes - important players in green chemistry

    Directory of Open Access Journals (Sweden)

    Agata Tarczykowska

    2017-09-01

    Full Text Available Green chemistry has become a worldwide approach that leads to sustainable growth through application and development of its principles. A lot of work has to be put into designing new processes comprising of materials which do not emit pollutants to the atmosphere. Inventing new safer methods and finding less harmful products can be challenging. Enzymes are a great hope of scientists in the field of green chemistry. Enzymes as catalysts require mild conditions therefore it is a great way of saving resources such as energy or water. Processes with the use of enzymes have become more feasible by being more cost effective and eco friendly. Taking into account the benefits of green chemistry, enzyme biocatalysis has quickly replaced traditional chemical processes in several fields, and this substitution is going to reach even more areas because of new emerging technologies in enzyme engineering.

  7. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  8. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    of biotechnology, including enzyme discovery and characterization. This work presents two articles on sequence-based discovery and functional annotation of enzymes in environmental samples, and two articles on analysis and prediction of enzyme thermostability and cofactor requirements. The first article presents...... a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance. The second article...... presents a web server for the processing and annotation of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The third article presents analyses of the molecular determinants of enzyme thermostability, and a feature-based prediction method of the melting...

  9. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    and high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... yield of enzymatic extraction limits the application of enzyme in pectin production. There is evidence that emerging technology of high hydrostatic pressure processing can result in stabilization and activation of some enzymes. Therefore, the use of high hydrostatic pressure in combination with enzyme...... (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel waste. It was found that pressure level, type and concentration of enzyme significantly influenced pectin yield and degree of esterification (DE...

  10. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids ), 2014. Scientific Opinion on Flavouring Group Evaluation 200 (FGE.200): 74 α , β -unsaturated aldehydes and precursors from subgroup 1.1.1 of FGE.19

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the genotoxic potential of 74 flavouring substances from subgroup 1.1.1 of FGE.19 in the Flavouring Group Evaluation 200 (FGE.200). The Flavour Industry has...... provided additional genotoxicity studies for one representative substance in FGE.200, namely hex-2(trans)-enal [FL-no 05.073], and for other two substances in the same subgroup, namely 2-dodecenal [05.037] and 2-nonenal [05.171]. The Panel has evaluated these data and concluded that the concern still...

  11. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015. Scientific Opinion on Flavouring Group Evaluation 303, Revision 1 (FGE.303Rev1): Spilanthol from chemical group 30

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Nørby, Karin Kristiane

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the flavouring substance spilanthol [FL-no: 16.121] in Flavouring Group Evaluation 303, Revision 1, using the Procedure according to Commission Regulation...... (MSDI) approach. Besides the safety assessment of the flavouring substance, the specifications for the material of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the material of commerce have been provided for the candidate substance....

  12. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015. Scientific Opinion on Flavouring Group Evaluation 25, Revision 3 (FGE.25Rev3): Aliphatic hydrocarbons from chemical group 31

    DEFF Research Database (Denmark)

    Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 14 flavouring substances in the Flavouring Group Evaluation 25, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. None...... on the basis of the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Adequate specifications including complete purity and identity criteria for the materials of commerce have been provided for all 14...

  13. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 12, Revision 2 (FGE.12Rev2): Primary saturated or unsaturated alicyclic alcohol, aldehyde, acid, and esters from chemical group 7

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The European Food Safety Authority (EFSA) asked the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (the Panel) to provide scientific advice to the Commission on the implications for human health of chemically defined flavouring substances used in or on foodstuffs....... However, this does not preclude evaluation of the flavouring substances in the present group using the Procedure (SCF, 1999a). It is considered that on the basis of the default MSDI approach these nine flavouring substances would not give rise to safety concerns at the estimated levels of intake arising...

  14. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  15. 棉梭织物酶、碱氧短流程前处理工艺研究%Research on the short process pretreatment using enzyme and alkali oxygen for woven cotton fabrics

    Institute of Scientific and Technical Information of China (English)

    张伟超; 邢建伟; 徐成书

    2016-01-01

    采用酶冷堆退浆、煮漂一步法对棉梭织物进行短流程前处理,并对处理后的棉织物进行性能分析,得到最优工艺条件:酶冷堆置过程中退浆酶WT8404g/L、JFC 2g/L,一步法汽蒸过程中精练剂XQC 6g/L、硅酸钠6g/L、氢氧化钠5g/L、过氧化氢(100%)9g/L.在此工艺条件下前处理的效果与传统前处理工艺效果接近,退浆率可达到93%以上,白度为84,毛效达到11cm/30min,该工艺相比传统两步法前处理工艺可省去多道工序,具有碱用量少、节能节水等优点.%The cooled reactors enzyme desizing,scouring and bleaching of one step method for cotton woven fabrics was subj ected for short process of pretreatment,and the properties of the treated cotton fabric were tested,the optimum process conditions were obtained:desizing enzyme WT840 4g/L and JFC 2g/L in the process of cooled reactors enzyme,scouring agent XQC 6g/L,sodium silicate 6g/L, sodium hydroxide 5g/L,hydrogen peroxide(100%)9g/L in the process of one step steaming.Under the conditions of this process,the effects of the cotton fabric treated were close to those of the tradi-tional pretreatment with desizing rate more than 95%,the whiteness higher than 84 and capillary effect is 11cm/30min.The new pretreatment process has the advantages of short procedures,lower us-age of alkali,energy and water saving compared to traditional two step pretreatment process.

  16. Immobilized enzymes and cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucke, C; Wiseman, A

    1981-04-04

    This article reviews the current state of the art of enzyme and cell immobilization and suggests advances which might be made during the 1980's. Current uses of immobilized enzymes include the use of glucoamylase in the production of glucose syrups from starch and glucose isomerase in the production of high fructose corn syrup. Possibilities for future uses of immobilized enzymes and cells include the utilization of whey and the production of ethanol.

  17. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  18. Enzymes from Higher Eukaryotes for Industrial Biocatalysis

    Directory of Open Access Journals (Sweden)

    Zhibin Liu

    2004-01-01

    Full Text Available The industrial production of fine chemicals, feed and food ingredients, pharmaceuticals, agrochemicals and their respective intermediates relies on an increasing application of biocatalysis, i.e. on enzyme or whole-cell catalyzed conversions of molecules. Simple procedures for discovery, cloning and over-expression as well as fast growth favour fungi, yeasts and especially bacteria as sources of biocatalysts. Higher eukaryotes also harbour an almost unlimited number of potential biocatalysts, although to date the limited supply of enzymes, the high heterogeneity of enzyme preparations and the hazard of infectious contaminants keep some interesting candidates out of reach for industrial bioprocesses. In the past only a few animal and plant enzymes from agricultural waste materials were employed in food processing. The use of bacterial expression strains or non-conventional yeasts for the heterologous production of efficient eukaryotic enzymes can overcome the bottleneck in enzyme supply and provide sufficient amounts of homogenous enzyme preparations for reliable and economically feasible applications at large scale. Ideal enzymatic processes represent an environmentally friendly, »near-to-completion« conversion of (mostly non-natural substrates to pure products. Recent developments demonstrate the commercial feasibility of large-scale biocatalytic processes employing enzymes from higher eukaryotes (e.g. plants, animals and also their usefulness in some small-scale industrial applications.

  19. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 10, Revision 2 (FGE.10Rev2): Aliphatic primary and secondary saturated and unsaturated alcohols, aldehydes, acetals, carboxylic acids and esters containing

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 61 flavouring substances in the Flavouring Group Evaluation 10, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the sub......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 61 flavouring substances in the Flavouring Group Evaluation 10, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. None...... of the substances were considered to have genotoxic potential. The substances were evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity....... The Panel concluded that the 61 substances do not give rise to safety concerns at their levels of dietary intake, estimated on the basis of the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. For four...

  20. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 25, Revision 2 (FGE.25Rev2): Aliphatic and aromatic hydrocarbons from chemical group 31

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 37 flavouring substances in the Flavouring Group Evaluation 25, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the sub......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 37 flavouring substances in the Flavouring Group Evaluation 25, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. None...... of the substances were considered to have genotoxic potential. The substances were evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity...... assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. For five substances, the composition of the stereoisomeric mixture has to be specified further....

  1. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 21, Revision 3 (FGE.21Rev3): Thiazoles, thiophenes, thiazoline and thienyl derivatives from chemical groups 29 and 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 59 flavouring substances in the Flavouring Group Evaluation 21, including an additional three substances in this Revision 3, using the Procedure in Commiss......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 59 flavouring substances in the Flavouring Group Evaluation 21, including an additional three substances in this Revision 3, using the Procedure.......086, 15.090, 15.099, 15.114, 15.119 and 15.133] were considered to have genotoxic potential. The remaining 52 substances were evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern.......092, 15.093, 15.094, 15.096, 15.097, 15.106, 15.107, 15.129 and 15.135] evaluated through the Procedure, no appropriate NOAEL was available and additional data are required. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been...

  2. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 300 (FGE.300): One cyclo-aliphatic amide from chemical group 33

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate a flavouring substance in the Flavouring Group Evaluation 300 using the Procedure in Commission Regulation (EC) No 1565/2000. The substance was not conside......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate a flavouring substance in the Flavouring Group Evaluation 300 using the Procedure in Commission Regulation (EC) No 1565/2000. The substance...... was not considered to have genotoxic potential. The substance was evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel concluded...... that for the substance [FL-no: 16.115] evaluated through the Procedure, no appropriate NOAEL was available and additional data are required. Besides the safety assessment of this flavouring substance, the specifications for the materials of commerce have also been considered. The composition of the stereoisomeric...

  3. Enzymes of industrial purpose - review of the market of enzyme preparations and prospects for its development

    Directory of Open Access Journals (Sweden)

    A. A. Tolkacheva

    2017-01-01

    Full Text Available Microbial enzyme preparations are increasingly replacing conventional chemical catalysts in a number of industrial processes. Such drugs, in addition to environmental friendliness and high activity, have a number of advantages over enzyme preparations of vegetable and animal origin, namely: the production of microbial enzymes in bioreactors is easily controlled and predictable; excreted microbiological enzymes are more stable than intracellular animals and plant enzymes; the genetic diversity of microorganisms makes it possible to produce enzyme preparations with a wide range of specificity; microbiological enzymes can be synthesized year-round, in contrast to the production of plant enzymes, which is often seasonal. The leaders of the world market of enzymes are proteases and amylases, which account for 25% and 15%, respectively. Over the past five years, the world market for carbohydrases, including mainly amylases, cellulases and xylanases, has been the fastest growing segment of the enzyme market with an aggregate annual growth rate of more than 7.0%. Another major product of the industrial enzyme market, which has a great potential for growth, is lipases. From the point of view of designation, the main part is represented by food and food enzymes. The Russian market continues to be unsaturated - the current supply is not able to meet the needs of the Russian feed and food industry in enzyme preparations. Enzyme preparations of domestic producers are in demand in forage production, while food industrial enterprises prefer imported products. The most significant enterprises in the enzymatic industry in Russia at the moment are Sibbiofarm, AgroSistema, Agroferment. In the light of the Russian policy of increasing food security, the development of the domestic enzyme industry is an extremely topical task.

  4. Copper@carbon coaxial nanowires synthesized by hydrothermal carbonization process from electroplating wastewater and their use as an enzyme-free glucose sensor.

    Science.gov (United States)

    Zhao, Yuxin; He, Zhaoyang; Yan, Zifeng

    2013-01-21

    In the pursuit of electrocatalysts with great economic and ecological values for non-enzymatic glucose sensors, one-dimensional copper@carbon (Cu@C) core-shell coaxial nanowires (NWs) have been successfully prepared via a simple continuous flow wet-chemistry approach from electroplating wastewater. The as-obtained products were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectroscopy and Raman spectroscopy. The electrocatalytic activity of the modified electrodes by Cu@C NWs towards glucose oxidation was investigated by cyclic voltammetry and chronoamperometry. It was found that the as-obtained Cu@C NWs showed good electrochemical properties and could be used as an electrochemical sensor for the detection of glucose molecules. Compared to the other electrodes including the bare Nafion/glassy carbon electrode (GCE) and several hot hybrid nanostructures modified GCE, a substantial decrease in the overvoltage of the glucose oxidation was observed at the Cu@C NWs electrodes with oxidation starting at ca. 0.20 V vs. Ag/AgCl (3 M KCl). At an applied potential of 0.65 V, Cu@C NWs electrodes had a high and reproducible sensitivity of 437.8 µA cm(-2) mM(-1) to glucose. Linear responses were obtained with a detection limit of 50 nM. More importantly, the proposed electrode also had good stability, high resistance against poisoning by chloride ion and commonly interfering species. These good analytical performances make Cu@C NWs promising for the future development of enzyme-free glucose sensors.

  5. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  6. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  7. Targeted enzyme prodrug therapies.

    Science.gov (United States)

    Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C

    2010-09-01

    The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.

  8. Metrological aspects of enzyme production

    International Nuclear Information System (INIS)

    Kerber, T M; Pereira-Meirelles, F V; Dellamora-Ortiz, G M

    2010-01-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies

  9. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  10. Immobilised enzymes in biorenewable production

    OpenAIRE

    Franssen, M.C.R.; Steunenberg, P.; Scott, E.L.; Zuilhof, H.; Sanders, J.P.M.

    2013-01-01

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, ...

  11. European consumer attitudes on the associated health benefits of neutraceutical-containing processed meats using Co-enzyme Q10 as a sample functional ingredient.

    Science.gov (United States)

    Tobin, Brian D; O'Sullivan, Maurice G; Hamill, Ruth; Kerry, Joseph P

    2014-06-01

    This study accumulated European consumer attitudes towards processed meats and their use as a functional food. A survey was set up using an online web-application to gather information on consumer perception of processed meats as well as neutraceutical-containing processed meats. 548 responses were obtained and statistical analysis was carried out using a statistical software package. Data was summarized as frequencies for each question and statistical differences analyzed using the Chi-Square statistical test with a significance level of 5% (Pconsumer attitudes towards processed meat indicate that they are unhealthy products. Most believe that processed meats contain large quantities of harmful chemicals, fat and salt. Consumers were found to be very pro-bioactive compounds in yogurt style products but unsure of their feelings in meat based products, which is likely due to the lack of familiarity to these products. Many of the respondents were willing to consume meat based functional foods but were not willing to pay more for them. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The influence of folate serum levels on depressive mood and mental processing in patients with epilepsy treated with enzyme-inducing anti-epileptic drugs.

    Science.gov (United States)

    Rösche, J; Uhlmann, C; Weber, R; Fröscher, W

    2003-04-01

    Folate deficiency is common in patients with epilepsy and also occurs in patients with depression or cognitive deficits. This study investigates whether low serum folate levels may contribute to depressive mood and difficulties in mental processing in patients with epilepsy treated with anti-epileptic drugs inducing the cytochrome P450. We analysed the serum folate levels, the score in the Self Rating Depression Scale (SDS) and the results of a bedside test in mental processing in 54 patients with epilepsy. There was a significant negative correlation between the serum folate levels and the score in SDS and significant positive correlations between the score in SDS and the time needed to process an interference task or a letter-reading task. Low serum folate levels may contribute to depressive mood and therefore to difficulties in mental processing. Further studies utilizing total plasma homocysteine as a sensitive measure of functional folate deficiency and more elaborate tests of mental processing are required to elucidate the impact of folate metabolism on depressive mood and cognitive function in patients with epilepsy.

  13. Therapeutic Enzymes: Applications and Approaches to Pharmacological Improvement.

    Science.gov (United States)

    Yari, Maryam; Ghoshoon, Mohammad B; Vakili, Bahareh; Ghasemi, Younes

    2017-01-01

    Among therapeutic proteins, enzymes represent small and of course profitable market. They can be used to treat important, rare, and deadly diseases. Enzyme therapy is the only available treatment for certain disorders. Here, pharmaceutical enzymes are reviewed. They are categorized in four main groups, enzymes in replacement therapy, enzymes in cancer treatment, enzymes for fibrinolysis, and finally enzymes that are used topically for various treatments. Furthermore, enzyme gene therapy and future perspective of therapeutic enzymes are mentioned in brief. There are many important approved enzymes in pharmaceutical market. Several approaches such as point mutation, fusion protein designing, glycoengineering, and PEGylation were used to achieve improved enzymes. Although sometimes enzymes were engineered to facilitate production and purification process, appropriate delivery to target sites, extending half-life, and reducing immunogenicity are among the main goals of engineering approaches. Overall, enzymes play a critical role in treatment of common and rare diseases. Evaluation of new enzymes as well as improvement of approved enzymes are of the most important challenges in biotechnology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Alleviating exercise-induced muscular stress using neat and processed bee pollen: oxidative markers, mitochondrial enzymes, and myostatin expression in rats

    Directory of Open Access Journals (Sweden)

    Sameer Ketkar

    2015-09-01

    Conclusion: The study establishes the antioxidant, mitochondrial upregulatory, and myostatin inhibitory effects of both MIMBP and PMIMBP in exercise-induced oxidative stress conditions, suggesting their usefulness in effective management of exercise-induced muscular stress. Further, processing of MIMBP with an edible lipid-surfactant mixture was found to improve the therapeutic efficiency of pollen.

  15. A thermodynamic and theoretical view for enzyme regulation.

    Science.gov (United States)

    Zhao, Qinyi

    2015-01-01

    Precise regulation is fundamental to the proper functioning of enzymes in a cell. Current opinions about this, such as allosteric regulation and dynamic contribution to enzyme regulation, are experimental models and substantially empirical. Here we proposed a theoretical and thermodynamic model of enzyme regulation. The main idea is that enzyme regulation is processed via the regulation of abundance of active conformation in the reaction buffer. The theoretical foundation, experimental evidence, and experimental criteria to test our model are discussed and reviewed. We conclude that basic principles of enzyme regulation are laws of protein thermodynamics and it can be analyzed using the concept of distribution curve of active conformations of enzymes.

  16. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  17. Mycelial growth interactions and mannan-degrading enzyme ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... enzymes (Frost and Moss, 1987). However, microbial enzymes are more in use due to cheaper substrates and ease of process modification. In microbial enzyme and biomass production, defined mixed culture method in which more than one organism grows simultaneously can result in increased biomass ...

  18. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  19. Enzyme Vs. Extremozyme -32 ...

    Indian Academy of Sciences (India)

    Enzymes are biocatalytic protein molecules that enhance the rates of ... to physical forces (hydrogen bonds, hydrophobic 1, electrostatic and Van der ... conformation. In 1995 ... surface against 14.7% in Klenow poll (some of the hydrophobic.

  20. Overproduction of ligninolytic enzymes

    Science.gov (United States)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  1. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 300, Revision 1 (FGE.300Rev1): One cyclo-aliphatic amide from chemical group 33

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Frandsen, Henrik Lauritz; Nørby, Karin Kristiane

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate a flavouring substance,cyclopropanecarboxylic acid (2-isopropyl-5-methyl-cyclohexyl)-amide [FL-no: 16.115] in the Flavouring Group Evaluation 300, Revision 1....... The substance was not considered to have genotoxic potential. The substance was evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity....... The Panel concluded that the substance [FL-no: 16.115] does not give rise to safety concern at its levels of dietary intake estimated on the basis of the Maximised Survey-derived Daily Intake MSDI approach. Besides the safety assessment of this flavouring substance, the specifications for the material...

  2. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 17, Revision 3 (FGE.17Rev3): Pyrazine derivatives from chemical group 24

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 28 flavouring substances in the Flavouring Group Evaluation 17, including seven additional substances considered in this Revision 3, using the Procedure......-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel concluded that 24 substances [FL-no: 14.057, 14.081, 14.083, 14.084, 14.086, 14.087, 14.091, 14.097, 14.099, 14.101, 14.102, 14.108, 14.109, 14.111, 14.112, 14.113, 14.122, 14...... substances, the specifications for the materials of commerce have also been considered and for one substance [FL-no: 14.102], the composition of mixture has not been specified sufficiently....

  3. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 22, Revision 1 (FGE.22Rev1): Ring substituted phenolic substances from chemical groups 21 and 25

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 28 flavouring substances in the Flavouring Group Evaluation 22, Revision 1, using the Procedure in Commission Regulation (EC) No 1565/2000. The substance 3...... through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel concluded that these 27 candidate substances do not give rise to safety...... concerns at their levels of dietary intake, estimated on the basis of the MSDI approach. Adequate specifications for the materials of commerce are available for all 27 flavouring substances evaluated through the Procedure....

  4. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 301 (FGE.301): A sulphur substituted pyrimidin-derivative and its hydrochloride salt

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate two flavouring substances, 4-amino-5,6-dimethylthieno[2,3-d]pyrimidin-2(1H)-one [FL-no: 16.116] and 4-amino-5,6-dimethylthieno[2,3-d]pyrimidin-2(1H...... on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel concluded that the two substances [FL-no: 16.116 and 16.120] do not give rise to safety concerns at their levels of dietary intake, estimated on the basis...

  5. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 17, Revision 2 (FEG.17Rev2): Pyrazine derivatives from chemical group 24

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 21 flavouring substances in the Flavouring Group Evaluation 17, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. From the in vitro...... substance [FL-no: 14.051] no intake data are available preventing it from being evaluated through the Procedure. The remaining 18 substances were evaluated through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold...... intake, estimated on the basis of the MSDI approach. For the remaining substance [FL-no: 14.052] additional toxicity data are required. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered and for two substances...

  6. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 10, Revision 3 (FGE.10Rev3): Aliphatic primary and secondary saturated and unsaturated alcohols, aldehydes, acetals, carboxylic acids and esters containing

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 63 flavouring substances in the Flavouring Group Evaluation 10, including additional two substances in this Revision 3, using the Procedure in Commission...... threshold of concern, and available data on metabolism and toxicity. The Panel concluded that the 62 substances do not give rise to safety concerns at their levels of dietary intake, estimated on the basis of the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications...... for the materials of commerce have also been considered. For four substances evaluated through the Procedure, the stereoisomeric composition has not been specified sufficiently....

  7. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Flavouring Group Evaluation 46, Revision 1 (FGE.46Rev1): Ammonia and three ammonium salts from chemical group 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Scientific Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (the Panel) was asked to provide scientific advice to the Commission on the implications for human health of chemically defined flavouring substances used in or on foodstuffs in the Member States. In particular...... in a wide range of food items up to very high amounts. Hydrogen sulphide is also reported to occur naturally in a wide range of food items. In its evaluation, the Panel as a default used the “Maximised Survey-derived Daily Intake” (MSDI) approach to estimate the per capita intakes of the flavouring...... substances in Europe. However, when the Panel examined the information provided by the European Flavouring Industry on the use levels in various foods, it appeared obvious that the MSDI approach in a number of cases would grossly underestimate the intake by regular consumers of products flavoured at the use...

  8. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  9. Computational Biochemistry-Enzyme Mechanisms Explored.

