WorldWideScience

Sample records for pre-messenger rnas pre-mrnas

  1. Circular RNAs

    DEFF Research Database (Denmark)

    Han, Yi-Neng; Xia, Shengqiang; Zhang, Yuan-Yuan

    2017-01-01

    Circular RNAs (circRNAs) are a novel type of universal and diverse endogenous noncoding RNAs (ncRNAs) and they form a covalently closed continuous loop without 5' or 3' tails unlike linear RNAs. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhi...... and expression regulators, RBP sponges in cancer as well as current research methods of circRNAs, providing evidence for the significance of circRNAs in cancer diagnosis and clinical treatment....

  2. Linked biogenesis and degradation of human non-coding RNAs

    DEFF Research Database (Denmark)

    Andersen, Peter Refsing

    2012-01-01

    funktionelle roller majoriteten af disse transkripter spiller. De molekylære mekanismer bag dannelsen og nedbrydningen af både de nye klasser af ikke-kodende RNA transkripter og af flere etablerede klasser af ikke-kodende RNA transkripter er relativt ukendte i humane celler. Vi har undersøgt flere aspekter af......-5’ exoribonukleaseaktivitet i organismer så forskel¬lige som gær og mennesker. Gennem dette arbejde har vi vist at de fleste små RNAs molekyler, der oprinder fra humane protein-kodende gener (fraregnet mikroRNAer og introniske snoRNAer) repræsenterer RNA-nedbrydningssignaturer af specifikke molekylære processeringshændelser...... i dannelsen af pre-messenger RNA. Endvidere har vi fundet at 3’-forlængede humane introniske snoRNA-transkripter er substrater for RNA exosomet, men at produktionen af modne introniske snoRNAer ikke er afhængig af RNA exosomet, hvilket er ulig mekanismerne i gær, som man ellers have regnet med ville...

  3. Micro RNAs in animal development.

    NARCIS (Netherlands)

    Plasterk, R.H.A.

    2006-01-01

    Micro RNAs (miRNAs) are approximately 22 nucleotide single-stranded noncoding RNA molecules that bind to target messenger RNAs (mRNAs) and silence their expression. This Essay explores the importance of miRNAs in animal development and their possible roles in disease and evolution.

  4. Intronic microRNAs

    International Nuclear Information System (INIS)

    Ying, S.-Y.; Lin, S.-L.

    2005-01-01

    MicroRNAs (miRNAs), small single-stranded regulatory RNAs capable of interfering with intracellular mRNAs that contain partial complementarity, are useful for the design of new therapies against cancer polymorphism and viral mutation. MiRNA was originally discovered in the intergenic regions of the Caenorhabditis elegans genome as native RNA fragments that modulate a wide range of genetic regulatory pathways during animal development. However, neither RNA promoter nor polymerase responsible for miRNA biogenesis was determined. Recent findings of intron-derived miRNA in C. elegans, mouse, and human have inevitably led to an alternative pathway for miRNA biogenesis, which relies on the coupled interaction of Pol-II-mediated pre-mRNA transcription and intron excision, occurring in certain nuclear regions proximal to genomic perichromatin fibrils

  5. MicroRNAs and Presbycusis.

    Science.gov (United States)

    Hu, Weiming; Wu, Junwu; Jiang, Wenjing; Tang, Jianguo

    2018-02-01

    Presbycusis (age-related hearing loss) is the most universal sensory degenerative disease in elderly people caused by the degeneration of cochlear cells. Non-coding microRNAs (miRNAs) play a fundamental role in gene regulation in almost every multicellular organism, and control the aging processes. It has been identified that various miRNAs are up- or down-regulated during mammalian aging processes in tissue-specific manners. Most miRNAs bind to specific sites on their target messenger-RNAs (mRNAs) and decrease their expression. Germline mutation may lead to dysregulation of potential miRNAs expression, causing progressive hair cell degeneration and age-related hearing loss. Therapeutic innovations could emerge from a better understanding of diverse function of miRNAs in presbycusis. This review summarizes the relationship between miRNAs and presbycusis, and presents novel miRNAs-targeted strategies against presbycusis.

  6. MicroRNAs, Regulatory Networks, and Comorbidities

    DEFF Research Database (Denmark)

    Russo, Francesco; Belling, Kirstine; Jensen, Anders Boeck

    2017-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs involved in the posttranscriptional regulation of messenger RNAs (mRNAs). Each miRNA targets a specific set of mRNAs. Upon binding the miRNA inhibits mRNA translation or facilitate mRNA degradation. miRNAs are frequently deregulated in several pathologies...

  7. Non-Coding RNAs and Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Cristina Vallone

    2018-03-01

    Full Text Available Non-coding RNAs (ncRNAs are involved in the regulation of cell metabolism and neoplastic transformation. Recent studies have tried to clarify the significance of these information carriers in the genesis and progression of various cancers and their use as biomarkers for the disease; possible targets for the inhibition of growth and invasion by the neoplastic cells have been suggested. The significance of ncRNAs in lung cancer, bladder cancer, kidney cancer, and melanoma has been amply investigated with important results. Recently, the role of long non-coding RNAs (lncRNAs has also been included in cancer studies. Studies on the relation between endometrial cancer (EC and ncRNAs, such as small ncRNAs or micro RNAs (miRNAs, transfer RNAs (tRNAs, ribosomal RNAs (rRNAs, antisense RNAs (asRNAs, small nuclear RNAs (snRNAs, Piwi-interacting RNAs (piRNAs, small nucleolar RNAs (snoRNAs, competing endogenous RNAs (ceRNAs, lncRNAs, and long intergenic ncRNAs (lincRNAs have been published. The recent literature produced in the last three years was extracted from PubMed by two independent readers, which was then selected for the possible relation between ncRNAs, oncogenesis in general, and EC in particular.

  8. Micro-RNAs

    DEFF Research Database (Denmark)

    Taipaleenmäki, H.; Hokland, L. B.; Chen, Li

    2012-01-01

    Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post-transcriptional mechanisms. Recently, a novel class of regulatory factors termed microRNAs has been identified as playing an important role in the regulation of many aspects of osteoblast biology...... including proliferation, differentiation, metabolism and apoptosis. Also, preliminary data from animal disease models suggest that targeting miRNAs in bone can be a novel approach to increase bone mass. This review highlights the current knowledge of microRNA biology and their role in bone formation...

  9. microRNAs in hematopoiesis

    NARCIS (Netherlands)

    Lazare, Seka S.; Wojtowicz, Edyta E.; Bystrykh, Leonid V.; de Haan, Gerald

    2014-01-01

    miRNAs have been implicated in all stages of hematopoiesis including maintenance of self-renewal of hematopoietic stem cells (HSCs) and differentiation into mature blood cells. Regulation by miRNAs is markedly intertwined with transcription factors. In this review, we highlight miRNAs shown to be

  10. Circular RNAs in cancer

    DEFF Research Database (Denmark)

    Kristensen, L S; Hansen, T B; Venø, M T

    2018-01-01

    Circular RNA (circRNA) is a novel member of the noncoding cancer genome with distinct properties and diverse cellular functions, which is being explored at a steadily increasing pace. The list of endogenous circRNAs involved in cancer continues to grow; however, the functional relevance of the vast...... for circRNA cancer research and current caveats, which must be addressed to facilitate the translation of basic circRNA research into clinical use.Oncogene advance online publication, 9 October 2017; doi:10.1038/onc.2017.361....

  11. Targeting of microRNAs for therapeutics

    DEFF Research Database (Denmark)

    Stenvang, Jan; Lindow, Morten; Kauppinen, Sakari

    2008-01-01

    miRNAs (microRNAs) comprise a class of small endogenous non-coding RNAs that post-transcriptionally repress gene expression by base-pairing with their target mRNAs. Recent evidence has shown that miRNAs play important roles in a wide variety of human diseases, such as viral infections, cancer...

  12. Non-Protein Coding RNAs

    CERN Document Server

    Walter, Nils G; Batey, Robert T

    2009-01-01

    This book assembles chapters from experts in the Biophysics of RNA to provide a broadly accessible snapshot of the current status of this rapidly expanding field. The 2006 Nobel Prize in Physiology or Medicine was awarded to the discoverers of RNA interference, highlighting just one example of a large number of non-protein coding RNAs. Because non-protein coding RNAs outnumber protein coding genes in mammals and other higher eukaryotes, it is now thought that the complexity of organisms is correlated with the fraction of their genome that encodes non-protein coding RNAs. Essential biological processes as diverse as cell differentiation, suppression of infecting viruses and parasitic transposons, higher-level organization of eukaryotic chromosomes, and gene expression itself are found to largely be directed by non-protein coding RNAs. The biophysical study of these RNAs employs X-ray crystallography, NMR, ensemble and single molecule fluorescence spectroscopy, optical tweezers, cryo-electron microscopy, and ot...

  13. C. elegans microRNAs.

    Science.gov (United States)

    Vella, Monica C; Slack, Frank J

    2005-09-21

    MicroRNAs (miRNAs) are small, non-coding regulatory RNAs found in many phyla that control such diverse events as development, metabolism, cell fate and cell death. They have also been implicated in human cancers. The C. elegans genome encodes hundreds of miRNAs, including the founding members of the miRNA family lin-4 and let-7. Despite the abundance of C. elegans miRNAs, few miRNA targets are known and little is known about the mechanism by which they function. However, C. elegans research continues to push the boundaries of discovery in this area. lin-4 and let-7 are the best understood miRNAs. They control the timing of adult cell fate determination in hypodermal cells by binding to partially complementary sites in the mRNA of key developmental regulators to repress protein expression. For example, lin-4 is predicted to bind to seven sites in the lin-14 3' untranslated region (UTR) to repress LIN-14, while let-7 is predicted to bind two let-7 complementary sites in the lin-41 3' UTR to down-regulate LIN-41. Two other miRNAs, lsy-6 and mir-273, control left-right asymmetry in neural development, and also target key developmental regulators for repression. Approximately one third of the C. elegans miRNAs are differentially expressed during development indicating a major role for miRNAs in C. elegans development. Given the remarkable conservation of developmental mechanism across phylogeny, many of the principles of miRNAs discovered in C. elegans are likely to be applicable to higher animals.

  14. Circular RNAs and systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lian-Ju; Huang, Qing; Pan, Hai-Feng; Ye, Dong-Qing, E-mail: ydqahmu@gmail.com

    2016-08-15

    Circular RNAs (circRNAs) are a large class of noncoding RNAs that form covalently closed RNA circles. The discovery of circRNAs discloses a new layer of gene regulation occurred post-transcriptionally. Identification of endogenous circRNAs benefits from the advance in high-throughput RNA sequencing and remains challenging. Many studies probing into the mechanisms of circRNAs formation occurred cotranscriptionally or posttranscriptionally emerge and conclude that canonical splicing mechanism, sequence properties, and certain regulatory factors are at play in the process. Although our knowledge on functions of circRNAs is rather limited, a few circRNAs are shown to sponge miRNA and regulate gene transcription. The clearest case is one circRNA CDR1as that serves as sponge of miR-7. Researches on circRNAs in human diseases such as cancers highlight the function and physical relevance of circRNAs. Given the implication of miRNAs in the initiation and progression of systemic lupus erythematosus (SLE) and the roles of circRNAs in sponging miRNA and gene regulation, it is appealing to speculate that circRNAs may associate with SLE and may be potential therapeutic targets for treatment of SLE. Future studies should attach more importance to the relationship between circRNAs and SLE. This review will concern identification, biogenesis, and function of circRNAs, introduce reports exploring the association of circRNAs with human diseases, and conjecture the potential roles of circRNAs in SLE. - Highlights: • Studies have discovered thousands of circRNAs and interpreted their biogenesis. • Cytoplasmic circRNAs sponge miRNA and nuclear circRNAs modulate gene transcription. • Aberrant expression of circRNAs has been observed in various cancers. • CircRNAs may partake in the pathogenesis of systemic lupus erythematosus.

  15. Circular RNAs and systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Li, Lian-Ju; Huang, Qing; Pan, Hai-Feng; Ye, Dong-Qing

    2016-01-01

    Circular RNAs (circRNAs) are a large class of noncoding RNAs that form covalently closed RNA circles. The discovery of circRNAs discloses a new layer of gene regulation occurred post-transcriptionally. Identification of endogenous circRNAs benefits from the advance in high-throughput RNA sequencing and remains challenging. Many studies probing into the mechanisms of circRNAs formation occurred cotranscriptionally or posttranscriptionally emerge and conclude that canonical splicing mechanism, sequence properties, and certain regulatory factors are at play in the process. Although our knowledge on functions of circRNAs is rather limited, a few circRNAs are shown to sponge miRNA and regulate gene transcription. The clearest case is one circRNA CDR1as that serves as sponge of miR-7. Researches on circRNAs in human diseases such as cancers highlight the function and physical relevance of circRNAs. Given the implication of miRNAs in the initiation and progression of systemic lupus erythematosus (SLE) and the roles of circRNAs in sponging miRNA and gene regulation, it is appealing to speculate that circRNAs may associate with SLE and may be potential therapeutic targets for treatment of SLE. Future studies should attach more importance to the relationship between circRNAs and SLE. This review will concern identification, biogenesis, and function of circRNAs, introduce reports exploring the association of circRNAs with human diseases, and conjecture the potential roles of circRNAs in SLE. - Highlights: • Studies have discovered thousands of circRNAs and interpreted their biogenesis. • Cytoplasmic circRNAs sponge miRNA and nuclear circRNAs modulate gene transcription. • Aberrant expression of circRNAs has been observed in various cancers. • CircRNAs may partake in the pathogenesis of systemic lupus erythematosus.

  16. Retrotransposons and non-protein coding RNAs

    DEFF Research Database (Denmark)

    Mourier, Tobias; Willerslev, Eske

    2009-01-01

    does not merely represent spurious transcription. We review examples of functional RNAs transcribed from retrotransposons, and address the collection of non-protein coding RNAs derived from transposable element sequences, including numerous human microRNAs and the neuronal BC RNAs. Finally, we review...

  17. Panning for Long Noncoding RNAs

    Directory of Open Access Journals (Sweden)

    Li Yang

    2013-02-01

    Full Text Available The recent advent of high-throughput approaches has revealed widespread transcription of the human genome, leading to a new appreciation of transcription regulation, especially from noncoding regions. Distinct from most coding and small noncoding RNAs, long noncoding RNAs (lncRNAs are generally expressed at low levels, are less conserved and lack protein-coding capacity. These intrinsic features of lncRNAs have not only hampered their full annotation in the past several years, but have also generated controversy concerning whether many or most of these lncRNAs are simply the result of transcriptional noise. Here, we assess these intrinsic features that have challenged lncRNA discovery and further summarize recent progress in lncRNA discovery with integrated methodologies, from which new lessons and insights can be derived to achieve better characterization of lncRNA expression regulation. Full annotation of lncRNA repertoires and the implications of such annotation will provide a fundamental basis for comprehensive understanding of pervasive functions of lncRNAs in biological regulation.

  18. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs

    DEFF Research Database (Denmark)

    Khan, Aly A; Betel, Doron; Miller, Martin L

    2009-01-01

    Transfection of small RNAs (such as small interfering RNAs (siRNAs) and microRNAs (miRNAs)) into cells typically lowers expression of many genes. Unexpectedly, increased expression of genes also occurs. We investigated whether this upregulation results from a saturation effect--that is, competiti...

  19. Analyzing the interactions of mRNAs, miRNAs, lncRNAs and circRNAs to predict competing endogenous RNA networks in glioblastoma.

    Science.gov (United States)

    Yuan, Yang; Jiaoming, Li; Xiang, Wang; Yanhui, Liu; Shu, Jiang; Maling, Gou; Qing, Mao

    2018-05-01

    Cross-talk between competitive endogenous RNAs (ceRNAs) may play a critical role in revealing potential mechanisms of tumor development and physiology. Glioblastoma is the most common type of malignant primary brain tumor, and the mechanisms of tumor genesis and development in glioblastoma are unclear. Here, to investigate the role of non-coding RNAs and the ceRNA network in glioblastoma, we performed paired-end RNA sequencing and microarray analyses to obtain the expression profiles of mRNAs, lncRNAs, circRNAs and miRNAs. We identified that the expression of 501 lncRNAs, 1999 mRNAs, 2038 circRNAs and 143 miRNAs were often altered between glioblastoma and matched normal brain tissue. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed on these differentially expressed mRNAs and miRNA-mediated target genes of lncRNAs and circRNAs. Furthermore, we used a multi-step computational framework and several bioinformatics methods to construct a ceRNA network combining mRNAs, miRNAs, lncRNAs and circRNA, based on co-expression analysis between the differentially expressed RNAs. We identified that plenty of lncRNAs, CircRNAs and their downstream target genes in the ceRNA network are related to glutamatergic synapse, suggesting that glutamate metabolism is involved in glioma biological functions. Our results will accelerate the understanding of tumorigenesis, cancer progression and even therapeutic targeting in glioblastoma.

  20. Noncoding RNAs in Cancer Medicine

    Directory of Open Access Journals (Sweden)

    Laura Cerchia

    2006-01-01

    Full Text Available Several signalling proteins involved in cell growth and differentiation represent attractive candidate targets for cancer diagnosis and/or therapy since they can act as oncogenes. Because of their high specificity and low immunogeneicity, using artificial small noncoding RNA (ncRNAs as therapeutics has recently become a highly promising and rapidly expanding field of interest. Indeed, ncRNAs may either interfere with RNA transcription, stability, translation or directly hamper the function of the targets by binding to their surface. The recent finding that the expression of several genes is under the control of small single-stranded regulatory RNAs, including miRNAs, makes these genes as appropriate targets for ncRNA gene silencing. Furthermore, another class of small ncRNA, aptamers, act as high-affinity ligands and potential antagonists of disease-associated proteins. We will review here the recent and innovative methods that have been developed and the possible applications of ncRNAs as inhibitors or tracers in cancer medicine.

  1. Small silencing RNAs: an expanding universe.

    Science.gov (United States)

    Ghildiyal, Megha; Zamore, Phillip D

    2009-02-01

    Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNA classes have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, their modes of target regulation and in the biological pathways they regulate. There is a growing realization that, despite their differences, these distinct small RNA pathways are interconnected, and that small RNA pathways compete and collaborate as they regulate genes and protect the genome from external and internal threats.

  2. MicroRNAs in Metabolism

    DEFF Research Database (Denmark)

    Vienberg, Sara; Geiger, Julian; Madsen, Søren

    2017-01-01

    roles in cholesterol and lipid metabolism, whereas miR-103 and -107 regulates hepatic insulin sensitivity. In muscle tissue a defined number of miRNAs (miR-1, miR-133, mir-206) control myofiber type switch and induce myogenic differentiation programs. Similarly, in adipose tissue a defined number of mi...

  3. Genomic Organization of Zebrafish microRNAs

    Directory of Open Access Journals (Sweden)

    Paydar Ima

    2008-05-01

    Full Text Available Abstract Background microRNAs (miRNAs are small (~22 nt non-coding RNAs that regulate cell movement, specification, and development. Expression of miRNAs is highly regulated, both spatially and temporally. Based on direct cloning, sequence conservation, and predicted secondary structures, a large number of miRNAs have been identified in higher eukaryotic genomes but whether these RNAs are simply a subset of a much larger number of noncoding RNA families is unknown. This is especially true in zebrafish where genome sequencing and annotation is not yet complete. Results We analyzed the zebrafish genome to identify the number and location of proven and predicted miRNAs resulting in the identification of 35 new miRNAs. We then grouped all 415 zebrafish miRNAs into families based on seed sequence identity as a means to identify possible functional redundancy. Based on genomic location and expression analysis, we also identified those miRNAs that are likely to be encoded as part of polycistronic transcripts. Lastly, as a resource, we compiled existing zebrafish miRNA expression data and, where possible, listed all experimentally proven mRNA targets. Conclusion Current analysis indicates the zebrafish genome encodes 415 miRNAs which can be grouped into 44 families. The largest of these families (the miR-430 family contains 72 members largely clustered in two main locations along chromosome 4. Thus far, most zebrafish miRNAs exhibit tissue specific patterns of expression.

  4. Regulatory RNAs derived from transfer RNA?

    Science.gov (United States)

    Pederson, Thoru

    2010-10-01

    Four recent studies suggest that cleavages of transfer RNAs generate products with microRNA-like features, with some evidence of function. If their regulatory functions were to be confirmed, these newly revealed RNAs would add to the expanding repertoire of small noncoding RNAs and would also provide new perspectives on the coevolution of transfer RNA and messenger RNA.

  5. An expanding universe of noncoding RNAs.

    Science.gov (United States)

    Storz, Gisela

    2002-05-17

    Noncoding RNAs (ncRNAs) have been found to have roles in a great variety of processes, including transcriptional regulation, chromosome replication, RNA processing and modification, messenger RNA stability and translation, and even protein degradation and translocation. Recent studies indicate that ncRNAs are far more abundant and important than initially imagined. These findings raise several fundamental questions: How many ncRNAs are encoded by a genome? Given the absence of a diagnostic open reading frame, how can these genes be identified? How can all the functions of ncRNAs be elucidated?

  6. Role of Small RNAs in Trypanosomatid Infections

    Science.gov (United States)

    Linhares-Lacerda, Leandra; Morrot, Alexandre

    2016-01-01

    Trypanosomatid parasites survive and replicate in the host by using mechanisms that aim to establish a successful infection and ensure parasite survival. Evidence points to microRNAs as new players in the host-parasite interplay. MicroRNAs are small non-coding RNAs that control proteins levels via post-transcriptional gene down-regulation, either within the cells where they were produced or in other cells via intercellular transfer. These microRNAs can be modulated in host cells during infection and are among the growing group of small regulatory RNAs, for which many classes have been described, including the transfer RNA-derived small RNAs. Parasites can either manipulate microRNAs to evade host-driven damage and/or transfer small RNAs to host cells. In this mini-review, we present evidence for the involvement of small RNAs, such as microRNAs, in trypanosomatid infections which lack RNA interference. We highlight both microRNA profile alterations in host cells during those infections and the horizontal transfer of small RNAs and proteins from parasites to the host by membrane-derived extracellular vesicles in a cell communication mechanism. PMID:27065454

  7. Association of RNAs with Bacillus subtilis Hfq.

    Directory of Open Access Journals (Sweden)

    Michael Dambach

    Full Text Available The prevalence and characteristics of small regulatory RNAs (sRNAs have not been well characterized for Bacillus subtilis, an important model system for Gram-positive bacteria. However, B. subtilis was recently found to synthesize many candidate sRNAs during stationary phase. In the current study, we performed deep sequencing on Hfq-associated RNAs and found that a small subset of sRNAs associates with Hfq, an enigmatic RNA-binding protein that stabilizes sRNAs in Gram-negatives, but whose role is largely unknown in Gram-positive bacteria. We also found that Hfq associated with antisense RNAs, antitoxin transcripts, and many mRNA leaders. Several new candidate sRNAs and mRNA leader regions were also discovered by this analysis. Additionally, mRNA fragments overlapping with start or stop codons associated with Hfq, while, in contrast, relatively few full-length mRNAs were recovered. Deletion of hfq reduced the intracellular abundance of several representative sRNAs, suggesting that B. subtilis Hfq-sRNA interactions may be functionally significant in vivo. In general, we anticipate this catalog of Hfq-associated RNAs to serve as a resource in the functional characterization of Hfq in B. subtilis.

  8. Noncanonical microRNAs and endogenous siRNAs in lytic infection of murine gammaherpesvirus.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available MicroRNA (miRNA and endogenous small interfering RNA (endo-siRNA are two essential classes of small noncoding RNAs (sncRNAs in eukaryotes. The class of miRNA is diverse and there exist noncanonical miRNAs that bypass the canonical miRNA biogenesis pathway. In order to identify noncanonical miRNAs and endo-siRNAs responding to virus infection and study their potential function, we sequenced small-RNA species from cells lytically infected with murine gammaherpesvirus 68 (MHV68. In addition to three novel canonical miRNAs in mouse, two antisense miRNAs in virus and 25 novel noncanonical miRNAs, including miRNAs derived from transfer RNAs, small nucleolar RNAs and introns, in the host were identified. These noncanonical miRNAs exhibited features distinct from that of canonical miRNAs in lengths of hairpins, base pairings and first nucleotide preference. Many of the novel miRNAs are conserved in mammals. Besides several known murine endo-siRNAs detected by the sequencing profiling, a novel locus in the mouse genome was identified to produce endo-siRNAs. This novel endo-siRNA locus is comprised of two tandem inverted B4 short interspersed nuclear elements (SINEs. Unexpectedly, the SINE-derived endo-siRNAs were found in a variety of sequencing data and virus-infected cells. Moreover, a murine miRNA was up-regulated more than 35 fold in infected than in mock-treated cells. The putative targets of the viral and the up-regulated murine miRNAs were potentially involved in processes of gene transcription and protein phosphorylation, and localized to membranes, suggesting their potential role in manipulating the host basal immune system during lytic infection. Our results extended the number of noncanonical miRNAs in mammals and shed new light on their potential functions of lytic infection of MHV68.

  9. miRNAs in brain development

    International Nuclear Information System (INIS)

    Petri, Rebecca; Malmevik, Josephine; Fasching, Liana; Åkerblom, Malin; Jakobsson, Johan

    2014-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs have been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development. - Highlights: • miRNAs are essential for brain development and neuronal function. • KO of Dicer is embryonically lethal. • Conditional Dicer KO results in defective proliferation or increased apoptosis. • KO of individual miRNAs or miRNA families is necessary to determine function

  10. Annotation of mammalian primary microRNAs

    Directory of Open Access Journals (Sweden)

    Enright Anton J

    2008-11-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are important regulators of gene expression and have been implicated in development, differentiation and pathogenesis. Hundreds of miRNAs have been discovered in mammalian genomes. Approximately 50% of mammalian miRNAs are expressed from introns of protein-coding genes; the primary transcript (pri-miRNA is therefore assumed to be the host transcript. However, very little is known about the structure of pri-miRNAs expressed from intergenic regions. Here we annotate transcript boundaries of miRNAs in human, mouse and rat genomes using various transcription features. The 5' end of the pri-miRNA is predicted from transcription start sites, CpG islands and 5' CAGE tags mapped in the upstream flanking region surrounding the precursor miRNA (pre-miRNA. The 3' end of the pri-miRNA is predicted based on the mapping of polyA signals, and supported by cDNA/EST and ditags data. The predicted pri-miRNAs are also analyzed for promoter and insulator-associated regulatory regions. Results We define sets of conserved and non-conserved human, mouse and rat pre-miRNAs using bidirectional BLAST and synteny analysis. Transcription features in their flanking regions are used to demarcate the 5' and 3' boundaries of the pri-miRNAs. The lengths and boundaries of primary transcripts are highly conserved between orthologous miRNAs. A significant fraction of pri-miRNAs have lengths between 1 and 10 kb, with very few introns. We annotate a total of 59 pri-miRNA structures, which include 82 pre-miRNAs. 36 pri-miRNAs are conserved in all 3 species. In total, 18 of the confidently annotated transcripts express more than one pre-miRNA. The upstream regions of 54% of the predicted pri-miRNAs are found to be associated with promoter and insulator regulatory sequences. Conclusion Little is known about the primary transcripts of intergenic miRNAs. Using comparative data, we are able to identify the boundaries of a significant proportion of

  11. MicroRNAs in the Hypothalamus

    DEFF Research Database (Denmark)

    Meister, Björn; Herzer, Silke; Silahtaroglu, Asli

    2013-01-01

    MicroRNAs (miRNAs) are short (∼22 nucleotides) non-coding ribonucleic acid (RNA) molecules that negatively regulate the expression of protein-coding genes. Posttranscriptional silencing of target genes by miRNA is initiated by binding to the 3'-untranslated regions of target mRNAs, resulting...... of the hypothalamus and miRNAs have recently been shown to be important regulators of hypothalamic control functions. The aim of this review is to summarize some of the current knowledge regarding the expression and role of miRNAs in the hypothalamus.......RNA molecules are abundantly expressed in tissue-specific and regional patterns and have been suggested as potential biomarkers, disease modulators and drug targets. The central nervous system is a prominent site of miRNA expression. Within the brain, several miRNAs are expressed and/or enriched in the region...

  12. MicroRNAs and Periodontal Homeostasis.

    Science.gov (United States)

    Luan, X; Zhou, X; Trombetta-eSilva, J; Francis, M; Gaharwar, A K; Atsawasuwan, P; Diekwisch, T G H

    2017-05-01

    MicroRNAs (miRNAs) are a group of small RNAs that control gene expression in all aspects of eukaryotic life, primarily through RNA silencing mechanisms. The purpose of the present review is to introduce key miRNAs involved in periodontal homeostasis, summarize the mechanisms by which they affect downstream genes and tissues, and provide an introduction into the therapeutic potential of periodontal miRNAs. In general, miRNAs function synergistically to fine-tune the regulation of biological processes and to remove expression noise rather than by causing drastic changes in expression levels. In the periodontium, miRNAs play key roles in development and periodontal homeostasis and during the loss of periodontal tissue integrity as a result of periodontal disease. As part of the anabolic phase of periodontal homeostasis and periodontal development, miRNAs direct periodontal fibroblasts toward alveolar bone lineage differentiation and new bone formation through WNT, bone morphogenetic protein, and Notch signaling pathways. miRNAs contribute equally to the catabolic aspect of periodontal homeostasis as they affect osteoclastogenesis and osteoclast function, either by directly promoting osteoclast activity or by inhibiting osteoclast signaling intermediaries or through negative feedback loops. Their small size and ability to target multiple regulatory networks of related sets of genes have predisposed miRNAs to become ideal candidates for drug delivery and tissue regeneration. To address the immense therapeutic potential of miRNAs and their antagomirs, an ever growing number of delivery approaches toward clinical applications have been developed, including nanoparticle carriers and secondary structure interference inhibitor systems. However, only a fraction of the miRNAs involved in periodontal health and disease are known today. It is anticipated that continued research will lead to a more comprehensive understanding of the periodontal miRNA world, and a systematic

  13. MicroRNAs regulate osteogenesis and chondrogenesis

    International Nuclear Information System (INIS)

    Dong, Shiwu; Yang, Bo; Guo, Hongfeng; Kang, Fei

    2012-01-01

    Highlights: ► To focus on the role of miRNAs in chondrogenesis and osteogenesis. ► Involved in the regulation of miRNAs in osteoarthritis. ► To speculate some therapeutic targets for bone diseases. -- Abstract: MicroRNAs (miRNAs) are a class of small molecules and non-coding single strand RNAs that regulate gene expression at the post-transcriptional level by binding to specific sequences within target genes. miRNAs have been recognized as important regulatory factors in organism development and disease expression. Some miRNAs regulate the proliferation and differentiation of osteoblasts, osteoclasts and chondrocytes, eventually influencing metabolism and bone formation. miRNAs are expected to provide potential gene therapy targets for the clinical treatment of metabolic bone diseases and bone injuries. Here, we review the recent research progress on the regulation of miRNAs in bone biology, with a particular focus on the miRNA-mediated control mechanisms of bone and cartilage formation.

  14. MicroRNAs regulate osteogenesis and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shiwu, E-mail: shiwudong@gmail.com [Laboratory of Biomechanics, Department of Anatomy, The Third Military Medical University, Chongqing (China); Yang, Bo; Guo, Hongfeng; Kang, Fei [Laboratory of Biomechanics, Department of Anatomy, The Third Military Medical University, Chongqing (China)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer To focus on the role of miRNAs in chondrogenesis and osteogenesis. Black-Right-Pointing-Pointer Involved in the regulation of miRNAs in osteoarthritis. Black-Right-Pointing-Pointer To speculate some therapeutic targets for bone diseases. -- Abstract: MicroRNAs (miRNAs) are a class of small molecules and non-coding single strand RNAs that regulate gene expression at the post-transcriptional level by binding to specific sequences within target genes. miRNAs have been recognized as important regulatory factors in organism development and disease expression. Some miRNAs regulate the proliferation and differentiation of osteoblasts, osteoclasts and chondrocytes, eventually influencing metabolism and bone formation. miRNAs are expected to provide potential gene therapy targets for the clinical treatment of metabolic bone diseases and bone injuries. Here, we review the recent research progress on the regulation of miRNAs in bone biology, with a particular focus on the miRNA-mediated control mechanisms of bone and cartilage formation.

  15. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs

    NARCIS (Netherlands)

    Miesen, P.; Ivens, A.; Buck, A.H.; Rij, R.P. van

    2016-01-01

    In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of

  16. The Potential of MicroRNAs as Prostate Cancer Biomarkers

    NARCIS (Netherlands)

    L. Fabris (Linda); Y. Ceder (Yvonne); A.M. Chinnaiyan (Arul); G.W. Jenster (Guido); K.D. Sorensen (Karina D.); S.A. Tomlins (Scott A); T. Visakorpi (Tapio); G.A. Calin (George)

    2016-01-01

    textabstractContext: Short noncoding RNAs known as microRNAs (miRNAs) control protein expression through the degradation of RNA or the inhibition of protein translation. The miRNAs influence a wide range of biologic processes and are often deregulated in cancer. This family of small RNAs constitutes

  17. Visual screening for localized RNAs in yeast revealed novel RNAs at the bud-tip

    International Nuclear Information System (INIS)

    Andoh, Tomoko; Oshiro, Yukiko; Hayashi, Sachiko; Takeo, Hideki; Tani, Tokio

    2006-01-01

    Several RNAs, including rRNAs, snRNAs, snoRNAs, and some mRNAs, are known to be localized at specific sites in a cell. Although methods have been established to visualize RNAs in a living cell, no large-scale visual screening of localized RNAs has been performed. In this study, we constructed a genomic library in which random genomic fragments were inserted downstream of U1A-tag sequences under a GAL1 promoter. In a living yeast cell, transcribed U1A-tagged RNAs were visualized by U1A-GFP that binds the RNA sequence of the U1A-tag. In this screening, many RNAs showed nuclear signals. Since the nuclear signals of some RNAs were not seen when the U1A-tag was connected to the 3' ends of the RNAs, it is suggested that their nuclear signals correspond to nascent transcripts on GAL1 promoter plasmids. Using this screening method, we successfully identified two novel localized mRNAs, CSR2 and DAL81, which showed bud-tip localization

  18. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs.

    Science.gov (United States)

    Shahid, Saima; Kim, Gunjune; Johnson, Nathan R; Wafula, Eric; Wang, Feng; Coruh, Ceyda; Bernal-Galeano, Vivian; Phifer, Tamia; dePamphilis, Claude W; Westwood, James H; Axtell, Michael J

    2018-01-03

    Dodders (Cuscuta spp.) are obligate parasitic plants that obtain water and nutrients from the stems of host plants via specialized feeding structures called haustoria. Dodder haustoria facilitate bidirectional movement of viruses, proteins and mRNAs between host and parasite, but the functional effects of these movements are not known. Here we show that Cuscuta campestris haustoria accumulate high levels of many novel microRNAs (miRNAs) while parasitizing Arabidopsis thaliana. Many of these miRNAs are 22 nucleotides in length. Plant miRNAs of this length are uncommon, and are associated with amplification of target silencing through secondary short interfering RNA (siRNA) production. Several A. thaliana mRNAs are targeted by 22-nucleotide C. campestris miRNAs during parasitism, resulting in mRNA cleavage, secondary siRNA production, and decreased mRNA accumulation. Hosts with mutations in two of the loci that encode target mRNAs supported significantly higher growth of C. campestris. The same miRNAs that are expressed and active when C. campestris parasitizes A. thaliana are also expressed and active when it infects Nicotiana benthamiana. Homologues of target mRNAs from many other plant species also contain the predicted target sites for the induced C. campestris miRNAs. These data show that C. campestris miRNAs act as trans-species regulators of host-gene expression, and suggest that they may act as virulence factors during parasitism.

  19. Novel meiotic miRNAs and indications for a role of phasiRNAs in meiosis

    Science.gov (United States)

    Small RNAs (sRNA) add additional layers to the regulation of gene expression, with siRNAs directing gene silencing at the DNA level by RdDM (RNA-directed DNA methylation), and miRNAs directing post-transcriptional regulation of specific target genes, mostly by mRNA cleavage. We used manually isolate...

  20. microRNAs in CNS disorders

    DEFF Research Database (Denmark)

    Kocerha, Jannet; Kauppinen, Sakari; Wahlestedt, Claes

    2009-01-01

    RNAs (miRNAs) have been identified in the mammalian central nervous system (CNS) and are reported to mediate pivotal roles in many aspects of neuronal functions. Disruption of miRNA-based post-transcriptional regulation has been implicated in a range of CNS disorders as one miRNA is predicted to impact...

  1. Exploiting tRNAs to Boost Virulence

    Directory of Open Access Journals (Sweden)

    Suki Albers

    2016-01-01

    Full Text Available Transfer RNAs (tRNAs are powerful small RNA entities that are used to translate nucleotide language of genes into the amino acid language of proteins. Their near-uniform length and tertiary structure as well as their high nucleotide similarity and post-transcriptional modifications have made it difficult to characterize individual species quantitatively. However, due to the central role of the tRNA pool in protein biosynthesis as well as newly emerging roles played by tRNAs, their quantitative assessment yields important information, particularly relevant for virus research. Viruses which depend on the host protein expression machinery have evolved various strategies to optimize tRNA usage—either by adapting to the host codon usage or encoding their own tRNAs. Additionally, several viruses bear tRNA-like elements (TLE in the 5′- and 3′-UTR of their mRNAs. There are different hypotheses concerning the manner in which such structures boost viral protein expression. Furthermore, retroviruses use special tRNAs for packaging and initiating reverse transcription of their genetic material. Since there is a strong specificity of different viruses towards certain tRNAs, different strategies for recruitment are employed. Interestingly, modifications on tRNAs strongly impact their functionality in viruses. Here, we review those intersection points between virus and tRNA research and describe methods for assessing the tRNA pool in terms of concentration, aminoacylation and modification.

  2. Annotating functional RNAs in genomes using Infernal.

    Science.gov (United States)

    Nawrocki, Eric P

    2014-01-01

    Many different types of functional non-coding RNAs participate in a wide range of important cellular functions but the large majority of these RNAs are not routinely annotated in published genomes. Several programs have been developed for identifying RNAs, including specific tools tailored to a particular RNA family as well as more general ones designed to work for any family. Many of these tools utilize covariance models (CMs), statistical models of the conserved sequence, and structure of an RNA family. In this chapter, as an illustrative example, the Infernal software package and CMs from the Rfam database are used to identify RNAs in the genome of the archaeon Methanobrevibacter ruminantium, uncovering some additional RNAs not present in the genome's initial annotation. Analysis of the results and comparison with family-specific methods demonstrate some important strengths and weaknesses of this general approach.

  3. Fitness Landscapes of Functional RNAs

    Directory of Open Access Journals (Sweden)

    Ádám Kun

    2015-08-01

    Full Text Available The notion of fitness landscapes, a map between genotype and fitness, was proposed more than 80 years ago. For most of this time data was only available for a few alleles, and thus we had only a restricted view of the whole fitness landscape. Recently, advances in genetics and molecular biology allow a more detailed view of them. Here we review experimental and theoretical studies of fitness landscapes of functional RNAs, especially aptamers and ribozymes. We find that RNA structures can be divided into critical structures, connecting structures, neutral structures and forbidden structures. Such characterisation, coupled with theoretical sequence-to-structure predictions, allows us to construct the whole fitness landscape. Fitness landscapes then can be used to study evolution, and in our case the development of the RNA world.

  4. Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circRNAs as reference genes for the estimation of PMI.

    Science.gov (United States)

    Tu, Chunyan; Du, Tieshuai; Shao, Chengchen; Liu, Zengjia; Li, Liliang; Shen, Yiwen

    2018-04-24

    The precise estimation of postmortem interval (PMI) is a critical step in death investigation of forensic cases. Detecting the degradation of RNA in tissues by real time quantitative polymerase chain reaction (RT-qPCR) technology provides a new theoretical basis for estimation of PMI. However, most commonly used reference genes degrade over time, while previous studies seldom consider this when selecting suitable reference genes for the estimation of PMI. Studies have shown microRNAs (miRNAs) are very stable and circular RNAs (circRNAs) have recently emerged as a novel class of RNAs with high stability. We aimed to evaluate the stability of the two kinds of RNAs and normal reference genes using geNorm and NormFinder algorithms to identify tissue-specific reference genes for PMI estimation. The content of candidate RNAs from mouse heart, liver and skeletal muscle tissues were dynamically examined in 8 consecutive days after death. Among the 11 candidate genes (β-actin, Gapdh, Rps18, 5S, 18S, U6, miR-133a, miR-122, circ-AFF1, LC-Ogdh and LC-LRP6), the following genes showed prioritized stability: miR-122, miR-133a and 18S in heart tissues; LC-Ogdh, circ-AFF1 and miR-122 in liver tissues; and miR-133a, circ-AFF1 and LC-LRP6 in skeletal muscle tissues. Our results suggested that miRNAs and circRNAs were more stable as reference genes than other kinds of RNAs regarding PMI estimation. The appropriate internal control genes were not completely the same across tissue types.

  5. Non-Coding RNAs in Hodgkin Lymphoma

    Directory of Open Access Journals (Sweden)

    Anna Cordeiro

    2017-05-01

    Full Text Available MicroRNAs (miRNAs, small non-coding RNAs that regulate gene expression by binding to the 3’-UTR of their target genes, can act as oncogenes or tumor suppressors. Recently, other types of non-coding RNAs—piwiRNAs and long non-coding RNAs—have also been identified. Hodgkin lymphoma (HL is a B cell origin disease characterized by the presence of only 1% of tumor cells, known as Hodgkin and Reed-Stenberg (HRS cells, which interact with the microenvironment to evade apoptosis. Several studies have reported specific miRNA signatures that can differentiate HL lymph nodes from reactive lymph nodes, identify histologic groups within classical HL, and distinguish HRS cells from germinal center B cells. Moreover, some signatures are associated with survival or response to chemotherapy. Most of the miRNAs in the signatures regulate genes related to apoptosis, cell cycle arrest, or signaling pathways. Here we review findings on miRNAs in HL, as well as on other non-coding RNAs.

  6. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    KAUST Repository

    Khraiwesh, Basel

    2012-02-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress. © 2011 Elsevier B.V.

  7. The Host RNAs in Retroviral Particles

    Directory of Open Access Journals (Sweden)

    Alice Telesnitsky

    2016-08-01

    Full Text Available As they assemble, retroviruses encapsidate both their genomic RNAs and several types of host RNA. Whereas limited amounts of messenger RNA (mRNA are detectable within virion populations, the predominant classes of encapsidated host RNAs do not encode proteins, but instead include endogenous retroelements and several classes of non-coding RNA (ncRNA, some of which are packaged in significant molar excess to the viral genome. Surprisingly, although the most abundant host RNAs in retroviruses are also abundant in cells, unusual forms of these RNAs are packaged preferentially, suggesting that these RNAs are recruited early in their biogenesis: before associating with their cognate protein partners, and/or from transient or rare RNA populations. These RNAs’ packaging determinants differ from the viral genome’s, and several of the abundantly packaged host ncRNAs serve cells as the scaffolds of ribonucleoprotein particles. Because virion assembly is equally efficient whether or not genomic RNA is available, yet RNA appears critical to the structural integrity of retroviral particles, it seems possible that the selectively encapsidated host ncRNAs might play roles in assembly. Indeed, some host ncRNAs appear to act during replication, as some transfer RNA (tRNA species may contribute to nuclear import of human immunodeficiency virus 1 (HIV-1 reverse transcription complexes, and other tRNA interactions with the viral Gag protein aid correct trafficking to plasma membrane assembly sites. However, despite high conservation of packaging for certain host RNAs, replication roles for most of these selectively encapsidated RNAs—if any—have remained elusive.

  8. Interfering Satellite RNAs of Bamboo mosaic virus

    Directory of Open Access Journals (Sweden)

    Kuan-Yu Lin

    2017-05-01

    Full Text Available Satellite RNAs (satRNAs are sub-viral agents that may interact with their cognate helper virus (HV and host plant synergistically and/or antagonistically. SatRNAs totally depend on the HV for replication, so satRNAs and HV usually evolve similar secondary or tertiary RNA structures that are recognized by a replication complex, although satRNAs and HV do not share an appreciable sequence homology. The satRNAs of Bamboo mosaic virus (satBaMV, the only satRNAs of the genus Potexvirus, have become one of the models of how satRNAs can modulate HV replication and virus-induced symptoms. In this review, we summarize the molecular mechanisms underlying the interaction of interfering satBaMV and BaMV. Like other satRNAs, satBaMV mimics the secondary structures of 5′- and 3′-untranslated regions (UTRs of BaMV as a molecular pretender. However, a conserved apical hairpin stem loop (AHSL in the 5′-UTR of satBaMV was found as the key determinant for downregulating BaMV replication. In particular, two unique nucleotides (C60 and C83 in the AHSL of satBaMVs determine the satBaMV interference ability by competing for the replication machinery. Thus, transgenic plants expressing interfering satBaMV could confer resistance to BaMV, and interfering satBaMV could be used as biological-control agent. Unlike two major anti-viral mechanisms, RNA silencing and salicylic acid-mediated immunity, our findings in plants by in vivo competition assay and RNA deep sequencing suggested replication competition is involved in this transgenic satBaMV-mediated BaMV interference. We propose how a single nucleotide of satBaMV can make a great change in BaMV pathogenicity and the underlying mechanism.

  9. MicroRNAs in mantle cell lymphoma

    DEFF Research Database (Denmark)

    Husby, Simon; Geisler, Christian; Grønbæk, Kirsten

    2013-01-01

    Mantle cell lymphoma (MCL) is a rare and aggressive subtype of non-Hodgkin lymphoma. New treatment modalities, including intensive induction regimens with immunochemotherapy and autologous stem cell transplant, have improved survival. However, many patients still relapse, and there is a need...... for novel therapeutic strategies. Recent progress has been made in the understanding of the role of microRNAs (miRNAs) in MCL. Comparisons of tumor samples from patients with MCL with their normal counterparts (naive B-cells) have identified differentially expressed miRNAs with roles in cellular growth...

  10. Non-Coding RNAs in Muscle Dystrophies

    Directory of Open Access Journals (Sweden)

    Alessandra Ferlini

    2013-09-01

    Full Text Available ncRNAs are the most recently identified class of regulatory RNAs with vital functions in gene expression regulation and cell development. Among the variety of roles they play, their involvement in human diseases has opened new avenues of research towards the discovery and development of novel therapeutic approaches. Important data come from the field of hereditary muscle dystrophies, like Duchenne muscle dystrophy and Myotonic dystrophies, rare diseases affecting 1 in 7000–15,000 newborns and is characterized by severe to mild muscle weakness associated with cardiac involvement. Novel therapeutic approaches are now ongoing for these diseases, also based on splicing modulation. In this review we provide an overview about ncRNAs and their behavior in muscular dystrophy and explore their links with diagnosis, prognosis and treatments, highlighting the role of regulatory RNAs in these pathologies.

  11. Interplay of noncoding RNAs, mRNAs, and proteins during the growth of eukaryotic cells

    International Nuclear Information System (INIS)

    Zhdanov, V. P.

    2010-01-01

    Numerous biological functions of noncoding RNAs (ncRNAs) in eukaryotic cells are based primarily on their ability to pair with target mRNAs and then either to prevent translation or to result in rapid degradation of the mRNA-ncRNA complex. Using a general model describing this scenario, we show that ncRNAs may help to maintain constant mRNA and protein concentrations during the growth of cells. The possibility of observation of this effect on the global scale is briefly discussed.

  12. Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging.

    Science.gov (United States)

    Grammatikakis, Ioannis; Panda, Amaresh C; Abdelmohsen, Kotb; Gorospe, Myriam

    2014-12-01

    During aging, progressive deleterious changes increase the risk of disease and death. Prominent molecular hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, cellular senescence, stem cell exhaustion, and altered intercellular communication. Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes, including age-related diseases like cancer, cardiovascular pathologies, and neurodegenerative disorders. Evidence is emerging that lncRNAs influence the molecular processes that underlie age-associated phenotypes. Here, we review our current understanding of lncRNAs that control the development of aging traits.

  13. Horizontal Transfer of Small RNAs To and From Plants

    Directory of Open Access Journals (Sweden)

    Lu eHan

    2015-12-01

    Full Text Available Genetic information is traditionally thought to be transferred from parents to offspring. However, there is evidence indicating that gene transfer can also occur from microbes to higher species, such as plants, invertebrates and vertebrates. This horizontal transfer can be carried out by small RNAs (sRNAs. sRNAs have been recently reported to move across kingdoms as mobile signals, spreading silencing information toward targeted genes. sRNAs, especially microRNAs (miRNAs and small interfering RNAs (siRNAs, are non-coding molecules that control gene expression at the transcriptional or post-transcriptional level. Some sRNAs act in a cross-kingdom manner between animals and their parasites, but little is known about such sRNAs associated with plants. In this report, we provide a brief introduction to miRNAs that are transferred from plants to mammals/viruses and siRNAs that are transferred from microbes to plants. Both miRNAs and siRNAs can exert corresponding functions in the target organisms. Additionally, we provide information concerning a host-induced gene silencing (HIGS system as a potential application that utilizes the transgenic trafficking of RNA molecules to silence the genes of interacting organisms. Moreover, we lay out the controversial views regarding cross-kingdom miRNAs and call for better methodology and experimental design to confirm this unique function of miRNAs.

  14. The therapeutic potential of MicroRNAs in cancer

    DEFF Research Database (Denmark)

    Thorsen, Stine Buch; Obad, Susanna; Jensen, Niels Frank

    2012-01-01

    MicroRNAs (miRNAs) have been uncovered as important posttranscriptional regulators of nearly every biological process in the cell. Furthermore, mounting evidence implies that miRNAs play key roles in the pathogenesis of cancer and that many miRNAs can function either as oncogenes or tumor...

  15. MicroRNAs: role and therapeutic targets in viral hepatitis

    NARCIS (Netherlands)

    van der Ree, Meike H.; de Bruijne, Joep; Kootstra, Neeltje A.; Jansen, Peter Lm; Reesink, Hendrik W.

    2014-01-01

    MicroRNAs regulate gene expression by binding to the 3'-untranslated region (UTR) of target messenger RNAs (mRNAs). The importance of microRNAs has been shown for several liver diseases, for example, viral hepatitis. MicroRNA-122 is highly abundant in the liver and is involved in the regulation of

  16. A survey of small RNAs in human sperm

    Science.gov (United States)

    Krawetz, Stephen A.; Kruger, Adele; Lalancette, Claudia; Tagett, Rebecca; Anton, Ester; Draghici, Sorin; Diamond, Michael P.

    2011-01-01

    BACKGROUND There has been substantial interest in assessing whether RNAs (mRNAs and sncRNAs, i.e. small non-coding) delivered from mammalian spermatozoa play a functional role in early embryo development. While the cadre of spermatozoal mRNAs has been characterized, comparatively little is known about the distribution or function of the estimated 24 000 sncRNAs within each normal human spermatozoon. METHODS RNAs of libraries for Next Generation Sequencing. Known sncRNAs that uniquely mapped to a single location in the human genome were identified. RESULTS Bioinformatic analysis revealed the presence of multiple classes of small RNAs in human spermatozoa. The primary classes resolved included microRNA (miRNAs) (≈7%), Piwi-interacting piRNAs (≈17%), repeat-associated small RNAs (≈65%). A minor subset of short RNAs within the transcription start site/promoter fraction (≈11%) frames the histone promoter-associated regions enriched in genes of early embryonic development. These have been termed quiescent RNAs. CONCLUSIONS A complex population of male derived sncRNAs that are available for delivery upon fertilization was revealed. Sperm miRNA-targeted enrichment in the human oocyte is consistent with their role as modifiers of early post-fertilization. The relative abundance of piRNAs and repeat-associated RNAs suggests that they may assume a role in confrontation and consolidation. This may ensure the compatibility of the genomes at fertilization. PMID:21989093

  17. Circadian changes in long noncoding RNAs in the pineal gland

    DEFF Research Database (Denmark)

    Coon, Steven L; Munson, Peter J; Cherukuri, Praveen F

    2012-01-01

    Long noncoding RNAs (lncRNAs) play a broad range of biological roles, including regulation of expression of genes and chromosomes. Here, we present evidence that lncRNAs are involved in vertebrate circadian biology. Differential night/day expression of 112 lncRNAs (0.3 to >50 kb) occurs in the ra...

  18. Hidden layers of human small RNAs

    DEFF Research Database (Denmark)

    Kawaji, Hideya; Nakamura, Mari; Takahashi, Yukari

    2008-01-01

    small RNA have focused on miRNA and/or siRNA rather than on the exploration of additional classes of RNAs. RESULTS: Here, we explored human small RNAs by unbiased sequencing of RNAs with sizes of 19-40 nt. We provide substantial evidences for the existence of independent classes of small RNAs. Our data......BACKGROUND: Small RNA attracts increasing interest based on the discovery of RNA silencing and the rapid progress of our understanding of these phenomena. Although recent studies suggest the possible existence of yet undiscovered types of small RNAs in higher organisms, many studies to profile...... shows that well-characterized non-coding RNA, such as tRNA, snoRNA, and snRNA are cleaved at sites specific to the class of ncRNA. In particular, tRNA cleavage is regulated depending on tRNA type and tissue expression. We also found small RNAs mapped to genomic regions that are transcribed in both...

  19. MicroRNAs in right ventricular remodelling.

    Science.gov (United States)

    Batkai, Sandor; Bär, Christian; Thum, Thomas

    2017-10-01

    Right ventricular (RV) remodelling is a lesser understood process of the chronic, progressive transformation of the RV structure leading to reduced functional capacity and subsequent failure. Besides conditions concerning whole hearts, some pathology selectively affects the RV, leading to a distinct RV-specific clinical phenotype. MicroRNAs have been identified as key regulators of biological processes that drive the progression of chronic diseases. The role of microRNAs in diseases affecting the left ventricle has been studied for many years, however there is still limited information on microRNAs specific to diseases in the right ventricle. Here, we review recently described details on the expression, regulation, and function of microRNAs in the pathological remodelling of the right heart. Recently identified strategies using microRNAs as pharmacological targets or biomarkers will be highlighted. Increasing knowledge of pathogenic microRNAs will finally help improve our understanding of underlying distinct mechanisms and help utilize novel targets or biomarkers to develop treatments for patients suffering from right heart diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  20. Immunomodulating microRNAs of mycobacterial infections.

    Science.gov (United States)

    Bettencourt, Paulo; Pires, David; Anes, Elsa

    2016-03-01

    MicroRNAs are a class of small non-coding RNAs that have emerged as key regulators of gene expression at the post-transcriptional level by sequence-specific binding to target mRNAs. Some microRNAs block translation, while others promote mRNA degradation, leading to a reduction in protein availability. A single miRNA can potentially regulate the expression of multiple genes and their encoded proteins. Therefore, miRNAs can influence molecular signalling pathways and regulate many biological processes in health and disease. Upon infection, host cells rapidly change their transcriptional programs, including miRNA expression, as a response against the invading microorganism. Not surprisingly, pathogens can also alter the host miRNA profile to their own benefit, which is of major importance to scientists addressing high morbidity and mortality infectious diseases such as tuberculosis. In this review, we present recent findings on the miRNAs regulation of the host response against mycobacterial infections, providing new insights into host-pathogen interactions. Understanding these findings and its implications could reveal new opportunities for designing better diagnostic tools, therapies and more effective vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Extracellular small RNAs: what, where, why?

    Science.gov (United States)

    Hoy, Anna M.; Buck, Amy H.

    2012-01-01

    miRNAs (microRNAs) are a class of small RNA that regulate gene expression by binding to mRNAs and modulating the precise amount of proteins that get expressed in a cell at a given time. This form of gene regulation plays an important role in developmental systems and is critical for the proper function of numerous biological pathways. Although miRNAs exert their functions inside the cell, these and other classes of RNA are found in body fluids in a cell-free form that is resistant to degradation by RNases. A broad range of cell types have also been shown to secrete miRNAs in association with components of the RISC (RNA-induced silencing complex) and/or encapsulation within vesicles, which can be taken up by other cells. In the present paper, we provide an overview of the properties of extracellular miRNAs in relation to their capacity as biomarkers, stability against degradation and mediators of cell–cell communication. PMID:22817753

  2. The expanding universe of noncoding RNAs.

    Science.gov (United States)

    Hannon, G J; Rivas, F V; Murchison, E P; Steitz, J A

    2006-01-01

    The 71st Cold Spring Harbor Symposium on Quantitative Biology celebrated the numerous and expanding roles of regulatory RNAs in systems ranging from bacteria to mammals. It was clearly evident that noncoding RNAs are undergoing a renaissance, with reports of their involvement in nearly every cellular process. Previously known classes of longer noncoding RNAs were shown to function by every possible means-acting catalytically, sensing physiological states through adoption of complex secondary and tertiary structures, or using their primary sequences for recognition of target sites. The many recently discovered classes of small noncoding RNAs, generally less than 35 nucleotides in length, most often exert their effects by guiding regulatory complexes to targets via base-pairing. With the ability to analyze the RNA products of the genome in ever greater depth, it has become clear that the universe of noncoding RNAs may extend far beyond the boundaries we had previously imagined. Thus, as much as the Symposium highlighted exciting progress in the field, it also revealed how much farther we must go to understand fully the biological impact of noncoding RNAs.

  3. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis

    DEFF Research Database (Denmark)

    Pauli, Andrea; Valen, Eivind; Lin, Michael F.

    2012-01-01

    Long non-coding RNAs (lncRNAs) comprise a diverse class of transcripts that structurally resemble mRNAs but do not encode proteins. Recent genome-wide studies in human and mouse have annotated lncRNAs expressed in cell lines and adult tissues, but a systematic analysis of lncRNAs expressed during...... of genes with developmental functions. The temporal expression profile of lncRNAs revealed two novel properties: lncRNAs are expressed in narrower time windows than protein-coding genes and are specifically enriched in early-stage embryos. In addition, several lncRNAs show tissue-specific expression...... and distinct subcellular localization patterns. Integrative computational analyses associated individual lncRNAs with specific pathways and functions, ranging from cell cycle regulation to morphogenesis. Our study provides the first systematic identification of lncRNAs in a vertebrate embryo and forms...

  4. Integrative analysis of circRNAs acting as ceRNAs involved in ethylene pathway in tomato.

    Science.gov (United States)

    Wang, Yunxiang; Wang, Qing; Gao, Lipu; Zhu, Benzhong; Luo, Yunbo; Deng, Zhiping; Zuo, Jinhua

    2017-11-01

    Circular RNAs (circRNAs) are a large class of non-coding endogenous RNAs that could act as competing endogenous RNAs (ceRNAs) to terminate the mRNA targets' suppression of miRNAs. To elucidate the intricate regulatory roles of circRNAs in the ethylene pathway in tomato fruit, deep sequencing and bioinformatics methods were performed. After strict screening, a total of 318 circRNAs were identified. Among these circRNAs, 282 were significantly differentially expressed among wild-type and sense-/antisense-LeERF1 transgenic tomato fruits. Besides, 1254 target genes were identified and a large amount of them were found to be involved in ethylene pathway. In addition, a sophisticated regulatory model consisting of circRNAs, target genes and ethylene was set up. Importantly, 61 circRNAs were found to be potential ceRNAs to combine with miRNAs and some of the miRNAs had been revealed to participate in the ethylene signaling pathway. This research further raised the possibility that the ethylene pathway in tomato fruit may be under the regulation of various circRNAs and provided a new perspective of the roles of circRNAs. © 2017 Scandinavian Plant Physiology Society.

  5. Identifying small RNAs derived from maternal- and somatic-type rRNAs in zebrafish development.

    Science.gov (United States)

    Locati, Mauro D; Pagano, Johanna F B; Abdullah, Farah; Ensink, Wim A; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Spaink, Herman P; Rauwerda, Han; Jonker, Martijs J; Dekker, Rob J; Breit, Timo M

    2018-02-09

    rRNAs are non-coding RNAs present in all prokaryotes and eukaryotes. In eukaryotes there are four rRNAs: 18S, 5.8S, 28S, originating from a common precursor (45S), and 5S. We have recently discovered the existence of two distinct developmental types of rRNA: a maternal-type, present in eggs and a somatic-type, expressed in adult tissues. Lately, next-generation sequencing has allowed the discovery of new small-RNAs deriving from longer non-coding RNAs, including small-RNAs from rRNAs (srRNAs). Here, we systemically investigated srRNAs of maternal- or somatic-type 18S, 5.8S, 28S, with small-RNAseq from many zebrafish developmental stages. We identified new srRNAs for each rRNA. For 5.8S, we found srRNA consisting of the 5' or 3' halves, with only the latter having different sequence for the maternal- and somatic-types. For 18S, we discovered 21 nt srRNA from the 5' end of the 18S rRNA with a striking resemblance to microRNAs; as it is likely processed from a stem-loop precursor and present in human and mouse Argonaute-complexed small-RNA. For 28S, an abundant 80 nt srRNA from the 3' end of the 28S rRNA was found. The expression levels during embryogenesis of these srRNA indicate they are not generated from rRNA degradation and might have a role in the zebrafish development.

  6. microRNAs and lipid metabolism

    Science.gov (United States)

    Aryal, Binod; Singh, Abhishek K.; Rotllan, Noemi; Price, Nathan; Fernández-Hernando, Carlos

    2017-01-01

    Purpose of review Work over the last decade has identified the important role of microRNAs (miRNAS) in regulating lipoprotein metabolism and associated disorders including metabolic syndrome, obesity and atherosclerosis. This review summarizes the most recent findings in the field, highlighting the contribution of miRNAs in controlling low-density lipoprotein (LDL) and high-density lipoprotein (HDL) metabolism. Recent findings A number of miRNAs have emerged as important regulators of lipid metabolism, including miR-122 and miR-33. Work over the last two years has identified additional functions of miR-33 including the regulation of macrophage activation and mitochondrial metabolism. Moreover, it has recently been shown that miR-33 regulates vascular homeostasis and cardiac adaptation in response to pressure overload. In addition to miR-33 and miR-122, recent GWAS have identified single nucleotide polymorphisms (SNP) in the proximity of miRNAs genes associated with abnormal levels of circulating lipids in humans. Several of these miRNA, such as miR-148a and miR-128-1, target important proteins that regulate cellular cholesterol metabolism, including the low-density lipoprotein receptor (LDLR) and the ATP-binding cassette A1 (ABCA1). Summary microRNAs have emerged as critical regulators of cholesterol metabolism and promising therapeutic targets for treating cardiometabolic disorders including atherosclerosis. Here, we discuss the recent findings in the field highlighting the novel mechanisms by which miR-33 controls lipid metabolism and atherogenesis and the identification of novel miRNAs that regulate LDL metabolism. Finally, we summarize the recent findings that identified miR-33 as an important non-coding RNA that controls cardiovascular homeostasis independent of its role in regulating lipid metabolism. PMID:28333713

  7. Progress and Prospects of Long Noncoding RNAs (lncRNAs in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Chen Li

    2015-05-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most frequently occurring cancers with poor prognosis, and novel diagnostic or prognostic biomarkers and therapeutic targets for HCC are urgently required. With the advance of high-resolution microarrays and massively parallel sequencing technology, lncRNAs are suggested to play critical roles in the tumorigenesis and development of human HCC. To date, dysregulation of many HCC-related lncRNAs such as HULC, HOTAIR, MALAT1, and H19 have been identified. From transcriptional “noise” to indispensable elements, lncRNAs may re-write the central dogma. Also, lncRNAs found in body fluids have demonstrated their utility as fluid-based noninvasive markers for clinical use and as therapeutic targets for HCC. Even though several lncRNAs have been characterized, the underlying mechanisms of their contribution to HCC remain unknown, and many important questions about lncRNAs need resolving. A better understanding of the molecular mechanism in HCC-related lncRNAs will provide a rationale for novel effective lncRNA-based targeted therapies. In this review, we highlight the emerging roles of lncRNAs in HCC, and discuss their potential clinical applications as biomarkers for the diagnosis, prognosis, monitoring and treatment of HCC.

  8. Highly Complementary Target RNAs Promote Release of Guide RNAs from Human Argonaute2

    Science.gov (United States)

    De, Nabanita; Young, Lisa; Lau, Pick-Wei; Meisner, Nicole-Claudia; Morrissey, David V.; MacRae, Ian J.

    2013-01-01

    SUMMARY Argonaute proteins use small RNAs to guide the silencing of complementary target RNAs in many eukaryotes. Although small RNA biogenesis pathways are well studied, mechanisms for removal of guide RNAs from Argonaute are poorly understood. Here we show that the Argonaute2 (Ago2) guide RNA complex is extremely stable, with a half-life on the order of days. However, highly complementary target RNAs destabilize the complex and significantly accelerate release of the guide RNA from Ago2. This “unloading” activity can be enhanced by mismatches between the target and the guide 5′ end and attenuated by mismatches to the guide 3′ end. The introduction of 3′ mismatches leads to more potent silencing of abundant mRNAs in mammalian cells. These findings help to explain why the 3′ ends of mammalian microRNAs (miRNAs) rarely match their targets, suggest a mechanism for sequence-specific small RNA turnover, and offer insights for controlling small RNAs in mammalian cells. PMID:23664376

  9. Emerging RNA-based drugs: siRNAs, microRNAs and derivates.

    Science.gov (United States)

    Pereira, Tiago Campos; Lopes-Cendes, Iscia

    2012-09-01

    An emerging new category of therapeutic agents based on ribonucleic acid has emerged and shown very promising in vitro, animal and pre-clinical results, known as small interfering RNAs (siRNAs), microRNAs mimics (miRNA mimics) and their derivates. siRNAs are small RNA molecules that promote potent and specific silencing of mutant, exogenous or aberrant genes through a mechanism known as RNA interference. These agents have called special attention to medicine since they have been used to experimentally treat a series of neurological conditions with distinct etiologies such as prion, viral, bacterial, fungal, genetic disorders and others. siRNAs have also been tested in other scenarios such as: control of anxiety, alcohol consumption, drug-receptor blockage and inhibition of pain signaling. Although in a much earlier stage, miRNAs mimics, anti-miRs and small activating RNAs (saRNAs) also promise novel therapeutic approaches to control gene expression. In this review we intend to introduce clinicians and medical researchers to the most recent advances in the world of siRNA- and miRNA-mediated gene control, its history, applications in cells, animals and humans, delivery methods (an yet unsolved hurdle), current status and possible applications in future clinical practice.

  10. A comparative study of sequence- and structure-based features of small RNAs and other RNAs of bacteria.

    Science.gov (United States)

    Barik, Amita; Das, Santasabuj

    2018-01-02

    Small RNAs (sRNAs) in bacteria have emerged as key players in transcriptional and post-transcriptional regulation of gene expression. Here, we present a statistical analysis of different sequence- and structure-related features of bacterial sRNAs to identify the descriptors that could discriminate sRNAs from other bacterial RNAs. We investigated a comprehensive and heterogeneous collection of 816 sRNAs, identified by northern blotting across 33 bacterial species and compared their various features with other classes of bacterial RNAs, such as tRNAs, rRNAs and mRNAs. We observed that sRNAs differed significantly from the rest with respect to G+C composition, normalized minimum free energy of folding, motif frequency and several RNA-folding parameters like base-pairing propensity, Shannon entropy and base-pair distance. Based on the selected features, we developed a predictive model using Random Forests (RF) method to classify the above four classes of RNAs. Our model displayed an overall predictive accuracy of 89.5%. These findings would help to differentiate bacterial sRNAs from other RNAs and further promote prediction of novel sRNAs in different bacterial species.

