WorldWideScience

Sample records for pre-harvest levels tillage

  1. Mitigation strategies for Campylobacter spp. in broiler at pre-harvest and harvest level.

    Science.gov (United States)

    Klein, Günter; Jansen, Wiebke; Kittler, Sophie; Reich, Felix

    2015-01-01

    In contrast to other foodborne zoonotic agents an elimination of Campylobacter spp. from animal production, especially poultry production, seems not to be feasible. Therefore mitigation strategies focus on reduction of the Campylobacter spp. concentration in primary production and further minimalisation during processing. In primary production biosecurity measures (incl. hygiene barriers and restricted access) are the methods applied most commonly and most effectively so far. Experimental approaches and few field trials also showed that bacteriophages, electrolyzed oxidizing water, organic acids or medium chain fatty acids (applied via drinking water) are also effective in reducing Campylobacter prevalence and/or concentration However this reduction cannot be transferred in all cases to the situation in the slaughterhouse. Therefore additional measures have to be taken in account in the slaughterhouse to prevent cross-contamination. Logistic or scheduled slaughter can prevent cross-contamination but cannot further reduce Campylobacter concentration. Process parameters like elevated scalding temperature can contribute to such a reduction, but may also alter the product quality. Therefore no single pre- or harvest measure is sufficient for the reduction of Campylobacter concentration, but a combination of measures in both production levels is needed.

  2. Comparison of outcomes and other variables between conference abstracts and subsequent peer-reviewed papers involving pre-harvest or abattoir-level interventions against foodborne pathogens.

    Science.gov (United States)

    Snedeker, Kate G; Campbell, Mollie; Totton, Sarah C; Guthrie, Alessia; Sargeant, Jan M

    2010-11-01

    Accuracy in the reporting of studies in conference abstracts is important because the majority of studies in such abstracts are never further detailed in peer-reviewed publications, and data from such abstracts may be used in systematic reviews. Previous research on interventional studies in human biomedicine indicates that there is no guarantee of consistency between a conference abstract and paper in the reporting of results and other key variables. However, no research has been done to determine if this lack of reporting consistency in abstracts and papers extends to interventional studies in pre-harvest/harvest-level food safety. The goal of this study was to compare outcome results and other key variables between conference abstracts and subsequent peer-reviewed publications describing studies of pre-harvest and abattoir-level interventions against foodborne pathogens, and to determine whether the agreement in the results or key variables was associated with the time to full publication. A systematic search identified 59 conference abstracts with matching peer-reviewed papers (matches), and data on variables including outcome measures and results, pathogens, species, interventions, overall efficacy of intervention, sample size and housing were extracted from both the conference abstracts and the papers. The matching of variables between abstracts and papers was described, and logistic regression used to test for associations between variable matching and time to publication. Sample size was only provided for both abstract and paper in 24 matches; the same sample size was reported in 20 of these matches. Most other variables were reported in the majority of abstracts/papers, and with the exception of outcomes and intervention effect, the reporting of variables was relatively consistent. There was no significant difference in the numbers of authors, with the first author the same in 78.3% of matches. Of 231 outcome measures reported in both abstracts and papers

  3. Spatial patterns of aflatoxin levels in relation to ear-feeding insect damage in pre-harvest corn.

    Science.gov (United States)

    Ni, Xinzhi; Wilson, Jeffrey P; Buntin, G David; Guo, Baozhu; Krakowsky, Matthew D; Lee, R Dewey; Cottrell, Ted E; Scully, Brian T; Huffaker, Alisa; Schmelz, Eric A

    2011-07-01

    Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed.

  4. Spatial Patterns of Aflatoxin Levels in Relation to Ear-Feeding Insect Damage in Pre-Harvest Corn

    Directory of Open Access Journals (Sweden)

    Alisa Huffaker

    2011-07-01

    Full Text Available Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs, and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil and piercing-sucking insects (i.e., the stink bugs and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also

  5. Health risks due to pre-harvesting sugarcane burning in São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Maria Leticia de Souza Paraiso

    2015-09-01

    Full Text Available After 2003, a new period of expansion of the sugarcane culture began in Brazil. Pre-harvesting burning of sugarcane straw is an agricultural practice that, despite the nuisance for the population and pollution generated, still persisted in over 70% of the municipalities of São Paulo State in 2010. In order to study the distribution of this risk factor, an ecological epidemiological study was conducted associating the rates of deaths and hospital admissions for respiratory diseases, for each municipality in the State, with the exposure to the pre-harvesting burning of sugarcane straw. A Bayesian multivariate regression model, controlled for the possible effects of socioeconomic and climate (temperature, humidity, and rainfall variations, has been used. The effect on health was measured by the standardized mortality and morbidity ratio. The measures of exposure to the pre-harvesting burning used were: percentage of the area of sugarcane harvested with burning, average levels of aerosol, and number of outbreaks of burning. The autocorrelation between data was controlled using a neighborhood matrix. It was observed that the increase in the number of outbreaks of burning was significantly associated with higher rates of hospital admissions for respiratory disease in children under five years old. Pre-harvesting burning of sugarcane effectively imposes risk to population health and therefore it should be eliminated.

  6. The effect of proteolytic activity on the technological value of wheat flour from pre-harvest sprouted grain

    Directory of Open Access Journals (Sweden)

    Danuta Dojczew

    2007-12-01

    Full Text Available . Investigations were conducted on the level of the overall proteolytic activity in flour fractions as well as fine and bruise bran, obtained from four varieties of wheat (‘Zyta’, ‘Pegassus’, ‘Sukces’, ‘Tonacja’, subjected to pre-harvest sprouting. Moreover, an analysis was conducted on the effect of pre-harvest sprouting on the functional properties of flour, determining the physical properties of gluten and dough. The analyses included a determination of crude protein, non-protein nitrogen, wet gluten, proteolytic activity and the rheologic properties of dough. The studies ended with a trial baking, with vitamin C and vital gluten added as improvers to the flour from pre-harvest sprouted grain. In all the milling fractions the overall proteolytic activity increased as result of sprouting, the highest increase being recorded for variety ‘Tonacja’. Simultaneously, in all the fractions tested an increased level of non-protein nitrogen was observed. Flour obtained from pre-harvest sprouted grain was characterised by an increased water holding capacity and the dough by poorer rheologic properties. Bread obtained from flour from pre-harvest sprouted grain was of insufficient quality. The use of improvers (vital gluten and vitamin C as a rule resulted in favourable palatability and physico-chemical changes in bread.

  7. Reprogramming of Seed Metabolism Facilitates Pre-harvest Sprouting Resistance of Wheat

    Science.gov (United States)

    Liu, Caixiang; Ding, Feng; Hao, Fuhua; Yu, Men; Lei, Hehua; Wu, Xiangyu; Zhao, Zhengxi; Guo, Hongxiang; Yin, Jun; Wang, Yulan; Tang, Huiru

    2016-02-01

    Pre-harvest sprouting (PHS) is a worldwide problem for wheat production and transgene antisense-thioredoxin-s (anti-trx-s) facilitates outstanding resistance. To understand the molecular details of PHS resistance, we analyzed the metabonomes of the transgenic and wild-type (control) wheat seeds at various stages using NMR and GC-FID/MS. 60 metabolites were dominant in these seeds including sugars, organic acids, amino acids, choline metabolites and fatty acids. At day-20 post-anthesis, only malate level in transgenic wheat differed significantly from that in controls whereas at day-30 post-anthesis, levels of amino acids and sucrose were significantly different between these two groups. For mature seeds, most metabolites in glycolysis, TCA cycle, choline metabolism, biosynthesis of proteins, nucleotides and fatty acids had significantly lower levels in transgenic seeds than in controls. After 30-days post-harvest ripening, most metabolites in transgenic seeds had higher levels than in controls including amino acids, sugars, organic acids, fatty acids, choline metabolites and NAD+. These indicated that anti-trx-s lowered overall metabolic activities of mature seeds eliminating pre-harvest sprouting potential. Post-harvest ripening reactivated the metabolic activities of transgenic seeds to restore their germination vigor. These findings provided essential molecular phenomic information for PHS resistance of anti-trx-s and a credible strategy for future developing PHS resistant crops.

  8. Influence of pre-harvest red light irradiation on main phytochemicals and antioxidant activity of Chinese kale sprouts.

    Science.gov (United States)

    Deng, Mingdan; Qian, Hongmei; Chen, Lili; Sun, Bo; Chang, Jiaqi; Miao, Huiying; Cai, Congxi; Wang, Qiaomei

    2017-05-01

    The effects of pre-harvest red light irradiation on main healthy phytochemicals as well as antioxidant activity of Chinese kale sprouts during postharvest storage were investigated. 6-day-old sprouts were treated by red light for 24h before harvest and sampled for further analysis of nutritional quality on the first, second and third day after harvest. The results indicated that red light exposure notably postponed the degradation of aliphatic, indole, and total glucosinolates during postharvest storage. The vitamin C level was remarkably higher in red light treated sprouts on the first and second day after harvest when compared with the control. In addition, red light treatment also enhanced the accumulation of total phenolics and maintained higher level of antioxidant activity than the control. All above results suggested that pre-harvest red light treatment might provide a new strategy to maintain the nutritive value of Chinese kale sprouts during postharvest storage.

  9. 76 FR 63901 - Pre-Harvest Food Safety for Cattle; Public Meeting

    Science.gov (United States)

    2011-10-14

    ... continuum. FSIS published cattle pre-harvest guidelines \\2\\ to inform beef slaughter establishments of the... slaughter establishments procure their cattle from beef producers that implement one or more documented pre...; ] DEPARTMENT OF AGRICULTURE Food Safety and Inspection Service Pre-Harvest Food Safety for Cattle; Public...

  10. Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison

    DEFF Research Database (Denmark)

    Li, Chengdao; Ni, Peixiang; Francki, Michael;

    2004-01-01

    Pre-harvest sprouting results in significant economic loss for the grain industry around the world. Lack of adequate seed dormancy is the major reason for pre-harvest sprouting in the field under wet weather conditions. Although this trait is governed by multiple genes it is also highly heritable....... A major QTL controlling both pre-harvest sprouting and seed dormancy has been identified on the long arm of barley chromosome 5H, and it explains over 70% of the phenotypic variation. Comparative genomics approaches among barley, wheat and rice were used to identify candidate gene(s) controlling seed...... dormancy and hence one aspect of pre-harvest sprouting. The barley seed dormancy/pre-harvest sprouting QTL was located in a region that showed good synteny with the terminal end of the long arm of rice chromosome 3. The rice DNA sequences were annotated and a gene encoding GA20-oxidase was identified...

  11. Determination of residue and pre-harvest interval of Imidacloprid insecticide on greenhouse cucumber in Varamin region

    Directory of Open Access Journals (Sweden)

    M. Morowati

    2013-07-01

    Full Text Available Extensive use of chemical pesticides to control pests in developed and developing countries has led to the increase in crop production and decrease in post-harvest losses, which has caused harmful effects on human health. When the amount of pesticides exceeds permissible limits, some measures should be undertaken to reduce their application. In order to control cucumber pests in greenhouse, farmers use pesticides extensively, which their residues threaten human health in the society. Due to the importance of this problem, the residue and pre-harvest period of the Imidacloprid insecticide in some of the greenhouses of Varamin region, Tehran province, Iran was measured. In order to determine the pre-harvest period, spraying of Imidacloprid pesticide was done in a completely randomized block design with three replications, and two treatments of Imidacloprid and control (no insecticide. Sampling was done 1, 2, 3, 5, 7, 10 and 14 days after spraying. Samples were then transferred to the laboratory and preserved in freezer until the extraction and purification were performed and the amount of pesticide residues was measured. Based on the results, Imidacloprid residue reached below the maximum residue level (MRL of 1 mg/kg two days after spraying. But for more confidence, the third day after spraying was considered as the pre-harvest period. Sampling for determination of Imidacloprid residue was performed in four greenhouses of Varamin region. The results showed that mean Imidacloprid residue levels were above the MRL value in these greenhouses.

  12. Completeness of reporting in abstracts from clinical trials of pre-harvest interventions against foodborne pathogens.

    Science.gov (United States)

    Snedeker, Kate G; Canning, Paisley; Totton, Sarah C; Sargeant, Jan M

    2012-04-01

    Abstracts are the most commonly read part of a journal article, and play an important role as summaries of the articles, and search and screening tools. However, research on abstracts in human biomedicine has shown that abstracts often do not report key methodological features and results. Little research has been done to examine reporting of such features in abstracts from papers detailing pre-harvest food safety trials. Thus, the objective of this study was to assess the quality of reporting of key factors in abstracts detailing trials of pre-harvest food safety interventions. A systematic search algorithm was used to identify all in vivo trials of pre-harvest interventions against foodborne pathogens in PubMed and CAB Direct published from 1999 to October 2009. References were screened for relevance, and 150 were randomly chosen for inclusion in the study. A checklist based on the CONSORT abstract extension and the REFLECT Statement was used to assess the reporting of methodological features and results. All screening and assessment was performed by two independent reviewers with disagreements resolved by consensus. The systematic search returned 3554 unique citations; 356 were found to be relevant and 150 were randomly selected for inclusion. The abstracts were from 51 different journals, and 13 out of 150 were structured. Of the 124 abstracts that reported whether the trial design was deliberate disease challenge or natural exposure, 113 were deliberate challenge and 11 natural exposure. 103 abstracts detailed studies involving poultry, 20 cattle and 15 swine. Most abstracts reported the production stage of the animals (135/150), a hypothesis or objective (123/150), and results for all treatment groups (136/150). However, few abstracts reported on how animals were grouped in housing (25/150), the location of the study (5/150), the primary outcome (2/126), level of treatment allocation (15/150), sample size (63/150) or whether study units were lost to follow up

  13. Comparação das comunidades de Sminthuroidea e Onychiuridae (Collembola entre plantio direto em três níveis de fertilidade, plantio convencional e um ecossistema natural (campo nativo em Ponta Grossa, Paraná, Brasil Coniparison of the communities of Sminthuroidea and Onychiuridae (Collembola among no-tillage in three levels of fertility, conventional tillage and a natural ecosystem (native grassland in Ponta Grossa, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Klaus Dieter Sautter

    1999-03-01

    Full Text Available This work had as objective to compare the communities of Sminthuroidea and Onychiuridae (Collembola among no-tillage in three fertility levels, conventional tillage and a natural ecosystem (native grassland. In the conventional tillage and in the no-tillage in area of medium fertility, the community of Sminthuroidea had regular fluctuation along the period of the experiment, but wtth low densities. The no-tillage in area of high fertility presented a populational pick in the autumn; the no-tillage in area of low fertility, in the spring; and, the natural ecosystem, in the summer. As the final mean density of the population of Sminthuroidea, was observed that the no-tillage in area of low fertility went numerically superior to the others, proceeded by the natural ecosystem, no-tillage in area of high fertility, conventional tillage, and, finally, no-tillage in area of medium fertility. Onychiuridae had three populational picks in the no-tillage in area of low fertility: being a larger in the winter and other two, smaller in the summer and in the autumn. In the no-tillage in area of medium fertility presented only a populational pick in the winter. In the other treatments there was not significantly populational picks. In relation to the final mean density ofthe community of Onychiuridae, the no-tillage plantation in area of low fertility was superior, proceeded by the other treatments of no-tillage, and, in third plan, the natural ecosystem and the conventional tillage.

  14. Weed infestation in canopy of spring barley in condition of different tillage systems and fertilization and plant protection levels

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The purpose of this work was to determine the influence of conventional tillage (fall ploughing at 25 cm and minimum tillage systems (chisel ploughing at 30 cm and two differentiated fertilization and plant protection levels on number, species composition and air dry weed mass in spring barley cv. Rataj. This spring barley was cultivated in crop rotation potato - spring barley - winter rye. The analysis of field infestation was made prior to spring barley harvest with quantitative- weighting method. There was estimated number of weeds, weed species composition and air dry weight of weeds in two randomly chosen areas of each plot of 0.5 m2. The density of weeds and weed air dry weight was statistically analysed by means of variance analysis, and the mean values were estimated with Tukey's confidence intervals (p=0.05. Intensive level of fertilization and chemical crop protection decreased number of monocotyledonous weeds and total weeds in canopy of spring barley. Conventional system of soil cultivation decreased in a canopy of spring barley the following species of weeds: Geranium pusillum, Galinsoga parviflora, Stellaria media, Apera spica-venti, Poa annua and Echinochloa crusgalli. Conventional tillage increases number of Chamomilla suaveolens and Fallopia convolvulus in a canopy of spring barley. Intensive fertilization and plant protection levels decreased weed infestation first of all through Echinochloa crusgalli, Apera spica-venti, Fallopia convolvulus, Galinsoga parviflora, Geranium pusillum, Chenopodium album and Setaria pumila.

  15. Environmental factors during seed development and their influence on pre-harvest sprouting in wheat

    Science.gov (United States)

    Ciha, A. J. (Principal Investigator)

    1981-01-01

    The problem of pre-harvest sprouting of wheat is surveyed and a literature review of the effects of environmental conditions on pre-harvest sprouting is presenting. Physiological, biochemical, and morphological changes occurring within the wheat seed during germination, harvest, and storage are discussed. The effects of moisture, humidity, and temperature, particularly on seed dormancy, are considered. Procedures used in Europe for predicting the potential for sprouting are evaluated.

  16. Cotton production as affected by irrigation level and transitioning tillage systems

    Science.gov (United States)

    Identifying management practices that conserve and protect water resources are very important to a wide variety of stakeholders within semi-arid environments. The objective of this research was to develop conservation tillage and water management strategies that enhance lint yields in subsurface dri...

  17. Cloning and characterization of a critical regulator for pre-harvest sprouting in Wheat

    Science.gov (United States)

    Sprouting of grains in mature spikes before harvest is a major problem in wheat (Triticum aestivum) production worldwide. We cloned and characterized a gene underlying a wheat quantitative trait locus (QTL) on the short arm of chromosome 3A for pre-harvest sprouting (PHS) resistance in white wheat u...

  18. Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage.

    Science.gov (United States)

    Zhu, Yuyan; Yu, Jie; Brecht, Jeffrey K; Jiang, Tianjia; Zheng, Xiaolin

    2016-01-01

    Kiwifruit (Actinidia deliciosa cv. Bruno) fruits were sprayed with 5mM oxalic acid (OA) at 130, 137, and 144 days after full blossom, and then harvested at commercial maturity [soluble solid content (SSC) around 10.0%] and stored at room temperature (20 ± 1 °C). Pre-harvest application of OA led to fruit with higher ascorbic acid content at harvest, slowed the decreases in fruit firmness and ascorbic acid content and increase in SSC during storage, and also decreased the natural disease incidence, lesion diameter, and patulin accumulation in fruit inoculated with Penicillium expansum, indicating that the OA treatment increased quality and induced disease resistance in kiwifruit. It was suggested that the increase in activities of defense-related enzymes and in levels of substances related to disease resistance might collectively contribute to resistance in kiwifruit against fungi such as P. expansum in storage.

  19. Comparação das comunidades de Entomobryidae e Isotomidae (Collembola entre plantio direto em três níveis de fertilidade, plantio convencional e um ecossistema natural (campo nativo em Ponta Grossa, Paraná, Brasil Comparison of the comniunitics of Entomobryidae and Isotomidae (Collembola among no-tillage in three levels of fertility, conventional tillage and a natural ecosystem (native grassland in Ponta Grossa, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Klaus Dieter Sautter

    1999-03-01

    Full Text Available This work had as objective to compare the communities of Entomobryidae and Isotomidae (Collembola among no-tillage in three fertility levels, conventional tillage and a natural ecosystem (native grassland. In the no-tillage in low fertility and medium fertility Entomobryidae and Isotomidae had populational picks in the winter and in the summer. In the no-tillage in area of high fertility, there was a populational pick for both families in the summer. In relation to the conventional tillage, Entomobryidae had a populational pick in the winter, and Isotomidae in the winter and in the summer. In the natural ecosystem Entomobryidae presented populational picks in the winter and in the summer and Isotomidae had regular populational fluctuation along the period of the experiment. The final mean density of Entomobryidae was larger in the natural ecosystem, proceeded by the treatments of no-tillage and finally, for the conventional tillage. In relation to Isotomidae, the no-tillage in area of low fertility was superior, coming the conventional tillage soon after, the no-tillage in médium and high fertility, and, finally, the natural ecosystem.

  20. Pre-Harvest Sugarcane Burning: Determination of Emission Factors through Laboratory Measurements

    Directory of Open Access Journals (Sweden)

    João Andrade Carvalho

    2012-02-01

    Full Text Available Sugarcane is an important crop for the Brazilian economy and roughly 50% of its production is used to produce ethanol. However, the common practice of pre-harvest burning of sugarcane straw emits particulate material, greenhouse gases, and tropospheric ozone precursors to the atmosphere. Even with policies to eliminate the practice of pre-harvest sugarcane burning in the near future, there is still significant environmental damage. Thus, the generation of reliable inventories of emissions due to this activity is crucial in order to assess their environmental impact. Nevertheless, the official Brazilian emissions inventory does not presently include the contribution from pre-harvest sugarcane burning. In this context, this work aims to determine sugarcane straw burning emission factors for some trace gases and particulate material smaller than 2.5 μm in the laboratory. Excess mixing ratios for CO2, CO, NOX, UHC (unburned hydrocarbons, and PM2.5 were measured, allowing the estimation of their respective emission factors. Average estimated values for emission factors (g kg−1 of burned dry biomass were 1,303 ± 218 for CO2, 65 ± 14 for CO, 1.5 ± 0.4 for NOX, 16 ± 6 for UHC, and 2.6 ± 1.6 for PM2.5. These emission factors can be used to generate more realistic emission inventories and therefore improve the results of air quality models.

  1. Pre-harvest UV-C irradiation triggers VOCs accumulation with alteration of antioxidant enzymes and phytohormones in strawberry leaves.

    Science.gov (United States)

    Xu, Yanqun; Luo, Zisheng; Charles, Marie Thérèse; Rolland, Daniel; Roussel, Dominique

    2017-09-08

    Recent studies have highlighted the biological and physiological effects of pre-harvest ultraviolet (UV)-C treatment on growing plants. However, little is known about the involvement of volatile organic compounds (VOCs) and their response to this treatment. In this study, strawberry plants were exposed to three different doses of UV-C radiation for seven weeks (a low dose: 9.6kJm(-2); a medium dose: 15kJm(-2); and a high-dose: 29.4kJm(-2)). Changes in VOC profiles were investigated and an attempt was made to identify factors that may be involved in the regulation of these alterations. Principle compounds analysis revealed that VOC profiles of UV-C treated samples were significantly altered with 26 VOCs being the major contributors to segregation. Among them, 18 fatty acid-derived VOCs accumulated in plants that received high and medium dose of UV-C treatments with higher lipoxygenase and alcohol dehydrogenase activities. In treated samples, the activity of the antioxidant enzymes catalase and peroxidase was inhibited, resulting in a reduced antioxidant capacity and higher lipid peroxidation. Simultaneously, jasmonic acid level was 74% higher in the high-dose group while abscisic acid content was more than 12% lower in both the medium and high-dose UV-C treated samples. These results indicated that pre-harvest UV-C treatment stimulated the biosynthesis of fatty acid-derived VOCs in strawberry leaf tissue by upregulating the activity of enzymes of the LOX biosynthetic pathway and downregulating antioxidant enzyme activities. It is further suggested that the mechanisms underlying fatty acid-derived VOCs biosynthesis in UV-C treated strawberry leaves are associated with UV-C-induced changes in phytohormone profiles. Crown Copyright © 2017. Published by Elsevier GmbH. All rights reserved.

  2. Improvement on light penetrability and microalgae biomass production by periodically pre-harvesting Chlorella vulgaris cells with culture medium recycling.

    Science.gov (United States)

    Huang, Yun; Sun, Yahui; Liao, Qiang; Fu, Qian; Xia, Ao; Zhu, Xun

    2016-09-01

    To improve light penetrability and biomass production in batch cultivation, a cultivation mode that periodically pre-harvesting partial microalgae cells from suspension with culture medium recycling was proposed. By daily pre-harvesting 30% microalgae cells from the suspension, the average light intensity in the photobioreactor (PBR) was enhanced by 27.05-122.06%, resulting in a 46.48% increase in total biomass production than that cultivated in batch cultivation without pre-harvesting under an incident light intensity of 160μmolm(-2)s(-1). Compared with the semi-continuous cultivation with 30% microalgae suspension daily replaced with equivalent volume of fresh medium, nutrients and water input was reduced by 60% in the proposed cultivation mode but with slightly decrease (12.82%) in biomass production. No additional nutrient was replenished when culture medium recycling. Furthermore, higher pre-harvesting ratios (40%, 60%) and lower pre-harvesting frequencies (every 2, 2.5days) were not advantageous for the pre-harvesting cultivation mode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Pre-Harvest Sugarcane Burning: Determination of emission factors through laboratory measurements and quantification of emissions

    Science.gov (United States)

    de Azeredo Franca, D.; Maria Longo, K.; Gomes Soares Neto, T.; Carlos dos Santos, J.; Rudorf, B. F.; Alves de Aguiar, D.; Freitas, S.; Vieira Cortez, E.; Stockler S. Lima, R.; S. Gacita, M.; Anselmo, E.; A. Carvalho, J., Jr.