    Science.gov (United States)

    Culka, Martin; Gisdon, Florian J; Ullmann, G Matthias

    2017-01-01

    Understanding enzyme mechanisms is a major task to achieve in order to comprehend how living cells work. Recent advances in biomolecular research provide huge amount of data on enzyme kinetics and structure. The analysis of diverse experimental results and their combination into an overall picture is, however, often challenging. Microscopic details of the enzymatic processes are often anticipated based on several hints from macroscopic experimental data. Computational biochemistry aims at creation of a computational model of an enzyme in order to explain microscopic details of the catalytic process and reproduce or predict macroscopic experimental findings. Results of such computations are in part complementary to experimental data and provide an explanation of a biochemical process at the microscopic level. In order to evaluate the mechanism of an enzyme, a structural model is constructed which can be analyzed by several theoretical approaches. Several simulation methods can and should be combined to get a reliable picture of the process of interest. Furthermore, abstract models of biological systems can be constructed combining computational and experimental data. In this review, we discuss structural computational models of enzymatic systems. We first discuss various models to simulate enzyme catalysis. Furthermore, we review various approaches how to characterize the enzyme mechanism both qualitatively and quantitatively using different modeling approaches. © 2017 Elsevier Inc. All rights reserved.

  10. Novel sensitive monoclonal antibody based competitive enzyme-linked immunosorbent assay for the detection of raw and processed bovine beta-casein.

    Science.gov (United States)

    Castillo, Daniela S; Cassola, Alejandro

    2017-01-01

    Cow milk protein allergy (CMPA) is the most common childhood food allergy, which can sometimes persist or can newly develop in adulthood with severe symptoms. CMPA's treatment is complete dietary avoidance of milk proteins. To achieve this task, patients have to be aware of milk proteins found as "hidden allergens" in food commodities. In regard to milk proteins, it has been reported that allergenicity of caseins remains unaffected upon heat treatment. For these reasons, we aimed to obtain monoclonal antibodies (mAbs) against native and denatured β-casein, one of the most abundant and antigenic caseins, in order to develop an indirect competitive ELISA (icELISA) to detect and quantify traces of this milk allergen in raw and processed foodstuffs. We developed two specific hybridoma clones, 1H3 and 6A12, which recognized β-casein in its denatured and native conformations by indirect ELISA (iELISA). Cross-reaction analysis by Western blot and iELISA indicated that these mAbs specifically recognized β-casein from bovine and goat milk extracts, while they did not cross-react with proteins present in other food matrixes. These highly specific mAbs enabled the development of sensitive, reliable and reproducible icELISAs to detect and quantify this milk protein allergen in food commodities. The extraction of β-casein from foodstuff was efficiently carried out at 60°C for 15 minutes, using an extraction buffer containing 1% SDS. The present study establishes a valid 1H3 based-icELISA, which allows the detection and quantification -0.29 ppm and 0.80 ppm, respectively- of small amounts of β-casein in raw and processed foods. Furthermore, we were able to detect milk contamination in incurred food samples with the same sensitivity as a commercial sandwich ELISA thus showing that this icELISA constitutes a reliable analytical method for control strategies in food industry and allergy prevention.

  11. Enzymic hydrolysis of cellulosic wastes to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Spano, L A; Medeiros, J; Mandels, M

    1976-01-01

    An enzymic process for the conversion of cellulose to glucose is based on the use of a specific enzyme derived from mutant strains of the fungus trichoderma viride which is capable of reacting with the crystalline fraction of the cellulose molecule. The production and mode of action of the cellulase complex produced during the growth of trichoderma viride is discussed as well as the application of such enzymes for the conversion of cellulosic wastes to crude glucose syrup for use in production of chemical feedstocks, single-cell proteins, fuels, solvents, etc.

  12. Enzymes: The possibility of production and applications

    Directory of Open Access Journals (Sweden)

    Petronijević Živomir B.

    2003-01-01

    Full Text Available Enzymes are biological catalysts with increasing application in the food pharmaceutical, cosmetic, textile and chemical industry. They are also important as reagents in chemical analysis, leather fabrications and as targets for the design of new drugs. Keeping in mind the growing need to replace classical chemical processes by alternative ones, because of ever growing environmental pollution, it is important that enzyme and other biotechnological processes are economical. Therefore, price decrease and stability and enzyme preparation efficiency increase are required more and more. This paper presents a short review of methods for yield increase and the improvement of the quality of enzyme products as commercial products, as well as a review of the possibilities of their application.

  13. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    DEFF Research Database (Denmark)

    Tsai, Chien Tai

    , the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore...... lignocellulose is the required high cellulase enzyme dosages that increase the processing costs. One method to decrease the enzyme dosage is to re-use BG, which hydrolyze the soluble substrate cellobiose. Based on the hypothesis that immobilized BG can be re-used, how many times the enzyme could be recycled...... liquid and pretreatment time can be reduced, the influence of substrate concentration, pretreatment time and temperature were investigated and optimized. Pretreatment of barley straw by [EMIM]Ac, correlative models were constructed using 3 different pretreatment parameters (temperature, time...

  14. Enzyme Technology for Shipboard Waste Management

    Science.gov (United States)

    1976-12-01

    sucrose to the sweeter invert sugar by the enzyme invertase is a well established process, as is the conversion of starch to glucose by the enzyme...aspects of our health and daily lives. Recent advances in fundamental and applied enzymology indicate that we have already started in that direction. At a...Chemtech, p. 677 (Nov 1973) 11 - Bungay, H. P., "Applied Enzymology ," Worthington, Biochemical Corp., Notes for an AIChE Lecture, Washington, D. C. (Dec

  15. The Golgi-Localized γ-Ear-Containing ARF-Binding (GGA Proteins Alter Amyloid-β Precursor Protein (APP Processing through Interaction of Their GAE Domain with the Beta-Site APP Cleaving Enzyme 1 (BACE1.

    Directory of Open Access Journals (Sweden)

    Bjoern von Einem

    Full Text Available Proteolytic processing of amyloid-β precursor protein (APP by beta-site APP cleaving enzyme 1 (BACE1 is the initial step in the production of amyloid beta (Aβ, which accumulates in senile plaques in Alzheimer's disease (AD. Essential for this cleavage is the transport and sorting of both proteins through endosomal/Golgi compartments. Golgi-localized γ-ear-containing ARF-binding (GGA proteins have striking cargo-sorting functions in these pathways. Recently, GGA1 and GGA3 were shown to interact with BACE1, to be expressed in neurons, and to be decreased in AD brain, whereas little is known about GGA2. Since GGA1 impacts Aβ generation by confining APP to the Golgi and perinuclear compartments, we tested whether all GGAs modulate BACE1 and APP transport and processing. We observed decreased levels of secreted APP alpha (sAPPα, sAPPβ, and Aβ upon GGA overexpression, which could be reverted by knockdown. GGA-BACE1 co-immunoprecipitation was impaired upon GGA-GAE but not VHS domain deletion. Autoinhibition of the GGA1-VHS domain was irrelevant for BACE1 interaction. Our data suggest that all three GGAs affect APP processing via the GGA-GAE domain.

  16. The kunitz protease inhibitor form of the amyloid precursor protein (KPI/APP) inhibits the proneuropeptide processing enzyme prohormone thiol protease (PTP). Colocalization of KPI/APP and PTP in secretory vesicles.

    Science.gov (United States)

    Hook, V Y; Sei, C; Yasothornsrikul, S; Toneff, T; Kang, Y H; Efthimiopoulos, S; Robakis, N K; Van Nostrand, W

    1999-01-29

    Proteolytic processing of proenkephalin and proneuropeptides is required for the production of active neurotransmitters and peptide hormones. Variations in the extent of proenkephalin processing in vivo suggest involvement of endogenous protease inhibitors. This study demonstrates that "protease nexin 2 (PN2)," the secreted form of the kunitz protease inhibitor (KPI) of the amyloid precursor protein (APP), potently inhibited the proenkephalin processing enzyme known as prohormone thiol protease (PTP), with a Ki,app of 400 nM. Moreover, PTP and PN2 formed SDS-stable complexes that are typical of kunitz protease inhibitor interactions with target proteases. In vivo, KPI/APP (120 kDa), as well as a truncated form of KPI/APP that resembles PN2 in apparent molecular mass (110 kDa), were colocalized with PTP and (Met)enkephalin in secretory vesicles of adrenal medulla (chromaffin granules). KPI/APP (110-120 kDa) was also detected in pituitary secretory vesicles that contain PTP. In chromaffin cells, calcium-dependent secretion of KPI/APP with PTP and (Met)enkephalin demonstrated the colocalization of these components in functional secretory vesicles. These results suggest a role for KPI/APP inhibition of PTP in regulated secretory vesicles. In addition, these results are the first to identify an endogenous protease target of KPI/APP, which is developmentally regulated in aging and Alzheimer's disease.

  17. Production of fructose-containing syrup with enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Helwiig-Nielsen, B

    1981-01-01

    A review on enzymic processes used for production of fructose- high syrup from starch including liquefaction by alpha-amylase, saccharification by amyloglucosidase, and isomerization with glucose isomerase.

  18. Immobilised enzymes in biorenewables production.

    Science.gov (United States)

    Franssen, Maurice C R; Steunenberg, Peter; Scott, Elinor L; Zuilhof, Han; Sanders, Johan P M

    2013-08-07

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, such as the production of High-Fructose Corn Syrup, but these are still rather rare. Fortunately, there is a rapid expansion in the research efforts that try to improve this, driven by a combination of economic and ecological reasons. This review focusses on those efforts, by looking at attempts to use fatty acids, carbohydrates, proteins and lignin (and their building blocks), as substrates in the synthesis of biorenewables using immobilised enzymes. Therefore, many examples (390 references) from the recent literature are discussed, in which we look both at the specific reactions as well as to the methods of immobilisation of the enzymes, as the latter are shown to be a crucial factor with respect to stability and reuse. The applications of the renewables produced in this way range from building blocks for the pharmaceutical and polymer industry, transport fuels, to additives for the food industry. A critical evaluation of the relevant factors that need to be improved for large-scale use of these examples is presented in the outlook of this review.

  19. Discovery of enzymes for toluene synthesis from anoxic microbial communities

    DEFF Research Database (Denmark)

    Beller, Harry R.; Rodrigues, Andria V.; Zargar, Kamrun

    2018-01-01

    Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes...... phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from...... a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes. This work expands the known catalytic range of glycyl radical enzymes (only seven reaction types had been characterized previously) and aromatic...

  20. Expression of lignocellulolytic enzymes in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mellitzer Andrea

    2012-05-01

    Full Text Available Abstract Background Sustainable utilization of plant biomass as renewable source for fuels and chemical building blocks requires a complex mixture of diverse enzymes, including hydrolases which comprise the largest class of lignocellulolytic enzymes. These enzymes need to be available in large amounts at a low price to allow sustainable and economic biotechnological processes. Over the past years Pichia pastoris has become an attractive host for the cost-efficient production and engineering of heterologous (eukaryotic proteins due to several advantages. Results In this paper codon optimized genes and synthetic alcohol oxidase 1 promoter variants were used to generate Pichia pastoris strains which individually expressed cellobiohydrolase 1, cellobiohydrolase 2 and beta-mannanase from Trichoderma reesei and xylanase A from Thermomyces lanuginosus. For three of these enzymes we could develop strains capable of secreting gram quantities of enzyme per liter in fed-batch cultivations. Additionally, we compared our achieved yields of secreted enzymes and the corresponding activities to literature data. Conclusion In our experiments we could clearly show the importance of gene optimization and strain characterization for successfully improving secretion levels. We also present a basic guideline how to correctly interpret the interplay of promoter strength and gene dosage for a successful improvement of the secretory production of lignocellulolytic enzymes in Pichia pastoris.

  1. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  2. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay Rojas

    2016-01-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly a ims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes ef ficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/in activation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultr asonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  3. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay

    2016-06-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly aims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes efficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/inactivation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultrasonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  4. Novel enzymes for the degradation of cellulose

    Directory of Open Access Journals (Sweden)

    Horn Svein

    2012-07-01

    Full Text Available Abstract The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first “extracting” these chains from their crystalline matrix.

  5. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    Science.gov (United States)

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  6. Polyphenol Oxidase Enzyme and Inactivation Methods

    Directory of Open Access Journals (Sweden)

    Leman Yılmaz

    2018-03-01

    Full Text Available Polyphenol oxidase enzyme is found in vegetables and fruits, as well as in some animal organs and microorganisms. Polyphenol oxidase enzyme responsible for enzymatic browning is a group of copper proteins that catalyses the oxidation of phenolic compounds to quinones, which produce brown pigments, commonly found in fruits and vegetables. During the industrial preparation of fruits and vegetables, results of catalytic effect of polyphenol oxidase causes enzymatic browning. Enzymatic browning impairs the appearance of products containing phenolic compounds along with undesirable colour, odor and taste formation and significant loss of nutritional value of the products. This affects the acceptability of the products by the consumers and causes economic losses. In this review, some characteristics of polyphenol oxidase enzyme in different fruits and vegetables have been reviewed and information about chemical antibrowning agents, thermal applications, irradiation applications and alternative methods such as high pressure processing, pulse electric field, supercritical carbon dioxide and ultrasound applications to inactivate this enzyme has been presented.

  7. Magnetically responsive enzyme powders

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 380, APR 2015 (2015), s. 197-200 ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : enzyme powders * cross-linking * magnetic modification * magnetic separation * magnetic iron oxides particles * microwave-assisted synthesis Subject RIV: CE - Biochemistry Impact factor: 2.357, year: 2015

  8. Enzyme with rhamnogalacturonase activity.

    NARCIS (Netherlands)

    Kofod, L.V.; Andersen, L.N.; Dalboge, H.; Kauppinen, M.S.; Christgau, S.; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A.G.J.; Schols, H.A.

    1998-01-01

    An enzyme exhibiting rhamnogalacturonase activity, capable of cleaving a rhamnogalacturonan backbone in such a manner that galacturonic acids are left as the non-reducing ends, and which exhibits activity on hairy regions from a soy bean material and/or on saponified hairy regions from a sugar beet

  9. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Advances in enzyme bioelectrochemistry

    Directory of Open Access Journals (Sweden)

    ANDRESSA R. PEREIRA

    Full Text Available ABSTRACT Bioelectrochemistry can be defined as a branch of Chemical Science concerned with electron-proton transfer and transport involving biomolecules, as well as electrode reactions of redox enzymes. The bioelectrochemical reactions and system have direct impact in biotechnological development, in medical devices designing, in the behavior of DNA-protein complexes, in green-energy and bioenergy concepts, and make it possible an understanding of metabolism of all living organisms (e.g. humans where biomolecules are integral to health and proper functioning. In the last years, many researchers have dedicated itself to study different redox enzymes by using electrochemistry, aiming to understand their mechanisms and to develop promising bioanodes and biocathodes for biofuel cells as well as to develop biosensors and implantable bioelectronics devices. Inside this scope, this review try to introduce and contemplate some relevant topics for enzyme bioelectrochemistry, such as the immobilization of the enzymes at electrode surfaces, the electron transfer, the bioelectrocatalysis, and new techniques conjugated with electrochemistry vising understand the kinetics and thermodynamics of redox proteins. Furthermore, examples of recent approaches in designing biosensors and biofuel developed are presented.

  11. Cold-Adapted Enzymes

    Science.gov (United States)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  12. Embedded enzymes catalyse capture

    Science.gov (United States)

    Kentish, Sandra

    2018-05-01

    Membrane technologies for carbon capture can offer economic and environmental advantages over conventional amine-based absorption, but can suffer from limited gas flux and selectivity to CO2. Now, a membrane based on enzymes embedded in hydrophilic pores is shown to exhibit combined flux and selectivity that challenges the state of the art.

  13. Photoperiodism and Enzyme Activity

    Science.gov (United States)

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  14. ISFET based enzyme sensors

    NARCIS (Netherlands)

    van der Schoot, Bart H.; Bergveld, Piet

    1987-01-01

    This paper reviews the results that have been reported on ISFET based enzyme sensors. The most important improvement that results from the application of ISFETs instead of glass membrane electrodes is in the method of fabrication. Problems with regard to the pH dependence of the response and the

  15. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2012-01-01

    Full Text Available The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

  16. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on lipase from a genetically modified strain of Aspergillus oryzae (strain NZYM-FL)

    DEFF Research Database (Denmark)

    Poulsen, Morten; Hallas-Møller, Torben; Binderup, Mona-Lise

    The food enzyme considered in this opinion is a lipase (triacylglycerol lipase; EC 3.1.1.3) produced with a genetically modified strain of Aspergillus oryzae. The genetic modifications do not raise safety concern. The food enzyme contains neither the production organism nor recombinant DNA...

  17. The Enzyme Function Initiative†

    Science.gov (United States)

    Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V.

    2011-01-01

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include: 1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation); 2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4) provision of experimental protocols and/or reagents for enzyme production and characterization; and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal and pharmaceutical efforts. PMID

  18. The Enzyme Function Initiative.

    Science.gov (United States)

    Gerlt, John A; Allen, Karen N; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C; Cronan, John E; Dunaway-Mariano, Debra; Imker, Heidi J; Jacobson, Matthew P; Minor, Wladek; Poulter, C Dale; Raushel, Frank M; Sali, Andrej; Shoichet, Brian K; Sweedler, Jonathan V

    2011-11-22

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5) dissemination of data via the EFI's Website, http://enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and pharmaceutical efforts.

  19. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 11, Revision 2 (FGE.11Rev2): Aliphatic dialcohols, diketones, and hydroxyketones from chemical groups 8 and 10

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Scientific Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (the Panel) was asked to provide scientific advice to the Commission on the implications for human health of chemically defined flavouring substances used in or on foodstuffs in the Member States. In particular......, the Panel was requested to evaluate 12 flavouring substances in the Flavouring Group Evaluation 11, Revision 2 (FGE.11Rev2), using the Procedure as referred to in the Commission Regulation (EC) No 1565/2000. These 12 flavouring substances belong to chemical group 10, Annex I of the Commission Regulation (EC...... is a tertiary alcohol) [FL-no: 07.097, 07.165 and 07.184] all belonging to chemical groups 8 and 10. One of the 12 candidate substances possesses four chiral centres [FL-no: 06.134] two possesses two chiral centres [FL-no: 02.133 and 07.168] and four substances possesses one chiral centre [FL-no: 07.097, 07...

  20. Role of endothelin-converting enzyme, chymase and neutral endopeptidase in the processing of big ET-1, ET-1(1-21) and ET-1(1-31) in the trachea of allergic mice.

    Science.gov (United States)

    De Campo, Benjamin A; Goldie, Roy G; Jeng, Arco Y; Henry, Peter J

    2002-08-01

    The present study examined the roles of endothelin-converting enzyme (ECE), neutral endopeptidase (NEP) and mast cell chymase as processors of the endothelin (ET) analogues ET-1(1-21), ET-1(1-31) and big ET-1 in the trachea of allergic mice. Male CBA/CaH mice were sensitized with ovalbumin (10 microg) delivered intraperitoneal on days 1 and 14, and exposed to aerosolized ovalbumin on days 14, 25, 26 and 27 (OVA mice). Mice were killed and the trachea excised for histological analysis and contraction studies on day 28. Tracheae from OVA mice had 40% more mast cells than vehicle-sensitized mice (sham mice). Ovalbumin (10 microg/ml) induced transient contractions (15+/-3% of the C(max)) in tracheae from OVA mice. The ECE inhibitor CGS35066 (10 microM) inhibited contractions induced by big ET-1 (4.8-fold rightward shift of dose-response curve; Peffect on contractions induced by any of the ET analogues used. The NEP inhibitor CGS24592 (10 microM) inhibited contractions induced by ET-1(1-31) (6.2-fold rightward shift; Pbig ET-1. These data suggest that big ET-1 is processed predominantly by a CGS35066-sensitive ECE within allergic airways rather than by mast cell-derived proteases such as chymase. If endogenous ET-1(1-31) is formed within allergic airways, it is likely to undergo further conversion by NEP to more active products.

  1. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2016. Scientific opinion on Flavouring Group Evaluation 313, (FGE.313): α,β-unsaturated 3(2H)-furanone derivatives from chemical group 13

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Nørby, Karin Kristiane

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of EFSA was requested to evaluate three flavouring substances, 2,5-dimethyl-4-ethoxyfuran-3(2H)-one [FL-no: 13.117], 2,5-dimethylfuran-3(2H)-one [FL-no: 13.119] and 4-Acetyl-2,5-dimethylfuran-3(2H)-one [FL-no: 13......–activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel concluded that the two flavouring substances [FL-no: 13.117, 13.119] do not give rise to safety concerns at their level of dietary intake, estimated on the basis of the Maximised...... Survey-derived Daily Intake (MSDI) approach. For the flavouring substance [FL-no: 13.175], toxicity data are required. Besides the safety assessment of the flavouring substance, the specifications for the materials of commerce have also been considered. Adequate specifications including complete purity...

  2. Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia; Jørgensen, Henning

    2013-01-01

    the influence of temperature and ethanol on enzyme activity and stability in the distillation step, where most enzymes are inactivated due to high temperatures. Two enzyme mixtures, a mesophilic and a thermostable mixture, were exposed to typical process conditions [temperatures from 55 to 65 °C and up to 5...... % ethanol (w/v)] followed by specific enzyme activity analyses and SDS-PAGE. The thermostable and mesophilic mixture remained active at up to 65 and 55 °C, respectively. When the enzyme mixtures reached their maximum temperature limit, ethanol had a remarkable influence on enzyme activity, e.g., the more...... ethanol, the faster the inactivation. The reason could be the hydrophobic interaction of ethanol on the tertiary structure of the enzyme protein. The thermostable mixture was more tolerant to temperature and ethanol and could therefore be a potential candidate for recycling after distillation....

  3. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  4. Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases

    International Nuclear Information System (INIS)

    Besanger, Travis R.; Hodgson, Richard J.; Green, James R.A.; Brennan, John D.

    2006-01-01

    Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k cat and decreases in K M , switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography

  5. Process for assembly and transformation into Saccharomyces cerevisiae of a synthetic yeast artificial chromosome containing a multigene cassette to express enzymes that enhance xylose utilization designed for an automated pla

    Science.gov (United States)

    A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system ...

  6. NRSA enzyme decomposition model data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme activities measured at more than 2000 US streams and rivers. These enzyme data were then used to predict organic matter decomposition and microbial...

  7. Cellulase enzyme and biomass utilization

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... human population grows and economic development. However, the current .... conditions and the production cost of the related enzyme system. Therefore ... Given the importance of this enzyme to these so many industries,.

  8. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Ai ds (CEF); Scientific Opinion on Flavouring Group Evaluation 208 (FGE.208): Consideration of genotoxicity data on representatives for 10 alicyclic aldehydes with the α , β - unsaturation in ring / side - chain

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Lund, Pia

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the genotoxic potential of one flavouring substance from subgroup 2.2 of FGE.19 in the Flavouring Group Evaluation 208. The Flavour Industry has provided a...