  11. MicroRNAs in Cardiometabolic Diseases

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2013-08-01

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are ~22-nucleotide noncoding RNAs with critical functions in multiple physiological and pathological processes. An explosion of reports on the discovery and characterization of different miRNA species and their involvement in almost every aspect of cardiac biology and diseases has established an exciting new dimension in gene regulation networks for cardiac development and pathogenesis. CONTENT: Alterations in the metabolic control of lipid and glucose homeostasis predispose an individual to develop cardiometabolic diseases, such as type 2 diabetes mellitus and atherosclerosis. Work over the last years has suggested that miRNAs play an important role in regulating these physiological processes. Besides a cell-specific transcription factor profile, cell-specific miRNA-regulated gene expression is integral to cell fate and activation decisions. Thus, the cell types involved in atherosclerosis, vascular disease, and its myocardial sequelae may be differentially regulated by distinct miRNAs, thereby controlling highly complex processes, for example, smooth muscle cell phenotype and inflammatory responses of endothelial cells or macrophages. The recent advancements in using miRNAs as circulating biomarkers or therapeutic modalities, will hopefully be able to provide a strong basis for future research to further expand our insights into miRNA function in cardiovascular biology. SUMMARY: MiRNAs are small, noncoding RNAs that function as post-transcriptional regulators of gene expression. They are potent modulators of diverse biological processes and pathologies. Recent findings demonstrated the importance of miRNAs in the vasculature and the orchestration of lipid metabolism and glucose homeostasis. MiRNA networks represent an additional layer of regulation for gene expression that absorbs perturbations and ensures the robustness of biological systems. A detailed understanding of the molecular and cellular mechanisms of mi

  12. MicroRNAs in addiction: adaptation's middlemen?

    Science.gov (United States)

    Li, M D; van der Vaart, A D

    2011-12-01

    A central question in addiction is how drug-induced changes in synaptic signaling are converted into long-term neuroadaptations. Emerging evidence reveals that microRNAs (miRNAs) have a distinct role in this process through rapid response to cellular signals and dynamic regulation of local mRNA transcripts. Because each miRNA can target hundreds of mRNAs, relative changes in the expression of miRNAs can greatly impact cellular responsiveness, synaptic plasticity and transcriptional events. These diverse consequences of miRNA action occur through coordination with genes implicated in addictions, the most compelling of these being the neurotrophin BDNF, the transcription factor cAMP-responsive element-binding protein (CREB) and the DNA-binding methyl CpG binding protein 2 (MeCP2). In this study, we review the recent progress in the understanding of miRNAs in general mechanisms of plasticity and neuroadaptation and then focus on specific examples of miRNA regulation in the context of addiction. We conclude that miRNA-mediated gene regulation is a conserved means of converting environmental signals into neuronal response, which holds significant implications for addiction and other psychiatric illnesses.

  13. Role of microRNAs in sepsis.

    Science.gov (United States)

    Kingsley, S Manoj Kumar; Bhat, B Vishnu

    2017-07-01

    MicroRNAs have been found to be of high significance in the regulation of various genes and processes in the body. Sepsis is a serious clinical problem which arises due to the excessive host inflammatory response to infection. The non-specific clinical features and delayed diagnosis of sepsis has been a matter of concern for long time. MicroRNAs could enable better diagnosis of sepsis and help in the identification of the various stages of sepsis. Improved diagnosis may enable quicker and more effective treatment measures. The initial acute and transient phase of sepsis involves excessive secretion of pro-inflammatory cytokines which causes severe damage. MicroRNAs negatively regulate the toll-like receptor signaling pathway and regulate the production of inflammatory cytokines during sepsis. Likewise, microRNAs have shown to regulate the vascular barrier and endothelial function in sepsis. They are also involved in the regulation of the apoptosis, immunosuppression, and organ dysfunction in later stages of sepsis. Their importance at various levels of the pathophysiology of sepsis has been discussed along with the challenges and future perspectives. MicroRNAs could be key players in the diagnosis and staging of sepsis. Their regulation at various stages of sepsis suggests that they may have an important role in altering the outcome associated with sepsis.

  14. Role of Exosomal Noncoding RNAs in Lung Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Tao Sun

    2015-01-01

    Full Text Available Lung cancer is the major cause of cancer death worldwide. Novel, recently discovered classes of noncoding RNAs (ncRNAs have diverse functional and regulatory activities and increasing evidence suggests crucial roles for deregulated ncRNAs in the onset and progression of cancer, including lung cancer. Exosomes are small extracellular membrane vesicles of endocytic origin that are released by many cells and are found in most body fluids. Tumor-derived exosomes mediate tumorigenesis by facilitating tumor growth and metastasis. MicroRNAs (miRNAs are a subclass of ncRNAs that are present in exosomes. miRNAs are taken up by neighboring or distant cells and modulate various functions of recipient cells. Here, we review exosome-derived ncRNAs with a focus on miRNAs and their role in lung cancer biology.

  15. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response

    Directory of Open Access Journals (Sweden)

    Chong Kang

    2009-09-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are endogenous small RNAs having large-scale regulatory effects on plant development and stress responses. Extensive studies of miRNAs have only been performed in a few model plants. Although miRNAs are proved to be involved in plant cold stress responses, little is known for winter-habit monocots. Brachypodium distachyon, with close evolutionary relationship to cool-season cereals, has recently emerged as a novel model plant. There are few reports of Brachypodium miRNAs. Results High-throughput sequencing and whole-genome-wide data mining led to the identification of 27 conserved miRNAs, as well as 129 predicted miRNAs in Brachypodium. For multiple-member conserved miRNA families, their sizes in Brachypodium were much smaller than those in rice and Populus. The genome organization of miR395 family in Brachypodium was quite different from that in rice. The expression of 3 conserved miRNAs and 25 predicted miRNAs showed significant changes in response to cold stress. Among these miRNAs, some were cold-induced and some were cold-suppressed, but all the conserved miRNAs were up-regulated under cold stress condition. Conclusion Our results suggest that Brachypodium miRNAs are composed of a set of conserved miRNAs and a large proportion of non-conserved miRNAs with low expression levels. Both kinds of miRNAs were involved in cold stress response, but all the conserved miRNAs were up-regulated, implying an important role for cold-induced miRNAs. The different size and genome organization of miRNA families in Brachypodium and rice suggest that the frequency of duplication events or the selection pressure on duplicated miRNAs are different between these two closely related plant species.

  16. MicroRNAs, epigenetics and disease

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli; Stenvang, Jan

    2010-01-01

    Epigenetics is defined as the heritable chances that affect gene expression without changing the DNA sequence. Epigenetic regulation of gene expression can be through different mechanisms such as DNA methylation, histone modifications and nucleosome positioning. MicroRNAs are short RNA molecules...... which do not code for a protein but have a role in post-transcriptional silencing of multiple target genes by binding to their 3' UTRs (untranslated regions). Both epigenetic mechanisms, such as DNA methylation and histone modifications, and the microRNAs are crucial for normal differentiation...... diseases. In the present chapter we will mainly focus on microRNAs and methylation and their implications in human disease, mainly in cancer....

  17. Frontotemporal Lobar Degeneration and microRNAs

    Directory of Open Access Journals (Sweden)

    Paola ePiscopo

    2016-02-01

    Full Text Available Frontotemporal lobar degeneration (FTLD includes a spectrum of disorders characterized by changes of personality and social behaviour and, often, a gradual and progressive language dysfunction. In the last years, several efforts have been fulfilled in identifying both genetic mutations and pathological proteins associated with FTLD. The molecular bases undergoing the onset and progression of the disease remain still unknown. Recent literature prompts an involvement of RNA metabolism in FTLD, particularly miRNAs. Dysregulation of miRNAs in several disorders, including neurodegenerative diseases, and increasing importance of circulating miRNAs in different pathologies has suggested to implement the study of their possible application as biological markers and new therapeutic targets; moreover, miRNA-based therapy is becoming a powerful tool to deepen the function of a gene, the mechanism of a disease, and validate therapeutic targets. Regarding FTLD, different studies showed that miRNAs are playing an important role. For example, several reports have evaluated miRNA regulation of the progranulin gene suggesting that it is under their control, as described for miR-29b, miR-107 and miR-659. More recently, it has been demonstrated that TMEM106B gene, which protein is elevated in FTLD-TDP brains, is repressed by miR-132/212 cluster; this post-transcriptional mechanism increases intracellular levels of progranulin, affecting its pathways. These findings if confirmed could suggest that these microRNAs have a role as potential targets for some related-FTLD genes. In this review, we focus on the emerging roles of the miRNAs in the pathogenesis of FTLD.

  18. Identification and characterization of microRNAs and endogenous siRNAs in Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Wang Heng

    2010-01-01

    Full Text Available Abstract Background Small endogenous non-coding RNAs (sncRNAs such as small interfering RNA (siRNA, microRNA and other small RNA transcripts are derived from distinct loci in the genome and play critical roles in RNA-mediated gene silencing mechanisms in plants and metazoa. They are approximately 22 nucleotides long; regulate mRNA stability through perfect or imperfect match to the targets. The biological activities of sncRNAs have been related to many biological events, from resistance to microbe infections to cellular differentiation. The development of the zoonotic parasite Schistosoma japonicum parasite includes multiple steps of morphological alterations and biological differentiations, which provide a unique model for studies on the functions of small RNAs. Characterization of the genome-wide transcription of the sncRNAs will be a major step in understanding of the parasite biology. The objective of this study is to investigate the transcriptional profile and potential function of the small non-coding RNAs in the development of S. japanicum. Results The endogenous siRNAs were found mainly derived from transposable elements (TE or transposons and the natural antisense transcripts (NAT. In contrast to other organisms, the TE-derived siRNAs in S. japonicum were more predominant than other sncRNAs including microRNAs (miRNAs. Further, there were distinct length and 3'end variations in the sncRNAs, which were associated with the developmental differentiation of the parasite. Among the identified miRNA transcripts, there were 38 unique to S. japonicum and 16 that belonged to 13 miRNA families are common to other metazoan lineages. These miRNAs were either ubiquitously expressed, or they exhibited specific expression patterns related to the developmental stages or sex. Genes that encoded miRNAs are mainly located in clusters within the genome of S. japonicum. However, genes within one cluster could be differentially transcribed, which suggested

  19. Small RNAs controlling outer membrane porins

    DEFF Research Database (Denmark)

    Valentin-Hansen, Poul; Johansen, Jesper; Rasmussen, Anders A

    2007-01-01

    are key regulators of environmental stress. Recent work has revealed an intimate interplay between small RNA regulation of outer membrane proteins and the stress-induced sigmaE-signalling system, which has an essential role in the maintenance of the integrity of the outer membrane.......Gene regulation by small non-coding RNAs has been recognized as an important post-transcriptional regulatory mechanism for several years. In Gram-negative bacteria such as Escherichia coli and Salmonella, these RNAs control stress response and translation of outer membrane proteins and therefore...

  20. Network of microRNAs-mRNAs Interactions in Pancreatic Cancer

    Science.gov (United States)

    Naderi, Elnaz; Mostafaei, Mehdi; Pourshams, Akram

    2014-01-01

    Background. MicroRNAs are small RNA molecules that regulate the expression of certain genes through interaction with mRNA targets and are mainly involved in human cancer. This study was conducted to make the network of miRNAs-mRNAs interactions in pancreatic cancer as the fourth leading cause of cancer death. Methods. 56 miRNAs that were exclusively expressed and 1176 genes that were downregulated or silenced in pancreas cancer were extracted from beforehand investigations. MiRNA–mRNA interactions data analysis and related networks were explored using MAGIA tool and Cytoscape 3 software. Functional annotations of candidate genes in pancreatic cancer were identified by DAVID annotation tool. Results. This network is made of 217 nodes for mRNA, 15 nodes for miRNA, and 241 edges that show 241 regulations between 15 miRNAs and 217 target genes. The miR-24 was the most significantly powerful miRNA that regulated series of important genes. ACVR2B, GFRA1, and MTHFR were significant target genes were that downregulated. Conclusion. Although the collected previous data seems to be a treasure trove, there was no study simultaneous to analysis of miRNAs and mRNAs interaction. Network of miRNA-mRNA interactions will help to corroborate experimental remarks and could be used to refine miRNA target predictions for developing new therapeutic approaches. PMID:24895587

  1. Network of microRNAs-mRNAs Interactions in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Elnaz Naderi

    2014-01-01

    Full Text Available Background. MicroRNAs are small RNA molecules that regulate the expression of certain genes through interaction with mRNA targets and are mainly involved in human cancer. This study was conducted to make the network of miRNAs-mRNAs interactions in pancreatic cancer as the fourth leading cause of cancer death. Methods. 56 miRNAs that were exclusively expressed and 1176 genes that were downregulated or silenced in pancreas cancer were extracted from beforehand investigations. MiRNA–mRNA interactions data analysis and related networks were explored using MAGIA tool and Cytoscape 3 software. Functional annotations of candidate genes in pancreatic cancer were identified by DAVID annotation tool. Results. This network is made of 217 nodes for mRNA, 15 nodes for miRNA, and 241 edges that show 241 regulations between 15 miRNAs and 217 target genes. The miR-24 was the most significantly powerful miRNA that regulated series of important genes. ACVR2B, GFRA1, and MTHFR were significant target genes were that downregulated. Conclusion. Although the collected previous data seems to be a treasure trove, there was no study simultaneous to analysis of miRNAs and mRNAs interaction. Network of miRNA-mRNA interactions will help to corroborate experimental remarks and could be used to refine miRNA target predictions for developing new therapeutic approaches.

  2. MicroRNAs in Human Placental Development and Pregnancy Complications

    Directory of Open Access Journals (Sweden)

    Chun Peng

    2013-03-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs, which function as critical posttranscriptional regulators of gene expression by promoting mRNA degradation and translational inhibition. Placenta expresses many ubiquitous as well as specific miRNAs. These miRNAs regulate trophoblast cell differentiation, proliferation, apoptosis, invasion/migration, and angiogenesis, suggesting that miRNAs play important roles during placental development. Aberrant miRNAs expression has been linked to pregnancy complications, such as preeclampsia. Recent research of placental miRNAs focuses on identifying placental miRNA species, examining differential expression of miRNAs between placentas from normal and compromised pregnancies, and uncovering the function of miRNAs in the placenta. More studies are required to further understand the functional significance of miRNAs in placental development and to explore the possibility of using miRNAs as biomarkers and therapeutic targets for pregnancy-related disorders. In this paper, we reviewed the current knowledge about the expression and function of miRNAs in placental development, and propose future directions for miRNA studies.

  3. Individual microRNAs (miRNAs) display distinct mRNA targeting "rules".

    Science.gov (United States)

    Wang, Wang-Xia; Wilfred, Bernard R; Xie, Kevin; Jennings, Mary H; Hu, Yanling Hu; Stromberg, Arnold J; Nelson, Peter T

    2010-01-01

    MicroRNAs (miRNAs) guide Argonaute (AGO)-containing microribonucleoprotein (miRNP) complexes to target mRNAs.It has been assumed that miRNAs behave similarly to each other with regard to mRNA target recognition. The usual assumptions, which are based on prior studies, are that miRNAs target preferentially sequences in the 3'UTR of mRNAs,guided by the 5' "seed" portion of the miRNAs. Here we isolated AGO- and miRNA-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with anti-AGO antibody. Cells were transfected with miR-107, miR-124,miR-128, miR-320, or a negative control miRNA. Co-IPed RNAs were subjected to downstream high-density Affymetrix Human Gene 1.0 ST microarray analyses using an assay we validated previously-a "RIP-Chip" experimental design. RIP-Chip data provided a list of mRNAs recruited into the AGO-miRNP in correlation to each miRNA. These experimentally identified miRNA targets were analyzed for complementary six nucleotide "seed" sequences within the transfected miRNAs. We found that miR-124 targets tended to have sequences in the 3'UTR that would be recognized by the 5' seed of miR-124, as described in previous studies. By contrast, miR-107 targets tended to have 'seed' sequences in the mRNA open reading frame, but not the 3' UTR. Further, mRNA targets of miR-128 and miR-320 are less enriched for 6-mer seed sequences in comparison to miR-107 and miR-124. In sum, our data support the importance of the 5' seed in determining binding characteristics for some miRNAs; however, the "binding rules" are complex, and individual miRNAs can have distinct sequence determinants that lead to mRNA targeting.

  4. deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data.

    Science.gov (United States)

    Zheng, Ling-Ling; Li, Jun-Hao; Wu, Jie; Sun, Wen-Ju; Liu, Shun; Wang, Ze-Lin; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2016-01-04

    Small non-coding RNAs (e.g. miRNAs) and long non-coding RNAs (e.g. lincRNAs and circRNAs) are emerging as key regulators of various cellular processes. However, only a very small fraction of these enigmatic RNAs have been well functionally characterized. In this study, we describe deepBase v2.0 (http://biocenter.sysu.edu.cn/deepBase/), an updated platform, to decode evolution, expression patterns and functions of diverse ncRNAs across 19 species. deepBase v2.0 has been updated to provide the most comprehensive collection of ncRNA-derived small RNAs generated from 588 sRNA-Seq datasets. Moreover, we developed a pipeline named lncSeeker to identify 176 680 high-confidence lncRNAs from 14 species. Temporal and spatial expression patterns of various ncRNAs were profiled. We identified approximately 24 280 primate-specific, 5193 rodent-specific lncRNAs, and 55 highly conserved lncRNA orthologs between human and zebrafish. We annotated 14 867 human circRNAs, 1260 of which are orthologous to mouse circRNAs. By combining expression profiles and functional genomic annotations, we developed lncFunction web-server to predict the function of lncRNAs based on protein-lncRNA co-expression networks. This study is expected to provide considerable resources to facilitate future experimental studies and to uncover ncRNA functions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. On the classification of long non-coding RNAs

    KAUST Repository

    Ma, Lina; Bajic, Vladimir B.; Zhang, Zhang

    2013-01-01

    Long non-coding RNAs (lncRNAs) have been found to perform various functions in a wide variety of important biological processes. To make easier interpretation of lncRNA functionality and conduct deep mining on these transcribed sequences

  6. Diverse microRNAs with convergent functions regulate tumorigenesis.

    Science.gov (United States)

    Zhu, Min-Yan; Zhang, Wei; Yang, Tao

    2016-02-01

    MicroRNAs (miRNAs) regulate several biological processes, including tumorigenesis. In order to comprehend the roles of miRNAs in cancer, various screens were performed to investigate the changes in the expression levels of miRNAs that occur in different types of cancer. The present review focuses on the results of five recent screens, whereby a number of overlapping miRNAs were identified to be downregulated or differentially regulated, whereas no miRNAs were observed to be frequently upregulated. Furthermore, the majority of the miRNAs that were common to >1 screen were involved in signaling networks, including wingless-related integration site, receptor tyrosine kinase and transforming growth factor-β, or in cell cycle checkpoint control. The present review will discuss the aforementioned miRNAs implicated in cell cycle checkpoint control and signaling networks.

  7. Identification of novel sRNAs in mycobacterial species.

    Directory of Open Access Journals (Sweden)

    Chen-Hsun Tsai

    Full Text Available Bacterial small RNAs (sRNAs are short transcripts that typically do not encode proteins and often act as regulators of gene expression through a variety of mechanisms. Regulatory sRNAs have been identified in many species, including Mycobacterium tuberculosis, the causative agent of tuberculosis. Here, we use a computational algorithm to predict sRNA candidates in the mycobacterial species M. smegmatis and M. bovis BCG and confirmed the expression of many sRNAs using Northern blotting. Thus, we have identified 17 and 23 novel sRNAs in M. smegmatis and M. bovis BCG, respectively. We have also applied a high-throughput technique (Deep-RACE to map the 5' and 3' ends of many of these sRNAs and identified potential regulators of sRNAs by analysis of existing ChIP-seq datasets. The sRNAs identified in this work likely contribute to the unique biology of mycobacteria.

  8. Regulatory Role of Circular RNAs and Neurological Disorders.

    Science.gov (United States)

    Floris, Gabriele; Zhang, Longbin; Follesa, Paolo; Sun, Tao

    2017-09-01

    Circular RNAs (circRNAs) are a class of long noncoding RNAs that are characterized by the presence of covalently linked ends and have been found in all life kingdoms. Exciting studies in regulatory roles of circRNAs are emerging. Here, we summarize classification, characteristics, biogenesis, and regulatory functions of circRNAs. CircRNAs are found to be preferentially expressed along neural genes and in neural tissues. We thus highlight the association of circRNA dysregulation with neurodegenerative diseases such as Alzheimer's disease. Investigation of regulatory role of circRNAs will shed novel light in gene expression mechanisms during development and under disease conditions and may identify circRNAs as new biomarkers for aging and neurodegenerative disorders.

  9. Long Noncoding RNAs in Lung Cancer.

    Science.gov (United States)

    Roth, Anna; Diederichs, Sven

    2016-01-01

    Despite great progress in research and treatment options, lung cancer remains the leading cause of cancer-related deaths worldwide. Oncogenic driver mutations in protein-encoding genes were defined and allow for personalized therapies based on genetic diagnoses. Nonetheless, diagnosis of lung cancer mostly occurs at late stages, and chronic treatment is followed by a fast onset of chemoresistance. Hence, there is an urgent need for reliable biomarkers and alternative treatment options. With the era of whole genome and transcriptome sequencing technologies, long noncoding RNAs emerged as a novel class of versatile, functional RNA molecules. Although for most of them the mechanism of action remains to be defined, accumulating evidence confirms their involvement in various aspects of lung tumorigenesis. They are functional on the epigenetic, transcriptional, and posttranscriptional level and are regulators of pathophysiological key pathways including cell growth, apoptosis, and metastasis. Long noncoding RNAs are gaining increasing attention as potential biomarkers and a novel class of druggable molecules. It has become clear that we are only beginning to understand the complexity of tumorigenic processes. The clinical integration of long noncoding RNAs in terms of prognostic and predictive biomarker signatures and additional cancer targets could provide a chance to increase the therapeutic benefit. Here, we review the current knowledge about the expression, regulation, biological function, and clinical relevance of long noncoding RNAs in lung cancer.

  10. MicroRNAs horizon in retinoblastoma.

    Directory of Open Access Journals (Sweden)

    Mojgan Mirakholi

    2013-12-01

    Full Text Available In the retinoblastoma research, it is of great interest to identify molecular markers associated with the genetics of tumorigenesis. microRNAs (miRNAs are small non-coding RNA molecules that play a regulatory role in many crucial cellular pathways such as differentiation, cell cycle progression, and apoptosis. A body of evidences showed dysregulation of miRNAs in tumor biology and many diseases. They potentially play a significant role in tumorigenesis processes and have been the subject of research in many types of cancers including retinal tumorigenesis. miRNA expression profiling was found to be associated with tumor development, progression and treatment. These associations demonstrate the putative applications of miRNAs in monitoring of different aspect of tumors consisting diagnostic, prognostic and therapeutic. Herein, we review the current literature concerning to the study of miRNA target recognition, function to tumorigenesis and treatment in retinoblastoma. Identification the specific miRNA biomarkers associated with retinoblastoma cancer may help to establish new therapeutic approaches for salvage affected eyes in patients.

  11. miRNAs: Small but deadly

    African Journals Online (AJOL)

    Jane

    2011-08-24

    Aug 24, 2011 ... Levels of some miRNAs are found altered in cancers, so we might expect these regulatory ..... males is the prostate cancer (PCa) (Jemal et al., 2008). ..... 1 growth factor receptor family members HER-1, HER-2, and HER-3.

  12. The Regulatory RNAs of Bacillus subtilis

    NARCIS (Netherlands)

    Mars, Ruben

    2014-01-01

    In vrijwel alle organismen wordt RNA aangemaakt dat niet codeert voor eiwit, maar een regulerende functie heeft. Dit proefschrift beschrijft de identificatie van ~1600 nieuwe potentiële regulatie-RNAs in de bodembacterie Bacillus subtilis die veel voor biotechnologische toepassingen ingezet wordt.

  13. Competitive Endogenous RNAs in Prostate Cancer

    Science.gov (United States)

    2015-01-01

    that there is a negative correlation between GAS5 and miR-21, and microRNAs silence target genes via RISC complex carrying AGO2, next we asked whether...GAS5 directly interacts with miR-12 in the RISC complex. Thus, we synthesized GAS5 RNA probe and labeled with biotin and then mixed with cellular

  14. Decoding the function of nuclear long non-coding RNAs.

    Science.gov (United States)

    Chen, Ling-Ling; Carmichael, Gordon G

    2010-06-01

    Long non-coding RNAs (lncRNAs) are mRNA-like, non-protein-coding RNAs that are pervasively transcribed throughout eukaryotic genomes. Rather than silently accumulating in the nucleus, many of these are now known or suspected to play important roles in nuclear architecture or in the regulation of gene expression. In this review, we highlight some recent progress in how lncRNAs regulate these important nuclear processes at the molecular level. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. The role of miRNAs in endometrial cancer.

    Science.gov (United States)

    Vasilatou, Diamantina; Sioulas, Vasileios D; Pappa, Vasiliki; Papageorgiou, Sotirios G; Vlahos, Nikolaos F

    2015-01-01

    miRNAs are small noncoding RNAs that regulate gene expression at the post-transcriptional level. Since their discovery, miRNAs have been associated with every cell function including malignant transformation and metastasis. Endometrial cancer is the most common gynecologic malignancy. However, improvement should be made in interobserver agreement on histological typing and individualized therapeutic approaches. This article summarizes the role of miRNAs in endometrial cancer pathogenesis and treatment.

  16. MicroRNAs and drug addiction

    Directory of Open Access Journals (Sweden)

    Paul J Kenny

    2013-05-01

    Full Text Available Drug addiction is considered a disorder of neuroplasticity in brain reward and cognition systems resulting from aberrant activation of gene expression programs in response to prolonged drug consumption. Noncoding RNAs are key regulators of almost all aspects of cellular physiology. MicroRNAs (miRNAs are small (~21–23 nucleotides noncoding RNA transcripts that regulate gene expression at the post-transcriptional level. Recently, microRNAs were shown to play key roles in the drug-induced remodeling of brain reward systems that likely drives the emergence of addiction. Here, we review evidence suggesting that one particular miRNA, miR-212, plays a particularly prominent role in vulnerability to cocaine addiction. We review evidence showing that miR-212 expression is increased in the dorsal striatum of rats that show compulsive-like cocaine-taking behaviors. Increases in miR-212 expression appear to protect against cocaine addiction, as virus-mediated striatal miR-212 over-expression decreases cocaine consumption in rats. Conversely, disruption of striatal miR-212 signaling using an antisense oligonucleotide increases cocaine intake. We also review data that identify two mechanisms by which miR-212 may regulate cocaine intake. First, miR-212 has been shown to amplify striatal CREB signaling through a mechanism involving activation of Raf1 kinase. Second, miR-212 was also shown to regulate cocaine intake by repressing striatal expression of methyl CpG binding protein 2 (MeCP2, consequently decreasing protein levels of brain-derived neurotrophic factor (BDNF. The concerted actions of miR-212 on striatal CREB and MeCP2/BDNF activity greatly attenuate the motivational effects of cocaine. These findings highlight the unique role for miRNAs in simultaneously controlling multiple signaling cascades implicated in addiction.

  17. Integrative analysis of lncRNAs and miRNAs with coding RNAs associated with ceRNA crosstalk network in triple negative breast cancer

    Directory of Open Access Journals (Sweden)

    Yuan NJ

    2017-12-01

    Full Text Available Naijun Yuan,1,* Guijuan Zhang,2,* Fengjie Bie,1 Min Ma,1 Yi Ma,3 Xuefeng Jiang,1 Yurong Wang,1,* Xiaoqian Hao1 1College of Traditional Chinese Medicine of Jinan University, Institute of Integrated Traditional Chinese and Western Medicine of Jinan University, 2The First Affiliated Hospital of Jinan University, 3Department of Cellular Biology, Guangdong Province Key Lab of Bioengineering Medicine, Institute of Biomedicine, Jinan University, Guangdong, China *These authors contributed equally to this work Abstract: Triple negative breast cancer (TNBC is a particular subtype of breast malignant tumor with poorer prognosis than other molecular subtypes. Currently, there is increasing focus on long non-coding RNAs (lncRNAs, which can act as competing endogenous RNAs (ceRNAs and suppress miRNA functions involved in post-transcriptional regulatory networks in the tumor. Therefore, to investigate specific mechanisms of TNBC carcinogenesis and improve treatment efficiency, we comprehensively integrated expression profiles, including data on mRNAs, lncRNAs and miRNAs obtained from 116 TNBC tissues and 11 normal tissues from The Cancer Genome Atlas. As a result, we selected the threshold with |log2FC|>2.0 and an adjusted p-value >0.05 to obtain the differentially expressed mRNAs, miRNAs and lncRNAs. Hereafter, weighted gene co-expression network analysis was performed to identify the expression characteristics of dysregulated genes. We obtained five co-expression modules and related clinical feature. By means of correlating gene modules with protein–protein interaction network analysis that had identified 22 hub mRNAs which could as hub target genes. Eleven key dysregulated differentially expressed micro RNAs (DEmiRNAs were identified that were significantly associated with the 22 hub potential target genes. Moreover, we found that 14 key differentially expressed lncRNAs could interact with the key DEmiRNAs. Then, the ceRNA crosstalk network of TNBC was

  18. An atlas of human long non-coding RNAs with accurate 5′ ends

    KAUST Repository

    Hon, Chung-Chau; Ramilowski, Jordan A.; Harshbarger, Jayson; Bertin, Nicolas; Rackham, Owen J. L.; Gough, Julian; Denisenko, Elena; Schmeier, Sebastian; Poulsen, Thomas M.; Severin, Jessica; Lizio, Marina; Kawaji, Hideya; Kasukawa, Takeya; Itoh, Masayoshi; Burroughs, A. Maxwell; Noma, Shohei; Djebali, Sarah; Alam, Tanvir; Medvedeva, Yulia A.; Testa, Alison C.; Lipovich, Leonard; Yip, Chi-Wai; Abugessaisa, Imad; Mendez, Mickaë l; Hasegawa, Akira; Tang, Dave; Lassmann, Timo; Heutink, Peter; Babina, Magda; Wells, Christine A.; Kojima, Soichi; Nakamura, Yukio; Suzuki, Harukazu; Daub, Carsten O.; Hoon, Michiel J. L. de; Arner, Erik; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.

    2017-01-01

    RNAs in multiple diseases. We further demonstrate that lncRNAs overlapping expression quantitative trait loci (eQTL)-associated single nucleotide polymorphisms of messenger RNAs are co-expressed with the corresponding messenger RNAs, suggesting their potential

  19. Bioavailability of transgenic microRNAs in genetically modified plants

    Science.gov (United States)

    Transgenic expression of small RNAs is a prevalent approach in agrobiotechnology for the global enhancement of plant foods. Meanwhile, emerging studies have, on the one hand, emphasized the potential of transgenic microRNAs (miRNAs) as novel dietary therapeutics and, on the other, suggested potentia...

  20. Dicer-independent processing of short hairpin RNAs

    NARCIS (Netherlands)

    Liu, Ying Poi; Schopman, Nick C. T.; Berkhout, Ben

    2013-01-01

    Short hairpin RNAs (shRNAs) are widely used to induce RNA interference (RNAi). We tested a variety of shRNAs that differed in stem length and terminal loop size and revealed strikingly different RNAi activities and shRNA-processing patterns. Interestingly, we identified a specific shRNA design that

  1. Non-Coding RNAs in Arabidopsis

    DEFF Research Database (Denmark)

    van Wonterghem, Miranda

    This work evolves around elucidating the mechanisms of micro RNAs (miRNAs) in Arabidopsis thaliana. I identified a new class of nuclear non-coding RNAs derived from protein coding genes. The genes are miRNA targets with extensive gene body methylation. The RNA species are nuclear localized and de...

  2. Brain expressed microRNAs implicated in schizophrenia etiology

    DEFF Research Database (Denmark)

    Hansen, Thomas; Olsen, Line; Lindow, Morten

    2007-01-01

    Protein encoding genes have long been the major targets for research in schizophrenia genetics. However, with the identification of regulatory microRNAs (miRNAs) as important in brain development and function, miRNAs genes have emerged as candidates for schizophrenia-associated genetic factors...

  3. Identifying and annotating human bifunctional RNAs reveals their versatile functions.

    Science.gov (United States)

    Chen, Geng; Yang, Juan; Chen, Jiwei; Song, Yunjie; Cao, Ruifang; Shi, Tieliu; Shi, Leming

    2016-10-01

    Bifunctional RNAs that possess both protein-coding and noncoding functional properties were less explored and poorly understood. Here we systematically explored the characteristics and functions of such human bifunctional RNAs by integrating tandem mass spectrometry and RNA-seq data. We first constructed a pipeline to identify and annotate bifunctional RNAs, leading to the characterization of 132 high-confidence bifunctional RNAs. Our analyses indicate that bifunctional RNAs may be involved in human embryonic development and can be functional in diverse tissues. Moreover, bifunctional RNAs could interact with multiple miRNAs and RNA-binding proteins to exert their corresponding roles. Bifunctional RNAs may also function as competing endogenous RNAs to regulate the expression of many genes by competing for common targeting miRNAs. Finally, somatic mutations of diverse carcinomas may generate harmful effect on corresponding bifunctional RNAs. Collectively, our study not only provides the pipeline for identifying and annotating bifunctional RNAs but also reveals their important gene-regulatory functions.

  4. Utility of MicroRNAs and siRNAs in Cervical Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Sacnite del Mar Díaz-González

    2015-01-01

    Full Text Available MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3′-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer.

  5. Implication of microRNAs in the Pathogenesis of MDS

    Science.gov (United States)

    Fang, Jing; Varney, Melinda; Starczynowski, Daniel T.

    2016-01-01

    MicroRNAs (miRNAs) are significant regulators of human hematopoietic stem cells (HSC), and their deregulation contributes to hematological malignancies. Myelodysplastic syndromes (MDS) represent a spectrum of hematological disorders characterized by dysfunctional HSC, ineffective blood cell production, progressive marrow failure, and an increased risk of developing acute myeloid leukemia (AML). Although miRNAs have been primarily studied in AML, only recently have similar studies been performed on MDS. In this review, we describe the normal function and expression of miRNAs in human HSC, and describe mounting evidence that deregulation of miRNAs contributes to the pathogenesis of MDS. PMID:22571695

  6. Long Non-coding RNAs in Response to Genotoxic Stress

    Institute of Scientific and Technical Information of China (English)

    Xiaoman Li; Dong Pan; Baoquan Zhao; Burong Hu

    2016-01-01

    Long non-coding RNAs(lncRNAs) are increasingly involved in diverse biological processes.Upon DNA damage,the DNA damage response(DDR) elicits a complex signaling cascade,which includes the induction of lncRNAs.LncRNA-mediated DDR is involved in non-canonical and canonical manners.DNA-damage induced lncRNAs contribute to the regulation of cell cycle,apoptosis,and DNA repair,thereby playing a key role in maintaining genome stability.This review summarizes the emerging role of lncRNAs in DNA damage and repair.

  7. Transposon defense by endo-siRNAs, piRNAs and somatic pilRNAs in Drosophila: contributions of Loqs-PD and R2D2.

    Directory of Open Access Journals (Sweden)

    Milijana Mirkovic-Hösle

    Full Text Available Transposable elements are a serious threat for genome integrity and their control via small RNA mediated silencing pathways is an ancient strategy. The fruit fly Drosophila melanogaster has two silencing activities that target transposons: endogenous siRNAs (esiRNAs or endo-siRNAs and Piwi-interacting small RNAs (piRNAs. The biogenesis of endo-siRNAs involves the Dicer-2 co-factors Loqs-PD, which acts predominantly during processing of dsRNA by Dcr-2, and R2D2, which primarily helps to direct siRNAs into the RNA interference effector Ago2. Nonetheless, loss of either protein is not sufficient to produce a phenotype comparable with a dcr-2 mutation. We provide further deep sequencing evidence supporting the notion that R2D2 and Loqs-PD have partially overlapping function. Certain transposons display a preference for either dsRBD-protein during production or loading; this appeared to correlate neither with overall abundance, classification of the transposon or a specific site of genomic origin. The endo-siRNA biogenesis pathway in germline operates according to the same principles as the existing model for the soma, and its impairment does not significantly affect piRNAs. Expanding the analysis, we confirmed the occurrence of somatic piRNA-like RNAs (pilRNAs that show a ping-pong signature. We detected expression of the Piwi-family protein mRNAs only barely above background, indicating that the somatic pilRNAs may arise from a small sub-population of somatic cells that express a functional piRNA pathway.

  8. Long non-coding RNAs and mRNAs profiling during spleen development in pig.

    Science.gov (United States)

    Che, Tiandong; Li, Diyan; Jin, Long; Fu, Yuhua; Liu, Yingkai; Liu, Pengliang; Wang, Yixin; Tang, Qianzi; Ma, Jideng; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou

    2018-01-01

    Genome-wide transcriptomic studies in humans and mice have become extensive and mature. However, a comprehensive and systematic understanding of protein-coding genes and long non-coding RNAs (lncRNAs) expressed during pig spleen development has not been achieved. LncRNAs are known to participate in regulatory networks for an array of biological processes. Here, we constructed 18 RNA libraries from developing fetal pig spleen (55 days before birth), postnatal pig spleens (0, 30, 180 days and 2 years after birth), and the samples from the 2-year-old Wild Boar. A total of 15,040 lncRNA transcripts were identified among these samples. We found that the temporal expression pattern of lncRNAs was more restricted than observed for protein-coding genes. Time-series analysis showed two large modules for protein-coding genes and lncRNAs. The up-regulated module was enriched for genes related to immune and inflammatory function, while the down-regulated module was enriched for cell proliferation processes such as cell division and DNA replication. Co-expression networks indicated the functional relatedness between protein-coding genes and lncRNAs, which were enriched for similar functions over the series of time points examined. We identified numerous differentially expressed protein-coding genes and lncRNAs in all five developmental stages. Notably, ceruloplasmin precursor (CP), a protein-coding gene participating in antioxidant and iron transport processes, was differentially expressed in all stages. This study provides the first catalog of the developing pig spleen, and contributes to a fuller understanding of the molecular mechanisms underpinning mammalian spleen development.

  9. Identifying MicroRNAs and Transcript Targets in Jatropha Seeds

    Science.gov (United States)

    Galli, Vanessa; Guzman, Frank; de Oliveira, Luiz F. V.; Loss-Morais, Guilherme; Körbes, Ana P.; Silva, Sérgio D. A.; Margis-Pinheiro, Márcia M. A. N.; Margis, Rogério

    2014-01-01

    MicroRNAs, or miRNAs, are endogenously encoded small RNAs that play a key role in diverse plant biological processes. Jatropha curcas L. has received significant attention as a potential oilseed crop for the production of renewable oil. Here, a sRNA library of mature seeds and three mRNA libraries from three different seed development stages were generated by deep sequencing to identify and characterize the miRNAs and pre-miRNAs of J. curcas. Computational analysis was used for the identification of 180 conserved miRNAs and 41 precursors (pre-miRNAs) as well as 16 novel pre-miRNAs. The predicted miRNA target genes are involved in a broad range of physiological functions, including cellular structure, nuclear function, translation, transport, hormone synthesis, defense, and lipid metabolism. Some pre-miRNA and miRNA targets vary in abundance between the three stages of seed development. A search for sequences that produce siRNA was performed, and the results indicated that J. curcas siRNAs play a role in nuclear functions, transport, catalytic processes and disease resistance. This study presents the first large scale identification of J. curcas miRNAs and their targets in mature seeds based on deep sequencing, and it contributes to a functional understanding of these miRNAs. PMID:24551031

  10. Rethinking the central dogma: noncoding RNAs are biologically relevant.

    Science.gov (United States)

    Robinson, Victoria L

    2009-01-01

    Non-coding RNAs (ncRNAs) are a large class of functional molecules with over 100 unique classes described to date. ncRNAs are diverse in terms of their function and size. A relatively new class of small ncRNA, called microRNAs (miRNA), have received a great deal of attention in the literature in recent years. miRNAs are endogenously encoded gene families that demonstrate striking evolutionary conservation. miRNAs serve essential and diverse physiological functions such as differentiation and development, proliferation, maintaining cell type phenotypes, and many others. The discovery and ongoing investigation of miRNAs is part of a revolution in biology that is changing the basic concepts of gene expression and RNA functionality. A single miRNA can participate in controlling the expression of up to several hundred protein-coding genes by interacting with mRNAs, generally in 3' untranslated regions. Our new and developing understanding of miRNAs, and other ncRNAs, promises to lead to significant contributions to medicine. Specifically, miRNAs are likely to serve as the basis for novel therapies and diagnostic tools.

  11. Endogenous small RNAs and antibacterial immunity in plants.

    Science.gov (United States)

    Jin, Hailing

    2008-08-06

    Small RNAs are non-coding regulatory RNA molecules that control gene expression by mediating mRNA degradation, translational inhibition, or chromatin modification. Virus-derived small RNAs induce silencing of viral RNAs and are essential for antiviral defense in both animal and plant systems. The role of host endogenous small RNAs on antibacterial immunity has only recently been recognized. Host disease resistance and defense responses are achieved by activation and repression of a large array of genes. Certain endogenous small RNAs in plants, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are induced or repressed in response to pathogen attack and subsequently regulate the expression of genes involved in disease resistance and defense responses by mediating transcriptional or post-transcriptional gene silencing. Thus, these small RNAs play an important role in gene expression reprogramming in plant disease resistance and defense responses. This review focuses on the recent findings of plant endogenous small RNAs in antibacterial immunity.

  12. Expression Signatures of Long Noncoding RNAs in Adolescent Idiopathic Scoliosis

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Liu

    2015-01-01

    Full Text Available Purpose. Adolescent idiopathic scoliosis (AIS, the most common pediatric spinal deformity, is considered a complex genetic disease. Causing genes and pathogenesis of AIS are still unclear. This study was designed to identify differentially expressed long noncoding RNAs (lncRNAs involving the pathogenesis of AIS. Methods. We first performed comprehensive screening of lncRNA and mRNA in AIS patients and healthy children using Agilent human lncRNA + mRNA Array V3.0 microarray. LncRNAs expression in different AIS patients was further evaluated using quantitative PCR. Results. A total of 139 lncRNAs and 546 mRNAs were differentially expressed between AIS patients and healthy control. GO and Pathway analysis showed that these mRNAs might be involved in bone mineralization, neuromuscular junction, skeletal system morphogenesis, nucleotide and nucleic acid metabolism, and regulation of signal pathway. Four lncRNAs (ENST00000440778.1, ENST00000602322.1, ENST00000414894.1, and TCONS_00028768 were differentially expressed between different patients when grouped according to age, height, classification, severity of scoliosis, and Risser grade. Conclusions. This study demonstrates the abnormal expression of lncRNAs and mRNAs in AIS, and the expression of some lncRNAs was related to clinical features. This study is helpful for further understanding of lncRNAs in pathogenesis, treatment, and prognosis of AIS.

  13. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds.

    Science.gov (United States)

    Yin, Dan-Dan; Li, Shan-Shan; Shu, Qing-Yan; Gu, Zhao-Yu; Wu, Qian; Feng, Cheng-Yong; Xu, Wen-Zhong; Wang, Liang-Sheng

    2018-08-05

    MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) act as important molecular regulators in a wide range of biological processes during plant development and seed formation, including oil production. Tree peony seeds contain >90% unsaturated fatty acids (UFAs) and high proportions of α-linolenic acid (ALA, > 40%). To dissect the non-coding RNAs (ncRNAs) pathway involved in fatty acids synthesis in tree peony seeds, we construct six small RNA libraries and six transcriptome libraries from developing seeds of two cultivars (J and S) containing different content of fatty acid compositions. After deep sequencing the RNA libraries, the ncRNA expression profiles of tree peony seeds in two cultivars were systematically and comparatively analyzed. A total of 318 known and 153 new miRNAs and 22,430 lncRNAs were identified, among which 106 conserved and 9 novel miRNAs and 2785 lncRNAs were differentially expressed between the two cultivars. In addition, potential target genes of the microRNA and lncRNAs were also predicted and annotated. Among them, 9 miRNAs and 39 lncRNAs were predicted to target lipid related genes. Results showed that all of miR414, miR156b, miR2673b, miR7826, novel-m0027-5p, TR24651|c0_g1, TR24544|c0_g15, and TR27305|c0_g1 were up-regulated and expressed at a higher level in high-ALA cultivar J when compared to low-ALA cultivar S, suggesting that these ncRNAs and target genes are possibly involved in different fatty acid synthesis and lipid metabolism through post-transcriptional regulation. These results provide a better understanding of the roles of ncRNAs during fatty acid biosynthesis and metabolism in tree peony seeds. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. MicroRNAs as regulatory elements in psoriasis

    Directory of Open Access Journals (Sweden)

    Liu Yuan

    2016-01-01

    Full Text Available Psoriasis is a chronic, autoimmune, and complex genetic disorder that affects 23% of the European population. The symptoms of Psoriatic skin are inflammation, raised and scaly lesions. microRNA, which is short, nonprotein-coding, regulatory RNAs, plays critical roles in psoriasis. microRNA participates in nearly all biological processes, such as cell differentiation, development and metabolism. Recent researches reveal that multitudinous novel microRNAs have been identified in skin. Some of these substantial novel microRNAs play as a class of posttranscriptional gene regulator in skin disease, such as psoriasis. In order to insight into microRNAs biological functions and verify microRNAs biomarker, we review diverse references about characterization, profiling and subtype of microRNAs. Here we will share our opinions about how and which microRNAs are as regulatory in psoriasis.

  15. miRNAs in Normal and Malignant Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Ryutaro Kotaki

    2017-07-01

    Full Text Available Lineage specification is primarily regulated at the transcriptional level and lineage-specific transcription factors determine cell fates. MicroRNAs (miRNAs are 18–24 nucleotide-long non-coding RNAs that post-transcriptionally decrease the translation of target mRNAs and are essential for many cellular functions. miRNAs also regulate lineage specification during hematopoiesis. This review highlights the roles of miRNAs in B-cell development and malignancies, and discusses how miRNA expression profiles correlate with disease prognoses and phenotypes. We also discuss the potential for miRNAs as therapeutic targets and diagnostic tools for B-cell malignancies.

  16. Circular RNAs as Promising Biomarkers: A mini-review

    Directory of Open Access Journals (Sweden)

    Nadiah Abu

    2016-08-01

    Full Text Available The interest in circular RNAs has resurfaced in the past few years. What was considered as junk for nearly two decades is now one of the most interesting molecules. Circular RNAs are non-coding RNAs that are formed by back-splicing events and have covalently closed loops with no poly-adenylated tails. The regulation of circular RNAs is distinctive and they are selectively abundant in different types of tissues. Based on the current knowledge of circular RNAs, these molecules have the potential to be the next big thing especially as biomarkers for different diseases. This mini-review attempts to concisely look at the biology of circular RNAs, the putative functional activities, the prevalence of circular RNAs, and the possible role of circular RNA as biomarkers for diagnosis or measuring drug response.

  17. Multiple Export Mechanisms for mRNAs

    Science.gov (United States)

    Delaleau, Mildred; Borden, Katherine L. B.

    2015-01-01

    Nuclear mRNA export plays an important role in gene expression. We describe the mechanisms of mRNA export including the importance of mRNP assembly, docking with the nuclear basket of the nuclear pore complex (NPC), transit through the central channel of the NPC and cytoplasmic release. We describe multiple mechanisms of mRNA export including NXF1 and CRM1 mediated pathways. Selective groups of mRNAs can be preferentially transported in order to respond to cellular stimuli. RNAs can be selected based on the presence of specific cis-acting RNA elements and binding of specific adaptor proteins. The role that dysregulation of this process plays in human disease is also discussed. PMID:26343730

  18. Modulation of microRNA activity by semi-microRNAs (smiRNAs

    Directory of Open Access Journals (Sweden)

    Isabelle ePlante

    2012-06-01

    Full Text Available The ribonuclease Dicer plays a central role in the microRNA pathway by catalyzing the formation of 19 to 24-nucleotide (nt long microRNAs. Subsequently incorporated into Ago2 effector complexes, microRNAs are known to regulate messenger RNA (mRNA translation. Whether shorter RNA species derived from microRNAs exist and play a role in mRNA regulation remains unknown. Here, we report the serendipitous discovery of a 12-nt long RNA species corresponding to the 5’ region of the microRNA let-7, and tentatively termed semi-microRNA, or smiRNA. Using a smiRNA derived from the precursor of miR-223 as a model, we show that 12-nt long smiRNA species are devoid of any direct mRNA regulatory activity, as assessed in a reporter gene activity assay in transfected cultured human cells. However, smiR-223 was found to modulate the ability of the microRNA from which it derives to mediate translational repression or cleavage of reporter mRNAs. Our findings suggest that smiRNAs may be generated along the microRNA pathway and participate to the control of gene expression by regulating the activity of the related full-length mature microRNA in vivo.

  19. DeepBase: annotation and discovery of microRNAs and other noncoding RNAs from deep-sequencing data.

    Science.gov (United States)

    Yang, Jian-Hua; Qu, Liang-Hu

    2012-01-01

    Recent advances in high-throughput deep-sequencing technology have produced large numbers of short and long RNA sequences and enabled the detection and profiling of known and novel microRNAs (miRNAs) and other noncoding RNAs (ncRNAs) at unprecedented sensitivity and depth. In this chapter, we describe the use of deepBase, a database that we have developed to integrate all public deep-sequencing data and to facilitate the comprehensive annotation and discovery of miRNAs and other ncRNAs from these data. deepBase provides an integrative, interactive, and versatile web graphical interface to evaluate miRBase-annotated miRNA genes and other known ncRNAs, explores the expression patterns of miRNAs and other ncRNAs, and discovers novel miRNAs and other ncRNAs from deep-sequencing data. deepBase also provides a deepView genome browser to comparatively analyze these data at multiple levels. deepBase is available at http://deepbase.sysu.edu.cn/.

  20. Isolation and Identification of miRNAs in Jatropha curcas

    Science.gov (United States)

    Wang, Chun Ming; Liu, Peng; Sun, Fei; Li, Lei; Liu, Peng; Ye, Jian; Yue, Gen Hua

    2012-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that play crucial regulatory roles by targeting mRNAs for silencing. To identify miRNAs in Jatropha curcas L, a bioenergy crop, cDNA clones from two small RNA libraries of leaves and seeds were sequenced and analyzed using bioinformatic tools. Fifty-two putative miRNAs were found from the two libraries, among them six were identical to known miRNAs and 46 were novel. Differential expression patterns of 15 miRNAs in root, stem, leave, fruit and seed were detected using quantitative real-time PCR. Ten miRNAs were highly expressed in fruit or seed, implying that they may be involved in seed development or fatty acids synthesis in seed. Moreover, 28 targets of the isolated miRNAs were predicted from a jatropha cDNA library database. The miRNA target genes were predicted to encode a broad range of proteins. Sixteen targets had clear BLASTX hits to the Uniprot database and were associated with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function. Four targets were identified for JcumiR004. By silencing JcumiR004 primary miRNA, expressions of the four target genes were up-regulated and oil composition were modulated significantly, indicating diverse functions of JcumiR004. PMID:22419887

  1. Regulatory Role of Small Nucleolar RNAs in Human Diseases

    Directory of Open Access Journals (Sweden)

    Grigory A. Stepanov

    2015-01-01

    Full Text Available Small nucleolar RNAs (snoRNAs are appreciable players in gene expression regulation in human cells. The canonical function of box C/D and box H/ACA snoRNAs is posttranscriptional modification of ribosomal RNAs (rRNAs, namely, 2′-O-methylation and pseudouridylation, respectively. A series of independent studies demonstrated that snoRNAs, as well as other noncoding RNAs, serve as the source of various short regulatory RNAs. Some snoRNAs and their fragments can also participate in the regulation of alternative splicing and posttranscriptional modification of mRNA. Alterations in snoRNA expression in human cells can affect numerous vital cellular processes. SnoRNA level in human cells, blood serum, and plasma presents a promising target for diagnostics and treatment of human pathologies. Here we discuss the relation between snoRNAs and oncological, neurodegenerative, and viral diseases and also describe changes in snoRNA level in response to artificial stress and some drugs.

  2. Identification of microRNA-like RNAs in Ophiocordyceps sinensis.

    Science.gov (United States)

    Zhang, Wen; Li, Xiaona; Ma, Lina; Urrehman, Uzair; Bao, Xilinqiqige; Zhang, Yujing; Zhang, Chen-Yu; Hou, Dongxia; Zhou, Zhen

    2018-03-27

    Ophiocordyceps sinensis is well known as a traditional Chinese medicine and has widely been used for over 2,000 years to stimulate immune system, decrease blood pressure and to inhibit tumor growth. While miRNAs are increasingly recognized for their roles in post-transcriptional regulation of gene expression in animals and plants, miRNAs in fungi were less studied until the discovery of microRNA-like RNA (milRNA). High-throughput sequencing and bioinformatics approaches were used to identify conserved and novel milRNAs in O. sinensis. 40 conserved milRNAs were identified, while 23 pre-miRNA candidates encoding 31 novel milRNAs were predicted. Furthermore, the potential target genes of milRNAs in human were predicted and gene ontology analysis was applied to these genes. Enrichment analysis of GO-represented biological process showed that target genes of both conserved and novel milRNAs are involved in development, metabolic and immune processes, indicating the potential roles of milRNAs of O. sinensis in pharmacological effects as health food and traditional Chinese medicine. This study is the first report on genome-wide analysis of milRNAs in O. sinensis and it provides a useful resource to further study the potential roles of milRNAs as active components of O. sinensis in health food or traditional Chinese medicine.

  3. LncRNAs in vertebrates: advances and challenges.

    Science.gov (United States)

    Mallory, Allison C; Shkumatava, Alena

    2015-10-01

    Beyond the handful of classic and well-characterized long noncoding RNAs (lncRNAs), more recently, hundreds of thousands of lncRNAs have been identified in multiple species including bacteria, plants and vertebrates, and the number of newly annotated lncRNAs continues to increase as more transcriptomes are analyzed. In vertebrates, the expression of many lncRNAs is highly regulated, displaying discrete temporal and spatial expression patterns, suggesting roles in a wide range of developmental processes and setting them apart from classic housekeeping ncRNAs. In addition, the deregulation of a subset of these lncRNAs has been linked to the development of several diseases, including cancers, as well as developmental anomalies. However, the majority of vertebrate lncRNA functions remain enigmatic. As such, a major task at hand is to decipher the biological roles of lncRNAs and uncover the regulatory networks upon which they impinge. This review focuses on our emerging understanding of lncRNAs in vertebrate animals, highlighting some recent advances in their functional analyses across several species and emphasizing the current challenges researchers face to characterize lncRNAs and identify their in vivo functions. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. The interplay between noncoding RNAs and insulin in diabetes.

    Science.gov (United States)

    Tian, Yan; Xu, Jia; Du, Xiao; Fu, Xianghui

    2018-04-10

    Noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs and circular RNAs, regulate various biological processes and are involved in the initiation and progression of human diseases. Insulin, a predominant hormone secreted from pancreatic β cells, is an essential factor in regulation of systemic metabolism through multifunctional insulin signaling. Insulin production and action are tightly controlled. Dysregulations of insulin production and action can impair metabolic homeostasis, and eventually lead to the development of multiple metabolic diseases, especially diabetes. Accumulating data indicates that ncRNAs modulate β cell mass, insulin synthesis, secretion and signaling, and their role in diabetes is dramatically emerging. This review summarizes our current knowledge of ncRNAs as regulators of insulin, with particular emphasis on the implications of this interplay in the development of diabetes. We outline the role of ncRNAs in pancreatic β cell mass and function, which is critical for insulin production and secretion. We also highlight the involvement of ncRNAs in insulin signaling in peripheral tissues including liver, muscle and adipose, and discuss ncRNA-mediated inter-organ crosstalk under diabetic conditions. A more in-depth understanding of the interplay between ncRNAs and insulin may afford valuable insights and novel therapeutic strategies for treatment of diabetes, as well as other human diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The Roles of MicroRNAs in Breast Cancer

    International Nuclear Information System (INIS)

    Takahashi, Ryou-u; Miyazaki, Hiroaki; Ochiya, Takahiro

    2015-01-01

    MicroRNAs (miRNAs) constitute a large family of small, approximately 20–22 nucleotide, non-coding RNAs that regulate the expression of target genes, mainly at the post-transcriptional level. Accumulating lines of evidence have indicated that miRNAs play important roles in the maintenance of biological homeostasis and that aberrant expression levels of miRNAs are associated with the onset of many diseases, including cancer. In various cancers, miRNAs play important roles in tumor initiation, drug resistance and metastasis. Recent studies reported that miRNAs could also be secreted via small endosome-derived vesicles called exosomes, which are derived from multiple cell types, including dendritic cells, lymphocytes, and tumor cells. Exosomal miRNAs play an important role in cell-to-cell communication and have been investigated as prognostic and diagnostic biomarkers. In this review, we summarize the major findings related to the functions of miRNAs in breast cancer, which is the most frequent cancer in women, and discuss the potential clinical uses of miRNAs, including their roles as therapeutic targets and diagnostic markers

  6. Cerebellar neurodegeneration in the absence of microRNAs

    Science.gov (United States)

    Schaefer, Anne; O'Carroll, Dónal; Tan, Chan Lek; Hillman, Dean; Sugimori, Mutsuyuki; Llinas, Rodolfo; Greengard, Paul

    2007-01-01

    Genome-encoded microRNAs (miRNAs) are potent regulators of gene expression. The significance of miRNAs in various biological processes has been suggested by studies showing an important role of these small RNAs in regulation of cell differentiation. However, the role of miRNAs in regulation of differentiated cell physiology is not well established. Mature neurons express a large number of distinct miRNAs, but the role of miRNAs in postmitotic neurons has not been examined. Here, we provide evidence for an essential role of miRNAs in survival of differentiated neurons. We show that conditional Purkinje cell–specific ablation of the key miRNA-generating enzyme Dicer leads to Purkinje cell death. Deficiency in Dicer is associated with progressive loss of miRNAs, followed by cerebellar degeneration and development of ataxia. The progressive neurodegeneration in the absence of Dicer raises the possibility of an involvement of miRNAs in neurodegenerative disorders. PMID:17606634

  7. The Roles of MicroRNAs in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryou-u [Division of Molecular and Cellular Medicine, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan); Miyazaki, Hiroaki [Division of Molecular and Cellular Medicine, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan); Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555 (Japan); Ochiya, Takahiro, E-mail: tochiya@ncc.go.jp [Division of Molecular and Cellular Medicine, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan)

    2015-04-09

    MicroRNAs (miRNAs) constitute a large family of small, approximately 20–22 nucleotide, non-coding RNAs that regulate the expression of target genes, mainly at the post-transcriptional level. Accumulating lines of evidence have indicated that miRNAs play important roles in the maintenance of biological homeostasis and that aberrant expression levels of miRNAs are associated with the onset of many diseases, including cancer. In various cancers, miRNAs play important roles in tumor initiation, drug resistance and metastasis. Recent studies reported that miRNAs could also be secreted via small endosome-derived vesicles called exosomes, which are derived from multiple cell types, including dendritic cells, lymphocytes, and tumor cells. Exosomal miRNAs play an important role in cell-to-cell communication and have been investigated as prognostic and diagnostic biomarkers. In this review, we summarize the major findings related to the functions of miRNAs in breast cancer, which is the most frequent cancer in women, and discuss the potential clinical uses of miRNAs, including their roles as therapeutic targets and diagnostic markers.

  8. MicroRNAs in Obesity, Metabolic Syndrome and Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2011-04-01

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small regulatory RNAs that play important roles in development of diseases. Several studies have provided evidences showing that miRNAs affect pathways that are fundamental for metabolic control in adipocyte and skeletal muscle differentiations. Some miRNAs have been implicated in lipid, amino acid, and glucose homeostasis. This leads to the possibility that miRNAs may contribute to common metabolic diseases and point to novel therapeutic opportunities based on targeting of miRNAs. CONTENT: miRNAs have been recognized as a class of epigenetic regulators of metabolism and energy homeostasis, primarily because the simultaneous regulation of a large number of target genes can be accomplished by a single miRNA. Emerging evidences suggest that miRNAs play a key role in the pathological development of obesity by affecting adipocyte differentiation. miRNAs have been implicated as novel protagonists in the pathogenesis of Diabetes Mellitus (DM, regulation of insulin production, secretion and action. They also appear to play a role in the development of diabetic complications such as nephropathy and cardiac hypertrophy. SUMMARY: Involvement of miRNAs in glucose and lipid metabolism has provided strong evidences to confirm their roles as key players in regulation of complex metabolic pathways. Additionally, it indicates potential outlook for novel therapeutic strategies in the management of obesity, metabolic syndrome and DM. Further research in this field is needed to ascertain the full potential of miRNAs as novel metabolic biomarkers and potent therapeutic agents against obesity and its metabolic disorders. KEYWORDS: obesity, metabolic syndrome, diabetes, miRNAs, adipogenesis, insulin, pancreatic cells.

  9. Structural and Functional Motifs in Influenza Virus RNAs

    Directory of Open Access Journals (Sweden)

    Damien Ferhadian

    2018-03-01

    Full Text Available Influenza A viruses (IAV are responsible for recurrent influenza epidemics and occasional devastating pandemics in humans and animals. They belong to the Orthomyxoviridae family and their genome consists of eight (- sense viral RNA (vRNA segments of different lengths coding for at least 11 viral proteins. A heterotrimeric polymerase complex is bound to the promoter consisting of the 13 5′-terminal and 12 3′-terminal nucleotides of each vRNA, while internal parts of the vRNAs are associated with multiple copies of the viral nucleoprotein (NP, thus forming ribonucleoproteins (vRNP. Transcription and replication of vRNAs result in viral mRNAs (vmRNAs and complementary RNAs (cRNAs, respectively. Complementary RNAs are the exact positive copies of vRNAs; they also form ribonucleoproteins (cRNPs and are intermediate templates in the vRNA amplification process. On the contrary, vmRNAs have a 5′ cap snatched from cellular mRNAs and a 3′ polyA tail, both gained by the viral polymerase complex. Hence, unlike vRNAs and cRNAs, vmRNAs do not have a terminal promoter able to recruit the viral polymerase. Furthermore, synthesis of at least two viral proteins requires vmRNA splicing. Except for extensive analysis of the viral promoter structure and function and a few, mostly bioinformatics, studies addressing the vRNA and vmRNA structure, structural studies of the influenza A vRNAs, cRNAs, and vmRNAs are still in their infancy. The recent crystal structures of the influenza polymerase heterotrimeric complex drastically improved our understanding of the replication and transcription processes. The vRNA structure has been mainly studied in vitro using RNA probing, but its structure has been very recently studied within native vRNPs using crosslinking and RNA probing coupled to next generation RNA sequencing. Concerning vmRNAs, most studies focused on the segment M and NS splice sites and several structures initially predicted by bioinformatics analysis

  10. EVLncRNAs: a manually curated database for long non-coding RNAs validated by low-throughput experiments

    Science.gov (United States)

    Zhao, Huiying; Yu, Jiafeng; Guo, Chengang; Dou, Xianghua; Song, Feng; Hu, Guodong; Cao, Zanxia; Qu, Yuanxu

    2018-01-01

    Abstract Long non-coding RNAs (lncRNAs) play important functional roles in various biological processes. Early databases were utilized to deposit all lncRNA candidates produced by high-throughput experimental and/or computational techniques to facilitate classification, assessment and validation. As more lncRNAs are validated by low-throughput experiments, several databases were established for experimentally validated lncRNAs. However, these databases are small in scale (with a few hundreds of lncRNAs only) and specific in their focuses (plants, diseases or interactions). Thus, it is highly desirable to have a comprehensive dataset for experimentally validated lncRNAs as a central repository for all of their structures, functions and phenotypes. Here, we established EVLncRNAs by curating lncRNAs validated by low-throughput experiments (up to 1 May 2016) and integrating specific databases (lncRNAdb, LncRANDisease, Lnc2Cancer and PLNIncRBase) with additional functional and disease-specific information not covered previously. The current version of EVLncRNAs contains 1543 lncRNAs from 77 species that is 2.9 times larger than the current largest database for experimentally validated lncRNAs. Seventy-four percent lncRNA entries are partially or completely new, comparing to all existing experimentally validated databases. The established database allows users to browse, search and download as well as to submit experimentally validated lncRNAs. The database is available at http://biophy.dzu.edu.cn/EVLncRNAs. PMID:28985416

  11. MicroRNAs Expression Profiles in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Elsa Bronze-da-Rocha

    2014-01-01

    Full Text Available The current search for new markers of cardiovascular diseases (CVDs is explained by the high morbidity and mortality still observed in developed and developing countries due to cardiovascular events. Recently, microRNAs (miRNAs or miRs have emerged as potential new biomarkers and are small sequences of RNAs that regulate gene expression at posttranscriptional level by inhibiting translation or inducing degradation of the target mRNAs. Circulating miRNAs are involved in the regulation of signaling pathways associated to aging and can be used as novel diagnostic markers for acute and chronic diseases such as cardiovascular pathologies. This review summarizes the biogenesis, maturation, and stability of miRNAs and their use as potential biomarkers for coronary artery disease (CAD, myocardial infarction (MI, and heart failure (HF.

  12. Identification of phasiRNAs in wild rice (Oryza rufipogon).

    Science.gov (United States)

    Liu, Yang; Wang, Yu; Zhu, Qian-Hao; Fan, Longjiang

    2013-08-01

    Plant miRNAs can trigger the production of phased, secondary siRNAs from either non-coding or protein-coding genes. In this study, at least 864 and 3,961 loci generating 21-nt and 24-nt phased siRNAs (phasiRNAs),respectively, were identified in three tissues from wild rice. Of these phasiRNA-producing loci, or PHAS genes, biogenesis of phasiRNAs in at least 160 of 21-nt and 254 of 24-nt loci could be triggered by interaction with miRNA(s). Developing seeds had more PHAS genes than leaves and roots. Genetic constrain on miRNA-triggered PHAS genes suggests that phasiRNAs might be one of the driving forces contributed to rice domestication.

  13. Functions of MicroRNAs in Cardiovascular Biology and Disease

    Science.gov (United States)

    Hata, Akiko

    2015-01-01

    In 1993, lin-4 was discovered as a critical modulator of temporal development in Caenorhabditis elegans and, most notably, as the first in the class of small, single-stranded noncoding RNAs now defined as microRNAs (miRNAs). Another eight years elapsed before miRNA expression was detected in mammalian cells. Since then, explosive advancements in the field of miRNA biology have elucidated the basic mechanism of miRNA biogenesis, regulation, and gene-regulatory function. The discovery of this new class of small RNAs has augmented the complexity of gene-regulatory programs as well as the understanding of developmental and pathological processes in the cardiovascular system. Indeed, the contributions of miRNAs in cardiovascular development and function have been widely explored, revealing the extensive role of these small regulatory RNAs in cardiovascular physiology. PMID:23157557

  14. Identification of Bacterial Small RNAs by RNA Sequencing

    DEFF Research Database (Denmark)

    Gómez Lozano, María; Marvig, Rasmus Lykke; Molin, Søren

    2014-01-01

    sequencing (RNA-seq) is described that involves the preparation and analysis of three different sequencing libraries. As a signifi cant number of unique sRNAs are identifi ed in each library, the libraries can be used either alone or in combination to increase the number of sRNAs identifi ed. The approach......Small regulatory RNAs (sRNAs) in bacteria are known to modulate gene expression and control a variety of processes including metabolic reactions, stress responses, and pathogenesis in response to environmental signals. A method to identify bacterial sRNAs on a genome-wide scale based on RNA...... may be applied to identify sRNAs in any bacterium under different growth and stress conditions....

  15. MicroRNAs: regulators of oncogenesis and stemness

    Directory of Open Access Journals (Sweden)

    Papagiannakopoulos Thales

    2008-06-01

    Full Text Available Abstract MicroRNAs (miRNAs are essential post-transcriptional regulators that determine cell identity and fate. Aberrant expression of miRNAs can lead to diseases, including cancer. Expression of many miRNAs in the de-differentiated brain tumor cancer stem cells resembles that of neural stem cells. In this issue of BMC Medicine, Silber et al provide evidence of the expression of such miRNAs and their potential to mediate differentiation in both stem cell populations. In this commentary, we discuss the known functions of miRNAs in cancer and stem cells, their therapeutic potential and how the findings of Silber et al provide insight into the role of miR-124/miR-137 dysregulation in glioblastomas.