    2011-12-01

    Sugarcane is a relevant crop to Brazilian economy and roughly 50% of its production is used to produce ethanol. São Paulo state is the largest producer of sugarcane in Brazil being responsible for almost 60% of its production in a cultivated area of 4.5 Mha in 2010. Sugarcane harvest practice can be performed either with green harvest or with pre-harvest burning. A "Green Ethanol" Protocol is underway to eliminate the pre-harvest burning practice by 2014 in most of the sugarcane cultivated land in São Paulo state. During the last five years close to 2 Mha were annually harvested with the pre-harvest burning practice. This practice emits particulate material, greenhouse gases, and tropospheric ozone precursors to the atmosphere. Even with policies to eliminate the burning practice in the near future there is still a significant environmental damage due to the pre-harvest burning practice of sugarcane. Thus the generation of reliable inventories of emissions due to this activity is crucial in order to assess the environmental impact. Presently the official Brazilian emissions inventories do not include the sugarcane pre-harvest burning contribution. Therefore, this work aims to estimate the annual emissions (from 2006 to 2010) associated with pre-harvest sugarcane burning practice in São Paulo state, including the determination of emission factors for some trace gases and particulate material smaller than 2.5 μm. Annual remote sensing based mappings of burned sugarcane fields throughout the harvest season in each crop year made in the context of Canasat Project (http://www.dsr.inpe.br/laf/canasat/en/) were added to the Brazilian Biomass Burning Emission Model (3BEM) in order to estimate trace gases and aerosols emissions. Two laboratory combustion experiments were carried out to determine the emission factors estimation. Samples of different varieties of sugarcane were harvested in dry weather conditions and in distinct sites in the state of São Paulo to assure

  4. Dissipation kinetics and pre-harvest residue limit of pyriofenone in oriental melon (Cucumis melo Var. makuwa) grown under regulated climatic conditions.

    Science.gov (United States)

    Chung, Hyung Suk; Kabir, Md Humayun; Abd El-Aty, A M; Lee, Han Sol; Rahman, Md Musfiqur; Chang, Byung-Joon; Shin, Ho-Chul; Shim, Jae-Han

    2017-02-23

    A high-performance liquid chromatography-ultraviolet detection was used to estimate the disappearance rates as well as the pre-harvest residue limits of pyriofenone in oriental melon (Cucumis melo var. makuwa) grown under greenhouse conditions in two different locations (A and B) in Seongju, Republic of Korea. The identity of the compound in standard solution and representative field incurred samples was confirmed using liquid chromatography-tandem mass spectrometry. The method was validated in terms of linearity, limits of detection and quantification, accuracy (expressed as recovery) and precision (expressed as relative standard deviation) for accurate and precise quantitation. Notably, the residual levels of field incurred samples collected over days 0-10 post-application were below the maximum residue level (0.2 mg/kg) established by the Korean Ministry of Food and Drug Safety. Site A showed lower residue levels and a higher decline rate than site B, which might be attributed to seasonal variation (high temperature) and increased metabolic and enzyme profiling in the mature fruits. The half-lives were similar, 4.9 and 4.3 days, at sites A and B, respectively. Using the pre-harvest residue limit, we predicted the residue amounts at 10 and 5 days before harvest, which resulted in concentrations lower than the provisional maximum residue level at harvest time.

  5. Effect of Pre-Harvest Sprouting on Physicochemical Properties of Starch in Wheat

    Directory of Open Access Journals (Sweden)

    Senay Simsek

    2014-04-01

    Full Text Available Pre-harvest sprouting (PHS in wheat (Triticum aestivum L. occurs when physiologically mature kernels begin germinating in the spike. The objective of this study was to provide fundamental information on physicochemical changes of starch due to PHS in Hard Red Spring (HRS and Hard White Spring (HWS wheat. The mean values of α-amylase activity of non-sprouted and sprouted wheat samples were 0.12 CU/g and 2.00 CU/g, respectively. Sprouted samples exhibited very low peak and final viscosities compared to non-sprouted wheat samples. Scanning electron microscopy (SEM images showed that starch granules in sprouted samples were partially hydrolyzed. Based on High Performance Size Exclusion Chromatography (HPSEC profiles, the starch from sprouted samples had relatively lower molecular weight than that of non-sprouted samples. Overall, high α-amylase activity caused changes to the physicochemical properties of the PHS damaged wheat.

  6. Volatile organic compounds characterized from grapevine (Vitis vinifera L. cv. Malbec) berries increase at pre-harvest and in response to UV-B radiation.

    Science.gov (United States)

    Gil, Mariana; Bottini, Rubén; Berli, Federico; Pontin, Mariela; Silva, María Fernanda; Piccoli, Patricia

    2013-12-01

    Ultraviolet-B solar radiation (UV-B) is an environmental signal with biological effects in plant tissues. Recent investigations have assigned a protective role of volatile organic compounds (VOCs) in plant tissues submitted to biotic and abiotic stresses. This study investigated VOCs in berries at three developmental stages (veraison, pre-harvest and harvest) of Vitis vinifera L. cv. Malbec exposed (or not) to UV-B both, in in vitro and field experiments. By Head Space-Solid Phase Micro Extraction-Gas Chromatography-Electron Impact Mass Spectrometry (HS-SPME-GC-EIMS) analysis, 10 VOCs were identified at all developmental stages: four monoterpenes, three aldehydes, two alcohols and one ketone. Monoterpenes increased at pre-harvest and in response to UV-B in both, in vitro and field conditions. UV-B also augmented levels of some aldehydes, alcohols and ketones. These results along with others from the literature suggest that UV-B induce grape berries to produce VOCs (mainly monoterpenes) that protect the tissues from UV-B itself and other abiotic and biotic stresses, and could affect the wine flavor. Higher emission of monoterpenes was observed in the field experiments as compared in vitro, suggesting the UV-B/PAR ratio is not a signal in itself.

  7. ABA gene expression during kernel development in relation to pre-harvest sprouting in wheat and triticale.

    Science.gov (United States)

    Sarah, De Laethauwer; Jan, De Riek; Geert, Haesaert

    2014-01-01

    Pre-harvest sprouting (PHS) during wet and cool harvest periods remains a serious problem in the production of cereals like barley, wheat and triticale. Being involved in dormancy induction and maintenance during seed development, abscisic acid (ABA) may play a key role to improve dormancy level and hence PHS-tolerance in these grains. In this study, we investigated the ABA levels and expression profiles of ABA biosynthesis and degradation genes during kernel development to explore the potential of these genes for improving PHS-tolerance in wheat and triticale. Plants of a PHS-tolerant and a PHS-susceptible variety of both wheat and triticale were grown under controlled conditions from flowering to harvest. At regular time points, kernels were harvested for ABA analysis and RNA extraction. RNA extracts were used in an RT-qPCR assay to obtain expression profiles of the ABA synthesis genes ZEP, NCED1 and NCED2 and the ABA degradation genes CYP707A1 and CYP707A2. In contrast to reports in Arabidopsis, the ZEP gene was predominantly expressed towards harvest maturity in both wheat and triticale. NCED1 expression coincided well with the observed ABA levels during kernel development, while NCED2 expression was mainly detected in early development, indicating a potential role for dormancy induction. ABA degradation towards harvest maturity was mainly associated with increased CYP707A1 expression, whereas CYP707A2 expression appeared to correlate with the regulation of ABA levels during kernel development. However, no differential expression of the investigated genes was detected between PHS-tolerant and PHS-susceptible varieties.

  8. Ethephon As a Potential Abscission Agent for Table Grapes: Effects on Pre-Harvest Abscission, Fruit Quality, and Residue

    Science.gov (United States)

    Ferrara, Giuseppe; Mazzeo, Andrea; Matarrese, Angela M. S.; Pacucci, Carmela; Trani, Antonio; Fidelibus, Matthew W.; Gambacorta, Giuseppe

    2016-01-01

    Some plant growth regulators, including ethephon, can stimulate abscission of mature grape berries. The stimulation of grape berry abscission reduces fruit detachment force (FDF) and promotes the development of a dry stem scar, both of which could facilitate the production of high quality stemless fresh-cut table grapes. The objective of this research was to determine how two potential abscission treatments, 1445 and 2890 mg/L ethephon, affected FDF, pre-harvest abscission, fruit quality, and ethephon residue of Thompson Seedless and Crimson Seedless grapes. Both ethephon treatments strongly induced abscission of Thompson Seedless berries causing >90% pre-harvest abscission. Lower ethephon rates, a shorter post-harvest interval, or berry retention systems such as nets, would be needed to prevent excessive pre-harvest losses. The treatments also slightly affected Thompson Seedless berry skin color, with treated fruit being darker, less uniform in color, and with a more yellow hue than non-treated fruit. Ethephon residues on Thompson Seedless grapes treated with the lower concentration of ethephon were below legal limits at harvest. Ethephon treatments also promoted abscission of Crimson Seedless berries, but pre-harvest abscission was much lower (≅49%) in Crimson Seedless compared to Thompson Seedless. Treated fruits were slightly darker than non-treated fruits, but ethephon did not affect SSC, acidity, or firmness of Crimson Seedless, and ethephon residues were below legal limits. PMID:27303407

  9. Evaluation of maize inbred lines for resistance to pre-harvest aflatoxin and fumonisin contamination in the field

    Science.gov (United States)

    Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize (Zea mays L.) and affecting the crop yield and quality. Resistance of maize to pre-harvest mycotoxin contamination, specifically aflatoxin produced by Aspergillus flavus ...

  10. Evaluation of sodium chlorate as a pre-harvest intervention for controlling Salmonella in the peripheral lymph nodes of cattle

    Science.gov (United States)

    The objective of the current study was to evaluate sodium chlorate as a potential pre-harvest intervention for reducing or eliminating Salmonella from the peripheral lymph nodes of experimentally-infected cattle. The peripheral lymph nodes of Holstein steers (approx. BW = 160 kg; 4 and 6 head in co...

  11. Influence of pre-harvest calcium, potassium and triazole application on the proteome of apple at harvest

    NARCIS (Netherlands)

    Buts, Kim; Hertog, M.L.A.T.M.; Ho, Quang Tri; America, A.H.P.; Cordewener, J.H.G.; Vercammen, J.; Carpentier, S.C.; Nicolaï, Bart

    2016-01-01

    Braeburn browning disorder is a storage disease characterised by flesh browning and lens-shaped cavities. The incidence of this postharvest diorder is known to be affected by pre-harvest application of fertilisers and triazole-based fungicides. Recent work has shown that calcium and potassium reduce

  12. Forging New Cocoa Keys: The Impact of Unlocking the Cocoa Bean’s Genome on Pre-harvest Food Safety

    Science.gov (United States)

    Forging New Cocoa Keys: The Impact of Unlocking the Cocoa Bean’s Genome on Pre-harvest Food Safety David N. Kuhn, USDA ARS SHRS, Miami FL Sometimes it's hard to see the value and application of genomics to real world problems. How will sequencing the cacao genome affect West African farmers? Thi...

  13. Changes in Biochemical Composition of Mango in Response to Pre-Harvest Gibberellic Acid Spray

    Directory of Open Access Journals (Sweden)

    Md Wasim Siddiqui

    2014-03-01

    Full Text Available Mango (Mangifera indica L. is an important fruit of the world owing to its pleasant aroma and taste. In this investigation, the influence of gibberellic acid (GA3 at concentrations of 0, 50, 100 and 150 mg∙l-1 water sprayed 20 days before commercial harvest on postharvest behavior and quality of mango cv. ‘Himsagar’ was studied under ambient storage conditions. GA3 (100 and 150 mg∙l-1 delayed the onset of ripening and caused a reduction in respiration rate as compared to the untreated fruits and retained the total chlorophyll content of fruit peel. Pre-harvest spray of GA3 at 100 mg∙l-1 significantly delayed the onset of the climacteric rise of CO2 production, which depicted delayed ripening over control. The treated fruits also remained firmer and maintained the freshness during storage. Treatment with 100 mg∙l-1 GA3 could be a useful method to extend postharvest life and availability of mango with appreciable quality.

  14. Changes in Biochemical Composition of Mango in Response to Pre-Harvest Gibberellic Acid Spray

    Directory of Open Access Journals (Sweden)

    Md Wasim Siddiqui

    2014-01-01

    Full Text Available Mango (Mangifera indica L. is an important fruit of the world owing to its pleasant aroma and taste. In this investigation, the influence of gibberellic acid (GA3 at concentrations of 0, 50, 100 and 150 mg∙l-1 water sprayed 20 days before commercial harvest on postharvest behavior and quality of mango cv. ‘Himsagar’ was studied under ambient storage conditions. GA3 (100 and 150 mg∙l-1 delayed the onset of ripening and caused a reduction in respiration rate as compared to the untreated fruits and retained the total chlorophyll content of fruit peel. Pre-harvest spray of GA3 at 100 mg∙l-1 significantly delayed the onset of the climacteric rise of CO2 production, which depicted delayed ripening over control. The treated fruits also remained firmer and maintained the freshness during storage. Treatment with 100 mg∙l-1 GA3 could be a useful method to extend postharvest life and availability of mango with appreciable quality.

  15. Effects of fruit pre-harvest bagging on fruit quality of peach (Prunus persica Batsch cv. Hujingmilu).

    Science.gov (United States)

    Li, Bin; Jia, Hui-Juan; Zhang, Xiao-Meng

    2006-06-01

    Experiments were conducted to test the effects of pre-harvest bagging on fruit ripening and quality of peach (Prunus persica Batsch cv. Hujingmilu). Young fruits, at 50 days after full bloom (DAFB), were covered with bags made of single-, double-, and triple-layers of orange paper bag with 27.0%, 13.9% and 8.2% sunlight transmission, respectively. Ethylene production and respiration rate were measured, and fruit quality was analyzed at 111, 114, 117, 120 (firm-ripe stage) and 124 DAFB (full-ripe stage). Single- and triple-layer bagged fruits had higher ethylene production rates than double-layer bagged and un-bagged fruits. The skin of un-bagged fruit had higher brightness (L-value) but smaller hue angle (h degrees) at the full-ripe stage compared with that of bagged fruit. Flesh firmness of un-bagged fruit was higher than that of bagged fruit until the firm-ripe stage, although triple-layer bagged fruit had higher firmness than un-bagged fruit at the full-ripe stage. Total soluble solids in juice of single-layer bagged fruit were a little higher than those of other treated fruits at the full-ripe stage. Single-layer bagged fruit showed the highest level of gamma-decalactone, a main characteristic aroma of peach and total lactones at the firm-ripe and full-ripe stages. It was concluded that 'Hujingmilu' peach had high quality with abundant aromas when the fruits were bagged with single-layer orange paper bags at 50 DAFB. The biosynthesis of gamma-decalactone and other aromas may be affected by light to some extent.

  16. Endogenous hormonal status in Pummelo fruitlets cultivar Thong Dee: relationship with pre-harvest fruit drop

    Directory of Open Access Journals (Sweden)

    Pongnart Nartvaranant

    2015-10-01

    Full Text Available Relationship between endogenous hormonal status with pre-harvest fruit drop in pummelo fruitlets cultivar Thong Dee was studied during January 2013-August 2013. The results indicated that the concentration of IAA in normal and dropped fruitlets tended to decrease gradually during fruit development and the concentration of GA3 in normal and dropped fruitlets increased continually throughout the study. However, the concentration of ABA in normal and dropped fruitlets decreased during fruit development. The concentration of IAA and GA3 in normal fruitlets were significantly higher than those in dropped fruitlets during fruit development, whereas the concentration of ABA in normal fruitlets were significantly lower than that in dropped fruitlets. Consideration of plant growth promoters (IAA and GA3 and plant growth inhibitor (ABA ratio showed that IAA/ABA ratio in normal fruitlets at 6 week, 8 week and 10 week after fruit set were 7.54, 7.99 and 9.42, respectively, which were significantly higher than those in dropped fruitlets (1.81, 3.21 and 3.77, respectively. GA3 /ABA ratio in normal fruitlets at 6 week, 8 week and 10 week after fruit set were 4.54, 5.64 and 25.26 respectively which were significantly higher than those in dropped fruitlets (0.65, 3.10 and 6.71, respectively. Moreover, peel and pulp of normal fruitlets had significantly higher IAA concentration (2.63 and 3.85 mgL-1 than dropped fruitlets (2.07 and 1.45 mgL-1. Peel and pulp of normal fruitlets had also significantly higher GA3 concentration (2.52 and 4.20 mgL-1, whereas peel of normal fruitlets had significantly lower ABA concentration (0.39 mgL-1 than dropped fruitlets (5.28 mgL-1 but ABA concentration in pulp could not be detected either in normal or in dropped fruitlets. For the IAA/ABA and GA3 /ABA ratio measurement, it was found that the peel of normal fruitlets had significantly higher IAA/ABA ratio (6.74 than dropped fruitlets (0.39, whereas the peel of normal fruitlets had

  17. Genealogical Analysis of the North-American Spring Wheat Varieties with Different Resistance to Pre-harvest Sprouting

    Directory of Open Access Journals (Sweden)

    Martynov Sergey

    2016-12-01

    Full Text Available A comparative analysis of genetic diversity of North American spring wheat varieties differing in resistance to pre-harvest sprouting was carried out. For identification of sources of resistance the genealogical profiles of 148 red-grained and 63 white-grained North-American spring wheat varieties with full pedigrees were calculated and estimates were made of pre-harvest sprouting. The cluster structure of the populations of red-grained and white-grained varieties was estimated. Analysis of variance revealed significant differences between the average contributions of landraces in the groups of resistant and susceptible varieties. Distribution of the putative sources of resistance in the clusters indicated that varieties having different genetic basis may have different sources of resistance. For red-grained varieties the genetic sources of resistance to pre-harvest sprouting are landraces Crimean, Hard Red Calcutta, and Iumillo, or Button, Kenya 9M-1A-3, and Kenya-U, or Red Egyptian and Kenya BF4-3B-10V1. Tracking of pedigrees showed these landraces contributed to the pedigrees, respectively, via Thatcher, Kenya-Farmer, and Kenya-58, which were likely donors of resistance for red-grained varieties. For white-grained varieties the sources of resistance were landraces Crimean, Hard Red Calcutta, Ostka Galicyjska, Iumillo, Akakomugi, Turco, Hybrid English, Rough Chaff White and Red King, and putative donors of resistance — Thatcher, RL2265, and Frontana. The genealogical profile of accession RL4137, the most important donor of resistance to pre-harvest sprouting in North American spring wheat breeding programmes, contains almost all identified sources of resistance.

  18. Ethephon as a potential abscission agent for table grapes: effects on pre-harvest abscission, fruit quality and residue

    Directory of Open Access Journals (Sweden)

    Giuseppe eFerrara

    2016-05-01

    Full Text Available Some plant growth regulators, including ethephon, can stimulate abscission of mature grape berries. The stimulation of grape berry abscission reduces fruit detachment force (FDF and promotes the development of a dry stem scar, both of which could facilitate the production of high quality stemless fresh-cut table grapes. The objective of this research was to determine how two potential abscission treatments, 1445 and 2890 mg/L ethephon, affected FDF, pre-harvest abscission, fruit quality, and ethephon residue of Thompson Seedless and Crimson Seedless grapes. Both ethephon treatments strongly induced abscission of Thompson Seedless berries causing >90% pre-harvest abscission. Lower ethephon rates, a shorter post-harvest interval, or berry retention systems such as nets, would be needed to prevent excessive pre-harvest losses. The treatments also slightly affected Thompson Seedless berry skin color, with treated fruit being darker, less uniform in color and with a more yellow hue than non-treated fruit. Ethephon residues on Thompson Seedless grapes treated with the lower concentration of ethephon were below legal limits at harvest. Ethephon treatments also promoted abscission of Crimson Seedless berries, but dropper-harvest abscission was much lower (49% in Crimson Seedless compared to Thompson Seedless. Treated fruit were slightly darker than non-treated fruit, but ethephon did not affect SSC, acidity, or firmness of Crimson Seedless, and ethephon residues were below legal limits.

  19. [Effects of returning straw to soil and different tillage methods on paddy field soil fertility and microbial population].

    Science.gov (United States)

    Ren, Wan-Jun; Liu, Dai-Yin; Wu, Jin-Xiu; Wu, Ju-Xian; De, Chen-Chun; Yang, Wen-Yu

    2009-04-01

    A field experiment was conducted on a paddy field to study the effects of returning straw to soil and different tillage methods (no-tillage + returning straw, no-tillage, tillage + returning straw, and tillage) on the fertility level and microbial quantities of different soil layers. The results showed that in upper soil layer, the organic matter content in treatment 'no-tillage + returning straw' was 5.33, 2.79, and 5.37 g x kg(-1) higher than that in treatments 'no-tillage', 'tillage + returning straw', and 'tillage', respectively, and the contents of total and available N, P and K in treatment 'no-tillage + returning straw' were also the highest, followed by in treatments 'no-tillage' and 'tillage + returning straw', and in treatment 'tillage'. In deeper soil layer, all the fertility indices were higher in treatment 'tillage + returning straw'. Treatments of 'returning straw to soil' had the highest quantities of soil microbes. The quantities of bacteria, fungi, and actinomycetes in upper soil layer were the highest in treatment 'no-tillage + returning straw', and thus, the cellulose decomposition intensity in this treatment at maturity period was 26.44%, 79.01%, and 98. 15% higher than that in treatments 'tillage + returning straw', 'no-tillage', and 'tillage', respectively. In deeper soil layer, the quantities of bacteria, fungi, and actinomycetes were the highest in treatment 'tillage + returning straw'. Treatment 'no-tillage + returning straw' had the features of high fertility and abundant microbes in surface soil layer. The quantities of soil bacteria and actinomycetes and the decomposition intensity of soil cellulose were significantly positively correlated with soil fertility level.

  20. Regulating irrigation during pre-harvest to avoid the incidence of translucent flesh disorder and gamboge disorder of mangosteen fruits

    Directory of Open Access Journals (Sweden)

    Rawee Chiarawipa

    2005-09-01

    Full Text Available In humid tropical areas, excess water during pre-harvest usually causes the occurrence of translucent flesh disorder (TFD and gamboge disorder (GD in mangosteen. To evaluate options for avoiding these incidences, an experiment was conducted with different water management regimes during pre-harvest. Twelve 14-year-old trees were grown under transparent plastic cover with three irrigation regimes: 1 Control (rainfed condition, 2 7-d interval watering, 3 4-d interval watering and 4 daily watering. A further four trees were arranged as the control (rainfed treatment, but these were grown without the plastic roof cover. The treatments were started at 9 weeks after bloom. The results showed that diurnal changes of leaf water potential and stomatal conductance were lowest in the control, because intermittent drying occurred during the study period. The highest fruit diameter, fruit weight, flesh firmness and flesh and rind water contents were found in the daily watering treatment. However, all of these values were lowest in the control trees. The amount of TFD was also lowest in the control (3.7%, and it was significantly different from the treatment where trees were watered at 4-d intervals (18.0% and where trees were watered daily (28.9%. There was no significant difference of TFD between the control and the 7-d interval watering treatments. In contrast, GD was not significantly different among the treatments. It is suggested that the risk of TFD and GD incidence could be avoided by maintaining mild soil water deficit around -70 kPa during pre-harvest.

  1. Tillage Effect on Organic Carbon in a Purple Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    HUANG Xue-Xia; GAO Ming; WEI Chao-Fu; XIE De-Ti; PAN Gen-Xing

    2006-01-01

    The distribution and storage of soil organic carbon (SOC) based on a long-term experiment with various tillage systems were studied in a paddy soil derived from purple soil in Chongqing, China. Organic carbon storage in the 0-20and 0-40 cm soil layers under different tillage systems were in an order: ridge tillage with rice-rape rotation (RT-rr)> conventional tillage with rice only (CT-r) > ridge tillage with rice only (RT-r) > conventional tillage with rice-rape rotation (CT-rr). The RT-rr system had significantly higher levels of soil organic carbon in the 0-40 cm topsoil, while the proportion of the total remaining organic carbon in the total soil organic carbon in the 0-10 cm layer was greatest in the RT-rr system. This was the reason why the RT-rr system enhanced soil organic carbon storage. These showed that tillage system type was crucial for carbon storage. Carbon levels in soil humus and crop-yield results showed that the RT-rr system enhanced soil fertility and crop productivity. Adoption of this tillage system would be beneficial both for environmental protection and economic development.

  2. ASSESSMENT OF TILLAGE TRANSLOCATION AND TILLAGE EROSION ON LOESS SLOPE BY CONTOUR MOULDBOARD TILLAGE

    Directory of Open Access Journals (Sweden)

    Roman Rybicki

    2016-11-01

    Full Text Available This paper reports the results of tillage experiments that were set up to investigate the intensity of net soil displacement and the associated tillage erosivity for mouldboard tillage carried out in direction parallel to the contour lines (contour tillage. Tillage was performed with typical set of cultivation for an average farm on soil developed from loess located on a slope with 7.5 to 13.5% decrease. Aluminium cubes of 15 cm edge-length were used as tracers. The studies showed that average translocation of soil along the slope (perpendicular to tillage direction was 0,35 m and 0,28 m respectively for tillage with downslope and upslope direction of soil overturning. It means that each year about 2,89 Mg per hectare of soil is net displaced in downslope direction per plough operation. The studies indicated that contour moldboard tillage is also an important factor in relief and soil transformation of eroded areas.

  3. Factors Affecting Intercropping and Conservation Tillage Practices in Eeastern Ethiopia

    Directory of Open Access Journals (Sweden)

    S. Bauer

    2012-03-01

    Full Text Available In order to combat adverse effects of farmland degradation it is necessary for farmers to adopt sustainable land management and conservation strategies like intercropping and conservation tillage. However, efforts to adopt these strategies are very minimal in Ethiopia. In an attempt to address the objectives of examining factors affecting use of intercropping and conservation tillage practices, this study utilized plot- and household-level data collected from 211 farm households and employed a bivariate probit model for its analysis. The study revealed that intercropping and conservation tillage decisions are interdependent, and that they are also significantly affected by various factors. In addition, conservation tillage and intercropping practices as short- term interventions are found to augment the long-term interventions like terraces, diversion ditches, and tree plantations. The paper highlights important policy implications that are required to encourage intercropping and conservation tillage measures.