  9. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 226 (FGE.226): Consideration of genotoxicity data on one α,β-unsaturated aldehyde from chemical subgroup 1.1.1(b) of FGE.19 by EFSA

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the genotoxic potential of one flavouring substance from subgroup 1.1.1(b) of FGE.19 in the Flavouring Group Evaluation 226. The Flavour Industry has provi...

  10. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 220, Revision 2 (FGE.220Rev1): α,β-Unsaturated ketones and precursors from chemical subgroup 4.4 of FGE.19: 3(2H)-Furanones

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Lund, Pia

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the genotoxic potential of 10 flavouring substances from subgroup 4.4 of FGE.19 in the Flavouring Group Evaluation 220 (FGE.220). FGE.220 is subdivided int...

  11. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 213, Revision 1 (FGE.213Rev1): Consideration of genotoxic potential for α , β -Unsaturated Alicyclic ketones and precursors from chemical subgroup

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Lund, Pia

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the genotoxic potential of 26 flavouring substances from subgroup 2.7 of FGE.19 in the Flavouring Group Evaluation 213. In the first version of FGE.213 the...

  12. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 217, Revision 1 (FGE.217Rev1). Consideration of genotoxic potential for α,β-Unsaturated ketones and precursors from chemical subgroup 4.1 of FGE

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Lund, Pia

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the genotoxic potential of 12 flavouring substances from subgroup 4.1 of FGE.19 in the Flavouring Group Evaluation 217 (FGE.217). In FGE.217, 6-methylcouma...

  13. EFSA CEF Penal (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 212, Revision 2 (FGE.212Rev2): α,β-Unsaturated alicyclic ketones and precursors from chemical subgroup 2.6 of FGE.19

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Lund, Pia

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the genotoxic potential of 24 flavouring substances from subgroup 2.6 of FGE.19 in the Flavouring Group Evaluation 212, Revision 2. The Panel concluded in ...

  14. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 9, Revision 3 (FGE.09Rev3): Secondary alicyclic saturated and unsaturated alcohols, ketones and esters containing secondary alicyclic alcohols from chemical group

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 17 flavouring substances in the Flavouring Group Evaluation 9, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the subs...

  15. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 9, Revision 4 (FGE.09Rev4): Secondary alicyclic saturated and unsaturated alcohols, ketones and esters containing secondary alicyclic alcohols from chemical group

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 21 flavouring substances in the Flavouring Group Evaluation 9, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. The present revi...

  16. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 7, Revision 4 (FGE.07Rev4): Saturated and unsaturated aliphatic secondary alcohols, ketones and esters of secondary alcohols and saturated linear or branched

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 49 flavouring substances in the Flavouring Group Evaluation 07, including additional five substances in this Revision 4, using the Procedure in Commission ...

  17. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 9, Revision 5 (FGE.09Rev5): Secondary alicyclic saturated and unsaturated alcohols, ketones and esters containing secondary alicyclic alcohols

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Frandsen, Henrik Lauritz; Nørby, Karin Kristiane

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 21 flavouring substances in the Flavouring Group Evaluation 9, Revision 5, using the Procedure in Commission Regulation (EC) No 1565/2000. The present revi...

  18. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015. Scientific Opinion on Flavouring Group Evaluation 213, Revision 2 (FGE.213Rev2): Consideration of genotoxic potential for α,β-unsaturated alicyclic ketones and precursors from chemical subgroup 2

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Nørby, Karin Kristiane

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF Panel) of the European Food Safety Authority (EFSA) was requested to evaluate the genotoxic potential of 26 flavouring substances from subgroup 2.7 of FGE.19 in Flavouring Group Evaluation (FGE) 213. In the first v...

  19. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 210, Revision 1 (FGE.210Rev1): Consideration of genotoxic potential for α,β-unsaturated alicyclic ketones and precursors from chemical subgroup 2

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Lund, Pia

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the genotoxic potential of 13 flavouring substances in Flavouring Group Evaluation 210 (FGE.210) and one additional substance [FL-no: 07.225] in this revis...

  20. Modification of polymer surfaces to enhance enzyme activity and stability

    DEFF Research Database (Denmark)

    Hoffmann, Christian

    Enzyme immobilization is an important concept for the development of improved biocatalytic processes, primarily through facilitated separation procedures. However, enzyme immobilization usually comes at a price of reduced biocatalytic activity. For this reason, different immobilization methods have...... already been developed, combining the same goal to improve enzyme activity, stability and selectivity. Polymer materials have shown, due to their easy processibility and versatile properties, high potential as enzyme support. However, in order to achieve improved enzyme performance, the combination...... on their tailored surface modification in order to obtain improved enzyme-support systems. Firstly, an off-stoichiometric thiol-ene (OSTE) thermosetting material was used for the development of a screening platform allowing the investigation of micro-environmental effects and their impact on the activity...

  1. Furin is a chemokine-modifying enzyme

    DEFF Research Database (Denmark)

    Hensbergen, Paul J; Verzijl, Dennis; Balog, Crina I A

    2004-01-01

    Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the tota...

  2. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  3. Application of enzymes in the textile industry: a review

    OpenAIRE

    Mojsov, Kiro

    2011-01-01

    The use of enzymes in textile industry is one of the most rapidly growing field in industrial enzymology. The enzymes used in the textile field are amylases, catalase, and laccase which are used to removing the starch, degrading excess hydrogen peroxide, bleaching textiles and degrading lignin. The use of enzymes in the textile chemical processing is rapidly gaining globally recognition because of their non-toxic and eco-friendly characteristics with the increasinly important requirements for...

  4. Research Applications of Proteolytic Enzymes in Molecular Biology

    OpenAIRE

    Mótyán, János András; Tóth, Ferenc; Tőzsér, József

    2013-01-01

    Proteolytic enzymes (also termed peptidases, proteases and proteinases) are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications ...

  5. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    Science.gov (United States)

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  6. Determining the safety of enzymes used in animal feed.

    Science.gov (United States)

    Pariza, Michael W; Cook, Mark

    2010-04-01

    The purpose of this paper is to provide guidance for evaluating the safety of enzyme preparations used in animal feed. Feed enzymes are typically added to animal feed to increase nutrient bioavailability by acting on feed components prior to or after consumption, i.e., within the gastrointestinal tract. In contrast, food processing enzymes are generally used during processing and then inactivated or removed prior to consumption. The enzymes used in both applications are almost always impure mixtures of active enzyme and other metabolites from the production strain, hence similar safety evaluation procedures for both are warranted. We propose that the primary consideration should be the safety of the production strain and that the decision tree mechanism developed previously for food processing enzymes (Pariza and Johnson, 2001) is appropriate for determining the safety of feed enzymes. Thoroughly characterized non-pathogenic, non-toxigenic microbial strains with a history of safe use in enzyme manufacture are also logical candidates for generating safe strain lineages, from which additional strains may be derived via genetic modification by traditional and non-traditional strategies. For new feed enzyme products derived from a safe strain lineage, it is important to ensure a sufficiently high safety margin for the intended use, and that the product complies with appropriate specifications for chemical and microbial contamination. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Translational control of an intestinal microvillar enzyme

    DEFF Research Database (Denmark)

    Danielsen, E M; Cowell, G M; Sjöström, H

    1986-01-01

    The rates of biosynthesis of adult and foetal pig small-intestinal aminopeptidase N (EC 3.4.11.2) were compared to determine at which level the expression of the microvillar enzyme is developmentally controlled. In organ-cultured explants, the rate of biosynthesis of foetal aminopeptidase N is only...... about 3% of the adult rate. The small amount synthesized occurs in a high-mannose-glycosylated, membrane-bound, form that is processed to the mature, complex-glycosylated, form at a markedly slower rate than that of the adult enzyme. Extracts of total RNA from adult and foetal intestine contained...

  8. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    enzymes on interactions in the oil/brine/solid system was studied. It was found that enzymes can change the adhesion behavior of the crude oil on glass surfaces from adhesion to non-adhesion when they are added to the brine solution. This was confirmed by contact angle measurements, which showed that contact angles became more water-wet (i.e. decreased) after exposure to enzyme solutions. Possible mechanisms giving rise to these observations, including catalysis of ester hydrolysis and enzyme adsorption, were discussed and tested. An experimental study of changes in oil-water interfacial properties by addition of enzymes and proteins, including measurements of interfacial tension and electrophoretic mobility, has been performed. It was found that the effect of enzymes on oil-water properties is minor compared to their effect on oil-water-solid properties. Their contribution to change interfacial tension between oil and water is not significant while they affect the electrophoretic mobility of emulsified oil in enzyme-brine solution to some extent. Attempts were also made to study changes in both oil and water phase composition after equilibration with enzymes. However, since the chemical composition of crude oil is highly complex, a model oil was used in some of the experiments. The model oil was chosen to be a water insoluble ester (ethyl decanoate) solved in mineral oil in an effort to verify the possible role of catalysis of ester hydrolysis. Dynamic core displacements using sandstone and carbonate rocks were conducted to show the potential of improved oil recovery by enzyme- and combined enzyme-surfactant flooding. Most of the core flooding experiments commenced with water flooding from initial water saturation, Swi, (established with synthetic sea water) which will be referred to as secondary mode displacements. Accordingly, tertiary oil recovery processes were used to describe injection of enzyme and/or enzyme-surfactant solutions from residual oil saturation, Sor

  9. Characterising Complex Enzyme Reaction Data.

    Directory of Open Access Journals (Sweden)

    Handan Melike Dönertaş

    Full Text Available The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG. Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution.

  10. Microbial genetic engineering and enzyme technology

    Energy Technology Data Exchange (ETDEWEB)

    Hollenberg, C.P.; Sahm, H.

    1987-01-01

    In a series of up-to-date contributions BIOTEC 1 has experts discussing the current topics in microbial gene technology and enzyme technology and speculating on future developments. Bacterial and yeast systems for the production of interferons, growth hormone or viral antigenes are described as well as the impact of gene technology on plants. Exciting is the prospect of degrading toxic compounds in our environment by microorganisms tuned in the laboratory. Enzymes are the most effective catalysts we know. They exhibit a very high substrate- and stereospecificity. These properties make enzymes extremely attractive as industrial catalysts, leading to new production processes that are non-polluting and save both energy and raw materials. (orig.) With 135 figs., 36 tabs.

  11. Enzyme Histochemistry for Functional Histology in Invertebrates.

    Science.gov (United States)

    Cima, Francesca

    2017-01-01

    In invertebrates, enzyme histochemistry has recently found a renaissance regarding its applications in morphology and ecology. Many enzyme activities are useful for the morphofunctional characterization of cells, as biomarkers of biological and pathologic processes, and as markers of the response to environmental stressors. Here, the adjustments to classic techniques, including the most common enzymes used for digestion, absorption, transport, and oxidation, as well as techniques for azo-coupling, metal salt substitution and oxidative coupling polymerization, are presented in detail for various terrestrial and aquatic invertebrates. This chapter also provides strategies to solve the problems regarding anesthesia, small body size, the presence of an exo- or endoskeleton and the search for the best fixative in relation to the internal fluid osmolarity. These techniques have the aim of obtaining good results for both the pre- and post-embedding labeling of specimens, tissue blocks, sections, and hemolymph smears using both light and transmission electron microscopy.

  12. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  13. Radiation and enzyme degradation of cellulose materials

    International Nuclear Information System (INIS)

    Duchacek, V.

    1983-01-01

    The results are summed up of a study of the effect of gamma radiation on pure cellulose and on wheat straw. The irradiation of cellulose yields acid substances - formic acid and polyhydroxy acids, toxic malondialdehyde and the most substantial fraction - the saccharides xylose, arabinose, glucose and certain oligosaccharides. A ten-fold reduction of the level of cellulose polymerization can be caused by relatively small doses - (up to 250 kGy). A qualitative analysis was made of the straw before and after irradiation and it was shown that irradiation had no significant effect on the qualitative composition of the straw. A 48 hour enzyme hydrolysis of the cellulose and straw were made after irradiation and an economic evaluation of the process was made. Radiation pretreatment is technically and economically advantageous; the production of fodder using enzyme hydrolysis of irradiated straw is not economically feasible due to the high cost of the enzyme. (M.D.)

  14. Enzymes are a sweet way to do business

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-04

    The use of enzymes in industry is growing steadily. This artic discusses some areas of enzyme research: included are enzyme treatments for the production of high-fructose corn syrup and ethanol for gasohol blends, enzyme research focusing on cellulose breakdown, especially from municipal waste and pulp and paper waste to produce ethanol and the conversion of soybeans into a protein-rich powder. The enzymatic process for nitrogen fixation in the nodules of certain leguminous plants and in medical diagnostics are also mentioned.

  15. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.

    Science.gov (United States)

    Sivaperumal, P; Kamala, K; Rajaram, R

    Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.

  16. Subunit topology in the V type ATPase and related enzymes

    NARCIS (Netherlands)

    Chaban, Yuriy

    2005-01-01

    During the last decades impressive progress has been made in understanding of the catalytic mechanism of F-type ATP synthase, which is the key enzyme in the energy metabolism of eukaryotes and most bacteria. This enzyme catalyzes the final step in the process of oxidative phosphorylation in bacteria

  17. Production of amylase enzyme from mangrove fungal isolates ...

    African Journals Online (AJOL)

    The mangrove ecosystem serves as a bioresource for various industrially important microorganisms. The use of fungi as a source of industrially relevant enzymes led to an increased interest in the application of microbial enzymes in various industrial processes. Fungal colonies were isolated from sediments of five different ...

  18. Time-dependent 31P saturation transfer in the phosphoglucomutase reaction. Characterization of the spin system for the Cd(II) enzyme and evaluation of rate constants for the transfer process

    International Nuclear Information System (INIS)

    Post, C.B.; Ray, W.J. Jr.; Gorenstein, D.G.

    1989-01-01

    Time-dependent 31 P saturation-transfer studies were conducted with the Cd 2+ -activated form of muscle phosphoglucomutase to probe the origin of the 100-fold difference between its catalytic efficiency (in terms of k cat ) and that of the more efficient Mg 2+ -activated enzyme. The present paper describes the equilibrium mixture of phosphoglucomutase and its substrate/product pair when the concentration of the Cd 2+ enzyme approaches that of the substrate and how the nine-spin 31 P NMR system provided by this mixture was treated. It shows that the presence of abortive complexes is not a significant factor in the reduced activity of the Cd 2+ enzyme since the complex of the dephosphoenzyme and glucose 1,6-bisphosphate, which accounts for a large majority of the enzyme present at equilibrium, is catalytically competent. It also shows that rate constants for saturation transfer obtained at three different ratios of enzyme to free substrate are mutually compatible. These constants, which were measured at chemical equilibrium, can be used to provide a quantitative kinetic rationale for the reduced steady-state activity elicited by Cd 2+ relative to Mg 2+ . They also provide minimal estimates of 350 and 150 s -1 for the rate constants describing (PO 3 - ) transfer from the Cd 2+ phosphoenzyme to the 6-position of bound glucose 1-phosphate and to the 1-position of bound glucose 6-phosphate, respectively. These minimal estimates are compared with analogous estimates for the Mg 2+ and Li + forms of the enzyme in the accompanying paper

  19. Effect of cadmium on lung lysosomal enzymes in vitro

    International Nuclear Information System (INIS)

    Giri, S.N.; Hollinger, M.A.

    1995-01-01

    Labilization of lysosomal enzymes is often associated with the general process of inflammation. The present study investigated the effect of the pneumotoxin cadmium on the release and activity of two lung lysosomal enzymes. Incubation of rat lung lysosomes with cadmium resulted in the release of β-glucuronidase but not acid phosphatase. The failure to ''release'' acid phosphatase appears to be the result of a direct inhibitory effect of cadmium on this enzyme. The K I for cadmium was determined to be 26.3 μM. The differential effect of cadmium on these two lysosomal enzymes suggests that caution should be exercised in selecting the appropriate enzyme marker for assessing lysosomal fragility in the presence of this toxicant. Furthermore, the differential basal release rate of the two enzymes from lung lysosomes may reflect the cellular heterogeneity of the lung. (orig.)

  20. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  1. Network analysis of metabolic enzyme evolution in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kraulis Per

    2004-02-01

    Full Text Available Abstract Background The two most common models for the evolution of metabolism are the patchwork evolution model, where enzymes are thought to diverge from broad to narrow substrate specificity, and the retrograde evolution model, according to which enzymes evolve in response to substrate depletion. Analysis of the distribution of homologous enzyme pairs in the metabolic network can shed light on the respective importance of the two models. We here investigate the evolution of the metabolism in E. coli viewed as a single network using EcoCyc. Results Sequence comparison between all enzyme pairs was performed and the minimal path length (MPL between all enzyme pairs was determined. We find a strong over-representation of homologous enzymes at MPL 1. We show that the functionally similar and functionally undetermined enzyme pairs are responsible for most of the over-representation of homologous enzyme pairs at MPL 1. Conclusions The retrograde evolution model predicts that homologous enzymes pairs are at short metabolic distances from each other. In general agreement with previous studies we find that homologous enzymes occur close to each other in the network more often than expected by chance, which lends some support to the retrograde evolution model. However, we show that the homologous enzyme pairs which may have evolved through retrograde evolution, namely the pairs that are functionally dissimilar, show a weaker over-representation at MPL 1 than the functionally similar enzyme pairs. Our study indicates that, while the retrograde evolution model may have played a small part, the patchwork evolution model is the predominant process of metabolic enzyme evolution.

  2. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  3. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr

    2014-09-01

    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  4. DGAT enzymes and triacylglycerol biosynthesis

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases. PMID:18757836

  5. Enzyme stabilization for pesticide degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, D.B.; Frazer, F.R. III; Mason, D.W.; Tice, T.R.

    1988-01-01

    Enzymes offer inherent advantages and limitations as active components of formulations used to decontaminate soil and equipment contaminated with toxic materials such as pesticides. Because of the catalytic nature of enzymes, each molecule of enzyme has the potential to destroy countless molecules of a contaminating toxic compound. This degradation takes place under mild environmental conditions of pH, temperature, pressure, and solvent. The basic limitation of enzymes is their degree of stability during storage and application conditions. Stabilizing methods such as the use of additives, covalent crosslinking, covalent attachment, gel entrapment, and microencapsulation have been directed developing an enzyme preparation that is stable under extremes of pH, temperature, and exposure to organic solvents. Initial studies were conducted using the model enzymes subtilisin and horseradish peroxidase.

  6. Direct comparison of enzyme histochemical and immunohistochemical methods to localize an enzyme

    NARCIS (Netherlands)

    van Noorden, Cornelis J. F.

    2002-01-01

    Immunohistochemical localization of enzymes is compared directly with localization of enzyme activity with (catalytic) enzyme histochemical methods. The two approaches demonstrate principally different aspects of an enzyme. The immunohistochemical method localizes the enzyme protein whether it is

  7. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes.

    Science.gov (United States)

    Sirisha, V L; Jain, Ankita; Jain, Amita

    Immobilized enzymes can be used in a wide range of processes. In recent years, a variety of new approaches have emerged for the immobilization of enzymes that have greater efficiency and wider usage. During the course of the last two decades, this area has rapidly expanded into a multidisciplinary field. This current study is a comprehensive review of a variety of literature produced on the different enzymes that have been immobilized on various supporting materials. These immobilized enzymes have a wide range of applications. These include applications in the sugar, fish, and wine industries, where they are used for removing organic compounds from waste water. This study also reviews their use in sophisticated biosensors for metabolite control and in situ measurements of environmental pollutants. Immobilized enzymes also find significant application in drug metabolism, biodiesel and antibiotic production, bioremediation, and the food industry. The widespread usage of immobilized enzymes is largely due to the fact that they are cheaper, environment friendly, and much easier to use when compared to equivalent technologies. © 2016 Elsevier Inc. All rights reserved.

  8. Enzyme Mimics: Advances and Applications.

    Science.gov (United States)

    Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang

    2016-06-13

    Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Phage lytic enzymes: a history.

    Science.gov (United States)

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  10. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks

    Directory of Open Access Journals (Sweden)

    Jordan Chapman

    2018-06-01

    Full Text Available Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes with respect to sustainability and process efficiency. Enzyme catalysis has been scaled up for commercial processes in the pharmaceutical, food and beverage industries, although further enhancements in stability and biocatalyst functionality are required for optimal biocatalytic processes in the energy sector for biofuel production and in natural gas conversion. The technical barriers associated with the implementation of immobilized enzymes suggest that a multidisciplinary approach is necessary for the development of immobilized biocatalysts applicable in such industrial-scale processes. Specifically, the overlap of technical expertise in enzyme immobilization, protein and process engineering will define the next generation of immobilized biocatalysts and the successful scale-up of their induced processes. This review discusses how biocatalysis has been successfully deployed, how enzyme immobilization can improve industrial processes, as well as focuses on the analysis tools critical for the multi-scale implementation of enzyme immobilization for increased product yield at maximum market profitability and minimum logistical burden on the environment and user.

  11. [The rise of enzyme engineering in China].

    Science.gov (United States)

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China.

  12. Enzyme Characterization in Microreactors by UV-Vis Spectroscopy

    DEFF Research Database (Denmark)

    Ringborg, Rolf Hoffmeyer; Krühne, Ulrich; Woodley, John

    for selection can at this point be improved by characterization of the enzyme performance where also inhibition and toxicity effects are taken into account. Enzyme characterization is here defined as the effect on initial rate of reaction with respect to pH, enzyme, substrate, co-substrate, product and co......-product concentration [2]. From this investigation, it will be possible to determine whether the enzyme meets the criteria for process requirements or not. The development of the process will determine the requirements and this can also reach a state of maturity that resolves obstacles, lowers criteria and paves......, as the enzyme resource is scarce at this point of development. In the case where the reaction operates with UV active components, UV can be used to detect compounds with high sensitivity supplemented by multivariate data analysis. The spectra are here decorrelated and regressed to yield concentrations...

  13. Enzyme structure, enzyme function and allozyme diversity in ...

    African Journals Online (AJOL)

    In estimates of population genetic diversity based on allozyme heterozygosity, some enzymes are regularly more variable than others. Evolutionary theory suggests that functionally less important molecules, or parts of molecules, evolve more rapidly than more important ones; the latter enzymes should then theoretically be ...

  14. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  15. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care....... However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered detergent formulations, these issues can be partly overcome by physically isolating the enzymes in separate...... particles. However, enzymes may loose a significant part of their activity over a time period of several weeks. Possible causes of inactivation of enzymes in a granule may be related to the release of hydrogen peroxide from the bleaching chemicals in a moisture-containing atmosphere, humidity, autolysis...