  16. The application of microRNAs in cancer diagnostics

    DEFF Research Database (Denmark)

    Sørensen, Karina Dalsgaard; Ostenfeld, Marie Stampe; Kristensen, Helle

    2012-01-01

    hallmark of human cancer. Furthermore, miRNAs have been found to be a new class of promising cancer biomarkers with potential to improve the accuracy of diagnosis and prognosis in several hematologic and solid malignancies, as well as to predict response to specific treatments. Recent studies have......MicroRNAs (miRNAs) play important biological roles in cancer development and progression. During the past decade, widespread use of novel high-throughput technologies for miRNA profiling (e.g., microarrays and next-generation sequencing) has revealed deregulation of miRNA expression as a common...... identified exosome-associated tumor-derived miRNAs in, e.g., blood samples from cancer patients, suggesting that miRNAs may be useful as circulation biomarkers for noninvasive diagnostic testing. In this chapter, we review the current state of development of miRNAs as cancer biomarkers with examples from...

  17. Integration of Bacterial Small RNAs in Regulatory Networks.

    Science.gov (United States)

    Nitzan, Mor; Rehani, Rotem; Margalit, Hanah

    2017-05-22

    Small RNAs (sRNAs) are central regulators of gene expression in bacteria, controlling target genes posttranscriptionally by base pairing with their mRNAs. sRNAs are involved in many cellular processes and have unique regulatory characteristics. In this review, we discuss the properties of regulation by sRNAs and how it differs from and combines with transcriptional regulation. We describe the global characteristics of the sRNA-target networks in bacteria using graph-theoretic approaches and review the local integration of sRNAs in mixed regulatory circuits, including feed-forward loops and their combinations, feedback loops, and circuits made of an sRNA and another regulator, both derived from the same transcript. Finally, we discuss the competition effects in posttranscriptional regulatory networks that may arise over shared targets, shared regulators, and shared resources and how they may lead to signal propagation across the network.

  18. MicroRNAs in large herpesvirus DNA genomes: recent advances.

    Science.gov (United States)

    Sorel, Océane; Dewals, Benjamin G

    2016-08-01

    MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that regulate gene expression. They alter mRNA translation through base-pair complementarity, leading to regulation of genes during both physiological and pathological processes. Viruses have evolved mechanisms to take advantage of the host cells to multiply and/or persist over the lifetime of the host. Herpesviridae are a large family of double-stranded DNA viruses that are associated with a number of important diseases, including lymphoproliferative diseases. Herpesviruses establish lifelong latent infections through modulation of the interface between the virus and its host. A number of reports have identified miRNAs in a very large number of human and animal herpesviruses suggesting that these short non-coding transcripts could play essential roles in herpesvirus biology. This review will specifically focus on the recent advances on the functions of herpesvirus miRNAs in infection and pathogenesis.

  19. Detection and Analysis of Circular RNAs by RT-PCR.

    Science.gov (United States)

    Panda, Amaresh C; Gorospe, Myriam

    2018-03-20

    Gene expression in eukaryotic cells is tightly regulated at the transcriptional and posttranscriptional levels. Posttranscriptional processes, including pre-mRNA splicing, mRNA export, mRNA turnover, and mRNA translation, are controlled by RNA-binding proteins (RBPs) and noncoding (nc)RNAs. The vast family of ncRNAs comprises diverse regulatory RNAs, such as microRNAs and long noncoding (lnc)RNAs, but also the poorly explored class of circular (circ)RNAs. Although first discovered more than three decades ago by electron microscopy, only the advent of high-throughput RNA-sequencing (RNA-seq) and the development of innovative bioinformatic pipelines have begun to allow the systematic identification of circRNAs (Szabo and Salzman, 2016; Panda et al ., 2017b; Panda et al ., 2017c). However, the validation of true circRNAs identified by RNA sequencing requires other molecular biology techniques including reverse transcription (RT) followed by conventional or quantitative (q) polymerase chain reaction (PCR), and Northern blot analysis (Jeck and Sharpless, 2014). RT-qPCR analysis of circular RNAs using divergent primers has been widely used for the detection, validation, and sometimes quantification of circRNAs (Abdelmohsen et al ., 2015 and 2017; Panda et al ., 2017b). As detailed here, divergent primers designed to span the circRNA backsplice junction sequence can specifically amplify the circRNAs and not the counterpart linear RNA. In sum, RT-PCR analysis using divergent primers allows direct detection and quantification of circRNAs.

  20. Circulating microRNAs in patients with active pulmonary tuberculosis.

    Science.gov (United States)

    Fu, Yurong; Yi, Zhengjun; Wu, Xiaoyan; Li, Jianhua; Xu, Fuliang

    2011-12-01

    Emerging evidence shows that microRNAs (miRNAs) play an important role in pathogen-host interactions. Circulating miRNAs have been repeatedly and stably detected in blood and hold promise to serve as molecular markers for diverse physiological and pathological conditions. To date, the relationship between circulating miRNAs and active pulmonary tuberculosis (TB) has not been reported. Using microarray-based expression profiling followed by real-time quantitative PCR validation, the levels of circulating miRNAs were compared between patients with active pulmonary tuberculosis and matched healthy controls. The receiver operating characteristic curve was used to evaluate the diagnostic effect of selected miRNA. Bioinformatic analysis was used to explore the potential roles of these circulating miRNAs in active pulmonary tuberculosis infection. Among 92 miRNAs significantly detected, 59 miRNAs were downregulated and 33 miRNAs were upregulated in the TB serum compared to their levels in the control serum. Interestingly, only two differentially expressed miRNAs were increased not only in the serum but also in the sputum of patients with active pulmonary tuberculosis compared to the levels for the healthy controls. Upregulated miR-29a could discriminate TB patients from healthy controls with reasonable sensitivity and specificity. A number of significantly enriched pathways regulated by these circulating miRNAs were predicted, and most of them were involved in acute-phase response, inflammatory response, and the regulation of the cytoskeleton. In all, for the first time our results revealed that a number of miRNAs were differentially expressed during active pulmonary tuberculosis infection, and circulating miR-29a has great potential to serve as a marker for the detection of active pulmonary tuberculosis infection.

  1. MicroRNAs in Prostate Cancer

    Science.gov (United States)

    2008-11-01

    lymphoma. Genes Chromosom. Cancer 39:167–69 131. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. 2007. MicroRNA-155 is induced during the...carcinoma. J. Virol. 81:1033–36 155. Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, et al. 2007. Systematic analysis of microRNA expression of RNA extracted ...diversity. miRNAs were extracted from the unique sequences by searching against miRNA database (miRbase release 10.0; http://microrna.sanger.ac.uk

  2. Circulating microRNAs in breast cancer

    DEFF Research Database (Denmark)

    Hamam, Rimi; Hamam, Dana; Alsaleh, Khalid A.

    2017-01-01

    Effective management of breast cancer depends on early diagnosis and proper monitoring of patients' response to therapy. However, these goals are difficult to achieve because of the lack of sensitive and specific biomarkers for early detection and for disease monitoring. Accumulating evidence...... in the past several years has highlighted the potential use of peripheral blood circulating nucleic acids such as DNA, mRNA and micro (mi)RNA in breast cancer diagnosis, prognosis and for monitoring response to anticancer therapy. Among these, circulating miRNA is increasingly recognized as a promising...... circulating miRNAs as diagnostic, prognostic or predictive biomarkers in breast cancer management....

  3. Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function.

    Science.gov (United States)

    Osman, Abdimajid; Hitzler, Walter E; Meyer, Claudius U; Landry, Patricia; Corduan, Aurélie; Laffont, Benoit; Boilard, Eric; Hellstern, Peter; Vamvakas, Eleftherios C; Provost, Patrick

    2015-01-01

    Pathogen reduction (PR) systems for platelets, based on chemically induced cross-linking and inactivation of nucleic acids, potentially prevent transfusion transmission of infectious agents, but can increase clinically significant bleeding in some clinical studies. Here, we documented the effects of PR systems on microRNA and mRNA levels of platelets stored in the blood bank, and assessed their impact on platelet activation and function. Unlike platelets subjected to gamma irradiation or stored in additive solution, platelets treated with Intercept (amotosalen+ ultraviolet-A [UVA] light) exhibited significantly reduced levels of 6 of the 11 microRNAs, and 2 of the 3 anti-apoptotic mRNAs (Bcl-xl and Clusterin) that we monitored, compared with platelets stored in plasma. Mirasol (riboflavin+ UVB light) treatment of platelets did not produce these effects. PR neither affected platelet microRNA synthesis or function nor induced cross-linking of microRNA-sized endogenous platelet RNA species. However, the reduction in the platelet microRNA levels induced by Intercept correlated with the platelet activation (p < 0.05) and an impaired platelet aggregation response to ADP (p < 0.05). These results suggest that Intercept treatment may induce platelet activation, resulting in the release of microRNAs and mRNAs from platelets. The clinical implications of this reduction in platelet nucleic acids secondary to Intercept remain to be established.

  4. Non-coding RNAs in the Ovarian Follicle

    Directory of Open Access Journals (Sweden)

    Rosalia Battaglia

    2017-05-01

    Full Text Available The mammalian ovarian follicle is the complex reproductive unit comprising germ cell, somatic cells (Cumulus and Granulosa cells, and follicular fluid (FF: paracrine communication among the different cell types through FF ensures the development of a mature oocyte ready for fertilization. This paper is focused on non-coding RNAs in ovarian follicles and their predicted role in the pathways involved in oocyte growth and maturation. We determined the expression profiles of microRNAs in human oocytes and FF by high-throughput analysis and identified 267 microRNAs in FF and 176 in oocytes. Most of these were FF microRNAs, while 9 were oocyte specific. By bioinformatic analysis, independently performed on FF and oocyte microRNAs, we identified the most significant Biological Processes and the pathways regulated by their validated targets. We found many pathways shared between the two compartments and some specific for oocyte microRNAs. Moreover, we found 41 long non-coding RNAs able to interact with oocyte microRNAs and potentially involved in the regulation of folliculogenesis. These data are important in basic reproductive research and could also be useful for clinical applications. In fact, the characterization of non-coding RNAs in ovarian follicles could improve reproductive disease diagnosis, provide biomarkers of oocyte quality in Assisted Reproductive Treatment, and allow the development of therapies for infertility disorders.

  5. Plant Responses to Pathogen Attack: Small RNAs in Focus.

    Science.gov (United States)

    Islam, Waqar; Noman, Ali; Qasim, Muhammad; Wang, Liande

    2018-02-08

    Small RNAs (sRNA) are a significant group of gene expression regulators for multiple biological processes in eukaryotes. In plants, many sRNA silencing pathways produce extensive array of sRNAs with specialized roles. The evidence on record advocates for the functions of sRNAs during plant microbe interactions. Host sRNAs are reckoned as mandatory elements of plant defense. sRNAs involved in plant defense processes via different pathways include both short interfering RNA (siRNA) and microRNA (miRNA) that actively regulate immunity in response to pathogenic attack via tackling pathogen-associated molecular patterns (PAMPs) and other effectors. In response to pathogen attack, plants protect themselves with the help of sRNA-dependent immune systems. That sRNA-mediated plant defense responses play a role during infections is an established fact. However, the regulations of several sRNAs still need extensive research. In this review, we discussed the topical advancements and findings relevant to pathogen attack and plant defense mediated by sRNAs. We attempted to point out diverse sRNAs as key defenders in plant systems. It is hoped that sRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases.

  6. Dynamic evolution and biogenesis of small RNAs during sex reversal.

    Science.gov (United States)

    Liu, Jie; Luo, Majing; Sheng, Yue; Hong, Qiang; Cheng, Hanhua; Zhou, Rongjia

    2015-05-06

    Understanding origin, evolution and functions of small RNA (sRNA) genes has been a great challenge in the past decade. Molecular mechanisms underlying sexual reversal in vertebrates, particularly sRNAs involved in this process, are largely unknown. By deep-sequencing of small RNA transcriptomes in combination with genomic analysis, we identified a large amount of piRNAs and miRNAs including over 1,000 novel miRNAs, which were differentially expressed during gonad reversal from ovary to testis via ovotesis. Biogenesis and expressions of miRNAs were dynamically changed during the reversal. Notably, phylogenetic analysis revealed dynamic expansions of miRNAs in vertebrates and an evolutionary trajectory of conserved miR-17-92 cluster in the Eukarya. We showed that the miR-17-92 cluster in vertebrates was generated through multiple duplications from ancestor miR-92 in invertebrates Tetranychus urticae and Daphnia pulex from the Chelicerata around 580 Mya. Moreover, we identified the sexual regulator Dmrt1 as a direct target of the members miR-19a and -19b in the cluster. These data suggested dynamic biogenesis and expressions of small RNAs during sex reversal and revealed multiple expansions and evolutionary trajectory of miRNAs from invertebrates to vertebrates, which implicate small RNAs in sexual reversal and provide new insight into evolutionary and molecular mechanisms underlying sexual reversal.

  7. Dynamic evolution and biogenesis of small RNAs during sex reversal

    OpenAIRE

    Liu, Jie; Luo, Majing; Sheng, Yue; Hong, Qiang; Cheng, Hanhua; Zhou, Rongjia

    2015-01-01

    Understanding origin, evolution and functions of small RNA (sRNA) genes has been a great challenge in the past decade. Molecular mechanisms underlying sexual reversal in vertebrates, particularly sRNAs involved in this process, are largely unknown. By deep-sequencing of small RNA transcriptomes in combination with genomic analysis, we identified a large amount of piRNAs and miRNAs including over 1,000 novel miRNAs, which were differentially expressed during gonad reversal from ovary to testis...

  8. New research progress of microRNAs in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Jing Zeng

    2014-11-01

    Full Text Available Retinoblastoma(RBis the most common intraocular malignancy of children with extremely poor prognosis. MicroRNAs are small non-coding single-stranded RNAs in eukaryotic cells, which regulate the expression of gene by mRNA degradation or translation inhibition. MicroRNAs, acting as oncogenes or tumor suppressor genes, are associated with the occurrence and development of RB directly, which is vital for the early diagnosis and clinical targeted therapy of RB. This review summarized the expression of microRNAs in RB and the related mechanism.

  9. MicroRNAs Change the Landscape of Cancer Resistance.

    Science.gov (United States)

    Zhu, Jun; Zhu, Wei; Wu, Wei

    2018-01-01

    One of the major challenges in the cancer treatment is the development of drug resistance. It represents a major obstacle to curing cancer with constrained efficacy of both conventional chemotherapy and targeted therapies, even recent immune checkpoint blockade therapy. Deciphering the mechanisms of resistance is critical to further understanding the multifactorial pathways involved, and developing more specific targeted treatments. To date, numerous studies have reported the potential role of microRNAs (miRNAs) in the resistance to various cancer treatments. MicroRNAs are a family of small noncoding RNAs that regulate gene expression by sequence-specific targeting of mRNAs causing translational repression or mRNA degradation. More than 1200 validated human miRNAs have been identified in human genome. While one miRNA can regulate hundreds of targets, a single target can also be affected by multiple miRNAs. Evidence suggests that dysregulation of specific miRNAs may be involved in the acquisition of resistance, thereby modulating the sensitivity of cancer cells to treatment. Therefore, manipulation of miRNAs may be an attractive strategy for more effective individualized therapies through reprograming resistant network in cancer cells.

  10. Structured RNAs and synteny regions in the pig genome

    DEFF Research Database (Denmark)

    Anthon, Christian; Tafer, Hakim; Havgaard, Jakob H

    2014-01-01

    BACKGROUND: Annotating mammalian genomes for noncoding RNAs (ncRNAs) is nontrivial since far from all ncRNAs are known and the computational models are resource demanding. Currently, the human genome holds the best mammalian ncRNA annotation, a result of numerous efforts by several groups. However......, a more direct strategy is desired for the increasing number of sequenced mammalian genomes of which some, such as the pig, are relevant as disease models and production animals. RESULTS: We present a comprehensive annotation of structured RNAs in the pig genome. Combining sequence and structure...... lncRNA loci, 11 conflicts of annotation, and 3,183 ncRNA genes. The ncRNA genes comprise 359 miRNAs, 8 ribozymes, 185 rRNAs, 638 snoRNAs, 1,030 snRNAs, 810 tRNAs and 153 ncRNA genes not belonging to the here fore mentioned classes. When running the pipeline on a local shuffled version of the genome...

  11. Characterization of piRNAs across postnatal development in mouse brain

    KAUST Repository

    Ghosheh, Yanal; Seridi, Loqmane; Ryu, Tae Woo; Takahashi, Hazuki; Orlando, Valerio; Carninci, Piero; Ravasi, Timothy

    2016-01-01

    PIWI-interacting RNAs (piRNAs) are responsible for maintaining the genome stability by silencing retrotransposons in germline tissues– where piRNAs were first discovered and thought to be restricted. Recently, novel functions were reported for piRNAs in germline and somatic cells. Using deep sequencing of small RNAs and CAGE of postnatal development of mouse brain, we identified piRNAs only in adult mouse brain. These piRNAs have similar sequence length as those of MILI-bound piRNAs. In addition, we predicted novel candidate regulators and putative targets of adult brain piRNAs.

  12. MicroRNAs - A New Generation Molecular Targets for Treating Cellular Diseases

    OpenAIRE

    Paulmurugan, Ramasamy

    2013-01-01

    MicroRNAs (miRNAs) are a unique class of non-coding, small RNAs, similar to mRNAs, transcribed by cells, but for entirely different reasons. While mRNAs are transcribed to code for proteins, miRNAs are produced to regulate the production of proteins from mRNAs. miRNAs are central components that tightly and temporally regulating gene expression in cells. Dysregulation of miRNAs expressions in cellular pathogenesis, including cancer, has been reported, and it clearly supports the importance of...

  13. Characterization of piRNAs across postnatal development in mouse brain

    KAUST Repository

    Ghosheh, Yanal

    2016-04-26

    PIWI-interacting RNAs (piRNAs) are responsible for maintaining the genome stability by silencing retrotransposons in germline tissues– where piRNAs were first discovered and thought to be restricted. Recently, novel functions were reported for piRNAs in germline and somatic cells. Using deep sequencing of small RNAs and CAGE of postnatal development of mouse brain, we identified piRNAs only in adult mouse brain. These piRNAs have similar sequence length as those of MILI-bound piRNAs. In addition, we predicted novel candidate regulators and putative targets of adult brain piRNAs.

  14. Smoking-related microRNAs and mRNAs in human peripheral blood mononuclear cells

    International Nuclear Information System (INIS)

    Su, Ming-Wei; Yu, Sung-Liang; Lin, Wen-Chang; Tsai, Ching-Hui; Chen, Po-Hua; Lee, Yungling Leo

    2016-01-01

    Teenager smoking is of great importance in public health. Functional roles of microRNAs have been documented in smoke-induced gene expression changes, but comprehensive mechanisms of microRNA-mRNA regulation and benefits remained poorly understood. We conducted the Teenager Smoking Reduction Trial (TSRT) to investigate the causal association between active smoking reduction and whole-genome microRNA and mRNA expression changes in human peripheral blood mononuclear cells (PBMC). A total of 12 teenagers with a substantial reduction in smoke quantity and a decrease in urine cotinine/creatinine ratio were enrolled in genomic analyses. In Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA), differentially expressed genes altered by smoke reduction were mainly associated with glucocorticoid receptor signaling pathway. The integrative analysis of microRNA and mRNA found eleven differentially expressed microRNAs negatively correlated with predicted target genes. CD83 molecule regulated by miR-4498 in human PBMC, was critical for the canonical pathway of communication between innate and adaptive immune cells. Our data demonstrated that microRNAs could regulate immune responses in human PBMC after habitual smokers quit smoking and support the potential translational value of microRNAs in regulating disease-relevant gene expression caused by tobacco smoke. - Highlights: • We conducted a smoke reduction trial program and investigated the causal relationship between smoke and gene regulation. • MicroRNA and mRNA expression changes were examined in human PBMC. • MicroRNAs are important in regulating disease-causal genes after tobacco smoke reduction.

  15. Smoking-related microRNAs and mRNAs in human peripheral blood mononuclear cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ming-Wei [Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (China); Yu, Sung-Liang [Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Lin, Wen-Chang [Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (China); Tsai, Ching-Hui [Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chen, Po-Hua [School of Medicine, National Taiwan University, Taipei, Taiwan (China); Lee, Yungling Leo, E-mail: leolee@ntu.edu.tw [Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (China)

    2016-08-15

    Teenager smoking is of great importance in public health. Functional roles of microRNAs have been documented in smoke-induced gene expression changes, but comprehensive mechanisms of microRNA-mRNA regulation and benefits remained poorly understood. We conducted the Teenager Smoking Reduction Trial (TSRT) to investigate the causal association between active smoking reduction and whole-genome microRNA and mRNA expression changes in human peripheral blood mononuclear cells (PBMC). A total of 12 teenagers with a substantial reduction in smoke quantity and a decrease in urine cotinine/creatinine ratio were enrolled in genomic analyses. In Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA), differentially expressed genes altered by smoke reduction were mainly associated with glucocorticoid receptor signaling pathway. The integrative analysis of microRNA and mRNA found eleven differentially expressed microRNAs negatively correlated with predicted target genes. CD83 molecule regulated by miR-4498 in human PBMC, was critical for the canonical pathway of communication between innate and adaptive immune cells. Our data demonstrated that microRNAs could regulate immune responses in human PBMC after habitual smokers quit smoking and support the potential translational value of microRNAs in regulating disease-relevant gene expression caused by tobacco smoke. - Highlights: • We conducted a smoke reduction trial program and investigated the causal relationship between smoke and gene regulation. • MicroRNA and mRNA expression changes were examined in human PBMC. • MicroRNAs are important in regulating disease-causal genes after tobacco smoke reduction.

  16. Gene function analysis by artificial microRNAs in Physcomitrella patens.

    KAUST Repository

    Khraiwesh, Basel; Fattash, Isam; Arif, Muhammad Asif; Frank, Wolfgang

    2011-01-01

    MicroRNAs (miRNAs) are ~21 nt long small RNAs transcribed from endogenous MIR genes which form precursor RNAs with a characteristic hairpin structure. miRNAs control the expression of cognate target genes by binding to reverse complementary

  17. MicroRNAs in cardiac diseases: The devil is in the details

    NARCIS (Netherlands)

    Tijsen, A.J.M.

    2013-01-01

    Since their discovery in 1993, it has become clear that microRNAs (miRNAs) constitute a completely new layer of gene regulation. MiRNAs are ~22 nucleotide long, non-coding RNA sequences that regulate gene expression by binding to the 3’UTR of messenger RNAs (mRNAs), resulting in repression of

  18. Circular RNAs: Biogenesis, Function and Role in Human Diseases

    Directory of Open Access Journals (Sweden)

    John Greene

    2017-06-01

    Full Text Available Circular RNAs (circRNAs are currently classed as non-coding RNA (ncRNA that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3′ and 5′ ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i errors in the back-splice machinery in malignant tissues, (ii degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as

  19. Mammalian small nucleolar RNAs are mobile genetic elements.

    Directory of Open Access Journals (Sweden)

    Michel J Weber

    2006-12-01

    Full Text Available Small nucleolar RNAs (snoRNAs of the H/ACA box and C/D box categories guide the pseudouridylation and the 2'-O-ribose methylation of ribosomal RNAs by forming short duplexes with their target. Similarly, small Cajal body-specific RNAs (scaRNAs guide modifications of spliceosomal RNAs. The vast majority of vertebrate sno/scaRNAs are located in introns of genes transcribed by RNA polymerase II and processed by exonucleolytic trimming after splicing. A bioinformatic search for orthologues of human sno/scaRNAs in sequenced mammalian genomes reveals the presence of species- or lineage-specific sno/scaRNA retroposons (sno/scaRTs characterized by an A-rich tail and an approximately 14-bp target site duplication that corresponds to their insertion site, as determined by interspecific genomic alignments. Three classes of snoRTs are defined based on the extent of intron and exon sequences from the snoRNA parental host gene they contain. SnoRTs frequently insert in gene introns in the sense orientation at genomic hot spots shared with other genetic mobile elements. Previously characterized human snoRNAs are encoded in retroposons whose parental copies can be identified by phylogenic analysis, showing that snoRTs can be faithfully processed. These results identify snoRNAs as a new family of mobile genetic elements. The insertion of new snoRNA copies might constitute a safeguard mechanism by which the biological activity of snoRNAs is maintained in spite of the risk of mutations in the parental copy. I furthermore propose that retroposition followed by genetic drift is a mechanism that increased snoRNA diversity during vertebrate evolution to eventually acquire new RNA-modification functions.

  20. Differential and coherent processing patterns from small RNAs

    DEFF Research Database (Denmark)

    Pundhir, Sachin; Gorodkin, Jan

    2015-01-01

    Post-transcriptional processing events related to short RNAs are often reflected in their read profile patterns emerging from high-throughput sequencing data. MicroRNA arm switching across different tissues is a well-known example of what we define as differential processing. Here, short RNAs from...

  1. Diet-responsive microRNAs are likely exogenous

    Science.gov (United States)

    In a recent report Title "et al". fostered miRNA-375 and miR-200c knock-out pups to wild-type dams and arrived at the conclusion that milk microRNAs are bioavailable in trace amounts at best and that postprandial concentrations of microRNAs are too low to elicit biological effects. Their take home m...

  2. Base Composition Characteristics of Mammalian miRNAs

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are short RNA sequences that repress protein synthesis by either inhibiting the translation of messenger RNA (mRNA or increasing mRNA degradation. Endogenous miRNAs have been found in various organisms, including animals, plants, and viruses. Mammalian miRNAs are evolutionarily conserved, are scattered throughout chromosomes, and play an important role in the immune response and the onset of cancer. For this study, the author explored the base composition characteristics of miRNA genes from the six mammalian species that contain the largest number of known miRNAs. It was found that mammalian miRNAs are evolutionarily conserved and GU-rich. Interestingly, in the miRNA sequences investigated, A residues are clearly the most frequent occupants of positions 2 and 3 of the 5′ end of miRNAs. Unlike G and U residues that may pair with C/U and A/G, respectively, A residues can only pair with U residues of target mRNAs, which may augment the recognition specificity of the 5′ seed region.

  3. Regulatory Non-Coding RNAs in Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Alessandro Rosa

    2013-07-01

    Full Text Available The most part of our genome encodes for RNA transcripts are never translated into proteins. These include families of RNA molecules with a regulatory function, which can be arbitrarily subdivided in short (less than 200 nucleotides and long non-coding RNAs (ncRNAs. MicroRNAs, which act post-transcriptionally to repress the function of target mRNAs, belong to the first group. Included in the second group are multi-exonic and polyadenylated long ncRNAs (lncRNAs, localized either in the nucleus, where they can associate with chromatin remodeling complexes to regulate transcription, or in the cytoplasm, acting as post-transcriptional regulators. Pluripotent stem cells, such as embryonic stem cells (ESCs or induced pluripotent stem cells (iPSCs, represent useful systems for modeling normal development and human diseases, as well as promising tools for regenerative medicine. To fully explore their potential, however, a deep understanding of the molecular basis of stemness is crucial. In recent years, increasing evidence of the importance of regulation by ncRNAs in pluripotent cells is accumulating. In this review, we will discuss recent findings pointing to multiple roles played by regulatory ncRNAs in ESC and iPSCs, where they act in concert with signaling pathways, transcriptional regulatory circuitries and epigenetic factors to modulate the balance between pluripotency and differentiation.

  4. miRNAs in Human Subcutaneous Adipose Tissue

    DEFF Research Database (Denmark)

    Kristensen, Malene M.; Davidsen, Peter K.; Vigelso, Andreas

    2017-01-01

    Objective Obesity is central in the development of insulin resistance. However, the underlying mechanisms still need elucidation. Dysregulated microRNAs (miRNAs; post-transcriptional regulators) in adipose tissue may present an important link. Methods The miRNA expression in subcutaneous adipose ...

  5. Exosomal miRNAs as biomarkers for prostate cancer

    Directory of Open Access Journals (Sweden)

    Nina Pettersen Hessvik

    2013-03-01

    Full Text Available miRNAs are small non-coding RNAs that finely regulate gene expression in cells. Alterations in miRNA expression have been associated with development of cancer, and miRNAs are now being investigated as biomarkers for cancer as well as other diseases. Recently, miRNAs have been found outside cells in body fluids. Extracellular miRNAs exist in different forms - associated with Ago2 proteins, loaded into extracellular vesicles (exosomes, microvesicles or apoptotic bodies or into high density lipoprotein particles. These extracellular miRNAs are probably products of distinct cellular processes, and might therefore play different roles. However, their functions in vivo are currently unknown. In spite of this, they are considered as promising, noninvasive diagnostic and prognostic tools. Prostate cancer is the most common cancer in men in the Western world, but the currently used biomarker (prostate specific antigen has low specificity. Therefore, novel biomarkers are highly needed. In this review we will discuss possible biological functions of extracellular miRNAs, as well as the potential use of miRNAs from extracellular vesicles as biomarkers for prostate cancer.

  6. Wheat hybridization and polyploidization results in deregulation of small RNAs.

    Science.gov (United States)

    Kenan-Eichler, Michal; Leshkowitz, Dena; Tal, Lior; Noor, Elad; Melamed-Bessudo, Cathy; Feldman, Moshe; Levy, Avraham A

    2011-06-01

    Speciation via interspecific or intergeneric hybridization and polyploidization triggers genomic responses involving genetic and epigenetic alterations. Such modifications may be induced by small RNAs, which affect key cellular processes, including gene expression, chromatin structure, cytosine methylation and transposable element (TE) activity. To date, the role of small RNAs in the context of wide hybridization and polyploidization has received little attention. In this work, we performed high-throughput sequencing of small RNAs of parental, intergeneric hybrid, and allopolyploid plants that mimic the genomic changes occurring during bread wheat speciation. We found that the percentage of small RNAs corresponding to miRNAs increased with ploidy level, while the percentage of siRNAs corresponding to TEs decreased. The abundance of most miRNA species was similar to midparent values in the hybrid, with some deviations, as seen in overrepresentation of miR168, in the allopolyploid. In contrast, the number of siRNAs corresponding to TEs strongly decreased upon allopolyploidization, but not upon hybridization. The reduction in corresponding siRNAs, together with decreased CpG methylation, as shown here for the Veju element, represent hallmarks of TE activation. TE-siRNA downregulation in the allopolyploid may contribute to genome destabilization at the initial stages of speciation. This phenomenon is reminiscent of hybrid dysgenesis in Drosophila.

  7. LncRNAs: emerging players in gene regulation and disease ...

    Indian Academy of Sciences (India)

    and Glavac 2013), accounting for about 20,000 protein coding ... general information on lncRNAs' feature (Da Sacco et al. 2012). ..... mal cells, stabilized Zeb2 intron encompasses an internal ..... cially growth-control genes and cell mobility-induced genes ..... RNAs in development and disease of the central nervous system.

  8. Cell Cycle Regulation of Stem Cells by MicroRNAs.

    Science.gov (United States)

    Mens, Michelle M J; Ghanbari, Mohsen

    2018-06-01

    MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.

  9. The Role of MicroRNAs in Kidney Disease

    Directory of Open Access Journals (Sweden)

    Sydwell Mukhadi

    2015-11-01

    Full Text Available MicroRNAs (miRNAs are short noncoding RNAs that regulate pathophysiological processes that suppress gene expression by binding to messenger RNAs. These biomolecules can be used to study gene regulation and protein expression, which will allow better understanding of many biological processes such as cell cycle progression and apoptosis that control the fate of cells. Several pathways have also been implicated to be involved in kidney diseases such as Transforming Growth Factor-β, Mitogen-Activated Protein Kinase signaling, and Wnt signaling pathways. The discovery of miRNAs has provided new insights into kidney pathologies and may provide new innovative and effective therapeutic strategies. Research has demonstrated the role of miRNAs in a variety of kidney diseases including renal cell carcinoma, diabetic nephropathy, nephritic syndrome, renal fibrosis, lupus nephritis and acute pyelonephritis. MiRNAs are implicated as playing a role in these diseases due to their role in apoptosis, cell proliferation, differentiation and development. As miRNAs have been detected in a stable condition in different biological fluids, they have the potential to be tools to study the pathogenesis of human diseases with a great potential to be used in disease prognosis and diagnosis. The purpose of this review is to examine the role of miRNA in kidney disease.

  10. IDENTIFICATION AND CHARACTERIZATION OF NEW miRNAs IN ...

    African Journals Online (AJOL)

    Pathmanaban

    2012-09-20

    Sep 20, 2012 ... simplest and rapid method of identification of miRNAs is relied on in silico analysis. ... (NRs), are available for several plant species and can be used for ... Currently, there are 89 miRNAs deposited under. Gossypium at Plant ...

  11. Interplay of mitochondrial metabolism and microRNAs

    DEFF Research Database (Denmark)

    Geiger, Julian; Dalgaard, Louise Torp

    2017-01-01

    or the nucleus, a subset of ~150 different miRNAs, called mitomiRs, has also been found localized to mitochondrial fractions of cells and tissues together with the subunits of the RNA-induced silencing complex (RISC); the protein complex through which miRNAs normally act to prevent translation of their m...

  12. Plant and Animal microRNAs (miRNAs) and Their Potential for Inter-kingdom Communication.

    Science.gov (United States)

    Zhao, Yuhai; Cong, Lin; Lukiw, Walter J

    2018-01-01

    microRNAs (miRNAs) comprise a class of ~18-25 nucleotide (nt) single-stranded non-coding RNAs (sncRNAs) that are the smallest known carriers of gene-encoded, post-transcriptional regulatory information in both plants and animals. There are many fundamental similarities between plant and animal miRNAs-the miRNAs of both kingdoms play essential roles in development, aging and disease, and the shaping of the transcriptome of many cell types. Both plant and animal miRNAs appear to predominantly exert their genetic and transcriptomic influences by regulating gene expression at the level of messenger RNA (mRNA) stability and/or translational inhibition. Certain miRNA species, such as miRNA-155, miRNA-168, and members of the miRNA-854 family may be expressed in both plants and animals, suggesting a common origin and functional selection of specific miRNAs over vast periods of evolution (for example, Arabidopsis thaliana-Homo sapiens divergence ~1.5 billion years). Although there is emerging evidence for cross-kingdom miRNA communication-that plant-enriched miRNAs may enter the diet and play physiological and/or pathophysiological roles in human health and disease-some research reports repudiate this possibility. This research paper highlights some recent, controversial, and remarkable findings in plant- and animal-based miRNA signaling research with emphasis on the intriguing possibility that dietary miRNAs and/or sncRNAs may have potential to contribute to both intra- and inter-kingdom signaling, and in doing so modulate molecular-genetic mechanisms associated with human health and disease.

  13. Urinary microRNAs as potential biomarkers of pesticide exposure

    International Nuclear Information System (INIS)

    Weldon, Brittany A.; Shubin, Sara Pacheco; Smith, Marissa N.; Workman, Tomomi; Artemenko, Alexander; Griffith, William C.; Thompson, Beti; Faustman, Elaine M.

    2016-01-01

    MicroRNAs (miRNAs) are post-transcriptional regulators that silence messenger RNAs. Because miRNAs are stable at room temperature and long-lived, they have been proposed as molecular biomarkers to monitor disease and exposure status. While urinary miRNAs have been used clinically as potential diagnostic markers for kidney and bladder cancers and other diseases, their utility in non-clinical settings has yet to be fully developed. Our goal was to investigate the potential for urinary miRNAs to act as biomarkers of pesticide exposure and early biological response by identifying the miRNAs present in urine from 27 parent/child, farmworker/non-farmworker pairs (16FW/11NFW) collected during two agricultural seasons (thinning and post-harvest) and characterizing the between- and within-individual variability of these miRNA epigenetic regulators. MiRNAs were isolated from archived urine samples and identified using PCR arrays. Comparisons were made between age, households, season, and occupation. Of 384 miRNAs investigated, 297 (77%) were detectable in at least one sample. Seven miRNAs were detected in at least 50% of the samples, and one miRNA was present in 96% of the samples. Principal components and hierarchical clustering analyses indicate significant differences in miRNA profiles between farmworker and non-farmworker adults as well as between seasons. Six miRNAs were observed to be positively associated with farmworkers status during the post-harvest season. Expression of five of these miRNA trended towards a positive dose response relationship with organophosphate pesticide metabolites in farmworkers. These results suggest that miRNAs may be novel biomarkers of pesticide exposure and early biological response. - Highlights: • A novel method to identify microRNA biomarkers in urinary samples is proposed. • Six miRNAs have been identified as associated with occupational farm work and pesticide exposure. • An observed seasonal difference suggests transient

  14. Urinary microRNAs as potential biomarkers of pesticide exposure

    Energy Technology Data Exchange (ETDEWEB)

    Weldon, Brittany A.; Shubin, Sara Pacheco; Smith, Marissa N.; Workman, Tomomi; Artemenko, Alexander; Griffith, William C. [Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA (United States); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Thompson, Beti [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Faustman, Elaine M., E-mail: faustman@uw.edu [Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA (United States); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States)

    2016-12-01

    MicroRNAs (miRNAs) are post-transcriptional regulators that silence messenger RNAs. Because miRNAs are stable at room temperature and long-lived, they have been proposed as molecular biomarkers to monitor disease and exposure status. While urinary miRNAs have been used clinically as potential diagnostic markers for kidney and bladder cancers and other diseases, their utility in non-clinical settings has yet to be fully developed. Our goal was to investigate the potential for urinary miRNAs to act as biomarkers of pesticide exposure and early biological response by identifying the miRNAs present in urine from 27 parent/child, farmworker/non-farmworker pairs (16FW/11NFW) collected during two agricultural seasons (thinning and post-harvest) and characterizing the between- and within-individual variability of these miRNA epigenetic regulators. MiRNAs were isolated from archived urine samples and identified using PCR arrays. Comparisons were made between age, households, season, and occupation. Of 384 miRNAs investigated, 297 (77%) were detectable in at least one sample. Seven miRNAs were detected in at least 50% of the samples, and one miRNA was present in 96% of the samples. Principal components and hierarchical clustering analyses indicate significant differences in miRNA profiles between farmworker and non-farmworker adults as well as between seasons. Six miRNAs were observed to be positively associated with farmworkers status during the post-harvest season. Expression of five of these miRNA trended towards a positive dose response relationship with organophosphate pesticide metabolites in farmworkers. These results suggest that miRNAs may be novel biomarkers of pesticide exposure and early biological response. - Highlights: • A novel method to identify microRNA biomarkers in urinary samples is proposed. • Six miRNAs have been identified as associated with occupational farm work and pesticide exposure. • An observed seasonal difference suggests transient

  15. MicroRNAs Related to Polycystic Ovary Syndrome (PCOS)

    DEFF Research Database (Denmark)

    Sørensen, Anja Elaine; Wissing, Marie Louise Muff; Salö, Sofia

    2014-01-01

    Polycystic ovary syndrome (PCOS) is the most common, though heterogeneous, endocrine aberration in women of reproductive age, with high prevalence and socioeconomic costs. The syndrome is characterized by polycystic ovaries, chronic anovulation and hyperandrogenism, as well as being associated...... with infertility, insulin resistance, chronic low-grade inflammation and an increased life time risk of type 2 diabetes. MicroRNAs (miRNAs) are small, non-coding RNAs that are able to regulate gene expression at the post-transcriptional level. Altered miRNA levels have been associated with diabetes, insulin......RNAs with respect to PCOS will be summarized. Our understanding of miRNAs, particularly in relation to PCOS, is currently at a very early stage, and additional studies will yield important insight into the molecular mechanisms behind this complex and heterogenic syndrome...

  16. Functions and mechanisms of long noncoding RNAs in lung cancer

    Directory of Open Access Journals (Sweden)

    Peng ZZ

    2016-07-01

    Full Text Available Zhenzi Peng, Chunfang Zhang, Chaojun Duan Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People’s Republic of China Abstract: Lung cancer is a heterogeneous disease, and there is a lack of adequate biomarkers for diagnosis. Long noncoding RNAs (lncRNAs are emerging as an important set of molecules because of their roles in various key pathophysiological pathways, including cell growth, apoptosis, and metastasis. We review the current knowledge of the lncRNAs in lung cancer. In-depth analyses of lncRNAs in lung cancer have increased the number of potential effective biomarkers, thus providing options to increase the therapeutic benefit. In this review, we summarize the functions, mechanisms, and regulatory networks of lncRNAs in lung cancer, providing a basis for further research in this field. Keywords: ncRNA, tumorigenesis, biomarker, network, proliferation, apoptosis 

  17. microRNAs in mycobacterial disease: friend or foe?

    Directory of Open Access Journals (Sweden)

    Manali D Mehta

    2014-07-01

    Full Text Available As the role of microRNA in all aspects of biology continues to be unraveled, the interplay between microRNAs and human disease is becoming clearer. It should come of no surprise that microRNAs play a major part in the outcome of infectious diseases, since early work has implicated microRNAs as regulators of the immune response. Here, we provide a review on how microRNAs influence the course of mycobacterial infections, which cause two of humanity’s most ancient infectious diseases: tuberculosis and leprosy. Evidence derived from profiling and functional experiments suggests that regulation of specific microRNAs during infection can either enhance the immune response or facilitate pathogen immune evasion. Now, it remains to be seen if the manipulation of host cell microRNA profiles can be an opportunity for therapeutic intervention for these difficult-to-treat diseases.

  18. MicroRNAs in Experimental Models of Movement Disorders

    Directory of Open Access Journals (Sweden)

    Soon-Tae Lee

    2011-10-01

    Full Text Available MicroRNAs (miRNAs are small RNAs comprised of 20–25 nucleotides that regulates gene expression by inducing translational repression or degradation of target mRNA. The importance of miRNAs as a mediator of disease pathogenesis and therapeutic targets is rapidly emerging in neuroscience, as well as oncology, immunology, and cardiovascular diseases. In Parkinson’s disease and related disorders, multiple studies have identified the implications of specific miRNAs and the polymorphisms of miRNA target genes during the disease pathogenesis. With a focus on Parkinson’s disease, spinocerebellar ataxia, hereditary spastic paraplegia, and Huntington’s disease, this review summarizes and interprets the observations, and proposes future research topics in this field.

  19. N6-adenosine methylation in MiRNAs.

    Directory of Open Access Journals (Sweden)

    Tea Berulava

    Full Text Available Methylation of N6-adenosine (m6A has been observed in many different classes of RNA, but its prevalence in microRNAs (miRNAs has not yet been studied. Here we show that a knockdown of the m6A demethylase FTO affects the steady-state levels of several miRNAs. Moreover, RNA immunoprecipitation with an anti-m6A-antibody followed by RNA-seq revealed that a significant fraction of miRNAs contains m6A. By motif searches we have discovered consensus sequences discriminating between methylated and unmethylated miRNAs. The epigenetic modification of an epigenetic modifier as described here adds a new layer to the complexity of the posttranscriptional regulation of gene expression.

  20. miRNAs as therapeutic targets in ischemic heart disease.

    Science.gov (United States)

    Frost, Robert J A; van Rooij, Eva

    2010-06-01

    Ischemic heart disease is a form of congestive heart failure that is caused by insufficient blood supply to the heart, resulting in a loss of viable tissue. In response to the injury, the non-ischemic myocardium displays signs of secondary remodeling, like interstitial fibrosis and hypertrophy of cardiac myocytes. This remodeling process further deteriorates pump function and increases susceptibility to arrhythmias. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression in a sequence-dependent manner. Recently, several groups identified miRNAs as crucial gene regulators in response to myocardial infarction (MI) and during post-MI remodeling. In this review, we discuss how modulation of these miRNAs represents a promising new therapeutic strategy to improve the clinical outcome in ischemic heart disease.

  1. Circulating microRNAs in breast cancer

    DEFF Research Database (Denmark)

    Hamam, Rimi; Hamam, Dana; Alsaleh, Khalid A

    2017-01-01

    Effective management of breast cancer depends on early diagnosis and proper monitoring of patients' response to therapy. However, these goals are difficult to achieve because of the lack of sensitive and specific biomarkers for early detection and for disease monitoring. Accumulating evidence in ...... circulating miRNAs as diagnostic, prognostic or predictive biomarkers in breast cancer management.......Effective management of breast cancer depends on early diagnosis and proper monitoring of patients' response to therapy. However, these goals are difficult to achieve because of the lack of sensitive and specific biomarkers for early detection and for disease monitoring. Accumulating evidence...... in the past several years has highlighted the potential use of peripheral blood circulating nucleic acids such as DNA, mRNA and micro (mi)RNA in breast cancer diagnosis, prognosis and for monitoring response to anticancer therapy. Among these, circulating miRNA is increasingly recognized as a promising...

  2. Identification of Conserved and Novel MicroRNAs in Blueberry

    Directory of Open Access Journals (Sweden)

    Junyang Yue

    2017-06-01

    Full Text Available MicroRNAs (miRNAs are a class of small endogenous RNAs that play important regulatory roles in cells by negatively affecting gene expression at both transcriptional and post-transcriptional levels. There have been extensive studies aiming to identify miRNAs and to elucidate their functions in various plant species. In the present study, we employed the high-throughput sequencing technology to profile miRNAs in blueberry fruits. A total of 9,992,446 small RNA tags with sizes ranged from 18 to 30 nt were obtained, indicating that blueberry fruits have a large and diverse small RNA population. Bioinformatic analysis identified 412 conserved miRNAs belonging to 29 families, and 35 predicted novel miRNAs that are likely to be unique to blueberries. Among them, expression profiles of five conserved miRNAs were validated by stem loop qRT-PCR. Furthermore, the potential target genes of conserved and novel miRNAs were predicted and subjected to Gene Ontology (GO annotation. Enrichment analysis of the GO-represented biological processes and molecular functions revealed that these target genes were potentially involved in a wide range of metabolic pathways and developmental processes. Particularly, anthocyanin biosynthesis has been predicted to be directly or indirectly regulated by diverse miRNA families. This study is the first report on genome-wide miRNA profile analysis in blueberry and it provides a useful resource for further elucidation of the functional roles of miRNAs during fruit development and ripening.

  3. Identification of microRNAs in the coral Stylophora pistillata.

    KAUST Repository

    Liew, Yi Jin

    2014-03-21

    Coral reefs are major contributors to marine biodiversity. However, they are in rapid decline due to global environmental changes such as rising sea surface temperatures, ocean acidification, and pollution. Genomic and transcriptomic analyses have broadened our understanding of coral biology, but a study of the microRNA (miRNA) repertoire of corals is missing. miRNAs constitute a class of small non-coding RNAs of ∼22 nt in size that play crucial roles in development, metabolism, and stress response in plants and animals alike. In this study, we examined the coral Stylophora pistillata for the presence of miRNAs and the corresponding core protein machinery required for their processing and function. Based on small RNA sequencing, we present evidence for 31 bona fide microRNAs, 5 of which (miR-100, miR-2022, miR-2023, miR-2030, and miR-2036) are conserved in other metazoans. Homologues of Argonaute, Piwi, Dicer, Drosha, Pasha, and HEN1 were identified in the transcriptome of S. pistillata based on strong sequence conservation with known RNAi proteins, with additional support derived from phylogenetic trees. Examination of putative miRNA gene targets indicates potential roles in development, metabolism, immunity, and biomineralisation for several of the microRNAs. Here, we present first evidence of a functional RNAi machinery and five conserved miRNAs in S. pistillata, implying that miRNAs play a role in organismal biology of scleractinian corals. Analysis of predicted miRNA target genes in S. pistillata suggests potential roles of miRNAs in symbiosis and coral calcification. Given the importance of miRNAs in regulating gene expression in other metazoans, further expression analyses of small non-coding RNAs in transcriptional studies of corals should be informative about miRNA-affected processes and pathways.

  4. MicroRNA-encoding long non-coding RNAs

    Directory of Open Access Journals (Sweden)

    Zhu Xiaopeng

    2008-05-01

    Full Text Available Abstract Background Recent analysis of the mouse transcriptional data has revealed the existence of ~34,000 messenger-like non-coding RNAs (ml-ncRNAs. Whereas the functional properties of these ml-ncRNAs are beginning to be unravelled, no functional information is available for the large majority of these transcripts. Results A few ml-ncRNA have been shown to have genomic loci that overlap with microRNA loci, leading us to suspect that a fraction of ml-ncRNA may encode microRNAs. We therefore developed an algorithm (PriMir for specifically detecting potential microRNA-encoding transcripts in the entire set of 34,030 mouse full-length ml-ncRNAs. In combination with mouse-rat sequence conservation, this algorithm detected 97 (80 of them were novel strong miRNA-encoding candidates, and for 52 of these we obtained experimental evidence for the existence of their corresponding mature microRNA by microarray and stem-loop RT-PCR. Sequence analysis of the microRNA-encoding RNAs revealed an internal motif, whose presence correlates strongly (R2 = 0.9, P-value = 2.2 × 10-16 with the occurrence of stem-loops with characteristics of known pre-miRNAs, indicating the presence of a larger number microRNA-encoding RNAs (from 300 up to 800 in the ml-ncRNAs population. Conclusion Our work highlights a unique group of ml-ncRNAs and offers clues to their functions.

  5. Guardian small RNAs and sex determination.

    Science.gov (United States)

    Katsuma, Susumu; Kawamoto, Munetaka; Kiuchi, Takashi

    2014-01-01

    The W chromosome of the silkworm Bombyx mori has been known to determine femaleness for more than 80 years. However, the feminizing gene has not been molecularly identified, because the B. mori W chromosome is almost fully occupied by a large number of transposable elements. The W chromosome-derived feminizing factor of B. mori was recently shown to be a female-specific PIWI-interacting RNA (piRNA). piRNAs are small RNAs that potentially repress invading "non-self" elements (e.g., transposons and virus-like elements) by associating with PIWI proteins. Our results revealed that female-specific piRNA precursors, which we named Fem, are transcribed from the sex-determining region of the W chromosome at the early embryonic stage and are processed into a single mature piRNA (Fem piRNA). Fem piRNA forms a complex with Siwi (silkworm Piwi), which cleaves a protein-coding mRNA transcribed from the Z chromosome. RNA interference of this Z-linked gene, which we named Masc, revealed that this gene encodes a protein required for masculinization and dosage compensation. Fem and Masc both participate in the ping-pong cycle of the piRNA amplification loop by associating with the 2 B. mori PIWI proteins Siwi and BmAgo3 (silkworm Ago3), respectively, indicating that the piRNA-mediated interaction between the 2 sex chromosomes is the primary signal for the B. mori sex determination cascade. Fem is a non-transposable repetitive sequence on the W chromosome, whereas Masc is a single-copy protein-coding gene. It is of great interest how the piRNA system recognizes "self "Masc mRNA as "non-self" RNA.

  6. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs.

    Science.gov (United States)

    Miesen, Pascal; Ivens, Alasdair; Buck, Amy H; van Rij, Ronald P

    2016-02-01

    In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species.

  7. Expression of Mitochondrial Non-coding RNAs (ncRNAs) Is Modulated by High Risk Human Papillomavirus (HPV) Oncogenes*

    Science.gov (United States)

    Villota, Claudio; Campos, América; Vidaurre, Soledad; Oliveira-Cruz, Luciana; Boccardo, Enrique; Burzio, Verónica A.; Varas, Manuel; Villegas, Jaime; Villa, Luisa L.; Valenzuela, Pablo D. T.; Socías, Miguel; Roberts, Sally; Burzio, Luis O.

    2012-01-01

    The study of RNA and DNA oncogenic viruses has proved invaluable in the discovery of key cellular pathways that are rendered dysfunctional during cancer progression. An example is high risk human papillomavirus (HPV), the etiological agent of cervical cancer. The role of HPV oncogenes in cellular immortalization and transformation has been extensively investigated. We reported the differential expression of a family of human mitochondrial non-coding RNAs (ncRNAs) between normal and cancer cells. Normal cells express a sense mitochondrial ncRNA (SncmtRNA) that seems to be required for cell proliferation and two antisense transcripts (ASncmtRNAs). In contrast, the ASncmtRNAs are down-regulated in cancer cells. To shed some light on the mechanisms that trigger down-regulation of the ASncmtRNAs, we studied human keratinocytes (HFK) immortalized with HPV. Here we show that immortalization of HFK with HPV-16 or 18 causes down-regulation of the ASncmtRNAs and induces the expression of a new sense transcript named SncmtRNA-2. Transduction of HFK with both E6 and E7 is sufficient to induce expression of SncmtRNA-2. Moreover, E2 oncogene is involved in down-regulation of the ASncmtRNAs. Knockdown of E2 in immortalized cells reestablishes in a reversible manner the expression of the ASncmtRNAs, suggesting that endogenous cellular factors(s) could play functions analogous to E2 during non-HPV-induced oncogenesis. PMID:22539350

  8. Expression of mitochondrial non-coding RNAs (ncRNAs) is modulated by high risk human papillomavirus (HPV) oncogenes.

    Science.gov (United States)

    Villota, Claudio; Campos, América; Vidaurre, Soledad; Oliveira-Cruz, Luciana; Boccardo, Enrique; Burzio, Verónica A; Varas, Manuel; Villegas, Jaime; Villa, Luisa L; Valenzuela, Pablo D T; Socías, Miguel; Roberts, Sally; Burzio, Luis O

    2012-06-15

    The study of RNA and DNA oncogenic viruses has proved invaluable in the discovery of key cellular pathways that are rendered dysfunctional during cancer progression. An example is high risk human papillomavirus (HPV), the etiological agent of cervical cancer. The role of HPV oncogenes in cellular immortalization and transformation has been extensively investigated. We reported the differential expression of a family of human mitochondrial non-coding RNAs (ncRNAs) between normal and cancer cells. Normal cells express a sense mitochondrial ncRNA (SncmtRNA) that seems to be required for cell proliferation and two antisense transcripts (ASncmtRNAs). In contrast, the ASncmtRNAs are down-regulated in cancer cells. To shed some light on the mechanisms that trigger down-regulation of the ASncmtRNAs, we studied human keratinocytes (HFK) immortalized with HPV. Here we show that immortalization of HFK with HPV-16 or 18 causes down-regulation of the ASncmtRNAs and induces the expression of a new sense transcript named SncmtRNA-2. Transduction of HFK with both E6 and E7 is sufficient to induce expression of SncmtRNA-2. Moreover, E2 oncogene is involved in down-regulation of the ASncmtRNAs. Knockdown of E2 in immortalized cells reestablishes in a reversible manner the expression of the ASncmtRNAs, suggesting that endogenous cellular factors(s) could play functions analogous to E2 during non-HPV-induced oncogenesis.

  9. Time-Dependent Expression Profiles of microRNAs and mRNAs in Rat Milk Whey

    Science.gov (United States)

    Izumi, Hirohisa; Kosaka, Nobuyoshi; Shimizu, Takashi; Sekine, Kazunori; Ochiya, Takahiro; Takase, Mitsunori

    2014-01-01

    Functional RNAs, such as microRNA (miRNA) and mRNA, are present in milk, but their roles are unknown. To clarify the roles of milk RNAs, further studies using experimental animals such as rats are needed. However, it is unclear whether rat milk also contains functional RNAs and what their time dependent expression profiles are. Thus, we prepared total RNA from whey isolated from rat milk collected on days 2, 9, and 16 postpartum and analyzed using microarrays and quantitative PCR. The concentration of RNA in colostrum whey (day 2) was markedly higher than that in mature milk whey (days 9 and 16). Microarray analysis detected 161 miRNAs and 10,948 mRNA transcripts. Most of the miRNAs and mRNA transcripts were common to all tested milks. Finally, we selected some immune- and development-related miRNAs and mRNAs, and analysed them by quantitative PCR (in equal sample volumes) to determine their time-dependent changes in expression in detail. Some were significantly more highly expressed in colostrum whey than in mature milk whey, but some were expressed equally. And mRNA expression levels of some cytokines and hormones did not reflect the protein levels. It is still unknown whether RNAs in milk play biological roles in neonates. However, our data will help guide future in vivo studies using experimental animals such as rats. PMID:24533154

  10. Non-coding RNAs in endometriosis: a narrative review.

    Science.gov (United States)

    Panir, Kavita; Schjenken, John E; Robertson, Sarah A; Hull, M Louise

    2018-04-25

    Endometriosis is a benign gynaecological disorder, which affects 10% of reproductive-aged women and is characterized by endometrial cells from the lining of the uterus being found outside the uterine cavity. However, the pathophysiological mechanisms causing the development of this heterogeneous disease remain enigmatic, and a lack of effective biomarkers necessitates surgical intervention for diagnosis. There is international recognition that accurate non-invasive diagnostic tests and more effective therapies are urgently needed. Non-coding RNA (ncRNA) molecules, which are important regulators of cellular function, have been implicated in many chronic conditions. In endometriosis, transcriptome profiling of tissue samples and functional in vivo and in vitro studies demonstrate that ncRNAs are key contributors to the disease process. In this review, we outline the biogenesis of various ncRNAs relevant to endometriosis and then summarize the evidence indicating their roles in regulatory pathways that govern disease establishment and progression. Articles from 2000 to 2016 were selected for relevance, validity and quality, from results obtained in PubMed, MEDLINE and Google Scholar using the following search terms: ncRNA and reproduction; ncRNA and endometriosis; miRNA and endometriosis; lncRNA and endometriosis; siRNA and endometriosis; endometriosis; endometrial; cervical; ovary; uterus; reproductive tract. All articles were independently screened for eligibility by the authors. This review integrates extensive information from all relevant published studies focusing on microRNAs, long ncRNAs and short inhibitory RNAs in endometriosis. We outline the biological function and synthesis of microRNAs, long ncRNAs and short inhibitory RNAs and provide detailed findings from human research as well as functional studies carried out both in vitro and in vivo, including animal models. Although variability in findings between individual studies exists, collectively, the

  11. On the classification of long non-coding RNAs

    KAUST Repository

    Ma, Lina

    2013-06-01

    Long non-coding RNAs (lncRNAs) have been found to perform various functions in a wide variety of important biological processes. To make easier interpretation of lncRNA functionality and conduct deep mining on these transcribed sequences, it is convenient to classify lncRNAs into different groups. Here, we summarize classification methods of lncRNAs according to their four major features, namely, genomic location and context, effect exerted on DNA sequences, mechanism of functioning and their targeting mechanism. In combination with the presently available function annotations, we explore potential relationships between different classification categories, and generalize and compare biological features of different lncRNAs within each category. Finally, we present our view on potential further studies. We believe that the classifications of lncRNAs as indicated above are of fundamental importance for lncRNA studies, helpful for further investigation of specific lncRNAs, for formulation of new hypothesis based on different features of lncRNA and for exploration of the underlying lncRNA functional mechanisms. © 2013 Landes Bioscience.

  12. Viruses and miRNAs: More Friends than Foes.

    Science.gov (United States)

    Bruscella, Patrice; Bottini, Silvia; Baudesson, Camille; Pawlotsky, Jean-Michel; Feray, Cyrille; Trabucchi, Michele

    2017-01-01

    There is evidence that eukaryotic miRNAs (hereafter called host miRNAs) play a role in the replication and propagation of viruses. Expression or targeting of host miRNAs can be involved in cellular antiviral responses. Most times host miRNAs play a role in viral life-cycles and promote infection through complex regulatory pathways. miRNAs can also be encoded by a viral genome and be expressed in the host cell. Viral miRNAs can share common sequences with host miRNAs or have totally different sequences. They can regulate a variety of biological processes involved in viral infection, including apoptosis, evasion of the immune response, or modulation of viral life-cycle phases. Overall, virus/miRNA pathway interaction is defined by a plethora of complex mechanisms, though not yet fully understood. This article review summarizes recent advances and novel biological concepts related to the understanding of miRNA expression, control and function during viral infections. The article also discusses potential therapeutic applications of this particular host-pathogen interaction.

  13. Circulating microRNAs as Potential Biomarkers of Infectious Disease

    Science.gov (United States)

    Correia, Carolina N.; Nalpas, Nicolas C.; McLoughlin, Kirsten E.; Browne, John A.; Gordon, Stephen V.; MacHugh, David E.; Shaughnessy, Ronan G.

    2017-01-01

    microRNAs (miRNAs) are a class of small non-coding endogenous RNA molecules that regulate a wide range of biological processes by post-transcriptionally regulating gene expression. Thousands of these molecules have been discovered to date, and multiple miRNAs have been shown to coordinately fine-tune cellular processes key to organismal development, homeostasis, neurobiology, immunobiology, and control of infection. The fundamental regulatory role of miRNAs in a variety of biological processes suggests that differential expression of these transcripts may be exploited as a novel source of molecular biomarkers for many different disease pathologies or abnormalities. This has been emphasized by the recent discovery of remarkably stable miRNAs in mammalian biofluids, which may originate from intracellular processes elsewhere in the body. The potential of circulating miRNAs as biomarkers of disease has mainly been demonstrated for various types of cancer. More recently, however, attention has focused on the use of circulating miRNAs as diagnostic/prognostic biomarkers of infectious disease; for example, human tuberculosis caused by infection with Mycobacterium tuberculosis, sepsis caused by multiple infectious agents, and viral hepatitis. Here, we review these developments and discuss prospects and challenges for translating circulating miRNA into novel diagnostics for infectious disease. PMID:28261201

  14. Diversity of small RNAs expressed in Pseudomonas species

    DEFF Research Database (Denmark)

    Gomez-Lozano, Mara; Marvig, Rasmus Lykke; Molina-Santiago, Carlos

    2015-01-01

    RNA sequencing (RNA-seq) has revealed several hundreds of previously undetected small RNAs (sRNAs) in all bacterial species investigated, including strains of Pseudomonas aeruginosa, Pseudomonas putida and Pseudomonas syringae. Nonetheless, only little is known about the extent of conservation...... of expressed sRNAs across strains and species. In this study, we have used RNA-seq to identify sRNAs in P.putidaDOT-T1E and Pseudomonas extremaustralis 14-3b. This is the first strain of P.extremaustralis and the second strain of P.putida to have their transcriptomes analysed for sRNAs, and we identify...... the presence of around 150 novel sRNAs in each strain. Furthermore, we provide a comparison based on sequence conservation of all the sRNAs detected by RNA-seq in the Pseudomonas species investigated so far. Our results show that the extent of sRNA conservation across different species is very limited...

  15. Circulating MicroRNAs as Potential Biomarkers of Exercise Response

    Directory of Open Access Journals (Sweden)

    Mája Polakovičová

    2016-10-01

    Full Text Available Systematic physical activity increases physical fitness and exercise capacity that lead to the improvement of health status and athletic performance. Considerable effort is devoted to identifying new biomarkers capable of evaluating exercise performance capacity and progress in training, early detection of overtraining, and monitoring health-related adaptation changes. Recent advances in OMICS technologies have opened new opportunities in the detection of genetic, epigenetic and transcriptomic biomarkers. Very promising are mainly small non-coding microRNAs (miRNAs. miRNAs post-transcriptionally regulate gene expression by binding to mRNA and causing its degradation or inhibiting translation. A growing body of evidence suggests that miRNAs affect many processes and play a crucial role not only in cell differentiation, proliferation and apoptosis, but also affect extracellular matrix composition and maintaining processes of homeostasis. A number of studies have shown changes in distribution profiles of circulating miRNAs (c-miRNAs associated with various diseases and disorders as well as in samples taken under physiological conditions such as pregnancy or physical exercise. This overview aims to summarize the current knowledge related to the response of blood c-miRNAs profiles to different modes of exercise and to highlight their potential application as a novel class of biomarkers of physical performance capacity and training adaptation.

  16. MicroRNAs and toxicology: A love marriage

    Directory of Open Access Journals (Sweden)

    Elisabeth Schraml

    Full Text Available With the dawn of personalized medicine, secreted microRNAs (miRNAs have come into the very focus of biomarker development for various diseases. MiRNAs fulfil key requirements of diagnostic tools such as i non or minimally invasive accessibility, ii robust, standardized and non-expensive quantitative analysis, iii rapid turnaround of the test result and iv most importantly because they provide a comprehensive snapshot of the ongoing physiologic processes in cells and tissues that package and release miRNAs into cell-free space. These characteristics have also established circulating miRNAs as promising biomarker candidates for toxicological studies, where they are used as biomarkers of drug-, or chemical-induced tissue injury for safety assessment. The tissue-specificity and early release of circulating miRNAs upon tissue injury, when damage is still reversible, are main factors for their clinical utility in toxicology. Here we summarize in brief, current knowledge of this field. Keywords: microRNAs, Biomarker, Toxicology, Minimal-invasive, DILI

  17. Long Non-Coding RNAs: A Novel Paradigm for Toxicology.

    Science.gov (United States)

    Dempsey, Joseph L; Cui, Julia Yue

    2017-01-01

    Long non-coding RNAs (lncRNAs) are over 200 nucleotides in length and are transcribed from the mammalian genome in a tissue-specific and developmentally regulated pattern. There is growing recognition that lncRNAs are novel biomarkers and/or key regulators of toxicological responses in humans and animal models. Lacking protein-coding capacity, the numerous types of lncRNAs possess a myriad of transcriptional regulatory functions that include cis and trans gene expression, transcription factor activity, chromatin remodeling, imprinting, and enhancer up-regulation. LncRNAs also influence mRNA processing, post-transcriptional regulation, and protein trafficking. Dysregulation of lncRNAs has been implicated in various human health outcomes such as various cancers, Alzheimer's disease, cardiovascular disease, autoimmune diseases, as well as intermediary metabolism such as glucose, lipid, and bile acid homeostasis. Interestingly, emerging evidence in the literature over the past five years has shown that lncRNA regulation is impacted by exposures to various chemicals such as polycyclic aromatic hydrocarbons, benzene, cadmium, chlorpyrifos-methyl, bisphenol A, phthalates, phenols, and bile acids. Recent technological advancements, including next-generation sequencing technologies and novel computational algorithms, have enabled the profiling and functional characterizations of lncRNAs on a genomic scale. In this review, we summarize the biogenesis and general biological functions of lncRNAs, highlight the important roles of lncRNAs in human diseases and especially during the toxicological responses to various xenobiotics, evaluate current methods for identifying aberrant lncRNA expression and molecular target interactions, and discuss the potential to implement these tools to address fundamental questions in toxicology. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e

  18. Small regulatory RNAs may sharpen spatial expression patterns.

    Directory of Open Access Journals (Sweden)

    Erel Levine

    2007-11-01

    Full Text Available The precise establishment of gene expression patterns is a crucial step in development. Formation of a sharp boundary between high and low spatial expression domains requires a genetic mechanism that exhibits sensitivity, yet is robust to fluctuations, a demand that may not be easily achieved by morphogens alone. Recently, it has been demonstrated that small RNAs (and, in particular, microRNAs play many roles in embryonic development. Whereas some RNAs are essential for embryogenesis, others are limited to fine-tuning a predetermined gene expression pattern. Here, we explore the possibility that small RNAs participate in sharpening a gene expression profile that was crudely established by a morphogen. To this end, we study a model in which small RNAs interact with a target gene and diffusively move from cell to cell. Though diffusion generally smoothens spatial expression patterns, we find that intercellular mobility of small RNAs is actually critical in sharpening the interface between target expression domains in a robust manner. This sharpening occurs as small RNAs diffuse into regions of low mRNA expression and eliminate target molecules therein, but cannot affect regions of high mRNA levels. We discuss the applicability of our results, as examples, to the case of leaf polarity establishment in maize and Hox patterning in the early Drosophila embryo. Our findings point out the functional significance of some mechanistic properties, such as mobility of small RNAs and the irreversibility of their interactions. These properties are yet to be established directly for most classes of small RNAs. An indirect yet simple experimental test of the proposed mechanism is suggested in some detail.