  4. Physiological changes in pre-harvest dropped fruits in the pummelo cultivars ‘Thong Dee’ and ‘Khao Nam Phueng’

    Directory of Open Access Journals (Sweden)

    Pongnart Nartvaranant

    2012-09-01

    Full Text Available This investigation of physiological changes in pummelo pre-harvest dropped fruit, termed “yellow fruit calyx symptoms” in Thailand, aimed to examine in two particular cultivars Thong Dee and Khao Nam Phueng grown in the central regionof Thailand. The results show that the normal pummelo fruits of either variety had statistically more total non-structuralcarbohydrate (TNC in their peel and pulp than did those of the dropped fruits. On the other hand, the leaves of normal fruittrees of both cultivars show less TNC than those found in the leaves of pre-harvest dropped fruit trees. There were significantdifferences in some plant nutrients in the leaves, peel and pulp of the dropped and normal pummelo cultivars. IAA concentration in fruit was determined with the result that normal fruits had a statistically higher IAA concentration than did those inpre-harvest dropped fruits. The PCR technique used for the greening disease test identified infections in leaves taken fromthe pre-harvest dropped fruit trees but none in leaves from the normal fruit trees. There were no differences in soil chemicalproperties between soil samples taken from the normal and pre-harvest dropped fruit trees. It seems likely that greeningdisease is the cause of ‘yellow fruit calyx symptom’ in Thailand and is the resulting from low TNC concentrations, low plantnutrients and low IAA concentrations in the pre-harvest dropped fruits in the pummelo cultivars.

  5. Tillage Practices in the Conterminous United States, 1989-2004--Datasets by Aggregated Watershed; ds573_tillage_lu01

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is an aggregation of county-level tillage practices to the 8-digit hydrologic unit watershed. The original county-level data were collected by the...

  6. Tillage Practices in the Conterminous United States, 1989-2004--Datasets Aggregated by Watershed; tillage_lu92e

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is an aggregation of county-level tillage practices to the 8-digit hydrologic unit watershed. The original county-level data were collected by the...

  7. Pre-harvest assessment of perennial weeds in cereals based on images from unmanned aerial systems (UAS)

    DEFF Research Database (Denmark)

    Egilsson, Jon; Pedersen, Kim Steenstrup; Olsen, Søren Ingvor

    2015-01-01

    vision techniques to assess pre-harvest weed infestations in cereals based on true color (RGB) images from consumer graded cameras mounted on UAS. The objective is to develop a fully automatic algorithm in an open programming language, Python, to discriminate and quantify weed infestations in cereals...... before harvest. Results are compared with an in-house image analysis procedure developed in the commercial eCognition Developer software. The importance of flight altitude and robustness across fields are emphasised. Image acquisition took place during the summer of 2013 and 2014 in a number of fields...... was not competitive with results achieved with eCognition, which provided accuracies in the range of 86% to 92%. Flight altitude and image resolution (3 to 15 mm/pixel) were not important for the accuracy and ortho-mosaicking had no clear impact. Models including texture-based methods were not fully evaluated because...

  8. The evidentiary value of challenge trials for three pre-harvest food safety topics: a systematic assessment.

    Science.gov (United States)

    Wisener, L V; Sargeant, J M; O'Connor, A M; Faires, M C; Glass-Kaastra, S K

    2014-11-01

    Reducing zoonotic pathogens in food animals prior to harvest will reduce the pathogen burden that enters the food chain and the environment. Consequently, the burden of enteric illness in humans may be reduced. Evaluating interventions to reduce a pathogen in animals often begins with challenge trials, in which animals are deliberately exposed to the pathogen under controlled conditions. Challenge trials are subsequently followed by field trials, also known as randomized controlled trials, in which the animals are naturally exposed to the pathogen. Challenge trials can most effectively inform field trials only if they precede field trials, are robust, internally valid and transparently reported. Using systematic review and meta-analysis methodology, we examined the pre-harvest food safety literature for three intervention-pathogen-species combinations: probiotics/competitive exclusion products in ruminants to reduce Escherichia coli O157 shedding, vaccines in ruminants to reduce E. coli O157 shedding and vaccines in swine to reduce Salmonella shedding. We examined two outcomes, prevalence of faecal shedding at the end of the trial and prevalence of faecal shedding throughout the trial period, to compare challenge trials and field trials. We found that challenge trials occurred concurrently with field trials, challenge trials suffered from reporting deficiencies of methodological features, challenge trials tended to report a more favourable outcome than field trials, and there was some evidence of publication bias among all three intervention-pathogen-species combinations. Challenge trials would better serve to inform field trials if they precede field trials, are methodologically sound, include transparent reporting and are published regardless of their results. In addition, due to our findings of greater efficacy reported among challenge trials compared with field trials, risk models predicting the public health benefits of pre-harvest interventions to reduce

  9. Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality

    Directory of Open Access Journals (Sweden)

    Patrick M. Carr

    2013-07-01

    Full Text Available Organic farming has been identified as promoting soil quality even though tillage is used for weed suppression. Adopting zero tillage and other conservation tillage practices can enhance soil quality in cropping systems where synthetic agri-chemicals are relied on for crop nutrition and weed control. Attempts have been made to eliminate tillage completely when growing several field crops organically. Vegetative mulch produced by killed cover crops in organic zero tillage systems can suppress annual weeds, but large amounts are needed for adequate early season weed control. Established perennial weeds are not controlled by cover crop mulch. Integrated weed management strategies that include other cultural as well as biological and mechanical controls have potential and need to be incorporated into organic zero tillage research efforts. Market crop performance in organic zero tillage systems has been mixed because of weed, nutrient cycling, and other problems that still must be solved. Soil quality benefits have been demonstrated in comparisons between organic conservation tillage and inversion tillage systems, but studies that include zero tillage treatments are lacking. Research is needed which identifies agronomic strategies for optimum market crop performance, acceptable levels of weed suppression, and soil quality benefits following adoption of organic zero tillage.

  10. Impact of conservation tillage on nematode populations.

    Science.gov (United States)

    Minton, N A

    1986-04-01

    Literature reporting the development of conservation tillage and the research that has been conducted on nematode control in crops grown in conservation tillage systems is reviewed. Effects of different types of conservation tillage on population densities of various nematode species in monocropping and multicropping systems, effects of tillage on nematode distribution in the soil profile, effects of conservation tillage on nematode control, and the role of nematology in conservation tillage research are discussed.

  11. Atoxigenic strains of Aspergillus flavus isolated from peanuts collected from northern Philippines as potential biocon agents against pre-harvest aflatoxin contamination of peanut and corn

    Science.gov (United States)

    Aflatoxin contamination of food products causes liver cancer and weakened immunity in humans, and stunted growth and reduced productivity in animals (CAST, 2003). Effective control of pre-harvest aflatoxin contamination of peanut and corn due to AflaGuard and Aflasafe in the United States and Africa...

  12. RNA sequencing of contaminated seeds reveals the state of the seed permissive for pre-harvest aflatoxin contamination and points to a potential susceptibility factor

    Science.gov (United States)

    Pre-harvest aflatoxin contamination (PAC) is a major problem facing peanut production worldwide. Produced by the ubiquitous soil fungus, Aspergillus flavus, aflatoxin is the most potent naturally occurring known carcinogen. The interaction between fungus and host resulting in PAC is complex, and b...

  13. Investigation of environmental factors on the prevalence of free bacteriophages against Shiga toxin-producing Escherichia coli strains in produce pre-harvest environment in Salinas, California

    Science.gov (United States)

    Investigation of environmental factors on the prevalence of free bacteriophages against Shiga toxin-producing Escherichia coli strains in produce pre-harvest environment in Salinas, California Yen-Te Liaoa, Irwin Quintelab, Kimberly Nguyena, Alexandra Salvadora, Michael Cooleya, and Vivian C.H. Wu*a...

  14. Tillage Effects on Spatiotemporal Variability of Particulate Organic Matter

    Directory of Open Access Journals (Sweden)

    Juhwan Lee

    2009-01-01

    Full Text Available This study was performed to evaluate effects of no-till (NT and standard tillage (ST on POM in two 15-ha neighboring fields from 2003 to 2004. We also evaluated the effects of minimum tillage (MT on POM after both NT and ST fields were converted to MT in the summer of 2005. We quantified C and N stocks of three size fractions (53–250, 250–1000, and 1000–2000 μm of POM (0–0.15 m depth. The POM-C 53–250 μm and 250–1000 μm fractions decreased by 25% and 36% after six months under ST, whereas relatively little change occurred under NT, suggesting significant tillage effects over the period 2003-2004. Only small changes in POM content then occurred under MT on both fields. Changes in POM-N were similar to POM-C changes upon tillage conversions. This suggests that reduced tillage did not lead to soil C increase compared to ST but may help maintain the level of soil C for a typical California farming system. Short-term, field level variability of POM was primarily affected by tillage and was further influenced by clay content, bulk density, and scale of observation.

  15. Tillage practices in the conterminous United States, 1989-2004-Datasets Aggregated by Watershed

    Science.gov (United States)

    Baker, Nancy T.

    2011-01-01

    This report documents the methods used to aggregate county-level tillage practices to the 8-digit hydrologic unit (HU) watershed. The original county-level data were collected by the Conservation Technology Information Center (CTIC). The CTIC collects tillage data by conducting surveys about tillage systems for all counties in the United States. Tillage systems include three types of conservation tillage (no-till, ridge-till, and mulch-till), reduced tillage, and intensive tillage. Total planted acreage for each tillage practice for each crop grown is reported to the CTIC. The dataset includes total planted acreage by tillage type for selected crops (corn, cotton, grain sorghum, soybeans, fallow, forage, newly established permanent pasture, spring and fall seeded small grains, and 'other' crops) for 1989-2004. Two tabular datasets, based on the 1992 enhanced and 2001 National Land Cover Data (NLCD), are provided as part of this report and include the land-cover area-weighted interpolation and aggregation of acreage for each tillage practice in each 8-digit HU watershed in the conterminous United States for each crop. Watershed aggregations were done by overlying the 8-digit HU polygons with a raster of county boundaries and a raster of either the enhanced 1992 or the 2001 NLCD for cultivated land to derive a county/land-cover area weighting factor. The weighting factor then was applied to the county-level tillage data for the counties within each 8-digit HU and summed to yield the total acreage of each tillage type within each 8-digit HU watershed.

  16. Factors Influencing Observed Tillage Impacts on Herbicide Transport

    Science.gov (United States)

    Pappas, E. A.; Huang, C.; Smith, D. R.

    2009-04-01

    The widespread use and potential human health effects of the herbicides atrazine and glyphosate have generated interest in establishing how no-tillage impacts loading of these herbicides to runoff water in comparison to other tillage practices. In this study, potentially confounding factos such as time in tillage practice and type and distribution of residue cover, are weighed against inherent tillage impacts to soil structure in terms of relative effects on herbicide transport with runoff water. In this study, two small watersheds (one in no-till (NT) and one rotational till (RT)) were monitored during the first three years since conversion of the RT watershed from NT. In addition, rainfall simulation was applied to plots within each watershed during the first, third, and fifth years since the conversion. Runoff atrazine and glyphosate losses from RT areas were compared to losses from NT areas as a ratio of RT:NT. Results indicate a trend of increasing RT:NT value with time in tillage. Watershed monitoring indicated greater herbicide loading to runoff water from the NT watershed than the RT watershed during the first year since RT conversion, but this relationship reversed by the third year since conversion to RT. In addition, rainfall simulations were performed on small boxes of NT or RT soil having varying types and levels of residue cover in an attempt to isolate residue cover effects from true tillage effects.

  17. Quantitative trait loci for resistance to pre-harvest sprouting in US hard white winter wheat Rio Blanco.

    Science.gov (United States)

    Liu, Shubing; Cai, Shibin; Graybosch, Robert; Chen, Cuixia; Bai, Guihua

    2008-09-01

    Pre-harvest sprouting (PHS) of wheat is a major problem that severely limits the end-use quality of flour in many wheat-growing areas worldwide. To identify quantitative trait loci (QTLs) for PHS resistance, a population of 171 recombinant inbred lines (RILs) was developed from the cross between PHS-resistant white wheat cultivar Rio Blanco and PHS-susceptible white wheat breeding line NW97S186. The population was evaluated for PHS in three greenhouse experiments and one field experiment. After 1,430 pairs of simple sequence repeat (SSR) primers were screened between the two parents and two bulks, 112 polymorphic markers between two bulks were used to screen the RILs. One major QTL, QPhs.pseru-3AS, was identified in the distal region of chromosome 3AS and explained up to 41.0% of the total phenotypic variation in three greenhouse experiments. One minor QTL, QPhs.pseru-2B.1, was detected in the 2005 and 2006 experiments and for the means over the greenhouse experiments, and explained 5.0-6.4% of phenotypic variation. Another minor QTL, QPhs.pseru-2B.2, was detected in only one greenhouse experiment and explained 4.5% of phenotypic variation for PHS resistance. In another RIL population developed from the cross of Rio Blanco/NW97S078, QPhs.pseru-3AS was significant for all three greenhouse experiments and the means over all greenhouse experiments and explained up to 58.0% of phenotypic variation. Because Rio Blanco is a popular parent used in many hard winter wheat breeding programs, SSR markers linked to the QTLs have potential for use in high-throughput marker-assisted selection of wheat cultivars with improved PHS resistance as well as fine mapping and map-based cloning of the major QTL QPhs.pseru-3AS.

  18. Tillage, mulch and N fertilizer affect emissions of CO2 under the rain fed condition.

    Science.gov (United States)

    Tanveer, Sikander Khan; Wen, Xiaoxia; Lu, Xing Li; Zhang, Junli; Liao, Yuncheng

    2013-01-01

    A two year (2010-2012) study was conducted to assess the effects of different agronomic management practices on the emissions of CO2 from a field of non-irrigated wheat planted on China's Loess Plateau. Management practices included four tillage methods i.e. T1: (chisel plow tillage), T2: (zero-tillage), T3: (rotary tillage) and T4: (mold board plow tillage), 2 mulch levels i.e., M0 (no corn residue mulch) and M1 (application of corn residue mulch) and 5 levels of N fertilizer (0, 80, 160, 240, 320 kg N/ha). A factorial experiment having a strip split-split arrangement, with tillage methods in the main plots, mulch levels in the sub plots and N-fertilizer levels in the sub-sub plots with three replicates, was used for this study. The CO2 data were recorded three times per week using a portable GXH-3010E1 gas analyzer. The highest CO2 emissions were recorded following rotary tillage, compared to the lowest emissions from the zero tillage planting method. The lowest emissions were recorded at the 160 kg N/ha, fertilizer level. Higher CO2 emissions were recorded during the cropping year 2010-11 relative to the year 2011-12. During cropping year 2010-11, applications of corn residue mulch significantly increased CO2 emissions in comparison to the non-mulched treatments, and during the year 2011-12, equal emissions were recorded for both types of mulch treatments. Higher CO2 emissions were recorded immediately after the tillage operations. Different environmental factors, i.e., rain, air temperatures, soil temperatures and soil moistures, had significant effects on the CO2 emissions. We conclude that conservation tillage practices, i.e., zero tillage, the use of corn residue mulch and optimum N fertilizer use, can reduce CO2 emissions, give better yields and provide environmentally friendly options.

  19. Tillage, mulch and N fertilizer affect emissions of CO2 under the rain fed condition.

    Directory of Open Access Journals (Sweden)

    Sikander Khan Tanveer

    Full Text Available A two year (2010-2012 study was conducted to assess the effects of different agronomic management practices on the emissions of CO2 from a field of non-irrigated wheat planted on China's Loess Plateau. Management practices included four tillage methods i.e. T1: (chisel plow tillage, T2: (zero-tillage, T3: (rotary tillage and T4: (mold board plow tillage, 2 mulch levels i.e., M0 (no corn residue mulch and M1 (application of corn residue mulch and 5 levels of N fertilizer (0, 80, 160, 240, 320 kg N/ha. A factorial experiment having a strip split-split arrangement, with tillage methods in the main plots, mulch levels in the sub plots and N-fertilizer levels in the sub-sub plots with three replicates, was used for this study. The CO2 data were recorded three times per week using a portable GXH-3010E1 gas analyzer. The highest CO2 emissions were recorded following rotary tillage, compared to the lowest emissions from the zero tillage planting method. The lowest emissions were recorded at the 160 kg N/ha, fertilizer level. Higher CO2 emissions were recorded during the cropping year 2010-11 relative to the year 2011-12. During cropping year 2010-11, applications of corn residue mulch significantly increased CO2 emissions in comparison to the non-mulched treatments, and during the year 2011-12, equal emissions were recorded for both types of mulch treatments. Higher CO2 emissions were recorded immediately after the tillage operations. Different environmental factors, i.e., rain, air temperatures, soil temperatures and soil moistures, had significant effects on the CO2 emissions. We conclude that conservation tillage practices, i.e., zero tillage, the use of corn residue mulch and optimum N fertilizer use, can reduce CO2 emissions, give better yields and provide environmentally friendly options.

  20. The effect of different concentrations of pre-harvest gibberellic acid on the quality and durability of ‘Obilnaja’ and ‘Black Star’ plum varieties

    Directory of Open Access Journals (Sweden)

    Yunus HARMAN

    2016-01-01

    Full Text Available Abstract The research work aimed at investigating the effect of pre-harvest gibberellic acid (GA3 treatment on the quality of ‘Obilnaja’ and ‘Black Star’ Japanese plum varieties. GA3 was sprayed onto the trees during the fruit color break at 0, 25, 50, 75, and 100 ppm concentrations. After pre-cooling, the plums were placed in modified atmosphere packages and exposed to the following conditions as follows: short storage-transportation (ST [20 days at 2 °C and 90% relative humidity (RH]; distribution center (DC (5 days at 6 °C and 80% RH, and shelf life conditions (SL (2 days at 20 °C and 70% RH. Pre-harvest GA3 treatments increased the fruit weight and size. Treatment of GA3 at 50, 75, and 100 ppm increased the fruit flesh firmness and total soluble substances (TSS values in both the plum varieties during storage, transport, and marketing; it also limited the weight loss during the marketing process. Treatment of GA3 had no significant effects on the color, titratable acidity (TA, and the total phenolic and antioxidant activity values of plums. Pre-harvest GA3 treatment at 50 ppm GA3 can be thus recommended for both the plum varieties due to its effect on the fruit quality.

  1. Effect of pre-harvest application of gibberellic acid on the contents of pigments in cut leaves of Asarum europaeum L.

    Directory of Open Access Journals (Sweden)

    Elżbieta Pogroszewska

    2014-07-01

    Full Text Available The experiment determined the effect of gibberellic acid applied prior to harvest on the contents of plant pigments in cut leaves of wild ginger (Asarum europaeum L., cultivated in an unheated plastic tunnel and in the field. Foliar application of GA3 at a concentration of 100, 200, 400, 600 mg x dm-3 was repeated four times every two weeks. It has been proven that pre-harvest spraying of plants with gibberellic acid at a concentration of 100 mg x dm-3 has a positive effect on the content of photosynthetically active pigments in the leaves of A. europaeum cultivated in an unheated plastic tunnel. Application of GA3 at a concentration of 600 mg x dm-3 led to the accumulation of the greatest amount of anthocyanins in the leaves of Asarum europaeum cultivated both in the unheated plastic tunnel and in the field. The response of plants to GA3 application, expressed in the amount of flavonoids, depended on conditions related to the cultivation site. Pre-harvest treatment of A. europaeum plants with gibberellic acid at concentrations of 100-600 mg x dm-3 reduced the production of flavonoids in tunnel-grown wild ginger, but enhanced their accumulation in plants cultivated in the field. Pre-harvest application of gibberellic acid did not affect the fresh weight or dry mass content in plant material.

  2. Pre-harvest foliar application of humic acid, salicylic acid and calcium chloride to increase quantitative and qualitative traits of Lilium longiflorum cut flowers

    Directory of Open Access Journals (Sweden)

    S.N. Mortazavi

    2015-11-01

    Full Text Available Lily (Lilium longiflorum L. is one of the most important potted flowers, which is used largely as cut flower. An experiment, arranged as a factorial besed on completely randomized dasign with three replications, was carried out to evaluate the effects of pre-harvest foliar application of humic acid, salicylic acid and calcium chloride on quality and longevity of lilium cut flowers. Treatments  included humic acid as factor a (0, 100, 500 and 1000 mg/L and three salicylic acid concentrations (0, 150 and 200 mg/L and two calcium chloride concentrations (300 and 600 mg/L as factor b, which were sprayed at two stages before harvesting the flowers. Results showed that treating the plants with 500 mg/L humic acid increased water uptake and chlorophyll a content and decreased number of fallen florets. Application of 1000 mg/L humic acid increased total chlorophyll content. Pre-harvest treatment of flowers with 600 mg/L calcium chloride increased florets’ diameter, relative water content, chlorophyll b content and shelf life, as compared to other concentrations and different salicylic concentrations. In this research, the highest shelf life was observed for flowers sprayed with 1000 mg/L humic acid and 300 mg/L calcium chloride. Therefore, pre-harvest foliar application of humic acid, salicylic acid and calcium chloride could have positive effects on quantitative and qualitative traits of lilium cut flowers.

  3. EFFECT OF SOIL TILLAGE AND PLANT RESIDUE ON SURFACE ROUGHNESS OF AN OXISOL UNDER SIMULATED RAIN

    Directory of Open Access Journals (Sweden)

    Elói Panachuki

    2015-02-01

    Full Text Available Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols. In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT, conventional tillage (CT, and minimum tillage (MT with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.. Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.

  4. Simulated responses of soil organic carbon stock to tillage management scenarios in the Northwest Great Plains

    Directory of Open Access Journals (Sweden)

    Li Zhengpeng

    2007-07-01

    Full Text Available Abstract Background Tillage practices greatly affect carbon (C stocks in agricultural soils. Quantification of the impacts of tillage on C stocks at a regional scale has been challenging because of the spatial heterogeneity of soil, climate, and management conditions. We evaluated the effects of tillage management on the dynamics of soil organic carbon (SOC in croplands of the Northwest Great Plains ecoregion of the United States using the General Ensemble biogeochemical Modeling System (GEMS. Tillage management scenarios included actual tillage management (ATM, conventional tillage (CT, and no-till (NT. Results Model simulations show that the average amount of C (kg C ha-1yr-1 released from croplands between 1972 and 2000 was 246 with ATM, 261 with CT, and 210 with NT. The reduction in the rate of C emissions with conversion of CT to NT at the ecoregion scale is much smaller than those reported at plot scale and simulated for other regions. Results indicate that the response of SOC to tillage practices depends significantly on baseline SOC levels: the conversion of CT to NT had less influence on SOC stocks in soils having lower baseline SOC levels but would lead to higher potentials to mitigate C release from soils having higher baseline SOC levels. Conclusion For assessing the potential of agricultural soils to mitigate C emissions with conservation tillage practices, it is critical to consider both the crop rotations being used at a local scale and the composition of all cropping systems at a regional scale.

  5. [Priming Effects of Soil Moisture on Soil Respiration Under Different Tillage Practices].

    Science.gov (United States)

    Zhang, Yan; Liang, Ai-zhen; Zhang, Xiao-ping; Chen, Sheng-long; Sun, Bing-jie; Liu, Si-yi

    2016-03-15

    In the early stage of an incubation experiment, soil respiration has a sensitive response to different levels of soil moisture. To investigate the effects of soil moisture on soil respiration under different tillage practices, we designed an incubation trial using air-dried soil samples collected from tillage experiment station established on black soils in 2001. The tillage experiment consisted of no-tillage (NT), ridge tillage (RT), and conventional tillage (CT). According to field capacity (water-holding capacity, WHC), we set nine moisture levels including 30%, 60%, 90%, 120%, 150%, 180%, 210%, 240%, 270% WHC. During the 22-day short-term incubation, soil CO₂ emission was measured. In the early stage of incubation, the priming effects occurred under all tillage practices. There were positive correlations between soil respiration and soil moisture. In addition to drought and flood conditions, soil CO₂ fluxes followed the order of NT > RT > CT. We fitted the relationship between soil moisture and soil CO₂ fluxes under different tillage practices. In the range of 30%-270% WHC, soil CO₂ fluxes and soil moisture fitted a quadratic regression equation under NT, and linear regression equations under RT and CT. Under the conditions of 30%-210% WHC of both NT and RT, soil CO₂ fluxes and soil moisture were well fitted by the logarithmic equation with fitting coefficient R² = 0.966 and 0.956, respectively.

  6. The effect of conservation tillage forward speed and depth on farm fuel consumption

    Directory of Open Access Journals (Sweden)

    A Jalali

    2015-09-01

    energyconsumption. Mankind has been tilling agricultural soils for thousands of years to loosen them, to improve their tilth for water use and plant growth and to cover pests. Tillage is a process of creating a desired final soil condition for seeds from some undesirable initial soil conditions through manipulation of soil with the purpose of increasing crop yield.The aim of conservation tillage is to improve soil structure. Considering the advantages of conservation tillage and less scientific research works on imported conservation tillage devices and those which are made inside the country, and considering the importance of tillage depth and speed in different tiller performance, this investigation was carried out. Materials and methods: This investigation was carried out based on random blocks in the form of split plot experimental design. The main factor, tillage depth, (was 10 and 20cm at both levels and the second factor istillage forward speed, (was 6, 8, 10, 12 km h-1 in four levels for Bostan-Abad and 8, 10, 12, 14 km h-1 for Hashtrood with 4 repetitions. It was carried out by using complex tillager made in the Sazeh Keshte Bukan Company, which is mostly used in Eastern Azerbaijan and using Massey Ferguson 285 and 399tractors and its fuel consumptionwas studied. Results and Discussion: In this study, the effect of both factors on the feature of fuel consumption was examined. Regarding tillage speed effect for studies characteristic in Bostan-Abad at 1% probability level fuel consumption was effective. The effect of tillage depth has significance at 5% probability level on fuel consumption. The interaction effect of tillage speed and depth on fuel consumption was significant at probability level of 1% . In Hashtrood, the effect of tillage speed was significant on fuel consumption at probability level of 1% , and also tillage depth effect was significant on fuel consumption amount at probability of 1% . The interaction effect of tillage speed and depth on fuel consumption

  7. Application of plant growth regulators at pre-harvest for fruit development of 'PÊRA' oranges

    Directory of Open Access Journals (Sweden)

    Isolina Maria Leite de Almeida

    2004-08-01

    Full Text Available The aim of the present work was to evaluate the effects of auxins and gibberellins when applied at pre-harvest to the fruit development, and to the ripening and natural fall of the fruit, in 'Pêra' oranges. Trees of Citrus sinensis Osbeck cv. Pêra, 5 years old, were utilized. The treatments applied were: GA3 + 2,4-D 12.5mg L-1 of each; GA3 + 2,4-D 25mg L-1 ; GA3 + 2,4-D 37.5mg L-1; GA3 + NAA 12.5mg L-1; GA3 + NAA 25mg L-1; GA3 + NAA 37.5mg L-1; NAA + 2,4-D 12.5mg L-1; NAA + 2,4-D 25mg L-1; NAA + 2,4-D 37.5mg L-1; and water (control. The treatments were applied 3 times, at intervals of 45 days. The variables evaluated were: rate of natural fall (%, fruit length and diameter (mm, and fresh fruit weight (g. None of the treatments promoved alterations in the development of the fruits, but they did reduce the natural fall rate, when compared to control, up to 78.05%, inhibiting the fruits' abscision as much as 3 months.O trabalho objetivou avaliar os efeitos de auxinas e giberelinas, combinados e aplicados em pré-colheita no desenvolvimento e na taxa de queda natural de frutos de laranjeira 'Pêra'. Foram utilizadas árvores de laranjeira (Citrus sinensis Osbeck cultivar Pêra com 5 anos de idade. Os tratamentos foram: GA3 + 2,4-D 12,5mg L-1 de cada; GA3 + 2,4-D 25mg L-1; GA3 + 2,4-D 37,5mg L-1; GA3 + NAA 12,5mg L-1; GA3 + NAA 25mg L-1; GA3 + NAA 37,5mg L-1; NAA + 2,4-D 12,5mg L-1; NAA + 2,4-D 25mg L-1; NAA + 2,4-D 37,5mg L-1 e testemunha (água. Durante todo o período experimental foram realizadas três aplicações a intervalos de 45 dias. As variáveis avaliadas foram: Taxa de queda natural dos frutos (%, comprimento (mm, diâmetro (mm e massa fresca dos frutos (g. Nenhum dos tratamentos proporcionaram alterações no desenvolvimento final dos frutos, mas reduziram a taxa de queda natural em comparação com a testemunha em até 78,05%, inibindo a abscisão dos frutos em até três meses.