  16. Enzymes in Human Milk.

    Science.gov (United States)

    Dallas, David C; German, J Bruce

    2017-01-01

    Milk proteins are a complex and diverse source of biological activities. Beyond their function, intact milk proteins also act as carriers of encrypted functional sequences that, when released as peptides, exert biological functions, including antimicrobial and immunomodulatory activity, which could contribute to the infant's competitive success. Research has now revealed that the release of these functional peptides begins within the mammary gland itself. A complex array of proteases produced in mother's milk has been shown to be active in the milk, releasing these peptides. Moreover, our recent research demonstrates that these milk proteases continue to digest milk proteins within the infant's stomach, possibly even to a larger extent than the infant's own proteases. As the neonate has relatively low digestive capacity, the activity of milk proteases in the infant may provide important assistance to digesting milk proteins. The coordinated release of these encrypted sequences is accomplished by selective proteolytic action provided by an array of native milk proteases and infant-produced enzymes. The task for scientists is now to discover the selective advantages of this protein-protease-based peptide release system. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  17. Radioisotope-enzymes and cancer study

    International Nuclear Information System (INIS)

    Luyen, T. van

    2008-01-01

    Cancer is a pathological sign, when the abnormal cells appear in certain human tissues or organs. These cells can reproduce beyond the control of normal biological protection mechanism. Because they reproduce very fast, the metabolic process is accelerated, which causes the extreme need for more energy, substrate and catalyzing enzymes. Based on these needs, we can control the metabolic process by: Stopping supplying the energy. Stopping supplying the substrate and the materials to build up the cell's structure. Stopping operating catalysis by breaking out the enzyme's structure. Destroying the tumor cell by extra agents such as radiations and chemicals. All of these methods have been studied for a long time, which costs too much money, time and labor. Although we succeeded in some ways, the results are still not satisfactory. There are many reasons for this situation but the main one is the lack of information to understand all the processes taking place in the cell and our body. However, as far as we studied, we would like to propose the method to break the structure of the enzyme by nuclear decay process. (author)

  18. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 18, Revision 2 (FGE.18Rev2): Aliphatic, alicyclic and aromatic saturated and unsaturated tertiary alcohols, aromatic tertiary alcohols and their esters from

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 32 flavouring substances in the Flavouring Group Evaluation 18, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the sub......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 32 flavouring substances in the Flavouring Group Evaluation 18, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. None...... of the substances were considered to have genotoxic potential. The substances were evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity......, the specifications for the materials of commerce have also been considered and for six substances information is lacking....

  19. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 08, Revision 5 (FGE.08Rev5): Aliphatic and alicyclic mono-, di-, tri-, and polysulphides with or without additional oxygenated functional groups from chemical

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 80 flavouring substances in the Flavouring Group Evaluation 08, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. Since the publi......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 80 flavouring substances in the Flavouring Group Evaluation 08, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. Since...... approach that integrates information on the structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel concluded that 59 substances do not give rise to safety concerns at their levels of dietary intake, estimated...... substances, the specifications for the materials of commerce have also been considered and for three substances, evaluated through the Procedure, information on the specifications is lacking....

  20. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 8, Revision 3 (FGE.08Rev3): Aliphatic and alicyclic mono-, di-, tri-, and polysulphides with or without additional oxygenated functional groups from chemical

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 70 flavouring substances in the Flavouring Group Evaluation 08, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. For the substan......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 70 flavouring substances in the Flavouring Group Evaluation 08, Revision 3, using the Procedure in Commission Regulation (EC) No 1565......-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel concluded that 48 substances do not give rise to safety concerns at their levels of dietary intake, estimated on the basis of the MSDI approach. For the remaining fourteen......, the specifications for the materials of commerce have also been considered and for eightteen substances information on specifications is lacking....

  1. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific O pinion Flavouring Group Evaluation 23, Revision 4 (FGE.23Rev4): Aliphatic, alicyclic and aromatic ethers including anisole derivatives from chemical groups 15, 16, 22, 26 and 30

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 21 flavouring substances in the Flavouring Group Evaluation 23, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision i...... also been considered. Specifications including complete purity criteria and identity for the materials of commerce have been provided for all 21 candidate substances. © European Food Safety Authority, 2013......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 21 flavouring substances in the Flavouring Group Evaluation 23, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision...

  2. Determination of histamine in Iranian cheese using enzyme-linked ...

    African Journals Online (AJOL)

    john

    enzyme-linked immunosorbent assay (ELISA) method. Mojtaba ... Histamine is a simple chemical substance created during processing of the amine acid histidine. Histamine is also an .... Institute of environment Health and Forensic. Sciences ...

  3. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 13, Revision 2 (FGE.13 Rev2) Furfuryl and furan derivatives with and without additional side-chain substituents and heteroatoms from chemical group 14

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 27 flavouring substances in the Flavouring Group Evaluation 13, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. Three...... of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the materials of commerce have been provided for all 24 flavouring substances evaluated through the Procedure....

  4. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 21, Revision 2 (FGE.21Rev2): Thiazoles, thiophene, thiazoline and thienyl derivatives from chemical group 29. Miscellaneous substances from chemical group 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 56 flavouring substances in the Flavouring Group Evaluation 21, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. Seven...... of commerce have also been considered. For two substances are an identity test lacking and for one has the stereoisomeric composition to be specified....

  5. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 216, Revision 1 (FGE.216Rev1). Consideration of genotoxic potential for α,β-unsaturated 2-Phenyl -2-Alkenals from Subgroup 3.3 of FGE.19

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Lund, Pia

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the genotoxic potential of five flavouring substances from subgroup 3.3 of FGE.19. In the Flavouring Group Evaluation 216 (FGE.216) additional genotoxicity...... of animals treated with 2-phenylcrotonaldehyde. Moreover, since the substance was genotoxic only without metabolic activation, it appears necessary to prove the absence of genotoxic effect locally in the gastro intestinal system using the Comet assay....

  6. Digestive enzymes of some earthworms.

    Science.gov (United States)

    Mishra, P C; Dash, M C

    1980-10-15

    4 species of tropical earthworms differed with regard to enzyme activity. The maximum activity of protease and of cellulase occurred in the posterior region of the gut of the earthworms. On the average Octochaetona surensis shows maximum activity and Drawida calebi shows minimum activity for all the enzymes studied.

  7. Hydrolytic enzyme activity enhanced by Barium supplementation

    Directory of Open Access Journals (Sweden)

    Camilo Muñoz

    2016-10-01

    Full Text Available Hydrolysis of polymers is a first and often limiting step during the degradation of plant residues. Plant biomass is generally a major component of waste residues and a major renewable resource to obtain a variety of secondary products including biofuels. Improving the performance of enzymatic hydrolysis of plant material with minimum costs and limiting the use of additional microbial biomass or hydrolytic enzymes directly influences competitiveness of these green biotechnological processes. In this study, we cloned and expressed a cellulase and two esterases recovered from environmental thermophilic soil bacterial communities and characterize their optimum activity conditions including the effect of several metal ions. Results showed that supplementing these hydrolytic reactions with Barium increases the activity of these extracellular hydrolytic enzymes. This observation represents a simple but major improvement to enhance the efficiency and competitiveness of this process within an increasingly important biotechnological sector.

  8. Photoreactivating enzyme from Escherichia coli

    International Nuclear Information System (INIS)

    Snapka, R.M.; Fuselier, C.O.

    1977-01-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm. (author)

  9. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  10. Photoreactivating enzyme from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Snapka, R M; Fuselier, C O [California Univ., Irvine (USA)

    1977-05-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm.

  11. Laccase Enzymes in Inocula Pleurotus spp

    Directory of Open Access Journals (Sweden)

    Nora García-Oduardo

    2017-01-01

    Full Text Available The cultivation of edible and medicinal mushrooms Pleurotus has been aimed at promoting alternative management for agricultural products. This basidiomicete has been the subject of numerous studies because of its fruiting body constitutes a food, being a producer of enzymes with industrial interest and for its ability of biotransformation of lignocellulosic substrates. Pleurotus inocula in the established technology for growing edible and medicinal mushrooms in the CEBI Research- Production Plant were performed using sorghum or wheat. However, it is possible to expand the possibilities with other substrates. In this paper, the results of laccase enzymes production in inocula prepared with sorghum, corn and coffee pulp with two strains Pleurotus ostreatus CCEBI 3021 and Pleurotus ostreatus CCEBI 3024 are presented. The period of preparation of seed reaches 15-21 days, the measurements of laccase activity were performed in periods of seven days. Extraction of crude enzyme was performed in aqueous phase, the determination of the laccase enzyme activity, using guaiacol as substrate. The results obtained in this work with studies in previous work using sorghum as inocula are compared. It is found that higher yields are obtained laccase in coffee pulp. This study contributes to the theoretical knowledge and to provide alternatives for securing the production process of the plant.

  12. Enzymes in biogenesis of plant cell wall polysaccharides. Enzyme characterization using tracer techniques

    International Nuclear Information System (INIS)

    Dickinson, D.B.

    1975-01-01

    Enzymes and metabolic pathways, by which starch and cell wall polysaccharides are formed, were investigated in order to learn how these processes are regulated and to identify the enzymatic regulatory mechanisms involved. Germinating lily pollen was used for studies of cell wall formation, and pollen and maize endosperm for studies of starch biosynthesis. Hexokinase being the first step in conversion of hexoses to starch, wall polysaccharides and respiratory substrates, maize endosperm enzyme was assayed by its conversion of 14 C-hexose to 14 C-hexose-6-P, and rapid separation of the two labelled compounds on anion-exchange paper. This enzyme did not appear to be under tight regulation by feed-back inhibition or activation, nor to be severely inhibited by glucose-6-P or activated by citrate. ADP-glucose pyrophosphorylase and other pyrophosphorylases were assayed radiochemically with 14 C-glucose-1-P (forward direction) or 32-PPsub(i) (reverse direction). They showed that the maize endosperm enzyme was activated by the glycolytic intermediates fructose-6-P and 3-phosphoglycerate, and that low levels of the enzyme were present in the high sucrose-low starch mutant named shrunken-2. Under optimal in-vitro assay conditions, the pollen enzyme reacted four times faster than the observed in-vivo rate of starch accumulation. Biogenesis of plant cell wall polysaccharides requires the conversion of hexose phosphates to various sugar nucleotides and utilization of the latter by the appropriate polysaccharide synthetases. Lily pollen possesses a β-1,3-glucan synthetase which is activated up to six-fold by β-linked oligosaccharides. Hence, the in-vivo activity of this enzyme may be modulated by such effector molecules

  13. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT.

    Science.gov (United States)

    Rempel, Brian P; Price, Eric W; Phenix, Christopher P

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.

  14. [Automated analyzer of enzyme immunoassay].

    Science.gov (United States)

    Osawa, S

    1995-09-01

    Automated analyzers for enzyme immunoassay can be classified by several points of view: the kind of labeled antibodies or enzymes, detection methods, the number of tests per unit time, analytical time and speed per run. In practice, it is important for us consider the several points such as detection limits, the number of tests per unit time, analytical range, and precision. Most of the automated analyzers on the market can randomly access and measure samples. I will describe the recent advance of automated analyzers reviewing their labeling antibodies and enzymes, the detection methods, the number of test per unit time and analytical time and speed per test.

  15. Database of ligand-induced domain movements in enzymes

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-03-01

    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do

  16. Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass.

    Science.gov (United States)

    Manisha; Yadav, Sudesh Kumar

    2017-12-01

    Hydrolytic enzymes are indispensable tools in the production of various foodstuffs, drugs, and consumables owing to their applications in almost every industrial process nowadays. One of the foremost areas of interest involving the use of hydrolytic enzymes is in the transformation of lignocellulosic biomass into value added products. However, limitations of the processes due to inadequate enzyme activity and stability with a narrow range of pH and temperature optima often limit their effective usage. The innovative technologies, involving manipulation of enzyme activity and stability through mutagenesis, genetic engineering and metagenomics lead to a major leap in all the fields using hydrolytic enzymes. This article provides recent advancement towards the isolation and use of microbes for lignocellulosic biomass utilisation, microbes producing the hydrolytic enzymes, the modern age technologies used to manipulate and enhance the hydrolytic enzyme activity and the applications of such enzymes in value added products development from lignocellulosic biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Recent advances in enzyme extraction strategies: A comprehensive review.

    Science.gov (United States)

    Nadar, Shamraja S; Pawar, Rohini G; Rathod, Virendra K

    2017-08-01

    The increasing interest of industrial enzymes demands for development of new downstream strategies for maximizing enzyme recovery. The significant efforts have been focused on the development of newly adapted technologies to purify enzymes in catalytically active form. Recently, an aqueous two phase system (ATPS) is emerged as powerful tools for efficient extraction and purification of enzymes due to their versatility, lower cost, process integration capability and easy scale-up. The present review gives an overview of effect of parameters such as tie line length, pH, neutral salts, properties of polymer and salt involved in traditional polymer/polymer and polymer/salt ATPS for enzyme recovery. Further, advanced ATPS have been developed based on alcohols, surfactants, micellar compounds to avoid tedious recovery steps for getting desired enzyme. In order to improve the selectivity and efficiency of ATPS, recent approaches of conventional ATPS combined with different techniques like affinity ligands, ionic liquids, thermoseparating polymers and microfluidic device based ATPS have been reviewed. Moreover, three phase partitioning is also highlighted for enzymes enrichment as a blooming technology for efficiently integrated bioseparation techniques. At the end, it includes an overview of CLEAs technology and organic-inorganic nanoflowers preparation as novel strategies for simultaneous extraction, purification and immobilization of enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Coproduction of detergent compatible bacterial enzymes and stain removal evaluation.

    Science.gov (United States)

    Niyonzima, Francois N; More, Sunil S

    2015-10-01

    Most of the detergents that are presently produced contain the detergent compatible enzymes to improve and accelerate the washing performance by removing tough stains. The process is environment friendly as the use of enzymes in the detergent formulation reduces the utilization of toxic detergent constituents. The current trend is to use the detergent compatible enzymes that are active at low and ambient temperature in order to save energy and maintain fabric quality. As the detergent compatible bacterial enzymes are used together in the detergent formulation, it is important to co-produce the detergent enzymes in a single fermentation medium as the enzyme stability is assured, and production cost gets reduced enormously. The review reports on the production, purification, characterization and application of detergent compatible amylases, lipases, and proteases are available. However, there is no specific review or minireview on the concomitant production of detergent compatible amylases, lipases, and proteases. In this minireview, the coproduction of detergent compatible enzymes by bacterial species, enzyme stability towards detergents and detergent components, and stain release analysis were discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  20. GRE Enzymes for Vector Analysis

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme data that were collected during the 2004-2006 EMAP-GRE program. These data were then used by Moorhead et al (2016) in their ecoenzyme vector...

  1. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  2. DGAT enzymes and triacylglycerol biosynthesis

    OpenAIRE

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, ...

  3. PRELIMINARY ENVIRONMENTAL, HEALTH AND SAFETY RISK ASSESSMENT ON THE INTEGRATION OF A PROCESS UTILIZING LOW-ENERGY SOLVENTS FOR CARBON DIOXIDE CAPTURE ENABLED BY A COMBINATION OF ENZYMES AND VACUUM REGENERATION WITH A SUBCRITICAL PC POWER PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, David; Vidal, Rafael; Russell, Tania; Babcock, Doosan; Freeman, Charles; Bearden, Mark; Whyatt, Greg; Liu, Kun; Frimpong, Reynolds; Lu, Kunlei; Salmon, Sonja; House, Alan; Yarborough, Erin

    2014-12-31

    The results of the preliminary environmental, health and safety (EH&S) risk assessment for an enzyme-activated potassium carbonate (K2CO3) solution post-combustion CO2 capture (PCC) plant, integrated with a subcritical pulverized coal (PC) power plant, are presented. The expected emissions during normal steady-state operation have been estimated utilizing models of the PCC plant developed in AspenTech’s AspenPlus® software, bench scale test results from the University of Kentucky, and industrial experience of emission results from a slipstream PCC plant utilizing amine based solvents. A review of all potential emission species and their sources was undertaken that identified two credible emission sources, the absorber off-gas that is vented to atmosphere via a stack and the waste removed from the PCC plant in the centrifuge used to reclaim enzyme and solvent. The conditions and compositions of the emissions were calculated and the potential EH&S effects were considered as well as legislative compliance requirements. Potential mitigation methods for emissions during normal operation have been proposed and solutions to mitigate uncontrolled releases of species have been considered. The potential emissions were found to pose no significant EH&S concerns and were compliant with the Federal legislation reviewed. The limitations in predicting full scale plant performance from bench scale tests have been noted and further work on a larger scale test unit is recommended to reduce the level of uncertainty.

  4. de novo computational enzyme design.

    Science.gov (United States)

    Zanghellini, Alexandre

    2014-10-01

    Recent advances in systems and synthetic biology as well as metabolic engineering are poised to transform industrial biotechnology by allowing us to design cell factories for the sustainable production of valuable fuels and chemicals. To deliver on their promises, such cell factories, as much as their brick-and-mortar counterparts, will require appropriate catalysts, especially for classes of reactions that are not known to be catalyzed by enzymes in natural organisms. A recently developed methodology, de novo computational enzyme design can be used to create enzymes catalyzing novel reactions. Here we review the different classes of chemical reactions for which active protein catalysts have been designed as well as the results of detailed biochemical and structural characterization studies. We also discuss how combining de novo computational enzyme design with more traditional protein engineering techniques can alleviate the shortcomings of state-of-the-art computational design techniques and create novel enzymes with catalytic proficiencies on par with natural enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  6. Little enzyme; Shoryo no tobun ga koso wo kappatsuka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-05

    It was discovered that the enzymatic heat-resistance increased by the addition of the trehalose in which the researcher of Institute of Physical and Chemical Research (it is given) is one of the disaccharides to the enzyme process. By this, it becomes possible that enzyme reaction is more promoted under the high temperature. They obtained this idea, because the yeast formed the trehalose over the room temperature for the protection of self it. In the example of some enzyme reaction, the about 20 times the speed has been obtained under 60 degrees C in comparison with the under ordinary temperature. Too the similar example has mainly been otherwise accepted. (translated by NEDO)

  7. Application of magnetic nanoparticles in smart enzyme immobilization.

    Science.gov (United States)

    Vaghari, Hamideh; Jafarizadeh-Malmiri, Hoda; Mohammadlou, Mojgan; Berenjian, Aydin; Anarjan, Navideh; Jafari, Nahideh; Nasiri, Shahin

    2016-02-01

    Immobilization of enzymes enhances their properties for efficient utilization in industrial processes. Magnetic nanoparticles, due to their high surface area, large surface-to-volume ratio and easy separation under external magnetic fields, are highly valued. Significant progress has been made to develop new catalytic systems that are immobilized onto magnetic nanocarriers. This review provides an overview of recent developments in enzyme immobilization and stabilization protocols using this technology. The current applications of immobilized enzymes based on magnetic nanoparticles are summarized and future growth prospects are discussed. Recommendations are also given for areas of future research.

  8. Action of ionizing radiation on the carbohydrate metabolism enzymes

    International Nuclear Information System (INIS)

    Cherkasova, L.S.; Mironova, T.M.

    1976-01-01

    It follows from data reported in literature and those obtained in our laboratory that ionizing radiation does not drastically change the activity of enzymes of the carbohydrate metabolism in tissues of an animal organism. The data are reported on the effect of a whole-body single, fractionated or continuous irradiation of the enzymes of carbohydrate metabolism and the accompanying interrelated co-operative redistributions within the processes of aerobic and anaerobic glycolysis, and the pentose route of their conversion. The dependence of the postirradiation changes in the activity of enzymes on the neuroendocrine system response to irradiation has been demonstrated

  9. Evaluation of the efficiency of alternative enzyme production technologies

    DEFF Research Database (Denmark)

    Albæk, Mads Orla

    Enzymes are used in an increasing number of industries. The application of enzymes is extending into the production of lignocellulosic ethanol in processes that economically can compete with fossil fuels. Since lignocellulosic ethanol is based on renewable resources it will have a positive impact...... production of cellulases and hemi-cellulases. The aim of the thesiswas to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process...... of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative fermentation technologies for enzyme production were identified in the open literature. Their mass transfer capabilities and their energy efficiencies were...

  10. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT

    OpenAIRE

    Rempel, Brian P.; Price, Eric W.; Phenix, Christopher P.

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled sub...

  11. Production of lysosomal enzymes in plant-based expression systems

    OpenAIRE

    1996-01-01

    The invention relates to the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which ...

  12. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  13. Avaliação da celulase e pectinase como enzimas complementares, no processo de hidrólise-sacarificação do farelo de mandioca para produção de etanol Evaluation of the cellulase and pectinase by complementary enzymes in the process of hydrolysis-saccharification of cassava fibrous waste for alcohol production

    Directory of Open Access Journals (Sweden)

    Magali LEONEL

    1999-01-01

    Full Text Available Neste trabalho objetivou-se avaliar o uso de enzimas complementares no processo enzimático de hidrólise e sacarificação para a produção de etanol a partir do resíduo fibroso das fecularias. Os resultados obtidos demonstraram que 63,42% do amido foram hidrolisados no tratamento em que não se utilizaram enzimas complementares. No tratamento com as duas enzimas complementares foram hidrolisados 89,55%, no tratamento com celulase 65,42% e no tratamento com pectinase 88,73%. A prensagem do resíduo após o processo de hidrólise e sacarificação mostrou-se eficiente, ficando 10,43% do total de açúcares obtidos retidos no resíduo fibroso final. Portanto, o tratamento em que se utilizou a pectinase como enzima complementar na hidrólise foi o melhor. A celulase não apresentou efeito significativo no rendimento do processo.This work it was proposed to evaluate the use of complementary enzymes (cellulase and pectinase in the enzymatic process of hydrolysis-saccharification of the cassava fibrous waste for alcohol production. The results indicated that 63,42% of starch was hydrolyzed in the treatment without complementary enzymes, 89,55% in the treatment with the enzymes, 65,42% with the cellulase by complementary and 88,73% in the pectinase treatment. The pressing was efficacious for sugar recuperation and 10% of total sugar was retaining in the final fibrous residue. The pectinase was the better complementary enzyme enhance the yield.

  14. Rethinking fundamentals of enzyme action.

    Science.gov (United States)

    Northrop, D B

    1999-01-01

    Despite certain limitations, investigators continue to gainfully employ concepts rooted in steady-state kinetics in efforts to draw mechanistically relevant inferences about enzyme catalysis. By reconsidering steady-state enzyme kinetic behavior, this review develops ideas that allow one to arrive at the following new definitions: (a) V/K, the ratio of the maximal initial velocity divided by the Michaelis-Menten constant, is the apparent rate constant for the capture of substrate into enzyme complexes that are destined to yield product(s) at some later point in time; (b) the maximal velocity V is the apparent rate constant for the release of substrate from captured complexes in the form of free product(s); and (c) the Michaelis-Menten constant K is the ratio of the apparent rate constants for release and capture. The physiologic significance of V/K is also explored to illuminate aspects of antibiotic resistance, the concept of "perfection" in enzyme catalysis, and catalytic proficiency. The conceptual basis of congruent thermodynamic cycles is also considered in an attempt to achieve an unambiguous way for comparing an enzyme-catalyzed reaction with its uncatalyzed reference reaction. Such efforts promise a deeper understanding of the origins of catalytic power, as it relates to stabilization of the reactant ground state, stabilization of the transition state, and reciprocal stabilizations of ground and transition states.