  19. Cloning, characterization and expression analysis of porcine microRNAs

    Directory of Open Access Journals (Sweden)

    Desilva Udaya

    2009-02-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small ~22-nt regulatory RNAs that can silence target genes, by blocking their protein production or degrading the mRNAs. Pig is an important animal in the agriculture industry because of its utility in the meat production. Besides, pig has tremendous biomedical importance as a model organism because of its closer proximity to humans than the mouse model. Several hundreds of miRNAs have been identified from mammals, humans, mice and rats, but little is known about the miRNA component in the pig genome. Here, we adopted an experimental approach to identify conserved and unique miRNAs and characterize their expression patterns in diverse tissues of pig. Results By sequencing a small RNA library generated using pooled RNA from the pig heart, liver and thymus; we identified a total of 120 conserved miRNA homologs in pig. Expression analysis of conserved miRNAs in 14 different tissue types revealed heart-specific expression of miR-499 and miR-208 and liver-specific expression of miR-122. Additionally, miR-1 and miR-133 in the heart, miR-181a and miR-142-3p in the thymus, miR-194 in the liver, and miR-143 in the stomach showed the highest levels of expression. miR-22, miR-26b, miR-29c and miR-30c showed ubiquitous expression in diverse tissues. The expression patterns of pig-specific miRNAs also varied among the tissues examined. Conclusion Identification of 120 miRNAs and determination of the spatial expression patterns of a sub-set of these in the pig is a valuable resource for molecular biologists, breeders, and biomedical investigators interested in post-transcriptional gene regulation in pig and in related mammals, including humans.

  20. Challenges and Opportunities of MicroRNAs in Lymphomas

    Directory of Open Access Journals (Sweden)

    Giacoma De Tullio

    2014-09-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that control the expression of many target messenger RNAs (mRNAs involved in normal cell functions (differentiation, proliferation and apoptosis. Consequently their aberrant expression and/or functions are related to pathogenesis of many human diseases including cancers. Haematopoiesis is a highly regulated process controlled by a complex network of molecular mechanisms that simultaneously regulate commitment, differentiation, proliferation, and apoptosis of hematopoietic stem cells (HSC. Alterations on this network could affect the normal haematopoiesis, leading to the development of haematological malignancies such as lymphomas. The incidence of lymphomas is rising and a significant proportion of patients are refractory to standard therapies. Accurate diagnosis, prognosis and therapy still require additional markers to be used for diagnostic and prognostic purpose and evaluation of clinical outcome. The dysregulated expression or function of miRNAs in various types of lymphomas has been associated with lymphoma pathogenesis. Indeed, many recent findings suggest that almost all lymphomas seem to have a distinct and specific miRNA profile and some miRNAs are related to therapy resistance or have a distinct kinetics during therapy. MiRNAs are easily detectable in fresh or paraffin-embedded diagnostic tissue and serum where they are highly stable and quantifiable within the diagnostic laboratory at each consultation. Accordingly they could be specific biomarkers for lymphoma diagnosis, as well as useful for evaluating prognosis or disease response to the therapy, especially for evaluation of early relapse detection and for greatly assisting clinical decisions making. Here we summarize the current knowledge on the role of miRNAs in normal and aberrant lymphopoiesis in order to highlight their clinical value as specific diagnosis and prognosis markers of lymphoid malignancies or for prediction of therapy

  1. Alteration of Epigenetic Regulation by Long Noncoding RNAs in Cancer

    Directory of Open Access Journals (Sweden)

    Mariangela Morlando

    2018-02-01

    Full Text Available Long noncoding RNAs (lncRNAs are important regulators of the epigenetic status of the human genome. Besides their participation to normal physiology, lncRNA expression and function have been already associated to many diseases, including cancer. By interacting with epigenetic regulators and by controlling chromatin topology, their misregulation may result in an aberrant regulation of gene expression that may contribute to tumorigenesis. Here, we review the functional role and mechanisms of action of lncRNAs implicated in the aberrant epigenetic regulation that has characterized cancer development and progression.

  2. Lung Cancer-Specific Circular RNAs as Biomarkers

    Science.gov (United States)

    2017-08-01

    determine whether differential expression of circular RNAs can also be detected in cell culture models. Third, we will determine whether circular RNAs can...four of them as representative differentially expressed circRNAs in Table 1. For example , hsa_circRNA_400633 and hsa_circRNA_101100 were upregulated...sequence for hsa_circRNA_400633 and hsa_circRNA_101100, as shown in Figs. 1 and 2 as an example . The top part is the actual sequence and the

  3. Can microRNAs act as biomarkers of aging?

    OpenAIRE

    Kashyap, Luv

    2011-01-01

    Aging can be defined as a progressive decline in physiological efficiency regulated by an extremely complex multifactorial process. The genetic makeup of an individual appears to dictate this rate of aging in a species specific manner. For decades now, scientists have tried to look for tiny signatures or signs which might help us predict this rate of aging. MicroRNAs (miRNAs) are a unique class of short, non-coding RNAs that mediate the post-transcriptional regulation of gene expression rangi...

  4. Non-Coding RNAs: Multi-Tasking Molecules in the Cell

    Directory of Open Access Journals (Sweden)

    Anita Quintal Gomes

    2013-07-01

    Full Text Available In the last years it has become increasingly clear that the mammalian transcriptome is highly complex and includes a large number of small non-coding RNAs (sncRNAs and long noncoding RNAs (lncRNAs. Here we review the biogenesis pathways of the three classes of sncRNAs, namely short interfering RNAs (siRNAs, microRNAs (miRNAs and PIWI-interacting RNAs (piRNAs. These ncRNAs have been extensively studied and are involved in pathways leading to specific gene silencing and the protection of genomes against virus and transposons, for example. Also, lncRNAs have emerged as pivotal molecules for the transcriptional and post-transcriptional regulation of gene expression which is supported by their tissue-specific expression patterns, subcellular distribution, and developmental regulation. Therefore, we also focus our attention on their role in differentiation and development. SncRNAs and lncRNAs play critical roles in defining DNA methylation patterns, as well as chromatin remodeling thus having a substantial effect in epigenetics. The identification of some overlaps in their biogenesis pathways and functional roles raises the hypothesis that these molecules play concerted functions in vivo, creating complex regulatory networks where cooperation with regulatory proteins is necessary. We also highlighted the implications of biogenesis and gene expression deregulation of sncRNAs and lncRNAs in human diseases like cancer.

  5. RIP-seq of BmAgo2-associated small RNAs reveal various types of small non-coding RNAs in the silkworm, Bombyx mori

    Science.gov (United States)

    2013-01-01

    Background Small non-coding RNAs (ncRNAs) are important regulators of gene expression in eukaryotes. Previously, only microRNAs (miRNAs) and piRNAs have been identified in the silkworm, Bombyx mori. Furthermore, only ncRNAs (50-500nt) of intermediate size have been systematically identified in the silkworm. Results Here, we performed a systematic identification and analysis of small RNAs (18-50nt) associated with the Bombyx mori argonaute2 (BmAgo2) protein. Using RIP-seq, we identified various types of small ncRNAs associated with BmAGO2. These ncRNAs showed a multimodal length distribution, with three peaks at ~20nt, ~27nt and ~33nt, which included tRNA-, transposable element (TE)-, rRNA-, snoRNA- and snRNA-derived small RNAs as well as miRNAs and piRNAs. The tRNA-derived fragments (tRFs) were found at an extremely high abundance and accounted for 69.90% of the BmAgo2-associated small RNAs. Northern blotting confirmed that many tRFs were expressed or up-regulated only in the BmNPV-infected cells, implying that the tRFs play a prominent role by binding to BmAgo2 during BmNPV infection. Additional evidence suggested that there are potential cleavage sites on the D, anti-codon and TψC loops of the tRNAs. TE-derived small RNAs and piRNAs also accounted for a significant proportion of the BmAgo2-associated small RNAs, suggesting that BmAgo2 could be involved in the maintenance of genome stability by suppressing the activities of transposons guided by these small RNAs. Finally, Northern blotting was also used to confirm the Bombyx 5.8 s rRNA-derived small RNAs, demonstrating that various novel small RNAs exist in the silkworm. Conclusions Using an RIP-seq method in combination with Northern blotting, we identified various types of small RNAs associated with the BmAgo2 protein, including tRNA-, TE-, rRNA-, snoRNA- and snRNA-derived small RNAs as well as miRNAs and piRNAs. Our findings provide new clues for future functional studies of the role of small RNAs in insect

  6. Global alteration of microRNAs and transposon-derived small RNAs in cotton (Gossypium hirsutum) during Cotton leafroll dwarf polerovirus (CLRDV) infection.

    Science.gov (United States)

    Romanel, Elisson; Silva, Tatiane F; Corrêa, Régis L; Farinelli, Laurent; Hawkins, Jennifer S; Schrago, Carlos E G; Vaslin, Maite F S

    2012-11-01

    Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.

  7. MicroRNAs in skin tissue engineering.

    Science.gov (United States)

    Miller, Kyle J; Brown, David A; Ibrahim, Mohamed M; Ramchal, Talisha D; Levinson, Howard

    2015-07-01

    35.2 million annual cases in the U.S. require clinical intervention for major skin loss. To meet this demand, the field of skin tissue engineering has grown rapidly over the past 40 years. Traditionally, skin tissue engineering relies on the "cell-scaffold-signal" approach, whereby isolated cells are formulated into a three-dimensional substrate matrix, or scaffold, and exposed to the proper molecular, physical, and/or electrical signals to encourage growth and differentiation. However, clinically available bioengineered skin equivalents (BSEs) suffer from a number of drawbacks, including time required to generate autologous BSEs, poor allogeneic BSE survival, and physical limitations such as mass transfer issues. Additionally, different types of skin wounds require different BSE designs. MicroRNA has recently emerged as a new and exciting field of RNA interference that can overcome the barriers of BSE design. MicroRNA can regulate cellular behavior, change the bioactive milieu of the skin, and be delivered to skin tissue in a number of ways. While it is still in its infancy, the use of microRNAs in skin tissue engineering offers the opportunity to both enhance and expand a field for which there is still a vast unmet clinical need. Here we give a review of skin tissue engineering, focusing on the important cellular processes, bioactive mediators, and scaffolds. We further discuss potential microRNA targets for each individual component, and we conclude with possible future applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Multiple RNAs from the mouse carboxypeptidase M locus: functional RNAs or transcription noise?

    Directory of Open Access Journals (Sweden)

    Castilho Beatriz A

    2009-02-01

    Full Text Available Abstract Background A major effort of the scientific community has been to obtain complete pictures of the genomes of many organisms. This has been accomplished mainly by annotation of structural and functional elements in the genome sequence, a process that has been centred in the gene concept and, as a consequence, biased toward protein coding sequences. Recently, the explosion of transcriptome data generated and the discovery of many functional non-protein coding RNAs have painted a more detailed and complex scenario for the genome. Here we analyzed the mouse carboxypeptidase M locus in this broader perspective in order to define the mouse CPM gene structure and evaluate the existence of other transcripts from the same genomic region. Results Bioinformatic analysis of nucleotide sequences that map to the mouse CPM locus suggests that, in addition to the mouse CPM mRNA, it expresses at least 33 different transcripts, many of which seem to be non-coding RNAs. We randomly chose to evaluate experimentally four of these extra transcripts. They are expressed in a tissue specific manner, indicating that they are not artefacts or transcriptional noise. Furthermore, one of these four extra transcripts shows expression patterns that differed considerably from the other ones and from the mouse CPM gene, suggesting that there may be more than one transcriptional unit in this locus. In addition, we have confirmed the mouse CPM gene RefSeq sequence by rapid amplification of cDNA ends (RACE and directional cloning. Conclusion This study supports the recent view that the majority of the genome is transcribed and that many of the resulting transcripts seem to be non-coding RNAs from introns of genes or from independent transcriptional units. Although some of the information on the transcriptome of many organisms may actually be artefacts or transcriptional noise, we argue that it can be experimentally evaluated and used to find and define biological

  9. MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions

    Science.gov (United States)

    Shukla, Girish C.; Singh, Jagjit; Barik, Sailen

    2012-01-01

    The remarkable discovery of small noncoding microRNAs (miRNAs) and their role in posttranscriptional gene regulation have revealed another fine-tuning step in the expression of genetic information. A large number of cellular pathways, which act in organismal development and are important in health and disease, appear to be modulated by miRNAs. At the molecular level, miRNAs restrain the production of proteins by affecting the stability of their target mRNA and/or by down-regulating their translation. This review attempts to offer a snapshot of aspects of miRNA coding, processing, target recognition and function in animals. Our goal here is to provide the readers with a thought-provoking and mechanistic introduction to the miRNA world rather than with a detailed encyclopedia. PMID:22468167

  10. Long noncoding RNAs as Organizers of Nuclear Architecture.

    Science.gov (United States)

    Cheng, Lu; Ming, Hui; Zhu, Minzhe; Wen, Bo

    2016-03-01

    In the eukaryotic cell nucleus, chromatin and its associated macromolecules must be organized into a higher-ordered conformation to function normally. However, mechanisms underlying the organization and dynamics of the nucleus remain unclear. Long noncoding RNAs (lncRNAs), i.e., transcripts longer than 200 nucleotides with little or no protein-coding capacity, are increasingly recognized as important regulators in diverse biological processes. Recent studies have shown that some lncRNAs are involved in various aspects of genome organization, including the facilitation of chromosomal interactions and establishment of nuclear bodies, suggesting that lncRNAs act as general organizers of the nuclear architecture. Here, we discuss recent advances in this emerging and intriguing field.

  11. Molecular Basis for the Immunostimulatory Potency of Small Interfering RNAs

    Directory of Open Access Journals (Sweden)

    Mouldy Sioud

    2006-01-01

    Full Text Available Small interfering RNAs (siRNAs represent a new class of antigene agents, which has emerged as a powerful tool for functional genomics and might serve as a potent therapeutic approach. However, several studies have showed that they could trigger several bystander effects, including immune activation and inhibition of unintended target genes. Although activation of innate immunity by siRNAs might be beneficial for therapy in some instances, uncontrolled activation can be toxic, and is therefore a major challenging problem. Interestingly, replacement of uridines in siRNA sequences with their 2′-modified counterparts abrogated siRNA bystander effects. Here we highlight these important findings that are expected to facilitate the rational design of siRNAs that avoid the induction of bystander effects.

  12. Current perspectives in microRNAs (miRNA)

    CERN Document Server

    Ying, Shao-Yao

    2008-01-01

    In this book, many new perspectives of the miRNA research are reviewed and discussed. These new findings provide significant insight into the various mechanisms of miRNAs and offer a great opportunity in developing new therapeutic interventions.

  13. Diet-derived microRNAs: unicorn or silver bullet?

    Science.gov (United States)

    Witwer, Kenneth W; Zhang, Chen-Yu

    2017-01-01

    In ancient lore, a bullet cast from silver is the only effective weapon against monsters. The uptake of active diet-derived microRNAs (miRNAs) in consumers may be the silver bullet long sought after in nutrition and oral therapeutics. However, the majority of scientists consider the transfer and regulation of consumer's gene activity by these diet-derived miRNAs to be a fantasy akin to spotting a unicorn. Nevertheless, groups like Dr. Chen-Yu Zhang's lab in Nanjing University have stockpiled breathtaking amounts of data to shoot down these naysayers. Meanwhile, Dr. Ken Witwer at John Hopkins has steadfastly cautioned the field to beware of fallacies caused by contamination, technical artifacts, and confirmation bias. Here, Dr. Witwer and Dr. Zhang share their realities of dietary miRNAs by answering five questions related to this controversial field.

  14. Transcriptomic landscape of lncRNAs in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Mirza, Aashiq Hussain; Bang-Berthelsen, Claus Heiner; Seemann, Ernst Stefan

    2015-01-01

    -coding genes and microRNAs in modulating the immune responses in IBD. METHODS: In the present study, we performed a genome-wide transcriptome profiling of lncRNAs and protein-coding genes in 96 colon pinch biopsies (inflamed and non-inflamed) extracted from multiple colonic locations from 45 patients (CD = 13...... differentially expressed lncRNAs, respectively, while in cases of the non-inflamed CD and UC, we identified 12 and 19 differentially expressed lncRNAs, respectively. We also observed significant enrichment (P-value ... their involvement in the immune response, pro-inflammatory cytokine activity and MHC protein complex. CONCLUSIONS: The lncRNA expression profiling in both inflamed and non-inflamed CD and UC successfully stratified IBD patients from the healthy controls. Taken together, the identified lncRNA transcriptional...

  15. Bladder cancer: Micro RNAs as biomolecules for prognostication and surveillance

    Directory of Open Access Journals (Sweden)

    Nilay Mitash

    2017-01-01

    Conclusions: Despite certain limitations, such as instability, rapid plasma clearance, and targeting antagonist proteins of cellular metabolic pathways, miRNAs have potential to be studied as a biomarker or a therapeutic target for BC.

  16. Kaposi’s Sarcoma-associated herpesvirus microRNAs

    Directory of Open Access Journals (Sweden)

    Eva eGottwein

    2012-05-01

    Full Text Available Kaposi’s Sarcoma-associated herpesvirus (KSHV is a human pathogenic -herpesvirus strongly associated with the development of Kaposi’s Sarcoma and B cell proliferative disorders, including primary effusion lymphoma (PEL. The identification and functional investigation of non-coding RNAs expressed by KSHV is a topic with rapidly emerging importance. KSHV miRNAs derived from 12 stem-loops located in the major latency locus have been the focus of particular attention. Recent studies describing the transcriptome-wide identification of mRNA targets of the KSHV miRNAs suggest that these miRNAs have evolved a highly complex network of interactions with the cellular and viral transcriptomes. Relatively few KSHV miRNA targets, however, have been characterized at a functional level. Here, our current understanding of KSHV miRNA expression, targets and function will be reviewed.

  17. Can microRNAs act as biomarkers of aging?

    Science.gov (United States)

    Kashyap, Luv

    2011-02-07

    Aging can be defined as a progressive decline in physiological efficiency regulated by an extremely complex multifactorial process. The genetic makeup of an individual appears to dictate this rate of aging in a species specific manner. For decades now, scientists have tried to look for tiny signatures or signs which might help us predict this rate of aging. MicroRNAs (miRNAs) are a unique class of short, non-coding RNAs that mediate the post-transcriptional regulation of gene expression ranging from developmental processes to disease induction or amelioration. Recently, they have also been implicated to have a role in aging in C.elegans. Based on the fact that there is a considerable similarity between aging in C.elegans and humans, these recent findings might suggest a possible role of miRNAs as bio-markers of aging. This mini-review brushes through the possibilities towards this direction.

  18. Circulating exosomal microRNAs as biomarkers of colon cancer.

    Directory of Open Access Journals (Sweden)

    Hiroko Ogata-Kawata

    Full Text Available PURPOSE: Exosomal microRNAs (miRNAs have been attracting major interest as potential diagnostic biomarkers of cancer. The aim of this study was to characterize the miRNA profiles of serum exosomes and to identify those that are altered in colorectal cancer (CRC. To evaluate their use as diagnostic biomarkers, the relationship between specific exosomal miRNA levels and pathological changes of patients, including disease stage and tumor resection, was examined. EXPERIMENTAL DESIGN: Microarray analyses of miRNAs in exosome-enriched fractions of serum samples from 88 primary CRC patients and 11 healthy controls were performed. The expression levels of miRNAs in the culture medium of five colon cancer cell lines were also compared with those in the culture medium of a normal colon-derived cell line. The expression profiles of miRNAs that were differentially expressed between CRC and control sample sets were verified using 29 paired samples from post-tumor resection patients. The sensitivities of selected miRNAs as biomarkers of CRC were evaluated and compared with those of known tumor markers (CA19-9 and CEA using a receiver operating characteristic analysis. The expression levels of selected miRNAs were also validated by quantitative real-time RT-PCR analyses of an independent set of 13 CRC patients. RESULTS: The serum exosomal levels of seven miRNAs (let-7a, miR-1229, miR-1246, miR-150, miR-21, miR-223, and miR-23a were significantly higher in primary CRC patients, even those with early stage disease, than in healthy controls, and were significantly down-regulated after surgical resection of tumors. These miRNAs were also secreted at significantly higher levels by colon cancer cell lines than by a normal colon-derived cell line. The high sensitivities of the seven selected exosomal miRNAs were confirmed by a receiver operating characteristic analysis. CONCLUSION: Exosomal miRNA signatures appear to mirror pathological changes of CRC patients and

  19. Forging our understanding of lncRNAs in the brain.

    Science.gov (United States)

    Andersen, Rebecca E; Lim, Daniel A

    2018-01-01

    During both development and adulthood, the human brain expresses many thousands of long noncoding RNAs (lncRNAs), and aberrant lncRNA expression has been associated with a wide range of neurological diseases. Although the biological significance of most lncRNAs remains to be discovered, it is now clear that certain lncRNAs carry out important functions in neurodevelopment, neural cell function, and perhaps even diseases of the human brain. Given the relatively inclusive definition of lncRNAs-transcripts longer than 200 nucleotides with essentially no protein coding potential-this class of noncoding transcript is both large and very diverse. Furthermore, emerging data indicate that lncRNA genes can act via multiple, non-mutually exclusive molecular mechanisms, and specific functions are difficult to predict from lncRNA expression or sequence alone. Thus, the different experimental approaches used to explore the role of a lncRNA might each shed light upon distinct facets of its overall molecular mechanism, and combining multiple approaches may be necessary to fully illuminate the function of any particular lncRNA. To understand how lncRNAs affect brain development and neurological disease, in vivo studies of lncRNA function are required. Thus, in this review, we focus our discussion upon a small set of neural lncRNAs that have been experimentally manipulated in mice. Together, these examples illustrate how studies of individual lncRNAs using multiple experimental approaches can help reveal the richness and complexity of lncRNA function in both neurodevelopment and diseases of the brain.

  20. Novel classes of non-coding RNAs and cancer

    Directory of Open Access Journals (Sweden)

    Sana Jiri

    2012-05-01

    Full Text Available Abstract For the many years, the central dogma of molecular biology has been that RNA functions mainly as an informational intermediate between a DNA sequence and its encoded protein. But one of the great surprises of modern biology was the discovery that protein-coding genes represent less than 2% of the total genome sequence, and subsequently the fact that at least 90% of the human genome is actively transcribed. Thus, the human transcriptome was found to be more complex than a collection of protein-coding genes and their splice variants. Although initially argued to be spurious transcriptional noise or accumulated evolutionary debris arising from the early assembly of genes and/or the insertion of mobile genetic elements, recent evidence suggests that the non-coding RNAs (ncRNAs may play major biological roles in cellular development, physiology and pathologies. NcRNAs could be grouped into two major classes based on the transcript size; small ncRNAs and long ncRNAs. Each of these classes can be further divided, whereas novel subclasses are still being discovered and characterized. Although, in the last years, small ncRNAs called microRNAs were studied most frequently with more than ten thousand hits at PubMed database, recently, evidence has begun to accumulate describing the molecular mechanisms by which a wide range of novel RNA species function, providing insight into their functional roles in cellular biology and in human disease. In this review, we summarize newly discovered classes of ncRNAs, and highlight their functioning in cancer biology and potential usage as biomarkers or therapeutic targets.

  1. The Role of MicroRNAs in Pancreatitis

    Science.gov (United States)

    2015-10-01

    AD______________ AWARD NUMBER: W81XWH-14-1-0469 TITLE: The Role of microRNAs in Pancreatitis PRINCIPAL INVESTIGATOR: Li, Yong RECIPIENT...The Role of MicroRNAs in Pancreatitis 5b. GRANT NUMBER W81XWH-14-1-0469 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Li, Yong 5e...AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Pancreatitis (inflammation of the

  2. Non-coding RNAs enter mitosis: functions, conservation and implications

    OpenAIRE

    Pek, Jun Wei; Kai, Toshie

    2011-01-01

    Abstract Nuage (or commonly known as chromatoid body in mammals) is a conserved germline-specific organelle that has been linked to the Piwi-interacting RNA (piRNA) pathway. piRNAs are a class of gonadal-specific RNAs that are ~23-29 nucleotides in length and protect genome stability by repressing the expression of deleterious retrotransposons. More recent studies in Drosophila have implicated the piRNA pathway in other functions including canalization of embryonic development, regulation of ...

  3. Identification of Androgen Receptor-Specific Enhancer RNAs

    Science.gov (United States)

    2017-08-01

    SUPPLEMENTARY NOTES 14. ABSTRACT The major goal of this application is to determine whether prostate cancer cells express enhancer RNAs in response to...androgen treatment such that these enhancer RNAs may serve as novel biomarkers for prostate cancer diagnosis and prognosis. There are two Tasks in...biomarkers or therapeutic targets for prostate cancer , especially for castration resistant prostate cancer . 15. SUBJECT TERMS lncRNA, eRNA, biomarker

  4. Circulating miRNAs as biomarkers for oral squamous cell carcinoma recurrence in operated patients

    DEFF Research Database (Denmark)

    Yan, Yan; Wang, Xuan; Venø, Morten Trillingsgaard

    2017-01-01

    MicroRNAs (miRNAs) are small regulatory non-coding RNAs for which altered expression in cancers can serve as potential biomarkers for diseases. We here investigated whether circulating miRNAs can serve as biomarkers for predicting post-operational recurrence of oral squamous cell carcinoma (OSCC...

  5. An integrated expression atlas of miRNAs and their promoters in human and mouse

    DEFF Research Database (Denmark)

    de Rie, Derek; Abugessaisa, Imad; Alam, Tanvir

    2017-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libr...

  6. Functional screening identifies miRNAs influencing apoptosis and proliferation in colorectal cancer

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Holm, Anja; Rantala, Juha

    2014-01-01

    MicroRNAs (miRNAs) play a critical role in many biological processes and are aberrantly expressed in human cancers. Particular miRNAs function either as tumor suppressors or oncogenes and appear to have diagnostic and prognostic significance. Although numerous miRNAs are dys-regulated in colorect...

  7. Trash or Treasure: extracellular microRNAs and cell-to-cell communication

    Directory of Open Access Journals (Sweden)

    Nobuyoshi eKosaka

    2013-09-01

    Full Text Available Circulating RNAs in human body fluids are promising candidates for diagnostic purposes. However, the biological significance of circulating RNAs remains elusive. Recently, small non-coding RNAs, microRNAs (miRNAs, were isolated from multiple human body fluids, and these circulating miRNAs have been implicated as novel disease biomarkers. Concurrently, miRNAs were also identified in the extracellular space associated with extracellular vesicles (EVs, which are small membrane vesicles secreted from various types of cells. The function of these secreted miRNAs has been revealed in several papers. Circulating miRNAs have been experimentally found to be associated with EVs, however, other types of extracellular miRNAs were also described. This review discusses studies related to extracellular miRNAs, including circulating miRNAs and secreted miRNAs, to highlight the importance of studying not only secreted miRNAs but also circulating miRNAs to determine the contribution of extracellular miRNAs especially in cancer development.

  8. MicroRNAs: an epigenetic tool to study celiac disease

    Directory of Open Access Journals (Sweden)

    Karla A. Bascuñán-Gamboa

    2014-05-01

    Full Text Available This article summarizes recent findings on the role of microRNAs (miRNAs in biological processes associated with the regulation of chronic inflammation and autoimmunity. miRNAs are small non-coding RNA molecules that have been recently emerged as a new class of modulators of gene expression at the post-transcriptional level. MiRNAs bind to complementary sequences of specific targets of messengers RNA, which can interfere with protein synthesis. We reviewed studies that evaluated the expression patterns of miRNAs in different autoimmune diseases, especially in celiac disease (CD. CD is a chronic enteropathy triggered by gluten proteins, characterized by altered immune responses in genetically susceptible individuals that results in damage to the bowel mucosa. CD has a high prevalence and an effective treatment by a specific diet ("gluten free diet". Genetic factors confer susceptibility but do not explain the whole disease, suggesting that environmental factors do play a relevant role in the development of the condition. The evaluation of the potential role of miRNA is of particular interest in CD given that these epigenetic mechanisms in the pathogenesis of autoimmune and inflammatory diseases have been recently described. Improving our understanding of miRNAs in CD will contribute to clarify the role of altered epigenetic regulation in the development and course of this disease.

  9. MicroRNAs Related to Polycystic Ovary Syndrome (PCOS)

    Science.gov (United States)

    Sørensen, Anja Elaine; Wissing, Marie Louise; Salö, Sofia; Englund, Anne Lis Mikkelsen; Dalgaard, Louise Torp

    2014-01-01

    Polycystic ovary syndrome (PCOS) is the most common, though heterogeneous, endocrine aberration in women of reproductive age, with high prevalence and socioeconomic costs. The syndrome is characterized by polycystic ovaries, chronic anovulation and hyperandrogenism, as well as being associated with infertility, insulin resistance, chronic low-grade inflammation and an increased life time risk of type 2 diabetes. MicroRNAs (miRNAs) are small, non-coding RNAs that are able to regulate gene expression at the post-transcriptional level. Altered miRNA levels have been associated with diabetes, insulin resistance, inflammation and various cancers. Studies have shown that circulating miRNAs are present in whole blood, serum, plasma and the follicular fluid of PCOS patients and that they might serve as potential biomarkers and a new approach for the diagnosis of PCOS. In this review, recent work on miRNAs with respect to PCOS will be summarized. Our understanding of miRNAs, particularly in relation to PCOS, is currently at a very early stage, and additional studies will yield important insight into the molecular mechanisms behind this complex and heterogenic syndrome. PMID:25158044

  10. Associating schizophrenia, long non-coding RNAs and neurostructural dynamics

    Science.gov (United States)

    Merelo, Veronica; Durand, Dante; Lescallette, Adam R.; Vrana, Kent E.; Hong, L. Elliot; Faghihi, Mohammad Ali; Bellon, Alfredo

    2015-01-01

    Several lines of evidence indicate that schizophrenia has a strong genetic component. But the exact nature and functional role of this genetic component in the pathophysiology of this mental illness remains a mystery. Long non-coding RNAs (lncRNAs) are a recently discovered family of molecules that regulate gene transcription through a variety of means. Consequently, lncRNAs could help us bring together apparent unrelated findings in schizophrenia; namely, genomic deficiencies on one side and neuroimaging, as well as postmortem results on the other. In fact, the most consistent finding in schizophrenia is decreased brain size together with enlarged ventricles. This anomaly appears to originate from shorter and less ramified dendrites and axons. But a decrease in neuronal arborizations cannot explain the complex pathophysiology of this psychotic disorder; however, dynamic changes in neuronal structure present throughout life could. It is well recognized that the structure of developing neurons is extremely plastic. This structural plasticity was thought to stop with brain development. However, breakthrough discoveries have shown that neuronal structure retains some degree of plasticity throughout life. What the neuroscientific field is still trying to understand is how these dynamic changes are regulated and lncRNAs represent promising candidates to fill this knowledge gap. Here, we present evidence that associates specific lncRNAs with schizophrenia. We then discuss the potential role of lncRNAs in neurostructural dynamics. Finally, we explain how dynamic neurostructural modifications present throughout life could, in theory, reconcile apparent unrelated findings in schizophrenia. PMID:26483630

  11. Associating schizophrenia, long non-coding RNAs and neurostructural dynamics

    Directory of Open Access Journals (Sweden)

    Veronica eMerelo

    2015-09-01

    Full Text Available Several lines of evidence indicate that schizophrenia has a strong genetic component. But the exact nature and functional role of this genetic component in the pathophysiology of this mental illness remains a mystery. Long non-coding RNAs (lncRNAs are a recently discovered family of molecules that regulate gene transcription through a variety of means. Consequently, lncRNAs could help us bring together apparent unrelated findings in schizophrenia; namely, genomic deficiencies on one side and neuroimaging, as well as postmortem results on the other. In fact, the most consistent finding in schizophrenia is decreased brain size together with enlarged ventricles. This anomaly appears to originate from shorter and less ramified dendrites and axons. But a decrease in neuronal arborizations cannot explain the complex pathophysiology of this psychotic disorder; however, dynamic changes in neuronal structure present throughout life could. It is well recognized that the structure of developing neurons is extremely plastic. This structural plasticity was thought to stop with brain development. However, breakthrough discoveries have shown that neuronal structure retains some degree of plasticity throughout life. What the neuroscientific field is still trying to understand is how these dynamic changes are regulated and lncRNAs represent promising candidates to fill this knowledge gap. Here, we present evidence that associates specific lncRNAs with schizophrenia. We then discuss the potential role of lncRNAs in neurostructural dynamics. Finally, we explain how dynamic neurostructural modifications present throughout life could, in theory, reconcile apparent unrelated findings in schizophrenia.

  12. Small non coding RNAs in adipocyte biology and obesity.

    Science.gov (United States)

    Amri, Ez-Zoubir; Scheideler, Marcel

    2017-11-15

    Obesity has reached epidemic proportions world-wide and constitutes a substantial risk factor for hypertension, type 2 diabetes, cardiovascular diseases and certain cancers. So far, regulation of energy intake by dietary and pharmacological treatments has met limited success. The main interest of current research is focused on understanding the role of different pathways involved in adipose tissue function and modulation of its mass. Whole-genome sequencing studies revealed that the majority of the human genome is transcribed, with thousands of non-protein-coding RNAs (ncRNA), which comprise small and long ncRNAs. ncRNAs regulate gene expression at the transcriptional and post-transcriptional level. Numerous studies described the involvement of ncRNAs in the pathogenesis of many diseases including obesity and associated metabolic disorders. ncRNAs represent potential diagnostic biomarkers and promising therapeutic targets. In this review, we focused on small ncRNAs involved in the formation and function of adipocytes and obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Vitamin D and microRNAs in bone.

    Science.gov (United States)

    Lisse, Thomas S; Adams, John S; Hewison, Martin

    2013-01-01

    MicroRNAs (miRNAs) are short noncoding RNAs that orchestrate complex posttranscriptional regulatory networks essential to the regulation of gene expression. Through complementarity with messenger RNA (mRNA) sequences, miRNAs act primarily to silence gene expression through either degradation or inhibited translation of target transcripts. In this way, miRNAs can act to fine-tune the transcriptional regulation of gene expression, but they may also play distinct roles in the proliferation, differentiation, and function of specific cell types. miRNA regulatory networks may be particularly important for signaling molecules such as vitamin D that exert pleiotropic effects on tissues throughout the body. The active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D) functions as a steroid hormone that, when bound to its nuclear vitamin D receptor, is able to regulate target gene expression. However, recent studies have also implicated 1,25(OH)2D in epigenetic regulation of genes most notably as a modulator of miRNA function. The current review details our understanding of vitamin D and miRNAs with specific emphasis on the implications of this interaction for biological responses to vitamin D in one of its classical target tissues, i.e., bone.

  14. Clinical implications of microRNAs in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Masahiro eMizoguchi

    2013-02-01

    Full Text Available Glioblastoma (GBM is one of the most common and dismal brain tumors in adults. Further elucidation of the molecular pathogenesis of GBM is mandatory to improve the overall survival of patients. A novel small non-coding RNA molecule, microRNA (miRNA, appears to represent one of the most attractive target molecules contributing to the pathogenesis of various types of tumors. Recent global analyses have revealed that several miRNAs are clinically implicated in GBM, with some reports indicating the association of miRNA dysregulation with acquired temozolomide (TMZ resistance. More recent studies have revealed that miRNAs could play a role in cancer stem cell (CSC properties, contributing to treatment resistance. In addition, greater impact might be expected from miRNA-targeted therapies based on tumor-derived exosomes that contain numerous functional miRNAs, which could be transferred between tumor cells and surrounding structures. Tumor-derived miRNAs are now considered to be a novel molecular mechanism promoting the progression of GBM. Establishment of miRNA-targeted therapies based on miRNA dysregulation of CSCs could provide effective therapeutic strategies for TMZ-resistant GBM. Recent progress has revealed that miRNAs are not only putative biological markers for diagnosis, but also one of the most promising targets for GBM treatment. Herein, we summarize the translational aspects of miRNAs in the diagnosis and treatment of GBM.

  15. MicroRNAs in Post-traumatic Stress Disorder.

    Science.gov (United States)

    Snijders, Clara; de Nijs, Laurence; Baker, Dewleen G; Hauger, Richard L; van den Hove, Daniel; Kenis, Gunter; Nievergelt, Caroline M; Boks, Marco P; Vermetten, Eric; Gage, Fred H; Rutten, Bart P F

    2017-10-21

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder that can develop following exposure to or witnessing of a (potentially) threatening event. A critical issue is to pinpoint the (neuro)biological mechanisms underlying the susceptibility to stress-related disorder such as PTSD, which develops in the minority of ~15% of individuals exposed to trauma. Over the last few years, a first wave of epigenetic studies has been performed in an attempt to identify the molecular underpinnings of the long-lasting behavioral and mental effects of trauma exposure. The potential roles of non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) in moderating or mediating the impact of severe stress and trauma are increasingly gaining attention. To date, most studies focusing on the roles of miRNAs in PTSD have, however, been completed in animals, using cross-sectional study designs and focusing almost exclusively on subjects with susceptible phenotypes. Therefore, there is a strong need for new research comprising translational and cross-species approaches that use longitudinal designs for studying trajectories of change contrasting susceptible and resilient subjects. The present review offers a comprehensive overview of available studies of miRNAs in PTSD and discusses the current challenges, pitfalls, and future perspectives of this field.

  16. Transposable-element associated small RNAs in Bombyx mori genome.

    Directory of Open Access Journals (Sweden)

    Yimei Cai

    Full Text Available Small RNAs are a group of regulatory RNA molecules that control gene expression at transcriptional or post-transcriptional levels among eukaryotes. The silkworm, Bombyx mori L., genome harbors abundant repetitive sequences derived from families of retrotransposons and transposons, which together constitute almost half of the genome space and provide ample resource for biogenesis of the three major small RNA families. We systematically discovered transposable-element (TE-associated small RNAs in B. mori genome based on a deep RNA-sequencing strategy and the effort yielded 182, 788 and 4,990 TE-associated small RNAs in the miRNA, siRNA and piRNA species, respectively. Our analysis suggested that the three small RNA species preferentially associate with different TEs to create sequence and functional diversity, and we also show evidence that a Bombyx non-LTR retrotransposon, bm1645, alone contributes to the generation of TE-associated small RNAs in a very significant way. The fact that bm1645-associated small RNAs partially overlap with each other implies a possibility that this element may be modulated by different mechanisms to generate different products with diverse functions. Taken together, these discoveries expand the small RNA pool in B. mori genome and lead to new knowledge on the diversity and functional significance of TE-associated small RNAs.

  17. MicroRNAs: New Players in the Pathobiology of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Kelsey R. Bounds

    2017-09-01

    Full Text Available Our understanding of how microRNAs (miRNAs regulate gene networks and affect different molecular pathways leading to various human pathologies has significantly improved over the years. In contrary, the role of miRNAs in pregnancy-related hypertensive disorders such as preeclampsia (PE is only beginning to emerge. Recent papers highlight that adverse pregnancy outcomes are associated with aberrant expression of several miRNAs. Presently, efforts are underway to determine the biologic function of these placental miRNAs which can shed light on their contribution to these pregnancy-related disease conditions. The discovery that miRNAs are stable in circulation coupled with the fact that the placenta is capable of releasing them to the circulation in exosomes generates a lot of enthusiasm to use them as biomarkers. In this review, we will summarize the recent findings of our understanding of miRNA regulation in relation to PE, a hypertensive disorder of pregnancy. Particular emphasis will be given to the role of key miRNA molecules such as miR-210 and miR-155 that are known to be consistently dysregulated in women with PE.

  18. The Clinical Application of MicroRNAs in Infectious Disease

    Directory of Open Access Journals (Sweden)

    Ruth E. Drury

    2017-09-01

    Full Text Available MicroRNAs (miRNAs are short single-stranded non-coding RNA sequences that posttranscriptionally regulate up to 60% of protein encoding genes. Evidence is emerging that miRNAs are key mediators of the host response to infection, predominantly by regulating proteins involved in innate and adaptive immune pathways. miRNAs can govern the cellular tropism of some viruses, are implicated in the resistance of some individuals to infections like HIV, and are associated with impaired vaccine response in older people. Not surprisingly, pathogens have evolved ways to undermine the effects of miRNAs on immunity. Recognition of this has led to new experimental treatments, RG-101 and Miravirsen—hepatitis C treatments which target host miRNA. miRNAs are being investigated as novel infection biomarkers, and they are being used to design attenuated vaccines, e.g., against Dengue virus. This comprehensive review synthesizes current knowledge of miRNA in host response to infection with emphasis on potential clinical applications, along with an evaluation of the challenges still to be overcome.

  19. The Clinical Application of MicroRNAs in Infectious Disease.

    Science.gov (United States)

    Drury, Ruth E; O'Connor, Daniel; Pollard, Andrew J

    2017-01-01

    MicroRNAs (miRNAs) are short single-stranded non-coding RNA sequences that posttranscriptionally regulate up to 60% of protein encoding genes. Evidence is emerging that miRNAs are key mediators of the host response to infection, predominantly by regulating proteins involved in innate and adaptive immune pathways. miRNAs can govern the cellular tropism of some viruses, are implicated in the resistance of some individuals to infections like HIV, and are associated with impaired vaccine response in older people. Not surprisingly, pathogens have evolved ways to undermine the effects of miRNAs on immunity. Recognition of this has led to new experimental treatments, RG-101 and Miravirsen-hepatitis C treatments which target host miRNA. miRNAs are being investigated as novel infection biomarkers, and they are being used to design attenuated vaccines, e.g., against Dengue virus. This comprehensive review synthesizes current knowledge of miRNA in host response to infection with emphasis on potential clinical applications, along with an evaluation of the challenges still to be overcome.

  20. Capillary electrophoresis methods for microRNAs assays: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Eunmi; Song, Eun Joo, E-mail: ejsong@kist.re.kr

    2014-12-10

    Highlights: • A review of CE analysis of miRNAs. • Summary of developments and applications of CE systems in miRNA studies. • Applications and development of microchip-based CE for rapid analysis of miRNA. - Abstract: MicroRNAs (miRNAs) are short noncoding RNAs that conduct important roles in many cellular processes such as development, proliferation, differentiation, and apoptosis. In particular, circulating miRNAs have been proposed as biomarkers for cancer, diabetes, cardiovascular disease, and other illnesses. Therefore, determination of miRNA expression levels in various biofluids is important for the investigation of biological processes in health and disease and for discovering their potential as new biomarkers and drug targets. Capillary electrophoresis (CE) is emerging as a useful analytical tool for analyzing miRNA because of its simple sample preparation steps and efficient resolution of a diverse size range of compounds. In particular, CE with laser-induced fluorescence detection is a promising and relatively rapidly developing tool with the potential to provide high sensitivity and specificity in the analysis of miRNAs. This paper covers a short overview of the recent developments and applications of CE systems in miRNA studies in biological and biomedical areas.

  1. Dual Nature of Translational Control by Regulatory BC RNAs

    Science.gov (United States)

    Eom, Taesun; Berardi, Valerio; Zhong, Jun; Risuleo, Gianfranco; Tiedge, Henri

    2011-01-01

    In higher eukaryotes, increasing evidence suggests, gene expression is to a large degree controlled by RNA. Regulatory RNAs have been implicated in the management of neuronal function and plasticity in mammalian brains. However, much of the molecular-mechanistic framework that enables neuronal regulatory RNAs to control gene expression remains poorly understood. Here, we establish molecular mechanisms that underlie the regulatory capacity of neuronal BC RNAs in the translational control of gene expression. We report that regulatory BC RNAs employ a two-pronged approach in translational control. One of two distinct repression mechanisms is mediated by C-loop motifs in BC RNA 3′ stem-loop domains. These C-loops bind to eIF4B and prevent the factor's interaction with 18S rRNA of the small ribosomal subunit. In the second mechanism, the central A-rich domains of BC RNAs target eIF4A, specifically inhibiting its RNA helicase activity. Thus, BC RNAs repress translation initiation in a bimodal mechanistic approach. As BC RNA functionality has evolved independently in rodent and primate lineages, our data suggest that BC RNA translational control was necessitated and implemented during mammalian phylogenetic development of complex neural systems. PMID:21930783

  2. MicroRNAs Related to Polycystic Ovary Syndrome (PCOS

    Directory of Open Access Journals (Sweden)

    Anja Elaine Sørensen

    2014-08-01

    Full Text Available Polycystic ovary syndrome (PCOS is the most common, though heterogeneous, endocrine aberration in women of reproductive age, with high prevalence and socioeconomic costs. The syndrome is characterized by polycystic ovaries, chronic anovulation and hyperandrogenism, as well as being associated with infertility, insulin resistance, chronic low-grade inflammation and an increased life time risk of type 2 diabetes. MicroRNAs (miRNAs are small, non-coding RNAs that are able to regulate gene expression at the post-transcriptional level. Altered miRNA levels have been associated with diabetes, insulin resistance, inflammation and various cancers. Studies have shown that circulating miRNAs are present in whole blood, serum, plasma and the follicular fluid of PCOS patients and that they might serve as potential biomarkers and a new approach for the diagnosis of PCOS. In this review, recent work on miRNAs with respect to PCOS will be summarized. Our understanding of miRNAs, particularly in relation to PCOS, is currently at a very early stage, and additional studies will yield important insight into the molecular mechanisms behind this complex and heterogenic syndrome.

  3. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    KAUST Repository

    Khraiwesh, Basel; Zhu, Jian-Kang; Zhu, Jianhua

    2012-01-01

    in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small

  4. Identification and characteristics of microRNAs from Bombyx mori

    Directory of Open Access Journals (Sweden)

    Gao Xiaolian

    2008-05-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small RNA molecules that regulate gene expression by targeting messenger RNAs (mRNAs and causing mRNA cleavage or translation blockage. Of the 355 Arthropod miRNAs that have been identified, only 21 are B. mori miRNAs that were predicted computationally; of these, only let-7 has been confirmed by Northern blotting. Results Combining a computational method based on sequence homology searches with experimental identification based on microarray assays and Northern blotting, we identified 46 miRNAs, an additional 21 plausible miRNAs, and a novel small RNA in B. mori. The latter, bmo-miR-100-like, was identified using the known miRNA aga-miR-100 as a probe; bmo-miR-100-like was detected by microarray assay and Northern blotting, but its precursor sequences did not fold into a hairpin structure. Among these identified miRNAs, we found 12 pairs of miRNAs and miRNA*s. Northern blotting revealed that some B. mori miRNA genes were expressed only during specific stages, indicating that B. mori miRNA genes (e.g., bmo-miR-277 have developmentally regulated patterns of expression. We identified two miRNA gene clusters in the B. mori genome. bmo-miR-2b, which is found in the gene cluster bmo-miR-2a-1/bmo-miR-2a-1*/bmo-miR-2a-2/bmo-miR-2b/bmo-miR-13a*/bmo-miR-13b, encodes a newly identified member of the mir-2 family. Moreover, we found that methylation can increase the sensitivity of a DNA probe used to detect a miRNA by Northern blotting. Functional analysis revealed that 11 miRNAs may regulate 13 B. mori orthologs of the 25 known Drosophila miRNA-targeted genes according to the functional conservation. We predicted the binding sites on the 1671 3'UTR of B. mori genes; 547 targeted genes, including 986 target sites, were predicted. Of these target sites, 338 had perfect base pairing to the seed region of 43 miRNAs. From the predicted genes, 61 genes, each of them with multiple predicted target sites, should be

  5. Hepatitis A virus-encoded miRNAs attenuate the accumulation of viral genomic RNAs in infected cells.

    Science.gov (United States)

    Shi, Jiandong; Sun, Jing; Wu, Meini; Hu, Ningzhu; Hu, Yunzhang

    2016-06-01

    The establishment of persistent infection with hepatitis A virus (HAV) is the common result of most HAV/cell culture systems. Previous observations show that the synthesis of viral RNAs is reduced during infection. However, the underlying mechanism is poorly understood. We characterized three HAV-encoded miRNAs in our previous study. In this study, we aim to investigate the impact of these miRNAs on the accumulation of viral RNAs. The results indicated that the synthesis of viral genomic RNAs was dramatically reduced (more than 75 % reduction, P viral miRNA mimics. Conversely, they were significantly increased (more than 3.3-fold addition, P viral miRNA inhibitors. The luciferase reporter assay of miRNA targets showed that viral miRNAs were fully complementary to specific sites of the viral plus or minus strand RNA and strongly inhibited their expressions. Further data showed that the relative abundance of viral genomic RNA fragments that contain miRNA targets was also dramatically reduced (more than 80 % reduction, P viral miRNAs were overexpressed with miRNA mimics. In contrast, they were significantly increased (approximately 2-fold addition, P viral miRNAs were inhibited with miRNA inhibitors. In conclusion, these data suggest a possible mechanism for the reduction of viral RNA synthesis during HAV infection. Thus, we propose that it is likely that RNA virus-derived miRNA could serve as a self-mediated feedback regulator during infection.

  6. Isolation of microRNA targets using biotinylated synthetic microRNAs

    DEFF Research Database (Denmark)

    Ørom, Ulf Andersson; Lund, Anders H

    2007-01-01

    MicroRNAs are small regulatory RNAs found in multicellular organisms where they post-transcriptionally regulate gene expression. In animals, microRNAs bind mRNAs via incomplete base pairings making the identification of microRNA targets inherently difficult. Here, we present a detailed method...... for experimental identification of microRNA targets based on affinity purification of tagged microRNAs associated with their targets. Udgivelsesdato: 2007-Oct...

  7. Genome-wide identification, characterization and evolutionary analysis of long intergenic noncoding RNAs in cucumber.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Hao

    Full Text Available Long intergenic noncoding RNAs (lincRNAs are intergenic transcripts with a length of at least 200 nt that lack coding potential. Emerging evidence suggests that lincRNAs from animals participate in many fundamental biological processes. However, the systemic identification of lincRNAs has been undertaken in only a few plants. We chose to use cucumber (Cucumis sativus as a model to analyze lincRNAs due to its importance as a model plant for studying sex differentiation and fruit development and the rich genomic and transcriptome data available. The application of a bioinformatics pipeline to multiple types of gene expression data resulted in the identification and characterization of 3,274 lincRNAs. Next, 10 lincRNAs targeted by 17 miRNAs were also explored. Based on co-expression analysis between lincRNAs and mRNAs, 94 lincRNAs were annotated, which may be involved in response to stimuli, multi-organism processes, reproduction, reproductive processes, and growth. Finally, examination of the evolution of lincRNAs showed that most lincRNAs are under purifying selection, while 16 lincRNAs are under natural selection. Our results provide a rich resource for further validation of cucumber lincRNAs and their function. The identification of lincRNAs targeted by miRNAs offers new clues for investigations into the role of lincRNAs in regulating gene expression. Finally, evaluation of the lincRNAs suggested that some lincRNAs are under positive and balancing selection.

  8. Prognostic microRNAs in cancer tissue from patients operated for pancreatic cancer--five microRNAs in a prognostic index

    DEFF Research Database (Denmark)

    Schultz, Nicolai A; Andersen, Klaus; Roslind, Anne

    2012-01-01

    The aim of the present study was to identify a panel of microRNAs (miRNAs) that can predict overall survival (OS) in non micro-dissected cancer tissues from patients operated for pancreatic cancer (PC)....

  9. Microarray profiling and co-expression network analysis of circulating lncRNAs and mRNAs associated with major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Zhifen Liu

    Full Text Available LncRNAs, which represent one of the most highly expressed classes of ncRNAs in the brain, are becoming increasingly interesting with regard to brain functions and disorders. However, changes in the expression of regulatory lncRNAs in Major Depressive Disorder (MDD have not yet been reported. Using microarrays, we profiled the expression of 34834 lncRNAs and 39224 mRNAs in peripheral blood sampled from MDD patients as well as demographically-matched controls. Among these, we found that 2007 lncRNAs and 1667 mRNAs were differentially expressed, 17 of which were documented as depression-related gene in previous studies. Gene Ontology (GO and pathway analyses indicated that the biological functions of differentially expressed mRNAs were related to fundamental metabolic processes and neurodevelopment diseases. To investigate the potential regulatory roles of the differentially expressed lncRNAs on the mRNAs, we also constructed co-expression networks composed of the lncRNAs and mRNAs, which shows significant correlated patterns of expression. In the MDD-derived network, there were a greater number of nodes and connections than that in the control-derived network. The lncRNAs located at chr10:874695-874794, chr10:75873456-75873642, and chr3:47048304-47048512 may be important factors regulating the expression of mRNAs as they have previously been reported associations with MDD. This study is the first to explore genome-wide lncRNA expression and co-expression with mRNA patterns in MDD using microarray technology. We identified circulating lncRNAs that are aberrantly expressed in MDD and the results suggest that lncRNAs may contribute to the molecular pathogenesis of MDD.

  10. Combinatorial design of a nanobody that specifically targets structured RNAs.

    Science.gov (United States)

    Cawez, F; Duray, E; Hu, Y; Vandenameele, J; Romão, E; Vincke, C; Dumoulin, M; Galleni, M; Muyldermans, S; Vandevenne, M

    2018-04-11

    Recent advances in transcriptome sequencing and analysis have revealed the complexity of the human genome. The majority (≈ 98%) of cellular transcripts is not translated into proteins and represents a vast, unchartered world of functional non-coding RNAs (ncRNAs). Most of them adopt a well-defined 3D structure to achieve their biological functions. However, only very few RNA structures are currently available which reflects the challenges associated with RNA crystallization. Nevertheless, these structures would represent a critical step in understanding functions of ncRNAs and their molecular mechanisms in the cell. The overall goal of this study is to develop an innovative and versatile tool to facilitate the functional study and crystallization of structured RNAs (stRNAs). In this work, we have engineered an antibody fragment from camelid heavy-chain antibody (nanobody) able to specifically bind with low nanomolar affinity to stRNA while no binding could be detected for single-stranded DNA/RNA, double-stranded DNA/RNA or a negatively charged protein. However, this nanobody recognizes different and non-related stRNAs, this observation suggests that it binds to an epitope shared by these stRNAs. Finally, our data also show that the binding of the nanobody doesn't alter the secondary structure content of the stRNA as well as its unfolding/refolding processes during heat treatment. This work constitutes a successful proof-of-concept demonstrating that nanobodies can be engineered to recognize RNA-related epitopes. Copyright © 2018. Published by Elsevier Ltd.

  11. Regulation of neutrophil senescence by microRNAs.

    Directory of Open Access Journals (Sweden)

    Jon R Ward

    2011-01-01

    Full Text Available Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease.

  12. Identification and validation of human papillomavirus encoded microRNAs.

    Directory of Open Access Journals (Sweden)

    Kui Qian

    Full Text Available We report here identification and validation of the first papillomavirus encoded microRNAs expressed in human cervical lesions and cell lines. We established small RNA libraries from ten human papillomavirus associated cervical lesions including cancer and two human papillomavirus harboring cell lines. These libraries were sequenced using SOLiD 4 technology. We used the sequencing data to predict putative viral microRNAs and discovered nine putative papillomavirus encoded microRNAs. Validation was performed for five candidates, four of which were successfully validated by qPCR from cervical tissue samples and cell lines: two were encoded by HPV 16, one by HPV 38 and one by HPV 68. The expression of HPV 16 microRNAs was further confirmed by in situ hybridization, and colocalization with p16INK4A was established. Prediction of cellular target genes of HPV 16 encoded microRNAs suggests that they may play a role in cell cycle, immune functions, cell adhesion and migration, development, and cancer. Two putative viral target sites for the two validated HPV 16 miRNAs were mapped to the E5 gene, one in the E1 gene, two in the L1 gene and one in the LCR region. This is the first report to show that papillomaviruses encode their own microRNA species. Importantly, microRNAs were found in libraries established from human cervical disease and carcinoma cell lines, and their expression was confirmed in additional tissue samples. To our knowledge, this is also the first paper to use in situ hybridization to show the expression of a viral microRNA in human tissue.

  13. Kinetic models of gene expression including non-coding RNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Vladimir P., E-mail: zhdanov@catalysis.r

    2011-03-15

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  14. History, Discovery, and Classification of lncRNAs.

    Science.gov (United States)

    Jarroux, Julien; Morillon, Antonin; Pinskaya, Marina

    2017-01-01

    The RNA World Hypothesis suggests that prebiotic life revolved around RNA instead of DNA and proteins. Although modern cells have changed significantly in 4 billion years, RNA has maintained its central role in cell biology. Since the discovery of DNA at the end of the nineteenth century, RNA has been extensively studied. Many discoveries such as housekeeping RNAs (rRNA, tRNA, etc.) supported the messenger RNA model that is the pillar of the central dogma of molecular biology, which was first devised in the late 1950s. Thirty years later, the first regulatory non-coding RNAs (ncRNAs) were initially identified in bacteria and then in most eukaryotic organisms. A few long ncRNAs (lncRNAs) such as H19 and Xist were characterized in the pre-genomic era but remained exceptions until the early 2000s. Indeed, when the sequence of the human genome was published in 2001, studies showed that only about 1.2% encodes proteins, the rest being deemed "non-coding." It was later shown that the genome is pervasively transcribed into many ncRNAs, but their functionality remained controversial. Since then, regulatory lncRNAs have been characterized in many species and were shown to be involved in processes such as development and pathologies, revealing a new layer of regulation in eukaryotic cells. This newly found focus on lncRNAs, together with the advent of high-throughput sequencing, was accompanied by the rapid discovery of many novel transcripts which were further characterized and classified according to specific transcript traits.In this review, we will discuss the many discoveries that led to the study of lncRNAs, from Friedrich Miescher's "nuclein" in 1869 to the elucidation of the human genome and transcriptome in the early 2000s. We will then focus on the biological relevance during lncRNA evolution and describe their basic features as genes and transcripts. Finally, we will present a non-exhaustive catalogue of lncRNA classes, thus illustrating the vast complexity of

  15. Profile of cerebrospinal microRNAs in fibromyalgia.

    Directory of Open Access Journals (Sweden)

    Jan L Bjersing

    Full Text Available Fibromyalgia (FM is characterized by chronic pain and reduced pain threshold. The pathophysiology involves disturbed neuroendocrine function, including impaired function of the growth hormone/insulin-like growth factor-1 axis. Recently, microRNAs have been shown to be important regulatory factors in a number of diseases. The aim of this study was to try to identify cerebrospinal microRNAs with expression specific for FM and to determine their correlation to pain and fatigue.The genome-wide profile of microRNAs in cerebrospinal fluid was assessed in ten women with FM and eight healthy controls using real-time quantitative PCR. Pain thresholds were examined by algometry. Levels of pain (FIQ pain were rated on a 0-100 mm scale (fibromyalgia impact questionnaire, FIQ. Levels of fatigue (FIQ fatigue were rated on a 0-100 mm scale using FIQ and by multidimensional fatigue inventory (MFI-20 general fatigue (MFIGF.Expression levels of nine microRNAs were significantly lower in patients with FM patients compared to healthy controls. The microRNAs identified were miR-21-5p, miR-145-5p, miR-29a-3p, miR-99b-5p, miR-125b-5p, miR-23a-3p, 23b-3p, miR-195-5p, miR-223-3p. The identified microRNAs with significantly lower expression in FM were assessed with regard to pain and fatigue. miR-145-5p correlated positively with FIQ pain (r=0.709, p=0.022, n=10 and with FIQ fatigue (r=0.687, p=0.028, n=10.To our knowledge, this is the first study to show a disease-specific pattern of cerebrospinal microRNAs in FM. We have identified nine microRNAs in cerebrospinal fluid that differed between FM patients and healthy controls. One of the identified microRNAs, miR-145 was associated with the cardinal symptoms of FM, pain and fatigue.

  16. Profile of cerebrospinal microRNAs in fibromyalgia.

    Science.gov (United States)

    Bjersing, Jan L; Lundborg, Christopher; Bokarewa, Maria I; Mannerkorpi, Kaisa

    2013-01-01

    Fibromyalgia (FM) is characterized by chronic pain and reduced pain threshold. The pathophysiology involves disturbed neuroendocrine function, including impaired function of the growth hormone/insulin-like growth factor-1 axis. Recently, microRNAs have been shown to be important regulatory factors in a number of diseases. The aim of this study was to try to identify cerebrospinal microRNAs with expression specific for FM and to determine their correlation to pain and fatigue. The genome-wide profile of microRNAs in cerebrospinal fluid was assessed in ten women with FM and eight healthy controls using real-time quantitative PCR. Pain thresholds were examined by algometry. Levels of pain (FIQ pain) were rated on a 0-100 mm scale (fibromyalgia impact questionnaire, FIQ). Levels of fatigue (FIQ fatigue) were rated on a 0-100 mm scale using FIQ and by multidimensional fatigue inventory (MFI-20) general fatigue (MFIGF). Expression levels of nine microRNAs were significantly lower in patients with FM patients compared to healthy controls. The microRNAs identified were miR-21-5p, miR-145-5p, miR-29a-3p, miR-99b-5p, miR-125b-5p, miR-23a-3p, 23b-3p, miR-195-5p, miR-223-3p. The identified microRNAs with significantly lower expression in FM were assessed with regard to pain and fatigue. miR-145-5p correlated positively with FIQ pain (r=0.709, p=0.022, n=10) and with FIQ fatigue (r=0.687, p=0.028, n=10). To our knowledge, this is the first study to show a disease-specific pattern of cerebrospinal microRNAs in FM. We have identified nine microRNAs in cerebrospinal fluid that differed between FM patients and healthy controls. One of the identified microRNAs, miR-145 was associated with the cardinal symptoms of FM, pain and fatigue.

  17. MicroRNAs and the regulation of intestinal homeostasis.

    Science.gov (United States)

    Runtsch, Marah C; Round, June L; O'Connell, Ryan M

    2014-01-01

    The mammalian intestinal tract is a unique site in which a large portion of our immune system and the 10(14) commensal organisms that make up the microbiota reside in intimate contact with each other. Despite the potential for inflammatory immune responses, this complex interface contains host immune cells and epithelial cells interacting with the microbiota in a manner that promotes symbiosis. Due to the complexity of the cell types and microorganisms involved, this process requires elaborate regulatory mechanisms to ensure mutualism and prevent disease. While many studies have described critical roles for protein regulators of intestinal homeostasis, recent reports indicate that non-coding RNAs are also major contributors to optimal host-commensal interactions. In particular, there is emerging evidence that microRNAs (miRNAs) have evolved to fine tune host gene expression networks and signaling pathways that modulate cellular physiology in the intestinal tract. Here, we review our present knowledge of the influence miRNAs have on both immune and epithelial cell biology in the mammalian intestines and the impact this has on the microbiota. We also discuss a need for further studies to decipher the functions of specific miRNAs within the gut to better understand cellular mechanisms that promote intestinal homeostasis and to identify potential molecular targets underlying diseases such as inflammatory bowel disease and colorectal cancer.

  18. [Use of microRNAs in heart failure management].

    Science.gov (United States)

    Arias Sosa, Luis Alejandro

    Heart failure (HF) is a high impact disease that affects all human populations, demanding the development of new strategies and methods to manage this pathology. That's why microRNAs, small noncoding RNAs that regulate gene expression, appear as an important option in the diagnosis, prognosis and treatment of this disease. MiRNAs seems to have a future on HF handling, because can be isolated from body fluids such as blood, and changes in its levels can be associated with the presence, stage and specific disease features, which makes them an interesting option as biomarkers. Also, due to the important role of these molecules on regulation of gene expression and cell homeostasis, it has been explored its potential use as a therapeutic method to prevent or treat HF. That is why this review seeks to show the importance of biomedical research involving the use of miRNAs as a method to approach the HF, showing the impact of disease in the world, aspects of miRNAs biology, and their use as biomarkers and as important therapeutic targets. Copyright © 2017 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  19. Micro-RNAs and their roles in eye disorders.

    Science.gov (United States)

    Raghunath, Azhwar; Perumal, Ekambaram

    2015-01-01

    Micro-RNAs (miRNAs) are members of the family of noncoding RNA molecules that regulate gene expression by translational repression and mRNA degradation. Initial identification of miRNAs revealed them only as developmental regulators; later, their radiated roles in various cellular processes have been established. They regulate several pathways, including developmental timing, hematopoiesis, organogenesis, apoptosis, cell differentiation and proliferation. Their roles in eye disorders are being explored by biologists around the world. Eye physiology requires the perfect orchestration of all the regulatory networks; any defect in any of the networks leads to eye disorders. The dysregulation of miRNA expression has been reported in many eye disorders, which paves the way for new therapeutics. This review summarizes the biogenesis of miRNAs and their role in eye disorders. miRNA studies also have implications for the understanding of various complex metabolic pathways leading to disorders of the eye. The ultimate understanding leads to potential opportunities in evaluating miRNAs as molecular biomarkers, prognostic tools, diagnostic tools and therapeutic agents for eye disorders. © 2015 S. Karger AG, Basel.

  20. MicroRNAs as Therapeutic Targets for Alzheimer's Disease.

    Science.gov (United States)

    Di Meco, Antonio; Praticò, Domenico

    2016-05-07

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. With increasing longevity and the absence of a cure, AD has become not only a major health problem but also a heavy social and economic burden worldwide. Given this public health challenge, and that the current approved therapy for AD is limited to symptomatic treatment (i.e., cholinesterase inhibitors and NMDA receptor antagonists), exploration of new molecular pathways as novel therapeutic targets remains an attractive option for disease modifying drug development. microRNAs (miRNAs) are short non-coding RNA that control gene expression at the post-translational level by inhibiting translation of specific mRNAs or degrading them. Dysregulation of several miRNAs has been described in AD brains. Interestingly, their molecular targets are pathways that are well-established functional players in the onset and development of AD pathogenesis. Today several molecular tools have been developed to modulate miRNA levels in vitro and in vivo. These scientific advancements are affording us for the first time with the real possibility of targeting in vivo these dysregulated miRNAs as a novel therapeutic approach against AD.

  1. Eukaryotic snoRNAs: a paradigm for gene expression flexibility.

    Science.gov (United States)

    Dieci, Giorgio; Preti, Milena; Montanini, Barbara

    2009-08-01

    Small nucleolar RNAs (snoRNAs) are one of the most ancient and numerous families of non-protein-coding RNAs (ncRNAs). The main function of snoRNAs - to guide site-specific rRNA modification - is the same in Archaea and all eukaryotic lineages. In contrast, as revealed by recent genomic and RNomic studies, their genomic organization and expression strategies are the most varied. Seemingly snoRNA coding units have adopted, in the course of evolution, all the possible ways of being transcribed, thus providing a unique paradigm of gene expression flexibility. By focusing on representative fungal, plant and animal genomes, we review here all the documented types of snoRNA gene organization and expression, and we provide a comprehensive account of snoRNA expressional freedom by precisely estimating the frequency, in each genome, of each type of genomic organization. We finally discuss the relevance of snoRNA genomic studies for our general understanding of ncRNA family evolution and expression in eukaryotes.

  2. MicroRNAs as serum biomarkers for periodontitis.

    Science.gov (United States)

    Tomofuji, Takaaki; Yoneda, Toshiki; Machida, Tatsuya; Ekuni, Daisuke; Azuma, Tetsuji; Kataoka, Kota; Maruyama, Takayuki; Morita, Manabu

    2016-05-01

    Studies demonstrated that periodontitis modulates microRNA (miRNAs) expression rates in periodontal tissue. However, the relationship between periodontitis and miRNAs profile in circulation remains unclear. In this study, we investigated the effects of periodontitis on serum miRNAs profile in a rat model. Male Wistar rats (n = 32, 8 weeks old) were divided into four groups of eight rats each. The control groups received no treatment for 2 or 4 weeks. In the other two groups, periodontitis was ligature induced for 2 or 4 weeks. Serum miRNAs expression profiles of each group were compared. Ligation around teeth induced periodontal inflammation at 2 weeks and periodontal tissue destruction at 4 weeks. Microarray results showed that 25 miRNAs were expressed with a 2 difference between the control and periodontitis groups at 4 weeks. Results of real-time PCR revealed that the periodontitis group up-regulated expression rates of serum miR-207 and miR-495 at 2 weeks, and miR-376b-3p at 4 weeks (p periodontitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Role of microRNAs in embryo implantation

    Directory of Open Access Journals (Sweden)

    Jingjie Liang

    2017-11-01

    Full Text Available Abstract Failure of embryo implantation is a major limiting factor in early pregnancy and assisted reproduction. Determinants of implantation include the embryo viability, the endometrial receptivity, and embryo-maternal interactions. Multiple molecules are involved in the regulation of implantation, but their specific regulatory mechanisms remain unclear. MicroRNA (miRNA, functioning as the transcriptional regulator of gene expression, has been widely reported to be involved in embryo implantation. Recent studies reveal that miRNAs not only act inside the cells, but also can be released by cells into the extracellular environment through multiple packaging forms, facilitating intercellular communication and providing indicative information associated with physiological and pathological conditions. The discovery of extracellular miRNAs shed new light on implantation studies. MiRNAs provide new mechanisms for embryo-maternal communication. Moreover, they may serve as non-invasive biomarkers for embryo selection and assessment of endometrial receptivity in assisted reproduction, which improves the accuracy of evaluation while reducing the mechanical damage to the tissue. In this review, we discuss the involvement of miRNAs in embryo implantation from several aspects, focusing on the role of extracellular miRNAs and their potential applications in assisted reproductive technologies (ART to promote fertility efficiency.