  8. The effect of different concentrations of pre-harvest gibberellic acid on the quality and durability of ‘Obilnaja’ and ‘Black Star’ plum varieties

    OpenAIRE

    HARMAN,Yunus; Sen, Fatih

    2016-01-01

    Abstract The research work aimed at investigating the effect of pre-harvest gibberellic acid (GA3) treatment on the quality of ‘Obilnaja’ and ‘Black Star’ Japanese plum varieties. GA3 was sprayed onto the trees during the fruit color break at 0, 25, 50, 75, and 100 ppm concentrations. After pre-cooling, the plums were placed in modified atmosphere packages and exposed to the following conditions as follows: short storage-transportation (ST) [20 days at 2 °C and 90% rel...

  9. The effect of different concentrations of pre-harvest gibberellic acid on the quality and durability of ‘Obilnaja’ and ‘Black Star’ plum varieties

    OpenAIRE

    HARMAN,Yunus; Sen, Fatih

    2016-01-01

    Abstract The research work aimed at investigating the effect of pre-harvest gibberellic acid (GA3) treatment on the quality of ‘Obilnaja’ and ‘Black Star’ Japanese plum varieties. GA3 was sprayed onto the trees during the fruit color break at 0, 25, 50, 75, and 100 ppm concentrations. After pre-cooling, the plums were placed in modified atmosphere packages and exposed to the following conditions as follows: short storage-transportation (ST) [20 days at 2 °C and 90% relative humidity (RH)]; di...

  10. Pre-harvest foliar application of humic acid, salicylic acid and calcium chloride to increase quantitative and qualitative traits of Lilium longiflorum cut flowers

    OpenAIRE

    S.N. Mortazavi; Karimi, V.; M.H. Azimi

    2015-01-01

    Lily (Lilium longiflorum L.) is one of the most important potted flowers, which is used largely as cut flower. An experiment, arranged as a factorial besed on completely randomized dasign with three replications, was carried out to evaluate the effects of pre-harvest foliar application of humic acid, salicylic acid and calcium chloride on quality and longevity of lilium cut flowers. Treatments  included humic acid as factor a (0, 100, 500 and 1000 mg/L) and three salicylic acid concentrations...

  11. Phosphorus and nitrogen leaching before and after tillage and urea application.

    Science.gov (United States)

    Han, Kun; Kleinman, Peter J A; Saporito, Lou S; Church, Clinton; McGrath, Joshua M; Reiter, Mark S; Tingle, Shawn C; Allen, Arthur L; Wang, L Q; Bryant, Ray B

    2015-03-01

    Leaching of nutrients through agricultural soils is a priority water quality concern on the Atlantic Coastal Plain. This study evaluated the effect of tillage and urea application on leaching of phosphorus (P) and nitrogen (N) from soils of the Delmarva Peninsula that had previously been under no-till management. Intact soil columns (30 cm wide × 50 cm deep) were irrigated for 6 wk to establish a baseline of leaching response. After 2 wk of drying, a subset of soil columns was subjected to simulated tillage (0-20 cm) in an attempt to curtail leaching of surface nutrients, especially P. Urea (145 kg N ha) was then broadcast on all soils (tilled and untilled), and the columns were irrigated for another 8 wk. Comparison of leachate recoveries representing rapid and slow flows confirmed the potential to manipulate flow fractions with tillage, albeit with mixed results across soils. Leachate trends in the finer-textured soil suggest that tillage impeded macropore flow and forced greater matrix flow. Despite significant vertical stratification of soil P that suggested tillage could prevent leaching of P via macropores from the surface to the subsoil, tillage had no significant impact on P leaching losses. Relatively high levels of soil P below 20 cm may have served as the source of P enrichment in leachate waters. However, tillage did lower losses of applied urea in leachate from two of the three soils, partially confirming the study's premise that tillage would destroy macropore pathways transmitting surface constituents to the subsoil.

  12. Farm-level economics of innovative tillage technologies: the case of no-till in the Altai Krai in Russian Siberia.

    Science.gov (United States)

    Bavorova, Miroslava; Imamverdiyev, Nizami; Ponkina, Elena

    2017-06-01

    In the agricultural Altai Krai in Russian Siberia, soil degradation problems are prevalent. Agronomists recommend "reduced tillage systems," especially no-till, as a sustainable way to cultivate land that is threatened by soil degradation. In the Altai Krai, less is known about the technologies in practice. In this paper, we provide information on plant cultivation technologies used in the Altai Krai and on selected factors preventing farm managers in this region from adopting no-till technology based on our own quantitative survey conducted across 107 farms in 2015 and 2016. The results of the quantitative survey show that farm managers have high uncertainty regarding the use of no-till technology including its economics. To close this gap, we provide systematic analysis of factors influencing the economy of the plant production systems by using a farm optimization model (linear programming) for a real farm, together with expert estimations. The farm-specific results of the optimization model show that under optimal management and climatic conditions, the expert Modern Canadian no-till technology outperforms the farm min-till technology, but this is not the case for suboptimal conditions with lower yields.

  13. Pre-harvest sugarcane burning emission inventories based on remote sensing data in the state of São Paulo, Brazil

    Science.gov (United States)

    França, Daniela; Longo, Karla; Rudorff, Bernardo; Aguiar, Daniel; Freitas, Saulo; Stockler, Rafael; Pereira, Gabriel

    2014-12-01

    The state of São Paulo is the largest sugarcane producer in Brazil, with a cultivated area of about 5.4 Mha in 2011. Approximately 2 Mha were harvested annually from 2006 to 2011 with the pre-harvest straw burning practice, which emits trace gases and particulate material to the atmosphere. The development of emission inventories for sugarcane straw burning is crucial in order to assess its environmental impacts. This study aimed to estimate annual emissions associated with the pre-harvest sugarcane burning practice in the state of São Paulo based on remote sensing maps and emission and combustion factors for sugarcane straw burning. Average estimated emissions (Gg/year) were 1130 ± 152 for CO, 26 ± 4 for NOx, 16 ± 2 for CH4, 45 ± 6 for PM2.5, 120 ± 16 for PM10 and 154 ± 21 for NMHC (non-methane hydrocarbons). An intercomparison among annual emissions from this study and annual emissions from four other different approaches indicated that the estimates obtained by satellite fire detection or low spatial resolution approaches tend to underestimate sugarcane burned area, due to unique characteristics of this type of biomass fire. Overall, our results also indicated that government actions to reduce sugarcane straw burning emissions are becoming effective.

  14. Improvement of native grassland by legumes introduction and tillage techniques

    Directory of Open Access Journals (Sweden)

    Syamsu Bahar

    1999-10-01

    Full Text Available A factorial design using three species of legumes (Siratro, Centro and Stylo and three different of tillage techniques (no-tillage, minimum tillage and total tillage was applied in this experiment. The results showed that there was no interaction between species and tillage techniques. There was significant reductions on bulk density from 1.23±0.03 g/cm3 (no-tillage to 1.07±0.02 g/cm3 (minimum tillage and 1.05±0.03 g/cm3 (total tillage. Also reductions on penetration resistance from 17.47±3.84 kg/cm2 (no-tillage to 3.31±0.43 kg/cm2 (minimum tillage and 3.19±0.45 kg/cm2 (total tillage. Otherwise significant increasing on aeration porosity from 12.80±0.80% vol. (no-tillage to 21.70±0.95% vol. (minimum tillage and 20.70±0.35% vol. (total tillage. Total tillage gives increased dry matter yield. Also both total tillage and minimum tillage give yields with a higher percentage of legumes compared with no-tillage. It was concluded that total tillage and minimum tillage could be used for improving native grassland.

  15. African Conservation Tillage Network Website

    OpenAIRE

    African Conservation Tillage Network (ACT)

    2009-01-01

    Metadata only record Maintained by the African Conservation Tillage Network (ACT), this website provides information on Conservation Agriculture in an African context and gathered by stakeholders (NGOs) native to the continent. Resources on projects, practices, reports, and training courses are provided.

  16. Influence of tillage practices and straw incorporation on soil aggregates, organic carbon, and crop yields in a rice-wheat rotation system

    Science.gov (United States)

    Song, Ke; Yang, Jianjun; Xue, Yong; Lv, Weiguang; Zheng, Xianqing; Pan, Jianjun

    2016-11-01

    In this study, a fixed-site field experiment was conducted to study the influence of different combinations of tillage and straw incorporation management on carbon storage in different-sized soil aggregates and on crop yield after three years of rice-wheat rotation. Compared to conventional tillage, the percentages of >2 mm macroaggregates and water-stable macroaggregates in rice-wheat double-conservation tillage (zero-tillage and straw incorporation) were increased 17.22% and 36.38% in the 0–15 cm soil layer and 28.93% and 66.34% in the 15–30 cm soil layer, respectively. Zero tillage and straw incorporation also increased the mean weight diameter and stability of the soil aggregates. In surface soil (0–15 cm), the maximum proportion of total aggregated carbon was retained with 0.25–0.106 mm aggregates, and rice-wheat double-conservation tillage had the greatest ability to hold the organic carbon (33.64 g kg‑1). However, different forms occurred at higher levels in the 15–30 cm soil layer under the conventional tillage. In terms of crop yield, the rice grown under conventional tillage and the wheat under zero tillage showed improved equivalent rice yields of 8.77% and 6.17% compared to rice-wheat double-cropping under zero tillage or conventional tillage, respectively.

  17. Influence of tillage practices and straw incorporation on soil aggregates, organic carbon, and crop yields in a rice-wheat rotation system.

    Science.gov (United States)

    Song, Ke; Yang, Jianjun; Xue, Yong; Lv, Weiguang; Zheng, Xianqing; Pan, Jianjun

    2016-11-04

    In this study, a fixed-site field experiment was conducted to study the influence of different combinations of tillage and straw incorporation management on carbon storage in different-sized soil aggregates and on crop yield after three years of rice-wheat rotation. Compared to conventional tillage, the percentages of >2 mm macroaggregates and water-stable macroaggregates in rice-wheat double-conservation tillage (zero-tillage and straw incorporation) were increased 17.22% and 36.38% in the 0-15 cm soil layer and 28.93% and 66.34% in the 15-30 cm soil layer, respectively. Zero tillage and straw incorporation also increased the mean weight diameter and stability of the soil aggregates. In surface soil (0-15 cm), the maximum proportion of total aggregated carbon was retained with 0.25-0.106 mm aggregates, and rice-wheat double-conservation tillage had the greatest ability to hold the organic carbon (33.64 g kg(-1)). However, different forms occurred at higher levels in the 15-30 cm soil layer under the conventional tillage. In terms of crop yield, the rice grown under conventional tillage and the wheat under zero tillage showed improved equivalent rice yields of 8.77% and 6.17% compared to rice-wheat double-cropping under zero tillage or conventional tillage, respectively.

  18. Effect of Tillage and Staking on the production of fluted Pumpkin

    Directory of Open Access Journals (Sweden)

    C.G Okeke

    2016-06-01

    Full Text Available A field experiment was conducted using fluted pumpkin (telfairia occidentals to determine the effect of 3 different tillage (zero, mound and flat and 3 different staking (zero, individual and pyramid on a sandy clay loam soil of the humid tropics at faculty research farm Esut, Enugu Southeastern Nigeria between June and December, 2008. The treatment consists of 3 levels of tillage and3 levels of staking as mentioned above. The experiment was a 3 x 3 factorial laid out in randomized complete block design (RCBD with four replications and nine treatments. The results obtained revealed significant different of p 0.05 among some of the ç. treatments. The highest number of vine length and number of flower per plant of 196.16 and 36 were obtained from zero tillage / individual staking while the least were recorded for flat tillage/individual staking of 115.19 and zero tillage/pyramidal staking of 3 respectively. Average leaf yield ranged from 277.7 to 852.5 (g were obtained. Based on their performance, treatment 5 (mound tillage/individual staking and treatment, 6(mound tillage/pyramidal staking have the highest leaf yield.

  19. The Effect of Conservation Tillage and Cover Crop Residue on Beneficial Arthropods and Weed Seed Predation in Acorn Squash.

    Science.gov (United States)

    Quinn, N F; Brainard, D C; Szendrei, Z

    2016-12-01

    Conservation tillage combined with cover crops or mulching may enhance natural enemy activity in agroecosystems by reducing soil disturbance and increasing habitat structural complexity. In particular, weed seed predation can increase with vegetation cover and reduced tillage, indicating that mulches may improve the quality of the habitat for weed seed foraging. The purpose of this study was to quantify the effects of tillage and mulching for conservation biological control in cucurbit fields. The effects of mulch and reduced tillage on arthropods and rates of weed seed loss from arenas were examined in field trials on sandy soils in 2014 and 2015. Experimental factors included tillage and cover crop, each with two levels: strip-tillage or full-tillage, and cover crop mulch (rye residue) or no cover crop mulch (unmulched). Arthropod abundance on the crop foliage was not affected by tillage or cover crops. Contrary to expectations, epigeal natural enemies of insects and rates of weed seed removal either did not respond to treatments or were greater in full-tilled plots and plots without mulch. Our study demonstrates the potential importance of weed seed predators in reducing weed seedbanks in vegetable agroecosystems, and suggests that early-season tillage may not be detrimental to epigeal predator assemblages. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Qualidade de bulbos de cebola em consequência de tratamentos pré-colheita Onion bulb quality due to pre-harvest treatments

    Directory of Open Access Journals (Sweden)

    Marcos David Ferreira

    2000-12-01

    Full Text Available Com o objetivo de se avaliar o efeito de tratamentos pré-colheita na qualidade de bulbos de cebola, através dos parâmetros perda de peso, espessura e coloração da casca, diâmetro e firmeza do bulbo, foi conduzido experimento em Paulínia, Estado de São Paulo, em 1997. Foram utilizados quatro tratamentos: testemunha; oxicloreto de cobre (250 g 100 L-1 de água; ácido bórico (250 g 100 L-1 de água; e a combinação dos dois últimos e seis cultivares: Serrana, Régia, Crioula e três híbridos da SVS, HT, HS-1 e HS-2. Os tratamentos foram aplicados durante a bulbificação. Os bulbos foram armazenados à temperatura ambiente (25ºC e analisados periodicamente para os parâmetros citados. Os resultados permitiram observar que a aplicação pré-colheita do oxicloreto de cobre, nas quatro últimas semanas do ciclo, aumentou significativamente a resistência da casca dos bulbos, reduziu a perda de peso e incrementou a coloração dos mesmos, para todas as cultivares. Cultivares com casca mais escura apresentaram melhor resposta aos tratamentos pré-colheita para a coloração, do que as de casca mais clara. A firmeza dos bulbos, não foi influenciada pelos tratamentos pré-colheita.Pre-harvest treatments were evaluated to enhance onion bulb quality in different onion cultivars adapted to tropical conditions. Parameters used were weight loss, skin color and thickness, bulb and firmness. Trials were carried out in 1997. Four treatments were used: control, copper oxicloride (250 g 100 L-1; boric acid (250 g 100 L-1, and a combination of the two chemical treatments (250 g 100 L-1 of each. Treatments were applied at bulbing stage. The six cultivars were Serrana, Régia, Crioula, and the hybrids HT, HS-1 and HS-2. Bulbs were stored at room temperature prior to evaluations. Results showed that copper oxicloride (250 g 100 L-1 induced an increase in skin thickness, decreased weight loss and enhanced color in cultivars. Dark skin cultivars had a

  1. Tillage-induced short-term soil organic matter turnover and respiration

    Science.gov (United States)

    Fiedler, Sebastian Rainer; Leinweber, Peter; Jurasinski, Gerald; Eckhardt, Kai-Uwe; Glatzel, Stephan

    2016-09-01

    Tillage induces decomposition and mineralisation of soil organic matter (SOM) by the disruption of macroaggregates and may increase soil CO2 efflux by respiration, but these processes are not well understood at the molecular level. We sampled three treatments (mineral fertiliser: MF; biogas digestate: BD; unfertilised control: CL) of a Stagnic Luvisol a few hours before and directly after tillage as well as 4 days later from a harvested maize field in northern Germany and investigated these samples by means of pyrolysis-field ionisation mass spectrometry (Py-FIMS) and hot-water extraction. Before tillage, the Py-FIMS mass spectra revealed differences in relative ion intensities of MF and CL compared to BD most likely attributable to the cattle manure used for the biogas feedstock and to relative enrichments during anaerobic fermentation. After tillage, the CO2 effluxes were increased in all treatments, but this increase was less pronounced in BD. We explain this by restricted availability of readily biodegradable carbon compounds and possibly an inhibitory effect of sterols from digestates. Significant changes in SOM composition were observed following tillage. In particular, lignin decomposition and increased proportions of N-containing compounds were detected in BD. In MF, lipid proportions increased at the expense of ammonia, ammonium, carbohydrates and peptides, indicating enhanced microbial activity. SOM composition in CL was unaffected by tillage. Our analyses provide strong evidence for significant short-term SOM changes due to tillage in fertilised soils.

  2. Adoption of Maize Conservation Tillage in Azuero, Panama

    OpenAIRE

    de Herrera, Adys Pereira; Sain, Gustavo

    1999-01-01

    An aggressive research and validation program launched in 1984 in Azuero, Panama, yielded a recommendation advocating zero tillage for maize production. Ten years later, maize farmers in Azuero used three land preparation methods: conventional tillage, zero tillage, and minimum tillage (an adaptation of the zero tillage technology). This study aimed to quantify the adoption of zero and minimum tillage for maize in Azuero; identify factors influencing adoption of the different land preparation...

  3. The effects of forward speed and depth of conservation tillage on soil bulk density

    Directory of Open Access Journals (Sweden)

    A Mahmoudi

    2015-09-01

    , besides the importance of tillage depth and speed in different tiller performance. Materials and methods: This investigation was carried out based on random blocks in the form of split plot experimental design. The main factor, tillage depth, (was 10 and 20cm at both levels and the second factor, tillage speed, (was 6, 8, 10, 12 km h-1 in four levels for Bostan-Abad and 8,10,12,14 km h-1 for Hashtrood with four repetitions. It was carried out using complex tillage made in Sazeh Keshte Bukan Company, which is mostly used in Eastern Azerbaijanand using Massey Ferguson 285 and 399 tractors in Bostab-Abad and Hashtrood, respectively. In this investigation, the characteristics of soil bulk density were studied in two sampling depths of 7 and 17 centimeters. Bulk density is an indicator of soil compaction. It is calculated as the dry weight of soil divided by its volume. This volume includes the volume of soil particles and the volume of pores among soil particles. Bulk density is typically expressed in g cm-3. Results and Discussion: In this study, the effect of both factors on the feature of the soil bulk density at the sampling depth of 5-10 and 15-20 cm was examined. In Bostan-Abad, regarding tillage speed effect for studies characteristics at 1% probability level on soil bulk density was effective. The effect of tillage depth on the soil bulk density was significant at 5% probability level . The interaction effect of tillage speed and depth on soil bulk density was significant at probability level of 1%. Regarding sampling depth effect, the soil bulk density was significant at 5% probability level, respectively. In Hashtrood, the effect of tillage speed on soil bulk density at probability level of 1%, and also tillage depth effect on soil bulk density was significant at 5% level of probability. The interaction effect of tillage speed and depth on soil bulk density was significant at 5% level of probability. Regarding the depth of sampling it was significant on soil bulk

  4. Description of Extended Pre-Harvest Pig Salmonella Surveillance-and-Control Programme and its Estimated Effect on Food Safety Related to Pork

    DEFF Research Database (Denmark)

    Alban, L.; Barfod, Kristen; Petersen, J. V.;

    2010-01-01

    Salmonella in pork can be combated during pre- or post-harvest. For large slaughterhouses, post-harvest measures like decontamination might be cost-effective while this is less likely with small-to-medium sized slaughterhouses. In this study, pre-harvest measures might be more relevant. We describe...... an extended surveillance-and-control programme for Salmonella in finisher pigs, which, to establish equivalence to the Swedish control programme, is intended for implementation on the Danish island, Bornholm. The effect of the programme on food safety was estimated by analysing Salmonella data from pig...... programme were obtained from Bornholm. We used a simulation model developed to estimate the number of human cases based on the prevalence of Salmonella on carcass swabs. Herds are only accepted in the programme if they have one or less seropositive sample within the previous 6 months. In this way...

  5. Improvement of native grassland by legumes introduction and tillage techniques

    OpenAIRE

    Syamsu Bahar; S. Hardjosoewignjo; I Kismono; O Haridjaja

    1999-01-01

    A factorial design using three species of legumes (Siratro, Centro and Stylo) and three different of tillage techniques (no-tillage, minimum tillage and total tillage) was applied in this experiment. The results showed that there was no interaction between species and tillage techniques. There was significant reductions on bulk density from 1.23±0.03 g/cm3 (no-tillage) to 1.07±0.02 g/cm3 (minimum tillage) and 1.05±0.03 g/cm3 (total tillage). Also reductions on penetration resistance from 17.4...

  6. Response of Wheat to Tillage Plus Rice Residue and Nitrogen Management in Rice-Wheat System

    Institute of Scientific and Technical Information of China (English)

    Khalid Usman; Ejaz Ahmad Khan; Niamatullah Khan; Abdur Rashid; Fazal Yazdan; Saleem Ud Din

    2014-01-01

    Zero tillage with residues retention and optimizing nitrogen fertilization are important strategies to improve soil quality and wheat (Triticum aestivum L.) yield in rice (Oryza sativa L.)-wheat system. Field experiments were conducted on silty clay soil (Hyperthermic, and Typic Torrilfuvents) in D. I. Khan, Pakistan, to explore the impact of six tillage methods (zero tillage straw retained (ZTsr), ZT straw burnt (ZTsb), reduced tillage straw incorporated (RTsi, including tiller and rotavator), RT straw burnt (RTsb), conventional tillage straw incorporated (CTsi, including disc plow, tiller, rotavator, and leveling operations), CT straw burnt (CTsb)) and ifve nitrogen rates, i.e., 0, 100, 150, 200, and 250 kg ha-1 on wheat yield. Mean values for N revealed that spikes m-2, grains/spike, 1 000-grain weight (g), and grain yield (kg ha-1) were signiifcantly higher at 200 kg N ha-1 in both the years as well as mean over years than all other treatments. Mean values for tillage revealed that ZTsr produced highest number of spikes m-2 among tillage methods. However, grains/spike, 1 000-grain weight, and grain yield were higher in tillage methods with either straw retained/incorporated than tillage methods with straw burnt. Interaction effects were signiifcant in year 1 and in mean over years regarding spikes m-2, 1 000-grain weight, total soil organic matter (SOM), and total soil N (TSN). ZTsr produced the most spikes m-2 and 1 000-grain weight at 200 kg N ha-1. ZTsr also produced higher SOM and TSN at 200-250 kg N ha-1 at the end of 2 yr cropping. Thus ZTsr with 200 kg N ha-1 may be an optimum and sustainable approach to enhance wheat yield and soil quality in rice-wheat system.

  7. Reduced greenhouse gas mitigation potential of no-tillage soils through earthworm activity.

    Science.gov (United States)

    Lubbers, Ingrid M; van Groenigen, Kees Jan; Brussaard, Lijbert; van Groenigen, Jan Willem

    2015-09-04

    Concerns about rising greenhouse gas (GHG) concentrations have spurred the promotion of no-tillage practices as a means to stimulate carbon storage and reduce CO2 emissions in agro-ecosystems. Recent research has ignited debate about the effect of earthworms on the GHG balance of soil. It is unclear how earthworms interact with soil management practices, making long-term predictions on their effect in agro-ecosystems problematic. Here we show, in a unique two-year experiment, that earthworm presence increases the combined cumulative emissions of CO2 and N2O from a simulated no-tillage (NT) system to the same level as a simulated conventional tillage (CT) system. We found no evidence for increased soil C storage in the presence of earthworms. Because NT agriculture stimulates earthworm presence, our results identify a possible biological pathway for the limited potential of no-tillage soils with respect to GHG mitigation.

  8. Variations between post- and pre-harvest seasons in stunting, wasting, and Infant and Young Child Feeding (IYCF) practices among children 6-23 months of age in lowland and midland agro-ecological zones of rural Ethiopia.