  15. Applying neural networks as software sensors for enzyme engineering.

    Science.gov (United States)

    Linko, S; Zhu, Y H; Linko, P

    1999-04-01

    The on-line control of enzyme-production processes is difficult, owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables. For example, intelligent methods to predict the end point of fermentation could be of great economic value. Computer-assisted control based on artificial-neural-network models offers a novel solution in such situations. Well-trained feedforward-backpropagation neural networks can be used as software sensors in enzyme-process control; their performance can be affected by a number of factors.

  16. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 20, Revision 3 (FGE.20Rev3): Benzyl alcohols, benzaldehydes, a related acetal, benzoic acids, and related esters from chemical groups 23 and 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider in this revision 3 of Flavouring Group Evaluation 20, the SCF Opinion on benzoic acid. Furthermore information on stereoisomeric composition for two...... Regulation (EC) No 1565/2000. None of the substances were considered to have genotoxic potential. The substances were evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern...

  17. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015. Scientific Opinion on Flavouring Group Evaluation 78, Revision 2 (FGE.78Rev2): Consideration of aliphatic and alicyclic and aromatic hydrocarbons evaluated by JECFA (63rd meeting) structurally

    DEFF Research Database (Denmark)

    Nørby, Karin Kristiane; Beltoft, Vibe Meister

    evaluated through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The specifications for the materials of commerce are adequate for all substances. The Panel......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...

  18. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 23, Revision 3 (FGE.23Rev3): Aliphatic, alicyclic and aromatic ethers including anisole derivatives from chemical groups 15, 16, 22, 26 and 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 20 flavouring substances in the Flavouring Group Evaluation 23, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. None...... of the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Specifications including complete purity criteria and identity for the materials of commerce have been provided for all 20 candidate substances....

  19. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2016. Scientific opinion on Flavouring Group Evaluation 400 (FGE.400): 3-(1- ((3,5-dimethylisoxazol-4-yl)methyl)-1H-pyrazol-4-yl)-1-(3-hydroxybenzyl)imidazolidine-2,4-dione

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Nørby, Karin Kristiane

    modifier in specific categories of food. There is no safety concern with respect to genotoxicity. A 90-day dietary administration study in rats showed no adverse effects for doses up to 100 mg/kg body weight (bw) per day, providing an adequate margin of safety. Developmental toxicity was not observed...... for various foods in different food categories.......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) of EFSA was requested to deliver a scientific opinion on the implications for human health of the flavouring substance 3-(1-((3,5-dimethylisoxazol-4-yl)methyl)-1H-pyrazol-4-yl)-1-(3-hydroxybenzyl)imidazolidine-2...

  20. Subcellular localization of pituitary enzymes

    Science.gov (United States)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  1. Substrate mediated enzyme prodrug therapy

    DEFF Research Database (Denmark)

    Fejerskov, Betina; Jarlstad Olesen, Morten T; Zelikin, Alexander N

    2017-01-01

    Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug administra......Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug...

  2. Exquisite Enzyme-Fenton Biomimetic Catalysts for Hydroxyl Radical Production by Mimicking an Enzyme Cascade.

    Science.gov (United States)

    Zhang, Qi; Chen, Shuo; Wang, Hua; Yu, Hongtao

    2018-03-14

    Hydrogen peroxide (H 2 O 2 ) is a key reactant in the Fenton process. As a byproduct of enzymatic reaction, H 2 O 2 can be obtained via catalytical oxidation of glucose using glucose oxidase in the presence of O 2 . Another oxidation product (gluconic acid) can suitably adjust the microenvironmental pH contributing to the Fe 3+ /Fe 2+ cycle in the Fenton reaction. Enzymes are extremely efficient at catalyzing a variety of reactions with high catalytic activity, substrate specificity, and yields in living organisms. Inspired by the multiple functions of natural multienzyme systems, an exquisite nanozyme-modified α-FeOOH/porous carbon (PC) biomimetic catalyst constructed by in situ growth of glucose oxidase-mimicking Au nanoparticles and crystallization of adsorbed ferric ions within carboxyl into hierarchically PC is developed as an efficient enzyme-Fenton catalyst. The products (H 2 O 2 , ∼4.07 mmol·L -1 ) of the first enzymatic reaction are immediately used as substrates for the second Fenton-like reaction to generate the valuable • OH (∼96.84 μmol·L -1 ), thus mimicking an enzyme cascade pathway. α-FeOOH nanocrystals, attached by C-O-Fe bondings, are encapsulated into the mesoporous PC frameworks, facilitating the electron transfer between α-FeOOH and the PC support and greatly suppressing iron leaching. This study paves a new avenue for designing biomimetic enzyme-based Fenton catalysts mimicking a natural system for • OH production.

  3. The use of enzymes for beer brewing: Thermodynamic comparison on resource use

    International Nuclear Information System (INIS)

    Donkelaar, Laura H.G. van; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, Atze-Jan van der

    2016-01-01

    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process. The exergy efficiency of malting was 77%. The main exergy losses stem from the use of natural gas for kilning and from starch loss during germination. The exergy efficiency of the enzyme production process ranges between 20% and 42% depending on if the by-product was considered useful. The main exergy loss was due to high power requirement for fermentation. The total exergy input in the enzyme production process was 30 times the standard chemical exergy of the enzyme, which makes it exergetically expensive. Nevertheless, the total exergy input for the production of 100 kg beer was larger for the conventional process (441 MJ) than for the enzyme-assisted process (354 MJ). Moreover, beer produced using enzymes reduced the use of water, raw materials and natural gas by 7%, 14% and 78% respectively. Consequently, the exergy loss in the enzyme production process is compensated by the prevention of exergy loss in the total beer brewing process. - Highlights: • The exergetic production costs of enzymes are ±30 times their standard chemical exergy. • These costs of enzymes should be taken into account in exergy analysis. • Enzyme-assisted brewing is more exergy efficient than brewing with malted barley. • Enzyme-assisted brewing saves raw material, water and energy.

  4. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids) , 2016. Scientific Opinion on Flavouring Group Evaluation 90, Revision 1 (FGE.90Rev1): consideration of six substances evaluated by JECFA (68th meeting) structurally related to aliphatic, alicyclic and aromatic saturated and unsaturated tertiary alcohols, aromatic tertiary alcohols and their esters evaluated by EFSA in FGE.18Rev1 and FGE.75Rev1

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Nørby, Karin Kristiane

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of EFSA was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further evaluation is necessary...... refined exposure estimation and to judge whether a re-evaluation according to the Procedure is needed....

  5. Modelling Fungal Fermentations for Enzyme Production

    DEFF Research Database (Denmark)

    Albæk, Mads Orla; Gernaey, Krist; Hansen, Morten S.

    We have developed a process model of fungal fed-batch fermentations for enzyme production. In these processes, oxygen transfer rate is limiting and controls the substrate feeding rate. The model has been shown to describe cultivations of both Aspergillus oryzae and Trichoderma reesei strains in 550......L stirred tank pilot plant reactors well. For each strain, 8 biological parameters are needed as well as a correlation of viscosity, as viscosity has a major influence on oxygen transfer. The parameters were measured averages of at least 9 batches for each strain. The model is successfully able...... to cover a wide range of process conditions (0.3-2 vvm of aeration, 0.2-10.0 kW/m3 of specific agitation power input, and 0.1-1.3 barg head space pressure). Uncertainty and sensitivity analysis have shown that the uncertainty of the model is mainly due to difficulties surrounding the estimation...

  6. Upscaling of enzyme enhanced CO2 capture

    DEFF Research Database (Denmark)

    Gladis, Arne Berthold

    Fossil fuels are the backbone of the energy generation in the coming decades for USA, China, India and Europe, hence high greenhouse gas emissions are expected in future. Carbon capture and storage technology (CCS) is the only technology that can mitigate greenhouse gas emissions from fossil fuel...... the mass transfer of CO2 with slow-capturing but energetically favorable solvents can open up a variety of new process options for this technology. The ubiquitous enzyme carbonic anhydrase (CA), which enhances the mass transfer of CO2 in the lungs by catalyzing the reversible hydration of CO2, is one very...... enhanced CO2 capture technology by identifying the potentials and limitations in lab and in pilot scale and benchmarking the process against proven technologies. The main goal was to derive a realistic process model for technical size absorbers with a wide range of validity incorporating a mechanistic...

  7. Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase.

    Science.gov (United States)

    Muruganandam, Gopinath; Raasakka, Arne; Myllykoski, Matti; Kursula, Inari; Kursula, Petri

    2017-05-16

    Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5'-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). We employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering. We provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain.

  8. On the Structural Context and Identification of Enzyme Catalytic Residues

    Directory of Open Access Journals (Sweden)

    Yu-Tung Chien

    2013-01-01

    Full Text Available Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The results show that catalytic residues have distinct structural features and context. Their neighboring residues, whether sequence or structure neighbors within specific range, are usually structurally more rigid than those of noncatalytic residues. The structural context feature is combined with support vector machine to identify catalytic residues from enzyme structure. The prediction results are better or comparable to those of recent structure-based prediction methods.

  9. Research Applications of Proteolytic Enzymes in Molecular Biology

    Directory of Open Access Journals (Sweden)

    József Tőzsér

    2013-11-01

    Full Text Available Proteolytic enzymes (also termed peptidases, proteases and proteinases are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications require their use, including production of Klenow fragments, peptide synthesis, digestion of unwanted proteins during nucleic acid purification, cell culturing and tissue dissociation, preparation of recombinant antibody fragments for research, diagnostics and therapy, exploration of the structure-function relationships by structural studies, removal of affinity tags from fusion proteins in recombinant protein techniques, peptide sequencing and proteolytic digestion of proteins in proteomics. The aim of this paper is to review the molecular biological aspects of proteolytic enzymes and summarize their applications in the life sciences.

  10. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  11. Curious Cases of the Enzymes.

    Science.gov (United States)

    Ulusu, Nuriye Nuray

    2015-07-01

    Life as we know it heavily relies on biological catalysis, in fact, in a very nonromantic version of it, life could be considered as a series of chemical reactions, regulated by the guarding principles of thermodynamics. In ancient times, a beating heart was a good sign of vitality, however, to me, it is actually the presence of active enzymes that counts… Though we do not usually pay attention, the history of enzymology is as old as humanity itself, and dates back to the ancient times. This paper is dedicated to these early moments of this remarkable science that touched our lives in the past and will make life a lot more efficient for humanity in the future. There was almost always a delicate, fundamentally essential relationship between mankind and the enzymes. Challenged by a very alien and hostile Nature full of predators, prehistoric men soon discovered the medicinal properties of the plants, through trial and error. In fact, they accidently discovered the enzyme inhibitors and thus, in crude terms, kindled a sparkling area of research. These plant-derivatives that acted as enzyme inhibitors helped prehistoric men in their pursuit of survival and protection from predators; in hunting and fishing… Later in history, while the underlying purposes of survival and increasing the quality of life stayed intact, the ways and means of enzymology experienced a massive transformation, as the 'trial and error' methodology of the ancients is now replaced with rational scientific theories.

  12. Enzymes with activity toward Xyloglucan

    NARCIS (Netherlands)

    Vincken, J.P.

    2003-01-01

    Xyloglucans are plant cell wall polysaccharides, which belong to the hemicellulose class. Here the structural variations of xyloglucans will be reviewed. Subsequently, the anchoring of xyloglucan in the plant cell wall will be discussed. Enzymes involved in degradation or modification of xyloglucan

  13. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 30, Revision 1 (FGE.30Rev1): 4-Prop-1-enylphenol and 2-methoxy-4-(prop- 1enyl)phenyl 3-methylbutyrate from chemical group 17

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate two flavouring substances in the Flavouring Group Evaluation 30, Revision 1, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the su......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate two flavouring substances in the Flavouring Group Evaluation 30, Revision 1, using the Procedure in Commission Regulation (EC) No 1565/2000. None...... of the substances were considered to have genotoxic potential. The two substances were evaluated through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel...... concluded that the two substances [FL-no: 04.097, 09.894] do not give rise to safety concerns at their levels of dietary intake, estimated on the basis of the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been...

  14. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 08, Revision 4 (FGE.08Rev4): Aliphatic and alicyclic mono-, di-, tri-, and polysulphides with or without additional oxygenated functional groups from chemical

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 80 flavouring substances in the Flavouring Group Evaluation 08, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. Since the publi......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 80 flavouring substances in the Flavouring Group Evaluation 08, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. Since...... be estimated and accordingly the Panel concluded that the Procedure could not be applied to these four substances either. The remaining 71 substances were evaluated through a stepwise approach that integrates information on the structure-activity relationships, intake from current uses, toxicological threshold.......116, 12.120, 12.164, 12.167, 12.199, 15.007, 15.102 and 15.125 and 15.134], evaluated through the Procedure, no appropriate NOAEL was available and additional data are required. Besides the safety assessment of the flavouring substances, the specifications for the materials of commerce have also been...

  15. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2016 Scientific Opinion on Flavouring Group Evaluation 75, Revision 1 (FGE.75Rev1): Consideration of tetrahydrofuran derivatives evaluated by JECFA (63rd meeting) structurally related to tetrahydrofuran

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Nørby, Karin Kristiane

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) of the EFSA was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further evaluation is neces......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) of the EFSA was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further evaluation...... for anhydrolinalool oxide (5) [FL-no: 13.097]. The substances were evaluated through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The JECFA concluded all the 11...... with the JECFA conclusion ‘No safety concern at estimated level of intake as flavouring substances’ based on the maximised survey-derived daily intake (MSDI) approach. The specifications for the materials of commerce have also been considered and for all 11 substances, the information is adequate....

  16. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 06, Revision 3 (FGE.06Rev3): Straight- and branched-chain aliphatic unsaturated primary alcohols, aldehydes, carboxylic acids, and esters from chemical groups 1

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 50 flavouring substances in the Flavouring Group Evaluation 6, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the subs......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 50 flavouring substances in the Flavouring Group Evaluation 6, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. None...... of the substances were considered to have genotoxic potential. The substances were evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity...... of these flavouring substances, the specifications for the materials of commerce have also been considered. For one substance [FL-no: 09.938] an identity test is missing and for two substances [FL-no: 05.226 and 09.950] the range of the specific gravity is too wide. Additional, the stereoisomeric mixture has not been...

  17. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be safe...

  18. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    Science.gov (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The dynamic basis of energy transduction in enzymes.

    Science.gov (United States)

    Somogyi, B; Welch, G R; Damjanovich, S

    1984-09-06

    The most important idea underlying our treatment herein is the unity of the enzyme molecule and the medium. Appreciation of this relationship is vital, if enzymology is to graduate from its present reductionistic status to a more holistic posture. Enzymes are biological entities firstly, and isolated objects of physicochemical analysis secondly. Perhaps the most crucial 'biological lesson', particularly apropos of enzymes in intermediary metabolism, concerns the 'cytosociology' of enzyme action in vivo [94,128]. The natural habitat of many enzymes in the living cell is far different from that in bulk aqueous solution in vitro. In order to obtain a real grasp of the nature of enzyme function, one must ultimately couch enzymology in concepts emerging from contemporary cell biology [95]. Notwithstanding, analysis precedes synthesis; and one must needs begin with the individual enzyme molecule. The trenchant efforts of the physical chemist and the organic chemist have produced a wealth of information on the nature of the binding and catalytic events at the enzyme active site. While it is not yet possible to explain precisely the complete sequence of events in the catalytic process, nevertheless, the basic mechanisms by which enzymes effect catalysis (i.e., reduce activation energy) now seem apparent [81,129]. The new frontier is to be found, in exploring the dynamic role of the protein matrix [17]. Not only does the protein provide the 3-D scaffolding for active-site processes, but, more importantly, it serves as the local solvent for the bound chemical subsystem. Thus, the dynamical aspects of enzyme catalysis (for thermally based systems) must arise from the fluctuational properties of the protein molecule. This notion is the common denominator in all of the models in subsection IIC. It is the anisotropic nature of this fluctuational behavior, which would characterize the energy-transduction phenomenon leading to localized catalytic events at the active-site. In

  20. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes.

    Science.gov (United States)

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Lee, Jung-Kul

    2013-01-10

    Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes.

  1. From Protein Engineering to Immobilization: Promising Strategies for the Upgrade of Industrial Enzymes

    Science.gov (United States)

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Lee, Jung-Kul

    2013-01-01

    Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes. PMID:23306150

  2. Study of DNA reconstruction enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, M [Kyushu Univ., Fukuoka (Japan). Faculty of Science

    1976-12-01

    Description was made of the characteristics and mechanism of 3 reconstructive enzymes which received from M. luteus or E. coli or T4, and of which natures were clarified as reconstructive enzymes of DNA irradiated with ultraviolet rays. As characteristics, the site of breaking, reaction, molecular weight, electric charge in the neutrality and a specific adhesion to DNA irradiated with ultraviolet rays were mentioned. As to mutant of ultraviolet ray sensitivity, hereditary control mechanism of removal and reconstruction by endo-nuclease activation was described, and suggestion was referred to removal and reconstruction of cells of xedoderma pigmentosum which is a hereditary disease of human. Description was also made as to the mechanism of exonuclease activation which separates dimer selectively from irradiated DNA.

  3. Consumer attitudes to enzymes in food production

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Grunert, Klaus G.; Scholderer, Joachim

    2005-01-01

    The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in three...... European countries. Results show that consumers are most positive towards non-GM enzyme production methods. The enzyme production method is by far the most important factor for the formation of buying intentions compared to price and benefits. Results also show that environmental concern and attitudes...... to technological progress are the socio-political attitudes that have the highest predictive value regarding attitudes to enzyme production methods....

  4. Research progress of nanoparticles as enzyme mimetics

    Science.gov (United States)

    Hu, XiaoNa; Liu, JianBo; Hou, Shuai; Wen, Tao; Liu, WenQi; Zhang, Ke; He, WeiWei; Ji, YingLu; Ren, HongXuan; Wang, Qi; Wu, XiaoChun

    2011-10-01

    Natural enzymes as biological catalysts possess remarkable advantages, especially their highly efficient and selective catalysis under mild conditions. However, most natural enzymes are proteins, thus exhibiting an inherent low durability to harsh reaction conditions. Artificial enzyme mimetics have been pursued extensively to avoid this drawback. Quite recently, some inorganic nanoparticles (NPs) have been found to exhibit unique enzyme mimetics. In addition, their much higher stability overcomes the inherent disadvantage of natural enzymes. Furthermore, easy mass-production and low cost endow them more benefits. As a new member of artificial enzyme mimetics, they have received intense attention. In this review article, major progress in this field is summarized and future perspectives are highlighted.

  5. Potential and utilization of thermophiles and thermostable enzymes in biorefining

    Directory of Open Access Journals (Sweden)

    Karlsson Eva

    2007-03-01

    Full Text Available Abstract In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts.

  6. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  7. Immobilization of enzymes by radiation

    International Nuclear Information System (INIS)

    Kaetsu, I.; Kumakura, M.; Yoshida, M.; Asano, M.; Himei, M.; Tamura, M.; Hayashi, K.

    1979-01-01

    Immobilization of various enzymes was performed by radiation-induced polymerization of glass-forming monomers at low temperatures. Alpha-amylase and glucoamylase were effectively immobilized in hydrophilic polymer carrier such as poly(2-hydroxyethyl methacrylate) and also in rather hydrophobic carrier such as poly(tetraethylene-glycol diacrylate). Immobilized human hemoglobin underwent the reversible oxygenation concomitantly with change of oxygen concentration outside of the matrices. (author)

  8. Lignin-degrading enzyme activities.

    Science.gov (United States)

    Chen, Yi-ru; Sarkanen, Simo; Wang, Yun-Yan

    2012-01-01

    Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

  9. Self-powered enzyme micropumps

    Science.gov (United States)

    Sengupta, Samudra; Patra, Debabrata; Ortiz-Rivera, Isamar; Agrawal, Arjun; Shklyaev, Sergey; Dey, Krishna K.; Córdova-Figueroa, Ubaldo; Mallouk, Thomas E.; Sen, Ayusman

    2014-05-01

    Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.

  10. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  11. Design of novel nano-carriers for multi-enzyme co-localization

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Feng [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    The main objective of this project is to design novel nano-structured carriers and strategies to co-localize multiple enzymes to mimic the functionalities of MECs. In order to achieve this goal, distinct approaches for enzyme co-localization were developed and evaluated. Specifically, we investigated different polymeric nano-carriers, both flexible and rigid, as platforms for co-localization, as well as distinct enzyme attachment techniques using model enzyme systems using glucose oxidase and horseradish peroxidase to control the spatial arrangement of the multiple enzymes on the nanocarriers. This platform technology can be potentially used to co-localize various enzyme systems and its broad applicability will be tested using the sclareol biosynthesis process to control the formation of products through the formation of MECs with multiple enzymes NgCPS and sSsSS to regulate the pathway of reactive intermediate to enhance the final product conversion rate.

  12. Halophilic Bacteria as a Source of Novel Hydrolytic Enzymes

    Science.gov (United States)

    de Lourdes Moreno, María; Pérez, Dolores; García, María Teresa; Mellado, Encarnación

    2013-01-01

    Hydrolases constitute a class of enzymes widely distributed in nature from bacteria to higher eukaryotes. The halotolerance of many enzymes derived from halophilic bacteria can be exploited wherever enzymatic transformations are required to function under physical and chemical conditions, such as in the presence of organic solvents and extremes in temperature and salt content. In recent years, different screening programs have been performed in saline habitats in order to isolate and characterize novel enzymatic activities with different properties to those of conventional enzymes. Several halophilic hydrolases have been described, including amylases, lipases and proteases, and then used for biotechnological applications. Moreover, the discovery of biopolymer-degrading enzymes offers a new solution for the treatment of oilfield waste, where high temperature and salinity are typically found, while providing valuable information about heterotrophic processes in saline environments. In this work, we describe the results obtained in different screening programs specially focused on the diversity of halophiles showing hydrolytic activities in saline and hypersaline habitats, including the description of enzymes with special biochemical properties. The intracellular lipolytic enzyme LipBL, produced by the moderately halophilic bacterium Marinobacter lipolyticus, showed advantages over other lipases, being an enzyme active over a wide range of pH values and temperatures. The immobilized LipBL derivatives obtained and tested in regio- and enantioselective reactions, showed an excellent behavior in the production of free polyunsaturated fatty acids (PUFAs). On the other hand, the extremely halophilic bacterium, Salicola marasensis sp. IC10 showing lipase and protease activities, was studied for its ability to produce promising enzymes in terms of its resistance to temperature and salinity. PMID:25371331

  13. Halophilic Bacteria as a Source of Novel Hydrolytic Enzymes

    Directory of Open Access Journals (Sweden)

    Encarnación Mellado

    2013-01-01

    Full Text Available Hydrolases constitute a class of enzymes widely distributed in nature from bacteria to higher eukaryotes. The halotolerance of many enzymes derived from halophilic bacteria can be exploited wherever enzymatic transformations are required to function under physical and chemical conditions, such as in the presence of organic solvents and extremes in temperature and salt content. In recent years, different screening programs have been performed in saline habitats in order to isolate and characterize novel enzymatic activities with different properties to those of conventional enzymes. Several halophilic hydrolases have been described, including amylases, lipases and proteases, and then used for biotechnological applications. Moreover, the discovery of biopolymer-degrading enzymes offers a new solution for the treatment of oilfield waste, where high temperature and salinity are typically found, while providing valuable information about heterotrophic processes in saline environments. In this work, we describe the results obtained in different screening programs specially focused on the diversity of halophiles showing hydrolytic activities in saline and hypersaline habitats, including the description of enzymes with special biochemical properties. The intracellular lipolytic enzyme LipBL, produced by the moderately halophilic bacterium Marinobacter lipolyticus, showed advantages over other lipases, being an enzyme active over a wide range of pH values and temperatures. The immobilized LipBL derivatives obtained and tested in regio- and enantioselective reactions, showed an excellent behavior in the production of free polyunsaturated fatty acids (PUFAs. On the other hand, the extremely halophilic bacterium, Salicola marasensis sp. IC10 showing lipase and protease activities, was studied for its ability to produce promising enzymes in terms of its resistance to temperature and salinity.