  4. MicroRNAs dynamically remodel gastrointestinal smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Chanjae Park

    2011-04-01

    Full Text Available Smooth muscle cells (SMCs express a unique set of microRNAs (miRNAs which regulate and maintain the differentiation state of SMCs. The goal of this study was to investigate the role of miRNAs during the development of gastrointestinal (GI SMCs in a transgenic animal model. We generated SMC-specific Dicer null animals that express the reporter, green fluorescence protein, in a SMC-specific manner. SMC-specific knockout of Dicer prevented SMC miRNA biogenesis, causing dramatic changes in phenotype, function, and global gene expression in SMCs: the mutant mice developed severe dilation of the intestinal tract associated with the thinning and destruction of the smooth muscle (SM layers; contractile motility in the mutant intestine was dramatically decreased; and SM contractile genes and transcriptional regulators were extensively down-regulated in the mutant SMCs. Profiling and bioinformatic analyses showed that SMC phenotype is regulated by a complex network of positive and negative feedback by SMC miRNAs, serum response factor (SRF, and other transcriptional factors. Taken together, our data suggest that SMC miRNAs are required for the development and survival of SMCs in the GI tract.

  5. MicroRNAs in addiction: adaptation’s middlemen?

    Science.gov (United States)

    Li, MD; van der Vaart, AD

    2014-01-01

    A central question in addiction is how drug-induced changes in synaptic signaling are converted into long-term neuroadaptations. Emerging evidence reveals that microRNAs (miRNAs) have a distinct role in this process through rapid response to cellular signals and dynamic regulation of local mRNA transcripts. Because each miRNA can target hundreds of mRNAs, relative changes in the expression of miRNAs can greatly impact cellular responsiveness, synaptic plasticity and transcriptional events. These diverse consequences of miRNA action occur through coordination with genes implicated in addictions, the most compelling of these being the neurotrophin BDNF, the transcription factor cAMP-responsive element-binding protein (CREB) and the DNA-binding methyl CpG binding protein 2 (MeCP2). In this study, we review the recent progress in the understanding of miRNAs in general mechanisms of plasticity and neuroadaptation and then focus on specific examples of miRNA regulation in the context of addiction. We conclude that miRNA-mediated gene regulation is a conserved means of converting environmental signals into neuronal response, which holds significant implications for addiction and other psychiatric illnesses. PMID:21606928

  6. MicroRNAs in sensorineural diseases of the ear

    Directory of Open Access Journals (Sweden)

    Kathy eUshakov

    2013-12-01

    Full Text Available Non-coding microRNAs have a fundamental role in gene regulation and expression in almost every multicellular organism. Only discovered in the last decade, microRNAs are already known to play a leading role in many aspects of disease. In the vertebrate inner ear, microRNAs are essential for controlling development and survival of hair cells. Moreover, dysregulation of microRNAs has been implicated in sensorineural hearing impairment, as well as in other ear diseases such as cholesteatomas, vestibular schwannomas and otitis media. Due to the inaccessibility of the ear in humans, animal models have provided the optimal tools to study microRNA expression and function, in particular mice and zebrafish. A major focus of current research has been to discover the targets of the microRNAs expressed in the inner ear, in order to determine the regulatory pathways of the auditory and vestibular systems. The potential for microRNA manipulation in development of therapeutic tools for hearing impairment is as yet unexplored, paving the way for future work in the field.

  7. RISC assembly: Coordination between small RNAs and Argonaute proteins.

    Science.gov (United States)

    Kobayashi, Hotaka; Tomari, Yukihide

    2016-01-01

    Non-coding RNAs generally form ribonucleoprotein (RNP) complexes with their partner proteins to exert their functions. Small RNAs, including microRNAs, small interfering RNAs, and PIWI-interacting RNAs, assemble with Argonaute (Ago) family proteins into the effector complex called RNA-induced silencing complex (RISC), which mediates sequence-specific target gene silencing. RISC assembly is not a simple binding between a small RNA and Ago; rather, it follows an ordered multi-step pathway that requires specific accessory factors. Some steps of RISC assembly and RISC-mediated gene silencing are dependent on or facilitated by particular intracellular platforms, suggesting their spatial regulation. In this review, we summarize the currently known mechanisms for RISC assembly of each small RNA class and propose a revised model for the role of the chaperone machinery in the duplex-initiated RISC assembly pathway. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Computational Identification of MicroRNAs and Their Targets from Finger Millet (Eleusine coracana).

    Science.gov (United States)

    Usha, S; Jyothi, M N; Suchithra, B; Dixit, Rekha; Rai, D V; Nagesh Babu, R

    2017-03-01

    MicroRNAs are endogenous small RNAs regulating intrinsic normal growth and development of plant. Discovering miRNAs, their targets and further inferring their functions had become routine process to comprehend the normal biological processes of miRNAs and their roles in plant development. In this study, we used homology-based analysis with available expressed sequence tag of finger millet (Eleusine coracana) to predict conserved miRNAs. Three potent miRNAs targeting 88 genes were identified. The newly identified miRNAs were found to be homologous with miR166 and miR1310. The targets recognized were transcription factors and enzymes, and GO analysis showed these miRNAs played varied roles in gene regulation. The identification of miRNAs and their targets is anticipated to hasten the pace of key epigenetic regulators in plant development.

  9. An expanding universe of noncoding RNAs between the poles of basic science and clinical investigations.

    Science.gov (United States)

    Weil, Patrick P; Hensel, Kai O; Weber, David; Postberg, Jan

    2016-03-01

    The Keystone Symposium 'MicroRNAs and Noncoding RNAs in Cancer', Keystone, CO, USA, 7-12 June 2015 Since the discovery of RNAi, great efforts have been undertaken to unleash the potential biomedical applicability of small noncoding RNAs, mainly miRNAs, involving their use as biomarkers for personalized diagnostics or their usability as active agents or therapy targets. The research's focus on the noncoding RNA world is now slowly moving from a phase of basic discoveries into a new phase, where every single molecule out of many hundreds of cataloged noncoding RNAs becomes dissected in order to investigate these molecules' biomedical relevance. In addition, RNA classes neglected before, such as long noncoding RNAs or circular RNAs attract more attention. Numerous timely results and hypotheses were presented at the 2015 Keystone Symposium 'MicroRNAs and Noncoding RNAs in Cancer'.

  10. MicroRNAs: A Puzzling Tool in Cancer Diagnostics and Therapy.

    Science.gov (United States)

    D'Angelo, Barbara; Benedetti, Elisabetta; Cimini, Annamaria; Giordano, Antonio

    2016-11-01

    MicroRNAs (miRNAs) constitute a dominating class of small RNAs that regulate diverse cellular functions. Due the pivotal role of miRNAs in biological processes, a deregulated miRNA expression is likely involved in human cancers. MicroRNAs possess tumor suppressor capability, as well as display oncogenic characteristics. Interestingly, miRNAs exist in various biological fluids as circulating entities. Changes in the profile of circulating miRNAs are indicative of pathophysiological conditions in human cancer. This concept has led to consider circulating miRNAs valid biomarkers in cancer diagnostics. Furthermore, current research promotes the use of miRNAs as a target in cancer therapy. However, miRNAs are an evolving research field. Although miRNAs have been demonstrated to be potentially valuable tools both in cancer diagnosis and treatment, a greater effort should be made to improve our understanding of miRNAs biology. This review describes the biology of microRNAs, emphasizing on the use of miRNAs in cancer diagnostics and therapy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. HIV-1 RNAs are Not Part of the Argonaute 2 Associated RNA Interference Pathway in Macrophages.

    Directory of Open Access Journals (Sweden)

    Valentina Vongrad

    Full Text Available MiRNAs and other small noncoding RNAs (sncRNAs are key players in post-transcriptional gene regulation. HIV-1 derived small noncoding RNAs (sncRNAs have been described in HIV-1 infected cells, but their biological functions still remain to be elucidated. Here, we approached the question whether viral sncRNAs may play a role in the RNA interference (RNAi pathway or whether viral mRNAs are targeted by cellular miRNAs in human monocyte derived macrophages (MDM.The incorporation of viral sncRNAs and/or their target RNAs into RNA-induced silencing complex was investigated using photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP as well as high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP, which capture Argonaute2-bound miRNAs and their target RNAs. HIV-1 infected monocyte-derived macrophages (MDM were chosen as target cells, as they have previously been shown to express HIV-1 sncRNAs. In addition, we applied small RNA deep sequencing to study differential cellular miRNA expression in HIV-1 infected versus non-infected MDMs.PAR-CLIP and HITS-CLIP data demonstrated the absence of HIV-1 RNAs in Ago2-RISC, although the presence of a multitude of HIV-1 sncRNAs in HIV-1 infected MDMs was confirmed by small RNA sequencing. Small RNA sequencing revealed that 1.4% of all sncRNAs were of HIV-1 origin. However, neither HIV-1 derived sncRNAs nor putative HIV-1 target sequences incorporated into Ago2-RISC were identified suggesting that HIV-1 sncRNAs are not involved in the canonical RNAi pathway nor is HIV-1 targeted by this pathway in HIV-1 infected macrophages.

  12. Decoding the non-coding RNAs in Alzheimer's disease.

    Science.gov (United States)

    Schonrock, Nicole; Götz, Jürgen

    2012-11-01

    Non-coding RNAs (ncRNAs) are integral components of biological networks with fundamental roles in regulating gene expression. They can integrate sequence information from the DNA code, epigenetic regulation and functions of multimeric protein complexes to potentially determine the epigenetic status and transcriptional network in any given cell. Humans potentially contain more ncRNAs than any other species, especially in the brain, where they may well play a significant role in human development and cognitive ability. This review discusses their emerging role in Alzheimer's disease (AD), a human pathological condition characterized by the progressive impairment of cognitive functions. We discuss the complexity of the ncRNA world and how this is reflected in the regulation of the amyloid precursor protein and Tau, two proteins with central functions in AD. By understanding this intricate regulatory network, there is hope for a better understanding of disease mechanisms and ultimately developing diagnostic and therapeutic tools.

  13. MicroRNAs at the epicenter of intestinal homeostasis.

    Science.gov (United States)

    Belcheva, Antoaneta

    2017-03-01

    Maintaining intestinal homeostasis is a key prerequisite for a healthy gut. Recent evidence points out that microRNAs (miRNAs) act at the epicenter of the signaling networks regulating this process. The fine balance in the interaction between gut microbiota, intestinal epithelial cells, and the host immune system is achieved by constant transmission of signals and their precise regulation. Gut microbes extensively communicate with the host immune system and modulate host gene expression. On the other hand, sensing of gut microbiota by the immune cells provides appropriate tolerant responses that facilitate the symbiotic relationships. While the role of many regulatory proteins, receptors and their signaling pathways in the regulation of the intestinal homeostasis is well documented, the involvement of non-coding RNA molecules in this process has just emerged. This review discusses the most recent knowledge about the contribution of miRNAs in the regulation of the intestinal homeostasis. © 2017 WILEY Periodicals, Inc.

  14. MicroRNAs and the metabolic hallmarks of aging.

    Science.gov (United States)

    Victoria, Berta; Nunez Lopez, Yury O; Masternak, Michal M

    2017-11-05

    Aging, the natural process of growing older, is characterized by a progressive deterioration of physiological homeostasis at the cellular, tissue, and organismal level. Metabolically, the aging process is characterized by extensive changes in body composition, multi-tissue/multi-organ insulin resistance, and physiological declines in multiple signaling pathways including growth hormone, insulin/insulin-like growth factor 1, and sex steroids regulation. With this review, we intend to consolidate published information about microRNAs that regulate critical metabolic processes relevant to aging. In certain occasions we uncover relationships likely relevant to aging, which has not been directly described before, such as the miR-451/AMPK axis. We have also included a provocative section highlighting the potential role in aging of a new designation of miRNAs, namely fecal miRNAs, recently discovered to regulate intestinal microbiota in mammals. Copyright © 2016. Published by Elsevier B.V.

  15. Circulating miRNAs as biomarkers for endocrine disorders.

    Science.gov (United States)

    Butz, H; Kinga, N; Racz, K; Patocs, A

    2016-01-01

    Specific, sensitive and non-invasive biomarkers are always needed in endocrine disorders. miRNAs are short, non-coding RNA molecules with well-known role in gene expression regulation. They are frequently dysregulated in metabolic and endocrine diseases. Recently it has been shown that they are secreted into biofluids by nearly all kind of cell types. As they can be taken up by other cells they may have a role in a new kind of paracrine, cell-to-cell communication. Circulating miRNAs are protected by RNA-binding proteins or microvesicles hence they can be attractive candidates as diagnostic or prognostic biomarkers. In this review, we summarize the characteristics of extracellular miRNA's and our knowledge about their origin and potential roles in endocrine and metabolic diseases. Discussions about the technical challenges occurring during identification and measurement of extracellular miRNAs and future perspectives about their roles are also highlighted.

  16. MicroRNAs and the Evolution of Insect Metamorphosis.

    Science.gov (United States)

    Belles, Xavier

    2017-01-31

    MicroRNAs (miRNAs) are involved in the regulation of a number of processes associated with metamorphosis, either in the less modified hemimetabolan mode or in the more modified holometabolan mode. The miR-100/let-7/miR-125 cluster has been studied extensively, especially in relation to wing morphogenesis in both hemimetabolan and holometabolan species. Other miRNAs also participate in wing morphogenesis, as well as in programmed cell and tissue death, neuromaturation, neuromuscular junction formation, and neuron cell fate determination, typically during the pupal stage of holometabolan species. A special case is the control of miR-2 over Kr-h1 transcripts, which determines adult morphogenesis in the hemimetabolan metamorphosis. This is an elegant example of how a single miRNA can control an entire process by acting on a crucial mediator; however, this is a quite exceptional mechanism that was apparently lost during the transition from hemimetaboly to holometaboly.

  17. MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory.

    Science.gov (United States)

    Figliuzzi, Matteo; Marinari, Enzo; De Martino, Andrea

    2013-03-05

    It has recently been suggested that the competition for a finite pool of microRNAs (miRNA) gives rise to effective interactions among their common targets (competing endogenous RNAs or ceRNAs) that could prove to be crucial for posttranscriptional regulation. We have studied a minimal model of posttranscriptional regulation where the emergence and the nature of such interactions can be characterized in detail at steady state. Sensitivity analysis shows that binding free energies and repression mechanisms are the key ingredients for the cross-talk between ceRNAs to arise. Interactions emerge in specific ranges of repression values, can be symmetrical (one ceRNA influences another and vice versa) or asymmetrical (one ceRNA influences another but not the reverse), and may be highly selective, while possibly limited by noise. In addition, we show that nontrivial correlations among ceRNAs can emerge in experimental readouts due to transcriptional fluctuations even in the absence of miRNA-mediated cross-talk. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Circulating mRNAs and miRNAs as candidate markers for the diagnosis and prognosis of prostate cancer

    DEFF Research Database (Denmark)

    Souza, Marilesia Ferreira de; Kuasne, Hellen; Barros-Filho, Mateus de Camargo

    2017-01-01

    Circulating nucleic acids are found in free form in body fluids and may serve as minimally invasive tools for cancer diagnosis and prognosis. Only a few studies have investigated the potential application of circulating mRNAs and microRNAs (miRNAs) in prostate cancer (PCa). The Cancer Genome Atlas......RNA expression revealed eleven genes and eight miRNAs which were validated by RT-qPCR in plasma samples from 102 untreated PCa patients and 50 cancer-free individuals. Two genes, OR51E2 and SIM2, and two miRNAs, miR-200c and miR-200b, showed significant association with PCa. Expression levels...... of these transcripts distinguished PCa patients from controls (67% sensitivity and 75% specificity). PCa patients and controls with prostate-specific antigen (PSA) ≤ 4.0 ng/mL were discriminated based on OR51E2 and SIM2 expression levels. The miR-200c expression showed association with Gleason score and miR-200b...

  19. Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy.

    Science.gov (United States)

    Vidaurre, Soledad; Fitzpatrick, Christopher; Burzio, Verónica A; Briones, Macarena; Villota, Claudio; Villegas, Jaime; Echenique, Javiera; Oliveira-Cruz, Luciana; Araya, Mariela; Borgna, Vincenzo; Socías, Teresa; Lopez, Constanza; Avila, Rodolfo; Burzio, Luis O

    2014-09-26

    Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3'-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Down-regulation of the Antisense Mitochondrial Non-coding RNAs (ncRNAs) Is a Unique Vulnerability of Cancer Cells and a Potential Target for Cancer Therapy*

    Science.gov (United States)

    Vidaurre, Soledad; Fitzpatrick, Christopher; Burzio, Verónica A.; Briones, Macarena; Villota, Claudio; Villegas, Jaime; Echenique, Javiera; Oliveira-Cruz, Luciana; Araya, Mariela; Borgna, Vincenzo; Socías, Teresa; Lopez, Constanza; Avila, Rodolfo; Burzio, Luis O.

    2014-01-01

    Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3′-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy. PMID:25100722

  1. Synaptic vesicles contain small ribonucleic acids (sRNAs) including transfer RNA fragments (trfRNA) and microRNAs (miRNA).

    Science.gov (United States)

    Li, Huinan; Wu, Cheng; Aramayo, Rodolfo; Sachs, Matthew S; Harlow, Mark L

    2015-10-08

    Synaptic vesicles (SVs) are neuronal presynaptic organelles that load and release neurotransmitter at chemical synapses. In addition to classic neurotransmitters, we have found that synaptic vesicles isolated from the electric organ of Torpedo californica, a model cholinergic synapse, contain small ribonucleic acids (sRNAs), primarily the 5' ends of transfer RNAs (tRNAs) termed tRNA fragments (trfRNAs). To test the evolutionary conservation of SV sRNAs we examined isolated SVs from the mouse central nervous system (CNS). We found abundant levels of sRNAs in mouse SVs, including trfRNAs and micro RNAs (miRNAs) known to be involved in transcriptional and translational regulation. This discovery suggests that, in addition to inducing changes in local dendritic excitability through the release of neurotransmitters, SVs may, through the release of specific trfRNAs and miRNAs, directly regulate local protein synthesis. We believe these findings have broad implications for the study of chemical synaptic transmission.

  2. Genome-Wide Maps of m6A circRNAs Identify Widespread and Cell-Type-Specific Methylation Patterns that Are Distinct from mRNAs

    Directory of Open Access Journals (Sweden)

    Chan Zhou

    2017-08-01

    Full Text Available N6-methyladenosine (m6A is the most abundant internal modification of mRNAs and is implicated in all aspects of post-transcriptional RNA metabolism. However, little is known about m6A modifications to circular (circ RNAs. We developed a computational pipeline (AutoCirc that, together with depletion of ribosomal RNA and m6A immunoprecipitation, defined thousands of m6A circRNAs with cell-type-specific expression. The presence of m6A circRNAs is corroborated by interaction between circRNAs and YTHDF1/YTHDF2, proteins that read m6A sites in mRNAs, and by reduced m6A levels upon depletion of METTL3, the m6A writer. Despite sharing m6A readers and writers, m6A circRNAs are frequently derived from exons that are not methylated in mRNAs, whereas mRNAs that are methylated on the same exons that compose m6A circRNAs exhibit less stability in a process regulated by YTHDF2. These results expand our understanding of the breadth of m6A modifications and uncover regulation of circRNAs through m6A modification.

  3. Long non-coding RNAs: Mechanism of action and functional utility

    OpenAIRE

    Bhat, Shakil Ahmad; Ahmad, Syed Mudasir; Mumtaz, Peerzada Tajamul; Malik, Abrar Ahad; Dar, Mashooq Ahmad; Urwat, Uneeb; Shah, Riaz Ahmad; Ganai, Nazir Ahmad

    2016-01-01

    Recent RNA sequencing studies have revealed that most of the human genome is transcribed, but very little of the total transcriptomes has the ability to encode proteins. Long non-coding RNAs (lncRNAs) are non-coding transcripts longer than 200 nucleotides. Members of the non-coding genome include microRNA (miRNA), small regulatory RNAs and other short RNAs. Most of long non-coding RNA (lncRNAs) are poorly annotated. Recent recognition about lncRNAs highlights their effects in many biological ...

  4. LNA-FISH for detection of microRNAs in frozen sections

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli N

    2010-01-01

    MicroRNAs (miRNAs) are small ( approximately 22 nt) noncoding RNA molecules that regulate the expression of protein coding genes either by cleavage or translational repression. miRNAs comprise one of the most abundant classes of gene regulatory molecules in multicellular organisms. Yet, the funct......MicroRNAs (miRNAs) are small ( approximately 22 nt) noncoding RNA molecules that regulate the expression of protein coding genes either by cleavage or translational repression. miRNAs comprise one of the most abundant classes of gene regulatory molecules in multicellular organisms. Yet...

  5. Roles, Functions, and Mechanisms of Long Non-coding RNAs in Cancer

    Directory of Open Access Journals (Sweden)

    Yiwen Fang

    2016-02-01

    Full Text Available Long non-coding RNAs (lncRNAs play important roles in cancer. They are involved in chromatin remodeling, as well as transcriptional and post-transcriptional regulation, through a variety of chromatin-based mechanisms and via cross-talk with other RNA species. lncRNAs can function as decoys, scaffolds, and enhancer RNAs. This review summarizes the characteristics of lncRNAs, including their roles, functions, and working mechanisms, describes methods for identifying and annotating lncRNAs, and discusses future opportunities for lncRNA-based therapies using antisense oligonucleotides.

  6. Computational identification and analysis of novel sugarcane microRNAs

    Directory of Open Access Journals (Sweden)

    Thiebaut Flávia

    2012-07-01

    Full Text Available Abstract Background MicroRNA-regulation of gene expression plays a key role in the development and response to biotic and abiotic stresses. Deep sequencing analyses accelerate the process of small RNA discovery in many plants and expand our understanding of miRNA-regulated processes. We therefore undertook small RNA sequencing of sugarcane miRNAs in order to understand their complexity and to explore their role in sugarcane biology. Results A bioinformatics search was carried out to discover novel miRNAs that can be regulated in sugarcane plants submitted to drought and salt stresses, and under pathogen infection. By means of the presence of miRNA precursors in the related sorghum genome, we identified 623 candidates of new mature miRNAs in sugarcane. Of these, 44 were classified as high confidence miRNAs. The biological function of the new miRNAs candidates was assessed by analyzing their putative targets. The set of bona fide sugarcane miRNA includes those likely targeting serine/threonine kinases, Myb and zinc finger proteins. Additionally, a MADS-box transcription factor and an RPP2B protein, which act in development and disease resistant processes, could be regulated by cleavage (21-nt-species and DNA methylation (24-nt-species, respectively. Conclusions A large scale investigation of sRNA in sugarcane using a computational approach has identified a substantial number of new miRNAs and provides detailed genotype-tissue-culture miRNA expression profiles. Comparative analysis between monocots was valuable to clarify aspects about conservation of miRNA and their targets in a plant whose genome has not yet been sequenced. Our findings contribute to knowledge of miRNA roles in regulatory pathways in the complex, polyploidy sugarcane genome.

  7. Detection of plant microRNAs in honey.

    Directory of Open Access Journals (Sweden)

    Angelo Gismondi

    Full Text Available For the first time in the literature, our group has managed to demonstrate the existence of plant RNAs in honey samples. In particular, in our work, different RNA extraction procedures were performed in order to identify a purification method for nucleic acids from honey. Purity, stability and integrity of the RNA samples were evaluated by spectrophotometric, PCR and electrophoretic analyses. Among all honey RNAs, we specifically revealed the presence of both plastidial and nuclear plant transcripts: RuBisCO large subunit mRNA, maturase K messenger and 18S ribosomal RNA. Surprisingly, nine plant microRNAs (miR482b, miR156a, miR396c, miR171a, miR858, miR162a, miR159c, miR395a and miR2118a were also detected and quantified by qPCR. In this context, a comparison between microRNA content in plant samples (i.e. flowers, nectars and their derivative honeys was carried out. In addition, peculiar microRNA profiles were also identified in six different monofloral honeys. Finally, the same plant microRNAs were investigated in other plant food products: tea, cocoa and coffee. Since plant microRNAs introduced by diet have been recently recognized as being able to modulate the consumer's gene expression, our research suggests that honey's benefits for human health may be strongly correlated to the bioactivity of plant microRNAs contained in this matrix.

  8. microRNAs: Implications for air pollution research

    International Nuclear Information System (INIS)

    Jardim, Melanie J.

    2011-01-01

    The purpose of this review is to provide an update of the current understanding on the role of microRNAs in mediating genetic responses to air pollutants and to contemplate on how these responses ultimately control susceptibility to ambient air pollution. Morbidity and mortality attributable to air pollution continues to be a growing public health concern worldwide. Despite several studies on the health effects of ambient air pollution, underlying molecular mechanisms of susceptibility and disease remain elusive. In the last several years, special attention has been given to the role of epigenetics in mediating, not only genetic and physiological responses to certain environmental insults, but also in regulating underlying susceptibility to environmental stressors. Epigenetic mechanisms control the expression of gene products, both basally and as a response to a perturbation, without affecting the sequence of DNA itself. These mechanisms include structural regulation of the chromatin structure, such as DNA methylation and histone modifications, and post-transcriptional gene regulation, such as microRNA mediated repression of gene expression. microRNAs are small noncoding RNAs that have been quickly established as key regulators of gene expression. As such, miRNAs have been found to control several cellular processes including apoptosis, proliferation and differentiation. More recently, research has emerged suggesting that changes in the expression of some miRNAs may be critical for mediating biological, and ultimately physiological, responses to air pollutants. Although the study of microRNAs, and epigenetics as a whole, has come quite far in the field of cancer, the understanding of how these mechanisms regulate gene–environment interactions to environmental exposures in everyday life is unclear. This article does not necessarily reflect the views and policies of the US EPA.

  9. microRNAs: Implications for air pollution research

    Energy Technology Data Exchange (ETDEWEB)

    Jardim, Melanie J., E-mail: melaniejardim@gmail.com [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Chapel Hill, NC (United States)

    2011-12-01

    The purpose of this review is to provide an update of the current understanding on the role of microRNAs in mediating genetic responses to air pollutants and to contemplate on how these responses ultimately control susceptibility to ambient air pollution. Morbidity and mortality attributable to air pollution continues to be a growing public health concern worldwide. Despite several studies on the health effects of ambient air pollution, underlying molecular mechanisms of susceptibility and disease remain elusive. In the last several years, special attention has been given to the role of epigenetics in mediating, not only genetic and physiological responses to certain environmental insults, but also in regulating underlying susceptibility to environmental stressors. Epigenetic mechanisms control the expression of gene products, both basally and as a response to a perturbation, without affecting the sequence of DNA itself. These mechanisms include structural regulation of the chromatin structure, such as DNA methylation and histone modifications, and post-transcriptional gene regulation, such as microRNA mediated repression of gene expression. microRNAs are small noncoding RNAs that have been quickly established as key regulators of gene expression. As such, miRNAs have been found to control several cellular processes including apoptosis, proliferation and differentiation. More recently, research has emerged suggesting that changes in the expression of some miRNAs may be critical for mediating biological, and ultimately physiological, responses to air pollutants. Although the study of microRNAs, and epigenetics as a whole, has come quite far in the field of cancer, the understanding of how these mechanisms regulate gene-environment interactions to environmental exposures in everyday life is unclear. This article does not necessarily reflect the views and policies of the US EPA.

  10. Oncogenic micro-RNAs and Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Cristina eGrange

    2014-03-01

    Full Text Available Tumor formation is a complex process that occurs in different steps and involves many cell types, including tumor cells, endothelial cells, and inflammatory cells, which interact to promote growth of the tumor mass and metastasization. Epigenetic alterations occurring in transformed cells result in de-regulation of miRNA expression (a class of small non-coding RNA that regulates multiple functions which contributes to tumorigenesis. The specific miRNAs, which have an aberrant expression in tumors, are defined as oncomiRNAs, and may be either over- or under-expressed, but down-regulation is most commonly observed.Renal cell carcinoma is a frequent form of urologic tumor, associated with an alteration of multiple signaling pathways. Many molecules involved in the progression of renal cell carcinomas, such as HIF, VEGF or mTOR, are possible targets of deregulated miRNAs. Within tumor mass, the cancer stem cell population is a fundamental component that promotes tumor growth. The cancer stem cell hypothesis postulates that cancer stem cells have the unique ability to self-renew and to maintain tumor growth and metastasis. Cancer stem cells present in renal cell carcinoma were shown to express the mesenchymal stem cell marker CD105 and to exhibit self-renewal and clonogenic properties, as well as the ability to generate serially transplantable tumors. The phenotype of cancer stem cell has been related to the potential to undergo the epithelial-mesenchymal transition, which has been linked to the expression pattern of tumorigenic miRNAs or down-regulation of anti-tumor miRNAs. In addition, the pattern of circulating miRNAs may allow discrimination between healthy and tumor patients. Therefore, a miRNA signature may be used as a tumor biomarker for cancer diagnosis, as well as to classify the risk of relapse and metastasis, and for a guide for therapy.

  11. EG-10LONG NON-CODING RNAs IN GLIOBLASTOMA

    Science.gov (United States)

    Pastori, Chiara; Kapranov, Philipp; Penas, Clara; Laurent, Georges St.; Ayad, Nagi; Wahlestedt, Claes

    2014-01-01

    Glioblastoma (GBM) is the most common, aggressive and incurable primary brain tumor in adults. Genome studies have confirmed that GBM is extremely heterogeneous with many genetically different subgroups. Consequently, there is much current interest in epigenetic drugs that may be active across genetically distinct tumors. In support of this, some epigenetic drugs has recently shown efficacy against several cancers including glioblastoma. Much recent interest has also been devoted to long non-coding RNAs (lncRNAs), which can modulate gene expression regulating chromatin architecture, in part through the interaction with epigenetic protein machineries. To date, however, only a few lncRNAs have been studied in human cancer. We therefore embarked on a comprehensive genomic and functional analysis of lncRNAs in GBM. Using the Helicos Single Molecule Sequencing platform glioblastoma samples were sequenced resulting in the identification of hundreds of dysregulated lncRNAs. Among these the lncRNA HOTAIR was found massively increased in GBM. This observation parallels findings in other cancers where HOTAIR's increased expression has been linked to poor prognosis due to metastatic events. Interestingly, here we show that in glioblastoma HOTAIR does not promote metastasis, but instead sustains the ability of these cells to proliferate. In fact, we demonstrate that HOTAIR knockdown in GBM strongly impairs cell proliferation and induces apoptosis in vitro and in vivo. Further, we implicate HOTAIR in the mechanism of action of certain epigenetic drugs. In summary, long noncoding RNAs (newly discovered epigenomic factors) play a vital role in GBM and deserve attention as entirely novel drug targets as well as biomarkers.

  12. Phloem small RNAs, nutrient stress responses, and systemic mobility

    Directory of Open Access Journals (Sweden)

    Kehr Julia

    2010-04-01

    Full Text Available Abstract Background Nutrient availabilities and needs have to be tightly coordinated between organs to ensure a balance between uptake and consumption for metabolism, growth, and defense reactions. Since plants often have to grow in environments with sub-optimal nutrient availability, a fine tuning is vital. To achieve this, information has to flow cell-to-cell and over long-distance via xylem and phloem. Recently, specific miRNAs emerged as a new type of regulating molecules during stress and nutrient deficiency responses, and miR399 was suggested to be a phloem-mobile long-distance signal involved in the phosphate starvation response. Results We used miRNA microarrays containing all known plant miRNAs and a set of unknown small (s RNAs earlier cloned from Brassica phloem sap 1, to comprehensively analyze the phloem response to nutrient deficiency by removing sulfate, copper or iron, respectively, from the growth medium. We show that phloem sap contains a specific set of sRNAs that is distinct from leaves and roots, and that the phloem also responds specifically to stress. Upon S and Cu deficiencies phloem sap reacts with an increase of the same miRNAs that were earlier characterized in other tissues, while no clear positive response to -Fe was observed. However, -Fe led to a reduction of Cu- and P-responsive miRNAs. We further demonstrate that under nutrient starvation miR399 and miR395 can be translocated through graft unions from wild type scions to rootstocks of the miRNA processing hen1-1 mutant. In contrast, miR171 was not transported. Translocation of miR395 led to a down-regulation of one of its targets in rootstocks, suggesting that this transport is of functional relevance, and that miR395, in addition to the well characterized miR399, could potentially act as a long-distance information transmitter. Conclusions Phloem sap contains a specific set of sRNAs, of which some specifically accumulate in response to nutrient deprivation. From

  13. MicroRNAs and potential target interactions in psoriasis

    DEFF Research Database (Denmark)

    Zibert, John Robert; Løvendorf, Marianne B.; Litman, Thomas

    2010-01-01

    BACKGROUND: Psoriasis is a chronic inflammatory skin disease often seen in patients with a genetic susceptibility. MicroRNAs (miRNA) are endogenous, short RNA molecules that can bind to parts of mRNA target genes, thus inhibiting their translation and causing accelerated turnover or transcript...... degradation. MicroRNAs are important in the pathogenesis of human diseases such as immunological disorders, as they regulate a broad range of biological processes. OBJECTIVE: We investigated miRNA-mRNA interactions in involved (PP) and non-involved (PN) psoriatic skin compared with healthy skin (NN). METHODS...

  14. MicroRNAs as potential therapeutic targets in kidney disease

    Science.gov (United States)

    Gomez, Ivan G; Grafals, Monica; Portilla, Didier; Duffield, Jeremy S

    2014-01-01

    One cornerstone of Chronic Kidney Disease (CKD) is fibrosis, as kidneys are susceptible due to their high vascularity and predisposition to ischemia. Presently, only therapies targeting the angiotensin receptor are used in clinical practice to retard the progression of CKD. Thus, there is a pressing need for new therapies designed to treat the damaged kidney. Several independent laboratories have identified a number of microRNAs that are dysregulated in human and animal models of CKD. We will explore the evidence suggesting that by blocking the activity of such dysregulated microRNAs, new therapeutics could be developed to treat the progression of CKD. PMID:23660218

  15. siRNAs targeted to certain polyadenylation sites promote specific, RISC-independent degradation of messenger RNAs.

    Science.gov (United States)

    Vickers, Timothy A; Crooke, Stanley T

    2012-07-01

    While most siRNAs induce sequence-specific target mRNA cleavage and degradation in a process mediated by Ago2/RNA-induced silencing complex (RISC), certain siRNAs have also been demonstrated to direct target RNA reduction through deadenylation and subsequent degradation of target transcripts in a process which involves Ago1/RISC and P-bodies. In the current study, we present data suggesting that a third class of siRNA exist, which are capable of promoting target RNA reduction that is independent of both Ago and RISC. These siRNAs bind the target messenger RNA at the polyA signal and are capable of redirecting a small amount of polyadenylation to downstream polyA sites when present, however, the majority of the activity appears to be due to inhibition of polyadenylation or deadenylation of the transcript, followed by exosomal degradation of the immature mRNA.

  16. Repertoire of noncoding RNAs in corpus luteum of early pregnancy in buffalo (Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    A. Jerome

    2017-09-01

    Full Text Available Aim: The present study was designed to identify other noncoding RNAs (ncRNAs in the corpus luteum (CL during early pregnancy in buffalo. Materials and Methods: For this study, CL (n=2 from two buffalo gravid uteri, obtained from the slaughter house, was transported to laboratory after snap freezing in liquid nitrogen (-196°C. The stage of pregnancy was determined by measuring the crown-rump region of the fetus. This was followed by isolation of RNA and deep sequencing. Post-deep sequencing, the obtained reads were checked and aligned against various ncRNA databases (GtRNA, RFAM, and deep guide. Various parameters, namely, frequency of specific ncRNAs, length, mismatch, and genomic location target in several model species were deciphered. Results: Frequency of piwi-interacting RNAs (piwi-RNAs, having target location in rodents and human genomes, were significantly higher compared to other piwi-RNAs and ncRNAs. Ribosomal RNAs (rRNAs deduced had nucleotides (nts ranging from 17 to 50 nts, but the occurrence of small length rRNAs was more than lengthier fragments. The target on 16S rRNA species confirms the conservation of 16S rRNA across species. With respect to transfer RNA (tRNA, the abundantly occurring tRNAs were unique with no duplication. Small nucleolar RNAs (snoRNAs, identified in this study, showed a strong tendency for coding box C/D snoRNAs in comparison to H/ACA snoRNAs. Regulatory and evolutionary implications of these identified ncRNAs are yet to be delineated in many species, including buffaloes. Conclusion: This is the first report of identification of other ncRNAs in CL of early pregnancy in buffalo.

  17. Novel microRNA-like viral small regulatory RNAs arising during human hepatitis A virus infection.

    Science.gov (United States)

    Shi, Jiandong; Sun, Jing; Wang, Bin; Wu, Meini; Zhang, Jing; Duan, Zhiqing; Wang, Haixuan; Hu, Ningzhu; Hu, Yunzhang

    2014-10-01

    MicroRNAs (miRNAs), including host miRNAs and viral miRNAs, play vital roles in regulating host-virus interactions. DNA viruses encode miRNAs that regulate the viral life cycle. However, it is generally believed that cytoplasmic RNA viruses do not encode miRNAs, owing to inaccessible cellular miRNA processing machinery. Here, we provide a comprehensive genome-wide analysis and identification of miRNAs that were derived from hepatitis A virus (HAV; Hu/China/H2/1982), which is a typical cytoplasmic RNA virus. Using deep-sequencing and in silico approaches, we identified 2 novel virally encoded miRNAs, named hav-miR-1-5p and hav-miR-2-5p. Both of the novel virally encoded miRNAs were clearly detected in infected cells. Analysis of Dicer enzyme silencing demonstrated that HAV-derived miRNA biogenesis is Dicer dependent. Furthermore, we confirmed that HAV mature miRNAs were generated from viral miRNA precursors (pre-miRNAs) in host cells. Notably, naturally derived HAV miRNAs were biologically and functionally active and induced post-transcriptional gene silencing (PTGS). Genomic location analysis revealed novel miRNAs located in the coding region of the viral genome. Overall, our results show that HAV naturally generates functional miRNA-like small regulatory RNAs during infection. This is the first report of miRNAs derived from the coding region of genomic RNA of a cytoplasmic RNA virus. These observations demonstrate that a cytoplasmic RNA virus can naturally generate functional miRNAs, as DNA viruses do. These findings also contribute to improved understanding of host-RNA virus interactions mediated by RNA virus-derived miRNAs. © FASEB.

  18. The role of microRNAs in stemness of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Ali Hosseini Rad

    2013-12-01

    Full Text Available Cancer is one of the most important diseases of humans, for which no cure has been found so far. Understanding the causes of cancer can pave the way for its treatment. Alteration in genetic elements such as oncogenes and tumor suppressor genes results in cancer. The most recent theory for the origin of cancer has been provided by cancer stem cells (CSCs. Tumor-initiating cells (T-ICs or CSCs are a small population isolated from tumors and hematologic malignancies. Since CSCs are similar to embryonic stem cells (ESCs in many aspects (such as pluripotency and self-renewal, recognizing the signaling pathways through which ESCs maintain their stemness can also help identify CSC signaling. One component of these signaling pathways is non-coding RNAs (ncRNAs. ncRNAs are classified in two groups: microRNAs (miRNAs and long non-coding RNAs (lncRNAs. miRNAs undergo altered expression in cancer. In this regard, they are classified as Onco-miRNAs or tumor suppressor miRNAs. Some miRNAs play similar roles in ESCs and CSCs, such as let-7 and miR-302. This review focuses on the miRNAs involved in stemness of ESCs and CSCs by presenting a summary of the role of miRNAs in other tumor cells.

  19. Variety of RNAs in Peripheral Blood Cells, Plasma, and Plasma Fractions

    Science.gov (United States)

    Kuligina, Elena V.; Bariakin, Dmitry N.; Kozlov, Vadim V.; Richter, Vladimir A.; Semenov, Dmitry V.

    2017-01-01

    Human peripheral blood contains RNA in cells and in extracellular membrane vesicles, microvesicles and exosomes, as well as in cell-free ribonucleoproteins. Circulating mRNAs and noncoding RNAs, being internalized, possess the ability to modulate vital processes in recipient cells. In this study, with SOLiD sequencing technology, we performed identification, classification, and quantification of RNAs from blood fractions: cells, plasma, plasma vesicles pelleted at 16,000g and 160,000g, and vesicle-depleted plasma supernatant of healthy donors and non-small cell lung cancer (NSCLC) patients. It was determined that 16,000g blood plasma vesicles were enriched with cell-free mitochondria and with a set of mitochondrial RNAs. The variable RNA set of blood plasma 160,000g pellets reflected the prominent contribution of U1, U5, and U6 small nuclear RNAs' fragments and at the same time was characterized by a remarkable depletion of small nucleolar RNAs. Besides microRNAs, the variety of fragments of mRNAs and snoRNAs dominated in the set of circulating RNAs differentially expressed in blood fractions of NSCLC patients. Taken together, our data emphasize that not only extracellular microRNAs but also circulating fragments of messenger and small nuclear/nucleolar RNAs represent prominent classes of circulating regulatory ncRNAs as well as promising circulating biomarkers for the development of disease diagnostic approaches. PMID:28127559

  20. Endogenous TasiRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Rebecca Schwab

    Full Text Available BACKGROUND: Different classes of small RNAs (sRNAs refine the expression of numerous genes in higher eukaryotes by directing protein partners to complementary nucleic acids, where they mediate gene silencing. Plants encode a unique class of sRNAs, called trans-acting small interfering RNAs (tasiRNAs, which post-transcriptionally regulate protein-coding transcripts, as do microRNAs (miRNAs, and both sRNA classes control development through their targets. TasiRNA biogenesis requires multiple components of the siRNA pathway and also miRNAs. But while 21mer siRNAs originating from transgenes can mediate silencing across several cell layers, miRNA action seems spatially restricted to the producing or closely surrounding cells. PRINCIPAL FINDINGS: We have previously described the isolation of a genetrap reporter line for TAS3a, the major locus producing AUXIN RESPONS FACTOR (ARF-regulating tasiRNAs in the Arabidopsis shoot. Its activity is limited to the adaxial (upper side of leaf primordia, thus spatially isolated from ARF-activities, which are located in the abaxial (lower side. We show here by in situ hybridization and reporter fusions that the silencing activities of ARF-regulating tasiRNAs are indeed manifested non-cell autonomously to spatially control ARF activities. CONCLUSIONS/SIGNIFICANCE: Endogenous tasiRNAs are thus mediators of a mobile developmental signal and might provide effective gene silencing at a distance beyond the reach of most miRNAs.

  1. Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer Hep-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Wanzhong; Wang, Ping; Wang, Xin [Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine, Jilin University, Changchun (China); Song, Wenzhi [Department of Stomatology, China-Japan Friendship Hospital, Jilin University, Changchun (China); Cui, Xiangyan; Yu, Hong; Zhu, Wei [Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine, Jilin University, Changchun (China)

    2013-06-12

    Multidrug resistance (MDR) poses a serious impediment to the success of chemotherapy for laryngeal cancer. To identify microRNAs and mRNAs associated with MDR of human laryngeal cancer Hep-2 cells, we developed a multidrug-resistant human laryngeal cancer subline, designated Hep-2/v, by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (0.02-0.96'µM). Microarray assays were performed to compare the microRNA and mRNA expression profiles of Hep-2 and Hep-2/v cells. Compared to Hep-2 cells, Hep-2/v cells were more resistant to chemotherapy drugs (∼45-fold more resistant to vincristine, 5.1-fold more resistant to cisplatin, and 5.6-fold more resistant to 5-fluorouracil) and had a longer doubling time (42.33±1.76 vs 28.75±1.12'h, P<0.05), higher percentage of cells in G0/G1 phase (80.98±0.52 vs 69.14±0.89, P<0.05), increased efflux of rhodamine 123 (95.97±0.56 vs 12.40±0.44%, P<0.01), and up-regulated MDR1 expression. A total of 7 microRNAs and 605 mRNAs were differentially expressed between the two cell types. Of the differentially expressed mRNAs identified, regulator of G-protein signaling 10, high-temperature requirement protein A1, and nuclear protein 1 were found to be the putative targets of the differentially expressed microRNAs identified. These findings may open a new avenue for clarifying the mechanisms responsible for MDR in laryngeal cancer.

  2. Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer Hep-2 cells

    International Nuclear Information System (INIS)

    Yin, Wanzhong; Wang, Ping; Wang, Xin; Song, Wenzhi; Cui, Xiangyan; Yu, Hong; Zhu, Wei

    2013-01-01

    Multidrug resistance (MDR) poses a serious impediment to the success of chemotherapy for laryngeal cancer. To identify microRNAs and mRNAs associated with MDR of human laryngeal cancer Hep-2 cells, we developed a multidrug-resistant human laryngeal cancer subline, designated Hep-2/v, by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (0.02-0.96'µM). Microarray assays were performed to compare the microRNA and mRNA expression profiles of Hep-2 and Hep-2/v cells. Compared to Hep-2 cells, Hep-2/v cells were more resistant to chemotherapy drugs (∼45-fold more resistant to vincristine, 5.1-fold more resistant to cisplatin, and 5.6-fold more resistant to 5-fluorouracil) and had a longer doubling time (42.33±1.76 vs 28.75±1.12'h, P<0.05), higher percentage of cells in G0/G1 phase (80.98±0.52 vs 69.14±0.89, P<0.05), increased efflux of rhodamine 123 (95.97±0.56 vs 12.40±0.44%, P<0.01), and up-regulated MDR1 expression. A total of 7 microRNAs and 605 mRNAs were differentially expressed between the two cell types. Of the differentially expressed mRNAs identified, regulator of G-protein signaling 10, high-temperature requirement protein A1, and nuclear protein 1 were found to be the putative targets of the differentially expressed microRNAs identified. These findings may open a new avenue for clarifying the mechanisms responsible for MDR in laryngeal cancer

  3. Small Engine, Big Power: MicroRNAs as Regulators of Cardiac Diseases and Regeneration

    Directory of Open Access Journals (Sweden)

    Darukeshwara Joladarashi

    2014-09-01

    Full Text Available Cardiac diseases are the predominant cause of human mortality in the United States and around the world. MicroRNAs (miRNAs are small non-coding RNAs that have been shown to modulate a wide range of biological functions under various pathophysiological conditions. miRNAs alter target expression by post-transcriptional regulation of gene expression. Numerous studies have implicated specific miRNAs in cardiovascular development, pathology, regeneration and repair. These observations suggest that miRNAs are potential therapeutic targets to prevent or treat cardiovascular diseases. This review focuses on the emerging role of miRNAs in cardiac development, pathogenesis of cardiovascular diseases, cardiac regeneration and stem cell-mediated cardiac repair. We also discuss the novel diagnostic and therapeutic potential of these miRNAs and their targets in patients with cardiac diseases.

  4. The Role of MicroRNAs in Bovine Infection and Immunity

    Directory of Open Access Journals (Sweden)

    Nathan eLawless

    2014-11-01

    Full Text Available MicroRNAs (miRNAs are a class of small, non-coding RNAs that are recognised as critical regulators of immune gene expression during infection. Many immunologically significant human miRNAs have been found to be conserved in agriculturally important species, including cattle. Discovering how bovine miRNAs mediate the immune defence during infection is critical to understanding the aetiology of the most prevalent bovine diseases. Here, we review current knowledge of miRNAs in the bovine genome, and discuss the advances in understanding of miRNAs as regulators of immune cell function, and bovine immune response activation, regulation, and resolution. Finally, we consider the future perspectives on miRNAs in bovine viral disease, their role as potential biomarkers and in therapy.

  5. Non-coding RNAs: New therapeutic targets and opportunities for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Yu Cuiyun

    2016-02-01

    Full Text Available Non-coding RNAs (ncRNA are RNA molecules without protein coding functions owing to the lack of an open reading frame (ORF. Based on the length, ncRNAs can be divided into long and short ncRNAs; short ncRNAs include miRNAs and piRNAs. Hepatocellular carcinoma (HCC is among the most frequent forms of cancer worldwide and its incidence is increasing rapidly. Studies have found that ncRNAs are likely to play a crucial role in a variety of biological processes including the pathogenesis and progression of HCC. In this review, we summarized the regulation mechanism and biological functions of ncRNAs in HCC with respect to its application in HCC diagnosis, therapy and prognosis.

  6. MicroRNAs in inflammatory bowel disease--pathogenesis, diagnostics and therapeutics

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Bjerrum, Jacob Tveiten; Seidelin, Jakob Benedict

    2012-01-01

    insights have been generated from studies describing an association between an altered expression of a specific class of non-coding RNAs, called microRNAs (miRs or miRNAs) and IBD. The short (approximately 22 nucleotides), endogenous, single-stranded RNAs are evolutionary conserved in animals and plants......-third of the genes in the human genome. Thus, miRNA deregulation often results in an impaired cellular function, and a disturbance of downstream gene regulation and signaling cascades, suggesting their implication in disease etiology. Despite the identification of more than 1900 mature human miRNAs, very little...... is known about their biological functions and functional targets. Recent studies have identified dysregulated miRNAs in tissue samples of IBD patients and have demonstrated similar differences in circulating miRNAs in the serum of IBD patients. Thus, there is great promise that miRNAs will aid in the early...

  7. Profiling micro rnas and their targets in radish (raphanus sativus l.)

    International Nuclear Information System (INIS)

    Barozai, M.Y.; Din, M.

    2015-01-01

    MicroRNAs (miRNAs) are tiny, non-protein coding and negative regulatory RNAs approximately 21 nucleotides in length. The comparative genomic methodology due to their conserved nature is a reasonable approach for the novel miRNAs discovery. In this research, total 25 novel miRNAs from 18 families (ras-miR-156, 160, 162, 163, 164, 167, 168, 319, 399, 408, 413, 414, 841, 1310, 2936, 5030 and 5661) are identified in an important vegetable radish (Raphanus sativus L.). The 25 miRNA precursor sequences showed secondary structures with the mature miRNAs in the stem region. Total 42 putative targets are also identified for the novel 25 radish miRNAs. These findings suggest that more thorough understanding of the function of such miRNAs will help to unravel the mysteries role in plant biology. (author)

  8. Targeted delivery of anti-coxsackievirus siRNAs using ligand-conjugated packaging RNAs.

    Science.gov (United States)

    Zhang, Huifang M; Su, Yue; Guo, Songchuan; Yuan, Ji; Lim, Travis; Liu, Jing; Guo, Peixuan; Yang, Decheng

    2009-09-01

    Coxsackievirus B3 (CVB3) is a common pathogen of myocarditis. We previously synthesized a siRNA targeting the CVB3 protease 2A (siRNA/2A) gene and achieved reduction of CVB3 replication by 92% in vitro. However, like other drugs under development, CVB3 siRNA faces a major challenge of targeted delivery. In this study, we investigated a novel approach to deliver CVB3 siRNAs to a specific cell population (e.g. HeLa cells containing folate receptor) using receptor ligand (folate)-linked packaging RNA (pRNA) from bacterial phage phi29. pRNA monomers can spontaneously form dimers and multimers under optimal conditions by base-pairing between their stem loops. By covalently linking a fluorescence-tag to folate, we delivered the conjugate specifically to HeLa cells without the need of transfection. We further demonstrated that pRNA covalently conjugated to siRNA/2A achieved an equivalent antiviral effect to that of the siRNA/2A alone. Finally, the drug targeted delivery was further evaluated by using pRNA monomers or dimers, which carried both the siRNA/2A and folate ligand and demonstrated that both of them strongly inhibited CVB3 replication. These data indicate that pRNA as a siRNA carrier can specifically deliver the drug to target cells via its ligand and specific receptor interaction and inhibit virus replication effectively.

  9. Blood cell mRNAs and microRNAs: optimized protocols for extraction and preservation.

    Science.gov (United States)

    Eikmans, Michael; Rekers, Niels V; Anholts, Jacqueline D H; Heidt, Sebastiaan; Claas, Frans H J

    2013-03-14

    Assessing messenger RNA (mRNA) and microRNA levels in peripheral blood cells may complement conventional parameters in clinical practice. Working with small, precious samples requires optimal RNA yields and minimal RNA degradation. Several procedures for RNA extraction and complementary DNA (cDNA) synthesis were compared for their efficiency. The effect on RNA quality of freeze-thawing peripheral blood cells and storage in preserving reagents was investigated. In terms of RNA yield and convenience, quality quantitative polymerase chain reaction signals per nanogram of total RNA and using NucleoSpin and mirVana columns is preferable. The SuperScript III protocol results in the highest cDNA yields. During conventional procedures of storing peripheral blood cells at -180°C and thawing them thereafter, RNA integrity is maintained. TRIzol preserves RNA in cells stored at -20°C. Detection of mRNA levels significantly decreases in degraded RNA samples, whereas microRNA molecules remain relatively stable. When standardized to reference targets, mRNA transcripts and microRNAs can be reliably quantified in moderately degraded (quality index 4-7) and severely degraded (quality index <4) RNA samples, respectively. We describe a strategy for obtaining high-quality and quantity RNA from fresh and stored cells from blood. The results serve as a guideline for sensitive mRNA and microRNA expression assessment in clinical material.

  10. Dissection of functional lncRNAs in Alzheimer's disease by construction and analysis of lncRNA-mRNA networks based on competitive endogenous RNAs.

    Science.gov (United States)

    Wang, Lian-Kun; Chen, Xiao-Feng; He, Dan-Dan; Li, You; Fu, Jin

    2017-04-08

    Alzheimer's disease (AD) is a neurodegenerative disorder that is the most common cause of dementia in the elderly, and intracellular neurofibrillary tangles (NFTs) are one of the pathological features of AD. Recent studies have suggested long noncoding RNAs (lncRNAs) play important roles in AD. Competing endogenous RNAs (ceRNAs) is a mechanism that has recently been proposed, in which lncRNAs compete for common miRNA-binding sites with mRNAs. However, the roles of lncRNAs and ceRNA in AD NFTs is limited. In this study, we constructed a global triple network based on ceRNA theory, then an AD NFT lncRNA-mRNA network (NFTLMN) was generated. By analyzing the NFTLMN, three lncRNAs (AP000265.1, KB-1460A1.5 and RP11-145M9.4), which are highly related with AD NFTs were identified. To further explore the cross-talk between mRNAs and lncRNAs, a clustering module analysis was performed on the NFTLMN and two AD NFT related modules were identified. Our study provides a better understanding of the molecular basis of AD NFTs and may offer novel treatment strategies for AD. Copyright © 2016. Published by Elsevier Inc.

  11. Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides

    Science.gov (United States)

    Nicolas, Francisco Esteban; Moxon, Simon; de Haro, Juan P.; Calo, Silvia; Grigoriev, Igor V.; Torres-Martínez, Santiago; Moulton, Vincent; Ruiz-Vázquez, Rosa M.; Dalmay, Tamas

    2010-01-01

    Endogenous short RNAs (esRNAs) play diverse roles in eukaryotes and usually are produced from double-stranded RNA (dsRNA) by Dicer. esRNAs are grouped into different classes based on biogenesis and function but not all classes are present in all three eukaryotic kingdoms. The esRNA register of fungi is poorly described compared to other eukaryotes and it is not clear what esRNA classes are present in this kingdom and whether they regulate the expression of protein coding genes. However, evidence that some dicer mutant fungi display altered phenotypes suggests that esRNAs play an important role in fungi. Here, we show that the basal fungus Mucor circinelloides produces new classes of esRNAs that map to exons and regulate the expression of many protein coding genes. The largest class of these exonic-siRNAs (ex-siRNAs) are generated by RNA-dependent RNA Polymerase 1 (RdRP1) and dicer-like 2 (DCL2) and target the mRNAs of protein coding genes from which they were produced. Our results expand the range of esRNAs in eukaryotes and reveal a new role for esRNAs in fungi. PMID:20427422

  12. Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor; Nicolas, Francisco; Moxon, Simon; Haro, Juan de; Calo, Silvia; Torres-Martinez, Santiago; Moulton, Vincent; Ruiz-Vazquez, Rosa; Dalmay, Tamas

    2011-09-01

    Endogenous short RNAs (esRNAs) play diverse roles in eukaryotes and usually are produced from double-stranded RNA (dsRNA) by Dicer. esRNAs are grouped into different classes based on biogenesis and function but not all classes are present in all three eukaryotic kingdoms. The esRNA register of fungi is poorly described compared to other eukaryotes and it is not clear what esRNA classes are present in this kingdom and whether they regulate the expression of protein coding genes. However, evidence that some dicer mutant fungi display altered phenotypes suggests that esRNAs play an important role in fungi. Here, we show that the basal fungus Mucor circinelloides produces new classes of esRNAs that map to exons and regulate the expression of many protein coding genes. The largest class of these exonic-siRNAs (ex-siRNAs) are generated by RNA-dependent RNA Polymerase 1 (RdRP1) and dicer-like 2 (DCL2) and target the mRNAs of protein coding genes from which they were produced. Our results expand the range of esRNAs in eukaryotes and reveal a new role for esRNAs in fungi

  13. Bioinformatic identification of microRNAs and their targets in ...

    African Journals Online (AJOL)

    DR NJ TONUKARI

    2011-09-21

    Sep 21, 2011 ... transcription factors or enzymes participating in regulation of development, growth, metabolism and other physiological processes. These findings not only lay the foundation for understanding the roles of miRNAs in Aquilegia, but also provide a phylogenetically important dataset for plant miRNA evolution.

  14. Identification of microRNAs in the coral Stylophora pistillata.

    KAUST Repository

    Liew, Yi Jin; Aranda, Manuel; Carr, Adrian; Baumgarten, Sebastian; Zoccola, Didier; Tambutté , Sylvie; Allemand, Denis; Micklem, Gos; Voolstra, Christian R.

    2014-01-01

    in plants and animals alike. In this study, we examined the coral Stylophora pistillata for the presence of miRNAs and the corresponding core protein machinery required for their processing and function. Based on small RNA sequencing, we present evidence

  15. MicroRNAs: a novel therapeutic target for schizophrenia.

    LENUS (Irish Health Repository)

    Bravo, Javier A

    2011-01-01

    Schizophrenia is one of the most disabling psychiatric conditions. Current treatments target monoamine receptors but this approach does not address the full complexity of the disorder. Here we explore the possibility of developing new anti-psychotics by targeting microRNAs (miRNAs), single stranded RNA molecules, 21-23 nucleotides in length that are not translated into proteins and regulate gene expression. The present review reveals that research involving schizophrenia and miRNA is very recent (the earliest report from 2007) and miRNAs add a significant layer of complexity to the pathophysiology of the disorder. However, miRNAs offer an exciting potential not only to understand the underlying mechanisms of schizophrenia, but also for the future development of antipsychotics, as the human miRNA system provides a rich and diverse opportunity for pharmacological targeting. However, technology is still developing in order to produce effective strategies to modulate specific and localized changes in miRNA, particularly in relation to the central nervous system and schizophrenia.

  16. Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases

    NARCIS (Netherlands)

    Tijsen, Anke J.; Pinto, Yigal M.; Creemers, Esther E.

    2012-01-01

    Tijsen AJ, Pinto YM, Creemers EE. Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ Physiol 303: H1085-H1095, 2012. First published August 31, 2012; doi:10.1152/ajpheart.00191.2012.-One of the major challenges in cardiovascular disease is the

  17. Structured RNAs and synteny regions in the pig genome

    DEFF Research Database (Denmark)

    Anthon, Christian; Tafer, Hakim; Havgaard, Jakob Hull

    2014-01-01

    annotation. To further enhance the reliability, 571 of the 3,556 structured RNAs were manually curated by methods depending on the RNA class while 1,581 were declared as pseudogenes. We further created a multiple alignment of pig against 20 representative vertebrates, from which RNAz predicted 83,859 de novo...

  18. Chimeric RNAs as potential biomarkers for tumor diagnosis

    Directory of Open Access Journals (Sweden)

    Jianhua Zhou

    2012-03-01

    Full Text Available Cancers claim millions of lives each year. Early detection thatcan enable a higher chance of cure is of paramount importanceto cancer patients. However, diagnostic tools for many forms oftumors have been lacking. Over the last few years, studies ofchimeric RNAs as biomarkers have emerged. Numerous reportsusing bioinformatics and screening methodologies havedescribed more than 30,000 expressed sequence tags (EST orcDNA sequences as putative chimeric RNAs. While cancer cellshave been well known to contain fusion genes derived fromchromosomal translocations, rearrangements or deletions, recentstudies suggest that trans-splicing in cells may be another sourceof chimeric RNA production. Unlike cis-splicing, trans-splicingtakes place between two pre-mRNA molecules, which are inmost cases derived from two different genes, generating achimeric non-co-linear RNA. It is possible that trans-splicingoccurs in normal cells at high frequencies but the resultingchimeric RNAs exist only at low levels. However the levels ofcertain RNA chimeras may be elevated in cancers, leading to theformation of fusion genes. In light of the fact that chimeric RNAshave been shown to be overrepresented in various tumors,studies of the mechanisms that produce chimeric RNAs andidentification of signature RNA chimeras as biomarkers presentan opportunity for the development of diagnoses for early tumordetection. (BMB reports 2012; 45(3: 133-140

  19. Reprogramming Antitumor Immune Responses with microRNAs

    Science.gov (United States)

    2013-10-01

    disease, including cancer etiology (4) and the generation and inhibition of antitumor immune responses (5–9). Biologically active miRNAs bind to MREs...breast, colorectal, lung, pancreatic , and thyroid carcinomas and in liquid tumors including lymphomas and some acute myeloid leukemias (9, 35). The...immunity [9], underscoring the potential of targeting this major microenvironmental compartment. Accumulating evidence suggests that chronic

  20. MicroRNAs, the DNA damage response and cancer

    International Nuclear Information System (INIS)

    Wouters, Maikel D.; Gent, Dik C. van; Hoeijmakers, Jan H.J.; Pothof, Joris

    2011-01-01

    Many carcinogenic agents such as ultra-violet light from the sun and various natural and man-made chemicals act by damaging the DNA. To deal with these potentially detrimental effects of DNA damage, cells induce a complex DNA damage response (DDR) that includes DNA repair, cell cycle checkpoints, damage tolerance systems and apoptosis. This DDR is a potent barrier against carcinogenesis and defects within this response are observed in many, if not all, human tumors. DDR defects fuel the evolution of precancerous cells to malignant tumors, but can also induce sensitivity to DNA damaging agents in cancer cells, which can be therapeutically exploited by the use of DNA damaging treatment modalities. Regulation of and coordination between sub-pathways within the DDR is important for maintaining genome stability. Although regulation of the DDR has been extensively studied at the transcriptional and post-translational level, less is known about post-transcriptional gene regulation by microRNAs, the topic of this review. More specifically, we highlight current knowledge about DNA damage responsive microRNAs and microRNAs that regulate DNA damage response genes. We end by discussing the role of DNA damage response microRNAs in cancer etiology and sensitivity to ionizing radiation and other DNA damaging therapeutic agents.

  1. Genome-wide characterization of long intergenic non-coding RNAs (lincRNAs) provides new insight into viral diseases in honey bees Apis cerana and Apis mellifera.

    Science.gov (United States)

    Jayakodi, Murukarthick; Jung, Je Won; Park, Doori; Ahn, Young-Joon; Lee, Sang-Choon; Shin, Sang-Yoon; Shin, Chanseok; Yang, Tae-Jin; Kwon, Hyung Wook

    2015-09-04

    Long non-coding RNAs (lncRNAs) are a class of RNAs that do not encode proteins. Recently, lncRNAs have gained special attention for their roles in various biological process and diseases. In an attempt to identify long intergenic non-coding RNAs (lincRNAs) and their possible involvement in honey bee development and diseases, we analyzed RNA-seq datasets generated from Asian honey bee (Apis cerana) and western honey bee (Apis mellifera). We identified 2470 lincRNAs with an average length of 1011 bp from A. cerana and 1514 lincRNAs with an average length of 790 bp in A. mellifera. Comparative analysis revealed that 5 % of the total lincRNAs derived from both species are unique in each species. Our comparative digital gene expression analysis revealed a high degree of tissue-specific expression among the seven major tissues of honey bee, different from mRNA expression patterns. A total of 863 (57 %) and 464 (18 %) lincRNAs showed tissue-dependent expression in A. mellifera and A. cerana, respectively, most preferentially in ovary and fat body tissues. Importantly, we identified 11 lincRNAs that are specifically regulated upon viral infection in honey bees, and 10 of them appear to play roles during infection with various viruses. This study provides the first comprehensive set of lincRNAs for honey bees and opens the door to discover lincRNAs associated with biological and hormone signaling pathways as well as various diseases of honey bee.

  2. miRNAs and other non-coding RNAs in posttraumatic stress disorder: A systematic review of clinical and animal studies.

    Science.gov (United States)

    Schmidt, Ulrike; Keck, Martin E; Buell, Dominik R

    2015-06-01

    In the last couple of years, non-coding (nc) RNAs like micro-RNAs (miRNAs), small interference RNAs (siRNAs) and long ncRNAs (lncRNAs) have emerged as promising candidates for biomarkers and drug-targets in a variety of psychiatric disorders. In contrast to reports on ncRNAs in affective disorders, schizophrenia and anxiety disorders, manuscripts on ncRNAs in posttraumatic stress disorder (PTSD) and associated animal models are scarce. Aiming to stimulate ncRNA research in PTSD and to identify the hitherto most promising ncRNA candidates and associated pathways for psychotrauma research, we conducted the first review on ncRNAs in PTSD. We aimed to identify studies reporting on the expression, function and regulation of ncRNAs in PTSD patients and in animals exhibiting a PTSD-like syndrome. Following the PRISMA guidelines for systematic reviews, we systematically screened the PubMed database for clinical and animal studies on ncRNAs in PTSD, animal models for PTSD and animal models employing a classical fear conditioning paradigm. Using 112 different combinations of search terms, we retrieved 523 articles of which we finally included and evaluated three clinical and 12 animal studies. In addition, using the web-based tool DIANA miRPath v2.0, we searched for molecular pathways shared by the predicted targets of the here-evaluated miRNA candidates. Our findings suggest that mir-132, which has been found to be regulated in three of the here included studies, as well as miRNAs with an already established role in Alzheimer's disease (AD) seem to be particularly promising candidates for future miRNA studies in PTSD. These results are limited by the low number of human trials and by the heterogeneity of included animal studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The silkworm (Bombyx mori microRNAs and their expressions in multiple developmental stages.