    Science.gov (United States)

    Roba, Kedir Teji; O'Connor, Thomas Pacelli; Belachew, Tefera; O'Brien, Nora Mary

    2016-01-01

    Food availability and access are strongly affected by seasonality in Ethiopia. However, there are little data on seasonal variation in Infant and Young Child Feeding (IYCF) practices and malnutrition among 6-23 months old children in different agro-ecological zones of rural Ethiopia. Socio-demographic, anthropometry and IYCF indicators were assessed in post- and pre-harvest seasons among children aged 6-23 months of age randomly selected from rural villages of lowland and midland agro-ecological zones. Child stunting and underweight increased from prevalence of 39.8% and 26.9% in post-harvest to 46.0% and 31.8% in pre-harvest seasons, respectively. The biggest increase in prevalence of stunting and underweight between post- and pre-harvest seasons was noted in the midland zone. Wasting decreased from 11.6% post-harvest to 8.5% pre-harvest, with the biggest decline recorded in the lowland zone. Minimum meal frequency, minimum acceptable diet and poor dietary diversity increased considerably in pre-harvest compared to post-harvest season in the lowland zone. Feeding practices and maternal age were predictors of wasting, while women's dietary diversity and children age was predictor of child dietary diversity in both seasons. There is seasonal variation in malnutrition and IYCF practices among children 6-23 months of age with more pronounced effect in midland agro-ecological zone. A major contributing factor for child malnutrition may be poor feeding practices. Health information strategies focused on both IYCF practices and dietary diversity of mothers could be a sensible approach to reduce the burden of child malnutrition in rural Ethiopia.

  9. Effect of Rotational Tillage on Soil Aggregates, Organic Carbon and Nitrogen in the Loess Plateau Area of China

    Institute of Scientific and Technical Information of China (English)

    HOU Xian-Qing; LI Rong; JIA Zhi-Kuan; HAN Qing-Fang

    2013-01-01

    In rain-fed semi-arid agroecosystems,continuous conventional tillage can cause serious problems in soil quality and crop production,whereas rotational tillage (no-tillage and subsoiling) could decrease soil bulk density,and increase soil aggregates and organic carbon in the 0-40 cm soil layer.A 3-year field study was conducted to determine the effect of tillage practices on soil organic carbon (SOC),total nitrogen (TN),water-stable aggregate size distribution and aggregate C and N sequestration from 0 to 40 cm soil in semi-arid areas of southern Ningxia.Three tillage treatments were tested:no-tillage in year 1,subsoiling in year 2,and no-tillage in year 3 (NT-ST-NT); subsoiling in year 1,no-tillage in year 2,and subsoiling in year 3 (ST-NT-ST); and conventional tillage over years 1-3 (CT).Mean values of soil bulk density in 0-40 cm under NT-ST-NT and ST-NT-ST were significantly decreased by 3.3% and 6.5%,respectively,compared with CT,while soil total porosity was greatly improved.Rotational tillage increased SOC,TN,and water-stable aggregates in the 0-40 cm soil,with the greatest effect under ST-NT-ST.In 0-20 and 20-40 cm soils,the tillage effect was confined to the 2-0.25 mm size fraction of soil aggregates,and rotational tillage treatments obtained significantly higher SOC and TN contents than conventional tillage.No significant differences were detected in SOC and TN contents in the > 2 mm and < 0.25 mm aggregates among all treatments.In conclusion,rotational tillage practices could significantly increase SOC and TN levels,due to a fundamental change in soil structure,and maintain agroecosystem sustainability in the Loess Plateau area of China.

  10. Effect of tillage and water management on GHG emissions from Mediterranean rice growing ecosystems

    Science.gov (United States)

    Fangueiro, David; Becerra, Daniel; Albarrán, Ángel; Peña, David; Sanchez-Llerena, Javier; Rato-Nunes, José Manuel; López-Piñeiro, Antonio

    2017-02-01

    %, relative to CT. However, the effect of water management on yield-scaled GWP depended on the soil management: yield-scaled GWP was higher with flooding when NT was used and lower when tillage was used. It can be concluded that, for aerobic rice production, NT is an efficient strategy to minimize GHG emissions while maintaining high levels of production.

  11. Developing a sustainable agro-system for central Nepal using reduced tillage and straw mulching.

    Science.gov (United States)

    Atreya, Kishor; Sharma, Subodh; Bajracharya, Roshan M; Rajbhandari, Neeranjan P

    2008-08-01

    In Nepal, soil erosion under maize (Zea mays) agro-ecosystems is most critical during the pre-monsoon season. Very few field experiments have been conducted on reduced tillage and rice straw (Oryza sativa) mulching, although these conservation approaches have been recommended. Thus, a five replicate field experiment was established in 2001 at Kathmandu University (1500 m above sea level) on land with 18% slope to evaluate the efficiency of reduced tillage and mulching on soil and nutrient losses and maize yield. The results showed non-significant differences among conservation approaches on runoff and maize yield. Mulching and reduced tillage significantly lowered annual and pre-monsoon soil and nutrient losses compared to conventional tillage. Soil organic matter (SOM) and nitrogen losses associated with eroded sediment were significantly higher in conventional tillage. However, due to limited availability and high opportunity cost of rice straw, reduced tillage would be a better option for soil and nutrient conservation without sacrificing economic yield in upland maize agro-ecosystems.

  12. The effects of pre-harvest napthalene acetic acid and aminoethoxyvinylglycine treatments on storage performance of ‘ Ak Sakı’ apple cultivar grown in Erzincan conditions

    Directory of Open Access Journals (Sweden)

    Burhan OZTÜRK

    2013-06-01

    Full Text Available This study was carried out to determine the effects of pre-harvest aminoethoxyvinylglycine (AVG, 150, 225 ve 300 mg/L and naphthaleneacetic acid (NAA, 20 mg/L treatments in different doses on storage performance of ‘Ak Sakı’ apple cultivar (Malus domestica Borkh. in 2012. The changes on some fruit quality parameters were measured at 2±1 oC temperature and with 90±5 % relative humidity at 45 days interval during storage. The lowest weight loss was obtained from 300 mg/L AVG treated fruits during the storage. In the all analysis date, the highest L* value was obtained from 300 mg/L AVG treated fruits, and the lowest hue angle value was reported from the fruits of control treatment. The flesh firmness was determined that the best kept in the 225 and 300 mg/L AVG treated fruits during the storage. The flesh firmness significantly reduced with NAA treatment at the end of storage. The highest soluble solids concentration (SSC was obtain from control fruit during the storage, whereas the lowest SSC was observed in fruit treated with 300 mg/L AVG. In the all analysis date, the highest titratable acidity was obtained in fruits treated with 225 and 300 mg/L AVG. The starch degradation was delayed with AVG treatments.

  13. Pre-harvest aflatoxins and Aspergillus flavus contamination in variable germplasms of red chillies from Kunri, Pakistan.

    Science.gov (United States)

    Akhund, Shaista; Akram, Abida; Hanif, Nafeesa Qudsia; Qureshi, Rahmatullah; Naz, Farah; Nayyar, Brian Gagosh

    2017-05-01

    Various cultivars of red chilli were collected from a small town named Kunri, located in the province Sindh, Pakistan. This town is a hub of red chilli production in Asia. A total of 69 samples belonging to 6 cultivars were obtained and analysed for the occurrence of aflatoxins and Aspergillus flavus, to explore the potential of resistant and susceptible germplasm. Aflatoxins were detected by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC), while A. flavus was isolated and identified using agar plate, blotter paper, deep freezing and dilution techniques. Molecular characterization using internal transcribed spacer (ITS) 1/4 and A. flavus specific FL1-F/R primers confirmed the identity of A. flavus. The data revealed that 67 and 75% samples contaminated with aflatoxin B1 (AFB1) and with A. flavus, respectively. A highly susceptible chilli cultivar was 'Nagina', showing 78.8% frequency of total aflatoxins (1.2-600 μg/kg) and a mean of 87.7 μg/kg for AFB1 and 121.9 μg/kg for total aflatoxins. A. flavus was detected with 93% frequency and 2.14 × 10(4) colony forming units. In contrast, cultivars 'Kunri' and 'Drooping Type' were found to be resistant, with low levels of aflatoxins and fungal counts. The study was conducted for the first time to explore two potential cultivars that were less susceptible towards A. flavus and aflatoxin contamination. These cultivars could be preferably cultivated and thereby boost Pakistan's chilli production.

  14. Effects of Reduced Tillage on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management

    Directory of Open Access Journals (Sweden)

    Wilhelm Claupein

    2013-09-01

    Full Text Available A field experiment was performed in Southwest Germany to examine the effects of long-term reduced tillage (2000–2012. Tillage treatments were deep moldboard plow: DP, 25 cm; double-layer plow; DLP, 15 + 10 cm, shallow moldboard plow: SP, 15 cm and chisel plow: CP, 15 cm, each of them with or without preceding stubble tillage. The mean yields of a typical eight-year crop rotation were 22% lower with CP compared to DP, and 3% lower with SP and DLP. Stubble tillage increased yields by 11% across all treatments. Soil nutrients were high with all tillage strategies and amounted for 34–57 mg kg−1 P and 48–113 mg kg−1 K (0–60 cm soil depth. Humus budgets showed a high carbon input via crops but this was not reflected in the actual Corg content of the soil. Corg decreased as soil depth increased from 13.7 g kg−1 (0–20 cm to 4.3 g kg−1 (40–60 cm across all treatments. After 12 years of experiment, SP and CP resulted in significantly higher Corg content in 0–20 cm soil depth, compared to DP and DLP. Stubble tillage had no significant effect on Corg. Stubble tillage combined with reduced primary tillage can sustain yield levels without compromising beneficial effects from reduced tillage on Corg and available nutrient content.

  15. Effect of tillage and planting date on seasonal abundance and diversity of predacious ground beetles in cotton.

    Science.gov (United States)

    Shrestha, R B; Parajulee, M N

    2010-01-01

    A 2-year field study was conducted in the southern High Plains region of Texas to evaluate the effect of tillage system and cotton planting date window on seasonal abundance and activity patterns of predacious ground beetles. The experiment was deployed in a split-plot randomized block design with tillage as the main-plot factor and planting date as the subplot factor. There were two levels for each factor. The two tillage systems were conservation tillage (30% or more of the soil surface is covered with crop residue) and conventional tillage. The two cotton planting date window treatments were early May (normal planting) and early June (late planting). Five prevailing predacious ground beetles, Cicindela sexguttata F., Calosoma scrutator Drees, Pasimachus spp., Pterostichus spp., and Megacephala Carolina L. (Coleoptera: Carabidae), were monitored using pitfall traps at 2-week intervals from June 2002 to October 2003. The highest total number of ground beetles (6/trap) was observed on 9 July 2003. Cicindela sexguttata was the dominant ground dwelling predacious beetle among the five species. A significant difference between the two tillage systems was observed in the abundances of Pterostichus spp. and C. sexguttata. In 2002. significantly more Pterostichus spp. were recorded from conventional plots (0.27/trap) than were recorded from conservation tillage plots (0.05/trap). Significantly more C. sexguttata were recorded in 2003 from conservation plots (3.77/trap) than were recorded from conventional tillage plots (1.04/trap). There was a significant interaction between year and tillage treatments. However, there was no significant difference in the abundances of M. Carolina and Pasimachus spp. between the two tillage practices in either of the two years. M. Carolina numbers were significantly higher in late-planted cotton compared with those observed in normal-planted cotton. However, planting date window had no significant influence on the activity patterns of the

  16. From Dust Bowl to Conservation Tillage.

    Science.gov (United States)

    McDonald, Dale

    1992-01-01

    Examines the causes of the dust bowl and recent changes in tillage practices in Oklahoma and other prairie states that conserve soil. Briefly discusses the success of programs that target school children for conservation education. (LZ)

  17. Tillage and residue burning affects weed populations and seed banks.

    Science.gov (United States)

    Narwal, S; Sindel, B M; Jessop, R S

    2006-01-01

    An integrated weed management approach requires alternative management practices to herbicide use such as tillage, crop rotations and cultural controls to reduce soil weed seed banks. The objective of this study was to examine the value of different tillage practices and stubble burning to exhaust the seed bank of common weeds from the northern grain region of Australia. Five tillage and burning treatments were incorporated in a field experiment, at Armidale (30 degrees 30'S, 151 degrees 40'E), New South Wales, Australia in July 2004 in a randomized block design replicated four times. The trial was continued and treatments repeated in July 2005 with all the mature plants from the first year being allowed to shed seed in their respective treatment plots. The treatments were (i) no tillage (NT), (ii) chisel ploughing (CP), (iii) mould board ploughing (MBP), (iv) wheat straw burning with no tillage (SBNT) and (v) wheat straw burning with chisel ploughing (SBC). Soil samples were collected before applying treatments and before the weeds flowered to establish the seed bank status of the various weeds in the soil. Wheat was sown after the tillage treatments. Burning treatments were only initiated in the second year, one month prior to tillage treatments. The major weeds present in the seed bank before initiating the trial were Polygonum aviculare, Sonchus oleraceus and Avena fatua. Tillage promoted the germination of other weeds like Hibiscus trionum, Medicago sativa, Vicia sp. and Phalaris paradoxa later in the season in 2004 and Convolvulus erubescens emerged as a new weed in 2005. The MBP treatment in 2004 reduced the weed biomass to a significantly lower level of 55 g/m2 than the other treatments of CP (118 g/m2) and NT plots (196 g/m2) (P < 0.05). However, in 2005 SBC and MBP treatments were similar in reducing the weed biomass. In 2004, the grain yield trend of wheat was significantly different between CP and NT, and MBP and NT (P < 0.05) with maximum yield of 5898

  18. Model of pre-harvest quality of pineapple guava fruits (Acca sellowiana (O. berg burret as a function of weather conditions of the crops

    Directory of Open Access Journals (Sweden)

    Alfonso Parra-Coronado

    Full Text Available ABSTRACT Weather conditions influence the quality parameters of pineapple guava fruit during growth and development. The aim of this study was to propose a model of pre-harvest fruit quality as a function of weather conditions in the cultivation area. Twenty trees were flagged per farm in 2 localities of the Department of Cundinamarca, Colombia: Tenjo (2,580 m.a.s.l.; 12.5 °C; relative humidity between 74 and 86%; mean annual precipitation 765 mm and San Francisco de Sales (1,800 m.a.s.l.; 20.6 °C; relative humidity between 63 and 97%; mean annual precipitation 1,493 mm. Measurements were performed every 7 days during 2 harvest periods starting on days 96 (Tenjo and 99 (San Francisco de Sales after anthesis and until harvest. The models were obtained using Excel® Solver, and a set of data was obtained for the 2 different cultivar periods and each study site. The results showed that altitude, growing degree days, and accumulated precipitation are the weather variables with the highest influence on the physicochemical characteristics of the fruit during growth. The models of fresh weight, total titratable acidity, and skin firmness better predict the development of fruit quality during growth and development. Equations were obtained for increases of length and diameter as a function of fruit weight and for days from anthesis as a function of growing degree days and altitude. The regression analysis parameters showed that the models adequately predicted the fruit characteristics during growth for both localities, and a cross-validation analysis showed a good statistical fit between the estimated and observed values.

  19. Effects of pre-harvest foliar application of different rates and sources of calcium on yield and quality of ‘Illona’ cut rose flower

    Directory of Open Access Journals (Sweden)

    K. Mirza Shahi

    2011-12-01

    Full Text Available Short vase life and low quality of cut rose flowers are the main problems of most rose greenhouses in Iran. Calcium is one of the most important nutrients that plays a major role in vase life of cut rose flowers. In this study, a factorial experiment was conducted based on completely randomized blocks design to elucidate the effects of foliar application of calcium rates and sources on yield and quality of rose flowers cv. Illona. Rose plants were sprayed by three rates of 0, 0.3 and 0.6 g/L calcium in combination with two sources of calcium nitrate (Ca(NO32.4H2O and calcium chelate (Ca-EDTA before the harvest. The experiment was conducted in 3 replications during 2005-2007 in Safi Abad Agricultural Research Center, Dezful. The results revealed that rose yield and flower quality indices at harvest time consisting of flowering stem fresh weight and length and length and diameter of buds were not affected by different rates and sources of calcium. But, vase life of cut rose flowers was increased significantly by 2.7 and 2.9 days in 0.3 and 0.6 g/L treatments, respectively (P<0.01. This was due to increased Ca concentration in the rose leaves and petals. There was no significant difference between the calcium nitrate and calcium chelate in supplying calcium and increasing vase life of cut rose flowers. According to the results of the present study, pre-harvest foliar application of calcium nitrate or calcium chelate at the rate of 0.3 g/L is recommended to improve vase life of cut rose flowers in north Khuzestan under greenhouse conditions.

  20. Description of extended pre-harvest pig Salmonella surveillance-and-control programme and its estimated effect on food safety related to pork.

    Science.gov (United States)

    Alban, L; Barfod, K; Petersen, J V; Dahl, J; Ajufo, J C; Sandø, G; Krog, H H; Aabo, S

    2010-11-01

    Salmonella in pork can be combated during pre- or post-harvest. For large slaughterhouses, post-harvest measures like decontamination might be cost-effective while this is less likely with small-to-medium sized slaughterhouses. In this study, pre-harvest measures might be more relevant. We describe an extended surveillance-and-control programme for Salmonella in finisher pigs, which, to establish equivalence to the Swedish control programme, is intended for implementation on the Danish island, Bornholm. The effect of the programme on food safety was estimated by analysing Salmonella data from pig carcasses originating from herds that would have qualified for the programme during 2006-2008. Food safety was interpreted as prevalence of Salmonella on carcasses as well as the estimated number of human cases of salmonellosis related to pork produced within the programme. Data from the Danish Salmonella programme were obtained from Bornholm. We used a simulation model developed to estimate the number of human cases based on the prevalence of Salmonella on carcass swabs. Herds are only accepted in the programme if they have one or less seropositive sample within the previous 6 months. In this way, the Salmonella load is kept to a minimum. The programme is not yet in operation and pigs that qualify for the programme are currently mixed at slaughter with those that do not qualify. Therefore, we had to assess the impact on the carcass prevalence indirectly. The prevalence of Salmonella in carcass swabs among qualifying herds was 0.46% for the 3 years as a whole, with 2006 as the year with highest prevalence. According to the simulation the expected number of human cases relating to pork produced within the programme was below 10. When the programme is in operation, an extra effect of separating pigs within the programme from those outside is expected to lower the prevalence of Salmonella even further.

  1. Influence of conservation tillage and zero tillage on arable weeds in organic faba bean production

    Directory of Open Access Journals (Sweden)

    Jung, Rüdiger

    2016-02-01

    Full Text Available The field experiments were conducted in 2008, 2009 and 2010 on a Gleyic Cambisol near Goettingen, Lower Saxony, Germany. A crop sequence of summer barley, winter cover crops (intercropped oat and sunflower and summer faba bean was examined under organic farming conditions. Emphasis was given to the studying of arable weeds in faba beans. However, enhancing symbiotic nitrogen fixation of summer faba beans by accumulation of soil-nitrogen by winter cover crops was a second objective in these experiments. The faba bean field plots had been cultivated with three different tillage systems: 1. zero tillage, sowing with cross-slottechnique, 2. conservation tillage (wing share cultivator, rotary harrow sowing with cross-slot-technique and 3. conventional tillage with mouldboard plough followed by rotary harrow, sowing with precision monoseeder. In plots with zero tillage preceding cover crops were left as mulch on the soil surface. Cover crops accumulated adequate nitrogen amounts and following faba beans reacted with significant increase (up to 10% in symbiotic nitrogen fixation. Maximum of arable weed biomass was observed in zero tillage-plots at the end of May or early in June. The abundance of the predominant weed wild mustard (Sinapis arvensis increased with tillage intensity, whereas the abundance of creeping thistle (Cirsium arvense increased in 2010 with decreasing tillage intensity. Average grain yield of faba beans was low with only 3.0 and 2.4 t ha-1 in 2009 and 2010, respectively.

  2. Determination of crop residues and the physical and mechanical properties of soil in different tillage systems

    Directory of Open Access Journals (Sweden)

    P Ahmadi Moghaddam

    2016-04-01

    Full Text Available Introduction: Monitoring and management of soil quality is crucial for sustaining soil function in ecosystem. Tillage is one of the management operations that drastically affect soil physical quality. Conservation tillage methods are one of the efficient solutions in agriculture to reduce the soil erosion, air pollution, energy consumption, and the costs, if there is a proper management on the crop residues. One of the serious problems in agriculture is soil erosion which is rapidly increased in the recent decades as the intensity of tillage increases. This phenomenon occurs more in sloping lands or in the fields which are lacking from crop residues and organic materials. The conservation tillage has an important role in minimizing soil erosion and developing the quality of soil. Hence, it has attracted the attention of more researchers and farmers in the recent years. Materials and Methods: In this study, the effect of different tillage methods has been investigated on the crop residues, mechanical resistance of soil, and the stability of aggregates. This research was performed on the agricultural fields of Urmia University, located in Nazloo zone in 2012. Wheat and barley were planted in these fields, consecutively. The soil texture of these fields was loamy clay and the factorial experiments were done in a completely randomized block design. In this study, effect of three tillage systems including tillage with moldboard (conventional tillage, tillage with disk plow (reduced tillage, chisel plow (minimum tillage and control treatment on some soil physical properties was investigated. Depth is second factor that was investigated in three levels including 0-60, 60-140, and 140-200 mm. Moreover, the effect of different percentages of crop residues on the rolling resistance of non-driving wheels was studied in a soil bin. The contents of crop residues have been measured by using the linear transects and image processing methods. In the linear

  3. Nível crítico e resposta das culturas ao potássio em um Argissolo sob sistema plantio direto Critical level and crop yield response to potassium in a typic Hapludalf under no-tillage

    Directory of Open Access Journals (Sweden)

    Gustavo Brunetto

    2005-07-01

    Full Text Available O nível crítico de potássio usado para a recomendação de adubação em solos do Rio Grande do Sul e Santa Catarina com CTC a pH 7,0 entre 5,1 e 15,0 cmol c dm-3 é de 60 mg dm-3, embora tenha sido de 80 mg dm-3 até 2002. Este trabalho foi realizado com o objetivo de validar o nível crítico de potássio adotado, nas culturas da soja, do milho e do sorgo. O trabalho foi composto por dois experimentos, instalados na área experimental do Departamento de Solos da UFSM sobre um Argissolo Vermelho distrófico arênico. O primeiro experimento foi instalado em 1991 e realizado até 2002, ocasião em que foram aplicadas quatros doses de potássio (0, 60, 120 e 180 kg ha-1 de K2O, na parcela, a cada quatro anos, e reaplicados 60 kg ha-1 de K2O, nas subparcelas, em 0, 1, 2, ou 3 anos. O segundo experimento foi realizado de 1995 a 2002 e os tratamentos constaram de cinco doses de potássio (0, 50, 100, 150, 200 kg ha-1 ano-1 de K2O. Os resultados obtidos mostraram que o nível crítico de potássio extraído com Mehlich-1 no Argissolo estudado foi de 42 mg dm-3. Para estes solos, com a utilização do novo nível crítico estabelecido pela Comissão de Química e Fertilidade do Solo - RS/SC, foi possível atingir mais de 95 % do rendimento máximo das culturas.The critical potassium level for fertilizer recommendation for soils in the State of Rio Grande do Sul (RS and Santa Catarina (SC with CEC from 5.1 to 15 cmol c dm-3 is 60 mg dm-3. However, until 2002 concentrations of 80 mg dm-3 had been used. Two experiments were carried out on an experimental area of the Department of Soil Science of the Federal University of Santa Maria (RS-Brazil on a Sandy Typic Hapludalf under no-tillage. The objective of the study was to evaluate critical potassium levels for fertilizer recommendations for soybean, maize and sorghum. The first experiment was set up in 1991 and carried out until 2002. The main plot treatments were the application of 0, 60, 120, and 180

  4. Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices.

    Science.gov (United States)

    Attard, E; Poly, F; Commeaux, C; Laurent, F; Terada, A; Smets, B F; Recous, S; Roux, X Le

    2010-02-01

    Despite their role in soil functioning, the ecology of nitrite-oxidizing bacteria, NOB, and their response to disturbances such as those generated by agricultural practices are scarcely known. Over the course of 17 months, we surveyed the potential nitrite oxidation, PNO, the abundance of the Nitrobacter- and Nitrospira-like NOB (by quantitative PCR) and the community structure of the Nitrobacter-like NOB (by PCR-DGGE and cloning-sequencing targeting the nxrA gene) in soils for four treatments: after establishment of tillage on a previously no-tillage system, after cessation of tillage on a previously tillage system, and on control tillage and no-tillage systems. Key soil variables (moisture, organic carbon content and gross mineralization--i.e. ammonification--measured by the 15N dilution technique) were also surveyed. PNO was always higher for the no-tillage than tillage treatments. Establishment of tillage led to a strong and rapid decrease in PNO whereas cessation of tillage did not change PNO even after 17 months. PNO was strongly and positively correlated to the abundance of Nitrobacter-like NOB and was also strongly related to gross mineralization, a proxy of N-availability; in contrast, PNO was weakly and negatively correlated to the abundance of Nitrospira-like NOB. Selection of a dominant population was observed under no-tillage, and PNO was loosely correlated to the community structure of Nitrobacter-like NOB. Our results demonstrate that Nitrobacter-like NOB are the key functional players within the NOB community in soils with high N availability and high activity level, and that changes in PNO are due to shifts between Nitrospira-like and Nitrobacter-like NOB and to a weaker extent by shifts of populations within Nitrobacter-like NOB.

  5. Predicting Suitable field workdays for soil tillage in North Central ...

    African Journals Online (AJOL)

    Oladimeji S. Ife

    A simulation model was developed to predict suitable field workdays for tillage operations in North Central ... KEYWORDS: Suitable field workdays, tillage, agro –meteorology, tractability. 1. ... approach, the calculation of the components.