  14. The complexities of hydrolytic enzymes from the termite digestive system.

    Science.gov (United States)

    Saadeddin, Anas

    2014-06-01

    The main challenge in second generation bioethanol production is the efficient breakdown of cellulose to sugar monomers (hydrolysis). Due to the recalcitrant character of cellulose, feedstock pretreatment and adapted hydrolysis steps are needed to obtain fermentable sugar monomers. The conventional industrial production process of second-generation bioethanol from biomass comprises several steps: thermochemical pretreatment, enzymatic hydrolysis and sugar fermentation. This process is undergoing continuous optimization in order to increase the bioethanol yield and reduce the economic cost. Therefore, the discovery of new enzymes with high lignocellulytic activity or new strategies is extremely important. In nature, wood-feeding termites have developed a sophisticated and efficient cellulose degrading system in terms of the rate and extent of cellulose hydrolysis and exploitation. This system, which represents a model for digestive symbiosis has attracted the attention of biofuel researchers. This review describes the termite digestive system, gut symbionts, termite enzyme resources, in vitro studies of isolated enzymes and lignin degradation in termites.

  15. Statistical Mechanics Analysis of ATP Binding to a Multisubunit Enzyme

    International Nuclear Information System (INIS)

    Zhang Yun-Xin

    2014-01-01

    Due to inter-subunit communication, multisubunit enzymes usually hydrolyze ATP in a concerted fashion. However, so far the principle of this process remains poorly understood. In this study, from the viewpoint of statistical mechanics, a simple model is presented. In this model, we assume that the binding of ATP will change the potential of the corresponding enzyme subunit, and the degree of this change depends on the state of its adjacent subunits. The probability of enzyme in a given state satisfies the Boltzmann's distribution. Although it looks much simple, this model can fit the recent experimental data of chaperonin TRiC/CCT well. From this model, the dominant state of TRiC/CCT can be obtained. This study provide a new way to understand biophysical processe by statistical mechanics analysis. (interdisciplinary physics and related areas of science and technology)

  16. Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes.

    Science.gov (United States)

    Bhattacharya, Abhishek; Pletschke, Brett I

    2014-01-01

    The enzymatic conversion of lignocellulosic biomass into biofuels has been identified as an excellent strategy to generate clean energy. However, the current process is cost-intensive as an effective immobilization approach to reuse the enzyme(s) has been a major challenge. The present study introduces the concept and application of novel magnetic cross-linked enzyme aggregates (mag-CLEAs). Both mag-CLEAs and calcium-mag-CLEAs (Ca-mag-CLEAs) exhibited a 1.35 fold higher xylanase activity compared to the free enzyme and retained more than 80.0% and 90.0% activity, respectively, after 136h of incubation at 50°C, compared to 50% activity retained by CLEAs. A 7.4 and 9.0 fold higher sugar release from lime-pretreated and NH4OH pre-treated sugar bagasse, respectively, was achieved with Ca-mag-CLEAs compared to the free enzymes. The present study promotes the successful application of mag-CLEAs and Ca-mag-CLEAs as carrier free immobilized enzymes for the effective hydrolysis of lignocellulolytic biomass and associated biofuel feedstocks. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. 2008 GRC Iron Sulfur Enzymes-Conference to be held June 8-13, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Stephen [Univ. of California, Davis, CA (United States); Gray, Nancy Ryan [Gordon Research Conferences, West Kingston, RI (United States)

    2009-01-01

    Iron-sulfur proteins are among the most common and ancient enzymes and electron-transfer agents in nature. They play key roles in photosynthesis, respiration, and the metabolism of small molecules such as H2, CO, and N2. The Iron Sulfur Enzyme Gordon Research Conference evolved from an earlier GRC on Nitrogen Fixation that began in 1994. The scope of the current meeting has broadened to include all enzymes or metalloproteins in which Fe-S bonds play a key role. This year's meeting will focus on the biosynthesis of Fe-S clusters, as well as the structure and mechanism of key Fe-S enzymes such as hydrogenase, nitrogenase and its homologues, radical SAM enzymes, and aconitase-related enzymes. Recent progress on the role of Fe-S enzymes in health, disease, DNA/RNA-processing, and alternative bio-energy systems will also be highlighted. This conference will assemble a broad, diverse, and international group of biologists and chemists who are investigating fundamental issues related to Fe-S enzymes, on atomic, molecular, organism, and environmental scales. The topics to be addressed will include: Biosynthesis & Genomics of Fe-S Enzymes; Fundamental Fe-S Chemistry; Hydrogen and Fe-S Enzymes; Nitrogenase & Homologous Fe-S Enzymes; Fe-S Enzymes in Health & Disease; Radical SAM and Aconitase-Related Fe-S Enzymes; Fe-S Enzymes and Synthetic Analogues in BioEnergy; and Fe-S Enzymes in Geochemistry and the Origin of Life.

  18. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...

  19. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    dimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity. [Trehan K S ... The present study has been carried on acid phosphatase .... enzyme activity over mid parent value (table 3, col. 13),.

  20. Castor Oil Transesterification Catalysed by Liquid Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    In the present work, biodiesel production by reaction of non-edible castor oil with methanol under enzymatic catalysis is investigated. Two liquid enzymes were tested: Eversa Transform and Resinase HT. Reactions were performed at 35 °C and with a molar ratio of methanol to oil of 6:1. The reaction...... time was 8 hours. Stepwise addition of methanol was necessary to avoid enzyme inhibition by methanol. In order to minimize the enzyme costs, the influence of enzyme activity loss during reuse of both enzymes was evaluated under two distinct conditions. In the former, the enzymes were recovered...... and fully reused; in the latter, a mixture of 50 % reused and 50 % fresh enzymes was tested. In the case of total reuse after three cycles, both enzymes achieved only low conversions. The biodiesel content in the oil-phase using Eversa Transform was 94.21 % for the first cycle, 68.39 % in the second, and 33...

  1. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  2. A new generation of versatile chromogenic substrates for high-throughput analysis of biomass-degrading enzymes

    DEFF Research Database (Denmark)

    Kracun, Stjepan Kresimir; Schückel, Julia; Westereng, Bjørge

    2015-01-01

    of carbohydrate-acting enzymes to be putatively identified. However, there is a paucity of methods for rapidly screening the biochemical activities of these enzymes, and this is a serious bottleneck in the development of enzyme-reliant bio-refining processes. Results: We have developed a new generation of multi...

  3. Biotechnological production of vanillin using immobilized enzymes.

    Science.gov (United States)

    Furuya, Toshiki; Kuroiwa, Mari; Kino, Kuniki

    2017-02-10

    Vanillin is an important and popular plant flavor, but the amount of this compound available from plant sources is very limited. Biotechnological methods have high potential for vanillin production as an alternative to extraction from plant sources. Here, we report a new approach using immobilized enzymes for the production of vanillin. The recently discovered oxygenase Cso2 has coenzyme-independent catalytic activity for the conversion of isoeugenol and 4-vinylguaiacol to vanillin. Immobilization of Cso2 on Sepabeads EC-EA anion-exchange carrier conferred enhanced operational stability enabling repetitive use. This immobilized Cso2 catalyst allowed 6.8mg yield of vanillin from isoeugenol through ten reaction cycles at a 1mL scale. The coenzyme-independent decarboxylase Fdc, which has catalytic activity for the conversion of ferulic acid to 4-vinylguaiacol, was also immobilized on Sepabeads EC-EA. We demonstrated that the immobilized Fdc and Cso2 enabled the cascade synthesis of vanillin from ferulic acid via 4-vinylguaiacol with repetitive use of the catalysts. This study is the first example of biotechnological production of vanillin using immobilized enzymes, a process that provides new possibilities for vanillin production. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes

    Science.gov (United States)

    2017-01-01

    Lanthipeptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) that display a wide variety of biological activities, from antimicrobial to antiallodynic. Lanthipeptides that display antimicrobial activity are called lantibiotics. The post-translational modification reactions of lanthipeptides include dehydration of Ser and Thr residues to dehydroalanine and dehydrobutyrine, a transformation that is carried out in three unique ways in different classes of lanthipeptides. In a cyclization process, Cys residues then attack the dehydrated residues to generate the lanthionine and methyllanthionine thioether cross-linked amino acids from which lanthipeptides derive their name. The resulting polycyclic peptides have constrained conformations that confer their biological activities. After installation of the characteristic thioether cross-links, tailoring enzymes introduce additional post-translational modifications that are unique to each lanthipeptide and that fine-tune their activities and/or stability. This review focuses on studies published over the past decade that have provided much insight into the mechanisms of the enzymes that carry out the post-translational modifications. PMID:28135077

  5. Zymography methods for visualizing hydrolytic enzymes

    OpenAIRE

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E.; Opdenakker, Ghislain

    2013-01-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful., but often misinterpreted, tool. yielding information on potential. hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tis...

  6. Biomedical Applications of Enzymes From Marine Actinobacteria.

    Science.gov (United States)

    Kamala, K; Sivaperumal, P

    Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.

  7. Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard; Lindedam, Jane; Jeppesen, Martin D.

    2015-01-01

    Recycling of enzymes in production of lignocellulosic bioethanol has been tried for more than 30 years. So far, the successes have been few and the experiments have been carried out at conditions far from those in an industrially feasible process. Here we have tested continuous enzyme recycling a...... broth also opens up the possibility of lowering the dry matter content in hydrolysis and fermentation while still maintaining high ethanol concentrations....... at demonstration scale using industrial process conditions (high dry matter content and low enzyme dosage) for a period of eight days. The experiment was performed at the Inbicon demonstration plant (Kalundborg, Denmark) capable of converting four tonnes of wheat straw per hour. 20% of the fermentation broth...... was recycled to the hydrolysis reactor while enzyme dosage was reduced by 5%. The results demonstrate that recycling enzymes by this method can reduce overall enzyme consumption and may also increase the ethanol concentrations in the fermentation broth. Our results further show that recycling fermentation...

  8. Immobilization of Enzymes in Polymer Supports.

    Science.gov (United States)

    Conlon, Hugh D.; Walt, David R.

    1986-01-01

    Two experiments in which an enzyme is immobilized onto a polymeric support are described. The experiments (which also demonstrate two different polymer preparations) involve: (1) entrapping an enzyme in an acrylamide polymer; and (2) reacting the amino groups on the enzyme's (esterase) lysine residues with an activated polymer. (JN)

  9. Purification and characterization of extracellular amylolytic enzyme ...

    African Journals Online (AJOL)

    In the present study, the amylase enzyme producing potential of four different Aspergillus species was analyzed. The extracted amylase enzyme was purified by diethyl amino ethyl (DEAE) cellulose and Sephadex G-50 column chromatography and the enzyme activity was measured by using synthetic substrate starch.

  10. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  11. Yield of ethanol from enzyme-hydrolyzed yam (Dioscorea rotundata ...

    African Journals Online (AJOL)

    Fresh whole yam tubers and cocoyam corms were separately processed into flours by washing, peeling, blanching, slicing,drying and milling. The flours were enzyme-hydrolyzed by mixing 500g of flour with 2Lof water followed by treatment with a combination of bacterial alpha amylase, limit dextrinase and fungal alpha ...

  12. Probe substrate and enzyme source-dependent inhibition of UDP ...

    African Journals Online (AJOL)

    Background: Drug-metabolizing enzymes (DMEs) inhibition based drug-drug interaction and herb-drug interaction severely challenge the R&D process of drugs or herbal ingredients. Objective: To evaluate the inhibition potential of wogonin (an important flavonoid isolated from the root of Scutellaria baicalensis) towards ...

  13. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  15. Recycle of enzymes and substrate following enzymatic hydrolysis of steam-pretreated aspenwood

    Energy Technology Data Exchange (ETDEWEB)

    Mes-Hartree, M.; Hogan, C.M.; Saddler, J.N.

    1987-09-01

    The commercial production of chemicals and fuels from lignocellulosic residues by enzymatic means still requires considerable research on both the technical and economic aspects. Two technical problems that have been identified as requiring further research are the recycle of the enzymes used in hydrolysis and the reuse of the recalcitrant cellulose remaining after incomplete hydrolysis. Enzyme recycle is required to lower the cost of the enzymes, while the reuse of the spent cellulose will lower the feedstock cost. The conversion process studied was a combined enzymatic hydrolysis and fermentation (CHF) procedure that utilized the cellulolytic enzymes derived from the fungus Trichoderma harzianum E58 and the yeast Saccharomyces cerevisiae. The rate and extent of hydrolysis and ethanol production was monitored as was the activity and hydrolytic potential of the enzymes remaining in the filtrate after the hydrolysis period. When a commercial cellulose was used as the substrate for a routine 2-day CHF process, 60% of the original filter paper activity could be recovered. When steam-treated, water-extracted aspenwood was used as the substrate, only 13% of the original filter paper activity was detected after a similar procedure. The combination of 60% spent enzymes with 40% fresh enzymes resulted in the production of 30% less reducing sugars than the original enzyme mixture. Since 100% hydrolysis of the cellulose portion is seldom accomplished in an enzymatic hydrolysis process, the residual cellulose was used as a substrate for the growth of T. harzianum E58 and production of cellulolytic enzymes. The residue remaining after the CHF process was used as a substrate for the production of the cellulolytic enzymes. The production of enzymes from the residue of the Solka Floc hydrolysis was greater than the production of enzymes from the original Solka Floc. (Refs. 14).

  16. EFSA Panel on food contact materials, enzymes, flavourings and processing aids (CEF); Scientific Opinion on Flavouring Group Evaluation 23, Revision 2 (FGE.23Rev2): Aliphatic, alicyclic and aromatic ethers including anisole derivatives from chemical groups 15, 16, 22, 26 and 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The European Food Safety Authority (EFSA) asked the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (the Panel) to provide scientific advice to the Commission on the implications for human health of chemically defined flavouring substances used in or on foodstuffs...... in the Member States. In particular, the Panel was requested to evaluate 19 flavouring substances in the Flavouring Group Evaluation 23, Revision 2 (FGE.23Rev2), using the Procedure as referred to in the Commission Regulation (EC) No 1565/2000. These 19 flavouring substances belong to chemical groups 15, 16, 22......-no: 03.022] Industry has informed that it occurs as a mixture of E- & Z-isomers, however, the composition of the mixture has to be specified. Two of the flavouring substances are classified into structural class I, seven are classified into structural class II and 10 are classified into structural class...

  17. EFSA Panel on Food Contact Materials , Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 224 (FGE.224): Consideration of genotoxic potential for two α,β - unsaturated thiophenes from subgroup 5.2 of FGE.19 by EFSA

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Lund, Pia

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the genotoxic potential of two flavouring substances from subgroup 5.2 of FGE.19 in the Flavouring Group Evaluation 224 (FGE.224). The Flavour Industry has...... provided additional genotoxicity studies for one of the two substances in FGE.224, namely 5-methyl-2-thiophenecarbaldehyde [FL-no: 15.004]. The data requested by EFSA for the other substance, 3-acetyl-2,5-dimethylthiophene [FL-no: 15.024] of FGE.224 will be provided subsequently according to the Flavour...... are still pending and no conclusion could be drawn in the present FGE. © European Food Safety Authority, 2013...

  18. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 94, Revision 2 (FGE.94Rev2): Consideration of aliphatic amines and amides evaluated in an addendum to the group of aliphatic and aromatic amines

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further......-(3,4-dimethoxyphenyl)-ethyl]-acrylamide [FL-no: 16.090]. The substances were evaluated through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern and available data on metabolism and toxicity. The Panel agrees with JECFA...... conclusion “No safety concern at estimated levels of intake as flavouring substances” based on the MSDI approach for all substances considered in this FGE. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have been considered and for all 12...

  19. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015. Scientific Opinion on Flavouring Group Evaluation 86, Revision 2 (FGE.86Rev2): Consideration of aliphatic and arylalkyl amines and amides evaluated by JECFA (65th meeting)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Nørby, Karin Kristiane

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), and to decide whether further......-no: 14.003] and deca-(2E,4E)-dienoic acid isobutyl-amide [FL-no: 16.091]. The substances were evaluated through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological thresholds of concern and available data on metabolism and toxicity...... for the materials of commerce have also been considered and for all 30 substances, the information is adequate....

  20. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 12, Revision 4 (FGE.12Rev4): primary saturated or unsaturated alicyclic alcohols, aldehydes, acids and esters from chemical groups 1 and 7

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 12 flavouring substances in Flavouring Group Evaluation 12, Revision 4 (FGE.12Rev4), including two additional substances, using the Procedure in Commission...... (the Procedure) that integrates information on structure–activity relationships, intake from current uses and the toxicological threshold of concern and available data on metabolism and toxicity. The Panel concluded that none of the 12 substances [FL-nos: 02.134, 02.186, 02.216, 02.217, 05.157, 05.......182, 05.183, 05.198, 08.135, 09.342, 09.670 and 09.829] gives rise to safety concerns at their levels of dietary intake, estimated on the basis of the maximised survey-derived daily intake approach. Besides the safety assessment of these flavouring substances, the specifications for the materials...

  1. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 73, Revision 2 (FGE.73Rev2). Consideration of alicyclic primary alcohols, aldehydes, acids and related esters evaluated by JECFA (59th meeting

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...... uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel agrees with the application of the Procedure as performed by the JECFA for all 18 substances [FL-no: 02.114, 02.141, 05.098, 05.104, 05.112, 05.119, 05.123, 08.034, 08.060, 08.067, 09.028, 09.034, 09...... for the materials of commerce have also been considered and for all 18 substances, the information is adequate....

  2. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 91, Re vision 2 (FGE.91Rev2): Consid eration of simple aliphatic and aromatic sulphides and thiols evaluated by the JECFA (53rd and 68th meetings

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...... that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. For 36 substances considered in this FGE the Panel concluded that they would pose “No safety concern at estimated levels of intake...... related substance. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered and for all 44 substances, the information is adequate. For candidate substance 3-(methylthio)heptenal [FL-no: 12.273], which contains 5 to7 % of an α...

  3. EFSA Panel on Food Contact Material, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 73, Revision 1: Consideration of alicyclic primary alcohols, aldehydes, acids and related esters evaluated by JECFA (59th meeting) structurally related to primary

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...... substance compared to the previous version. The substances were evaluated through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel agrees...... levels of intake as flavouring substances” based on the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered and for all 16 substances, the information is adequate....

  4. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 74, Revision 3 (FGE.74Rev3): Consideration of Simple Aliphatic Sulphides and Thiols evaluated by the JECFA (53rd and 61st meeting) Structurally

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...... that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. For nine substances [FL-no: 12.088, 12.179, 12.198, 12.212, 12.238, 12.239, 12.255, 12.257 and 12.291] considered in this FGE, the Panel...... concluded that they would pose “No safety concern at estimated levels of intake as flavouring substances” based on the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered for the substances evaluated through...

  5. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 72, Revision 1 (FGE.72Rev1): Consideration of aliphatic, branched-chain saturated and unsaturated alcohols, aldehydes, acids, and related esters

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...... threshold of concern, and available data on metabolism and toxicity. The Panel agrees with the application of the Procedure as performed by the JECFA for all 23 substances considered in this FGE and agrees with the JECFA conclusion, “No safety concern at estimated levels of intake as flavouring substances......” based on the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered and for all 23 substances, the information is adequate...

  6. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 73, Revision 3 (FGE.73Rev3): Consideration of alicyclic alcohols, aldehydes, acids and related esters evaluated by JECFA (59th and 63rd meeting

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Frandsen, Henrik Lauritz; Nørby, Karin Kristiane

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...... of one additional substance, beta-ionyl acetate [FL-no: 09.305] cleared for genotoxicity concern in FGE.213Rev1. The substances were evaluated through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern.......712] considered in this FGE and agrees with the JECFA conclusion, “No safety concern at estimated levels of intake as flavouring substances” based on the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered...

  7. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 06, Revision 2 (FGE.06Rev2): Straight- and branched-chain aliphatic unsaturated primary alcohols, aldehydes, carboxylic acids, and esters from chemical groups 1

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The European Food Safety Authority (EFSA) asked the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (the Panel) to provide scientific advice to the Commission on the implications for human health of chemically defined flavouring substances used in or on foodstuffs...... in the commercial flavouring material. Forty-six candidate substances are classified into structural class I. The remaining two substances [FL-no: 05.143 and 09.884] are classified into structural class II. Thirty-eight of the flavouring substances in the present group have been reported to occur naturally...... in a wide range of food items. According to the default MSDI approach, the 48 flavouring substances in this group have intakes in Europe from 0.001 to 120 microgram/capita/day, which are below the thresholds of concern value for both structural class I (1800 microgram/person/day) and structural class II...

  8. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 3, Revision 2 (FGE.03Rev2): Acetals of branched- and straight-chain aliphatic saturated primary alcohols and branched- and straight-chain saturated or unsaturated

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate one flavouring substance, acetaldehyde ethyl isopropyl acetal [FL-no: 06.137], structurally related to the 58 flavouring substances in the Flavouring Group...... on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel concluded as for the other already evaluated substances that the substance [FL-no: 06.137] do not give rise to safety concern at its level of dietary...... intake, estimated on the basis of the MSDI approach. Besides the safety assessment of this flavouring substance, the specifications for the materials of commerce have also been considered, and since the publication of FGE.03Rev1 additional information on chirality on 30 substances is made available...

  9. Enzyme structure and interaction with inhibitors

    International Nuclear Information System (INIS)

    London, R.E.