    Directory of Open Access Journals (Sweden)

    Xiaomin Yu

    Full Text Available BACKGROUND: MicroRNAs (miRNAs play crucial roles in various physiological processes through post-transcriptional regulation of gene expressions and are involved in development, metabolism, and many other important molecular mechanisms and cellular processes. The Bombyx mori genome sequence provides opportunities for a thorough survey for miRNAs as well as comparative analyses with other sequenced insect species. METHODOLOGY/PRINCIPAL FINDINGS: We identified 114 non-redundant conserved miRNAs and 148 novel putative miRNAs from the B. mori genome with an elaborate computational protocol. We also sequenced 6,720 clones from 14 developmental stage-specific small RNA libraries in which we identified 35 unique miRNAs containing 21 conserved miRNAs (including 17 predicted miRNAs and 14 novel miRNAs (including 11 predicted novel miRNAs. Among the 114 conserved miRNAs, we found six pairs of clusters evolutionarily conserved cross insect lineages. Our observations on length heterogeneity at 5' and/or 3' ends of nine miRNAs between cloned and predicted sequences, and three mature forms deriving from the same arm of putative pre-miRNAs suggest a mechanism by which miRNAs gain new functions. Analyzing development-related miRNAs expression at 14 developmental stages based on clone-sampling and stem-loop RT PCR, we discovered an unusual abundance of 33 sequences representing 12 different miRNAs and sharply fluctuated expression of miRNAs at larva-molting stage. The potential functions of several stage-biased miRNAs were also analyzed in combination with predicted target genes and silkworm's phenotypic traits; our results indicated that miRNAs may play key regulatory roles in specific developmental stages in the silkworm, such as ecdysis. CONCLUSIONS/SIGNIFICANCE: Taking a combined approach, we identified 118 conserved miRNAs and 151 novel miRNA candidates from the B. mori genome sequence. Our expression analyses by sampling miRNAs and real-time PCR over

  4. MicroRNAs as New Characters in the Plot between Epigenetics and Prostate Cancer

    OpenAIRE

    Paone, Alessio; Galli, Roberta; Fabbri, Muller

    2011-01-01

    Prostate cancer (PCA) still represents a leading cause of death. An increasing number of studies have documented that microRNAs (miRNAs), a subgroup of non-coding RNAs with gene regulatory functions, are differentially expressed in PCA respect to the normal tissue counterpart, suggesting their involvement in prostate carcinogenesis and dissemination. Interestingly, it has been shown that miRNAs undergo the same regulatory mechanisms than any other protein coding gene, including epigenetic reg...

  5. Deregulated Cardiac Specific MicroRNAs in Postnatal Heart Growth

    Directory of Open Access Journals (Sweden)

    Pujiao Yu

    2016-01-01

    Full Text Available The heart is recognized as an organ that is terminally differentiated by adulthood. However, during the process of human development, the heart is the first organ with function in the embryo and grows rapidly during the postnatal period. MicroRNAs (miRNAs, miRs, as regulators of gene expression, play important roles during the development of multiple systems. However, the role of miRNAs in postnatal heart growth is still unclear. In this study, by using qRT-PCR, we compared the expression of seven cardiac- or muscle-specific miRNAs that may be related to heart development in heart tissue from mice at postnatal days 0, 3, 8, and 14. Four miRNAs—miR-1a-3p, miR-133b-3p, miR-208b-3p, and miR-206-3p—were significantly decreased while miR-208a-3p was upregulated during the postnatal heart growth period. Based on these results, GeneSpring GX was used to predict potential downstream targets by performing a 3-way comparison of predictions from the miRWalk, PITA, and microRNAorg databases. Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG analysis were used to identify potential functional annotations and signaling pathways related to postnatal heart growth. This study describes expression changes of cardiac- and muscle-specific miRNAs during postnatal heart growth and may provide new therapeutic targets for cardiovascular diseases.

  6. Identification of Small RNAs in Desulfovibrio vulgaris Hildenborough

    International Nuclear Information System (INIS)

    Burns, Andrew; Joachimiak, Marcin; Deutschbauer, Adam; Arkin, Adam; Bender, Kelly

    2010-01-01

    Desulfovibrio vulgaris is an anaerobic sulfate-reducing bacterium capable of facilitating the removal of toxic metals such as uranium from contaminated sites via reduction. As such, it is essential to understand the intricate regulatory cascades involved in how D. vulgaris and its relatives respond to stressors in such sites. One approach is the identification and analysis of small non-coding RNAs (sRNAs); molecules ranging in size from 20-200 nucleotides that predominantly affect gene regulation by binding to complementary mRNA in an anti-sense fashion and therefore provide an immediate regulatory response. To identify sRNAs in D. vulgaris, a bacterium that does not possess an annotated hfq gene, RNA was pooled from stationary and exponential phases, nitrate exposure, and biofilm conditions. The subsequent RNA was size fractionated, modified, and converted to cDNA for high throughput transcriptomic deep sequencing. A computational approach to identify sRNAs via the alignment of seven separate Desulfovibrio genomes was also performed. From the deep sequencing analysis, 2,296 reads between 20 and 250 nt were identified with expression above genome background. Analysis of those reads limited the number of candidates to ∼87 intergenic, while ∼140 appeared to be antisense to annotated open reading frames (ORFs). Further BLAST analysis of the intergenic candidates and other Desulfovibrio genomes indicated that eight candidates were likely portions of ORFs not previously annotated in the D. vulgaris genome. Comparison of the intergenic and antisense data sets to the bioinformatical predicted candidates, resulted in ∼54 common candidates. Current approaches using Northern analysis and qRT-PCR are being used toverify expression of the candidates and to further develop the role these sRNAs play in D. vulgaris regulation.

  7. Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes

    NARCIS (Netherlands)

    Heesch, S. van; Iterson, M. van; Jacobi, J.; Boymans, S.; Essers, P.B.; Bruijn, E. de; Hao, W.; Macinnes, A.W.; Cuppen, E.; Simonis, M.

    2014-01-01

    BACKGROUND: Long noncoding RNAs (lncRNAs) form an abundant class of transcripts, but the function of the majority of them remains elusive. While it has been shown that some lncRNAs are bound by ribosomes, it has also been convincingly demonstrated that these transcripts do not code for proteins. To

  8. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Dan-Dan Cao

    2016-05-01

    Full Text Available MicroRNAs (miRNAs are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.

  9. High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs.

    Directory of Open Access Journals (Sweden)

    Germán Martínez

    Full Text Available Micro RNAS (miRNAs are a class of endogenous small non coding RNAs involved in the post-transcriptional regulation of gene expression. In plants, a great number of conserved and specific miRNAs, mainly arising from model species, have been identified to date. However less is known about the diversity of these regulatory RNAs in vegetal species with agricultural and/or horticultural importance. Here we report a combined approach of bioinformatics prediction, high-throughput sequencing data and molecular methods to analyze miRNAs populations in cucumber (Cucumis sativus plants. A set of 19 conserved and 6 known but non-conserved miRNA families were found in our cucumber small RNA dataset. We also identified 7 (3 with their miRNA* strand not previously described miRNAs, candidates to be cucumber-specific. To validate their description these new C. sativus miRNAs were detected by northern blot hybridization. Additionally, potential targets for most conserved and new miRNAs were identified in cucumber genome.In summary, in this study we have identified, by first time, conserved, known non-conserved and new miRNAs arising from an agronomically important species such as C. sativus. The detection of this complex population of regulatory small RNAs suggests that similarly to that observe in other plant species, cucumber miRNAs may possibly play an important role in diverse biological and metabolic processes.

  10. Microarray profiling of microRNAs expressed in testis tissues of developing primates

    DEFF Research Database (Denmark)

    Yan, Naihong; Lu, Yilu; Sun, Huaqin

    2009-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that have been identified as potent regulators of gene expression. Recent studies indicate that miRNAs are involved in mammalian spermatogenesis but the mechanism of regulation is largely unknown....

  11. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    tang, T. H.; Polacek, N.; Zywicki, M.

    2005-01-01

    By generating a specialized cDNA library from the archaeon Sulfolobus solfataricus, we have identified 57 novel small non-coding RNA (ncRNA) candidates and confirmed their expression by Northern blot analysis. The majority was found to belong to one of two classes, either antisense or antisense...... elements by inhibiting expression of the transposase mRNA. Surprisingly, the class of antisense RNAs also contained RNAs complementary to tRNAs or sRNAs (small-nucleolar-like RNAs). For the antisense-box ncRNAs, the majority could be assigned to the class of C/D sRNAs, which specify 2'-O-methylation sites...... on rRNAs or tRNAs. Five C/D sRNAs of this group are predicted to target methylation at six sites in 13 different tRNAs, thus pointing to the widespread role of these sRNA species in tRNA modification in Archaea. Another group of antisense-box RNAs, lacking typical C/D sRNA motifs, was predicted...

  12. Specific structural probing of plasmid-coded ribosomal RNAs from Escherichia coli

    DEFF Research Database (Denmark)

    Aagaard, C; Rosendahl, G; Dam, M

    1991-01-01

    The preferred method for construction and in vivo expression of mutagenised Escherichia coli ribosomal RNAs (rRNAs) is via high copy number plasmids. Transcription of wild-type rRNA from the seven chromosomal rrn operons in strains harbouring plasmid-coded mutant rRNAs leads to a heterogeneous...

  13. Modulation of the osteosarcoma expression phenotype by microRNAs.

    Directory of Open Access Journals (Sweden)

    Heidi M Namløs

    Full Text Available BACKGROUND: Osteosarcomas are the most common primary malignant tumors of bone and show multiple and complex genomic aberrations. miRNAs are non-coding RNAs capable of regulating gene expression at the post transcriptional level, and miRNAs and their target genes may represent novel therapeutic targets or biomarkers for osteosarcoma. In order to investigate the involvement of miRNAs in osteosarcoma development, global microarray analyses of a panel of 19 human osteosarcoma cell lines was performed. PRINCIPAL FINDINGS: We identified 177 miRNAs that were differentially expressed in osteosarcoma cell lines relative to normal bone. Among these, miR-126/miR-126*, miR-142-3p, miR-150, miR-223, miR-486-5p and members of the miR-1/miR-133a, miR-144/miR-451, miR-195/miR-497 and miR-206/miR-133b clusters were found to be downregulated in osteosarcoma cell lines. All miRNAs in the paralogous clusters miR-17-92, miR-106b-25 and miR-106a-92 were overexpressed. Furthermore, the upregulated miRNAs included miR-9/miR-9*, miR-21*, miR-31/miR-31*, miR-196a/miR-196b, miR-374a and members of the miR-29 and miR-130/301 families. The most interesting inversely correlated miRNA/mRNA pairs in osteosarcoma cell lines included miR-9/TGFBR2 and miR-29/p85α regulatory subunit of PI3K. PTEN mRNA correlated inversely with miR-92a and members of the miR-17 and miR-130/301 families. Expression profiles of selected miRNAs were confirmed in clinical samples. A set of miRNAs, miR-1, miR-18a, miR-18b, miR-19b, miR-31, miR-126, miR-142-3p, miR-133b, miR-144, miR-195, miR-223, miR-451 and miR-497 was identified with an intermediate expression level in osteosarcoma clinical samples compared to osteoblasts and bone, which may reflect the differentiation level of osteosarcoma relative to the undifferentiated osteoblast and fully differentiated normal bone. SIGNIFICANCE: This study provides an integrated analysis of miRNA and mRNA in osteosarcoma, and gives new insight into the complex

  14. Reassessment of the role of TSC, mTORC1 and microRNAs in amino acids-meditated translational control of TOP mRNAs.

    Directory of Open Access Journals (Sweden)

    Ilona Patursky-Polischuk

    Full Text Available TOP mRNAs encode components of the translational apparatus, and repression of their translation comprises one mechanism, by which cells encountering amino acid deprivation downregulate the biosynthesis of the protein synthesis machinery. This mode of regulation involves TSC as knockout of TSC1 or TSC2 rescued TOP mRNAs translation in amino acid-starved cells. The involvement of mTOR in translational control of TOP mRNAs is demonstrated by the ability of constitutively active mTOR to relieve the translational repression of TOP mRNA upon amino acid deprivation. Consistently, knockdown of this kinase as well as its inhibition by pharmacological means blocked amino acid-induced translational activation of these mRNAs. The signaling of amino acids to TOP mRNAs involves RagB, as overexpression of active RagB derepressed the translation of these mRNAs in amino acid-starved cells. Nonetheless, knockdown of raptor or rictor failed to suppress translational activation of TOP mRNAs by amino acids, suggesting that mTORC1 or mTORC2 plays a minor, if any, role in this mode of regulation. Finally, miR10a has previously been suggested to positively regulate the translation of TOP mRNAs. However, we show here that titration of this microRNA failed to downregulate the basal translation efficiency of TOP mRNAs. Moreover, Drosha knockdown or Dicer knockout, which carries out the first and second processing steps in microRNAs biosynthesis, respectively, failed to block the translational activation of TOP mRNAs by amino acid or serum stimulation. Evidently, these results are questioning the positive role of microRNAs in this mode of regulation.

  15. Improvement of the design and generation of highly specific plant knockdown lines using primary synthetic microRNAs (pri-smiRNAs

    Directory of Open Access Journals (Sweden)

    Alves Leonardo

    2010-03-01

    Full Text Available Abstract Background microRNAs (miRNAs are endogenous small non-coding RNAs that post-transcriptionally regulate gene expression. In plants, they typically show high complementarity to a single sequence motif within their target mRNAs and act by catalyzing specific mRNA cleavage and degradation. miRNAs are processed from much longer primary transcripts via precursor miRNAs containing fold-back structures. Leaving these secondary structures intact, miRNAs can be re-designed experimentally to target mRNAs of choice. Results We designed primary synthetic miRNAs (pri-smiRNAs on the basis of the primary transcript of the Arabidopsis MIR159A gene by replacing the original miR159a and the corresponding miR159a* with novel sequences, keeping the overall secondary structure as predicted by the program RNAfold. We used the program RNAhybrid to optimize smiRNA design and to screen the complete Arabidopsis transcriptome for potential off-targets. To improve the molecular cloning of the pri-smiRNA we inserted restriction sites in the original MIR159A primary transcript to easily accommodate the smiRNA/smiRNA* DNA fragment. As a proof-of-concept, we targeted the single gene encoding chalcone synthase (CHS in Arabidopsis. We demonstrate smiRNA(CHS expression and CHS mRNA cleavage in different transgenic lines. Phenotypic changes in these lines were observed for seed color and flavonol derivatives, and quantified with respect to anthocyanin content. We also tested the effect of mismatches and excess G:U base pairs on knockdown efficiency. Conclusions RNAhybrid-assisted design of smiRNAs and generation of pri-smiRNAs using a novel vector containing restriction sites greatly improves specificity and speed of the generation of stable knockdown lines for functional analyses in plants.

  16. Adenovirus-encoding virus-associated RNAs suppress HDGF gene expression to support efficient viral replication.

    Directory of Open Access Journals (Sweden)

    Saki Kondo

    Full Text Available Non-coding small RNAs are involved in many physiological responses including viral life cycles. Adenovirus-encoding small RNAs, known as virus-associated RNAs (VA RNAs, are transcribed throughout the replication process in the host cells, and their transcript levels depend on the copy numbers of the viral genome. Therefore, VA RNAs are abundant in infected cells after genome replication, i.e. during the late phase of viral infection. Their function during the late phase is the inhibition of interferon-inducible protein kinase R (PKR activity to prevent antiviral responses; recently, mivaRNAs, the microRNAs processed from VA RNAs, have been reported to inhibit cellular gene expression. Although VA RNA transcription starts during the early phase, little is known about its function. The reason may be because much smaller amount of VA RNAs are transcribed during the early phase than the late phase. In this study, we applied replication-deficient adenovirus vectors (AdVs and novel AdVs lacking VA RNA genes to analyze the expression changes in cellular genes mediated by VA RNAs using microarray analysis. AdVs are suitable to examine the function of VA RNAs during the early phase, since they constitutively express VA RNAs but do not replicate except in 293 cells. We found that the expression level of hepatoma-derived growth factor (HDGF significantly decreased in response to the VA RNAs under replication-deficient condition, and this suppression was also observed during the early phase under replication-competent conditions. The suppression was independent of mivaRNA-induced downregulation, suggesting that the function of VA RNAs during the early phase differs from that during the late phase. Notably, overexpression of HDGF inhibited AdV growth. This is the first report to show the function, in part, of VA RNAs during the early phase that may be contribute to efficient viral growth.

  17. Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap.

    Science.gov (United States)

    Varkonyi-Gasic, Erika; Gould, Nick; Sandanayaka, Manoharie; Sutherland, Paul; MacDiarmid, Robin M

    2010-08-04

    Plant microRNAs (miRNAs) are a class of small, non-coding RNAs that play an important role in development and environmental responses. Hundreds of plant miRNAs have been identified to date, mainly from the model species for which there are available genome sequences. The current challenge is to characterise miRNAs from plant species with agricultural and horticultural importance, to aid our understanding of important regulatory mechanisms in crop species and enable improvement of crops and rootstocks. Based on the knowledge that many miRNAs occur in large gene families and are highly conserved among distantly related species, we analysed expression of twenty-one miRNA sequences in different tissues of apple (Malus x domestica 'Royal Gala'). We identified eighteen sequences that are expressed in at least one of the tissues tested. Some, but not all, miRNAs expressed in apple tissues including the phloem tissue were also detected in the phloem sap sample derived from the stylets of woolly apple aphids. Most of the miRNAs detected in apple phloem sap were also abundant in the phloem sap of herbaceous species. Potential targets for apple miRNAs were identified that encode putative proteins shown to be targets of corresponding miRNAs in a number of plant species. Expression patterns of potential targets were analysed and correlated with expression of corresponding miRNAs. This study validated tissue-specific expression of apple miRNAs that target genes responsible for plant growth, development, and stress response. A subset of characterised miRNAs was also present in the apple phloem translocation stream. A comparative analysis of phloem miRNAs in herbaceous species and woody perennials will aid our understanding of non-cell autonomous roles of miRNAs in plants.

  18. Transcriptome-wide analysis of microRNAs in Branchiostoma belcheri upon Vibrio parahemolyticus infection.

    Science.gov (United States)

    Jin, Ping; Li, Shengjie; Sun, Lianjie; Lv, Caiyun; Ma, Fei

    2017-09-01

    MicroRNAs (miRNAs) are endogenous small non-coding RNAs that participate in diverse biological processes via regulating expressions of target genes at post-transcriptional level. Amphioxus, as modern survivor of an ancient chordate lineage, is a model organism for comparative genomics study. However, miRNAs involved in regulating immune responses in Branchiostoma belcheri are largely unclear. Here, we systematically investigated the microRNAs (miRNAs) involved in regulating immune responses in the cephalochordate amphioxus (Branchiostoma belcheri) through next-generation deep sequencing of amphioxus samples infected with Vibrio parahemolyticus. We identified 198 novel amphioxus miRNAs, consisting of 12 conserved miRNAs, 33 candidate star miRNAs and 153 potential amphioxus-specific-miRNAs. Using microarray profiling, 14 miRNAs were differentially expressed post infection, suggesting they are immune-related miRNAs. Eight miRNAs (bbe-miR-92a-3p, bbe-miR-92c-3p, bbe-miR-210-5p, bbe-miR-22-3p, bbe-miR-1∼bbe-miR-133 and bbe-miR-217∼bbe-miR-216 clusters) were significantly increased at 12 h post-infection, while bbe-miR-2072-5p was downregulated at 6 h and 12 h. Three miRNAs, bbe-miR-1-3p, bbe-miR-22-3p and bbe-miR-92a-3p, were confirmed to be involved in immune responses to infection by qRT-PCR. Our findings further clarify important regulatory roles of miRNAs in the innate immune response to bacterial infection in amphioxus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5.

    Science.gov (United States)

    Ehsani, Ali; Saetrom, Pål; Zhang, Jane; Alluin, Jessica; Li, Haitang; Snøve, Ola; Aagaard, Lars; Rossi, John J

    2010-04-01

    Small-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) are distinguished by their modes of action. SiRNAs serve as guides for sequence-specific cleavage of complementary mRNAs and the targets can be in coding or noncoding regions of the target transcripts. MiRNAs inhibit translation via partially complementary base-pairing to 3' untranslated regions (UTRs) and are generally ineffective when targeting coding regions of a transcript. In this study, we deliberately designed siRNAs that simultaneously direct cleavage and translational suppression of HIV RNAs, or cleavage of the mRNA encoding the HIV coreceptor CCR5 and suppression of translation of HIV. These bifunctional siRNAs trigger inhibition of HIV infection and replication in cell culture. The design principles have wide applications throughout the genome, as about 90% of genes harbor sites that make the design of bifunctional siRNAs possible.

  20. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes

    DEFF Research Database (Denmark)

    Pantano, Lorena; Jodar, Meritxell; Bak, Mads

    2015-01-01

    -specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed...... into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource...... for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline....

  1. MicroRNAs in Amoebozoa: deep sequencing of the small RNA population in the social amoeba Dictyostelium discoideum reveals developmentally regulated microRNAs.

    Science.gov (United States)

    Avesson, Lotta; Reimegård, Johan; Wagner, E Gerhart H; Söderbom, Fredrik

    2012-10-01

    The RNA interference machinery has served as a guardian of eukaryotic genomes since the divergence from prokaryotes. Although the basic components have a shared origin, silencing pathways directed by small RNAs have evolved in diverse directions in different eukaryotic lineages. Micro (mi)RNAs regulate protein-coding genes and play vital roles in plants and animals, but less is known about their functions in other organisms. Here, we report, for the first time, deep sequencing of small RNAs from the social amoeba Dictyostelium discoideum. RNA from growing single-cell amoebae as well as from two multicellular developmental stages was sequenced. Computational analyses combined with experimental data reveal the expression of miRNAs, several of them exhibiting distinct expression patterns during development. To our knowledge, this is the first report of miRNAs in the Amoebozoa supergroup. We also show that overexpressed miRNA precursors generate miRNAs and, in most cases, miRNA* sequences, whose biogenesis is dependent on the Dicer-like protein DrnB, further supporting the presence of miRNAs in D. discoideum. In addition, we find miRNAs processed from hairpin structures originating from an intron as well as from a class of repetitive elements. We believe that these repetitive elements are sources for newly evolved miRNAs.

  2. Grazing Affects Exosomal Circulating MicroRNAs in Cattle

    Science.gov (United States)

    Muroya, Susumu; Ogasawara, Hideki; Hojito, Masayuki

    2015-01-01

    Circulating microRNAs (c-miRNAs) are associated with physiological adaptation to acute and chronic aerobic exercise in humans. To investigate the potential effect of grazing movement on miRNA circulation in cattle, here we profiled miRNA expression in centrifugally prepared exosomes from the plasma of both grazing and housed Japanese Shorthorn cattle. Microarray analysis of the c-miRNAs resulted in detection of a total of 231 bovine exosomal miRNAs in the plasma, with a constant expression level of let-7g across the duration and cattle groups. Expression of muscle-specific miRNAs such as miR-1, miR-133a, miR-206, miR-208a/b, and miR-499 were undetectable, suggesting the mildness of grazing movement as exercise. According to validation by quantitative RT-PCR, the circulating miR-150 level in the grazing cattle normalized by the endogenous let-7g level was down-regulated after 2 and 4 months of grazing (P cattle equalized when the grazing cattle were returned to a housed situation. Likewise, the levels of miR-19b, miR-148a, miR-221, miR-223, miR-320a, miR-361, and miR-486 were temporarily lowered in the cattle at 1 and/or 2 month of grazing compared to those of the housed cattle (P cattle at 2 months of grazing (P = 0.044). The elevation of miR-451 level in the plasma was coincident with that in the biceps femoris muscle of the grazing cattle (P = 0.008), which suggests the secretion or intake of miR-451 between skeletal muscle cells and circulation during grazing. These results revealed that exosomal c-miRNAs in cattle were affected by grazing, suggesting their usefulness as molecular grazing markers and functions in physiological adaptation of grazing cattle associated with endocytosis, focal adhesion, axon guidance, and a variety of intracellular signaling, as predicted by bioinformatic analysis. PMID:26308447

  3. Experimental identification and analysis of macronuclear non-coding RNAs from the ciliate Tetrahymena thermophila

    DEFF Research Database (Denmark)

    Andersen, Kasper Langebjerg; Nielsen, Henrik

    2012-01-01

    expressed during vegetative growth or sexual reorganization. In order to get an overview of medium-sized (40-500¿nt) RNAs expressed from the Tetrahymena genome, we created a size-fractionated cDNA library from macronuclear RNA and analyzed 80 RNAs, most of which were previously unknown. The most abundant...... class was small nucleolar RNAs (snoRNAs), many of which are formed by an unusual maturation pathway. The modifications guided by the snoRNAs were analyzed bioinformatically and experimentally and many Tetrahymena-specific modifications were found, including several in an essential, but not conserved...

  4. Expression and Localization of microRNAs in Perinatal Rat Pancreas

    DEFF Research Database (Denmark)

    Larsen, Louise; Rosenstierne, Maiken Worsøe; Gaarn, Louise Winkel

    2011-01-01

    OBJECTIVE: To investigate the expression of pancreatic microRNAs (miRNAs) during the period of perinatal beta-cell expansion and maturation in rats, determine the localization of these miRNAs and perform a pathway analysis with predicted target mRNAs expressed in perinatal pancreas. RESEARCH DESIGN...... AND METHODS: RNA was extracted from whole pancreas at embryonic day 20 (E20), on the day of birth (P0) and two days after birth (P2) and hybridized to miRNA microarrays. Differentially expressed miRNAs were verified by northern blotting and their pancreatic localization determined by in situ hybridization...

  5. Identification of Novel Long Non-coding and Circular RNAs in Human Papillomavirus-Mediated Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Hongbo Wang

    2017-09-01

    Full Text Available Cervical cancer is the third most common cancer worldwide and the fourth leading cause of cancer-associated mortality in women. Accumulating evidence indicates that long non-coding RNAs (lncRNAs and circular RNAs (circRNAs may play key roles in the carcinogenesis of different cancers; however, little is known about the mechanisms of lncRNAs and circRNAs in the progression and metastasis of cervical cancer. In this study, we explored the expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs in HPV16 (human papillomavirus genotype 16 mediated cervical squamous cell carcinoma and matched adjacent non-tumor (ATN tissues from three patients with high-throughput RNA sequencing (RNA-seq. In total, we identified 19 lncRNAs, 99 circRNAs, 28 miRNAs, and 304 mRNAs that were commonly differentially expressed (DE in different patients. Among the non-coding RNAs, 3 lncRNAs and 44 circRNAs are novel to our knowledge. Functional enrichment analysis showed that DE lncRNAs, miRNAs, and mRNAs were enriched in pathways crucial to cancer as well as other gene ontology (GO terms. Furthermore, the co-expression network and function prediction suggested that all 19 DE lncRNAs could play different roles in the carcinogenesis and development of cervical cancer. The competing endogenous RNA (ceRNA network based on DE coding and non-coding RNAs showed that each miRNA targeted a number of lncRNAs and circRNAs. The link between part of the miRNAs in the network and cervical cancer has been validated in previous studies, and these miRNAs targeted the majority of the novel non-coding RNAs, thus suggesting that these novel non-coding RNAs may be involved in cervical cancer. Taken together, our study shows that DE non-coding RNAs could be further developed as diagnostic and therapeutic biomarkers of cervical cancer. The complex ceRNA network also lays the foundation for future research of the roles of coding and non-coding RNAs in cervical cancer.

  6. Identification of Novel Long Non-coding and Circular RNAs in Human Papillomavirus-Mediated Cervical Cancer

    Science.gov (United States)

    Wang, Hongbo; Zhao, Yingchao; Chen, Mingyue; Cui, Jie

    2017-01-01

    Cervical cancer is the third most common cancer worldwide and the fourth leading cause of cancer-associated mortality in women. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) may play key roles in the carcinogenesis of different cancers; however, little is known about the mechanisms of lncRNAs and circRNAs in the progression and metastasis of cervical cancer. In this study, we explored the expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs in HPV16 (human papillomavirus genotype 16) mediated cervical squamous cell carcinoma and matched adjacent non-tumor (ATN) tissues from three patients with high-throughput RNA sequencing (RNA-seq). In total, we identified 19 lncRNAs, 99 circRNAs, 28 miRNAs, and 304 mRNAs that were commonly differentially expressed (DE) in different patients. Among the non-coding RNAs, 3 lncRNAs and 44 circRNAs are novel to our knowledge. Functional enrichment analysis showed that DE lncRNAs, miRNAs, and mRNAs were enriched in pathways crucial to cancer as well as other gene ontology (GO) terms. Furthermore, the co-expression network and function prediction suggested that all 19 DE lncRNAs could play different roles in the carcinogenesis and development of cervical cancer. The competing endogenous RNA (ceRNA) network based on DE coding and non-coding RNAs showed that each miRNA targeted a number of lncRNAs and circRNAs. The link between part of the miRNAs in the network and cervical cancer has been validated in previous studies, and these miRNAs targeted the majority of the novel non-coding RNAs, thus suggesting that these novel non-coding RNAs may be involved in cervical cancer. Taken together, our study shows that DE non-coding RNAs could be further developed as diagnostic and therapeutic biomarkers of cervical cancer. The complex ceRNA network also lays the foundation for future research of the roles of coding and non-coding RNAs in cervical cancer. PMID:28970820

  7. LncRNAWiki: harnessing community knowledge in collaborative curation of human long non-coding RNAs

    KAUST Repository

    Ma, L.

    2014-11-15

    Long non-coding RNAs (lncRNAs) perform a diversity of functions in numerous important biological processes and are implicated in many human diseases. In this report we present lncRNAWiki (http://lncrna.big.ac.cn), a wiki-based platform that is open-content and publicly editable and aimed at community-based curation and collection of information on human lncRNAs. Current related databases are dependent primarily on curation by experts, making it laborious to annotate the exponentially accumulated information on lncRNAs, which inevitably requires collective efforts in community-based curation of lncRNAs. Unlike existing databases, lncRNAWiki features comprehensive integration of information on human lncRNAs obtained from multiple different resources and allows not only existing lncRNAs to be edited, updated and curated by different users but also the addition of newly identified lncRNAs by any user. It harnesses community collective knowledge in collecting, editing and annotating human lncRNAs and rewards community-curated efforts by providing explicit authorship based on quantified contributions. LncRNAWiki relies on the underling knowledge of scientific community for collective and collaborative curation of human lncRNAs and thus has the potential to serve as an up-to-date and comprehensive knowledgebase for human lncRNAs.

  8. The roles of non-coding RNAs in cardiac regenerative medicine

    Directory of Open Access Journals (Sweden)

    Oi Kuan Choong

    2017-06-01

    Full Text Available The emergence of non-coding RNAs (ncRNAs has challenged the central dogma of molecular biology that dictates that the decryption of genetic information starts from transcription of DNA to RNA, with subsequent translation into a protein. Large numbers of ncRNAs with biological significance have now been identified, suggesting that ncRNAs are important in their own right and their roles extend far beyond what was originally envisaged. ncRNAs do not only regulate gene expression, but are also involved in chromatin architecture and structural conformation. Several studies have pointed out that ncRNAs participate in heart disease; however, the functions of ncRNAs still remain unclear. ncRNAs are involved in cellular fate, differentiation, proliferation and tissue regeneration, hinting at their potential therapeutic applications. Here, we review the current understanding of both the biological functions and molecular mechanisms of ncRNAs in heart disease and describe some of the ncRNAs that have potential heart regeneration effects. Keywords: Non-coding RNAs, Cardiac regeneration, Cardiac fate, Proliferation, Differentiation, Reprograming

  9. Identification and characteristics of microRNAs from army worm, Spodoptera frugiperda cell line Sf21.

    Science.gov (United States)

    Kakumani, Pavan Kumar; Chinnappan, Mahendran; Singh, Ashok K; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K

    2015-01-01

    microRNAs play important regulatory role in all intrinsic cellular functions. Amongst lepidopteran insects, miRNAs from only Bombyx mori have been studied extensively with a little focus on Spodoptera sp. In the present study, we identified a total of 226 miRNAs from Spodoptera frugiperda cell line Sf21. Of the total, 116 miRNAs were well conserved within other insects, like B. mori, Drosophila melanogaster and Tribolium castenum while the remaining 110 miRNAs were identified as novel based on comparative analysis with the insect miRNA data set. Landscape distribution analysis based on Sf21 genome assembly revealed clustering of few novel miRNAs. A total of 5 miRNA clusters were identified and the largest one encodes 5 miRNA genes. In addition, 12 miRNAs were validated using northern blot analysis and putative functional role assignment for 6 Sf miRNAs was investigated by examining their relative abundance at different developmental stages of Spodoptera litura and body parts of 6th instar larvae. Further, we identified a total of 809 potential target genes with GO terms for selected miRNAs, involved in different metabolic and signalling pathways of the insect. The newly identified miRNAs greatly enrich the repertoire of insect miRNAs and analysis of expression profiles reveal their involvement at various steps of biochemical pathways of the army worm.

  10. Identification of microRNA-Like RNAs in the filamentous fungus Trichoderma reesei by solexa sequencing.

    Directory of Open Access Journals (Sweden)

    Kang Kang

    Full Text Available microRNAs (miRNAs are non-coding small RNAs (sRNAs capable of negatively regulating gene expression. Recently, microRNA-like small RNAs (milRNAs were discovered in several filamentous fungi but not yet in Trichoderma reesei, an industrial filamentous fungus that can secrete abundant hydrolases. To explore the presence of milRNA in T. reesei and evaluate their expression under induction of cellulose, two T. reesei sRNA libraries of cellulose induction (IN and non-induction (CON were generated and sequenced using Solexa sequencing technology. A total of 726 and 631 sRNAs were obtained from the IN and CON samples, respectively. Global expression analysis showed an extensively differential expression of sRNAs in T. reesei under the two conditions. Thirteen predicted milRNAs were identified in T. reesei based on the short hairpin structure analysis. The milRNA profiles obtained in deep sequencing were further validated by RT-qPCR assay. Computational analysis predicted a number of potential targets relating to many processes including regulation of enzyme expression. The presence and differential expression of T. reesei milRNAs imply that milRNA might play a role in T. reesei growth and cellulase induction. This work lays foundation for further functional study of fungal milRNAs and their industrial application.

  11. New Insight into Inter-kingdom Communication: Horizontal Transfer of Mobile Small RNAs.

    Science.gov (United States)

    Zhou, Geyu; Zhou, Yu; Chen, Xi

    2017-01-01

    Small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs), are conventionally regarded as critical molecular regulators of various intracellular processes. However, recent accumulating evidence indicates that sRNAs can be transferred within cells and tissues and even across species. In plants, nematodes and microbes, these mobile sRNAs can mediate inter-kingdom communication, environmental sensing, gene expression regulation, host-parasite defense and many other biological functions. Strikingly, a recent study by our group suggested that ingested plant miRNAs are transferred to blood, accumulate in tissues and regulate transcripts in consuming animals. While our and other independent groups' subsequent studies further explored the emerging field of sRNA-mediated crosstalk between species, some groups reported negative results and questioned its general applicability. Thus, further studies carefully evaluating the horizontal transfer of exogenous sRNAs and its potential biological functions are urgently required. Here, we review the current state of knowledge in the field of the horizontal transfer of mobile sRNAs, suggest its future directions and key points for examination and discuss its potential mechanisms and application prospects in nutrition, agriculture and medicine.

  12. Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles.

    Science.gov (United States)

    Caswell, Clayton C; Oglesby-Sherrouse, Amanda G; Murphy, Erin R

    2014-01-01

    Small RNA molecules (sRNAs) are now recognized as key regulators controlling bacterial gene expression, as sRNAs provide a quick and efficient means of positively or negatively altering the expression of specific genes. To date, numerous sRNAs have been identified and characterized in a myriad of bacterial species, but more recently, a theme in bacterial sRNAs has emerged: the presence of more than one highly related sRNAs produced by a given bacterium, here termed sibling sRNAs. Sibling sRNAs are those that are highly similar at the nucleotide level, and while it might be expected that sibling sRNAs exert identical regulatory functions on the expression of target genes based on their high degree of relatedness, emerging evidence is demonstrating that this is not always the case. Indeed, there are several examples of bacterial sibling sRNAs with non-redundant regulatory functions, but there are also instances of apparent regulatory redundancy between sibling sRNAs. This review provides a comprehensive overview of the current knowledge of bacterial sibling sRNAs, and also discusses important questions about the significance and evolutionary implications of this emerging class of regulators.

  13. Sibling rivalry: Related bacterial small RNAs and their redundant and non-redundant roles

    Directory of Open Access Journals (Sweden)

    Clayton eCaswell

    2014-10-01

    Full Text Available Small RNA molecules (sRNAs are now recognized as key regulators controlling bacterial gene expression, as sRNAs provide a quick and efficient means of positively or negatively altering the expression of specific genes. To date, numerous sRNAs have been identified and characterized in a myriad of bacterial species, but more recently, a theme in bacterial sRNAs has emerged: the presence of more than one highly related sRNAs produced by a given bacterium, here termed sibling sRNAs. Sibling sRNAs are those that are highly similar at the nucleotide level, and while it might be expected that sibling sRNAs exert identical regulatory functions on the expression of target genes based on their high degree of relatedness, emerging evidence is demonstrating that this is not always the case. Indeed, there are several examples of bacterial sibling sRNAs with non-redundant regulatory functions, but there are also instances of apparent regulatory redundancy between sibling sRNAs. This review provides a comprehensive overview of the current knowledge of bacterial sibling sRNAs, and also discusses important questions about the significance and evolutionary implications of this emerging class of regulators.

  14. New Insight into Inter-kingdom Communication: Horizontal Transfer of Mobile Small RNAs

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2017-05-01

    Full Text Available Small RNAs (sRNAs, including small interfering RNAs (siRNAs and microRNAs (miRNAs, are conventionally regarded as critical molecular regulators of various intracellular processes. However, recent accumulating evidence indicates that sRNAs can be transferred within cells and tissues and even across species. In plants, nematodes and microbes, these mobile sRNAs can mediate inter-kingdom communication, environmental sensing, gene expression regulation, host-parasite defense and many other biological functions. Strikingly, a recent study by our group suggested that ingested plant miRNAs are transferred to blood, accumulate in tissues and regulate transcripts in consuming animals. While our and other independent groups’ subsequent studies further explored the emerging field of sRNA-mediated crosstalk between species, some groups reported negative results and questioned its general applicability. Thus, further studies carefully evaluating the horizontal transfer of exogenous sRNAs and its potential biological functions are urgently required. Here, we review the current state of knowledge in the field of the horizontal transfer of mobile sRNAs, suggest its future directions and key points for examination and discuss its potential mechanisms and application prospects in nutrition, agriculture and medicine.

  15. An update on the microRNAs and their targets in unicellular red alga porphyridium cruentum

    International Nuclear Information System (INIS)

    Barozai, M.Y.K.

    2018-01-01

    MicroRNAs (miRNAs) are small, non-coding and regulatory RNAs about approx 21 nucleotides in length. The miRNAs are reported in large number of higher eukaryotic plant species. But very little data of miRNAs in algae is available. Porphyridium cruentum is unicellular red alga famous as a source for polyunsaturated fatty acids, proteins and polysaccharide contents. The present study is aimed to update the microRNAs and their targets in this important algal species. A comparative genomics approach was applied to update the miRNAs in P. cruentum. This effort resulted in a total of 49 miRNAs belonging to 46 families in P. cruentum. Their precursor-miRNAs were observed with a range of 40 to 351 nucleotides (nt). The mature miRNA sequences showed a range of 17-24 nts. The minimum free energies by stem loop structures of these miRNAs are found with an average of -32 Kcalmol-1. A total of 13 targets, including important proteins like; Ribulose-1,5-bisphosphate carboxylase oxygenase, Light-harvesting complex I, Oxygen-evolving enhancer protein, Phycobiliproteins, Granule-bound starch synthase and Carbonic anhydrase were also predicted for these miRNAs. (author)

  16. MicroRNAs in Coronary Heart Disease: Ready to Enter the Clinical Arena?

    Directory of Open Access Journals (Sweden)

    Elena Cavarretta

    2016-01-01

    Full Text Available Coronary artery disease (CAD and its complication remain the leading cause of mortality in industrialized countries despite great advances in terms of diagnosis, prognosis, and treatment options. MicroRNAs (miRNAs, small noncoding RNAs, act as posttranscriptional gene expression modulators and have been implicated as key regulators in several physiological and pathological processes linked to CAD. Circulating miRNAs have been evaluated as promising novel biomarkers of CAD, acute coronary syndromes, and acute myocardial infarction, with prognostic implications. Several challenges related to technical aspects, miRNAs normalization, drugs interaction, and quality reporting of statistical multivariable analysis of the miRNAs observational studies remain unresolved. MicroRNA-based therapies in cardiovascular diseases are not ready yet for human trials but definitely appealing. Through this review we will provide clinicians with a concise overview of the pros and cons of microRNAs.

  17. Implications of microRNAs in Colorectal Cancer Development, Diagnosis, Prognosis and Therapeutics

    Directory of Open Access Journals (Sweden)

    Haiyan eZhai

    2011-11-01

    Full Text Available MicroRNAs (miRNAs are a class of non-coding small RNAs with critical regulatory functions as post-transcriptional regulators. Due to the fundamental importance and broad impact of miRNAs on multiple genes and pathways, dysregulated miRNAs have been associated with human diseases, including cancer. Colorectal cancer (CRC is among the most deadly diseases, and miRNAs offer a new frontier for target discovery and novel biomarkers for both diagnosis and prognosis. In this review, we summarize the recent advancement of miRNA research in CRC, in particular, the roles of miRNAs in colorectal cancer stem cells, EMT, chemoresistance, therapeutics, diagnosis and prognosis.

  18. New technologies accelerate the exploration of non-coding RNAs in horticultural plants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Degao; Mewalal, Ritesh; Hu, Rongbin; Tuskan, Gerald A.; Yang, Xiaohan

    2017-07-05

    Non-coding RNAs (ncRNAs), that is, RNAs not translated into proteins, are crucial regulators of a variety of biological processes in plants. While protein-encoding genes have been relatively well-annotated in sequenced genomes, accounting for a small portion of the genome space in plants, the universe of plant ncRNAs is rapidly expanding. Recent advances in experimental and computational technologies have generated a great momentum for discovery and functional characterization of ncRNAs. Here we summarize the classification and known biological functions of plant ncRNAs, review the application of next-generation sequencing (NGS) technology and ribosome profiling technology to ncRNA discovery in horticultural plants and discuss the application of new technologies, especially the new genome-editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems, to functional characterization of plant ncRNAs.

  19. MicroRNAs in prostate cancer: Functional role as biomarkers.

    Science.gov (United States)

    Kanwal, Rajnee; Plaga, Alexis R; Liu, Xiaoqi; Shukla, Girish C; Gupta, Sanjay

    2017-10-28

    MicroRNAs (miRNAs) are small endogenous non-coding molecules that alters gene expression through post-transcriptional regulation of messenger RNA. Compelling evidence suggest the role of miRNA in cancer biology having potential as diagnostic, prognostic and predictive biomarkers. This review summarizes the current knowledge on miRNA deregulated in prostate cancer and their role as oncogene, tumor suppressor and metastasis regulators. The emerging information elucidating the biological function of miRNA is promising and may lead to their potential usefulness as diagnostic/prognostic markers and development as effective therapeutic tools for management of prostate cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Uncovering growth-suppressive MicroRNAs in lung cancer

    DEFF Research Database (Denmark)

    Liu, Xi; Sempere, Lorenzo F; Galimberti, Fabrizio

    2009-01-01

    PURPOSE: MicroRNA (miRNA) expression profiles improve classification, diagnosis, and prognostic information of malignancies, including lung cancer. This study uncovered unique growth-suppressive miRNAs in lung cancer. EXPERIMENTAL DESIGN: miRNA arrays were done on normal lung tissues...... and adenocarcinomas from wild-type and proteasome degradation-resistant cyclin E transgenic mice to reveal repressed miRNAs in lung cancer. Real-time and semiquantitative reverse transcription-PCR as well as in situ hybridization assays validated these findings. Lung cancer cell lines were derived from each......-malignant human lung tissue bank. RESULTS: miR-34c, miR-145, and miR-142-5p were repressed in transgenic lung cancers. Findings were confirmed by real-time and semiquantitative reverse transcription-PCR as well as in situ hybridization assays. Similar miRNA profiles occurred in human normal versus malignant lung...

  1. The 5S ribosomal RNAs of Paracoccus denitrificans and Prochloron

    Science.gov (United States)

    Mackay, R. M.; Salgado, D.; Bonen, L.; Doolittle, W. F.; Stackebrandt, E.

    1982-01-01

    The nucleotide sequences of the 5S rRNAs of Paracoccus denitrificans and Prochloron sp. are presented, along with the demonstrated phylogenetic relationships of P. denitrificans with purple nonsulfur bacteria, and of Prochloron with cyanobacteria. Structural findings include the following: (1) helix II in both models is much shorter than in other eubacteria, (2) a base-pair has been deleted from helix IV of P. denitrificans 5S, and (3) Prochloron 5S has the potential to form four base-pairs between residues. Also covered are the differences between pairs of sequences in P. denitrificans, Prochloron, wheat mitochondion, spinach chloroplast, and nine diverse eubacteria. Findings include the observation that Prochloron 5S rRNA is much more similar to the 5S of the cyanobacterium Anacystis nidulans (25 percent difference) than either are to any of the other nine eubacterial 5S rRNAs.

  2. Cap-independent translation of plant viral RNAs.

    Science.gov (United States)

    Kneller, Elizabeth L Pettit; Rakotondrafara, Aurélie M; Miller, W Allen

    2006-07-01

    The RNAs of many plant viruses lack a 5' cap and must be translated by a cap-independent mechanism. Here, we discuss the remarkably diverse cap-independent translation elements that have been identified in members of the Potyviridae, Luteoviridae, and Tombusviridae families, and genus Tobamovirus. Many other plant viruses have uncapped RNAs but their translation control elements are uncharacterized. Cap-independent translation elements of plant viruses differ strikingly from those of animal viruses: they are smaller (translation factors, and speculate on their mechanism of action and their roles in the virus replication cycle. Much remains to be learned about how these elements enable plant viruses to usurp the host translational machinery.

  3. tRNAs: cellular barcodes for amino acids

    DEFF Research Database (Denmark)

    Banerjee, Rajat; Chen, Shawn; Dare, Kiley

    2010-01-01

    The role of tRNA in translating the genetic code has received considerable attention over the last 50 years, and we now know in great detail how particular amino acids are specifically selected and brought to the ribosome in response to the corresponding mRNA codon. Over the same period, it has...... also become increasingly clear that the ribosome is not the only destination to which tRNAs deliver amino acids, with processes ranging from lipid modification to antibiotic biosynthesis all using aminoacyl-tRNAs as substrates. Here we review examples of alternative functions for tRNA beyond...... translation, which together suggest that the role of tRNA is to deliver amino acids for a variety of processes that includes, but is not limited to, protein synthesis....

  4. MicroRNAs in Testicular Cancer Diagnosis and Prognosis.

    Science.gov (United States)

    Ling, Hui; Krassnig, Lisa; Bullock, Marc D; Pichler, Martin

    2016-02-01

    Testicular cancer processes a unique and clear miRNA expression signature. This differentiates testicular cancer from most other cancer types, which are usually more ambiguous when assigning miRNA patterns. As such, testicular cancer may represent a unique cancer type in which miRNAs find their use as biomarkers for cancer diagnosis and prognosis, with a potential to surpass the current available markers usually with low sensitivity. In this review, we present literature findings on miRNAs associated with testicular cancer, and discuss their potential diagnostic and prognostic values, as well as their potential as indicators of drug response in patients with testicular cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Circulating microRNAs as a Fingerprint for Liver Cirrhosis.

    Directory of Open Access Journals (Sweden)

    Yan-Jie Chen

    Full Text Available Sensitive and specific detection of liver cirrhosis is an urgent need for optimal individualized management of disease activity. Substantial studies have identified circulation miRNAs as biomarkers for diverse diseases including chronic liver diseases. In this study, we investigated the plasma miRNA signature to serve as a potential diagnostic biomarker for silent liver cirrhosis.A genome-wide miRNA microarray was first performed in 80 plasma specimens. Six candidate miRNAs were selected and then trained in CHB-related cirrhosis and controls by qPCR. A classifier, miR-106b and miR-181b, was validated finally in two independent cohorts including CHB-related silent cirrhosis and controls, as well as non-CHB-related cirrhosis and controls as validation sets, respectively.A profile of 2 miRNAs (miR-106b and miR-181b was identified as liver cirrhosis biomarkers irrespective of etiology. The classifier constructed by the two miRNAs provided a high diagnostic accuracy for cirrhosis (AUC = 0.882 for CHB-related cirrhosis in the training set, 0.774 for CHB-related silent cirrhosis in one validation set, and 0.915 for non-CHB-related cirrhosis in another validation set.Our study demonstrated that the combined detection of miR-106b and miR-181b has a considerable clinical value to diagnose patients with liver cirrhosis, especially those at early stage.

  6. Computational analysis of human miRNAs phylogenetics

    African Journals Online (AJOL)

    User

    2011-05-02

    May 2, 2011 ... Human DNA. 71. 100.00. 1.94E-28. AL138714. Human DNA sequence from clone RP11-. 121J7 on chromosome 13q32.1-32.3. Contains the 3' end of a novel gene, the 5' end of the GPC5 gene for glypican 5, 5 ..... including human, chimpanzee, orangutan, and macaque, and find that miRNAs were ...

  7. Protein synthesis directed by cowpea mosaic virus RNAs

    International Nuclear Information System (INIS)

    Stuik, E.

    1979-01-01

    The thesis concerns the proteins synthesized under direction of Cowpea mosaic virus RNAs. Sufficient radioactive labelling of proteins was achieved when 35 S as sulphate was administered to intact Vigna plants, cultivated in Hoagland solution. The large polypeptides synthesized under direction of B- and M-RNA are probably precursor molecules from which the coat proteins are generated by a mechanism of posttranslational cleavage. (Auth.)

  8. Functional miRNAs in breast cancer drug resistance

    Directory of Open Access Journals (Sweden)

    Hu WZ

    2018-03-01

    Full Text Available Weizi Hu,1–3,* Chunli Tan,1–3,* Yunjie He,4 Guangqin Zhang,2 Yong Xu,3,5 Jinhai Tang1 1Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 2School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 3Nanjing Medical University Affiliated Cancer Hospital, 4The First Clinical School of Nanjing Medical University, 5Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: Owing to improved early surveillance and advanced therapy strategies, the current death rate due to breast cancer has decreased; nevertheless, drug resistance and relapse remain obstacles on the path to successful systematic treatment. Multiple mechanisms responsible for drug resistance have been elucidated, and miRNAs seem to play a major part in almost every aspect of cancer progression, including tumorigenesis, metastasis, and drug resistance. In recent years, exosomes have emerged as novel modes of intercellular signaling vehicles, initiating cell–cell communication through their fusion with target cell membranes, delivering functional molecules including miRNAs and proteins. This review particularly focuses on enumerating functional miRNAs involved in breast cancer drug resistance as well as their targets and related mechanisms. Subsequently, we discuss the prospects and challenges of miRNA function in drug resistance and highlight valuable approaches for the investigation of the role of exosomal miRNAs in breast cancer progression and drug resistance. Keywords: microRNA, exosome, breast cancer, drug resistance

  9. Extracellular RNAs: development as biomarkers of human disease

    Directory of Open Access Journals (Sweden)

    Joseph F. Quinn

    2015-08-01

    Full Text Available Ten ongoing studies designed to test the possibility that extracellular RNAs may serve as biomarkers in human disease are described. These studies, funded by the NIH Common Fund Extracellular RNA Communication Program, examine diverse extracellular body fluids, including plasma, serum, urine and cerebrospinal fluid. The disorders studied include hepatic and gastric cancer, cardiovascular disease, chronic kidney disease, neurodegenerative disease, brain tumours, intracranial haemorrhage, multiple sclerosis and placental disorders. Progress to date and the plans for future studies are outlined.

  10. Plasma EBV microRNAs in paediatric renal transplant recipients.

    Science.gov (United States)

    Hassan, Jaythoon; Dean, Jonathan; De Gascun, Cillian F; Riordan, Michael; Sweeney, Clodagh; Connell, Jeff; Awan, Atif

    2018-06-01

    Epstein-Barr virus (EBV) was the first human virus identified to express microRNA (miRNA). To date, 44 mature miRNAs are encoded for within the EBV genome. EBV miRNAs have not been profiled in paediatric renal transplant recipients. In this study, we investigated circulating EBV miRNA profiles as novel biomarkers in paediatric renal transplant patients. Forty-two microRNAs encoded within 2 EBV open reading frames (BART and BHRF) were examined in renal transplant recipients who resolved EBV infection (REI) or maintained chronic high viral loads (CHL), and in non-transplant patients with acute infectious mononucleosis (IM). Plasma EBV-miR-BART2-5p was present in higher numbers of IM (7/8) and CHL (7/10) compared to REI (7/12) patients. A trend was observed between the numbers of plasma EBV miRNAs expressed and EBV viral load (p < 0.07). Several EBV-miRs including BART7-3p, 15, 9-3p, 11-3p, 1-3p and 3-3p were detected in IM and CHL patients only. The lytic EBV-miRs, BHRF1-2-3p and 1-1, indicating active viral replication, were detected in IM patients only. One CHL patient developed post-transplant lymphoproliferative disease (PTLD) after several years and analysis of 10 samples over a 30-month period showed an average 24-fold higher change in plasma EBV-miR-BART2-5p compared to the CHL group and 110-fold higher change compared to the REI group. Our results suggest that EBV-miR-BART2-5p, which targets the stress-induced immune ligand MICB to escape recognition and elimination by NK cells, may have a role in sustaining high EBV viral loads in CHL paediatric kidney transplant recipients.

  11. Regulation of Corticosteroidogenic Genes by MicroRNAs

    Directory of Open Access Journals (Sweden)

    Stacy Robertson

    2017-01-01

    Full Text Available The loss of normal regulation of corticosteroid secretion is important in the development of cardiovascular disease. We previously showed that microRNAs regulate the terminal stages of corticosteroid biosynthesis. Here, we assess microRNA regulation across the whole corticosteroid pathway. Knockdown of microRNA using Dicer1 siRNA in H295R adrenocortical cells increased levels of CYP11A1, CYP21A1, and CYP17A1 mRNA and the secretion of cortisol, corticosterone, 11-deoxycorticosterone, 18-hydroxycorticosterone, and aldosterone. Bioinformatic analysis of genes involved in corticosteroid biosynthesis or metabolism identified many putative microRNA-binding sites, and some were selected for further study. Manipulation of individual microRNA levels demonstrated a direct effect of miR-125a-5p and miR-125b-5p on CYP11B2 and of miR-320a-3p levels on CYP11A1 and CYP17A1 mRNA. Finally, comparison of microRNA expression profiles from human aldosterone-producing adenoma and normal adrenal tissue showed levels of various microRNAs, including miR-125a-5p to be significantly different. This study demonstrates that corticosteroidogenesis is regulated at multiple points by several microRNAs and that certain of these microRNAs are differentially expressed in tumorous adrenal tissue, which may contribute to dysregulation of corticosteroid secretion. These findings provide new insights into the regulation of corticosteroid production and have implications for understanding the pathology of disease states where abnormal hormone secretion is a feature.

  12. In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce.

    Science.gov (United States)

    Yakovlev, Igor A; Fossdal, Carl G

    2017-01-01

    Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs) and other small non-coding RNAs (sRNAs) play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C). We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21-22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21-22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM) depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be involved in epigenetic

  13. In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce

    Directory of Open Access Journals (Sweden)

    Igor A. Yakovlev

    2017-09-01

    Full Text Available Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs and other small non-coding RNAs (sRNAs play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C. We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21–22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21–22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be

  14. Small RNA Sequencing Uncovers New miRNAs and moRNAs Differentially Expressed in Normal and Primary Myelofibrosis CD34+ Cells.

    Directory of Open Access Journals (Sweden)

    Paola Guglielmelli

    Full Text Available Myeloproliferative neoplasms (MPN are chronic myeloid cancers thought to arise at the level of CD34+ hematopoietic stem/progenitor cells. They include essential thrombocythemia (ET, polycythemia vera (PV and primary myelofibrosis (PMF. All can progress to acute leukemia, but PMF carries the worst prognosis. Increasing evidences indicate that deregulation of microRNAs (miRNAs might plays an important role in hematologic malignancies, including MPN. To attain deeper knowledge of short RNAs (sRNAs expression pattern in CD34+ cells and of their possible role in mediating post-transcriptional regulation in PMF, we sequenced with Illumina HiSeq2000 technology CD34+ cells from healthy subjects and PMF patients. We detected the expression of 784 known miRNAs, with a prevalence of miRNA up-regulation in PMF samples, and discovered 34 new miRNAs and 99 new miRNA-offset RNAs (moRNAs, in CD34+ cells. Thirty-seven small RNAs were differentially expressed in PMF patients compared with healthy subjects, according to microRNA sequencing data. Five miRNAs (miR-10b-5p, miR-19b-3p, miR-29a-3p, miR-379-5p, and miR-543 were deregulated also in PMF granulocytes. Moreover, 3'-moR-128-2 resulted consistently downregulated in PMF according to RNA-seq and qRT-PCR data both in CD34+ cells and granulocytes. Target predictions of these validated small RNAs de-regulated in PMF and functional enrichment analyses highlighted many interesting pathways involved in tumor development and progression, such as signaling by FGFR and DAP12 and Oncogene Induced Senescence. As a whole, data obtained in this study deepened the knowledge of miRNAs and moRNAs altered expression in PMF CD34+ cells and allowed to identify and validate a specific small RNA profile that distinguishes PMF granulocytes from those of normal subjects. We thus provided new information regarding the possible role of miRNAs and, specifically, of new moRNAs in this disease.

  15. Identification of microRNAs in Caragana intermedia by high-throughput sequencing and expression analysis of 12 microRNAs and their targets under salt stress.

    Science.gov (United States)

    Zhu, Jianfeng; Li, Wanfeng; Yang, Wenhua; Qi, Liwang; Han, Suying

    2013-09-01

    142 miRNAs were identified and 38 miRNA targets were predicted, 4 of which were validated, in C. intermedia . The expression of 12 miRNAs in salt-stressed leaves was assessed by qRT-PCR. MicroRNAs (miRNAs) are endogenous small RNAs that play important roles in various biological and metabolic processes in plants. Caragana intermedia is an important ecological and economic tree species prominent in the desert environment of west and northwest China. To date, no investigation into C. intermedia miRNAs has been reported. In this study, high-throughput sequencing of small RNAs and analysis of transcriptome data were performed to identify both conserved and novel miRNAs, and also their target mRNA genes in C. intermedia. Based on sequence similarity and hairpin structure prediction, 132 putative conserved miRNAs (12 of which were confirmed to form hairpin precursors) belonging to 31 known miRNA families were identified. Ten novel miRNAs (including the miRNA* sequences of three novel miRNAs) were also discovered. Furthermore, 36 potential target genes of 17 known miRNA families and 2 potential target genes of 1 novel miRNA were predicted; 4 of these were validated by 5' RACE. The expression of 12 miRNAs was validated in different tissues, and these and five target mRNAs were assessed by qRT-PCR after salt treatment. The expression levels of seven miRNAs (cin-miR157a, cin-miR159a, cin-miR165a, cin-miR167b, cin-miR172b, cin-miR390a and cin-miR396a) were upregulated, while cin-miR398a expression was downregulated after salt treatment. The targets of cin-miR157a, cin-miR165a, cin-miR172b and cin-miR396a were downregulated and showed an approximately negative correlation with their corresponding miRNAs under salt treatment. These results would help further understanding of miRNA regulation in response to abiotic stress in C. intermedia.

  16. One Step Forward, Two Steps Back; Xeno-MicroRNAs Reported in Breast Milk Are Artifacts.

    Directory of Open Access Journals (Sweden)

    Caner Bağcı

    Full Text Available MicroRNAs (miRNAs are short RNA sequences that guide post-transcriptional regulation of gene expression via complementarity to their target mRNAs. Discovered only recently, miRNAs have drawn a lot of attention. Multiple protein complexes interact to first cleave a hairpin from nascent RNA, export it into the cytosol, trim its loop, and incorporate it into the RISC complex which is important for binding its target mRNA. This process works within one cell, but circulating miRNAs have been described suggesting a role in cell-cell communication.Viruses and intracellular parasites like Toxoplasma gondii use miRNAs to manipulate host gene expression from within the cellular environment. However, recent research has claimed that a rice miRNA may regulate human gene expression. Despite ongoing debates about these findings and general reluctance to accept them, a recent report claimed that foodborne plant miRNAs pass through the digestive tract, travel through blood to be incorporated by alveolar cells excreting milk. The miRNAs are then said to have some immune-related function in the newborn.We acquired the data that supports their claim and performed further analyses. In addition to the reported miRNAs, we were able to detect almost complete mRNAs and found that the foreign RNA expression profiles among samples are exceedingly similar. Inspecting the source of the data helped understand how RNAs could contaminate the samples.Viewing these findings in context with the difficulties foreign RNAs face on their route into breast milk and the fact that many identified foodborne miRNAs are not from actual food sources, we can conclude beyond reasonable doubt that the original claims and evidence presented may be due to artifacts. We report that the study claiming their existence is more likely to have detected RNA contamination than miRNAs.

  17. Molecular Network-Based Identification of Competing Endogenous RNAs in Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Minjia Lu

    2018-01-01

    Full Text Available RNAs may act as competing endogenous RNAs (ceRNAs, a critical mechanism in determining gene expression regulations in many cancers. However, the roles of ceRNAs in thyroid carcinoma remains elusive. In this study, we have developed a novel pipeline called Molecular Network-based Identification of ceRNA (MNIceRNA to identify ceRNAs in thyroid carcinoma. MNIceRNA first constructs micro RNA (miRNA–messenger RNA (mRNAlong non-coding RNA (lncRNA networks from miRcode database and weighted correlation network analysis (WGCNA, based on which to identify key drivers of differentially expressed RNAs between normal and tumor samples. It then infers ceRNAs of the identified key drivers using the long non-coding competing endogenous database (lnCeDB. We applied the pipeline into The Cancer Genome Atlas (TCGA thyroid carcinoma data. As a result, 598 lncRNAs, 1025 mRNAs, and 90 microRNA (miRNAs were inferred to be differentially expressed between normal and thyroid cancer samples. We then obtained eight key driver miRNAs, among which hsa-mir-221 and hsa-mir-222 were key driver RNAs identified by both miRNA–mRNA–lncRNA and WGCNA network. In addition, hsa-mir-375 was inferred to be significant for patients’ survival with 34 associated ceRNAs, among which RUNX2, DUSP6 and SEMA3D are known oncogenes regulating cellular proliferation and differentiation in thyroid cancer. These ceRNAs are critical in revealing the secrets behind thyroid cancer progression and may serve as future therapeutic biomarkers.

  18. Evaluation of circulating miRNAs during late pregnancy in the mare.

    Directory of Open Access Journals (Sweden)

    Shavahn C Loux

    Full Text Available MicroRNAs (miRNAs are small, non-coding RNAs which are produced throughout the body. Individual tissues tend to have a specific expression profile and excrete many of these miRNAs into circulation. These circulating miRNAs may be diagnostically valuable biomarkers for assessing the presence of disease while minimizing invasive testing. In women, numerous circulating miRNAs have been identified which change significantly during pregnancy-related complications (e.g. chorioamnionitis, eclampsia, recurrent pregnancy loss; however, no prior work has been done in this area in the horse. To identify pregnancy-specific miRNAs, we collected serial whole blood samples in pregnant mares at 8, 9, 10 m of gestation and post-partum, as well as from non-pregnant (diestrous mares. In total, we evaluated a panel of 178 miRNAs using qPCR, eventually identifying five miRNAs of interest. One miRNA (miR-374b was differentially regulated through late gestation and four miRNAs (miR-454, miR-133b, miR-486-5p and miR-204b were differentially regulated between the pregnant and non-pregnant samples. We were able to identify putative targets for the differentially regulated miRNAs using two separate target prediction programs, miRDB and Ingenuity Pathway Analysis. The targets for the miRNAs differentially regulated during pregnancy were predicted to be involved in signaling pathways such as the STAT3 pathway and PI3/AKT signaling pathway, as well as more endocrine-based pathways, including the GnRH, prolactin and insulin signaling pathways. In summary, this study provides novel information about the changes occurring in circulating miRNAs during normal pregnancy, as well as attempting to predict the biological effects induced by these miRNAs.

  19. Identification of microRNAs from Eugenia uniflora by high-throughput sequencing and bioinformatics analysis.

    Science.gov (United States)

    Guzman, Frank; Almerão, Mauricio P; Körbes, Ana P; Loss-Morais, Guilherme; Margis, Rogerio

    2012-01-01

    microRNAs or miRNAs are small non-coding regulatory RNAs that play important functions in the regulation of gene expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. Eugenia uniflora is a plant native to tropical America with pharmacological and ecological importance, and there have been no previous studies concerning its gene expression and regulation. To date, no miRNAs have been reported in Myrtaceae species. Small RNA and RNA-seq libraries were constructed to identify miRNAs and pre-miRNAs in Eugenia uniflora. Solexa technology was used to perform high throughput sequencing of the library, and the data obtained were analyzed using bioinformatics tools. From 14,489,131 small RNA clean reads, we obtained 1,852,722 mature miRNA sequences representing 45 conserved families that have been identified in other plant species. Further analysis using contigs assembled from RNA-seq allowed the prediction of secondary structures of 25 known and 17 novel pre-miRNAs. The expression of twenty-seven identified miRNAs was also validated using RT-PCR assays. Potential targets were predicted for the most abundant mature miRNAs in the identified pre-miRNAs based on sequence homology. This study is the first large scale identification of miRNAs and their potential targets from a species of the Myrtaceae family without genomic sequence resources. Our study provides more information about the evolutionary conservation of the regulatory network of miRNAs in plants and highlights species-specific miRNAs.

  20. Genome-wide discovery of novel and conserved microRNAs in white shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Xi, Qian-Yun; Xiong, Yuan-Yan; Wang, Yuan-Mei; Cheng, Xiao; Qi, Qi-En; Shu, Gang; Wang, Song-Bo; Wang, Li-Na; Gao, Ping; Zhu, Xiao-Tong; Jiang, Qing-Yan; Zhang, Yong-Liang; Liu, Li

    2015-01-01

    Of late years, a large amount of conserved and species-specific microRNAs (miRNAs) have been performed on identification from species which are economically important but lack a full genome sequence. In this study, Solexa deep sequencing and cross-species miRNA microarray were used to detect miRNAs in white shrimp. We identified 239 conserved miRNAs, 14 miRNA* sequences and 20 novel miRNAs by bioinformatics analysis from 7,561,406 high-quality reads representing 325,370 distinct sequences. The all 20 novel miRNAs were species-specific in white shrimp and not homologous in other species. Using the conserved miRNAs from the miRBase database as a query set to search for homologs from shrimp expressed sequence tags (ESTs), 32 conserved computationally predicted miRNAs were discovered in shrimp. In addition, using microarray analysis in the shrimp fed with Panax ginseng polysaccharide complex, 151 conserved miRNAs were identified, 18 of which were significant up-expression, while 49 miRNAs were significant down-expression. In particular, qRT-PCR analysis was also performed for nine miRNAs in three shrimp tissues such as muscle, gill and hepatopancreas. Results showed that these miRNAs expression are tissue specific. Combining results of the three methods, we detected 20 novel and 394 conserved miRNAs. Verification with quantitative reverse transcription (qRT-PCR) and Northern blot showed a high confidentiality of data. The study provides the first comprehensive specific miRNA profile of white shrimp, which includes useful information for future investigations into the function of miRNAs in regulation of shrimp development and immunology.

  1. Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus

    Directory of Open Access Journals (Sweden)

    Schrago Carlos EG

    2011-08-01

    Full Text Available Abstract Background In response to infection, viral genomes are processed by Dicer-like (DCL ribonuclease proteins into viral small RNAs (vsRNAs of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV, a member of the genus Polerovirus, family Luteoviridae. Results Deep sequencing of small RNAs (sRNAs from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. Conclusions This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.

  2. Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus.

    Science.gov (United States)

    Silva, Tatiane F; Romanel, Elisson A C; Andrade, Roberto R S; Farinelli, Laurent; Østerås, Magne; Deluen, Cécile; Corrêa, Régis L; Schrago, Carlos E G; Vaslin, Maite F S

    2011-08-24

    In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae. Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.

  3. Structural similarities between prokaryotic and eukaryotic 5S ribosomal RNAs

    International Nuclear Information System (INIS)

    Welfle, H.; Boehm, S.; Damaschun, G.; Fabian, H.; Gast, K.; Misselwitz, R.; Mueller, J.J.; Zirwer, D.; Filimonov, V.V.; Venyaminov, S.Yu.; Zalkova, T.N.