  6. Effect of blade vibration on mulch tillage performance under silt clay loam soil

    Directory of Open Access Journals (Sweden)

    B Goudarzi

    2015-09-01

    Full Text Available Introduction: Mulch tillage system is an intermediate system which covers some of disadvantages of no tillage and conventional tillage systems. In farms in which tillage is done with a chisel plow, runoff and soil erosion have a less important relation to moldboard and disk plow and naturally absorption of rainfall will be developed. Thus, the mulch tillage system is an appropriate alternative to conventional tillage and no tillage (Backingham and Pauli, 1993. The unwanted vibration in machinery and industry mainly processes most harmful factors, for example: bearing wear, cracking and loosening joints. And noise is produced in electrical systems by creating a short circuit (Wok, 2011. Self-induced and induced vibration are used in tillage systems. Induced vibration is created by energy consumption and self-induced vibration is created by collision among the blades and soil at the shank (Soeharsono and Setiawan, 2010. A study by Mohammadi-gol et al. (2005 was conducted. It was found that on the disk plow, plant residues maintained on the soil are more than that of moldboard plow. 99% frequency and amplitude, speed and rack angle of blade directly affect soil inversion and indirectly affect preservation of crop residue on the soil. The effect of vibration frequency and rack angle of blade to reduce the tensile strength is also clear. Moreover, in contrast to previous studies when speed progressing is less than (λ, not only the relative speed (λ, but also frequency can reduce the tensile strength (Beiranvand and Shahgoli, 2010; Awad-Allah et al., 2009. Therefore, aim of this study was to determine the effect of vibration and the speed of tillage on soil parameters and drawbar power in using electric power. Materials and Methods: To perform this test, three different modes of vibration (fixed, variable and induced vibration and two levels of speed in real terms at a depth of 20 cm were used for farming. The test was performed with a split plot

  7. Tillage system affects microbiological properties of soil

    Science.gov (United States)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the

  8. Plant growth regulators on the pre-harvest period of 'Pêra' oranges Reguladores vegetais aplicados na fase pré-colheita de laranjeira "Pêra"

    Directory of Open Access Journals (Sweden)

    Isolina Maria Leite de Almeida

    2008-06-01

    Full Text Available This research evaluated the effects of auxins and gibberellins applied at pre-harvest on the quality of orange juice. Orange trees, Citrus sinensis Osbeck, cv. 'Pêra' were sprayed in three applications, at 45-day intervals, with the following treatments: GA3 + 2,4-D at 12.5mg L-1 each; GA3 + 2,4-D at 25mg L-1; GA3 + 2,4-D at 37.5mg L-1; GA3 + NAA at 12.5mg L-1; GA3 + NAA at 25mg L-1; GA3 + NAA at 37.5mg L-1; NAA + 2,4-D at 12.5mg L-1; NAA + 2,4-D at 25mg L-1; NAA + 2,4-D at 37.5mg L-1, and a control. The treatments did not change juice quality, and showed no plant growth regulator residues 110 days after the last application in every case below 0.05mg L-1.Neste estudo, avaliou-se os efeitos de auxinas e giberelinas, combinados e aplicados em pré-colheita na qualidade interna de frutos de laranjeira "Pêra". Citrus sinensis Osbeck cultivar Pêra foram pulverizadas com três aplicações, em intervalos de 45 dias, com os seguintes tratamentos: GA3 + 2,4-D a 12,5mg L-1 de cada; GA3 + 2,4-D 25mg L-1; GA3 + 2,4-D 37,5mg L-1; GA3 + NAA 12,5mg L-1;GA3 + NAA 25mg L-1; GA3 + NAA 37,5mg L-1; NAA + 2,4-D 12,5mg L-1; NAA+2,4-D 25mg L-1; NAA+2,4-D 37,5mg L-1 e testemunha (água. Os resultados mostraram que os tratamentos não prejudicaram a qualidade interna dos frutos. Além disso, os níveis de resíduo de reguladores vegetais no suco, ficaram abaixo de 0,05mg L-1, 110 dias após a última aplicação.

  9. Soil loosening processes in tillage : analysis, systematics and predictability

    NARCIS (Netherlands)

    Koolen, A.J.

    1977-01-01

    The soil movements and the inter-particle forces in the vicinity of an operating tool of a tillage implement may be called a soil tillage process. Examples are the tillage processes of tines, plough-bodies etc. (soil loosening processes) and the influence on the soil of land rollers,

  10. Discussion on Soil Tillage Mode in Hegang Area%鹤岗地区土壤耕作模式探讨

    Institute of Scientific and Technical Information of China (English)

    姜洪伟

    2013-01-01

    Soil tillage mode in Hegang Area were summarized ,including plain arid soil tillage mode ,cold waterlogged lowland soil tillage mode , hilly soil tillage mode and paddy soil tillage mode ,in order to improve the level of agricultural development in Hegang Area.%总结鹤岗地区土壤耕作模式,包括平原易旱区土壤耕作模式、冷凉低湿易涝区土壤耕作模式、丘陵漫岗土壤耕作模式、水稻田土壤耕作模式,以提高鹤岗地区农业发展水平。

  11. Soil Tillage Conservation and its Effect on Soil Properties Bioremediation and Sustained Production of Crops

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Muresan, Liliana; Andriuca, Valentina; Cojocaru, Olesea

    2017-04-01

    soil features resulted in a positive impact on the water permeability of the soil. Availability of soil moisture during the crop growth resulted in better plant water status. Subsequent release of conserved soil water regulated proper plant water status, soil structure, and lowered soil penetrometer resistance. Productions obtained at STC did not have significant differences for the wheat and maize crop but were higher for soybean. The advantages of minimum soil tillage systems for Romanian pedo-climatic conditions can be used to improve methods in low producing soils with reduced structural stability on sloped fields, as well as measures of water and soil conservation on the whole agroecosystem. Presently, it is necessary to make a change concerning the concept of conservation practices and to consider a new approach regarding the good agricultural practice. We need to focus on an upper level concerning conservation by focusing on soil quality. Carbon management is necessary for a complexity of matters including soil, water management, field productivity, biological fuel and climatic change. In conclusion a Sustainable Agriculture includes a range of complementary agricultural practices: (i) minimum soil tillage (through a system of reduced tillage or no-tillage) to preserve the structure, fauna and soil organic matter; (ii) permanent soil cover (cover crops, residues and mulches) to protect the soil and help to remove and control weeds; (iii) various combinations and rotations of the crops which stimulate the micro-organisms in the soil and controls pests, weeds and plant diseases. Acknowledgements: This paper was performed under the frame of the Partnership in priority domains - PNII, developed with the support of MEN-UEFISCDI, project no. PN-II-PT-PCCA-2013-4-0015: Expert System for Risk Monitoring in Agriculture and Adaptation of Conservative Agricultural Technologies to Climate Change, and International Cooperation Program - Sub-3.1. Bilateral AGROCEO c. no. 21BM

  12. Green manures and levels of nitrogen topdressing in wheat crop under no-tillageAdubos verdes e doses de nitrogênio em cobertura na cultura do trigo sob plantio direto

    Directory of Open Access Journals (Sweden)

    Anísio da Silva Nunes

    2011-10-01

    Full Text Available Green manure is still a not widely used practice in wheat crop, although economic benefits and conservation of natural resources can be observed due to the adoption of this practice. This study was carried out at the Dourados, Mato Grosso do Sul State, Brazil, with the objective of evaluating the effect of sunn hemp (Crotalaria juncea and hairy vetch (Vicia villosa, associated with levels of mineral nitrogen topdressing in the agronomic performace of wheat crop under no-tillage. The treatments were constituted by green manures, fallow as a treatment-control and six doses of mineral nitrogen topdressing: zero, 30, 60, 90, 120 and 150 kg ha-1. Urea was used as nitrogen source. Evaluations of dry mass of cover crops, nitrogen contents in green manures shoot and in wheat leaves, plant height, number of productive tillers per plant, one thousand-grains weight, hectolitric weight and yield were made. It was concluded that the use of green manures before wheat seeding promotes significant increases in crop yield, mainly when planted over to sunn hemp. The wheat yield response to mineral nitrogen application varied according to the preceding crop.A adubação verde ainda é uma prática pouco utilizada na cultura do trigo, embora proporcione benefícios do ponto de vista econômico e da preservação dos recursos naturais. Este estudo foi realizado em Dourados-MS, Brasil, com o objetivo de avaliar o efeito do cultivo de crotalária (Crotalaria juncea e ervilhaca peluda (Vicia villosa como adubos verdes, associados a doses de nitrogênio mineral em cobertura, no desempenho agronômico do trigo em sistema plantio direto. Os tratamentos foram constituídos pelos adubos verdes, um tratamento-testemunha em pousio e seis doses de nitrogênio mineral em adubação de cobertura do trigo: zero, 30, 60, 90, 120 e 150 kg ha-1, utilizando-se a ureia como fonte de nitrogênio. Foram realizadas avaliações de massa seca das coberturas vegetais, teores de nitrog

  13. The Effect of Tillage System and Crop Rotation on Soil Microbial Diversity and Composition in a Subtropical Acrisol

    Directory of Open Access Journals (Sweden)

    Eric W. Triplett

    2012-10-01

    Full Text Available Agricultural management alters physical and chemical soil properties, which directly affects microbial life strategies and community composition. The microbial community drives important nutrient cycling processes that can influence soil quality, cropping productivity and environmental sustainability. In this research, a long-term agricultural experiment in a subtropical Acrisol was studied in south Brazil. The plots at this site represent two tillage systems, two nitrogen fertilization regimes and three crop rotation systems. Using Illumina high-throughput sequencing of the 16S rRNA gene, the archaeal and bacterial composition was determined from phylum to species level in the different plot treatments. The relative abundance of these taxes was correlated with measured soil properties. The P, Mg, total organic carbon, total N and mineral N were significantly higher in the no-tillage system. The microbial diversity was higher in the no-tillage system at order, family, genus and species level. In addition, overall microbial composition changed significantly between conventional tillage and no-tillage systems. Anaerobic bacteria, such as clostridia, dominate in no-tilled soil as well as anaerobic methanogenic archaea, which were detected only in the no-tillage system. Microbial diversity was higher in plots in which only cereals (oat and maize were grown. Soil management influenced soil biodiversity on Acrisol by change of composition and abundance of individual species.

  14. Crop response to deep tillage - a meta-analysis

    Science.gov (United States)

    Schneider, Florian; Don, Axel; Hennings, Inga; Schmittmann, Oliver; Seidel, Sabine J.

    2017-04-01

    Subsoil, i.e. the soil layer below the topsoil, stores tremendous stocks of nutrients and can keep water even under drought conditions. Deep tillage may be a method to enhance the plant-availability of subsoil resources. However, in field trials, deep tillage effects on crop yields were inconsistent. Therefore, we conducted a meta-analysis of crop yield response to subsoiling, deep ploughing and deep mixing of soil profiles. Our search resulted in 1530 yield comparisons following deep and conventional control tillage on 67 experimental cropping sites. The vast majority of the data derived from temperate latitudes, from trials conducted in the USA (679 observations) and Germany (630 observations). On average, crop yield response to deep tillage was slightly positive (6% increase). However, individual deep tillage effects were highly scattered including about 40% yield depressions after deep tillage. Deep tillage on soils with root restrictive layers increased crop yields about 20%, while soils containing >70% silt increased the risk of yield depressions following deep tillage. Generally, deep tillage effects increased with drought intensity indicating deep tillage as climate adaptation measure at certain sites. Our results suggest that deep tillage can facilitate the plant-availability of subsoil nutrients, which increases crop yields if (i) nutrients in the topsoil are growth limiting, and (ii) deep tillage does not come at the cost of impairing topsoil fertility. On sites with root restrictive soil layers, deep tillage can be an effective measure to mitigate drought stress and improve the resilience of crops. However, deep tillage should only be performed on soils with a stable structure, i.e. <70% silt content. We will discuss the contribution of deep tillage options to enhance the sustainability of agricultural production by facilitating the uptake of nutrients and water from the subsoil.

  15. Characterization of Leaf Photosynthetic Properties for No-Tillage Rice

    Institute of Scientific and Technical Information of China (English)

    CHEN Song; XIA Guo-mian; ZHAO Wei-ming; WU Fei-bo; ZHANG Guo-ping

    2007-01-01

    A study was conducted to determine the influence of no-tillage cultivation on leaf photosynthesis of rice plants under field conditions. Experiments with the treatments, no-tillage and conventional tillage were carried out at three locations (Jiaxing, Hangzhou,and Xiaoshan, Zhejiang Province, China) for two years (2005 and 2006). Grain yield was constant in Jiaxing, but slightly higher in Hangzhou and Xiaoshan under no-tillage cultivation than that under conventional cultivation. In comparison with the conventional cultivation, no-tillage cultivation showed less biomass accumulation before heading and higher capacity of matter production during grain filling. A significantly higher leaf net photosynthetic rate was observed for the plants under no-tillage than for those under conventional tillage. The fluorescence parameter (Fv/Fm) in leaf did not show any difference between the two cultivations. The effect of cultivation management on transpiration rate (Tr) and SPAD value of rice leaf was dependent on the location and year.

  16. Characterization of Leaf Photosynthetic Properties for No-Tillage Rice

    Directory of Open Access Journals (Sweden)

    Song CHEN

    2007-12-01

    Full Text Available A study was conducted to determine the influence of no-tillage cultivation on leaf photosynthesis of rice plants under field conditions. Experiments with the treatments, no-tillage and conventional tillage were carried out at three locations (Jiaxing, Hangzhou, and Xiaoshan, Zhejiang Province, China for two years (2005 and 2006. Grain yield was constant in Jiaxing, but slightly higher in Hangzhou and Xiaoshan under no-tillage cultivation than that under conventional cultivation. In comparison with the conventional cultivation, no-tillage cultivation showed less biomass accumulation before heading and higher capacity of matter production during grain filling. A significantly higher leaf net photosynthetic rate was observed for the plants under no-tillage than for those under conventional tillage. The fluorescence parameter (Fv/Fm in leaf did not show any difference between the two cultivations. The effect of cultivation management on transpiration rate (Tr and SPAD value of rice leaf was dependent on the location and year.

  17. [Effects of tillage in fallow period on soil water and nitrogen absorption and translocation by wheat plant].

    Science.gov (United States)

    Ren, Ai-Xia; Sun, Min; Zhao, Wei-Feng; Deng, Lian-Feng; Deng, Yan; Gao, Zhi-Qiang

    2013-12-01

    Field test was carried out to study the effect of tillage in fallow period on soil water before sowing and growth stages, and nitrogen (N) absorption, translocation by wheat plant. The current data showed that tillage in fallow period improved the soil water at the depth of 0-300 cm before sowing and growth stages, especially in dry years. Such tillage significantly improved N accumulation in leaf, stem and sheath (SS) at anthesis, grain N accumulation at maturity, N mobilization in SS and the contribution of mobilized N to grain N, amount of mobilized N in leaf, level of N accumulation before anthesis, N transportation from vegetative organs to grains after anthesis, and nitrogen accumulation after anthesis, which in turn enhanced the efficiency of N uptake. Deep tillage at 45 days after harvest had the best effect. Significant correlations were detected between soil water and N accumulation before anthesis as well as N translation from vegetative organs grains after anthesis, particularly in dry years, while the correlation between soil water from sowing to an thesis and nitrogen accumulation amount after anthesis was significant in wet years, but not in dry years. Tillage in fallow period especially deep tillage after raining could benefit soil water preservation, as well as N absorption and translocation by plant.

  18. Fungos e fumonisinas no período pré-colheita do milho Fungi and fumonisins at maize's pre-harvest period

    Directory of Open Access Journals (Sweden)

    Gislaine Hermanns

    2006-03-01

    and associated with pulmonary edema syndrome in swine and esophageal cancer in humans. The objective of this work was to identify critical points of fungal contamination and fumonisins production during pre-harvest growth stage. Results showed fungal growth since the dough stage, with no significant difference at both following stages: dent and physiological maturity. Non sporulated fungi were predominant at the silking stage (100% and at the dough stage (95%. Saprophytes species were identified at the dent stage (23.25%. Fusarium spp. was evident since the dough stage (5% increasing considerably through the dent stage (62.5% to the physiological maturity (90%. All Fusarium spp. strains tested showed toxigenic potential. Fumonisins were evident at the latest development stages increasing considerably from the dent stage (0.2 ppm to the physiological maturity (2.5 ppm. Authors suggest special attention and adopting preventive measures in relation to the dough stage, from which Fusarium spp. begin to be evident.

  19. Impact of No-Tillage and Conventional Tillage Systems on Soil Microbial Communities

    Directory of Open Access Journals (Sweden)

    Reji P. Mathew

    2012-01-01

    Full Text Available Soil management practices influence soil physical and chemical characteristics and bring about changes in the soil microbial community structure and function. In this study, the effects of long-term conventional and no-tillage practices on microbial community structure, enzyme activities, and selected physicochemical properties were determined in a continuous corn system on a Decatur silt loam soil. The long-term no-tillage treatment resulted in higher soil carbon and nitrogen contents, viable microbial biomass, and phosphatase activities at the 0–5 cm depth than the conventional tillage treatment. Soil microbial community structure assessed using phospholipid fatty acid (PLFA analysis and automated ribosomal intergenic spacer analysis (ARISA varied by tillage practice and soil depth. The abundance of PLFAs indicative of fungi, bacteria, arbuscular mycorrhizal fungi, and actinobacteria was consistently higher in the no-till surface soil. Results of principal components analysis based on soil physicochemical and enzyme variables were in agreement with those based on PLFA and ARISA profiles. Soil organic carbon was positively correlated with most of the PLFA biomarkers. These results indicate that tillage practice and soil depth were two important factors affecting soil microbial community structure and activity, and conservation tillage practices improve both physicochemical and microbiological properties of soil.

  20. A comparison of dissolved inorganic nitrogen, chloride and potassium loss in conventional and conservation tillage

    Science.gov (United States)

    Tillage impact on dissolved losses of ammonium (NH4-N) and nitrate nitrogen (NO3-N), chloride (Cl), and potassium (K) during rotational cotton and peanut production was evaluated. Tillage treatments were strip-tillage (ST) and conventional-tillage (CT). Winter cover crops were used in both tillage...

  1. Modeling Edge Effects of Tillage Erosion

    Science.gov (United States)

    Tillage erosion has been recognized as an important factor in redistribution of soil over time and in the development of morphological changes within agricultural fields. Field borders, fences, and vegetated strips that interrupt soil fluxes lead to the creation topographic discontinuities or lynche...

  2. Tillage Effects on Soil Properties & Respiration

    Science.gov (United States)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  3. Comparing Nitrous Oxide Emissions from Paired No-Tillage and Conventional Tillage Agricultural Fields in the Northwest US: Insights from a Year of Intensive Monitoring

    Science.gov (United States)

    Waldo, S.; Kostyanovsky, K.; Pressley, S. N.; Huggins, D. R.; Stockle, C.; O'Keeffe, P.; Lamb, B. K.

    2015-12-01

    Agricultural soils are the main anthropogenic source of nitrous oxide (N2O), a potent greenhouse gas (GHG) and ozone depleting substance. Due to a high degree of both spatial and temporal variability coupled with limited availability of high-precision N2O sensors, emissions of N2O are difficult to quantify at the regional and field levels, scales important for determining best management practices. This study combined the use of automated static chambers and the flux gradient micrometeorological technique to continuously monitor emissions of N2O over two canola fields with differing tillage management: no-tillage and conventional tillage. Each site was instrumented with an array of sixteen chambers for the entire 2015 crop year (1 Oct - 30 Sept), and the N2O emissions were measured with the flux gradient method from 1 April thru 30 September. The chamber measurements indicated cumulative annual emissions of 6.0 and 3.1 kg N2O-N ha-1 for the conventional tillage and no-tillage sites, respectively, or 4.8% and 2.5% of applied fertilizer N. Emissions at the conventional tillage site were very low until the field was planted and fertilized, when emissions increased dramatically and stayed high until crop senesce. The growing season (1 April - June 15) accounted for 80% of total measured N2O losses (4.8 kg N2O-N ha-1). In contrast, the no-till site was characterized by consistent moderate emissions, and no spike after planting and fertilization was observed. The growing season only accounted for 30% of the total emissions (1.0 kg N2O-N ha-1). However, even sixteen chambers may not properly capture hot spots of emissions, and the spatially integrated flux gradient results did not corroborate the chamber results. The total emissions measured by the flux gradient method over the growing season were 1.6 and 1.4 kg N2O-N ha-1 for the conventional tillage and no-till sites, respectively. Further work on integrating the two techniques will be necessary to optimize

  4. Zero tillage: A potential technology to improve cotton yield

    Directory of Open Access Journals (Sweden)

    Abbas Hafiz Ghazanfar

    2016-01-01

    Full Text Available Zero tillage technology revealed with no use of any soil inverting technique to grow crops. The crop plant seed is planted in the soil directly after irrigation to make the soil soft without any replenishing in soil layers. A study was conducted to evaluate cotton genotypes FH-114 and FH-142 for the consecutive three years of growing seasons from 2013-15. The seed of both genotypes was sown with two date of sowing, 1 March and 1 May of each three years of sowing under three tillage treatments (zero tillage, minimum tillage and conventional tillage in triplicate completely randomized split-split plot design. It was found from results that significant differences were recorded for tillage treatments, date of sowing, genotypes and their interactions. Multivariate analysis was performed to evaluate the yield and it attributed traits for potential of FH-114 and FH-142 cotton genotypes. The genotype FH-142 was found with higher and batter performance as compared to FH-114 under zero tillage, minimum tillage and conventional tillage techniques. The traits bolls per plant, boll weight, fibre fineness, fibre strength, plant height, cotton yield per plant and sympodial branches per plant were found as most contributing traits towards cotton yield and production. It was also found that FH-142 gives higher output in terms of economic gain under zero tillage with 54% increase as compared to conventional tillage technique. It was suggested that zero tillage technology should be adopted to improve cotton yield and quality. It was also recommended that further study to evaluate zero tillage as potential technology should be performed with different regions, climate and timing throughout the world.

  5. Study on the Physiological Biochemistry of Pre-harvest Sprouting and Scanning Electron Microscopy of Glume in Rice%水稻穗上发芽生理生化及颖壳扫描电镜观察

    Institute of Scientific and Technical Information of China (English)

    蔡建秀; 陈伟

    2008-01-01

    Scanning electron microscopy of easy or uneasy-germinated glumes,determining the contents of endogenous hormones and the activity of α-amylase were studied from at 1-4 d pre-harvest sprouting rice.The results showed that the activity of α-amylase and the contents of IAA,GA1+3 and ZR were higher in easy-germinated rice than those in the uneasy-germinated rice,while ABA content in easy-germinated rice was lower than that in uneasy-germinated rice.The change of GA1+3/ABA rate accorded with that of GA1+3.Scanning electron microscopy showed that the cell surface of glume was loose arranged with more villus and bigger hole and germinal aperture,which had lesser mechanism resistance and better water absorptivity in easy-germinated rice.This research also indicated that pre-harvest sprouting in rice related to α-amylase activity,endogenous hormone contents and glume structure.

  6. Reduced tillage and cover crops as a strategy for mitigating atmospheric CO2 increase through soil organic carbon sequestration in dry Mediterranean agroecosystems.

    Science.gov (United States)

    Almagro, María; Garcia-Franco, Noelia; de Vente, Joris; Boix-Fayos, Carolina; Díaz-Pereira, Elvira; Martínez-Mena, María

    2016-04-01

    The implementation of sustainable land management (SLM) practices in semiarid Mediterranean agroecosystems can be beneficial to maintain or enhance levels of soil organic carbon and mitigate current atmospheric CO2 increase. In this study, we assess the effects of different tillage treatments (conventional tillage (CT), reduced tillage (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil CO2 efflux, aggregation and organic carbon stabilization in two semiarid organic rainfed almond (Prunus dulcis Mill., var. Ferragnes) orchards located in SE Spain Soil CO2 efflux, temperature and moisture were measured monthly between May 2012 and December 2014 (site 1), and between February 2013 and December 2014 (site 2). In site 1, soil CO2 efflux rates were also measured immediately following winter and spring tillage operations. Aboveground biomass inputs were estimated at the end of the growing season in each tillage treatment. Soil samples (0-15 cm) were collected in the rows between the trees (n=4) in October 2012. Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. Soil CO2efflux rates in all tillage treatments varied significantly during the year, following changes during the autumn, winter and early spring, or changes in soil moisture during late spring and summer. Repeated measures analyses of variance revealed that there were no significant differences in soil CO2 efflux between tillage treatments throughout the study period at both sites. Average annual values of C lost by soil respiration were slightly but not significantly higher under RT and RTG treatments (492 g C-CO2 m-2 yr-1) than under NT treatment (405 g C-CO2 m-2 yr-1) in site 1, while slightly but not significantly lower values were observed under RT and RTG treatments (468 and 439 g C-CO2 m-2 yr-1

  7. Conservation Tillage of Grain Sorghum and Soybeans:A Stochastic Dominance Analysis

    OpenAIRE

    Mikesell, Chris L.; Williams, Jeffery R.; Long, James H.

    1987-01-01

    Three tillage systems: conventional tillage, ridge tillage and notillage are evaluated using stochastic dominance with respect to a function analysis. Each tillage system is evaluated for three cropping patterns: continuous grain sorghum, continuous soybeans, and soybeans after grain sorghum. Conventional tillage continuous grain sorghum would be preferred by risk averse managers, although small changes in production costs and yield differences could lead to indifference between a no-tillage ...

  8. Differentiation of Soil Fauna Populations in Conventional Tillage and No—Tillage Red Soil Ecosystems

    Institute of Scientific and Technical Information of China (English)

    HUFENG; LIHUIXIN; 等

    1997-01-01

    In a field experiment ,the popultions of major soil fauna groups including earthworms,enchytraeids,arthropods and nematodes were examined in conventional tillage(CT) and no-tillage(NT) red soil ecosystems to evaluate their responses to tillage disturbance.Earthworms,macro- and micro-arthropods were stimulated under NT with earthworms showing the highest population increase by four times ,while enchytraeids and nematodes favored CT system predicting certain adaptability of these animals to plow-disturbed soil envi-ronment ,On the basis of relative response index it was found that soil fauna was more sensitive to tillage than soil resource base(C and N pools) and microflora.The population structure of soil fauna was also affected by tillage treatments.Analysis on nematode trophic groups showed that bacteria-feeding and plant parasitic nematodes were more abundant in CT soil whereas the proportions of fungivores and onmivore-predators increased in NT soil.Possible reasons for the differentiaion in both size and structure of the fauna populaion were discussed and the ecological significance involved in these changes was emphasized.