    1983-01-01

    This article reviews some of the results of studies on the 13 C-labeled enzyme dihydrofolate reductase (DHFR). Nuclear magnetic resonance (NMR) techniques are used in combination with isotopic labeling to learn about the structure and dynamics of this enzyme. 13 C-labeling is used for the purpose of studying enzyme/substrate and enzyme/inhibitor interactions. A second set of studies with DHFR was designed to investigate the basis for the high affinity between the inhibitor methotrexate and DHFR. The label was placed on the inhibitor, rather than the enzyme

  10. Expression of enzymes in yeast for lignocellulose derived oligomer CBP

    Science.gov (United States)

    McBride, John E.; Wiswall, Erin; Shikhare, Indraneel; Xu, Haowen; Thorngren, Naomi; Hau, Heidi H.; Stonehouse, Emily

    2017-08-29

    The present invention provides a multi-component enzyme system that hydrolyzes hemicellulose oligomers from hardwood which can be expressed, for example, in yeast such as Saccharomyces cerevisiae. In some embodiments, this invention provides for the engineering of a series of biocatalysts combining the expression and secretion of components of this enzymatic system with robust, rapid xylose utilization, and ethanol fermentation under industrially relevant process conditions for consolidated bioprocessing. In some embodiments, the invention utilizes co-cultures of strains that can achieve significantly improved performance due to the incorporation of additional enzymes in the fermentation system.

  11. Hyperthermostable cellulolytic and hemicellulolytic enzymes and their biotechnological applications

    Directory of Open Access Journals (Sweden)

    Tipparat Hongpattarakere

    2002-07-01

    Full Text Available Hyperthermal cellulases and hemicellulases have been intensively studied due to their highly potential applications at extreme temperatures, which mimic industrial processes involving cellulose and hemicellulose degradation. More than 50 species of hyperthermophiles have been isolated, many of which possess hyperthermal enzymes required for hydrolyzing cellulose and hemicelluloses. Endoglucanases, exoglucanases, cellobiohydrolases, xylanases, β-glucosidase and β-galactosidase, which are produced by the hyperthermophiles, are resistant to boiling temperature. The characteristics of these enzymes and the ability to maintain their functional integrity at high temperature as well as their biotechnological application are discussed.

  12. Green polymer chemistry: enzyme catalysis for polymer functionalization.

    Science.gov (United States)

    Sen, Sanghamitra; Puskas, Judit E

    2015-05-21

    Enzyme catalyzed reactions are green alternative approaches to functionalize polymers compared to conventional methods. This technique is especially advantageous due to the high selectivity, high efficiency, milder reaction conditions, and recyclability of enzymes. Selected reactions can be conducted under solventless conditions without the application of metal catalysts. Hence this process is becoming more recognized in the arena of biomedical applications, as the toxicity created by solvents and metal catalyst residues can be completely avoided. In this review we will discuss fundamental aspects of chemical reactions biocatalyzed by Candida antarctica lipase B, and their application to create new functionalized polymers, including the regio- and chemoselectivity of the reactions.

  13. Green Polymer Chemistry: Enzyme Catalysis for Polymer Functionalization

    Directory of Open Access Journals (Sweden)

    Sanghamitra Sen

    2015-05-01

    Full Text Available Enzyme catalyzed reactions are green alternative approaches to functionalize polymers compared to conventional methods. This technique is especially advantageous due to the high selectivity, high efficiency, milder reaction conditions, and recyclability of enzymes. Selected reactions can be conducted under solventless conditions without the application of metal catalysts. Hence this process is becoming more recognized in the arena of biomedical applications, as the toxicity created by solvents and metal catalyst residues can be completely avoided. In this review we will discuss fundamental aspects of chemical reactions biocatalyzed by Candida antarctica lipase B, and their application to create new functionalized polymers, including the regio- and chemoselectivity of the reactions.

  14. An enzyme to improve the ethanol production; Une enzyme pour ameliorer la production d'ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-07-01

    The American firm Genecor launches a technology which allows to improve the production of ethanol from agricultural resources. This technology involves in particular a decrease of the energy consumption and of the production costs and a best yield. In the process, is used a mixture of enzymes composed of alpha-amylase and gluco-amylase. (O.M.)

  15. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  16. Evaluation method for the drying performance of enzyme containing formulations

    DEFF Research Database (Denmark)

    Sloth, Jakob; Bach, P.; Jensen, Anker Degn

    2008-01-01

    A method is presented for fast and cheap evaluation of the performance of enzyme containing formulations in terms of preserving the highest enzyme activity during spray drying. The method is based on modeling the kinetics of the thermal inactivation reaction which occurs during the drying process....... Relevant kinetic parameters are determined from differential scanning calorimeter (DSC) experiments and the model is used to simulate the severity of the inactivation reaction for temperatures and moisture levels relevant for spray drying. After conducting experiments and subsequent simulations...... for a number of different formulations it may be deduced which formulation performs best. This is illustrated by a formulation design study where 4 different enzyme containing formulations are evaluated. The method is validated by comparison to pilot scale spray dryer experiments....

  17. Phenol Removal from Industrial Wastewater by HRP Enzyme

    Directory of Open Access Journals (Sweden)

    Iran Alemzadeh

    2009-01-01

    Full Text Available In this research, horseradish peroxidase for phenol removal was utilized. First, the process was studied at the laboratory scale using a synthetic phenol solution (1-10 mM. Results showed that horseradish peroxidase (HRP could effectively remove phenolic compounds from wastewater and that the catalytic capability of the enzyme was maintained for a wide range of pH, temperature, and aromatic concentration levels. The performance conditions were optimized for at lease 95% and 100% removal of phenolic compounds for both actual and synthetic wastewaters under high and low phenol concentrations (1 and 10 mM. The phenolic wastewater used was an olive mill effluent with a phenol concentration of 1221 mg/L (13 mM and a pH value of 3.5. At the end of the reaction, the phenolic compounds changed to insoluble polymers and precipitated. Each enzyme/wastewater system was optimized for the following chemical dosages: hydrogen peroxide, enzyme, polyethylene glycol (PEG, and buffer. Furthermore, the reaction time to achieve at least 95% phenol removal was determined. According to the results, COD and BOD reduced to 58% and 78%, respectively. Experimental results showed an increase in H2O2 concentration beyond the optimum dose resulting from enzyme inactivation, thus reducing the phenol removal efficiency. On the other hand, increasing the enzyme, PEG, and/or reaction time beyond the optimum values resulted in only a marginal increase in removal efficiency.

  18. Screening and isolation of halophilic bacteria producing industrially important enzymes.

    Science.gov (United States)

    Kumar, Sumit; Karan, Ram; Kapoor, Sanjay; S P, Singh; S K, Khare

    2012-10-01

    Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases). Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3-20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology.

  19. Effect of Additives on the Selectivity and Reactivity of Enzymes.

    Science.gov (United States)

    Liang, Yi-Ru; Wu, Qi; Lin, Xian-Fu

    2017-01-01

    Enzymes have been widely used as efficient, eco-friendly, and biodegradable catalysts in organic chemistry due to their mild reaction conditions and high selectivity and efficiency. In recent years, the catalytic promiscuity of many enzymes in unnatural reactions has been revealed and studied by chemists and biochemists, which has expanded the application potential of enzymes. To enhance the selectivity and activity of enzymes in their natural or promiscuous reactions, many methods have been recommended, such as protein engineering, process engineering, and media engineering. Among them, the additive approach is very attractive because of its simplicity to use and high efficiency. In this paper, we will review the recent developments about the applications of additives to improve the catalytic performances of enzymes in their natural and promiscuous reactions. These additives include water, organic bases, water mimics, cosolvents, crown ethers, salts, surfactants, and some particular molecular additives. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Visualization of Enzyme Activities in Earthworm Biopores by In Situ Soil Zymography.

    Science.gov (United States)

    Razavi, Bahar S; Hoang, Duyen; Kuzyakov, Yakov

    2017-01-01

    Earthworms produce biopores with strongly increased microbial and enzyme activities and consequently they form microbial hotspots in soil. In extremely dynamic microhabitats and hotspots such as earthworm biopores, the in situ enzyme activities are a footprint of process rates and complex biotic interactions. The effect of earthworms on enzyme activities inside biopores, relative to earthworm-free soil, can be visualized by in situ soil zymography. Here, we describe the details of the approach and discuss its advantages and limitations. Direct zymography provides high spatial resolution for quantitative images of enzyme activities in biopores.

  1. Kinetic characteristics of polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Science.gov (United States)

    Polygalacturonase enzymes hydrolyze the polygalacturonic acid chains found in pectin. Interest in polygalacturonase enzymes continues as they are useful in a number of industrial processes and conversely, detrimental, as they are involved in maceration of economically important crops. While a good...

  2. On-Site Enzyme Production by Trichoderma asperellum for the Degradation of Duckweed

    DEFF Research Database (Denmark)

    Bech, Lasse; Herbst, Florian-Alexander; Grell, Morten Nedergaard

    2015-01-01

    The on-site production of cell wall degrading enzymes is an important strategy for the development of sustainable bio-refinery processes. This study concerns the optimization of production of plant cell wall-degrading enzymes produced by Trichoderma asperellum. A comparative secretome analysis...

  3. Purification and properties of amylolytic enzyme from Aspergillus oryzae MIBA316

    OpenAIRE

    仮屋, 麻紀子; 矢野, めぐむ; 瀧井, 幸男; Makiko, Kariya; Megumu, Yano; Yukio, Takii

    2003-01-01

    Amylolytic enzyme was purified to electrophoretically homogeneous state from culture broth of Aspergillus oryzae MIBA316. This enzyme hydrolyzed preferentially amylopectin, starch and glycogen. Approaches to complete breakdown of starch to its components and their utilization in food processing were discussed.

  4. [Treatment of burn surfaces by proteinases: mathematical description of an enzyme distribution].

    Science.gov (United States)

    Khalili, A S; Domogatskiĭ, S P; Blizniukov, O P; Ruuge, E K

    2003-01-01

    The process of penetration of a proteolytic enzyme applied to the surface of burn wound into the depth of necrotic tissue was considered. The model approximation describes three factors by a series of mathematical equations: inward-directed enzyme diffusion, counter-flow filtration of interstitial fluid (exudates), and irreversible inactivation of the enzyme by specific inhibitors present in exudates. According to the model, a quasi-stationary distribution of enzymatic activity through the thickness of the necrotic layer is achieved within 3 h and persists as long as the enzyme concentration on the wound surface is constant. The enzyme activity diminishes linearly from the wound surface to the mid-part of the necrotic layer. No enzyme activity is retained in the inner mid-part of the necrotic layer completely protected by the prevalent inhibitor. The ratio of enzyme concentration on the wound surface to inhibitor concentration in the interstitial fluid is the same as the ratio of the depth of active enzyme area to the depth of the inhibitor-protected area through the necrotic layer. The dynamics of accumulation of the active enzyme in the necrotic zone and the rate of enzyme inactivation in the wound by inhibitors were described by formulas applicable for practical purposes.

  5. Ultrasound assisted intensification of enzyme activity and its properties: a mini-review.

    Science.gov (United States)

    Nadar, Shamraja S; Rathod, Virendra K

    2017-08-22

    Over the last decade, ultrasound technique has emerged as the potential technology which shows large applications in food and biotechnology processes. Earlier, ultrasound has been employed as a method of enzyme inactivation but recently, it has been found that ultrasound does not inactivate all enzymes, particularly, under mild conditions. It has been shown that the use of ultrasonic treatment at appropriate frequencies and intensity levels can lead to enhanced enzyme activity due to favourable conformational changes in protein molecules without altering its structural integrity. The present review article gives an overview of influence of ultrasound irradiation parameters (intensity, duty cycle and frequency) and enzyme related factors (enzyme concentration, temperature and pH) on the catalytic activity of enzyme during ultrasound treatment. Also, it includes the effect of ultrasound on thermal kinetic parameters and Michaelis-Menten kinetic parameters (k m and V max ) of enzymes. Further, in this review, the physical and chemical effects of ultrasound on enzyme have been correlated with thermodynamic parameters (enthalpy and entropy). Various techniques used for investigating the conformation changes in enzyme after sonication have been highlighted. At the end, different techniques of immobilization for ultrasound treated enzyme have been summarized.

  6. In-vitro engineering of novel bioactivity in the natural enzymes

    Directory of Open Access Journals (Sweden)

    Vishvanath Tiwari

    2016-10-01

    Full Text Available Enzymes catalyze various biochemical functions with high efficiency and specificity. In-vitro design of the enzyme leads to novel bioactivity in this natural biomolecule that give answers of some vital questions like crucial residues in binding with substrate, molecular evolution, cofactor specificity etc. Enzyme engineering technology involves directed evolution, rational designing, semi-rational designing and structure-based designing using chemical modifications. Similarly, combined computational and in-vitro evolution approaches together help in artificial designing of novel bioactivity in the natural enzyme. DNA shuffling, error prone PCR and staggered extension process are used to artificially redesign active site of enzyme, which can alter its efficiency and specificity. Modifications of the enzyme can lead to the discovery of new path of molecular evolution, designing of efficient enzymes, locating active sites and crucial residues, shift in substrate and cofactor specificity. The methods and thermodynamics of in-vitro designing of the enzyme are also discussed. Similarly, engineered thermophilic and psychrophilic enzymes attain substrate specificity and activity of mesophilic enzymes that may also be beneficial for industry and therapeutics.

  7. Marine Enzymes and Microorganisms for Bioethanol Production.

    Science.gov (United States)

    Swain, M R; Natarajan, V; Krishnan, C

    Bioethanol is a potential alternative fuel to fossil fuels. Bioethanol as a fuel has several economic and environmental benefits. Though bioethanol is produced using starch and sugarcane juice, these materials are in conflict with food availability. To avoid food-fuel conflict, the second-generation bioethanol production by utilizing nonfood lignocellulosic materials has been extensively investigated. However, due to the complexity of lignocellulose architecture, the process is complicated and not economically competitive. The cultivation of lignocellulosic energy crops indirectly affects the food supplies by extensive land use. Marine algae have attracted attention to replace the lignocellulosic feedstock for bioethanol production, since the algae grow fast, do not use land, avoid food-fuel conflict and have several varieties to suit the cultivation environment. The composition of algae is not as complex as lignocellulose due to the absence of lignin, which renders easy hydrolysis of polysaccharides to fermentable sugars. Marine organisms also produce cold-active enzymes for hydrolysis of starch, cellulose, and algal polysaccharides, which can be employed in bioethanol process. Marine microoorganisms are also capable of fermenting sugars under high salt environment. Therefore, marine biocatalysts are promising for development of efficient processes for bioethanol production. © 2017 Elsevier Inc. All rights reserved.

  8. Ethanologenic Enzymes of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Lonnie O' Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  9. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  10. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products

    DEFF Research Database (Denmark)

    Lange, Lene

    2017-01-01

    Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatm...... contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.......Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme...... treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps...

  11. ExplorEnz: the primary source of the IUBMB enzyme list

    Science.gov (United States)

    McDonald, Andrew G.; Boyce, Sinéad; Tipton, Keith F.

    2009-01-01

    ExplorEnz is the MySQL database that is used for the curation and dissemination of the International Union of Biochemistry and Molecular Biology (IUBMB) Enzyme Nomenclature. A simple web-based query interface is provided, along with an advanced search engine for more complex Boolean queries. The WWW front-end is accessible at http://www.enzyme-database.org, from where downloads of the database as SQL and XML are also available. An associated form-based curatorial application has been developed to facilitate the curation of enzyme data as well as the internal and public review processes that occur before an enzyme entry is made official. Suggestions for new enzyme entries, or modifications to existing ones, can be made using the forms provided at http://www.enzyme-database.org/forms.php. PMID:18776214

  12. Bio-functionalization of conductive textile materials with redox enzymes

    Science.gov (United States)

    Kahoush, M.; Behary, N.; Cayla, A.; Nierstrasz, V.

    2017-10-01

    In recent years, immobilization of oxidoreductase enzymes on electrically conductive materials has played an important role in the development of sustainable bio-technologies. Immobilization process allows the re-use of these bio-catalysts in their final applications. In this study, different methods of immobilizing redox enzymes on conductive textile materials were used to produce bio-functionalized electrodes. These electrodes can be used for bio-processes and bio-sensing in eco-designed applications in domains such as medicine and pollution control. However, the main challenge facing the stability and durability of these electrodes is the maintenance of the enzymatic activity after the immobilization. Hence, preventing the enzyme’s denaturation and leaching is a critical factor for the success of the immobilization processes.

  13. Toward mechanistic classification of enzyme functions.

    Science.gov (United States)

    Almonacid, Daniel E; Babbitt, Patricia C

    2011-06-01

    Classification of enzyme function should be quantitative, computationally accessible, and informed by sequences and structures to enable use of genomic information for functional inference and other applications. Large-scale studies have established that divergently evolved enzymes share conserved elements of structure and common mechanistic steps and that convergently evolved enzymes often converge to similar mechanisms too, suggesting that reaction mechanisms could be used to develop finer-grained functional descriptions than provided by the Enzyme Commission (EC) system currently in use. Here we describe how evolution informs these structure-function mappings and review the databases that store mechanisms of enzyme reactions along with recent developments to measure ligand and mechanistic similarities. Together, these provide a foundation for new classifications of enzyme function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Production of Enzymes from Marine Actinobacteria.

    Science.gov (United States)

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies. © 2016 Elsevier Inc. All rights reserved.

  16. Enzyme Enzyme activities in relation to sugar accumulation in tomato

    International Nuclear Information System (INIS)

    Alam, M.J.; Rahman, M.H.; Mamun, M.A.; Islam, K.

    2006-01-01

    Enzyme activities in tomato juice of five different varieties viz. Ratan, Marglove, BARI-1, BARI-5 and BARI-6, in relation to sugar accumulation were investigated at different maturity stages. The highest amount of invertase and beta-galactosidase was found in Marglove and the lowest in BARI- 6 at all maturity stages. Total soluble sugar and sucrose contents were highest in BARI-1 and lowest in BARI-6. The activity of amylase was maximum in Ratan and minimum in Marglove. Protease activity was highest in Ratan and lowest in BARI-6. BARI-1 contained the highest cellulase activity and the lowest in BARI-5. The amount of total soluble sugar and sucrose increased moderately from premature to ripe stage. The activities of amylase and cellulase increased up to the mature stage and then decreased drastically in the ripe stage. The activities of invertase and protease increased sharply from the premature to the ripe stage while the beta-galactosidase activity decreased remarkably. No detectable amount of reducing sugar was present in the premature stage in all cultivars of tomato but increased thereafter upto the ripe stage. The highest reducing sugar was present in BARI-5 in all of the maturity stages. (author)

  17. Enzyme activities in reclaimed coal mine spoils and soils

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P R; Aldon, E F; Lindemann, W C

    1987-11-01

    The segregation and stockpiling of topsoil material may reduce enzymatic activities that may hinder normal nutrient cycling processes in reclaimed minelands. The effects of topsoiling and reclamation age on dehydrogenase, nitrogenase, phosphatase, arylsulphatase, amylase, cellulase, invertase and urease activities were evaluated on three reclaimed non-top-soiled and five reclaimed topsoiled areas and compared with an indisturbed reference soil. Three months after topsoiling and revegetation, activities of the enzymes in the reclaimed areas, with the exception of dehydrogenase, were statistically equal to activities of the undisturbed soil. Most enzymes, including dehydrogenase, peaked in the next 1 or 2 years after reclamation with topsoiling and declined thereafter. A 4-year-old topsoiled site (revegetated in 1978) was statistically similar to the undisturbed soil. Amylase activity, however, was significantly lower after the fourth year compared to the undisturbed soil. The non-topsoiled areas, even after 6, 7 and 8 years, appeared to have lower enzyme activities than the younger topsoiled areas or the undisturbed soil. This trend was supported by the finding that the 4-year-old topsoiled site was more enzymatically similar to the undisturbed soil than was the 8-year-old non-topsoiled site (revegetated in 1974). The low enzyme acitivities found in the non-topsoiled areas may be a result of their adverse chemical and physical properties, as well as the low diversity of microorganisms. These studies demonstrate the value of topsoil use for early establishment of soil processes in reclaimed areas. 3 figs., 19 refs., 8 tabs.

  18. Identification of interleukin-8 converting enzyme as cathepsin L.

    Science.gov (United States)

    Ohashi, Kensaku; Naruto, Masanobu; Nakaki, Toshio; Sano, Emiko

    2003-06-26

    IL-8 is produced by various cells, and the NH(2)-terminal amino acid sequence of IL-8 displays heterogeneity among cell types. The mature form of IL-8 has 72 amino acids (72IL-8), while a precursor form (77IL-8) of IL-8 has five additional amino acids to the 72IL-8 NH(2)-terminal. However, it has been unclear how IL-8 is processed to yield the mature form. In this study, converting enzyme was purified as a single 31-kDa band on silver-stained polyacrylamide gel from 160 l of cultured fibroblast supernatant by sequential chromatography. NH(2)-terminal amino acid sequence analysis revealed a sequence, EAPRSVDWRE, which was identified as a partial sequence of cathepsin L. Polyclonal antibodies raised against cathepsin L recognized the purified converting enzyme on Western blot. Moreover, human hepatic cathepsin L cleaved 77IL-8 between Arg(5) and Ser(6), which is the same cleavage site as the putative converting enzyme, resulting in 72IL-8 formation. These data indicate that the converting enzyme of the partially purified fraction of the human fibroblast culture supernatant was cathepsin L. Furthermore, 72IL-8 was sevenfold more potent than 77IL-8 in a neutrophil chemotaxis assay. These results show that cathepsin L is secreted from human fibroblasts in response to external stimuli and plays an important role in IL-8 processing in inflammatory sites.

  19. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  20. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  1. Zymography methods for visualizing hydrolytic enzymes.

    Science.gov (United States)

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E; Opdenakker, Ghislain

    2013-03-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful, but often misinterpreted, tool yielding information on potential hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tissue sections with in situ zymography. In vivo zymography can pinpoint proteolytic activity to sites in an intact organism. Future development of novel substrate probes and improvement in detection and imaging methods will increase the applicability of zymography for (reverse) degradomics studies.

  2. Detoxification enzymes activities in deltamethrin and bendiocarb ...

    African Journals Online (AJOL)

    Detoxification enzymes activities in deltamethrin and bendiocarb resistant and susceptible malarial vectors ( Anopheles gambiae ) breeding in Bichi agricultural and residential sites, Kano state, Nigeria.

  3. Escherichia coli photoreactivating enzyme: purification and properties

    International Nuclear Information System (INIS)

    Snapka, R.M.; Sutherland, B.M.