    1986-01-01

    5S RNAs from rat liver and E. coli have been studied by diffuse X-ray and dynamic light scattering and by infrared and Raman spectroscopy. Identical structures at a resolution of 1 nm can be deduced from the comparison of the experimental X-ray scattering curves and electron distance distribution functions and from the agreement of the shape parameters. A flat shape model with a compact central region and two protruding arms was derived. Double helical stems are eleven-fold helices with a mean base pair distance of 0.28 nm. The number of base pairs (26 GC, 9 AU for E. coli; 27 GC, 9 AU for rat liver) and the degree of base stacking are the same within the experimental error. A very high regularity in the ribophosphate backbone is indicated for both 5S RNAs. The observed structural similarity and the consensus secondary structure pattern derived from comparative sequence analyses suggest the conclusion that prokaryotic and eukaryotic 5S RNAs are in general very similar with respect to their fundamental structural features. (author)

  4. miRNAs in Alzheimer Disease - A Therapeutic Perspective.

    Science.gov (United States)

    Gupta, Priya; Bhattacharjee, Surajit; Sharma, Ashish Ranjan; Sharma, Garima; Lee, Sang-Soo; Chakraborty, Chiranjib

    2017-01-01

    Alzheimer's disease is a neurodegenerative disorder which generally affects people who are more than 60 years of age. The disease is clinically characterised by dementia, loss of cognitive functions and massive neurodegeneration. The presence of neurofibrilary tangles and amyloid plaques in the hippocampal region of the brain are the hallmarks of the disease. Current therapeutic approaches for the treatment of Alzheimer's disease are symptomatic and disease modifying, none of which provide any permanent solution or cure for the disease. Dysregulation of miRNAs is one of the major causes of neurodegeneration. In the present review, the roles of different miRNAs such as miR-9, miR-107, miR-29, miR-34, miR-181, miR-106, miR-146a, miR132, miR124a, miR153 has been discussed in detail in the pathogenesis of various neurodegenerative diseases with special focus on AD. The probability of miRNAs as an alternative and more sensitive approach for detection and management of the AD has also been discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Non-coding RNAs enter mitosis: functions, conservation and implications

    Directory of Open Access Journals (Sweden)

    Kai Toshie

    2011-02-01

    Full Text Available Abstract Nuage (or commonly known as chromatoid body in mammals is a conserved germline-specific organelle that has been linked to the Piwi-interacting RNA (piRNA pathway. piRNAs are a class of gonadal-specific RNAs that are ~23-29 nucleotides in length and protect genome stability by repressing the expression of deleterious retrotransposons. More recent studies in Drosophila have implicated the piRNA pathway in other functions including canalization of embryonic development, regulation of maternal gene expression and telomere protection. We have recently shown that Vasa (known as Mouse Vasa Homolog in mouse, a nuage component, plays a mitotic role in promoting chromosome condensation and segregation by facilitating robust chromosomal localization of condensin I in the Drosophila germline. Vasa functions together with Aubergine (a PIWI family protein and Spindle-E/mouse TDRD-9, two other nuage components that are involved in the piRNA pathway, therefore providing a link between the piRNA pathway and mitotic chromosome condensation. Here, we propose and discuss possible models for the role of Vasa and the piRNA pathway during mitosis. We also highlight relevant studies implicating mitotic roles for RNAs and/or nuage in other model systems and their implications for cancer development.

  6. Regulation of cytokines by small RNAs during skin inflammation

    Directory of Open Access Journals (Sweden)

    Mikkelsen Jacob G

    2010-07-01

    Full Text Available Abstract Intercellular signaling by cytokines is a vital feature of the innate immune system. In skin, an inflammatory response is mediated by cytokines and an entwined network of cellular communication between T-cells and epidermal keratinocytes. Dysregulated cytokine production, orchestrated by activated T-cells homing to the skin, is believed to be the main cause of psoriasis, a common inflammatory skin disorder. Cytokines are heavily regulated at the transcriptional level, but emerging evidence suggests that regulatory mechanisms that operate after transcription play a key role in balancing the production of cytokines. Herein, we review the nature of cytokine signaling in psoriasis with particular emphasis on regulation by mRNA destabilizing elements and the potential targeting of cytokine-encoding mRNAs by miRNAs. The proposed linkage between mRNA decay mediated by AU-rich elements and miRNA association is described and discussed as a possible general feature of cytokine regulation in skin. Moreover, we describe the latest attempts to therapeutically target cytokines at the RNA level in psoriasis by exploiting the cellular RNA interference machinery. The applicability of cytokine-encoding mRNAs as future clinical drug targets is evaluated, and advances and obstacles related to topical administration of RNA-based drugs targeting the cytokine circuit in psoriasis are described.

  7. Regulation of IGF-1 signaling by microRNAs

    Directory of Open Access Journals (Sweden)

    Hwa Jin eJung

    2015-01-01

    Full Text Available The insulin-like growth factor 1 (IGF-1 signaling pathway regulates critical biological processes including development, homeostasis, and aging. Dysregulation of this pathway has been implicated in a myriad of diseases such as cancers, neurodegenerative diseases, and metabolic disorders, making the IGF-1 signaling pathway a prime target to develop therapeutic and intervention strategies. Recently, small non-coding RNA molecules in ~22 nucleotide length, microRNAs (miRNAs, have emerged as a new regulator of biological processes in virtually all organ systems and increasing studies are linking altered miRNA function to disease mechanisms. A miRNA binds to 3’UTRs of multiple target genes and coordinately down-regulates their expression, thereby exerting a profound influence on gene regulatory networks. Here we review the components of the IGF-1 signaling pathway that are known targets of miRNA regulation, and highlight recent studies that suggest therapeutic potential of these miRNAs against various diseases.

  8. Mung Bean nuclease mapping of RNAs 3' end

    Directory of Open Access Journals (Sweden)

    Barbieri Rainer

    2009-05-01

    Full Text Available Abstract A method is described that allows an accurate mapping of 3' ends of RNAs. In this method a labeled DNA probe, containing the presumed 3' end of the RNA under analysis is allowed to anneals to the RNA itself. Mung-bean nuclease is then used to digest single strands of both RNA and DNA. Electrophoretic fractionation of "protected" undigested, labeled DNA is than performed using a sequence reaction of a known DNA as length marker. This procedure was applied to the analysis of both a polyA RNA (Interleukin 10 mRNA and non polyA RNAs (sea urchin 18S and 26S rRNAs. This method might be potentially relevant for the evaluation of the role of posttrascriptional control of IL-10 in the pathogenesis of the immune and inflammatory mediated diseases associated to ageing. This might allow to develop new strategies to approach to the diagnosis and therapy of age related diseases.

  9. Genome-wide identification of microRNAs in pomegranate (Punica granatum L.) by high-throughput sequencing

    Science.gov (United States)

    Background: MicroRNAs (miRNAs), a class of small non-coding endogenous RNAs that regulate gene expression post-transcriptionally, play multiple key roles in plant growth and development and in biotic and abiotic stress response. Knowledge and roles of miRNAs in pomegranate fruit development have not...

  10. IN VIVO SCREENING OF CHEMICAL MODIFICATIONS OF siRNAs FOR EFFECT ON THE INNATE IMMUNE RESPONSE IN FISH

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Schyth, Brian Dall; Bramsen, J. B.

    Abstract Due to their sequence specific gene silencing activity siRNAs are regarded as promising new active compounds in gene medicine and functional studies. But one serious problem with delivering siRNAs as treatment is the now well-established non-specific activities of some RNAs duplexes. Cel...... of siRNAs into RISC for specific gene silencing....

  11. Deep sequencing of small RNAs identifies canonical and non-canonical miRNA and endogenous siRNAs in mammalian somatic tissues.

    Science.gov (United States)

    Castellano, Leandro; Stebbing, Justin

    2013-03-01

    MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression. They are characterized by specific maturation processes defined by canonical and non-canonical biogenic pathways. Analysis of ∼0.5 billion sequences from mouse data sets derived from different tissues, developmental stages and cell types, partly characterized by either ablation or mutation of the main proteins belonging to miRNA processor complexes, reveals 66 high-confidence new genomic loci coding for miRNAs that could be processed in a canonical or non-canonical manner. A proportion of the newly discovered miRNAs comprises mirtrons, for which we define a new sub-class. Notably, some of these newly discovered miRNAs are generated from untranslated and open reading frames of coding genes, and we experimentally validate these. We also show that many annotated miRNAs do not present miRNA-like features, as they are neither processed by known processing complexes nor loaded on AGO2; this indicates that the current miRNA miRBase database list should be refined and re-defined. Accordingly, a group of them map on ribosomal RNA molecules, whereas others cannot undergo genuine miRNA biogenesis. Notably, a group of annotated miRNAs are Dgcr8 independent and DICER dependent endogenous small interfering RNAs that derive from a unique hairpin formed from a short interspersed nuclear element.

  12. High Throughput Sequencing of Small RNAs in the Two Cucurbita Germplasm with Different Sodium Accumulation Patterns Identifies Novel MicroRNAs Involved in Salt Stress Response.

    Science.gov (United States)

    Xie, Junjun; Lei, Bo; Niu, Mengliang; Huang, Yuan; Kong, Qiusheng; Bie, Zhilong

    2015-01-01

    MicroRNAs (miRNAs), a class of small non-coding RNAs, recognize their mRNA targets based on perfect sequence complementarity. MiRNAs lead to broader changes in gene expression after plants are exposed to stress. High-throughput sequencing is an effective method to identify and profile small RNA populations in non-model plants under salt stresses, significantly improving our knowledge regarding miRNA functions in salt tolerance. Cucurbits are sensitive to soil salinity, and the Cucurbita genus is used as the rootstock of other cucurbits to enhance salt tolerance. Several cucurbit crops have been used for miRNA sequencing but salt stress-related miRNAs in cucurbit species have not been reported. In this study, we subjected two Cucurbita germplasm, namely, N12 (Cucurbita. maxima Duch.) and N15 (Cucurbita. moschata Duch.), with different sodium accumulation patterns, to Illumina sequencing to determine small RNA populations in root tissues after 4 h of salt treatment and control. A total of 21,548,326 and 19,394,108 reads were generated from the control and salt-treated N12 root tissues, respectively. By contrast, 19,108,240 and 20,546,052 reads were obtained from the control and salt-treated N15 root tissues, respectively. Fifty-eight conserved miRNA families and 33 novel miRNAs were identified in the two Cucurbita germplasm. Seven miRNAs (six conserved miRNAs and one novel miRNAs) were up-regulated in salt-treated N12 and N15 samples. Most target genes of differentially expressed novel miRNAs were transcription factors and salt stress-responsive proteins, including dehydration-induced protein, cation/H+ antiporter 18, and CBL-interacting serine/threonine-protein kinase. The differential expression of miRNAs between the two Cucurbita germplasm under salt stress conditions and their target genes demonstrated that novel miRNAs play an important role in the response of the two Cucurbita germplasm to salt stress. The present study initially explored small RNAs in the

  13. High Throughput Sequencing of Small RNAs in the Two Cucurbita Germplasm with Different Sodium Accumulation Patterns Identifies Novel MicroRNAs Involved in Salt Stress Response.

    Directory of Open Access Journals (Sweden)

    Junjun Xie

    Full Text Available MicroRNAs (miRNAs, a class of small non-coding RNAs, recognize their mRNA targets based on perfect sequence complementarity. MiRNAs lead to broader changes in gene expression after plants are exposed to stress. High-throughput sequencing is an effective method to identify and profile small RNA populations in non-model plants under salt stresses, significantly improving our knowledge regarding miRNA functions in salt tolerance. Cucurbits are sensitive to soil salinity, and the Cucurbita genus is used as the rootstock of other cucurbits to enhance salt tolerance. Several cucurbit crops have been used for miRNA sequencing but salt stress-related miRNAs in cucurbit species have not been reported. In this study, we subjected two Cucurbita germplasm, namely, N12 (Cucurbita. maxima Duch. and N15 (Cucurbita. moschata Duch., with different sodium accumulation patterns, to Illumina sequencing to determine small RNA populations in root tissues after 4 h of salt treatment and control. A total of 21,548,326 and 19,394,108 reads were generated from the control and salt-treated N12 root tissues, respectively. By contrast, 19,108,240 and 20,546,052 reads were obtained from the control and salt-treated N15 root tissues, respectively. Fifty-eight conserved miRNA families and 33 novel miRNAs were identified in the two Cucurbita germplasm. Seven miRNAs (six conserved miRNAs and one novel miRNAs were up-regulated in salt-treated N12 and N15 samples. Most target genes of differentially expressed novel miRNAs were transcription factors and salt stress-responsive proteins, including dehydration-induced protein, cation/H+ antiporter 18, and CBL-interacting serine/threonine-protein kinase. The differential expression of miRNAs between the two Cucurbita germplasm under salt stress conditions and their target genes demonstrated that novel miRNAs play an important role in the response of the two Cucurbita germplasm to salt stress. The present study initially explored small

  14. Two Virus-Induced MicroRNAs Known Only from Teleost Fishes Are Orthologues of MicroRNAs Involved in Cell Cycle Control in Humans

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Bela-Ong, Dennis; Jalali, Seyed Amir Hossein

    2015-01-01

    MicroRNAs (miRNAs) are similar to 22 base pair-long non-coding RNAs which regulate gene expression in the cytoplasm of eukaryotic cells by binding to specific target regions in mRNAs to mediate transcriptional blocking or mRNA cleavage. Through their fundamental roles in cellular pathways, gene...... regulation mediated by miRNAs has been shown to be involved in almost all biological phenomena, including development, metabolism, cell cycle, tumor formation, and host-pathogen interactions. To address the latter in a primitive vertebrate host, we here used an array platform to analyze the miRNA response...... regulation. Stimulation of fish cell cultures with the IFN inducer poly I:C accordingly upregulated the expression of miR-462 and miR-731, while no stimulatory effect on miR-191 and miR-425 expression was observed in human cell lines. Despite high sequence conservation, evolution has thus resulted...

  15. microRNAs and the mammary gland: a new understanding of gene expression

    Directory of Open Access Journals (Sweden)

    Isabel Gigli

    2013-01-01

    Full Text Available MicroRNAs (miRNAs have been identified in cells as well as in exosomes in biological fluids such as milk. In mammary gland, most of the miRNAs studied have functions related to immunity and show alterations in their pattern of expression during lactation. In mastitis, the inflammatory response caused by Streptococcus uberis alters the expression of miRNAs that may regulate the innate immune system. These small RNAs are stable at room temperature and are resistant to repeated freeze/thaw cycles, acidic conditions and degradation by RNAse, making them resistant to industrial procedures. These properties mean that miRNAs could have multiple applications in veterinary medicine and biotechnology. Indeed, lactoglobulin-free milk has been produced in transgenic cows expressing specific miRNAs. Although plant and animal miRNAs have undergone independent evolutionary adaptation recent studies have demonstrated a cross-kingdom passage in which rice miRNA was isolated from human serum. This finding raises questions about the possible effect that miRNAs present in foods consumed by humans could have on human gene regulation. Further studies are needed before applying miRNA biotechnology to the milk industry. New discoveries and a greater knowledge of gene expression will lead to a better understanding of the role of miRNAs in physiology, nutrition and evolution.

  16. On the presence and immunoregulatory functions of extracellular microRNAs in the trematode Fasciola hepatica.

    Science.gov (United States)

    Fromm, B; Ovchinnikov, V; Høye, E; Bernal, D; Hackenberg, M; Marcilla, A

    2017-02-01

    Liver flukes represent a paraphyletic group of endoparasitic flatworms that significantly affect man either indirectly due to economic damage on livestock or directly as pathogens. A range of studies have focussed on how these macroscopic organisms can evade the immune system and live inside a hostile environment such as the mammalian liver and bile ducts. Recently, microRNAs, a class of short noncoding gene regulators, have been proposed as likely candidates to play roles in this scenario. MicroRNAs (miRNAs) are key players in development and pathogenicity and are highly conserved between metazoans: identical miRNAs can be found in flatworms and mammalians. Interestingly, miRNAs are enriched in extracellular vesicles (EVs) which are secreted by most cells. EVs constitute an important mode of parasite/host interaction, and recent data illustrate that miRNAs play a vital part. We have demonstrated the presence of miRNAs in the EVs of the trematode species Dicrocoelium dendriticum and Fasciola hepatica (Fhe) and identified potential immune-regulatory miRNAs with targets in the host. After our initial identification of miRNAs expressed by F. hepatica, an assembled genome and additional miRNA data became available. This has enabled us to update the known complement of miRNAs in EVs and speculate on potential immune-regulatory functions that we review here. © 2016 John Wiley & Sons Ltd.

  17. Exploration of Deregulated Long Non-Coding RNAs in Association with Hepatocarcinogenesis and Survival

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jing, E-mail: js2182@cumc.columbia.edu [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032 (United States); Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 (United States); Siegel, Abby B. [Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 (United States); Department of Medicine, Columbia University Medical Center, New York, NY 10032 (United States); Remotti, Helen [Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 (United States); Wang, Qiao; Shen, Yueyue [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032 (United States); Santella, Regina M. [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032 (United States); Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 (United States)

    2015-09-10

    Long non-coding RNAs (lncRNAs) are larger than 200 nucleotides in length and pervasively expressed across the genome. An increasing number of studies indicate that lncRNA transcripts play integral regulatory roles in cellular growth, division, differentiation and apoptosis. Deregulated lncRNAs have been observed in a variety of human cancers, including hepatocellular carcinoma (HCC). We determined the expression profiles of 90 lncRNAs for 65 paired HCC tumor and adjacent non-tumor tissues, and 55 lncRNAs were expressed in over 90% of samples. Eight lncRNAs were significantly down-regulated in HCC tumor compared to non-tumor tissues (p < 0.05), but no lncRNA achieved statistical significance after Bonferroni correction for multiple comparisons. Within tumor tissues, carrying more aberrant lncRNAs (6–7) was associated with a borderline significant reduction in survival (HR = 8.5, 95% CI: 1.0–72.5). The predictive accuracy depicted by the AUC was 0.93 for HCC survival when using seven deregulated lncRNAs (likelihood ratio test p = 0.001), which was similar to that combining the seven lncRNAs with tumor size and treatment (AUC = 0.96, sensitivity = 87%, specificity = 87%). These data suggest the potential association of deregulated lncRNAs with hepatocarcinogenesis and HCC survival.

  18. The emerging role of non-coding RNAs in drug addiction

    Directory of Open Access Journals (Sweden)

    Gregory Charles Sartor

    2012-06-01

    Full Text Available Prolonged drug use causes long-lasting neuroadaptations in reward-related brain areas that contribute to addiction. Despite significant amount of research dedicated to understanding the underlying mechanisms of addiction, the molecular underpinnings remain unclear. At the same time, much of the pervasive transcription that encompasses the human genome occurs in the nervous system and contributes to its heterogeneity and complexity. Recent evidence suggests that non-coding RNAs (ncRNAs play an important and dynamic role in transcriptional regulation, epigenetic signaling, stress response, and plasticity in the nervous system. Dysregulation of ncRNAs are thought to contribute to many, and perhaps all, neurological disorders, including addiction. Here, we review recent insights in the functional relevance of ncRNAs, including both microRNAs (miRNAs and long non-coding RNAs (lncRNAs, and then illustrate specific examples of ncRNA regulation in the context of drug addiction. We conclude that ncRNAs are importantly involved in the persistent neuroadaptations associated with addiction-related behaviors, and that therapies that target specific ncRNAs may represent new avenues for the treatment of drug addiction.

  19. Importin 8 regulates the transport of mature microRNAs into the cell nucleus.

    Science.gov (United States)

    Wei, Yao; Li, Limin; Wang, Dong; Zhang, Chen-Yu; Zen, Ke

    2014-04-11

    Mature microRNAs (miRNAs), ∼ 22-nucleotide noncoding RNAs regulating target gene expression at the post-transcriptional level, have been recently shown to be transported into the nucleus where they modulate the biogenesis of other miRNAs or their own expression. However, the mechanism that governs the transport of mature miRNAs from cytoplasm to nucleus remains unknown. Here, we report that importin 8 (IPO8), a member of the karyopherin β (also named the protein import receptor importin β) family, plays a critical role in mediating the cytoplasm-to-nucleus transport of mature miRNAs. Specifically knocking down IPO8 but not other karyopherin β family proteins via siRNA significantly decreases the nuclear transport of various known nucleus-enriched miRNAs without affecting their total cellular levels. IPO8-mediated nuclear transport of mature miRNAs is also dependent on the association of IPO8 with the Argonaute 2 (Ago2) complex. Cross-immunoprecipitation and Western blot analysis show that IPO8 is physically associated with Ago2. Knocking down IPO8 via siRNA markedly decreases the nuclear transport of Ago2 but does not affect the total cellular Ago2 level. Furthermore, dissociating the binding of miRNAs with Ago2 by trypaflavine strongly reduces the IPO8-mediated nuclear transport of miRNAs.

  20. An atlas of human long non-coding RNAs with accurate 5′ ends

    KAUST Repository

    Hon, Chung-Chau

    2017-02-28

    Long non-coding RNAs (lncRNAs) are largely heterogeneous and functionally uncharacterized. Here, using FANTOM5 cap analysis of gene expression (CAGE) data, we integrate multiple transcript collections to generate a comprehensive atlas of 27,919 human lncRNA genes with high-confidence 5′ ends and expression profiles across 1,829 samples from the major human primary cell types and tissues. Genomic and epigenomic classification of these lncRNAs reveals that most intergenic lncRNAs originate from enhancers rather than from promoters. Incorporating genetic and expression data, we show that lncRNAs overlapping trait-associated single nucleotide polymorphisms are specifically expressed in cell types relevant to the traits, implicating these lncRNAs in multiple diseases. We further demonstrate that lncRNAs overlapping expression quantitative trait loci (eQTL)-associated single nucleotide polymorphisms of messenger RNAs are co-expressed with the corresponding messenger RNAs, suggesting their potential roles in transcriptional regulation. Combining these findings with conservation data, we identify 19,175 potentially functional lncRNAs in the human genome.

  1. Identifying relevant group of miRNAs in cancer using fuzzy mutual information.

    Science.gov (United States)

    Pal, Jayanta Kumar; Ray, Shubhra Sankar; Pal, Sankar K

    2016-04-01

    MicroRNAs (miRNAs) act as a major biomarker of cancer. All miRNAs in human body are not equally important for cancer identification. We propose a methodology, called FMIMS, which automatically selects the most relevant miRNAs for a particular type of cancer. In FMIMS, miRNAs are initially grouped by using a SVM-based algorithm; then the group with highest relevance is determined and the miRNAs in that group are finally ranked for selection according to their redundancy. Fuzzy mutual information is used in computing the relevance of a group and the redundancy of miRNAs within it. Superiority of the most relevant group to all others, in deciding normal or cancer, is demonstrated on breast, renal, colorectal, lung, melanoma and prostate data. The merit of FMIMS as compared to several existing methods is established. While 12 out of 15 selected miRNAs by FMIMS corroborate with those of biological investigations, three of them viz., "hsa-miR-519," "hsa-miR-431" and "hsa-miR-320c" are possible novel predictions for renal cancer, lung cancer and melanoma, respectively. The selected miRNAs are found to be involved in disease-specific pathways by targeting various genes. The method is also able to detect the responsible miRNAs even at the primary stage of cancer. The related code is available at http://www.jayanta.droppages.com/FMIMS.html .

  2. Global identification of microRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.)

    Science.gov (United States)

    Zhu, Bin; Li, Xiuxia; Liu, Ying; Gao, Xiwu; Liang, Pei

    2017-01-01

    The diamondback moth (DBM), Plutella xylostella (L.), is one of the most serious cruciferous pests and has developed high resistance to most insecticides, including chlorantraniliprole. Previous studies have reported several protein-coding genes that involved in chlorantraniliprole resistance, but research on resistance mechanisms at the post-transcription level is still limited. In this study, a global screen of microRNAs (miRNAs) associated with chlorantraniliprole resistance in P. xylostella was performed. The small RNA libraries for a susceptible (CHS) and two chlorantraniliprole resistant strains (CHR, ZZ) were constructed and sequenced, and a total of 199 known and 30 novel miRNAs were identified. Among them, 23 miRNAs were differentially expressed between CHR and CHS, and 90 miRNAs were differentially expressed between ZZ and CHS, of which 11 differentially expressed miRNAs were identified in both CHR and ZZ. Using miRanda and RNAhybrid, a total of 1,411 target mRNAs from 102 differentially expressed miRNAs were predicted, including mRNAs in several groups of detoxification enzymes. The expression of several differentially expressed miRNAs and their potential targets was validated by qRT-PCR. The results may provide important clues for further study of the mechanisms of miRNA-mediated chlorantraniliprole resistance in DBM and other target insects. PMID:28098189

  3. The interplay of long non-coding RNAs and MYC in cancer

    Directory of Open Access Journals (Sweden)

    Michael J. Hamilton

    2015-12-01

    Full Text Available Long non-coding RNAs (lncRNAs are a class of RNA molecules that are changing how researchers view eukaryotic gene regulation. Once considered to be non-functional products of low-level aberrant transcription from non-coding regions of the genome, lncRNAs are now viewed as important epigenetic regulators and several lncRNAs have now been demonstrated to be critical players in the development and/or maintenance of cancer. Similarly, the emerging variety of interactions between lncRNAs and MYC, a well-known oncogenic transcription factor linked to most types of cancer, have caught the attention of many biomedical researchers. Investigations exploring the dynamic interactions between lncRNAs and MYC, referred to as the lncRNA-MYC network, have proven to be especially complex. Genome-wide studies have shown that MYC transcriptionally regulates many lncRNA genes. Conversely, recent reports identified lncRNAs that regulate MYC expression both at the transcriptional and post-transcriptional levels. These findings are of particular interest because they suggest roles of lncRNAs as regulators of MYC oncogenic functions and the possibility that targeting lncRNAs could represent a novel avenue to cancer treatment. Here, we briefly review the current understanding of how lncRNAs regulate chromatin structure and gene transcription, and then focus on the new developments in the emerging field exploring the lncRNA-MYC network in cancer.

  4. Characterization and Expression Patterns of microRNAs Involved in Rice Grain Filling

    Science.gov (United States)

    Du, Yanxiu; Zhang, Jing; Li, Junzhou; Liu, Yanxia; Zhao, Yafan; Zhao, Quanzhi

    2013-01-01

    MicroRNAs (miRNAs) are upstream gene regulators of plant development and hormone homeostasis through their directed cleavage or translational repression of the target mRNAs, which may play crucial roles in rice grain filling and determining the final grain weight and yield. In this study, high-throughput sequencing was performed to survey the dynamic expressions of miRNAs and their corresponding target genes at five distinct developmental stages of grain filling. In total, 445 known miRNAs and 45 novel miRNAs were detected with most of them expressed in a developmental stage dependent manner, and the majority of known miRNAs, which increased gradually with rice grain filling, showed negatively related to the grain filling rate. Detailed expressional comparisons revealed a clear negative correlation between most miRNAs and their target genes. It was found that specific miRNA cohorts are expressed in a developmental stage dependent manner during grain filling and the known functions of these miRNAs are involved in plant hormone homeostasis and starch accumulation, indicating that the expression dynamics of these miRNAs might play key roles in regulating rice grain filling. PMID:23365650

  5. Long non-coding RNAs as molecular players in plant defense against pathogens.

    Science.gov (United States)

    Zaynab, Madiha; Fatima, Mahpara; Abbas, Safdar; Umair, Muhammad; Sharif, Yasir; Raza, Muhammad Ammar

    2018-05-31

    Long non-coding RNAs (lncRNAs) has significant role in of gene expression and silencing pathways for several biological processes in eukaryotes. lncRNAs has been reported as key player in remodeling chromatin and genome architecture, RNA stabilization and transcription regulation, including enhancer-associated activity. Host lncRNAs are reckoned as compulsory elements of plant defense. In response to pathogen attack, plants protect themselves with the help of lncRNAs -dependent immune systems in which lncRNAs regulate pathogen-associated molecular patterns (PAMPs) and other effectors. Role of lncRNAs in plant microbe interaction has been studied extensively but regulations of several lncRNAs still need extensive research. In this study we discussed and provide as overview the topical advancements and findings relevant to pathogen attack and plant defense mediated by lncRNAs. It is hoped that lncRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases. Copyright © 2018. Published by Elsevier Ltd.

  6. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies⋆

    Science.gov (United States)

    Chen, Yunching; Gao, Dong-Yu; Huang, Leaf

    2016-01-01

    MicroRNAs (miRNAs), small non-coding RNAs, can regulate post-transcriptional gene expressions and silence a broad set of target genes. miRNAs, aberrantly expressed in cancer cells, play an important role in modulating gene expressions, thereby regulating downstream signaling pathways and affecting cancer formation and progression. Oncogenes or tumor suppressor genes regulated by miRNAs mediate cell cycle progression, metabolism, cell death, angiogenesis, metastasis and immunosuppression in cancer. Recently, miRNAs have emerged as therapeutic targets or tools and biomarkers for diagnosis and therapy monitoring in cancer. Since miRNAs can regulate multiple cancer-related genes simultaneously, using miRNAs as a therapeutic approach plays an important role in cancer therapy. However, one of the major challenges of miRNA-based cancer therapy is to achieve specific, efficient and safe systemic delivery of therapeutic miRNAs In vivo. This review discusses the key challenges to the development of the carriers for miRNA-based therapy and explores current strategies to systemically deliver miRNAs to cancer without induction of toxicity. PMID:24859533

  7. Characterizing ncRNAs in Human Pathogenic Protists Using High-Throughput Sequencing Technology

    Science.gov (United States)

    Collins, Lesley Joan

    2011-01-01

    ncRNAs are key genes in many human diseases including cancer and viral infection, as well as providing critical functions in pathogenic organisms such as fungi, bacteria, viruses, and protists. Until now the identification and characterization of ncRNAs associated with disease has been slow or inaccurate requiring many years of testing to understand complicated RNA and protein gene relationships. High-throughput sequencing now offers the opportunity to characterize miRNAs, siRNAs, small nucleolar RNAs (snoRNAs), and long ncRNAs on a genomic scale, making it faster and easier to clarify how these ncRNAs contribute to the disease state. However, this technology is still relatively new, and ncRNA discovery is not an application of high priority for streamlined bioinformatics. Here we summarize background concepts and practical approaches for ncRNA analysis using high-throughput sequencing, and how it relates to understanding human disease. As a case study, we focus on the parasitic protists Giardia lamblia and Trichomonas vaginalis, where large evolutionary distance has meant difficulties in comparing ncRNAs with those from model eukaryotes. A combination of biological, computational, and sequencing approaches has enabled easier classification of ncRNA classes such as snoRNAs, but has also aided the identification of novel classes. It is hoped that a higher level of understanding of ncRNA expression and interaction may aid in the development of less harsh treatment for protist-based diseases. PMID:22303390

  8. Identification and characterization of microRNAs in Asiatic cotton (Gossypium arboreum L..

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available To date, no miRNAs have been identified in the important diploid cotton species although there are several reports on miRNAs in upland cotton. In this study, we identified 73 miRNAs, belonging to 49 families, from Asiatic cotton using a well-developed comparative genome-based homologue search. Several of the predicted miRNAs were validated using quantitative real time PCR (qRT-PCR. The length of miRNAs varied from 18 to 22 nt with an average of 20 nt. The length of miRNA precursors also varied from 46 to 684 nt with an average of 138 ±120 nt. For a majority of Asiatic cotton miRNAs, there is only one member per family; however, multiple members were identified for miRNA 156, 414, 837, 838, 1044, 1533, 2902, 2868, 5021 and 5142 families. Nucleotides A and U were dominant, accounted for 62.95%, in the Asiatic cotton pre-miRNAs. The Asiatic cotton pre-miRNAs had high negative minimal folding free energy (MFE and adjusted MFE (AMFE and high MFE index (MFEI. Many miRNAs identified in Asiatic cotton suggest that miRNAs also play a similar regulatory mechanism in diploid cotton.

  9. Cadherin complexes recruit mRNAs and RISC to regulate epithelial cell signaling.

    Science.gov (United States)

    Kourtidis, Antonis; Necela, Brian; Lin, Wan-Hsin; Lu, Ruifeng; Feathers, Ryan W; Asmann, Yan W; Thompson, E Aubrey; Anastasiadis, Panos Z

    2017-10-02

    Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis. © 2017 Kourtidis et al.

  10. Identification and characterization of microRNAs in white and brown alpaca skin

    Directory of Open Access Journals (Sweden)

    Tian Xue

    2012-10-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small, non-coding 21–25 nt RNA molecules that play an important role in regulating gene expression. Little is known about the expression profiles and functions of miRNAs in skin and their role in pigmentation. Alpacas have more than 22 natural coat colors, more than any other fiber producing species. To better understand the role of miRNAs in control of coat color we performed a comprehensive analysis of miRNA expression profiles in skin of white versus brown alpacas. Results Two small RNA libraries from white alpaca (WA and brown alpaca (BA skin were sequenced with the aid of Illumina sequencing technology. 272 and 267 conserved miRNAs were obtained from the WA and BA skin libraries, respectively. Of these conserved miRNAs, 35 and 13 were more abundant in WA and BA skin, respectively. The targets of these miRNAs were predicted and grouped based on Gene Ontology and KEGG pathway analysis. Many predicted target genes for these miRNAs are involved in the melanogenesis pathway controlling pigmentation. In addition to the conserved miRNAs, we also obtained 22 potentially novel miRNAs from the WA and BA skin libraries. Conclusion This study represents the first comprehensive survey of miRNAs expressed in skin of animals of different coat colors by deep sequencing analysis. We discovered a collection of miRNAs that are differentially expressed in WA and BA skin. The results suggest important potential functions of miRNAs in coat color regulation.

  11. Identification of microRNAs as potential prognostic markers in ependymoma.

    Directory of Open Access Journals (Sweden)

    Fabricio F Costa

    Full Text Available INTRODUCTION: We have examined expression of microRNAs (miRNAs in ependymomas to identify molecular markers of value for clinical management. miRNAs are non-coding RNAs that can block mRNA translation and affect mRNA stability. Changes in the expression of miRNAs have been correlated with many human cancers. MATERIALS AND METHODS: We have utilized TaqMan Low Density Arrays to evaluate the expression of 365 miRNAs in ependymomas and normal brain tissue. We first demonstrated the similarity of expression profiles of paired frozen tissue (FT and paraffin-embedded specimens (FFPE. We compared the miRNA expression profiles of 34 FFPE ependymoma samples with 8 microdissected normal brain tissue specimens enriched for ependymal cells. miRNA expression profiles were then correlated with tumor location, histology and other clinicopathological features. RESULTS: We have identified miRNAs that are over-expressed in ependymomas, such as miR-135a and miR-17-5p, and down-regulated, such as miR-383 and miR-485-5p. We have also uncovered associations between expression of specific miRNAs which portend a worse prognosis. For example, we have identified a cluster of miRNAs on human chromosome 14q32 that is associated with time to relapse. We also found that miR-203 is an independent marker for relapse compared to the parameters that are currently used. Additionally, we have identified three miRNAs (let-7d, miR-596 and miR-367 that strongly correlate to overall survival. CONCLUSION: We have identified miRNAs that are differentially expressed in ependymomas compared with normal ependymal tissue. We have also uncovered significant associations of miRNAs with clinical behavior. This is the first report of clinically relevant miRNAs in ependymomas.

  12. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs

    Science.gov (United States)

    Zhang, Xiao-Ou; Dong, Rui; Zhang, Yang; Zhang, Jia-Lin; Luo, Zheng; Zhang, Jun; Chen, Ling-Ling; Yang, Li

    2016-01-01

    Circular RNAs (circRNAs) derived from back-spliced exons have been widely identified as being co-expressed with their linear counterparts. A single gene locus can produce multiple circRNAs through alternative back-splice site selection and/or alternative splice site selection; however, a detailed map of alternative back-splicing/splicing in circRNAs is lacking. Here, with the upgraded CIRCexplorer2 pipeline, we systematically annotated different types of alternative back-splicing and alternative splicing events in circRNAs from various cell lines. Compared with their linear cognate RNAs, circRNAs exhibited distinct patterns of alternative back-splicing and alternative splicing. Alternative back-splice site selection was correlated with the competition of putative RNA pairs across introns that bracket alternative back-splice sites. In addition, all four basic types of alternative splicing that have been identified in the (linear) mRNA process were found within circRNAs, and many exons were predominantly spliced in circRNAs. Unexpectedly, thousands of previously unannotated exons were detected in circRNAs from the examined cell lines. Although these novel exons had similar splice site strength, they were much less conserved than known exons in sequences. Finally, both alternative back-splicing and circRNA-predominant alternative splicing were highly diverse among the examined cell lines. All of the identified alternative back-splicing and alternative splicing in circRNAs are available in the CIRCpedia database (http://www.picb.ac.cn/rnomics/circpedia). Collectively, the annotation of alternative back-splicing and alternative splicing in circRNAs provides a valuable resource for depicting the complexity of circRNA biogenesis and for studying the potential functions of circRNAs in different cells. PMID:27365365

  13. RNA-Seq of the nucleolus reveals abundant SNORD44-derived small RNAs.

    Directory of Open Access Journals (Sweden)

    Baoyan Bai

    Full Text Available Small non-coding RNAs represent RNA species that are not translated to proteins, but which have diverse and broad functional activities in physiological and pathophysiological states. The knowledge of these small RNAs is rapidly expanding in part through the use of massive parallel (deep sequencing efforts. We present here the first deep sequencing of small RNomes in subcellular compartments with particular emphasis on small RNAs (sRNA associated with the nucleolus. The vast majority of the cellular, cytoplasmic and nuclear sRNAs were identified as miRNAs. In contrast, the nucleolar sRNAs had a unique size distribution consisting of 19-20 and 25 nt RNAs, which were predominantly composed of small snoRNA-derived box C/D RNAs (termed as sdRNA. Sequences from 47 sdRNAs were identified, which mapped to both 5' and 3' ends of the snoRNAs, and retained conserved box C or D motifs. SdRNA reads mapping to SNORD44 comprised 74% of all nucleolar sdRNAs, and were confirmed by Northern blotting as comprising both 20 and 25 nt RNAs. A novel 120 nt SNORD44 form was also identified. The expression of the SNORD44 sdRNA and 120 nt form was independent of Dicer/Drosha-mediated processing pathways but was dependent on the box C/D snoRNP proteins/sno-ribonucleoproteins fibrillarin and NOP58. The 120 nt SNORD44-derived RNA bound to fibrillarin suggesting that C/D sno-ribonucleoproteins are involved in regulating the stability or processing of SNORD44. This study reveals sRNA cell-compartment specific expression and the distinctive unique composition of the nucleolar sRNAs.

  14. Role of Virus-Encoded microRNAs in Avian Viral Diseases

    Directory of Open Access Journals (Sweden)

    Yongxiu Yao

    2014-03-01

    Full Text Available With total dependence on the host cell, several viruses have adopted strategies to modulate the host cellular environment, including the modulation of microRNA (miRNA pathway through virus-encoded miRNAs. Several avian viruses, mostly herpesviruses, have been shown to encode a number of novel miRNAs. These include the highly oncogenic Marek’s disease virus-1 (26 miRNAs, avirulent Marek’s disease virus-2 (36 miRNAs, herpesvirus of turkeys (28 miRNAs, infectious laryngotracheitis virus (10 miRNAs, duck enteritis virus (33 miRNAs and avian leukosis virus (2 miRNAs. Despite the closer antigenic and phylogenetic relationship among some of the herpesviruses, miRNAs encoded by different viruses showed no sequence conservation, although locations of some of the miRNAs were conserved within the repeat regions of the genomes. However, some of the virus-encoded miRNAs showed significant sequence homology with host miRNAs demonstrating their ability to serve as functional orthologs. For example, mdv1-miR-M4-5p, a functional ortholog of gga-miR-155, is critical for the oncogenicity of Marek’s disease virus. Additionally, we also describe the potential association of the recently described avian leukosis virus subgroup J encoded E (XSR miRNA in the induction of myeloid tumors in certain genetically-distinct chicken lines. In this review, we describe the advances in our understanding on the role of virus-encoded miRNAs in avian diseases.

  15. Developmental programming of long non-coding RNAs during postnatal liver maturation in mice.

    Directory of Open Access Journals (Sweden)

    Lai Peng

    Full Text Available The liver is a vital organ with critical functions in metabolism, protein synthesis, and immune defense. Most of the liver functions are not mature at birth and many changes happen during postnatal liver development. However, it is unclear what changes occur in liver after birth, at what developmental stages they occur, and how the developmental processes are regulated. Long non-coding RNAs (lncRNAs are involved in organ development and cell differentiation. Here, we analyzed the transcriptome of lncRNAs in mouse liver from perinatal (day -2 to adult (day 60 by RNA-Sequencing, with an attempt to understand the role of lncRNAs in liver maturation. We found around 15,000 genes expressed, including about 2,000 lncRNAs. Most lncRNAs were expressed at a lower level than coding RNAs. Both coding RNAs and lncRNAs displayed three major ontogenic patterns: enriched at neonatal, adolescent, or adult stages. Neighboring coding and non-coding RNAs showed the trend to exhibit highly correlated ontogenic expression patterns. Gene ontology (GO analysis revealed that some lncRNAs enriched at neonatal ages have their neighbor protein coding genes also enriched at neonatal ages and associated with cell proliferation, immune activation related processes, tissue organization pathways, and hematopoiesis; other lncRNAs enriched at adolescent ages have their neighbor protein coding genes associated with different metabolic processes. These data reveal significant functional transition during postnatal liver development and imply the potential importance of lncRNAs in liver maturation.

  16. Evolutionary patterns of Escherichia coli small RNAs and their regulatory interactions.

    Science.gov (United States)

    Peer, Asaf; Margalit, Hanah

    2014-07-01

    Most bacterial small RNAs (sRNAs) are post-transcriptional regulators of gene expression, exerting their regulatory function by base-pairing with their target mRNAs. While it has become evident that sRNAs play central regulatory roles in the cell, little is known about their evolution and the evolution of their regulatory interactions. Here we used the prokaryotic phylogenetic tree to reconstruct the evolutionary history of Escherichia coli sRNAs and their binding sites on target mRNAs. We discovered that sRNAs currently present in E. coli mainly accumulated inside the Enterobacteriales order, succeeding the appearance of other types of noncoding RNAs and concurrently with the evolution of a variant of the Hfq protein exhibiting a longer C-terminal region. Our analysis of the evolutionary ages of sRNA-mRNA interactions revealed that while all sRNAs were evolutionarily older than most of their known binding sites on mRNA targets, for quite a few sRNAs there was at least one binding site that coappeared with or preceded them. It is conceivable that the establishment of these first interactions forced selective pressure on the sRNAs, after which additional targets were acquired by fitting a binding site to the active region of the sRNA. This conjecture is supported by the appearance of many binding sites on target mRNAs only after the sRNA gain, despite the prior presence of the target gene in ancestral genomes. Our results suggest a selective mechanism that maintained the sRNAs across the phylogenetic tree, and shed light on the evolution of E. coli post-transcriptional regulatory network. © 2014 Peer and Margalit; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Chaoqun Li

    2018-01-01

    Full Text Available Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice. Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to

  18. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus.

    Science.gov (United States)

    Li, Chaoqun; Cao, Feifei; Li, Shengli; Huang, Shenglin; Li, Wei; Abumaria, Nashat

    2017-01-01

    Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA) has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice). Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to stress

  19. Circulating microRNAs as novel biomarkers for the early diagnosis of acute coronary syndrome.

    Science.gov (United States)

    Deddens, J C; Colijn, J M; Oerlemans, M I F J; Pasterkamp, G; Chamuleau, S A; Doevendans, P A; Sluijter, J P G

    2013-12-01

    Small non-coding microRNAs (miRNAs) are important physiological regulators of post-transcriptional gene expression. miRNAs not only reside in the cytoplasm but are also stably present in several extracellular compartments, including the circulation. For that reason, miRNAs are proposed as diagnostic biomarkers for various diseases. Early diagnosis of acute coronary syndrome (ACS), especially non-ST elevated myocardial infarction and unstable angina pectoris, is essential for optimal treatment outcome, and due to the ongoing need for additional identifiers, miRNAs are of special interest as biomarkers for ACS. This review highlights the nature and cellular release mechanisms of circulating miRNAs and therefore their potential role in the diagnosis of myocardial infarction. We will give an update of clinical studies addressing the role of circulating miRNA expression after myocardial infarction and explore the diagnostic value of this potential biomarker.

  20. Friend or Foe: MicroRNAs in the p53 network.

    Science.gov (United States)

    Luo, Zhenghua; Cui, Ri; Tili, Esmerina; Croce, Carlo

    2018-04-10

    The critical tumor suppressor gene TP53 is either lost or mutated in more than half of human cancers. As an important transcriptional regulator, p53 modulates the expression of many microRNAs. While wild-type p53 uses microRNAs to suppress cancer development, microRNAs that are activated by gain-of-function mutant p53 confer oncogenic properties. On the other hand, the expression of p53 is tightly controlled by a fine-tune machinery including microRNAs. MicroRNAs can target the TP53 gene directly or other factors in the p53 network so that expression and function of either the wild-type or the mutant forms of p53 is downregulated. Therefore, depending on the wild-type or mutant p53 context, microRNAs contribute substantially to suppress or exacerbate tumor development. Copyright © 2018. Published by Elsevier B.V.

  1. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer

    Science.gov (United States)

    Cekaite, Lina; Eide, Peter W.; Lind, Guro E.; Skotheim, Rolf I.; Lothe, Ragnhild A.

    2016-01-01

    Gene expression is in part regulated by microRNAs (miRNAs). This review summarizes the current knowledge of miRNAs in colorectal cancer (CRC); their role as growth regulators, the mechanisms that regulate the miRNAs themselves and the potential of miRNAs as biomarkers. Although thousands of tissue samples and bodily fluids from CRC patients have been investigated for biomarker potential of miRNAs (>160 papers presented in a comprehensive tables), none single miRNA nor miRNA expression signatures are in clinical use for this disease. More than 500 miRNA-target pairs have been identified in CRC and we discuss how these regulatory nodes interconnect and affect signaling pathways in CRC progression. PMID:26623728

  2. Tumor suppressor microRNAs are downregulated in myelodysplastic syndrome with spliceosome mutations

    DEFF Research Database (Denmark)

    Aslan, Derya; Garde, Christian; Nygaard, Mette Katrine

    2016-01-01

    Spliceosome mutations are frequently observed in patients with myelodysplastic syndromes (MDS). However, it is largely unknown how these mutations contribute to the disease. MicroRNAs (miRNAs) are small noncoding RNAs, which have been implicated in most human cancers due to their role in post...... the most downregulated miRNAs were several tumor-suppressor miRNAs, including several let-7 family members, miR-423, and miR-103a. Finally, we observed that the predicted targets of the most downregulated miRNAs were involved in apoptosis, hematopoiesis, and acute myeloid leukemia among other cancer......- and metabolic pathways. Our data indicate that spliceosome mutations may play an important role in MDS pathophysiology by affecting the expression of tumor suppressor miRNA genes involved in the development and progression of MDS....

  3. TargetCompare: A web interface to compare simultaneous miRNAs targets.

    Science.gov (United States)

    Moreira, Fabiano Cordeiro; Dustan, Bruno; Hamoy, Igor G; Ribeiro-Dos-Santos, André M; Dos Santos, Andrea Ribeiro

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression. A since miRNA has thousand of predict targets in a complex, regulatory cell signaling network. Therefore, it is of interest to study multiple target genes simultaneously. Hence, we describe a web tool (developed using Java programming language and MySQL database server) to analyse multiple targets of pre-selected miRNAs. We cross validated the tool in eight most highly expressed miRNAs in the antrum region of stomach. This helped to identify 43 potential genes that are target of at least six of the referred miRNAs. The developed tool aims to reduce the randomness and increase the chance of selecting strong candidate target genes and miRNAs responsible for playing important roles in the studied tissue. http://lghm.ufpa.br/targetcompare.

  4. MicroRNAs as putative mediators of treatment response in prostate cancer.

    LENUS (Irish Health Repository)

    O'Kelly, Fardod

    2012-05-22

    MicroRNAs (miRNAs) are an abundant class of noncoding RNAs that function to regulate post-transcriptional gene expression, predominantly by translational repression. In addition to their role in prostate cancer initiation and progression, recent evidence suggests that miRNAs might also participate in treatment response across a range of therapies including radiation treatment, chemotherapy and androgen suppression. The mechanism of this regulation is thought to be multifactorial and is currently poorly understood. To date, only a small number of studies have examined the functional role of miRNAs in response to prostate cancer treatment. Elucidating the role of miRNAs in treatment response following radiotherapy, chemotherapy and androgen suppression will provide new avenues of investigation for the development of novel therapies for the treatment of prostate cancer.

  5. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease

    International Nuclear Information System (INIS)

    Akiyama, Benjamin M.; Laurence, Hannah M.; University of Colorado, Aurora, CO; University of California, Davis, CA; Massey, Aaron R.

    2016-01-01

    The outbreak of Zika virus (ZIKV) and associated fetal microcephaly mandates efforts to understand the molecular processes of infection. Related flaviviruses produce noncoding subgenomic flaviviral RNAs (sfRNAs) that are linked to pathogenicity in fetal mice. These viruses make sfRNAs by co-opting a cellular exonuclease via structured RNAs called xrRNAs. We found that ZIKV-infected monkey and human epithelial cells, mouse neurons, and mosquito cells produce sfRNAs. The RNA structure that is responsible for ZIKV sfRNA production forms a complex fold that is likely found in many pathogenic flaviviruses. Mutations that disrupt the structure affect exonuclease resistance in vitro and sfRNA formation during infection. The complete ZIKV xrRNA structure clarifies the mechanism of exonuclease resistance and identifies features that may modulate function in diverse flaviviruses.

  6. MicroRNAs: not ‘fine-tuners’ but key regulators of neuronal development and function

    Directory of Open Access Journals (Sweden)

    Gregory eDavis

    2015-11-01

    Full Text Available microRNAs (miRNAs are a class of short non-coding RNAs that operate as prominent post-transcriptional regulators of eukaryotic gene expression. miRNAs are abundantly expressed in the brain of most animals and exert diverse roles. The anatomical and functional complexity of brain requires the precise coordination of multi-layered gene regulatory networks. The flexibility, speed and reversibility of miRNA function provide precise temporal and spatial gene regulatory capabilities that are crucial for the correct functioning of the brain. Studies have shown that the underlying molecular mechanisms controlled by miRNAs in the nervous systems of invertebrate and vertebrate models are remarkably conserved in humans. We endeavour to provide insight into the roles of miRNAs in the nervous systems of these model organisms and discuss how such information may be used to inform regarding diseases of the human brain.

  7. MetastamiRs: Non-Coding MicroRNAs Driving Cancer Invasion and Metastasis

    Directory of Open Access Journals (Sweden)

    Sergio Rodriguez-Cuevas

    2012-01-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs of ~22 nucleotides that function as negative regulators of gene expression by either inhibiting translation or inducing deadenylation-dependent degradation of target transcripts. Notably, deregulation of miRNAs expression is associated with the initiation and progression of human cancers where they act as oncogenes or tumor suppressors contributing to tumorigenesis. Abnormal miRNA expression may provide potential diagnostic and prognostic tumor biomarkers and new therapeutic targets in cancer. Recently, several miRNAs have been shown to initiate invasion and metastasis by targeting multiple proteins that are major players in these cellular events, thus they have been denominated as metastamiRs. Here, we present a review of the current knowledge of miRNAs in cancer with a special focus on metastamiRs. In addition we discuss their potential use as novel specific markers for cancer progression.

  8. Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Anthon, Christian; Bak, Mads

    2012-01-01

    significantly up-regulated in the necrotic sample and 12 were down-regulated. The expression analysis of a number of candidates revealed microRNAs of potential importance in the innate immune response. MiR-155, a known key player in inflammation, was found expressed in both samples. Moreover, miR-664-5p, mi......R-451 and miR-15a appear as very promising candidates for microRNAs involved in response to pathogen infection. Conclusions: This is the first study revealing significant differences in composition and expression profiles of miRNAs in lungs infected with a bacterial pathogen. Our results extend......Background: MicroRNAs (miRNAs) are a class of non-protein-coding genes that play a crucial regulatory role in mammalian development and disease. Whereas a large number of miRNAs have been annotated at the structural level during the latest years, functional annotation is sparse. Actinobacillus...

  9. Functional studies of microRNAs in neural stem cells: problems and perspectives.

    Directory of Open Access Journals (Sweden)

    Malin eÅkerblom

    2012-02-01

    Full Text Available In adult mammals, neural stem cells (NSCs are found in two niches of the brain; the subventricular zone at the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Neurogenesis is a complex process that is tightly controlled on a molecular level. Recently, microRNAs (miRNAs have been implicated to play a central role in the regulation of NCSs. miRNAs are small, endogenously expressed RNAs that regulate gene expression at the post-transcriptional level. However, functional studies of miRNAs are complicated due to current technical limitations. In this review we describe recent findings about miRNAs in NSCs looking closely at miR-124, miR-9 and let-7. We also highlight technical strategies used to investigate miRNA function, accentuating limitations and potentials.

  10. Long Non-Coding RNAs Embedded in the Rb and p53 Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Murugan; Jones, Matthew F.; Lal, Ashish, E-mail: ashish.lal@nih.gov [Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-12-04

    In recent years, long non-coding RNAs (lncRNAs) have gained significant attention as a novel class of gene regulators. Although a small number of lncRNAs have been shown to regulate gene expression through diverse mechanisms including transcriptional regulation, mRNA splicing and translation, the physiological function and mechanism of action of the vast majority are not known. Profiling studies in cell lines and tumor samples have suggested a potential role of lncRNAs in cancer. Indeed, distinct lncRNAs have been shown to be embedded in the p53 and Rb networks, two of the major tumor suppressor pathways that control cell cycle progression and survival. Given the fact that inactivation of Rb and p53 is a hallmark of human cancer, in this review we discuss recent evidence on the function of lncRNAs in the Rb and p53 signaling pathways.

  11. Long Non-Coding RNAs Embedded in the Rb and p53 Pathways

    International Nuclear Information System (INIS)

    Subramanian, Murugan; Jones, Matthew F.; Lal, Ashish

    2013-01-01

    In recent years, long non-coding RNAs (lncRNAs) have gained significant attention as a novel class of gene regulators. Although a small number of lncRNAs have been shown to regulate gene expression through diverse mechanisms including transcriptional regulation, mRNA splicing and translation, the physiological function and mechanism of action of the vast majority are not known. Profiling studies in cell lines and tumor samples have suggested a potential role of lncRNAs in cancer. Indeed, distinct lncRNAs have been shown to be embedded in the p53 and Rb networks, two of the major tumor suppressor pathways that control cell cycle progression and survival. Given the fact that inactivation of Rb and p53 is a hallmark of human cancer, in this review we discuss recent evidence on the function of lncRNAs in the Rb and p53 signaling pathways

  12. [Use of micro RNAs in the diagnosis and prognosis of colorectal cancer (CCR)].

    Science.gov (United States)

    Arredondo-Valdez, Abril Reneé; Wence-Chavez, Laura; Rosales-Reynoso, Mónica Alejandra

    2016-01-01

    The aim of this review is to present a general overview about the importance of micro RNAs (miRNAs) in colorectal carcinoma. First, we focused on the mechanisms whereby the miRNAs regulate the expression of target genes, and how an altered regulation of them is associated with several types of cancer, including colorectal carcinoma. Later, examples of some miRNAs that have been associated with cancer development and how the expression patterns of specific miRNAs can be used as potential biomarkers for prognosis, diagnosis and therapeutic outcome in colorectal carcinoma are addressed. Finally, several polymorphisms presents in the miRNAs that have been associated to risk and prognosis in colorectal carcinoma are described.

  13. Regulation of cardiac microRNAs by serum response factor

    Directory of Open Access Journals (Sweden)

    Wei Jeanne Y

    2011-02-01

    Full Text Available Abstract Serum response factor (SRF regulates certain microRNAs that play a role in cardiac and skeletal muscle development. However, the role of SRF in the regulation of microRNA expression and microRNA biogenesis in cardiac hypertrophy has not been well established. In this report, we employed two distinct transgenic mouse models to study the impact of SRF on cardiac microRNA expression and microRNA biogenesis. Cardiac-specific overexpression of SRF (SRF-Tg led to altered expression of a number of microRNAs. Interestingly, downregulation of miR-1, miR-133a and upregulation of miR-21 occurred by 7 days of age in these mice, long before the onset of cardiac hypertrophy, suggesting that SRF overexpression impacted the expression of microRNAs which contribute to cardiac hypertrophy. Reducing cardiac SRF level using the antisense-SRF transgenic approach (Anti-SRF-Tg resulted in the expression of miR-1, miR-133a and miR-21 in the opposite direction. Furthermore, we observed that SRF regulates microRNA biogenesis, specifically the transcription of pri-microRNA, thereby affecting the mature microRNA level. The mir-21 promoter sequence is conserved among mouse, rat and human; one SRF binding site was found to be in the mir-21 proximal promoter region of all three species. The mir-21 gene is regulated by SRF and its cofactors, including myocardin and p49/Strap. Our study demonstrates that the downregulation of miR-1, miR-133a, and upregulation of miR-21 can be reversed by one single upstream regulator, SRF. These results may help to develop novel therapeutic interventions targeting microRNA biogenesis.

  14. MicroRNAs expression profile in solid and unicystic ameloblastomas

    Science.gov (United States)

    Setién-Olarra, A.; Bediaga, N. G.; Aguirre-Echebarria, P.; Aguirre-Urizar, J. M.; Mosqueda-Taylor, A.

    2017-01-01

    Objectives Odontogenic tumors (OT) represent a specific pathological category that includes some lesions with unpredictable biological behavior. Although most of these lesions are benign, some, such as the ameloblastoma, exhibit local aggressiveness and high recurrence rates. The most common types of ameloblastoma are the solid/multicystic (SA) and the unicystic ameloblastoma (UA); the latter considered a much less aggressive entity as compared to the SA. The microRNA system regulates the expression of many human genes while its deregulation has been associated with neoplastic development. The aim of the current study was to determine the expression profiles of microRNAs present in the two most common types of ameloblastomas. Material & methods MicroRNA expression profiles were assessed using TaqMan® Low Density Arrays (TLDAs) in 24 samples (8 SA, 8 UA and 8 control samples). The findings were validated using quantitative RTqPCR in an independent cohort of 19 SA, 8 UA and 19 dentigerous cysts as controls. Results We identified 40 microRNAs differentially regulated in ameloblastomas, which are related to neoplastic development and differentiation, and with the osteogenic process. Further validation of the top ranked microRNAs revealed significant differences in the expression of 6 of them in relation to UA, 7 in relation to SA and 1 (miR-489) that was related to both types. Conclusion We identified a new microRNA signature for the ameloblastoma and for its main types, which may be useful to better understand the etiopathogenesis of this neoplasm. In addition, we identified a microRNA (miR-489) that is suggestive of differentiating among solid from unicystic ameloblastoma. PMID:29053755

  15. NMR studies of two spliced leader RNAs using isotope labeling

    Energy Technology Data Exchange (ETDEWEB)

    Lapham, J.; Crothers, D.M. [Yale Univ., New Haven, CT (United States)

    1994-12-01

    Spliced leader RNAs are a class of RNA molecules (<200 nts) involved in the trans splicing of messenger RNA found in trypanosomes, nematodes, and other lower eukaryotes. The spliced leader RNA from the trypanosome Leptomonas Collosoma exists in two alternate structural forms with similar thermal stabilities. The 54 nucleotides on the 5{prime} end of the SL molecule is structurally independent from the 3{prime} half of the RNA, and displays the two structural forms. Furthermore, the favored of the two structures was shown to contain anomalous nuclease sensitivity and thermal stability features, which suggests that there may be tertiary interactions between the splice site and other nucleotides in the 5{prime} end. Multidimensional NMR studies are underway to elucidate the structural elements present in the SL RNAs that give rise to their physical properties. Two spliced leader sequences have been studied. The first, the 54 nucleotides on the 5{prime} end of the L. Collosoma sequence, was selected because of earlier studies in our laboratory. The second sequence is the 5{prime} end of the trypanosome Crithidia Fasciculata, which was chosen because of its greater sequence homology to other SL sequences. Given the complexity of the NMR spectra for RNA molecules of this size, we have incorporated {sup 15}N/{sup 13}C-labeled nucleotides into the RNA. One of the techniques we have developed to simplify the spectra of these RNA molecules is isotope labeling of specific regions of the RNA. This has been especially helpful in assigning the secondary structure of molecules that may be able to adopt multiple conformations. Using this technique one can examine a part of the molecule without spectral interference from the unlabeled portion. We hope this approach will promote an avenue for studying the structure of larger RNAs in their native surroundings.

  16. Identification and characterization of long intergenic noncoding RNAs in bovine mammary glands.

    Science.gov (United States)

    Tong, Chao; Chen, Qiaoling; Zhao, Lili; Ma, Junfei; Ibeagha-Awemu, Eveline M; Zhao, Xin

    2017-06-19

    Mammary glands of dairy cattle produce milk for the newborn offspring and for human consumption. Long intergenic noncoding RNAs (lincRNAs) play various functions in eukaryotic cells. However, types and roles of lincRNAs in bovine mammary glands are still poorly understood. Using computational methods, 886 unknown intergenic transcripts (UITs) were identified from five RNA-seq datasets from bovine mammary glands. Their non-coding potentials were predicted by using the combination of four software programs (CPAT, CNCI, CPC and hmmscan), with 184 lincRNAs identified. By comparison to the NONCODE2016 database and a domestic-animal long noncoding RNA database (ALDB), 112 novel lincRNAs were revealed in bovine mammary glands. Many lincRNAs were found to be located in quantitative trait loci (QTL). In particular, 36 lincRNAs were found in 172 milk related QTLs, whereas one lincRNA was within clinical mastitis QTL region. In addition, targeted genes for 10 lincRNAs with the highest fragments per kilobase of transcript per million fragments mapped (FPKM) were predicted by LncTar for forecasting potential biological functions of these lincRNAs. Further analyses indicate involvement of lincRNAs in several biological functions and different pathways. Our study has provided a panoramic view of lincRNAs in bovine mammary glands and suggested their involvement in many biological functions including susceptibility to clinical mastitis as well as milk quality and production. This integrative annotation of mammary gland lincRNAs broadens and deepens our understanding of bovine mammary gland biology.

  17. MicroRNAs associated with exercise and diet: a systematic review.

    Science.gov (United States)

    Flowers, Elena; Won, Gloria Y; Fukuoka, Yoshimi

    2015-01-01

    MicroRNAs are posttranscriptional regulators of gene expression. MicroRNAs reflect individual biologic adaptation to exposures in the environment. As such, measurement of circulating microRNAs presents an opportunity to evaluate biologic changes associated with behavioral interventions (i.e., exercise, diet) for weight loss. The aim of this study was to perform a systematic review of the literature to summarize what is known about circulating microRNAs associated with exercise, diet, and weight loss. We performed a systematic review of three scientific databases. We included studies reporting on circulating microRNAs associated with exercise, diet, and weight loss in humans. Of 1,219 studies identified in our comprehensive database search, 14 were selected for inclusion. Twelve reported on microRNAs associated with exercise, and two reported on microRNAs associated with diet and weight loss. The majority of studies used a quasiexperimental, cross-sectional design. There were numerous differences in the type and intensity of exercise and dietary interventions, the biologic source of microRNAs, and the methodological approaches used quantitate microRNAs. Data from several studies support an association between circulating microRNAs and exercise. The evidence for an association between circulating microRNAs and diet is weaker because of a small number of studies. Additional research is needed to validate previous observations using methodologically rigorous approaches to microRNA quantitation to determine the specific circulating microRNA signatures associated with behavioral approaches to weight loss. Future directions include longitudinal studies to determine if circulating microRNAs are predictive of response to behavioral interventions. Copyright © 2015 the American Physiological Society.

  18. Small and Long Regulatory RNAs in the Immune System and Immune Diseases

    OpenAIRE

    Stachurska, Anna; Zorro, Maria M.; van der Sijde, Marijke R.; Withoff, Sebo

    2014-01-01

    Cellular differentiation is regulated on the level of gene expression, and it is known that dysregulation of gene expression can lead to deficiencies in differentiation that contribute to a variety of diseases, particularly of the immune system. Until recently, it was thought that the dysregulation was governed by changes in the binding or activity of a class of proteins called transcription factors. However, the discovery of micro-RNAs and recent descriptions of long non-coding RNAs (lncRNAs...

  19. Quantification of miRNAs by a simple and specific qPCR method

    DEFF Research Database (Denmark)

    Cirera Salicio, Susanna; Busk, Peter K.

    2014-01-01

    MicroRNAs (miRNAs) are powerful regulators of gene expression at posttranscriptional level and play important roles in many biological processes and in disease. The rapid pace of the emerging field of miRNAs has opened new avenues for development of techniques to quantitatively determine mi...... in miRNA quantification. Furthermore, the method is easy to perform with common laboratory reagents, which allows miRNA quantification at low cost....

  20. Roles of small RNAs in soybean defense against Phytophthora sojae infection.

    Science.gov (United States)

    Wong, James; Gao, Lei; Yang, Yang; Zhai, Jixian; Arikit, Siwaret; Yu, Yu; Duan, Shuyi; Chan, Vicky; Xiong, Qin; Yan, Jun; Li, Shengben; Liu, Renyi; Wang, Yuanchao; Tang, Guiliang; Meyers, Blake C; Chen, Xuemei; Ma, Wenbo

    2014-09-01

    The genus Phytophthora consists of many notorious pathogens of crops and forestry trees. At present, battling Phytophthora diseases is challenging due to a lack of understanding of their pathogenesis. We investigated the role of small RNAs in regulating soybean defense in response to infection by Phytophthora sojae, the second most destructive pathogen of soybean. Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are universal regulators that repress target gene expression in eukaryotes. We identified known and novel small RNAs that differentially accumulated during P. sojae infection in soybean roots. Among them, miR393 and miR166 were induced by heat-inactivated P. sojae hyphae, indicating that they may be involved in soybean basal defense. Indeed, knocking down the level of mature miR393 led to enhanced susceptibility of soybean to P. sojae; furthermore, the expression of isoflavonoid biosynthetic genes was drastically reduced in miR393 knockdown roots. These data suggest that miR393 promotes soybean defense against P. sojae. In addition to miRNAs, P. sojae infection also resulted in increased accumulation of phased siRNAs (phasiRNAs) that are predominantly generated from canonical resistance genes encoding nucleotide binding-leucine rich repeat proteins and genes encoding pentatricopeptide repeat-containing proteins. This work identifies specific miRNAs and phasiRNAs that regulate defense-associated genes in soybean during Phytophthora infection. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. Nanotechnology-Based Detection of Novel microRNAs for Early Diagnosis of Prostate Cancer

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-15-1-0157 TITLE: Nanotechnology -Based Detection of Novel microRNAs for Early Diagnosis of Prostate Cancer PRINCIPAL...TITLE AND SUBTITLE Nanotechnology -Based Detection of Novel microRNAs for Early Diagnosis of Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER...identify novel differentially expressed miRNAs in the body fluids (blood, urine, etc.) for an early detection of PCa. Advances in nanotechnology and

  2. Identification of Viscum album L. miRNAs and prediction of their medicinal values.

    Directory of Open Access Journals (Sweden)

    Wenyan Xie

    Full Text Available MicroRNAs (miRNAs are a class of approximately 22 nucleotides single-stranded non-coding RNA molecules that play crucial roles in gene expression. It has been reported that the plant miRNAs might enter mammalian bloodstream and have a functional role in human metabolism, indicating that miRNAs might be one of the hidden bioactive ingredients in medicinal plants. Viscum album L. (Loranthaceae, European mistletoe has been widely used for the treatment of cancer and cardiovascular diseases, but its functional compounds have not been well characterized. We considered that miRNAs might be involved in the pharmacological activities of V. album. High-throughput Illumina sequencing was performed to identify the novel and conserved miRNAs of V. album. The putative human targets were predicted. In total, 699 conserved miRNAs and 1373 novel miRNAs have been identified from V. album. Based on the combined use of TargetScan, miRanda, PITA, and RNAhybrid methods, the intersection of 30697 potential human genes have been predicted as putative targets of 29 novel miRNAs, while 14559 putative targets were highly enriched in 33 KEGG pathways. Interestingly, these highly enriched KEGG pathways were associated with some human diseases, especially cancer, cardiovascular diseases and neurological disorders, which might explain the clinical use as well as folk medicine use of mistletoe. However, further experimental validation is necessary to confirm these human targets of mistletoe miRNAs. Additionally, target genes involved in bioactive components synthesis in V. album were predicted as well. A total of 68 miRNAs were predicted to be involved in terpenoid biosynthesis, while two miRNAs including val-miR152 and miR9738 were predicted to target viscotoxins and lectins, respectively, which increased the knowledge regarding miRNA-based regulation of terpenoid biosynthesis, lectin and viscotoxin expressions in V. album.