  9. Tillage and crop residue management methods had minor effects on the stock and stabilization of topsoil carbon in a 30-year field experiment.

    Science.gov (United States)

    Singh, Pooja; Heikkinen, Jaakko; Ketoja, Elise; Nuutinen, Visa; Palojärvi, Ansa; Sheehy, Jatta; Esala, Martti; Mitra, Sudip; Alakukku, Laura; Regina, Kristiina

    2015-06-15

    We studied the effects of tillage and straw management on soil aggregation and soil carbon sequestration in a 30-year split-plot experiment on clay soil in southern Finland. The experimental plots were under conventional or reduced tillage with straw retained, removed or burnt. Wet sieving was done to study organic carbon and soil composition divided in four fractions: 1) large macroaggregates, 2) small macroaggregates, 3) microaggregates and 4) silt and clay. To further estimate the stability of carbon in the soil, coarse particulate organic matter, microaggregates and silt and clay were isolated from the macroaggregates. Total carbon stock in the topsoil (equivalent to 200 kg m(-2)) was slightly lower under reduced tillage (5.0 kg m(-2)) than under conventional tillage (5.2 kg m(-2)). Reduced tillage changed the soil composition by increasing the percentage of macroaggregates and decreasing the percentage of microaggregates. There was no evidence of differences in the composition of the macroaggregates or carbon content in the macroaggregate-occluded fractions. However, due to the higher total amount of macroaggregates in the soil, more carbon was bound to the macroaggregate-occluded microaggregates in reduced tillage. Compared with plowed soil, the density of deep burrowing earthworms (Lumbricus terrestris) was considerably higher under reduced tillage and positively associated with the percentage of large macroaggregates. The total amount of microbial biomass carbon did not differ between the treatments. Straw management did not have discernible effects either on soil aggregation or soil carbon stock. We conclude that although reduced tillage can improve clay soil structure, generally the chances to increase topsoil carbon sequestration by reduced tillage or straw management practices appear limited in cereal monoculture systems of the boreal region. This may be related to the already high C content of soils, the precipitation level favoring decomposition and

  10. Carbon dioxide efflux from soil with poultry litter applications in conventional and conservation tillage systems in northern Alabama.

    Science.gov (United States)

    Roberson, T; Reddy, K C; Reddy, S S; Nyakatawa, E Z; Raper, R L; Reeves, D W; Lemunyon, J

    2008-01-01

    Increased CO2 release from soils resulting from agricultural practices such as tillage has generated concerns about contributions to global warming. Maintaining current levels of soil C and/or sequestering additional C in soils are important mechanisms to reduce CO2 in the atmosphere through production agriculture. We conducted a study in northern Alabama from 2003 to 2006 to measure CO2 efflux and C storage in long-term tilled and non-tilled cotton (Gossypium hirsutum L.) plots receiving poultry litter or ammonium nitrate (AN). Treatments were established in 1996 on a Decatur silt loam (clayey, kaolinitic thermic, Typic Paleudults) and consisted of conventional-tillage (CT), mulch-tillage (MT), and no-tillage (NT) systems with winter rye [Secale cereale (L.)] cover cropping and AN and poultry litter (PL) as nitrogen sources. Cotton was planted in 2003, 2004, and 2006. Corn was planted in 2005 as a rotation crop using a no-till planter in all plots, and no fertilizer was applied. Poultry litter application resulted in higher CO2 emission from soil compared with AN application regardless of tillage system. In 2003 and 2006, CT (4.39 and 3.40 micromol m(-2) s(-1), respectively) and MT (4.17 and 3.39 micromol m(-2) s(-1), respectively) with PL at 100 kg N ha(-1) (100 PLN) recorded significantly higher CO2 efflux compared with NT with 100 PLN (2.84 and 2.47 micromol m(-2) s(-1), respectively). Total soil C at 0- to 15-cm depth was not affected by tillage but significantly increased with PL application and winter rye cover cropping. In general, cotton produced with NT conservation tillage in conjunction with PL and winter rye cover cropping reduced CO2 emissions and sequestered more soil C compared with control treatments.

  11. Conservation Tillage Impacts on Soil Quality

    Science.gov (United States)

    Hake, K.

    2012-04-01

    As recent as the 1970's in University lecture halls cotton production was vilified for being "hard on the soil". This stigma is still perpetuated today in the popular press, deserving a close scrutiny of its origin and its reality as soil quality is an essential but unappreciated component of cotton's unique tolerance to heat and drought. The objective of expanding food, feed and fiber production to meet the global demand, during forecast climate disruption requires that scientists improve both the above and below ground components of agriculture. The latter has been termed the "final frontier" for its inaccessibility and complexity. The shift to conservation tillage in the U.S.A. over the previous three decades has been dramatic in multiple crops. Cotton and its major rotation crops (corn, soybean, and wheat) can be grown for multiple years without tillage using herbicides instead to control weeds. Although pesticide resistant insects and weeds (especially to Bt proteins and glyphosate) are a threat to Integrated Pest Management and conservation tillage that need vigilance and proactive management, the role of modern production tools in meeting agricultural objectives to feed and clothe the world is huge. The impact of these tools on soil quality will be reviewed. In addition ongoing research efforts to create production practices to further improve soil quality and meet the growing challenges of heat and drought will be reviewed.

  12. Soil microbial properties after long-term swine slurry application to conventional and no-tillage systems in Brazil.

    Science.gov (United States)

    Balota, Elcio L; Machineski, Oswaldo; Hamid, Karima I A; Yada, Ines F U; Barbosa, Graziela M C; Nakatani, Andre S; Coyne, Mark S

    2014-08-15

    Swine waste can be used as an agricultural fertilizer, but large amounts may accumulate excess nutrients in soil or contaminate the surrounding environment. This study evaluated long-term soil amendment (15 years) with different levels of swine slurry to conventional (plow) tillage (CT) and no tillage (NT) soils. Long-term swine slurry application did not affect soil organic carbon. Some chemical properties, such as calcium, base saturation, and aluminum saturation were significantly different within and between tillages for various application rates. Available P and microbial parameters were significantly affected by slurry addition. Depending on tillage, soil microbial biomass and enzyme activity increased up to 120 m(3) ha(-1) year(-1) in all application rates. The NT system had higher microbial biomass and activity than CT at all application levels. There was an inverse relationship between the metabolic quotient (qCO2) and MBC, and the qCO2 was 53% lower in NT than CT. Swine slurry increased overall acid phosphatase activity, but the phosphatase produced per unit of microbial biomass decreased. A comparison of data obtained in the 3rd and 15th years of swine slurry application indicated that despite slurry application the CT system degraded with time while the NT system had improved values of soil quality indicators. For these Brazilian oxisols, swine slurry amendment was insufficient to maintain soil quality parameters in annual crop production without additional changes in tillage management.

  13. [Effects of different tillage methods on tea garden soil physical characteristics and tea yield].

    Science.gov (United States)

    Su, You-jian; Wang, Ye-jun; Zhang, Yong-li; Ding, Yong; Luo, Yi; Song, Li; Liao, Wan-you

    2015-12-01

    The effects of three tillage methods, i.e., no tillage, rotary tillage, deep tillage, on tea garden soil compaction, soil moisture, soil bulk density, yield component factors and tea yield were studied through field experiments in Langxi Country of Anhui Province. The results indicated that the effects of three tillage methods on soil bulk density and soil compaction were in order of deep tillage>rotary tillage>no tillage. Deep tillage and rotary tillage could effectively break the argillic horizon layer and decrease the soil compaction. Compared with no tillage, soil compaction and soil bulk density (0-30 cm) under deep tillage decreased 16.4% and 13.4%-27.5%, respectively. Deep tillage could significantly increase soil water storage space and enhance the water holding capacity of the soil. Compared with no tillage, the soil moisture of 15-30 cm soil layer was increased by 7.7% under deep tillage. The different tillage methods had little effect on soil porosity. Rotary tillage and deep tillage could increase soil specific surface area and the ratios of soil gas and soil liquid. The diurnal changes of photosynthetic rate and transpiration rate of tea both exhibited double-peak pattern. There was a significant midday depression caused principally by stomatal factors. Under deep tillage, the tea leaf transpiration rate decreased, shoot density increased, 100-bud dry mass and water use efficiency increased significantly, and the tea yield increased by 17.6% and 6.8% compared with no tillage and rotary tillage, respectively. Deep tillage was the most appropriate tillage practice in tea garden of east Anhui Province.

  14. Monitoring of Conservation Tillage and Tillage Intensity by Ground and Satellite Imagery

    Directory of Open Access Journals (Sweden)

    M.A Rostami

    2014-09-01

    Full Text Available Local information about tillage intensity and ground residue coverage is useful for policies in agricultural extension, tillage implement design and upgrading management methods. The current methods for assessing crop residue coverage and tillage intensity such as residue weighing methods, line-transect and photo comparison methods are tedious and time-consuming. The present study was devoted to investigate accurate methods for monitoring residue management and tillage practices. The satellite imagery technique was used as a rapid and spatially explicit method for delineating crop residue coverage and as an estimator of conservation tillage adoption and intensity. The potential of multispectral high-spatial resolution WorldView-2 local data was evaluated using the total of eleven satellite spectral indices and Linear Spectral Unmixing Analysis (LSUA. The total of ninety locations was selected for this study and for each location the residue coverage was measured by the image processing method and recorded as ground control. The output of indices and LSUA method were individually correlated to the control and the relevant R2 was calculated. Results indicated that crop residue cover was related to IPVI, RVI1, RVI2 and GNDVI spectral indices and satisfactory correlations were established (0.74 - 0.81. The crop residue coverage estimated from the LSUA approach was found to be correlated with the ground residue data (0.75. Two effective indices named as Infrared Percentage Vegetation Index (IPVI and Ratio Vegetation Index (RVI with maximum R2 were considered for classification of tillage intensity. Results indicated that the classification accuracy with IPVI and RVI indices in different conditions varied from 78-100 percent and therefore in good agreement with ground measurement, observations and field records.

  15. Fabrication and evaluation of a reservoir tillage machine to reduce runoff from farms with sprinkler irrigation systems

    Directory of Open Access Journals (Sweden)

    M. A Rostami

    2016-09-01

    performance, two factors contain of machine speed (in three levels of 5, 7.5 and 10 km h-1 and Arm's length (in two levels of 30 and 40 cm were evaluated. The machine was evaluated based on a completely randomized block factorial design with three replications. Effects of these factors on depth, distance and volume of basins and runoff were evaluated. Results and Discussion Mean comparisons of depth, distance and size of reservoirs in different machine forward speed and different Arm's length are summarized in Table 1 and 2. The results showed that the effect of arm length and forward speed on changes in the depth and volume of the reservoirs were significant at the probability level of one percent but changes of the distance between the reservoirs was only affected by Arm's length. The results also showed that increasing the forward speed from 5 to 10 km h-1 and increase the Arm's length from 30 to 40 cm increased depth, distance and volume of reservoirs. Reservoir tillage practices were control runoff in all plots. Conclusions In this research project, a reservoir tillage machine was built and assessed. Tillage unit of this machine is similar to the spider wheel. By this machine the small holes generated in the ground periodically. For evaluation of machine performance, effect of two factors, including machine speed and arm's length on depth, distance and volume of the basins were evaluated. The results showed that increasing the ground speed from 5 to 10 km h-1 and increase the arm's length from 30 to 40 cm increased depth, distance and volume of reservoirs. Reservoir tillage practices were controlled runoff in all plots.

  16. Fabrication and evaluation of a reservoir tillage machine to reduce runoff from farms with sprinkler irrigation systems

    Directory of Open Access Journals (Sweden)

    M. A Rostami

    2016-09-01

    performance, two factors contain of machine speed (in three levels of 5, 7.5 and 10 km h-1 and Arm's length (in two levels of 30 and 40 cm were evaluated. The machine was evaluated based on a completely randomized block factorial design with three replications. Effects of these factors on depth, distance and volume of basins and runoff were evaluated. Results and Discussion Mean comparisons of depth, distance and size of reservoirs in different machine forward speed and different Arm's length are summarized in Table 1 and 2. The results showed that the effect of arm length and forward speed on changes in the depth and volume of the reservoirs were significant at the probability level of one percent but changes of the distance between the reservoirs was only affected by Arm's length. The results also showed that increasing the forward speed from 5 to 10 km h-1 and increase the Arm's length from 30 to 40 cm increased depth, distance and volume of reservoirs. Reservoir tillage practices were control runoff in all plots. Conclusions In this research project, a reservoir tillage machine was built and assessed. Tillage unit of this machine is similar to the spider wheel. By this machine the small holes generated in the ground periodically. For evaluation of machine performance, effect of two factors, including machine speed and arm's length on depth, distance and volume of the basins were evaluated. The results showed that increasing the ground speed from 5 to 10 km h-1 and increase the arm's length from 30 to 40 cm increased depth, distance and volume of reservoirs. Reservoir tillage practices were controlled runoff in all plots.

  17. The Impact of Various Types of Tillage on the Soil Water Availability

    Directory of Open Access Journals (Sweden)

    BESNIK GJONGECAJ

    2014-07-01

    Full Text Available The present study is focused on the role that various ways of soil tillage may have on the increase of soil water availability to the plant roots. The research was carried out in Tirana, Albania, and the experiment was established in a vineyard field. The soil was cultivated in three different ways (three treatments: conventional (plowing plus surface cultivation, conservative (subsoiling plus surface cultivation, conservative (chisel plowing plus surface cultivation. In order to quantify the available soil water to plants, the pF-soil moisture curves were determined. The determined pF-soil moisture curves belong to two layers: 0-25 cm and 25-50 cm, taken into consideration for each treatment. The soil water content between the field capacity (FWC and the permanent wilting point (PWP was considered as potentially available to plant roots. The results showed clearly that the way the tillage was applied has a significant effect on soil water capacity potentially available to plant roots. Loosening the soil by breaking up the impermeable layers, the conservative tillage makes possible the increase of the amount of water held by soil particles in the range between FWC and PWP, in comparison with the conventional tillage. This increase of available soil water capacity is due to the soil loosening in deeper layers of soil profile as well, which leads to the situation where the plant roots can penetrate deeper and occupy more space, consequently, drawing more water to meet their needs. Within the conservative tillage versions, sub soiling seems to be more effective in the increase of available soil water capacity comparing with the chisel plowing. The study contributes, as well, to the determination of the pF-soil moisture curves in a way that is theoretically well based. The founded curves fit with the exponential form of functions and the coefficients of determinations, for each case under study, are significant in high probability levels.

  18. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    Information about the quantitative effect of conservation tillage combined with a cover crop on soil structure is still limited. This study examined the effect of these management practices on soil pore characteristics of a sandy loam soil in a long-term field trial. The tillage treatments (main...

  19. Conservation tillage under threat in the United States

    Science.gov (United States)

    Across the United States (U.S.) there were approximately 157.7 million ha of cropland and 127.5 million ha of harvested cropland in 2012. Approximately 44% of total cropland ha were in conservation tillage (both conservation tillage and no-till). In 1989, there were approximately 0.34 ha of conserv...

  20. Strip tillage for single and twin-row peanut

    Science.gov (United States)

    Soil degradation and rising production costs have prompted grower interest in conservation tillage with high residue cover crops for peanut (Arachis hypogaea L.). The objective was to evaluate single and twin-row peanut production across three different strip tillage implements with and without a c...

  1. Fall and spring tillage effects on sugarbeet production

    Science.gov (United States)

    The ability to vary primary tillage timing between fall and spring for sugarbeet production could benefit producers by providing flexibility for when field work occurs and may allow earlier planting in the spring. This study was conducted to evaluate the effects of strip and conventional tillage co...

  2. Conservation tillage impacts on soil, crop and the environment

    Directory of Open Access Journals (Sweden)

    Mutiu Abolanle Busari

    2015-06-01

    Full Text Available There is an urgent need to match food production with increasing world population through identification of sustainable land management strategies. However, the struggle to achieve food security should be carried out keeping in mind the soil where the crops are grown and the environment in which the living things survive. Conservation agriculture (CA, practising agriculture in such a way so as to cause minimum damage to the environment, is being advocated at a large scale world-wide. Conservation tillage, the most important aspect of CA, is thought to take care of the soil health, plant growth and the environment. This paper aims to review the work done on conservation tillage in different agro-ecological regions so as to understand its impact from the perspectives of the soil, the crop and the environment. Research reports have identified several benefits of conservation tillage over conventional tillage (CT with respect to soil physical, chemical and biological properties as well as crop yields. Not less than 25% of the greenhouse gas effluxes to the atmosphere are attributed to agriculture. Processes of climate change mitigation and adaptation found zero tillage (ZT to be the most environmental friendly among different tillage techniques. Therefore, conservation tillage involving ZT and minimum tillage which has potential to break the surface compact zone in soil with reduced soil disturbance offers to lead to a better soil environment and crop yield with minimal impact on the environment.

  3. Herbicide and cover crop residue integration in conservation tillage tomato

    Science.gov (United States)

    The increased adoption of conservation tillage in vegetable production requires more information on the role of various cover crops in weed control, tomato quality, and yield. Three conservation-tillage systems utilizing crimson clover, turnip, and cereal rye as winter cover crops were compared to a...

  4. Earthworms influenced by reduced tillage, conventional tillage and energy forest in Swedish agricultural field experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lagerloef, Jan (SLU, Department of Ecology, Swedish University of Agricultural Sciences, Uppsala (Sweden)), Email: Jan.Lagerlof@ekol.slu.se; Paalsson, Olof; Arvidsson, Johan (SLU, Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala (Sweden))

    2012-03-15

    We compared earthworm density, depth distribution and species composition in three soil cultivation experiments including the treatments ploughless tillage and mouldboard ploughing. Sampling was done in September 2005 and for one experiment also in 1994. By yearly sampling 1995-2005, earthworms in an energy forest of Salix viminalis were compared with those in an adjacent arable field. Sampling method was digging of soil blocks and hand sorting and formalin sampling in one cultivation experiment. Both methods were used in the energy forest and arable land comparison. In two soil cultivation experiments, highest abundances or biomass were found in ploughless tillage. Earthworm density was higher in the upper 10 cm, especially in the ploughless tillage. Earthworm density was significantly higher in the energy forest than in the arable field. Formalin sampling revealed c. 36% of the earthworm numbers found by digging in the energy forest and gave almost no earthworms in the arable field. In all treatments with soil cultivation, species living and feeding in the rhizosphere and soil dominated. One such species, Allolobophora chlorotica, was more abundant under mouldboard ploughing than ploughless tillage. Lumbricus terrestris, browsing on the surface and producing deep vertical burrows, was more common in the ploughless tillage. Species living and feeding close to the soil surface were almost only found in the energy forest, which had not been soil cultivated since 1984. The findings support earlier studies pointing out possibilities to encourage earthworms by reduced soil cultivation. This is one of the first published studies that followed earthworm populations in an energy forest plantation during several years. Explanation of earthworm reactions to management and environmental impacts should be done with consideration of the ecology of species or species groups. Earthworm sampling by formalin must always be interpreted with caution and calibrated by digging and

  5. Integrated palmer amaranth management in glufosinate-resistant cotton: II. primary, secondary, and conservation tillage

    Science.gov (United States)

    A three-year field experiment was conducted to evaluate the role of inversion tillage, cover crops and spring tillage methods for Palmer amaranth between-row (BR) and within-row (WR) management in glufosinate-resistant cotton. Main plots were two inversion tillage systems: fall inversion tillage (IT...

  6. Water availability for winter wheat affected by summer fallow tillage practices in sloping dryland

    NARCIS (Netherlands)

    Wang, X.B.; Cai, D.X.; Jin, K.; Wu, H.J.; Bai, Z.G.; Zhang, C.J.; Yao, Y.Q.; Lu, J.J.; Wang, Y.H.; Yang, B.; Hartman, R.; Gabriels, D.

    2003-01-01

    The tillage experiments for winter wheat were conducted on the slope farmland in Luoyang,Henan Province in the semihumid to arid loess plateau areas of North China. Different tillage methods inclu-ding reduced tillage (RT), no-till (NT), 2 crops/year (2C), subsoiling(SS), and conventional tillage (C

  7. The effect of various long-term tillage systems on soil properties and spring barley yield

    OpenAIRE

    MALECKA, Irena; Blecharczyk, Andrzej; SAWINSKA, Zuzanna; DOBRZENIECKI, Tomasz

    2012-01-01

    This study, performed on a soil that is classified as Albic Luvisols that developed on loamy sands overlying loamy material (1.4% organic matter and pH 6.5), concerns the impact of tillage systems on soil properties and the yield of spring barley. The experiment design included 3 tillage systems: conventional tillage, reduced tillage, and no-tillage. Continuous cultivation for 7 consecutive years by reduced tillage and no-tillage led to changes in the physical properties of the surface soil l...

  8. TILLAGE EROSION: THE PRINCIPLES, CONTROLLING FACTORS AND MAIN IMPLICATIONS FOR FUTURE RESEARCH

    Directory of Open Access Journals (Sweden)

    Agnieszka Wysocka-Czubaszek

    2014-10-01

    Full Text Available Tillage erosion is one of the major contributors to landscape evolution in hummocky agricultural landscapes. This paper summarizes the available data describing tillage erosion caused by hand-held or other simple tillage implements as well as tools used in typical conventional agriculture in Europe and North America. Variations in equipment, tillage speed, depth and direction result in a wide range of soil translocation rates observed all over the world. The variety of tracers both physical and chemical gives a challenge to introduce the reliable model predicting tillage erosion, considering the number and type of tillage operation in the whole tillage sequence.

  9. Zero Tillage cotton systems and soil quality

    Science.gov (United States)

    Landers, J. N.; de Freitas, P. L.

    2012-04-01

    Monocropping in cotton production systems negates the benefits of zero tillage. With cotton in a 3-year rotation including other summer and cover crops, such as soybeans and intensive-rooting Brachiaria spp., research on sandy soils in Bahia improved soil fertility, structure and biological activity. Cotton is a deep tap-rooted crop, sensitive to physical and chemical impediments to root development; this has engendered a paradigm of heavy soil preparation operations to remove these. But, ZT can overcome such obstacles, allowing the cotton crop to benefit from cost reductions and a number of other benefits, especially erosion control.. Soil quality has three principal dimensions. Maximum yields only occur when soil fertility, structure and biological activity are in balance. Under Zero Tillage management of Brazilian soils, the processes of nutrient availability, nutrient cycling and efficiency result from increasing SOM and higher CEC. ZT system fertility is also strongly influenced by total annual aerial and root biomass generation; C:N ratios of the biomass, changes in aeration in residue breakdown processes (for roots, dependent on internal drainage), reduced fixation of Phosphorus fertilizers, the possibility of surface application of P and K, use of deep-rooted cover crops to re-cycle nutrients and deleterious effects of over-liming. Soil physical parameters undergo a transformation : greater water holding capacity, a small increase in bulk density (ameliorated by a reversal of soil aggregate breakdown inherent to conventional tillage by the binding action of root exudates and fungal hyphae), enhanced particle aggregate size protects SOM from oxidation; old root holes create semi-permanent macro-pores which facilitate rooting, aeration and rainfall infiltration.. Soil life of all types benefits from ZT management and contributes to soil fertility and structural improvements, plus enhancing certain biological controls of pathogenic organisms and allelopathic

  10. Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem.

    Science.gov (United States)

    Smith, Chris R; Blair, Peter L; Boyd, Charlie; Cody, Brianne; Hazel, Alexander; Hedrick, Ashley; Kathuria, Hitesh; Khurana, Parul; Kramer, Brent; Muterspaw, Kristin; Peck, Charles; Sells, Emily; Skinner, Jessica; Tegeler, Cara; Wolfe, Zoe

    2016-11-01

    The acreage planted in corn and soybean crops is vast, and these crops contribute substantially to the world economy. The agricultural practices employed for farming these crops have major effects on ecosystem health at a worldwide scale. The microbial communities living in agricultural soils significantly contribute to nutrient uptake and cycling and can have both positive and negative impacts on the crops growing with them. In this study, we examined the impact of the crop planted and soil tillage on nutrient levels, microbial communities, and the biochemical pathways present in the soil. We found that farming practice, that is conventional tillage versus no-till, had a much greater impact on nearly everything measured compared to the crop planted. No-till fields tended to have higher nutrient levels and distinct microbial communities. Moreover, no-till fields had more DNA sequences associated with key nitrogen cycle processes, suggesting that the microbial communities were more active in cycling nitrogen. Our results indicate that tilling of agricultural soil may magnify the degree of nutrient waste and runoff by altering nutrient cycles through changes to microbial communities. Currently, a minority of acreage is maintained without tillage despite clear benefits to soil nutrient levels, and a decrease in nutrient runoff-both of which have ecosystem-level effects and both direct and indirect effects on humans and other organisms.

  11. Perdas de solo e água por erosão hídrica influenciadas por métodos de preparo, classes de declive e níveis de fertilidade do solo Soil and water losses by rainfall erosion influenced by tillage methods, slope-steepness classes, and soil fertility levels

    Directory of Open Access Journals (Sweden)

    N. P. Cogo

    2003-08-01

    " greatly increased the crop aerial biomass, consequently the crop residue mass and, thus, the percentage of mulch covering the soil and soil loss by rainfall erosion, especially in the conventional tillage, although it did not appreciably affect water losses. In spite of tillage and planting operations along contours, improved soil fertility, and a relative high resistance of soil to erosion, the black oat-soybean crop in conventional tillage presented annual soil losses by rainfall erosion that lay very close to the tolerable level on slopes steeper than 0.04 m m-1, even in the short slope-length of 21 m used in the experimental plots of this study.