    1980-01-01

    Researchers have purified large quantities of Escherichia coli photoreactivating enzyme to apparent homogeneity and have studied its physical and chemical properties. The enzyme has a molecular weight of 36,800 and a S/sub 20,w/ 0 of 3.72 S. Amino acid analysis revealed an apparent absence of tryptophan, a low content of aromatic residues, and the presence of no unusual amino acids. The N terminus is arginine. The purified enzyme contained up to 13% carbohydrate by weight. The carbohydrate was composed of mannose, galactose, glucose, and N-acetylglucosamine. The enzyme is also associated with RNA containing uracil, adenine, guanine, and cytosine with no unusual bases detected

  4. Thermometric enzyme linked immunosorbent assay: TELISA.

    Science.gov (United States)

    Mattiasson, B; Borrebaeck, C; Sanfridson, B; Mosbach, K

    1977-08-11

    A new method, thermometric enzyme linked immunosorbent assay (TELISA), for the assay of endogenous and exogenous compounds in biological fluids is described. It is based on the previously described enzyme linked immunosorbent assay technique, ELISA, but utilizes enzymic heat formation which is measured in an enzyme thermistor unit. In the model system studied determination of human serum albumin down to a concentration of 10(-10) M (5 ng/ml) was achieved, with both normal and catalase labelled human serum albumin competing for the binding sites on the immunosorbent, which was rabbit antihuman serum albumin immobilized onto Sepharose CL-4B.

  5. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities.

    Directory of Open Access Journals (Sweden)

    Fiona Karen Harlan

    Full Text Available Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson's Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research

  6. Actinomycete enzymes and activities involved in straw saccharification

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, A J; Ball, A S [Liverpool Univ. (UK). Dept. of Genetics and Microbiology

    1990-01-01

    This research programme has been directed towards the analysis of actinomycete enzyme systems involved in the degradation of plant biomass (lignocellulose.) The programme was innovative in that a novel source of enzymes was systematically screened and wheat straw saccharifying activity was the test criterion. Over 200 actinomycete strains representing a broad taxonomic range were screened. A range of specific enzyme activities were involved and included cellulase, xylanase, arabinofuranosidase, acetylesterase, {beta}-xylosidase and {beta}-glucosidase. Since hemicellulose (arabinoxylan) was the primary source of sugar, xylanases were characterized. The xylan-degrading systems of actinomycetes were complex and nonuniform, with up to six separate endoxylanases identified in active strains. Except for microbispora bispora, actinomycetes were found to be a poor source of cellulase activity. Evidence for activity against the lignin fraction of straw was produced for a range of actinomycete strains. While modification reactions were common, cleavage of inter-monomer bonds, and utilization of complex polyphenolic compounds were restricted to two strains: Thermomonospora mesophila and Streptomyces badius. Crude enzyme preparations from actinomycetes can be used to generate sugar, particularly pentoses, directly from cereal straw. The potential for improvements in yield rests with the formulation to cooperative enzyme combinations from different strains. The stability properties of enzymes from thermophilic strains and the general neutral to alkali pH optima offer advantages in certain process situations. Actinomycetes are a particularly rich source of xylanases for commercial application and can rapidly solubilise a lignocarbohydrate fraction of straw which may have both product and pretreatment potential. 31 refs., 4 figs., 5 tabs.

  7. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ghaouar, N., E-mail: naoufel-ghaouar@lycos.co [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Institut National des Sciences Appliquees et de Technologie, INSAT, Centre Urbain Nord, BP. 676, Tunis (Tunisia); Aschi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Belbahri, L. [School of Engineering of Lullier, University of Applied Sciences of Western Switzerland, 150, Route de Presinge, 1254 Jussy (Switzerland); Trabelsi, S.; Gharbi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia)

    2009-11-15

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 deg. C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  8. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    International Nuclear Information System (INIS)

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-01-01

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 deg. C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  9. Spectroscopic studies of copper enzymes

    International Nuclear Information System (INIS)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-01-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present

  10. Inhibition and kinetic studies of lignin degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    Science.gov (United States)

    Surendran, Arthy; Siddiqui, Yasmeen; Saud, Halimi Mohd; Ali, Nusaibah Syd; Manickam, Sivakumar

    2018-05-22

    Lignolytic (Lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at. In our work, ten naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G.boninense. Additionally, the lignin degrading enzymes were characterised. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin degrading enzymes, when compared between the ten phenolic compounds. The inhibitory potential of the phenolic compounds toward the lignin degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin degrading enzymes were stable in a wide range of pH but were sensitive to higher to temperature. The study demonstrated the inhibitor potential of ten naturally occurring phenolic compounds toward the lignin degrading enzymes of G. boninense with different efficacies. The study has shed a light towards a new management strategy to control BSR in oil palm. It serves as replacement for the existing chemical control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. A model of extracellular enzymes in free-living microbes: which strategy pays off?

    Science.gov (United States)

    Traving, Sachia J; Thygesen, Uffe H; Riemann, Lasse; Stedmon, Colin A

    2015-11-01

    An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond

    Science.gov (United States)

    Bose, Sutapa; Rai, Vivek

    2013-01-01

    Enzymes are the large biomolecules that are required for the numerous chemical interconversions that sustain life. They accelerate all the metabolic processes in the body and carry out a specific task. Enzymes are highly efficient, which can increase reaction rates by 100 million to 10 billion times faster than any normal chemical reaction. Due to development in recombinant technology and protein engineering, enzymes have evolved as an important molecule that has been widely used in different industrial and therapeutical purposes. Microbial enzymes are currently acquiring much attention with rapid development of enzyme technology. Microbial enzymes are preferred due to their economic feasibility, high yields, consistency, ease of product modification and optimization, regular supply due to absence of seasonal fluctuations, rapid growth of microbes on inexpensive media, stability, and greater catalytic activity. Microbial enzymes play a major role in the diagnosis, treatment, biochemical investigation, and monitoring of various dreaded diseases. Amylase and lipase are two very important enzymes that have been vastly studied and have great importance in different industries and therapeutic industry. In this review, an approach has been made to highlight the importance of different enzymes with special emphasis on amylase and lipase in the different industrial and medical fields. PMID:24106701

  13. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Plant Products for Pharmacology: Application of Enzymes in Their Transformations

    Directory of Open Access Journals (Sweden)

    Marie Zarevúcka

    2008-12-01

    Full Text Available Different plant products have been subjected to detailed investigations due to their increasing importance for improving human health. Plants are sources of many groups of natural products, of which large number of new compounds has already displayed their high impact in human medicine. This review deals with the natural products which may be found dissolved in lipid phase (phytosterols, vitamins etc.. Often subsequent convenient transformation of natural products may further improve the pharmacological properties of new potential medicaments based on natural products. To respect basic principles of sustainable and green procedures, enzymes are often employed as efficient natural catalysts in such plant product transformations. Transformations of lipids and other natural products under the conditions of enzyme catalysis show increasing importance in environmentally safe and sustainable production of pharmacologically important compounds. In this review, attention is focused on lipases, efficient and convenient biocatalysts for the enantio- and regioselective formation / hydrolysis of ester bond in a wide variety of both natural and unnatural substrates, including plant products, eg. plant oils and other natural lipid phase compounds. The application of enzymes for preparation of acylglycerols and transformation of other natural products provides big advantage in comparison with employing of conventional chemical methods: Increased selectivity, higher product purity and quality, energy conservation, elimination of heavy metal catalysts, and sustainability of the employed processes, which are catalyzed by enzymes. Two general procedures are used in the transformation of lipid-like natural products: (a Hydrolysis/alcoholysis of triacylglycerols and (b esterification of glycerol. The reactions can be performed under conventional conditions or in supercritical fluids/ionic liquids. Enzyme-catalyzed reactions in supercritical fluids combine the

  15. Alterations of the Antioxidant Enzyme Activities are not General Characteristics of the Colonization Process by Arbuscular Mycorrhizal Fungi Alteraciones de las Actividades de Enzimas Antioxidantes no son Características Generales del Proceso de Colonización por Hongos Micorrízicos Arbusculares

    Directory of Open Access Journals (Sweden)

    Yakelin Rodríguez

    2012-09-01

    Full Text Available Antioxidant system is involved in arbuscular mycorrhizal symbiosis, but its role during the colonization process is still poorly understood. To gain new insights into the role of antioxidant system during root colonization by arbuscular mycorrhizal fungi, the activities of key antioxidant enzymes were evaluated in tomato (Solanum lycopersicum L. roots inoculated with six strains of different genera and species: two Glomus mosseae, Glomus cubense, Glomus intraradices, Glomus sp. and Acaulospora scrobiculata. Glomus cubense and A. scrobiculata strains reached the highest infectivity levels with maximum values of colonization frequency and intensity of 29-10.88% and 18-9.20%, respectively; G. mosseae strains showed an intermediate infectivity, both with 15% of colonization frequency and maximum intensities of 7.647.06%, respectively; while the infectivity levels of Glomus sp. and G. intraradices strains were the lowest with colonization frequency- 13% and intensities- 5.07 and 5.41, respectively. Some activity patterns of peroxidase, superoxide dismutase, and polyphenol oxidase enzymes were not specific for early or late colonization stages neither for the colonization level and type of strain. However, a unique superoxide dismutase-band presents at early colonization and the low level of guaiacol-peroxidase activity at later stages presents in all inoculated roots indicate that these antioxidant responses are independent of colonization degree and strain. Taking together, our data suggest that alterations of the antioxidant enzyme activities are not general characteristics of the colonization process by arbuscular mycorrhizal fungi, probably having the key role on those responses the specific feature of each strain rather than colonization per se.El sistema antioxidante está involucrado en la simbiosis micorrízico-arbuscular, pero su rol durante el proceso de colonización es aún escasamente comprendido. Para esclarecer el papel del sistema

  16. Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling.

    Science.gov (United States)

    Liu, Gang; Zhang, Jian; Bao, Jie

    2016-01-01

    Cost reduction on cellulase enzyme usage has been the central effort in the commercialization of fuel ethanol production from lignocellulose biomass. Therefore, establishing an accurate evaluation method on cellulase enzyme cost is crucially important to support the health development of the future biorefinery industry. Currently, the cellulase cost evaluation methods were complicated and various controversial or even conflict results were presented. To give a reliable evaluation on this important topic, a rigorous analysis based on the Aspen Plus flowsheet simulation in the commercial scale ethanol plant was proposed in this study. The minimum ethanol selling price (MESP) was used as the indicator to show the impacts of varying enzyme supply modes, enzyme prices, process parameters, as well as enzyme loading on the enzyme cost. The results reveal that the enzyme cost drives the cellulosic ethanol price below the minimum profit point when the enzyme is purchased from the current industrial enzyme market. An innovative production of cellulase enzyme such as on-site enzyme production should be explored and tested in the industrial scale to yield an economically sound enzyme supply for the future cellulosic ethanol production.

  17. Enzyme Activity Experiments Using a Simple Spectrophotometer

    Science.gov (United States)

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  18. Lignocellulose biotechnology: issues of bioconversion and enzyme ...

    African Journals Online (AJOL)

    Lignocellulose biotechnology: issues of bioconversion and enzyme production. ... and secondly to highlight some of the modern approaches which potentially could be used to tackle one of the major impediments, namely high enzyme cost, to speed-up the extensive commercialisation of the lignocellulose bioprocessing.

  19. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles

    Science.gov (United States)

    Bearne, Stephen L.

    2012-01-01

    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  20. Enzyme Catalysis and the Gibbs Energy

    Science.gov (United States)

    Ault, Addison

    2009-01-01

    Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)

  1. Utilization of enzyme supplemented Telfairia occidentalis stalk ...

    African Journals Online (AJOL)

    An eight (8) week feeding trial was carried out to assess the use of enzyme natuzyme supplemented Telfairia occidentalis stalk extract as growth inducer in the practical diet for Oreochromis niloticus fingerlings. Five isonitrogenous (35% crude protein) diets at 0 ml of stalk extract and enzyme (TRT 1), 15 ml (TRT 2) and 30 ...

  2. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  3. Application of radiopolymerization for immobilization of enzymes

    International Nuclear Information System (INIS)

    Higa, O.Z.; Mastro, N.L. del; Castagnet, A.C.G.

    1986-01-01

    Hydrophilic glass-forming monomers were used in an application of irradiation technology for the immobilization of cellulase and cellobiase. Experiments to observe the effect of additives such as silicates and polyethylene glycol in the enzyme entrapment are reported on. In all cases, enzymatic activity was maintained for more than fifteen batch enzyme reactions. (Author) [pt

  4. Enzyme-Catalyzed Transetherification of Alkoxysilanes

    Directory of Open Access Journals (Sweden)

    Peter G. Taylor

    2013-01-01

    Full Text Available We report the first evidence of an enzyme-catalyzed transetherification of model alkoxysilanes. During an extensive enzymatic screening in the search for new biocatalysts for silicon-oxygen bond formation, we found that certain enzymes promoted the transetherification of alkoxysilanes when tert-butanol or 1-octanol were used as the reaction solvents.

  5. 21 CFR 864.4400 - Enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme preparations. 864.4400 Section 864.4400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4400 Enzyme...

  6. Loop 7 of E2 enzymes

    DEFF Research Database (Denmark)

    Papaleo, Elena; Casiraghi, Nicola; Arrigoni, Alberto

    2012-01-01

    The ubiquitin (Ub) system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3). E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3...

  7. Enzyme adsorption at solid-liquid interfaces

    NARCIS (Netherlands)

    Duinhoven, S.

    1992-01-01

    Enzymes are proteins with the capacity of catalysing various reactions. Nowadays two types of enzymes, proteases and lipases, are available for use in detergent formulations for household and industrial laundry washing. Proteases are capable of catalysing the hydrolysis of proteins while

  8. [Potentialization of antibiotics by lytic enzymes].

    Science.gov (United States)

    Brisou, J; Babin, P; Babin, R

    1975-01-01

    Few lytic enzymes, specially papaine and lysozyme, acting on the membrane and cell wall structures facilitate effects of bacitracine, streptomycine and other antibiotics. Streptomycino resistant strains became sensibles to this antibiotic after contact with papaine and lysozyme. The results of tests in physiological suspensions concern only the lytic activity of enzymes. The results on nutrient medium concern together lytic, and antibiotic activities.

  9. Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification

    Science.gov (United States)

    Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo

    An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.

  10. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  11. SCREENING OF THERMOPHYLIC MICROORGANISM FROM IJEN CRATER BANYUWANGI AS PHYTASE ENZYME PRODUCER

    OpenAIRE

    Kusumadjaja, Aline Puspita; Budiati, Tutuk; Puspaningsih, Ni Nyoman Tri; Sajidan, Sajidan

    2010-01-01

    Phytase is enzyme which hydrolysis phytic acid to anorganic phosphate and myo-inositol pentakis-, tetrakis-, tris-, bis-, and monophosphate. The use of phytase in feed industry can overcome environment and nutrition problems which were arisen from unmetabolism phytic acid or its salt by poultry, swine and fish. The feed industry needs a thermostable enzyme due to the need of high temperature in pelleting process, i.e. 81 °C. By using thermostabile phytase, the pelleting process will not affec...

  12. Enzymic oxidation of carbon monoxide. II

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, T

    1959-01-01

    An enzyme which catalyzes the oxidation of carbon monoxide into carbon dioxide was obtained in a cell free state from Desulfovibrio desulfuricans. The enzyme activity was assayed manometrically by measuring the rate of gas uptake under the atmosphere of carbon monoxide in the presence of benzyl-viologen as an oxidant. The optimum pH range was 7 to 8. The activity was slightly suppressed by illumination. The enzyme was more stable than hydrogenase or formate dehydrogenase against the heat treatment, suggesting that it is a different entity from these enzymes. In the absence of an added oxidant, the enzyme preparation produced hydrogen gas under the atmosphere of carbon monoxide. The phenomenon can be explained assuming the reductive decomposition of water. 17 references, 4 figures, 2 tables.

  13. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day...... were recovered in the field applications. The following mechanisms were claimed to be responsible for the enhancement of the oil production due to enzymes: wettability improvement of the rock surface; formation of the emulsions; reduction of oil viscosity; and removal of high molecular weight paraffins....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...

  14. Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    the more basal attine genera use substrates such as flowers, plant debris, small twigs, insect feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide...... or different efficiencies of enzyme function. Fungal enzymes that degrade plant cell walls may have functionally co-evolved with the ants in this scenario. We explore this hypothesis with direct measurements of enzyme activity in fungus gardens in 12 species across 8 genera spanning the entire phylogeny...... and diversity of life-styles within the attine clade. We find significant differences in enzyme activity between different genera and life-styles of the ants. How these findings relate to attine ant coevolution and crop optimization are discussed....

  15. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes....... Although numerous enzymatic profiles have already been unraveled, the research has been covering only a limited number of species and genera, thus leaving many ascomycetes to be analyzed. Such analysis requires choosing appropriate media and cultivation methods that ensure enzyme profiles with high...... specificities and activities. However, the choice of media, cultivation methods and enzyme assays highly affect the enzyme activity profile observed. This review provides an overview of enzymatic profiles for several ascomycetes covering phylogenetically distinct genera and species. The profiles of cellulose...

  16. A roadmap to directed enzyme evolution and screening systems for biotechnological applications

    Directory of Open Access Journals (Sweden)

    Ronny Martínez

    2013-01-01

    Full Text Available Enzymes have been long used in man-made biochemical processes, from brewing and fermentation to current industrial production of fine chemicals. The ever-growing demand for enzymes in increasingly specific applications requires tailoring naturally occurring enzymes to the non-natural conditions found in industrial processes. Relationships between enzyme sequence, structure and activity are far from understood, thus hindering the capacity to design tailored biocatalysts. In the field of protein engineering, directed enzyme evolution is a powerful algorithm to generate and identify novel and improved enzymes through iterative rounds of mutagenesis and screening applying a specific evolutive pressure. In practice, critical checkpoints in directed evolution are: selection of the starting point, generation of the mutant library, development of the screening assay and analysis of the output of the screening campaign. Each step in directed evolution can be performed using conceptually and technically different approaches, all having inherent advantages and challenges. In this article, we present and discuss in a general overview, challenges of designing and performing a directed enzyme evolution campaign, current advances in methods, as well as highlighting some examples of its applications in industrially relevant enzymes.

  17. Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology.

    Science.gov (United States)

    Gupta, Anshu; Khare, S K

    2009-01-01

    Solvent-tolerant microbes are a newly emerging class that possesses the unique ability to thrive in the presence of organic solvents. Their enzymes adapted to mediate cellular and metabolic processes in a solvent-rich environment and are logically stable in the presence of organic solvents. Enzyme catalysis in non-aqueous/low-water media is finding increasing applications for the synthesis of industrially important products, namely peptides, esters, and other trans-esterification products. Solvent stability, however, remains a prerequisite for employing enzymes in non-aqueous systems. Enzymes, in general, get inactivated or give very low rates of reaction in non-aqueous media. Thus, early efforts, and even some recent ones, have aimed at stabilization of enzymes in organic media by immobilization, surface modifications, mutagenesis, and protein engineering. Enzymes from solvent-tolerant microbes appear to be the choicest source for studying solvent-stable enzymes because of their unique ability to survive in the presence of a range of organic solvents. These bacteria circumvent the solvent's toxic effects by virtue of various adaptations, e.g. at the level of the cytoplasmic membrane, by degradation and transformation of solvents, and by active excretion of solvents. The recent screening of these exotic microbes has generated some naturally solvent-stable proteases, lipases, cholesterol oxidase, cholesterol esterase, cyclodextrin glucanotransferase, and other important enzymes. The unique properties of these novel biocatalysts have great potential for applications in non-aqueous enzymology for a range of industrial processes.

  18. Effect of hemicellulolytic enzymes on mesophilic methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Oi, S; Matsui, Y; Iizuka, M; Yamamoto, T

    1977-01-01

    Mesophilic methane fermentation was examined using soybean seed coat, a waste from soybean processing for oil manufacture, with or without treatment with hemicellulolytic enzymes of Aspergillus niger, and the following results were obtained: (1) The methane fermentation bacteria acclimated to soybean seed coat medium were shown to consume monosaccharides and evolve methane in the following decreasing order: glucose, fructose, mannose > xylose, galactose, glucosamine, galacturonic acid > arabinose. The bacteria were also shown to form methane from a gas mixture of hydrogen and carbon dioxide. (2) In fermentation of soybean seed coat treated with the fungal enzyme, about 70% of the total sugar content as consumed in four weeks, and the gas evolution was about twice that without the fungal enzyme. The gas evolved was composed of 60% methane and 36% carbon dioxide. In general, vigorous evolution of hydrogen and carbon dioxide occurred at a very early stage of fermentation, and was followed by formation of methane. The maximum gas evolution of the enzyme-treated mash took place in 6 days while that of untreated mash occurred one week later. Chemical oxygen demand of the supernatant of the former mash was decreased by fermentation to 7.0% of the initial level.

  19. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase

    Science.gov (United States)

    Kohen, Amnon; Cannio, Raffaele; Bartolucci, Simonetta; Klinman, Judith P.; Klinman, Judith P.

    1999-06-01

    Biological catalysts (enzymes) speed up reactions by many orders of magnitude using fundamental physical processes to increase chemical reactivity. Hydrogen tunnelling has increasingly been found to contribute to enzyme reactions at room temperature. Tunnelling is the phenomenon by which a particle transfers through a reaction barrier as a result of its wave-like property. In reactions involving small molecules, the relative importance of tunnelling increases as the temperature is reduced. We have now investigated whether hydrogen tunnelling occurs at elevated temperatures in a biological system that functions physiologically under such conditions. Using a thermophilic alcohol dehydrogenase (ADH), we find that hydrogen tunnelling makes a significant contribution at 65°C this is analogous to previous findings with mesophilic ADH at 25°C ( ref. 5). Contrary to predictions for tunnelling through a rigid barrier, the tunnelling with the thermophilic ADH decreases at and below room temperature. These findings provide experimental evidence for a role of thermally excited enzyme fluctuations in modulating enzyme-catalysed bond cleavage.

  20. Molecular evolution of nitrogen assimilatory enzymes in marine prasinophytes.

    Science.gov (United States)

    Ghoshroy, Sohini; Robertson, Deborah L

    2015-01-01

    Nitrogen assimilation is a highly regulated process requiring metabolic coordination of enzymes and pathways in the cytosol, chloroplast, and mitochondria. Previous studies of prasinophyte genomes revealed that genes encoding nitrate and ammonium transporters have a complex evolutionary history involving both vertical and horizontal transmission. Here we examine the evolutionary history of well-conserved nitrogen-assimilating enzymes to determine if a similar complex history is observed. Phylogenetic analyses suggest that genes encoding glutamine synthetase (GS) III in the prasinophytes evolved by horizontal gene transfer from a member of the heterokonts. In contrast, genes encoding GSIIE, a canonical vascular plant and green algal enzyme, were found in the Micromonas genomes but have been lost from Ostreococcus. Phylogenetic analyses placed the Micromonas GSIIs in a larger chlorophyte/vascular plant clade; a similar topology was observed for ferredoxin-dependent nitrite reductase (Fd-NiR), indicating the genes encoding GSII and Fd-NiR in these prasinophytes evolved via vertical transmission. Our results show that genes encoding the nitrogen-assimilating enzymes in Micromonas and Ostreococcus have been differentially lost and as well as recruited from different evolutionary lineages, suggesting that the regulation of nitrogen assimilation in prasinophytes will differ from other green algae.