  3. miRNAs in Tuberculosis: New Avenues for Diagnosis and Host-Directed Therapy

    Directory of Open Access Journals (Sweden)

    Naveed Sabir

    2018-03-01

    Full Text Available Tuberculosis (TB is one of the most fatal infectious diseases and a leading cause of mortality, with 95% of these deaths occurring in developing countries. The causative agent, Mycobacterium tuberculosis (Mtb, has a well-established ability to circumvent the host’s immune system for its intracellular survival. microRNAs (miRNAs are small, non-coding RNAs having an important function at the post-transcriptional level and are involved in shaping immunity by regulating the repertoire of genes expressed in immune cells. It has been established in recent studies that the innate immune response against TB is significantly regulated by miRNAs. Moreover, differential expression of miRNA in Mtb infection can reflect the disease progression and may help distinguish between active and latent TB infection (LTBI. These findings encouraged the application of miRNAs as potential biomarkers. Similarly, active participation of miRNAs in modulation of autophagy and apoptosis responses against Mtb opens an exciting avenue for the exploitation of miRNAs as host directed therapy (HDT against TB. Nanoparticles mediated delivery of miRNAs to treat various diseases has been reported and this technology has a great potential to be used in TB. In reality, this exploitation of miRNAs as biomarkers and in HDT is still in its infancy stage, and more studies using animal models mimicking human TB are advocated to assess the role of miRNAs as biomarkers and therapeutic targets. In this review, we attempt to summarize the recent advancements in the role of miRNAs in TB as immune modulator, miRNAs’ capability to distinguish between active and latent TB and, finally, usage of miRNAs as therapeutic targets against TB.

  4. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing

    Directory of Open Access Journals (Sweden)

    Chen Shou-Yi

    2011-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs regulate gene expression by mediating gene silencing at transcriptional and post-transcriptional levels in higher plants. miRNAs and related target genes have been widely studied in model plants such as Arabidopsis and rice; however, the number of identified miRNAs in soybean (Glycine max is limited, and global identification of the related miRNA targets has not been reported in previous research. Results In our study, a small RNA library and a degradome library were constructed from developing soybean seeds for deep sequencing. We identified 26 new miRNAs in soybean by bioinformatic analysis and further confirmed their expression by stem-loop RT-PCR. The miRNA star sequences of 38 known miRNAs and 8 new miRNAs were also discovered, providing additional evidence for the existence of miRNAs. Through degradome sequencing, 145 and 25 genes were identified as targets of annotated miRNAs and new miRNAs, respectively. GO analysis indicated that many of the identified miRNA targets may function in soybean seed development. Additionally, a soybean homolog of Arabidopsis SUPPRESSOR OF GENE SLIENCING 3 (AtSGS3 was detected as a target of the newly identified miRNA Soy_25, suggesting the presence of feedback control of miRNA biogenesis. Conclusions We have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library and a degradome library. Our study provides more information about the regulatory network of miRNAs in soybean and advances our understanding of miRNA functions during seed development.

  5. MicroRNAs, Innate Immunity and Ventricular Rupture in Human Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Nina Zidar

    2011-01-01

    Full Text Available MicroRNAs are non-coding RNAs, functionioning as post-transcriptional regulators of gene expression. Some microRNAs have been demonstrated to play a role in regulation of innate immunity. After myocardial infarction (MI, innate immunity is activated leading to an acute inflammatory reaction. There is evidence that an intense inflammatory reaction might contribute to the development of ventricular rupture (VR after MI.

  6. Evolutionary Dynamics of Small RNAs in 27 Escherichia coli and Shigella Genomes

    Science.gov (United States)

    Skippington, Elizabeth; Ragan, Mark A.

    2012-01-01

    Small RNAs (sRNAs) are widespread in bacteria and play critical roles in regulating physiological processes. They are best characterized in Escherichia coli K-12 MG1655, where 83 sRNAs constitute nearly 2% of the gene complement. Most sRNAs act by base pairing with a target mRNA, modulating its translation and/or stability; many of these RNAs share only limited complementarity to their mRNA target, and require the chaperone Hfq to facilitate base pairing. Little is known about the evolutionary dynamics of bacterial sRNAs. Here, we apply phylogenetic and network analyses to investigate the evolutionary processes and principles that govern sRNA gene distribution in 27 E. coli and Shigella genomes. We identify core (encoded in all 27 genomes) and variable sRNAs; more than two-thirds of the E. coli K-12 MG1655 sRNAs are core, whereas the others show patterns of presence and absence that are principally due to genetic loss, not duplication or lateral genetic transfer. We present evidence that variable sRNAs are less tightly integrated into cellular genetic regulatory networks than are the core sRNAs, and that Hfq facilitates posttranscriptional cross talk between the E. coli–Shigella core and variable genomes. Finally, we present evidence that more than 80% of genes targeted by Hfq-associated core sRNAs have been transferred within the E. coli–Shigella clade, and that most of these genes have been transferred intact. These results suggest that Hfq and sRNAs help integrate laterally acquired genes into established regulatory networks. PMID:22223756

  7. Systematic review regulatory principles of non-coding RNAs in cardiovascular diseases.

    Science.gov (United States)

    Li, Yongsheng; Huo, Caiqin; Pan, Tao; Li, Lili; Jin, Xiyun; Lin, Xiaoyu; Chen, Juan; Zhang, Jinwen; Guo, Zheng; Xu, Juan; Li, Xia

    2017-08-16

    Cardiovascular diseases (CVDs) continue to be a major cause of morbidity and mortality, and non-coding RNAs (ncRNAs) play critical roles in CVDs. With the recent emergence of high-throughput technologies, including small RNA sequencing, investigations of CVDs have been transformed from candidate-based studies into genome-wide undertakings, and a number of ncRNAs in CVDs were discovered in various studies. A comprehensive review of these ncRNAs would be highly valuable for researchers to get a complete picture of the ncRNAs in CVD. To address these knowledge gaps and clinical needs, in this review, we first discussed dysregulated ncRNAs and their critical roles in cardiovascular development and related diseases. Moreover, we reviewed >28 561 published papers and documented the ncRNA-CVD association benchmarking data sets to summarize the principles of ncRNA regulation in CVDs. This data set included 13 249 curated relationships between 9503 ncRNAs and 139 CVDs in 12 species. Based on this comprehensive resource, we summarized the regulatory principles of dysregulated ncRNAs in CVDs, including the complex associations between ncRNA and CVDs, tissue specificity and ncRNA synergistic regulation. The highlighted principles are that CVD microRNAs (miRNAs) are highly expressed in heart tissue and that they play central roles in miRNA-miRNA functional synergistic network. In addition, CVD-related miRNAs are close to one another in the functional network, indicating the modular characteristic features of CVD miRNAs. We believe that the regulatory principles summarized here will further contribute to our understanding of ncRNA function and dysregulation mechanisms in CVDs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Systematically profiling and annotating long intergenic non-coding RNAs in human embryonic stem cell.

    Science.gov (United States)

    Tang, Xing; Hou, Mei; Ding, Yang; Li, Zhaohui; Ren, Lichen; Gao, Ge

    2013-01-01

    While more and more long intergenic non-coding RNAs (lincRNAs) were identified to take important roles in both maintaining pluripotency and regulating differentiation, how these lincRNAs may define and drive cell fate decisions on a global scale are still mostly elusive. Systematical profiling and comprehensive annotation of embryonic stem cells lincRNAs may not only bring a clearer big picture of these novel regulators but also shed light on their functionalities. Based on multiple RNA-Seq datasets, we systematically identified 300 human embryonic stem cell lincRNAs (hES lincRNAs). Of which, one forth (78 out of 300) hES lincRNAs were further identified to be biasedly expressed in human ES cells. Functional analysis showed that they were preferentially involved in several early-development related biological processes. Comparative genomics analysis further suggested that around half of the identified hES lincRNAs were conserved in mouse. To facilitate further investigation of these hES lincRNAs, we constructed an online portal for biologists to access all their sequences and annotations interactively. In addition to navigation through a genome browse interface, users can also locate lincRNAs through an advanced query interface based on both keywords and expression profiles, and analyze results through multiple tools. By integrating multiple RNA-Seq datasets, we systematically characterized and annotated 300 hES lincRNAs. A full functional web portal is available freely at http://scbrowse.cbi.pku.edu.cn. As the first global profiling and annotating of human embryonic stem cell lincRNAs, this work aims to provide a valuable resource for both experimental biologists and bioinformaticians.

  9. Exosomal MicroRNAs as Potential Biomarkers in Neuropsychiatric Disorders.

    Science.gov (United States)

    Fries, Gabriel R; Quevedo, Joao

    2018-01-01

    This chapter will discuss the potential use of microRNAs, particularly those located in peripherally-isolated exosomes, as biomarkers in neuropsychiatric disorders. These extracellular vesicles are released as a form of cell-to-cell communication and may mediate the soma-to-germline transmission of brain-relevant information, thereby potentially contributing to the inter- or transgenerational transmission of behavioral traits. Recent novel methods allow for the enrichment of peripheral exosomes specifically released by neurons and astrocytes and may provide valuable brain-relevant biosignatures of disease.

  10. MicroRNAs meet calcium: joint venture in ER proteostasis.

    Science.gov (United States)

    Finger, Fabian; Hoppe, Thorsten

    2014-11-04

    The endoplasmic reticulum (ER) is a cellular compartment that has a key function in protein translation and folding. Maintaining its integrity is of fundamental importance for organism's physiology and viability. The dynamic regulation of intraluminal ER Ca(2+) concentration directly influences the activity of ER-resident chaperones and stress response pathways that balance protein load and folding capacity. We review the emerging evidence that microRNAs play important roles in adjusting these processes to frequently changing intracellular and environmental conditions to modify ER Ca(2+) handling and storage and maintain ER homeostasis. Copyright © 2014, American Association for the Advancement of Science.

  11. MicroRNAs in inflammation and response to injuries induced by environmental pollution

    International Nuclear Information System (INIS)

    Sonkoly, Enikö; Pivarcsi, Andor

    2011-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that regulate basic biological processes by posttranscriptional suppression of their target genes. Altered miRNA expression may lead to widespread gene expression changes and has been implicated in pathophysiological processes such as cancer and inflammation. In this review, we summarize the present knowledge about the role of miRNAs in inflammation and in the response to environmental agents and pollutants, such as cigarette smoke, ethanol, carcinogenic chemicals such as benzo(a)pyrene (BaP) and dioxin, and UV radiation.

  12. A comparative study of small RNAs in Toxoplasma gondii of distinct genotypes

    Directory of Open Access Journals (Sweden)

    Wang Jielin

    2012-09-01

    Full Text Available Abstract Background Toxoplasma gondii is an intracellular parasite with a significant impact on human health. Inside the mammalian and avian hosts, the parasite can undergo rapid development or remain inactive in the cysts. The mechanism that regulates parasite proliferation has not been fully understood. Small noncoding RNAs (sncRNA such as microRNAs (miRNAs are endogenous regulatory factors that can modulate cell differentiation and development. It is anticipated that hundreds of miRNAs regulate the expression of thousands of genes in a single organism. SncRNAs have been identified in T. gondii, however the profiles of sncRNAs expression and their potential regulatory function in parasites of distinct genotypes has largely been unknown. Methods The transcription profiles of miRNAs in the two genetically distinct strains, RH and ME49, of T. gondii were investigated and compared by a high-through-put RNA sequencing technique and systematic bioinformatics analysis. The expression of some of the miRNAs was confirmed by Northern blot analysis. Results 1,083,320 unique sequences were obtained. Of which, 17 conserved miRNAs related to 2 metazoan miRNA families and 339 novel miRNAs were identified. A total of 175 miRNAs showed strain-specific expression, of which 155 miRNAs were up-regulated in RH strain and 20 miRNAs were up-regulated in ME49 strain. Strain-specific expression of miRNAs in T. gondii could be due to activation of specific genes at different genomic loci or due to arm-switching of the same pre-miRNA duplex. Conclusions Evidence for the differential expression of miRNAs in the two genetically distinct strains of T. gondii has been identified and defined. MiRNAs of T. gondii are more species-specific as compared to other organisms, which can be developed as diagnostic biomarkers for toxoplasmosis. The data also provide a framework for future studies on RNAi-dependent regulatory mechanisms in the zoonotic parasite.

  13. MicroRNAs in inflammation and response to injuries induced by environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Sonkoly, Enikoe [Molecular Dermatology Research Group, Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Department of Dermatology and Allergology, University of Szeged, Szeged (Hungary); Pivarcsi, Andor, E-mail: andor.pivarcsi@ki.se [Molecular Dermatology Research Group, Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Department of Dermatology and Allergology, University of Szeged, Szeged (Hungary)

    2011-12-01

    MicroRNAs (miRNAs) are small noncoding RNAs that regulate basic biological processes by posttranscriptional suppression of their target genes. Altered miRNA expression may lead to widespread gene expression changes and has been implicated in pathophysiological processes such as cancer and inflammation. In this review, we summarize the present knowledge about the role of miRNAs in inflammation and in the response to environmental agents and pollutants, such as cigarette smoke, ethanol, carcinogenic chemicals such as benzo(a)pyrene (BaP) and dioxin, and UV radiation.

  14. Decoding the usefulness of non-coding RNAs as breast cancer markers.

    Science.gov (United States)

    Amorim, Maria; Salta, Sofia; Henrique, Rui; Jerónimo, Carmen

    2016-09-15

    Although important advances in the management of breast cancer (BC) have been recently accomplished, it still constitutes the leading cause of cancer death in women worldwide. BC is a heterogeneous and complex disease, making clinical prediction of outcome a very challenging task. In recent years, gene expression profiling emerged as a tool to assist in clinical decision, enabling the identification of genetic signatures that better predict prognosis and response to therapy. Nevertheless, translation to routine practice has been limited by economical and technical reasons and, thus, novel biomarkers, especially those requiring non-invasive or minimally invasive collection procedures, while retaining high sensitivity and specificity might represent a significant development in this field. An increasing amount of evidence demonstrates that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are aberrantly expressed in several cancers, including BC. miRNAs are of particular interest as new, easily accessible, cost-effective and non-invasive tools for precise management of BC patients because they circulate in bodily fluids (e.g., serum and plasma) in a very stable manner, enabling BC assessment and monitoring through liquid biopsies. This review focus on how ncRNAs have the potential to answer present clinical needs in the personalized management of patients with BC and comprehensively describes the state of the art on the role of ncRNAs in the diagnosis, prognosis and prediction of response to therapy in BC.

  15. Identification of microRNAs and their targets in Finger millet by high throughput sequencing.

    Science.gov (United States)

    Usha, S; Jyothi, M N; Sharadamma, N; Dixit, Rekha; Devaraj, V R; Nagesh Babu, R

    2015-12-15

    MicroRNAs are short non-coding RNAs which play an important role in regulating gene expression by mRNA cleavage or by translational repression. The majority of identified miRNAs were evolutionarily conserved; however, others expressed in a species-specific manner. Finger millet is an important cereal crop; nonetheless, no practical information is available on microRNAs to date. In this study, we have identified 95 conserved microRNAs belonging to 39 families and 3 novel microRNAs by high throughput sequencing. For the identified conserved and novel miRNAs a total of 507 targets were predicted. 11 miRNAs were validated and tissue specificity was determined by stem loop RT-qPCR, Northern blot. GO analyses revealed targets of miRNA were involved in wide range of regulatory functions. This study implies large number of known and novel miRNAs found in Finger millet which may play important role in growth and development. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A role for small RNAs in DNA double-strand break repair

    DEFF Research Database (Denmark)

    Wei, W.; Ba, Z.; Wu, Y.

    2012-01-01

    Eukaryotes have evolved complex mechanisms to repair DNA double-strand breaks (DSBs) through coordinated actions of protein sensors, transducers, and effectors. Here we show that ∼21-nucleotide small RNAs are produced from the sequences in the vicinity of DSB sites in Arabidopsis and in human cells....... We refer to these as diRNAs for DSB-induced small RNAs. In Arabidopsis, the biogenesis of diRNAs requires the PI3 kinase ATR, RNA polymerase IV (Pol IV), and Dicer-like proteins. Mutations in these proteins as well as in Pol V cause significant reduction in DSB repair efficiency. In Arabidopsis, di...

  17. miRNAs in inflammatory skin diseases and their clinical implications

    DEFF Research Database (Denmark)

    Løvendorf, Marianne B; Skov, Lone

    2015-01-01

    biological processes. The clinical implications of miRNAs are intriguing, both from a diagnostic and a therapeutic perspective. Accordingly, there is emerging evidence for the clinical potential of miRNAs as both biomarkers and possible therapeutic targets in skin diseases. Future studies will hopefully...... incomplete; however, it is known that miRNAs are implicated in various cellular processes of both normal and diseased skin. Some miRNAs appear to be consistently deregulated in several different inflammatory skin diseases, including psoriasis and atopic dermatitis, indicating a common role in fundamental...

  18. microRNAs in nociceptive circuits as predictors of future clinical applications

    Directory of Open Access Journals (Sweden)

    Michaela eKress

    2013-10-01

    Full Text Available Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain, and non-coding RNAs (ncRNAs – and microRNAs (miRNAs in particular - regulate both immune and neuronal processes. Specifically, miRNAs control macromolecular complexes in neurons, glia and immune cells and regulate signals used for neuro-immune communication in the pain pathway. Therefore, miRNAs may be hypothesised as critically important master switches modulating chronic pain. In particular, understanding the concerted function of miRNA in the regulation of nociception and endogenous analgesia and defining the importance of miRNAs in the circuitries and cognitive, emotional and behavioural components involved in pain is expected to shed new light on the enigmatic pathophysiology of neuropathic pain, migraine and complex regional pain syndrome (CRPS. Specific miRNAs may evolve as new druggable molecular targets for pain prevention and relief. Furthermore, predisposing miRNA expression patterns and inter-individual variations and polymorphisms in miRNAs and/or their binding sites may serve as biomarkers for pain and help to predict individual risks for certain types of pain and responsiveness to analgesic drugs. miRNA-based diagnostics are expected to develop into hands-on tools that allow better patient stratification, improved mechanism-based treatment, and targeted prevention strategies for high risk individuals.

  19. Gene function analysis by artificial microRNAs in Physcomitrella patens.

    KAUST Repository

    Khraiwesh, Basel

    2011-01-01

    MicroRNAs (miRNAs) are ~21 nt long small RNAs transcribed from endogenous MIR genes which form precursor RNAs with a characteristic hairpin structure. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences resulting in cleavage or translational inhibition of the target RNA. Artificial miRNAs (amiRNAs) can be generated by exchanging the miRNA/miRNA sequence of endogenous MIR precursor genes, while maintaining the general pattern of matches and mismatches in the foldback. Thus, for functional gene analysis amiRNAs can be designed to target any gene of interest. During the last decade the moss Physcomitrella patens emerged as a model plant for functional gene analysis based on its unique ability to integrate DNA into the nuclear genome by homologous recombination which allows for the generation of targeted gene knockout mutants. In addition to this, we developed a protocol to express amiRNAs in P. patens that has particular advantages over the generation of knockout mutants and might be used to speed up reverse genetics approaches in this model species.

  20. Interaction of higher plant ribosomal 5S RNAs with ''Xenopus laevis'' transcriptional factor IIIA

    International Nuclear Information System (INIS)

    Barciszewska, M.Z.

    1994-01-01

    In this paper transcriptional factor IIIA (TFIIIA) has been used as a probe for identity of three-dimensional-structure of eukaryotic 5S rRNAs. I was interested in finding a common motif in plant and ''Xenopus'' 5S rRNAs for TFIIIA recognition. I found that the two eukaryotic 5S rRNAs (from wheat germ and lupin seeds) are recognized by ''X. laevis'' TFIIIA and the data clearly suggest that these 5S rRNAs have very similar if not identical three-dimensional structures. Also effects of various conditions on stability of these complexes have been studied. (author). 30 refs, 6 figs, 1 tab

  1. Dynamic localisation of mature microRNAs in Human nucleoli is influenced by exogenous genetic materials.

    Science.gov (United States)

    Li, Zhou Fang; Liang, Yi Min; Lau, Pui Ngan; Shen, Wei; Wang, Dai Kui; Cheung, Wing Tai; Xue, Chun Jason; Poon, Lit Man; Lam, Yun Wah

    2013-01-01

    Although microRNAs are commonly known to function as a component of RNA-induced silencing complexes in the cytoplasm, they have been detected in other organelles, notably the nucleus and the nucleolus, of mammalian cells. We have conducted a systematic search for miRNAs in HeLa cell nucleoli, and identified 11 abundant miRNAs with a high level of nucleolar accumulation. Through in situ hybridisation, we have localised these miRNAs, including miR-191 and miR-484, in the nucleolus of a diversity of human and rodent cell lines. The nucleolar association of these miRNAs is resistant to various cellular stresses, but highly sensitive to the presence of exogenous nucleic acids. Introduction of both single- and double-stranded DNA as well as double stranded RNA rapidly induce the redistribution of nucleolar miRNAs to the cytoplasm. A similar change in subcellular distribution is also observed in cells infected with the influenza A virus. The partition of miRNAs between the nucleolus and the cytoplasm is affected by Leptomycin B, suggesting a role of Exportin-1 in the intracellular shuttling of miRNAs. This study reveals a previously unknown aspect of miRNA biology, and suggests a possible link between these small noncoding RNAs and the cellular management of foreign genetic materials.

  2. Reliable reference miRNAs for quantitative gene expression analysis of stress responses in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Podolska, Agnieszka; Pocock, Roger David John

    2014-01-01

    Quantitative real-time PCR (qPCR) has become the "gold standard" for measuring expression levels of individual miRNAs. However, little is known about the validity of reference miRNAs, the improper use of which can result in misleading interpretation of data.......Quantitative real-time PCR (qPCR) has become the "gold standard" for measuring expression levels of individual miRNAs. However, little is known about the validity of reference miRNAs, the improper use of which can result in misleading interpretation of data....

  3. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer.

    Science.gov (United States)

    Nedaeinia, R; Manian, M; Jazayeri, M H; Ranjbar, M; Salehi, R; Sharifi, M; Mohaghegh, F; Goli, M; Jahednia, S H; Avan, A; Ghayour-Mobarhan, M

    2017-02-01

    The most important biological function of exosomes is their possible use as biomarkers in clinical diagnosis. Compared with biomarkers identified in conventional specimens such as serum or urine, exosomal biomarkers provide the highest amount of sensitivity and specificity, which can be attributed to their excellent stability. Exosomes, which harbor different types of proteins, nucleic acids and lipids, are present in almost all bodily fluids. The molecular constituents of exosomes, especially exosomal proteins and microRNAs (miRNAs), are promising as biomarkers in clinical diagnosis. This discovery that exosomes also contain messenger RNAs and miRNAs shows that they could be carriers of genetic information. Although the majority of RNAs found in exosomes are degraded RNA fragments with a length of exosomal miRNAs have been found to be associated with certain diseases. Several studies have pointed out miRNA contents of circulating exosomes that are similar to those of originating cancer cells. In this review, the recent advances in circulating exosomal miRNAs as biomarkers in gastrointestinal cancers are discussed. These studies indicated that miRNAs can be detected in exosomes isolated from body fluids such as saliva, which suggests potential advantages of using exosomal miRNAs as noninvasive novel biomarkers.

  4. Dynamic localisation of mature microRNAs in Human nucleoli is influenced by exogenous genetic materials.

    Directory of Open Access Journals (Sweden)

    Zhou Fang Li

    Full Text Available Although microRNAs are commonly known to function as a component of RNA-induced silencing complexes in the cytoplasm, they have been detected in other organelles, notably the nucleus and the nucleolus, of mammalian cells. We have conducted a systematic search for miRNAs in HeLa cell nucleoli, and identified 11 abundant miRNAs with a high level of nucleolar accumulation. Through in situ hybridisation, we have localised these miRNAs, including miR-191 and miR-484, in the nucleolus of a diversity of human and rodent cell lines. The nucleolar association of these miRNAs is resistant to various cellular stresses, but highly sensitive to the presence of exogenous nucleic acids. Introduction of both single- and double-stranded DNA as well as double stranded RNA rapidly induce the redistribution of nucleolar miRNAs to the cytoplasm. A similar change in subcellular distribution is also observed in cells infected with the influenza A virus. The partition of miRNAs between the nucleolus and the cytoplasm is affected by Leptomycin B, suggesting a role of Exportin-1 in the intracellular shuttling of miRNAs. This study reveals a previously unknown aspect of miRNA biology, and suggests a possible link between these small noncoding RNAs and the cellular management of foreign genetic materials.

  5. Identification and developmental profiling of microRNAs in diamondback moth, Plutellaxylostella (L..

    Directory of Open Access Journals (Sweden)

    Pei Liang

    Full Text Available MicroRNAs (miRNAs are a group of small RNAs involved in various biological processes through negative regulation of mRNAs at the post-transcriptional level. Although miRNA profiles have been documented in over two dozen insect species, few are agricultural pests. In this study, both conserved and novel miRNAs in the diamondback moth, Plutella xylostella L., a devastating insect pest of cruciferous crops worldwide, were documented. High-throughput sequencing of a small RNA library constructed from a mixed life stages of P. xylostella, including eggs, 1st to 4th (last instar larvae, pupae and adults, identified 384 miRNAs, of which 174 were P. xylostella specific. In addition, temporal expressions of 234 miRNAs at various developmental stages were investigated using a customized microarray analysis. Among the 91 differentially expressed miRNAs, qRT-PCR analysis was used to validate highly expressed miRNAs at each stage. The combined results not only systematically document miRNA profiles in an agriculturally important insect pest, but also provide molecular targets for future functional analysis and, ultimately, genetic-based pest control practice.

  6. Role of micro-RNAs in LRF and BCL6 oncogenes regulation

    International Nuclear Information System (INIS)

    Rainaldi, G.

    2009-01-01

    Micro RNAs (miRNAs) are short 20-22 nucleotide RNA molecules with an important role in the regulation of gene expression at the post-transcriptional level. MiRNA levels have been shown to change markedly in tumors and their expression profile is currently used to classify and diagnose some tumours. MiRNAs have been classified either as oncogenes (overespressed in tumors) or as tumor suppressor (down regulated), and in certain cases they can behave as both depending on the type of tumor. In many cases miRNAs and transcription factors interact directly so that transcriptional and post-transcriptional regulation of gene expression are finely regulated

  7. Bioinformatic identification and experimental validation of miRNAs from foxtail millet (Setaria italica).

    Science.gov (United States)

    Han, Jun; Xie, Hao; Sun, Qingpeng; Wang, Jun; Lu, Min; Wang, Weixiang; Guo, Erhu; Pan, Jinbao

    2014-08-10

    MiRNAs are a novel group of non-coding small RNAs that negatively regulate gene expression. Many miRNAs have been identified and investigated extensively in plant species with sequenced genomes. However, few miRNAs have been identified in foxtail millet (Setaria italica), which is an ancient cereal crop of great importance for dry land agriculture. In this study, 271 foxtail millet miRNAs belonging to 44 families were identified using a bioinformatics approach. Twenty-three pairs of sense/antisense miRNAs belonging to 13 families, and 18 miRNA clusters containing members of 8 families were discovered in foxtail millet. We identified 432 potential targets for 38 miRNA families, most of which were predicted to be involved in plant development, signal transduction, metabolic pathways, disease resistance, and environmental stress responses. Gene ontology (GO) analysis revealed that 101, 56, and 23 target genes were involved in molecular functions, biological processes, and cellular components, respectively. We investigated the expression patterns of 43 selected miRNAs using qRT-PCR analysis. All of the miRNAs were expressed ubiquitously with many exhibiting different expression levels in different tissues. We validated five predicted targets of four miRNAs using the RNA ligase mediated rapid amplification of cDNA end (5'-RLM-RACE) method. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Identification and Characterization of microRNAs during Maize Grain Filling.

    Science.gov (United States)

    Jin, Xining; Fu, Zhiyuan; Lv, Panqing; Peng, Qian; Ding, Dong; Li, Weihua; Tang, Jihua

    2015-01-01

    The grain filling rate is closely associated with final grain yield of maize during the period of maize grain filling. To identify the key microRNAs (miRNAs) and miRNA-dependent gene regulation networks of grain filling in maize, a deep-sequencing technique was used to research the dynamic expression patterns of miRNAs at four distinct developmental grain filling stages in Zhengdan 958, which is an elite hybrid and cultivated widely in China. The sequencing result showed that the expression amount of almost all miRNAs was changing with the development of the grain filling and formed in seven groups. After normalization, 77 conserved miRNAs and 74 novel miRNAs were co-detected in these four samples. Eighty-one out of 162 targets of the conserved miRNAs belonged to transcriptional regulation (81, 50%), followed by oxidoreductase activity (18, 11%), signal transduction (16, 10%) and development (15, 9%). The result showed that miRNA 156, 393, 396 and 397, with their respective targets, might play key roles in the grain filling rate by regulating maize growth, development and environment stress response. The result also offered novel insights into the dynamic change of miRNAs during the developing process of maize kernels and assisted in the understanding of how miRNAs are functioning about the grain filling rate.

  9. Identification, characterization and expression analysis of pigeonpea miRNAs in response to Fusarium wilt.

    Science.gov (United States)

    Hussain, Khalid; Mungikar, Kanak; Kulkarni, Abhijeet; Kamble, Avinash

    2018-05-05

    Upon confrontation with unfavourable conditions, plants invoke a very complex set of biochemical and physiological reactions and alter gene expression patterns to combat the situations. MicroRNAs (miRNAs), a class of small non-coding RNA, contribute extensively in regulation of gene expression through translation inhibition or degradation of their target mRNAs during such conditions. Therefore, identification of miRNAs and their targets holds importance in understanding the regulatory networks triggered during stress. Structure and sequence similarity based in silico prediction of miRNAs in Cajanus cajan L. (Pigeonpea) draft genome sequence has been carried out earlier. These annotations also appear in related GenBank genome sequence entries. However, there are no reports available on context dependent miRNA expression and their targets in pigeonpea. Therefore, in the present study we addressed these questions computationally, using pigeonpea EST sequence information. We identified five novel pigeonpea miRNA precursors, their mature forms and targets. Interestingly, only one of these miRNAs (miR169i-3p) was identified earlier in draft genome sequence. We then validated expression of these miRNAs, experimentally. It was also observed that these miRNAs show differential expression patterns in response to Fusarium inoculation indicating their biotic stress responsive nature. Overall these results will help towards better understanding the regulatory network of defense during pigeonpea -pathogen interactions and role of miRNAs in the process. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Micro-masters of glioblastoma biology and therapy: increasingly recognized roles for microRNAs.

    Science.gov (United States)

    Floyd, Desiree; Purow, Benjamin

    2014-05-01

    MicroRNAs are small noncoding RNAs encoded in eukaryotic genomes that have been found to play critical roles in most biological processes, including cancer. This is true for glioblastoma, the most common and lethal primary brain tumor, for which microRNAs have been shown to strongly influence cell viability, stem cell characteristics, invasiveness, angiogenesis, metabolism, and immune evasion. Developing microRNAs as prognostic markers or as therapeutic agents is showing increasing promise and has potential to reach the clinic in the next several years. This succinct review summarizes current progress and future directions in this exciting and steadily expanding field.

  11. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription

    OpenAIRE

    Lai, Fan; Orom, Ulf A; Cesaroni, Matteo; Beringer, Malte; Taatjes, Dylan J; Blobel, Gerd A.; Shiekhattar, Ramin

    2013-01-01

    Recent advances in genomic research have revealed the existence of a large number of transcripts devoid of protein-coding potential in multiple organisms 1-8 . While the functional role for long non-coding RNAs (lncRNAs) has been best defined in epigenetic phenomena such as X inactivation and imprinting, different classes of lncRNAs may have varied biological functions 8-13 . We and others have identified a class of lncRNAs, termed ncRNA-activating (ncRNA-a), that function to activate their n...

  12. Web-based tools for microRNAs involved in human cancer.

    Science.gov (United States)

    Mar-Aguilar, Fermín; Rodríguez-Padilla, Cristina; Reséndez-Pérez, Diana

    2016-06-01

    MicroRNAs (miRNAs/miRs) are a family of small, endogenous and evolutionarily-conserved non-coding RNAs that are involved in the regulation of several cellular and functional processes. miRNAs can act as oncogenes or tumor suppressors in all types of cancer, and could be used as prognostic and diagnostic biomarkers. Databases and computational algorithms are behind the majority of the research performed on miRNAs. These tools assemble and curate the relevant information on miRNAs and present it in a user-friendly manner. The current review presents 14 online databases that address every aspect of miRNA cancer research. Certain databases focus on miRNAs and a particular type of cancer, while others analyze the behavior of miRNAs in different malignancies at the same time. Additional databases allow researchers to search for mutations in miRNAs or their targets, and to review the naming history of a particular miRNA. All these databases are open-access, and are a valuable tool for those researchers working with these molecules, particularly those who lack access to an advanced computational infrastructure.

  13. Aberrant Long Noncoding RNAs Expression Profiles Affect Cisplatin Resistance in Lung Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Lijuan Hu

    2017-01-01

    Full Text Available Background. Long noncoding RNAs (lncRNAs have been shown to be involved in the mechanism of cisplatin resistance in lung adenocarcinoma (LAD. However, the roles of lncRNAs in cisplatin resistance in LAD are not well understood. Methods. We used a high-throughput microarray to compare the lncRNA and mRNA expression profiles in cisplatin resistance cell A549/DDP and cisplatin sensitive cell A549. Several candidate cisplatin resistance-associated lncRNAs were verified by real-time quantitative reverse transcription polymerase chain reaction (PCR analysis. Results. We found that 1,543 lncRNAs and 1,713 mRNAs were differentially expressed in A549/DDP cell and A549 cell, hinting that many lncRNAs were irregular from cisplatin resistance in LAD. We also obtain the fact that 12 lncRNAs were aberrantly expressed in A549/DDP cell compared with A549 cell by quantitative PCR. Among these, UCA1 was the aberrantly expressed lncRNA and can significantly reduce the IC50 of cisplatin in A549/DDP cell after knockdown, while it can increase the IC50 of cisplatin after UCA1 was overexpressed in NCI-H1299. Conclusions. We obtained patterns of irregular lncRNAs and they may play a key role in cisplatin resistance of LAD.

  14. Identification of microRNAs differentially expressed involved in male flower development.

    Science.gov (United States)

    Wang, Zhengjia; Huang, Jianqin; Sun, Zhichao; Zheng, Bingsong

    2015-03-01

    Hickory (Carya cathayensis Sarg.) is one of the most economically important woody trees in eastern China, but its long flowering phase delays yield. Our understanding of the regulatory roles of microRNAs (miRNAs) in male flower development in hickory remains poor. Using high-throughput sequencing technology, we have pyrosequenced two small RNA libraries from two male flower differentiation stages in hickory. Analysis of the sequencing data identified 114 conserved miRNAs that belonged to 23 miRNA families, five novel miRNAs including their corresponding miRNA*s, and 22 plausible miRNA candidates. Differential expression analysis revealed 12 miRNA sequences that were upregulated in the later (reproductive) stage of male flower development. Quantitative real-time PCR showed similar expression trends as that of the deep sequencing. Novel miRNAs and plausible miRNA candidates were predicted using bioinformatic analysis methods. The miRNAs newly identified in this study have increased the number of known miRNAs in hickory, and the identification of differentially expressed miRNAs will provide new avenues for studies into miRNAs involved in the process of male flower development in hickory and other related trees.

  15. Long Non-Coding RNAs: The Key Players in Glioma Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kiang, Karrie Mei-Yee; Zhang, Xiao-Qin; Leung, Gilberto Ka-Kit, E-mail: gilberto@hku.hk [Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong (China)

    2015-07-29

    Long non-coding RNAs (LncRNAs) represent a novel class of RNAs with no functional protein-coding ability, yet it has become increasingly clear that interactions between lncRNAs with other molecules are responsible for important gene regulatory functions in various contexts. Given their relatively high expressions in the brain, lncRNAs are now thought to play important roles in normal brain development as well as diverse disease processes including gliomagenesis. Intriguingly, certain lncRNAs are closely associated with the initiation, differentiation, progression, recurrence and stem-like characteristics in glioma, and may therefore be exploited for the purposes of sub-classification, diagnosis and prognosis. LncRNAs may also serve as potential therapeutic targets as well as a novel biomarkers in the treatment of glioma. In this article, the functional aspects of lncRNAs, particularly within the central nervous system (CNS), will be briefly discussed, followed by highlights of the important roles of lncRNAs in mediating critical steps during glioma development. In addition, the key lncRNA players and their possible mechanistic pathways associated with gliomagenesis will be addressed.

  16. Long Non-Coding RNAs: The Key Players in Glioma Pathogenesis

    International Nuclear Information System (INIS)

    Kiang, Karrie Mei-Yee; Zhang, Xiao-Qin; Leung, Gilberto Ka-Kit

    2015-01-01

    Long non-coding RNAs (LncRNAs) represent a novel class of RNAs with no functional protein-coding ability, yet it has become increasingly clear that interactions between lncRNAs with other molecules are responsible for important gene regulatory functions in various contexts. Given their relatively high expressions in the brain, lncRNAs are now thought to play important roles in normal brain development as well as diverse disease processes including gliomagenesis. Intriguingly, certain lncRNAs are closely associated with the initiation, differentiation, progression, recurrence and stem-like characteristics in glioma, and may therefore be exploited for the purposes of sub-classification, diagnosis and prognosis. LncRNAs may also serve as potential therapeutic targets as well as a novel biomarkers in the treatment of glioma. In this article, the functional aspects of lncRNAs, particularly within the central nervous system (CNS), will be briefly discussed, followed by highlights of the important roles of lncRNAs in mediating critical steps during glioma development. In addition, the key lncRNA players and their possible mechanistic pathways associated with gliomagenesis will be addressed

  17. Characterizing ncRNAs in human pathogenic protists using high-throughput sequencing technology

    Directory of Open Access Journals (Sweden)

    Lesley Joan Collins

    2011-12-01

    Full Text Available ncRNAs are key genes in many human diseases including cancer and viral infection, as well as providing critical functions in pathogenic organisms such as fungi, bacteria, viruses and protists. Until now the identification and characterization of ncRNAs associated with disease has been slow or inaccurate requiring many years of testing to understand complicated RNA and protein gene relationships. High-throughput sequencing now offers the opportunity to characterize miRNAs, siRNAs, snoRNAs and long ncRNAs on a genomic scale making it faster and easier to clarify how these ncRNAs contribute to the disease state. However, this technology is still relatively new, and ncRNA discovery is not an application of high priority for streamlined bioinformatics. Here we summarize background concepts and practical approaches for ncRNA analysis using high-throughput sequencing, and how it relates to understanding human disease. As a case study, we focus on the parasitic protists Giardia lamblia and Trichomonas vaginalis, where large evolutionary distance has meant difficulties in comparing ncRNAs with those from model eukaryotes. A combination of biological, computational and sequencing approaches has enabled easier classification of ncRNA classes such as snoRNAs, but has also aided the identification of novel classes. It is hoped that a higher level of understanding of ncRNA expression and interaction may aid in the development of less harsh treatment for protist-based diseases.

  18. Long Noncoding RNAs in Digestive System Malignancies: A Novel Class of Cancer Biomarkers and Therapeutic Targets?

    Directory of Open Access Journals (Sweden)

    Athina Kladi-Skandali

    2015-01-01

    Full Text Available High throughput methodologies have revealed the existence of an unexpectedly large number of long noncoding RNAs (lncRNAs. The unconventional role of lncRNAs in gene expression regulation and their broad implication in oncogenic and tumor suppressive pathways have introduced lncRNAs as novel biological tumor markers. The most prominent example of lncRNAs application in routine clinical practice is PCA3, a FDA-approved biomarker for prostate cancer. Regarding digestive system malignancies, the oncogenic HOTAIR is one of the most widely studied lncRNAs in the preclinical level and has already been identified as a potent prognostic marker for major malignancies of the gastrointestinal tract. Here, we provide an overview of recent findings regarding the emerging role of lncRNAs not only as key regulators of cancer initiation and progression in colon, stomach, pancreatic, liver, and esophageal cancers, but also as reliable tumor markers and therapeutic tools. lncRNAs can be easily, rapidly, and cost-effectively determined in tissues, serum, and gastric juice, making them highly versatile analytes. Taking also into consideration the largely unmet clinical need for early diagnosis and more accurate prognostic/predictive markers for gastrointestinal cancer patients, we comment upon the perspectives of lncRNAs as efficient molecular tools that could aid in the clinical management.

  19. Long Non-Coding RNAs in Metabolic Organs and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Maude Giroud

    2017-11-01

    Full Text Available Single cell organisms can surprisingly exceed the number of human protein-coding genes, which are thus not at the origin of the complexity of an organism. In contrast, the relative amount of non-protein-coding sequences increases consistently with organismal complexity. Moreover, the mammalian transcriptome predominantly comprises non-(protein-coding RNAs (ncRNA, of which the long ncRNAs (lncRNAs constitute the most abundant part. lncRNAs are highly species- and tissue-specific with very versatile modes of action in accordance with their binding to a large spectrum of molecules and their diverse localization. lncRNAs are transcriptional regulators adding an additional regulatory layer in biological processes and pathophysiological conditions. Here, we review lncRNAs affecting metabolic organs with a focus on the liver, pancreas, skeletal muscle, cardiac muscle, brain, and adipose organ. In addition, we will discuss the impact of lncRNAs on metabolic diseases such as obesity and diabetes. In contrast to the substantial number of lncRNA loci in the human genome, the functionally characterized lncRNAs are just the tip of the iceberg. So far, our knowledge concerning lncRNAs in energy homeostasis is still in its infancy, meaning that the rest of the iceberg is a treasure chest yet to be discovered.

  20. MicroRNAs in Head and Neck Squamous Cell Carcinoma (HNSCC) and Oral Squamous Cell Carcinoma (OSCC)

    International Nuclear Information System (INIS)

    Shiiba, Masashi; Uzawa, Katsuhiro; Tanzawa, Hideki

    2010-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs which regulate cell differentiation, proliferation, development, cell cycle, and apoptosis. Expression profiling of miRNAs has been performed and the data show that some miRNAs are upregulated or downregulated in cancer. Several studies suggest that the expression profiles of miRNAs are associated with clinical outcomes. However, the set of miRNAs with altered expressing differs depending on the type of cancer, suggesting that it is important to understand which miRNAs are related to which cancers. Therefore, this review aimed to discuss potentially crucial miRNAs in head and neck squamous cell carcinoma (HNSCC) and oral squamous cell carcinoma (OSCC)

  1. miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells

    DEFF Research Database (Denmark)

    Hua, Youjia; Duan, Shiwei; Murmann, Andrea E

    2011-01-01

    have generated custom data sets containing expression information of 54 miRNA families sharing the same seed match. We have developed a novel strategy for correlating miRNAs with individual genes based on a summed Pearson Correlation Coefficient (sPCC) that mimics an in silico titration experiment......micro(mi)RNAs are small non-coding RNAs that negatively regulate expression of most mRNAs. They are powerful regulators of various differentiation stages, and the expression of genes that either negatively or positively correlate with expressed miRNAs is expected to hold information....... By focusing on the genes that correlate with the expression of miRNAs without necessarily being direct targets of miRNAs, we have clustered miRNAs into different functional groups. This has resulted in the identification of three novel miRNAs that are linked to the epithelial-to-mesenchymal transition (EMT...

  2. Genome-wide identification of lncRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.).

    Science.gov (United States)

    Zhu, Bin; Xu, Manyu; Shi, Haiyan; Gao, Xiwu; Liang, Pei

    2017-05-15

    Long noncoding RNAs (lncRNAs) are now considered important regulatory factors, with a variety of biological functions in many species including insects. Some lncRNAs have the ability to show rapid responses to diverse stimuli or stress factors and are involved in responses to insecticide. However, there are no reports to date on the characterization of lncRNAs associated with chlorantraniliprole resistance in Plutella xylostella. Nine RNA libraries constructed from one susceptible (CHS) and two chlorantraniliprole-resistant P. xylostella strains (CHR, ZZ) were sequenced, and 1309 lncRNAs were identified, including 877 intergenic lncRNAs, 190 intronic lncRNAs, 76 anti-sense lncRNAs and 166 sense-overlapping lncRNAs. Of the identified lncRNAs, 1059 were novel. Furthermore, we found that 64 lncRNAs were differentially expressed between CHR and CHS and 83 were differentially expressed between ZZ and CHS, of which 22 were differentially expressed in both CHR and ZZ. Most of the differentially expressed lncRNAs were hypothesized to be associated with chlorantraniliprole resistance in P. xylostella. The targets of lncRNAs via cis- ( 0.9 or xylostella. These results will facilitate future studies of the regulatory mechanisms of lncRNAs in chlorantraniliprole and other insecticide resistance and in other biological processes in P. xylostella.

  3. Genome-wide identification of potato long intergenic noncoding RNAs responsive to Pectobacterium carotovorum subspecies brasiliense infection.

    Science.gov (United States)

    Kwenda, Stanford; Birch, Paul R J; Moleleki, Lucy N

    2016-08-11

    Long noncoding RNAs (lncRNAs) represent a class of RNA molecules that are implicated in regulation of gene expression in both mammals and plants. While much progress has been made in determining the biological functions of lncRNAs in mammals, the functional roles of lncRNAs in plants are still poorly understood. Specifically, the roles of long intergenic nocoding RNAs (lincRNAs) in plant defence responses are yet to be fully explored. In this study, we used strand-specific RNA sequencing to identify 1113 lincRNAs in potato (Solanum tuberosum) from stem tissues. The lincRNAs are expressed from all 12 potato chromosomes and generally smaller in size compared to protein-coding genes. Like in other plants, most potato lincRNAs possess single exons. A time-course RNA-seq analysis between a tolerant and a susceptible potato cultivar showed that 559 lincRNAs are responsive to Pectobacterium carotovorum subsp. brasiliense challenge compared to mock-inoculated controls. Moreover, coexpression analysis revealed that 17 of these lincRNAs are highly associated with 12 potato defence-related genes. Together, these results suggest that lincRNAs have potential functional roles in potato defence responses. Furthermore, this work provides the first library of potato lincRNAs and a set of novel lincRNAs implicated in potato defences against P. carotovorum subsp. brasiliense, a member of the soft rot Enterobacteriaceae phytopathogens.

  4. Reference genes for real-time PCR quantification of messenger RNAs and microRNAs in mouse model of obesity.

    Science.gov (United States)

    Matoušková, Petra; Bártíková, Hana; Boušová, Iva; Hanušová, Veronika; Szotáková, Barbora; Skálová, Lenka

    2014-01-01

    Obesity and metabolic syndrome is increasing health problem worldwide. Among other ways, nutritional intervention using phytochemicals is important method for treatment and prevention of this disease. Recent studies have shown that certain phytochemicals could alter the expression of specific genes and microRNAs (miRNAs) that play a fundamental role in the pathogenesis of obesity. For study of the obesity and its treatment, monosodium glutamate (MSG)-injected mice with developed central obesity, insulin resistance and liver lipid accumulation are frequently used animal models. To understand the mechanism of phytochemicals action in obese animals, the study of selected genes expression together with miRNA quantification is extremely important. For this purpose, real-time quantitative PCR is a sensitive and reproducible method, but it depends on proper normalization entirely. The aim of present study was to identify the appropriate reference genes for mRNA and miRNA quantification in MSG mice treated with green tea catechins, potential anti-obesity phytochemicals. Two sets of reference genes were tested: first set contained seven commonly used genes for normalization of messenger RNA, the second set of candidate reference genes included ten small RNAs for normalization of miRNA. The expression stability of these reference genes were tested upon treatment of mice with catechins using geNorm, NormFinder and BestKeeper algorithms. Selected normalizers for mRNA quantification were tested and validated on expression of quinone oxidoreductase, biotransformation enzyme known to be modified by catechins. The effect of selected normalizers for miRNA quantification was tested on two obesity- and diabetes- related miRNAs, miR-221 and miR-29b, respectively. Finally, the combinations of B2M/18S/HPRT1 and miR-16/sno234 were validated as optimal reference genes for mRNA and miRNA quantification in liver and 18S/RPlP0/HPRT1 and sno234/miR-186 in small intestine of MSG mice. These

  5. MicroRNAs in the pathogenesis of cystic kidney disease.

    Science.gov (United States)

    Phua, Yu Leng; Ho, Jacqueline

    2015-04-01

    Cystic kidney diseases are common renal disorders characterized by the formation of fluid-filled epithelial cysts in the kidneys. The progressive growth and expansion of the renal cysts replace existing renal tissue within the renal parenchyma, leading to reduced renal function. While several genes have been identified in association with inherited causes of cystic kidney disease, the molecular mechanisms that regulate these genes in the context of post-transcriptional regulation are still poorly understood. There is increasing evidence that microRNA (miRNA) dysregulation is associated with the pathogenesis of cystic kidney disease. In this review, recent studies that implicate dysregulation of miRNA expression in cystogenesis will be discussed. The relationship of specific miRNAs, such as the miR-17∼92 cluster and cystic kidney disease, miR-92a and von Hippel-Lindau syndrome, and alterations in LIN28-LET7 expression in Wilms tumor will be explored. At present, there are no specific treatments available for patients with cystic kidney disease. Understanding and identifying specific miRNAs involved in the pathogenesis of these disorders may have the potential to lead to the development of novel therapies and biomarkers.

  6. Function and evolution of microRNAs in eusocial Hymenoptera

    Directory of Open Access Journals (Sweden)

    Eirik eSovik

    2015-05-01

    Full Text Available The emergence of eusociality (true sociality in several insect lineages represents one of the most successful evolutionary adaptations in the animal kingdom in terms of species richness and global biomass. In contrast to solitary insects, eusocial insects evolved a set of unique behavioral and physiological traits such as reproductive division of labor and cooperative brood care, which likely played a major role in their ecological success. The molecular mechanisms that support the social regulation of behavior in eusocial insects, and their evolution, are mostly unknown. The recent whole-genome sequencing of several eusocial insect species set the stage for deciphering the molecular and genetic bases of eusociality, and the possible evolutionary modifications that led to it. Studies of mRNA expression patterns in the brains of diverse eusocial insect species have indicated that specific social behavioral states of individual workers and queens are often associated with particular tissue-specific transcriptional profiles. Here we discuss recent findings that highlight the role of non-coding microRNAs (miRNAs in modulating traits associated with reproductive and behavioral divisions of labor in eusocial insects. We provide bioinformatic and phylogenetic data, which suggest that some Hymenoptera-specific miRNA may have contributed to the evolution of traits important for the evolution of eusociality in this group.

  7. MicroRNAs in Hyperglycemia Induced Endothelial Cell Dysfunction

    Directory of Open Access Journals (Sweden)

    Maskomani Silambarasan

    2016-04-01

    Full Text Available Hyperglycemia is closely associated with prediabetes and Type 2 Diabetes Mellitus. Hyperglycemia increases the risk of vascular complications such as diabetic retinopathy, diabetic nephropathy, peripheral vascular disease and cerebro/cardiovascular diseases. Under hyperglycemic conditions, the endothelial cells become dysfunctional. In this study, we investigated the miRNA expression changes in human umbilical vein endothelial cells exposed to different glucose concentrations (5, 10, 25 and 40 mM glucose and at various time intervals (6, 12, 24 and 48 h. miRNA microarray analyses showed that there is a correlation between hyperglycemia induced endothelial dysfunction and miRNA expression. In silico pathways analyses on the altered miRNA expression showed that the majority of the affected biological pathways appeared to be associated to endothelial cell dysfunction and apoptosis. We found the expression of ten miRNAs (miR-26a-5p, -26b-5p, 29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a to increase gradually with increasing concentration of glucose. These miRNAs were also found to be involved in endothelial dysfunction. At least seven of them, miR-29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -221-3p, -320a and -192-5p, can be correlated to endothelial cell apoptosis.

  8. Exploration of small RNA-seq data for small non-coding RNAs in Human Colorectal Cancer.

    Science.gov (United States)

    Koduru, Srinivas V; Tiwari, Amit K; Hazard, Sprague W; Mahajan, Milind; Ravnic, Dino J

    2017-01-01

    Background: Improved healthcare and recent breakthroughs in technology have substantially reduced cancer mortality rates worldwide. Recent advancements in next-generation sequencing (NGS) have allowed genomic analysis of the human transcriptome. Now, using NGS we can further look into small non-coding regions of RNAs (sncRNAs) such as microRNAs (miRNAs), Piwi-interacting-RNAs (piRNAs), long non-coding RNAs (lncRNAs), and small nuclear/nucleolar RNAs (sn/snoRNAs) among others. Recent studies looking at sncRNAs indicate their role in important biological processes such as cancer progression and predict their role as biomarkers for disease diagnosis, prognosis, and therapy. Results: In the present study, we data mined publically available small RNA sequencing data from colorectal tissue samples of eight matched patients (benign, tumor, and metastasis) and remapped the data for various small RNA annotations. We identified aberrant expression of 13 miRNAs in tumor and metastasis specimens [tumor vs benign group (19 miRNAs) and metastasis vs benign group (38 miRNAs)] of which five were upregulated, and eight were downregulated, during disease progression. Pathway analysis of aberrantly expressed miRNAs showed that the majority of miRNAs involved in colon cancer were also involved in other cancers. Analysis of piRNAs revealed six to be over-expressed in the tumor vs benign cohort and 24 in the metastasis vs benign group. Only two piRNAs were shared between the two cohorts. Examining other types of small RNAs [sn/snoRNAs, mt_rRNA, miscRNA, nonsense mediated decay (NMD), and rRNAs] identified 15 sncRNAs in the tumor vs benign group and 104 in the metastasis vs benign group, with only four others being commonly expressed. Conclusion: In summary, our comprehensive analysis on publicly available small RNA-seq data identified multiple differentially expressed sncRNAs during colorectal cancer progression at different stages compared to normal colon tissue. We speculate that

  9. Genes for 7S RNAs can replace the gene for 4.5S RNA in growth of Escherichia coli

    DEFF Research Database (Denmark)

    Brown, S

    1991-01-01

    4.5S RNAs of eubacteria and 7S RNAs of archaebacteria and eukaryotes exist in a hairpin conformation. The apex of this hairpin displays structural and sequence similarities among both 4.5S and 7S RNAs. Furthermore, a hyphenated sequence of 16 nucleotides is conserved in all eubacterial 4.5S RNAs...... examined. In this article I report that 7S RNAs that contain this 16-nucleotide sequence are able to replace 4.5S RNAs and permit growth of Escherichia coli....

  10. Microarray expression profile of circular RNAs in chronic thromboembolic pulmonary hypertension

    Science.gov (United States)

    Miao, Ran; Wang, Ying; Wan, Jun; Leng, Dong; Gong, Juanni; Li, Jifeng; Liang, Yan; Zhai, Zhenguo; Yang, Yuanhua

    2017-01-01

    Abstract Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare but debilitating and life-threatening complication of acute pulmonary embolism. Circular RNAs (circRNAs), presenting as covalently closed continuous loops, are RNA molecules with covalently joined 3′- and 5′-ends formed by back-splicing events. circRNAs may be significant biological molecules to understand disease mechanisms and to identify biomarkers for disease diagnosis and therapy. The aim of this study was to investigate the potential roles of circRNAs in CTEPH. Methods: Ten human blood samples (5 each from CTEPH and control groups) were included in the Agilent circRNA chip. The differentially expressed circRNAs were evaluated using t test, with significance set at a P value of < .05. A functional enrichment analysis for differentially expressed circRNAs was performed using DAVID online tools, and a Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for target genes of miRNAs was performed using the R package clusterProfiler. Furthermore, miRNAs that interacted with differentially expressed circRNAs were predicted using the miRanda package. mRNAs that had clear biological functions and were regulated by miRNAs were predicted using miRWalk2.0 and then combined into a circRNA–miRNA–mRNA network. Results: In total, 351 differentially expressed circRNAs (122 upregulated and 229 downregulated) between CTEPH and control groups were obtained; among these circRNAs, hsa_circ_0002062 and hsa_circ_0022342 might be important because they can regulate 761 (e.g., hsa-miR-942–5p) and 453 (e.g., hsa-miR-940) miRNAs, respectively. Target genes (e.g., cyclin-dependent kinase 6) of hsa-miR-942–5p were mainly enriched in cancer-related pathways, whereas target genes (e.g., CRK-Like Proto-Oncogene, Adaptor Protein) of hsa-miR-940 were enriched in the ErbB signaling pathway. Therefore, these pathways are potentially important in CTEPH. Conclusions: Our findings

  11. Insight into the Role of Long Non-coding RNAs During Osteogenesis in Mesenchymal Stem Cells.

    Science.gov (United States)

    Huo, Sibei; Zhou, Yachuan; He, Xinyu; Wan, Mian; Du, Wei; Xu, Xin; Ye, Ling; Zhou, Xuedong; Zheng, Liwei

    2018-01-01

    Long non-coding RNAs (LncRNAs) are non-protein coding transcripts longer than 200 nucleotides in length. Instead of being "transcriptional noise", lncRNAs are emerging as a key modulator in various biological processes and disease development. Mesenchymal stem cells can be isolated from various adult tissues, such as bone marrow and dental tissues. The differentiation processes into multiple lineages, such as osteogenic differentiation, are precisely orchestrated by molecular signals in both genetic and epigenetic ways. Recently, several lines of evidence suggested the role of lncRNAs participating in cell differentiation through the regulation of gene transcriptions. And the involvement of lncRNAs may be associated with initiation and progression of mesenchymal stem cell-related diseases. We aimed at addressing the role of lncRNAs in the regulation of osteogenesis of mesenchymal stem cells derived from bone marrow and dental tissues, and discussing the potential utility of lncRNAs as biomarkers and therapeutic targets for mesenchymal stem cell-related diseases. Numerous lncRNAs were differentially expressed during osteogenesis or odontogenesis of mesenchymal stem cells, and some of them were confirmed to be able to regulate the differentiation processes through the modifications of chromatin, transcriptional and post-transcriptional processes. LncRNAs were also associated with some diseases related with pathologic differentiation of mesenchymal stem cells. LncRNAs involve in the osteogenic differentiation of bone marrow and dental tissuederived mesenchymal stem cells, and they could become promising therapeutic targets and prognosis parameters. However, the mechanisms of the role of lncRNAs are still enigmatic and require further investigation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets.

    Science.gov (United States)

    Prakash, Pravin; Rajakani, Raja; Gupta, Vikrant

    2016-04-01

    MicroRNAs (miRNAs) are small non-coding RNAs of ∼ 19-24 nucleotides (nt) in length and considered as potent regulators of gene expression at transcriptional and post-transcriptional levels. Here we report the identification and characterization of 15 conserved miRNAs belonging to 13 families from Rauvolfia serpentina through in silico analysis of available nucleotide dataset. The identified mature R. serpentina miRNAs (rse-miRNAs) ranged between 20 and 22nt in length, and the average minimal folding free energy index (MFEI) value of rse-miRNA precursor sequences was found to be -0.815 kcal/mol. Using the identified rse-miRNAs as query, their potential targets were predicted in R. serpentina and other plant species. Gene Ontology (GO) annotation showed that predicted targets of rse-miRNAs include transcription factors as well as genes involved in diverse biological processes such as primary and secondary metabolism, stress response, disease resistance, growth, and development. Few rse-miRNAs were predicted to target genes of pharmaceutically important secondary metabolic pathways such as alkaloids and anthocyanin biosynthesis. Phylogenetic analysis showed the evolutionary relationship of rse-miRNAs and their precursor sequences to homologous pre-miRNA sequences from other plant species. The findings under present study besides giving first hand information about R. serpentina miRNAs and their targets, also contributes towards the better understanding of miRNA-mediated gene regulatory processes in plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Computational Characterization of Exogenous MicroRNAs that Can Be Transferred into Human Circulation.

    Directory of Open Access Journals (Sweden)

    Jiang Shu

    Full Text Available MicroRNAs have been long considered synthesized endogenously until very recent discoveries showing that human can absorb dietary microRNAs from animal and plant origins while the mechanism remains unknown. Compelling evidences of microRNAs from rice, milk, and honeysuckle transported to human blood and tissues have created a high volume of interests in the fundamental questions that which and how exogenous microRNAs can be transferred into human circulation and possibly exert functions in humans. Here we present an integrated genomics and computational analysis to study the potential deciding features of transportable microRNAs. Specifically, we analyzed all publicly available microRNAs, a total of 34,612 from 194 species, with 1,102 features derived from the microRNA sequence and structure. Through in-depth bioinformatics analysis, 8 groups of discriminative features have been used to characterize human circulating microRNAs and infer the likelihood that a microRNA will get transferred into human circulation. For example, 345 dietary microRNAs have been predicted as highly transportable candidates where 117 of them have identical sequences with their homologs in human and 73 are known to be associated with exosomes. Through a milk feeding experiment, we have validated 9 cow-milk microRNAs in human plasma using microRNA-sequencing analysis, including the top ranked microRNAs such as bta-miR-487b, miR-181b, and miR-421. The implications in health-related processes have been illustrated in the functional analysis. This work demonstrates the data-driven computational analysis is highly promising to study novel molecular characteristics of transportable microRNAs while bypassing the complex mechanistic details.

  14. Identification of Conserved and Potentially Regulatory Small RNAs in Heterocystous Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Manuel eBrenes-Álvarez

    2016-02-01

    Full Text Available Small RNAs (sRNAs are a growing class of non-protein-coding transcripts that participate in the regulation of virtually every aspect of bacterial physiology. Heterocystous cyanobacteria are a group of photosynthetic organisms that exhibit multicellular behaviour and developmental alternatives involving specific transcriptomes exclusive of a given physiological condition or even a cell type. In the context of our ongoing effort to understand developmental decisions in these organisms we have undertaken an approach to the global identification of sRNAs. Using differential RNA-Seq we have previously identified transcriptional start sites for the model heterocystous cyanobacterium Nostoc sp. PCC 7120. Here we combine this dataset with a prediction of Rho-independent transcriptional terminators and an analysis of phylogenetic conservation of potential sRNAs among 89 available cyanobacterial genomes. In contrast to predictive genome-wide approaches, the use of an experimental dataset comprising all active transcriptional start sites (differential RNA-Seq facilitates the identification of bona fide sRNAs. The output of our approach is a dataset of predicted potential sRNAs in Nostoc sp. PCC 7120, with different degrees of phylogenetic conservation across the 89 cyanobacterial genomes analyzed. Previously described sRNAs appear among the predicted sRNAs, demonstrating the performance of the algorithm. In addition, new predicted sRNAs are now identified that can be involved in regulation of different aspects of cyanobacterial physiology, including adaptation to nitrogen stress, the condition that triggers differentiation of heterocysts (specialized nitrogen-fixing cells. Transcription of several predicted sRNAs that appear exclusively in the genomes of heterocystous cyanobacteria is experimentally verified by Northern blot. Cell-specific transcription of one of these sRNAs, NsiR8 (nitrogen stress-induced RNA 8, in developing heterocysts is also

  15. The Stability of Medicinal Plant microRNAs in the Herb Preparation Process

    Directory of Open Access Journals (Sweden)

    Wenyan Xie

    2018-04-01

    Full Text Available Herbal medicine is now globally accepted as a valid alternative system of pharmaceutical therapies. Various studies around the world have been initiated to develop scientific evidence-based herbal therapies. Recently, the therapeutic potential of medicinal plant derived miRNAs has attracted great attraction. MicroRNAs have been indicated as new bioactive ingredients in medicinal plants. However, the stability of miRNAs during the herbal preparation process and their bioavailability in humans remain unclear. Viscum album L. (European mistletoe has been widely used in folk medicine for the treatment of cancer and cardiovascular diseases. Our previous study has indicated the therapeutic potential of mistletoe miRNAs by using bioinformatics tools. To evaluate the stability of these miRNAs, various mistletoe extracts that mimic the clinical medicinal use as well as traditional folk medicinal use were prepared. The mistletoe miRNAs including miR166a-3p, miR159a, miR831-5p, val-miR218 and val-miR11 were quantified by stem-loop qRT-PCR. As a result, miRNAs were detectable in the majority of the extracts, indicating that consumption of medicinal plant preparations might introduce miRNAs into mammals. The factors that might cause miRNA degradation include ultrasonic treatment, extreme heat, especially RNase treatment, while to be associated with plant molecules (e.g., proteins, exosomes might be an efficient way to protect miRNAs against degradation. Our study confirmed the stability of plant derived miRNAs during herb preparations, suggesting the possibility of functionally intact medicinal plant miRNAs in mammals.

  16. Computational Characterization of Exogenous MicroRNAs that Can Be Transferred into Human Circulation

    Science.gov (United States)

    Shu, Jiang; Chiang, Kevin; Zempleni, Janos; Cui, Juan

    2015-01-01

    MicroRNAs have been long considered synthesized endogenously until very recent discoveries showing that human can absorb dietary microRNAs from animal and plant origins while the mechanism remains unknown. Compelling evidences of microRNAs from rice, milk, and honeysuckle transported to human blood and tissues have created a high volume of interests in the fundamental questions that which and how exogenous microRNAs can be transferred into human circulation and possibly exert functions in humans. Here we present an integrated genomics and computational analysis to study the potential deciding features of transportable microRNAs. Specifically, we analyzed all publicly available microRNAs, a total of 34,612 from 194 species, with 1,102 features derived from the microRNA sequence and structure. Through in-depth bioinformatics analysis, 8 groups of discriminative features have been used to characterize human circulating microRNAs and infer the likelihood that a microRNA will get transferred into human circulation. For example, 345 dietary microRNAs have been predicted as highly transportable candidates where 117 of them have identical sequences with their homologs in human and 73 are known to be associated with exosomes. Through a milk feeding experiment, we have validated 9 cow-milk microRNAs in human plasma using microRNA-sequencing analysis, including the top ranked microRNAs such as bta-miR-487b, miR-181b, and miR-421. The implications in health-related processes have been illustrated in the functional analysis. This work demonstrates the data-driven computational analysis is highly promising to study novel molecular characteristics of transportable microRNAs while bypassing the complex mechanistic details. PMID:26528912

  17. Identification and validation of Asteraceae miRNAs by the expressed sequence tag analysis.

    Science.gov (United States)

    Monavar Feshani, Aboozar; Mohammadi, Saeed; Frazier, Taylor P; Abbasi, Abbas; Abedini, Raha; Karimi Farsad, Laleh; Ehya, Farveh; Salekdeh, Ghasem Hosseini; Mardi, Mohsen

    2012-02-10

    MicroRNAs (miRNAs) are small non-coding RNA molecules that play a vital role in the regulation of gene expression. Despite their identification in hundreds of plant species, few miRNAs have been identified in the Asteraceae, a large family that comprises approximately one tenth of all flowering plants. In this study, we used the expressed sequence tag (EST) analysis to identify potential conserved miRNAs and their putative target genes in the Asteraceae. We applied quantitative Real-Time PCR (qRT-PCR) to confirm the expression of eight potential miRNAs in Carthamus tinctorius and Helianthus annuus. We also performed qRT-PCR analysis to investigate the differential expression pattern of five newly identified miRNAs during five different cotyledon growth stages in safflower. Us