  12. Soil tillage, rice straw and flooded irrigated rice yield

    Directory of Open Access Journals (Sweden)

    Amauri Nelson Beutler

    2014-06-01

    Full Text Available The objective of this study was evaluate the effect of management systems and straw in flooded irrigated rice yield. The experimental design was a completely randomized with three experiments and, 10 replications in experiment 1 and 2 and, 6 replications in experiment 3. The experiments were: E1 – no-till system (E1PD and conventional system with two harrowings at 0.0–0.07 m layer and leveling with remaplam (E1PC, after three years of sowing rice, after fallow of rice tillage, with sowing of rye grass in winter and grazing; E2 – no-till system (E2PD and conventional system after native field (E2PC; E3 – no-till without straw on soil surface (E30P, current straw on soil surface of 3,726 kg ha-1 (E31P, two times current straw of 7,452 kg ha-1 (E32P and three times current straw of 11,178 kg ha-1 (E33P. In soil, were evaluated the average geometric diameter of aggregates, soil bulk density, soil porosity, macro and microporosity, in 0.0-0.05 and 0.05-0.10 m layer. In harvest were evaluated the panicles number in 0,25 m2 area, number of filled, empty an total grains in 10 panicles, mass of one thousand seeds and rice grains yield in 2 m2. The conventional system presented greater macroporosity and total porosity, compared with no-till system, however, does not result in differences in production components and rice grains yield. Soil tillage in no-till, with rice straw on soil surface up to 11,178 kg ha-1, before sowing, not reduces flooded irrigated rice grains yield.

  13. How does tillage intensity affect soil organic carbon? A systematic review

    Science.gov (United States)

    Haddaway, Neal Robert; Hedlund, Katarina; E Jackson, Louise; Kätterer, Thomas; Lugato, Emanuele; Thomsen, Ingrid; Bracht Jørgensen, Helene; Isberg, Per-Erik

    2017-04-01

    stocks down to 30 cm than either HT (4.61 Mg/ha ±1.95 (SE)) or IT (3.85 Mg/ha ±1.64 (SE)). No other comparisons were significant. Conclusion: The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Changes in C stock due to management via reduced tillage has been estimated to be around 0.4 Mg/ha per year in the US. However, based on our results, the level of C stock increase under NT compared to HT was in the upper soil around 4.6 Mg/ha (0.78-8.43 Mg/ha, 95% CI) during a minimum of 10 years, while no effect was detected in the full horizon. Our results could provide evidence that NT and IT are potential means to promote SOC in the top soil. However, higher SOC stocks or concentrations in the upper soil layers not only promote a more productive soil but also provide resilience to extreme weather conditions. Our findings can hopefully be used to support further work to find solutions to increase and maintain C stocks in agricultural soils.

  14. Effects of Tillage Practices on Soil Penetration Resistance, Technical Parameters and Wheat Yield

    Directory of Open Access Journals (Sweden)

    S.M.j Afzali

    2013-02-01

    Full Text Available This study was carried out to evaluate the effects of tillage practices (with different depths on soil penetration resistance, technical parameters and grain yield of wheat crop. The experiment was conducted as a randomized complete block design with three replications for two years. Treatments included: moldboard plow fallowed by two passes of disc harrow and leveler (CT, two passes of disc harrow plus leveler (RT, subsoiler fallowed by two passes of disc harrow and leveler (S1D and subsoiler fallowed by rotivator (S1R. The results showed that soil compaction and penetration resistance increased at the end of growth stages because of irrigation operations and cohesion force of soil particles. However due to increasing of cumulative infiltration, it can be concluded that subsoiler caused the formation of micro cracks in different depths of soil. From technical indices viewpoint comparing to CT treatment, S1D and S1R treatments saved fuel consumption up to 2.2 and 10.44 lit ha 1 and tillage operation time up to 0.58 and 1.54 h ha-1, respectively. The result of grain yield assessment showed an increase of 8.5% in grain yield after replacing moldboard plow with annual subsoiling. Subsoiling has advantages such as, good technical indices, elimination of preplanting irrigation and fewer operations in planting time. Finally, subsoiling increased grain yield by 22% as compared to reduced tillage practice

  15. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    Directory of Open Access Journals (Sweden)

    SU Yong-zhong

    2016-09-01

    Full Text Available A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different textures and fertility levels. Three treatments for each soil were set up:(1 conventional tillage,winter irrigation, and new plastic mulching cultivation(NM;(2 no tillage, less winter irrigation and reused plastic mulching cultivation (RM;(3 no tillage, less winter irrigation and reused plastic mulching combined with straw mulching (RMS. The results showed that the average daily soil temperature in the two reused plastic mulching treatment(RM and RMS during maize sowing and elongation stage was lower 0.6~1.0℃(5 cm depth and 0.5~0.8℃(15 cm depth than that in the NM. This result suggested that no tillage and reused plastic mulching cultivation still had the effect of increasing soil temperature. Maize grain yield in the RM was reduced by 4.4%~10.6% compared with the conventional cultivation(NM, while the net income increased due to saving in plastic film and tillage ex-penses. There was no significant difference in maize grain yield between the RMS and NM treatment, but the net income in the RMS was in-creased by 12.5%~17.1% than that in the NM. Compared with the NM, the two reused plastic film mulching treatments (RM and RMS decreased the volume of winter irrigation, but maize IWP increased. Soil texture and fertility level affected significantly maize nitrogen uptake and IWP. In the arid oases with the shortage of water resources, cultivation practices of conservation tillage with recycle of plastic film is an ideal option for saving cost and increasing income

  16. Artificial Neural Network Approach for Mapping Contrasting Tillage Practices

    Directory of Open Access Journals (Sweden)

    Terry Howell

    2010-02-01

    Full Text Available Tillage information is crucial for environmental modeling as it directly affects evapotranspiration, infiltration, runoff, carbon sequestration, and soil losses due to wind and water erosion from agricultural fields. However, collecting this information can be time consuming and costly. Remote sensing approaches are promising for rapid collection of tillage information on individual fields over large areas. Numerous regression-based models are available to derive tillage information from remote sensing data. However, these models require information about the complex nature of underlying watershed characteristics and processes. Unlike regression-based models, Artificial Neural Network (ANN provides an efficient alternative to map complex nonlinear relationships between an input and output datasets without requiring a detailed knowledge of underlying physical relationships. Limited or no information currently exist quantifying ability of ANN models to identify contrasting tillage practices from remote sensing data. In this study, a set of Landsat TM-based ANN models was developed to identify contrasting tillage practices in the Texas High Plains. Observed tillage data from Moore and Ochiltree Counties were used to develop and evaluate the models, respectively. The overall classification accuracy for the 15 models developed with the Moore County dataset varied from 74% to 91%. Statistical evaluation of these models against the Ochiltree County dataset produced results with an overall classification accuracy varied from 66% to 80%. The ANN models based on TM band 5 or indices of TM Band 5 may provide consistent and accurate tillage information when applied to the Texas High Plains.

  17. [Numerical evaluation of soil quality under different conservation tillage patterns].

    Science.gov (United States)

    Wu, Yu-Hong; Tian, Xiao-Hong; Chi, Wen-Bo; Nan, Xiong-Xiong; Yan, Xiao-Li; Zhu, Rui-Xiang; Tong, Yan-An

    2010-06-01

    A 9-year field experiment was conducted on the Guanzhong Plain of Shaanxi Province to study the effects of subsoiling, rotary tillage, straw return, no-till seeding, and traditional tillage on the soil physical and chemical properties and the grain yield in a winter wheat-summer maize rotation system, and a comprehensive evaluation was made on the soil quality under these tillage patterns by the method of principal components analysis (PCA). Comparing with traditional tillage, all the conservation tillage patterns improved soil fertility quality and soil physical properties. Under conservative tillage, the activities of soil urease and alkaline phosphatase increased significantly, soil quality index increased by 19.8%-44.0%, and the grain yield of winter wheat and summer maize (expect that under no till seeding with straw covering) increased by 13%-28% and 3%-12%, respectively. Subsoiling every other year, straw-chopping combined with rotary tillage, and straw-mulching combined with subsoiling not only increased crop yield, but also improved soil quality. Based on the economic and ecological benefits, the practices of subsoiling and straw return should be promoted.

  18. Soil tillage and water infiltration in semi-arid Morocco: the role fo surface and sub-surface soil conditions

    NARCIS (Netherlands)

    Dimanche, P.H.; Hoogmoed, W.B.

    2002-01-01

    Production of cereals in a dryland farming system forms an important part of agricultural production in Morocco. Yield levels on the Saïs Plateau between Meknès and Fez in the semi-arid zone, however, remain low possibly because of sub-optimum water use due to inefficient tillage systems. A study wa

  19. Soil organic carbon sequestration potential of conservation vs. conventional tillage

    Science.gov (United States)

    Meurer, Katharina H. E.; Ghafoor, Abdul; Haddaway, Neal R.; Bolinder, Martin A.; Kätterer, Thomas

    2017-04-01

    Soil tillage has been associated with many negative impacts on soil quality, especially a reduction in soil organic carbon (SOC). The benefits of no tillage (NT) on topsoil SOC concentrations have been demonstrated in several reviews, but the effect of reduced tillage (RT) compared to conventional tillage (CT) that usually involves soil inversion through moldboard ploughing is still unclear. Moreover, the effect of tillage on total SOC stocks including deeper layers is still a matter of considerable debate, because the assessment depends on many factors such as depth and method of measurement, cropping systems, soil type, climatic conditions, and length of the experiments used for the analysis. From a recently published systematic map database consisting of 735 long-term field experiments (≥ 10 years) within the boreal and temperate climate zones (Haddaway et al. 2015; Environmental Evidence 4:23), we selected all tillage studies (about 80) reporting SOC concentrations along with dry soil bulk density and conducted a systematic review. SOC stocks were calculated considering both fixed soil depths and by using the concept of equivalent soil mass. A meta-analysis was used to determine the influence of environmental, management, and soil-related factors regarding their prediction potential on SOC stock changes between the tillage categories NT, RT, and CT. C concentrations and stocks to a certain depth were generally highest under NT, intermediate under RT, and lowest under CT. However, this effect was mainly limited to the first 15 cm and disappeared or was even reversed in deeper layers, especially when adjusting soil depth according to the equivalent soil mineral mass. Our study highlights the impact of tillage-induced changes in soil bulk density between treatments and shows that neglecting the principles of equivalent soil mass leads to overestimation of SOC stocks for by conservation tillage practices.

  20. Soil Tillage Systems and Wheat Yield under Climate Change Scenarios

    OpenAIRE

    Pieranna Servadio; Simone Bergonzoli; Claudio Beni

    2016-01-01

    In this study, the effects of three different main preparatory tillage operations: ploughing at 0.4 m (P40) and 0.20 m (P20) depth and harrowing at 0.20 m depth (MT) were investigated. The tillage operations were carried out at two different times, as the soil water content increased over time from rainfall: (low, 58% (LH) and high, 80% (HH) of field capacity). Results obtained from the soil monitoring carried out before and after tillage showed high values of soil strength in terms of Penetr...

  1. Tillage practices and identity formation in High Plains farming

    DEFF Research Database (Denmark)

    Strand, Katherine; Arnould, Eric; Press, Melea

    2014-01-01

    landscape. Specifically, they compare conservation tillage wedded to ‘modern’ ideologies of scientific farming with conventional tillage newly linked to beliefs about both organic and traditional farming, and examine how farmers use these different forms of tillage to create their identities. Roadside...... farming, recognition and denunciation of other farmers’ practices, and recognition and justification of their own contribute to identity formation. This research contributes to the ongoing discussion of how identity is formed through day-to-day activities in the material world. The plow creates divisions...

  2. An experimental case study to estimate Pre-harvest Wheat Acreage/Production in Hilly and Plain region of Uttarakhand state: Challenges and solutions of problems by using satellite data

    Science.gov (United States)

    Uniyal, D.; Kimothi, M. M.; Bhagya, N.; Ram, R. D.; Patel, N. K.; Dhaundiya, V. K.

    2014-11-01

    Wheat is an economically important Rabi crop for the state, which is grown on around 26 % of total available agriculture area in the state. There is a variation in productivity of wheat crop in hilly and tarai region. The agricultural productivity is less in hilly region in comparison of tarai region due to terrace cultivation, traditional system of agriculture, small land holdings, variation in physiography, top soil erosion, lack of proper irrigation system etc. Pre-harvest acreage/yield/production estimation of major crops is being done with the help of conventional crop cutting method, which is biased, inaccurate and time consuming. Remote Sensing data with multi-temporal and multi-spectral capabilities has shown new dimension in crop discrimination analysis and acreage/yield/production estimation in recent years. In view of this, Uttarakhand Space Applications Centre (USAC), Dehradun with the collaboration of Space Applications Centre (SAC), ISRO, Ahmedabad and Uttarakhand State Agriculture Department, have developed different techniques for the discrimination of crops and estimation of pre-harvest wheat acreage/yield/production. In the 1st phase, five districts (Dehradun, Almora, Udham Singh Nagar, Pauri Garhwal and Haridwar) with distinct physiography i.e. hilly and plain regions, have been selected for testing and verification of techniques using IRS (Indian Remote Sensing Satellites), LISS-III, LISS-IV satellite data of Rabi season for the year 2008-09 and whole 13 districts of the Uttarakhand state from 2009-14 along with ground data were used for detailed analysis. Five methods have been developed i.e. NDVI (Normalized Differential Vegetation Index), Supervised classification, Spatial modeling, Masking out method and Programming on visual basics methods using multitemporal satellite data of Rabi season along with the collateral and ground data. These methods were used for wheat discriminations and preharvest acreage estimations and subsequently results

  3. Precise tillage systems for enhanced non-chemical weed management

    NARCIS (Netherlands)

    Kurstjens, D.A.G.

    2007-01-01

    Soil and residue manipulation can assist weed management by killing weeds mechanically, interfering in weed lifecycles, facilitating operations and enhancing crop establishment and growth. Current tillage systems often compromise these functions, resulting in heavy reliance on herbicides,

  4. Effects of tillage practices and carbofuran exposure on small mammals

    Science.gov (United States)

    Albers, P.H.; Linder, G.; Nichols, J.D.

    1990-01-01

    We compared population estimates, body mass, movement, and blood chemistry of small mammals between conventionally tilled and no-till cornfields in Maryland and Pennsylvania to evaluate the effects of tillage practices and carbofuran exposure on small mammals.

  5. Artificial neural network approach for mapping contrasting tillage practices

    Science.gov (United States)

    Tillage information is crucial for environmental modeling as it directly affects evapotranspiration, infiltration, runoff, carbon sequestration, and soil losses due to wind and water erosion from agricultural fields. However, collecting this information can be time consuming and costly. Remote sensi...

  6. MEAN INFILTRATION SPEED IN A VERTISOL UNDER DIFFERENT TILLAGE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Juan José Martínez Villanueva

    2015-03-01

    Full Text Available Soil compaction is regarded as the most serious environmental problem caused by conventional agriculture. Few studies are concerned with the assessment of soil compaction using infiltration speed, specifically in the Vertisol soil characteristic of the main maize producing area of the Toluca-Atlacomulco Valley in central Mexico. The aim of this research was to examine the effect on infiltration speed and penetration resistance of a Vertisol soil when compacted by wheeled agricultural traffic in three different types of tillage systems: zero, minimal and conventional. Penetration resistance was measured on the wheel track with a portable digital penetrometer, and the mean infiltration speed was determined according to the double cylinder infiltrometer method. The pressure exerted by the number of wheeled traffic passes increased Vertisol soil compaction at 30 cm depth. Even though the benefits of zero tillage were similar to those showed by minimum tillage during the experimental period, minimum tillage reported the highest infiltration speed.

  7. Field studies on the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting.

    Science.gov (United States)

    Chono, Makiko; Honda, Ichiro; Shinoda, Shoko; Kushiro, Tetsuo; Kamiya, Yuji; Nambara, Eiji; Kawakami, Naoto; Kaneko, Shigenobu; Watanabe, Yoshiaki

    2006-01-01

    To investigate whether the regulation of abscisic acid (ABA) content was related to germinability during grain development, two cDNAs for 9-cis-epoxycarotenoid dioxygenase (HvNCED1 and HvNCED2) and one cDNA for ABA 8'-hydroxylase (HvCYP707A1), which are enzymes thought to catalyse key regulatory steps in ABA biosynthesis and catabolism, respectively, were cloned from barley (Hordeum vulgare L.). Expression and ABA-quantification analysis in embryo revealed that HvNCED2 is responsible for a significant increase in ABA levels during the early to middle stages of grain development, and HvCYP707A1 is responsible for a rapid decrease in ABA level thereafter. The change in the embryonic ABA content of imbibing grains following dormancy release is likely to reflect changes in the expression patterns of HvNCEDs and HvCYP707A1. A major change between dormant and after-ripened grains occurred in HvCYP707A1; the increased expression of HvCYP707A1 in response to imbibition, followed by a rapid ABA decrease and a high germination percentage, was observed in the after-ripened grains, but not in the dormant grains. Under field conditions, HvNCED2 showed the same expression level and pattern during grain development in 2002, 2003, and 2004, indicating that HvNCED2 expression is regulated in a growth-dependent manner in the grains. By contrast, HvNCED1 and HvCYP707A1 showed a different expression pattern in each year, indicating that the expression of these genes is affected by environmental conditions during grain development. The varied expression levels of these genes during grain development and imbibition, which would have effects on the activity of ABA biosynthesis and catabolism, might be reflected, in part, in the germinability in field-grown barley.

  8. Analysis and experiment of tillage depth and width stability for plowing and rotary tillage combined machine%复式耕整机耕深与耕宽稳定性分析与试验

    Institute of Scientific and Technical Information of China (English)

    秦宽; 丁为民; 方志超; 杜涛涛; 赵思琪; 王朕

    2016-01-01

    针对设计的复式耕整机出现的耕作稳定性问题,结合复式耕整机整体结构及工作原理,从牵引、水平面内受力、机器振动3个角度分析影响耕作稳定性因素,确定影响耕作稳定性关键因素为牵引角、犁体配置斜角、旋耕刀升角。以牵引角、犁体配置斜角、旋耕刀升角为试验因素,以工况耕深稳定系数和工况耕宽稳定系数为性能评价指标进行二次正交旋转组合试验。正交试验结果表明:试验因素对评价指标影响程度从高到低皆为:犁体配置斜角、牵引角、旋耕升角,当各影响因素分别取值为17.3°、27.8°、72.6°时,工况耕深稳定系数和工况耕宽稳定系数分别为91.8%、93.4%。以影响因素最优参数组合为基础进行的验证试验结果表明:试验后工况耕深稳定系数和工况耕宽稳定系数为91.5%、93.1%,与软件分析结果基本一致,且其他耕作指标均达到农艺要求。该研究可为复式整地机械的耕作稳定性研究提供技术参考。%The plowing and rotary tillage combined machine developed in this study is a duplex-operation scarification machine designed with the combination of plough mechanism and rotary tillage mechanism in the front. Such a design allows the cultivator to accomplish multiple tasks simultaneously, such as plow tillage, rotary tillage, straw chopping for mulching, soil pulverization, soil covering, and surface leveling. To investigate the stability of the plowing and rotary tillage combined machine, the factors such as cultivator tillage stability were examined from 3 different aspects: traction, force analysis in the horizontal plane, and vibration analysis. The center of mass of the machine could be determined on the longitudinal vertical plane of the machine, where the traction line passing through the instantaneous center of rotation intersected with the vertical line passing through the center of mass. The traction

  9. Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems.

    Science.gov (United States)

    Mahía, Jorge; Martín, Angela; Carballas, Tarsy; Díaz-Raviña, Montserrat

    2007-05-25

    The content of atrazine and its metabolites (hydroxyatrazine, deethylatrazine and deisopropylatrazine) as well as the activities of two soil enzymes (urease and beta-glucosidase) were evaluated in an acid agricultural soil, located in a temperate humid zone (Galicia, NW Spain), with an annual ryegrass-maize rotation under conventional tillage (CT) and no tillage (NT). Samples were collected during two consecutive years from the arable layer at two depths (0-5 cm and 5-20 cm) and different times after atrazine application. Hydroxyatrazine and deisopropylatrazine were the main metabolites resulting from atrazine degradation in the acid soil studied, the highest levels being detected in the surface layer of the NT treatment. A residual effect of atrazine was observed since hydroxyatrazine was detected in the arable layer (0-5 cm, 5-20 cm) even one year after the herbicide application. Soil enzyme activities in the upper 5 cm layer under NT were consistently higher than those in the same layer under CT. Urease and beta-glucosidase activities decreased with depth in the profile under NT but they did not show any differences between the two depths for the plots under CT. For both tillage systems enzyme activities also reflected temporal changes during the maize cultivation; however, no consistent effect of the herbicide application was observed.

  10. Metagenomic analyses reveal no differences in genes involved in cellulose degradation under different tillage treatments.

    Science.gov (United States)

    de Vries, Maria; Schöler, Anne; Ertl, Julia; Xu, Zhuofei; Schloter, Michael

    2015-07-01

    Incorporation of plant litter is a frequent agricultural practice to increase nutrient availability in soil, and relies heavily on the activity of cellulose-degrading microorganisms. Here we address the question of how different tillage treatments affect soil microbial communities and their cellulose-degrading potential in a long-term agricultural experiment. To identify potential differences in microbial taxonomy and functionality, we generated six soil metagenomes of conventional (CT) and reduced (RT) tillage-treated topsoil samples, which differed in their potential extracellular cellulolytic activity as well as their microbial biomass. Taxonomic analysis of metagenomic data revealed few differences between RT and CT, and a dominance of Proteobacteria and Actinobacteria, whereas eukaryotic phyla were not prevalent. Prediction of cellulolytic enzymes revealed glycoside hydrolase families 1, 3 and 94, auxiliary activity family 8 and carbohydrate-binding module 2 as the most abundant in soil. These were annotated mainly to the phyla of Proteobacteria, Actinobacteria and Bacteroidetes. These results suggest that the observed higher cellulolytic activity in RT soils can be explained by a higher microbial biomass or changed expression levels but not by shifts in the soil microbiome. Overall, this study reveals the stability of soil microbial communities and cellulolytic gene composition under the investigated tillage treatments.

  11. Effect of Traffic and Tillage on Agriculture Machine Traction and Fuel Consumption in Northern China Plain

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2014-04-01

    Full Text Available Controlled traffic with conservation tillage can reduce soil compaction, thus to improve operation performance and fuel consumption of agricultural machine. Northern Chinese Plain is one of the main agricultural production bases with high level of agricultural mechanization. To explore the effect of wheel traffic on machine traction force and fuel consumption, three treatments were conducted: zero tillage with Controlled Traffic (NTCN, Compacted Treatment (CT and traditional tillage system with random traffic (CK. Results showed that wheel traffic increased soil bulk density in the top soil layer in both fully compacted and random compacted plots. Controlled traffic system should certain potential on soil compaction amelioration. Controlled traffic system reduced traction force on winter wheat planting by 9.5 and 6.3%, compared with fully compacted treatment and random compacted treatment. Controlled traffic system reduced fuel consumption in both winter wheat planting and sub soiling (significantly, compared with fully compacted treatment and random compacted treatment. Results indicated that controlled traffic system had certain advantages in soil compaction and fuel consumption in this region and with high application potential.

  12. Soil Tillage Needs a Radical Change for Sustainability

    Directory of Open Access Journals (Sweden)

    Ivica Kisić

    2008-09-01

    Full Text Available In Central Europe, the challenge in soil tillage throughout the last century can be characterized as a fight against extreme climatic and economic situations. From 1800s till the 1970s, the main requirement of soil tillage was to provide suitable soil conditions for plant growth (moreover with fi ne structure. Both climatic and economic difficulties were beneficial in establishing new tillage trends, however overestimation of the crop demands have presumably been promoted by the deterioration in soil quality. From the end of the 1990s, new requirements have also been introduced because of the rise in energy prices and because of the need to cut production costs. The reduced tillage in Central European region showed some advantages, e.g. less soil disturbance and traffic however, that resulted in new soil condition defects (e.g. top- and subsoil compaction, structure degradation. The ideas of sustainability offered a better solution that is to conserve soil resources and to protect the environment. A new problem, the global climate change, and the importance of the adaptability fasten to the original sustainable goals. In this paper the features of soil quality deteriorating tillage (conventional, over-reduced are summarised, the steps of improvement are demonstrated, and factors affecting sustainable soil tillage are formulated.

  13. Effect of different covering materials used during the pre-harvest stage on the quality and storage life of 'Sultana Seedless' grapes

    Directory of Open Access Journals (Sweden)

    Fatih Sen

    2014-12-01

    Full Text Available Covering the grapevine rows to delay the maturity and harvest date became widely practiced in 'Sultana Seedless' vineyards. The research work was conducted to test different cover materials (polypropylene cross-stitch, life pack, mogul and transparent polyethylene in respect to their effects on grape quality and storability. Harvest was delayed for one month in covered plots. Harvested grapes were packed and transferred to storage rooms after pre-cooling. During packing, the grape clusters were sealed in PE bags with sulphur dioxide pads. The grapes were stored for 90 days in the first year and 120 days in the second year, at -0.5ºC and 90% RH. All the grape clusters were healthy and of marketable quality after 90 days of storage period. In the first year, at the end of the storage, only those grapes harvested from the rows covered with polypropylene cross-stitch showed fungal growth. The sensory quality scores revealed a lower level of preference after 120 days of storage. The effects of the covering materials tested were similar regarding grape quality and storage performance except the transparent polyethylene that damaged the grapevine leaves.

  14. Assessing the efficacy of pre-harvest, chlorine-based sanitizers against human pathogen indicator microorganisms and Phytophthora capsici in non-recycled surface irrigation water.

    Science.gov (United States)

    Lewis Ivey, M L; Miller, S A

    2013-09-01

    Many factors must be considered in order to develop and implement treatment systems to improve the microbial quality of surface water and prevent the accidental introduction of plant and human pathogens into vegetable crops. The efficacy of chlorine gas (Cl2(g)) and chlorine dioxide (ClO2) injection systems in combination with rapid sand filtration (RSF) was evaluated in killing fecal indicator microorganisms in irrigation water in a vegetable-intensive production area. The efficacy of ClO2 and Cl2(g) was variable throughout the distribution systems and coliform bacteria never dropped below levels required by the United States Environmental Protection Agency for recreational waters. Sampling date and sampling point had a significant effect on the abundance of coliforms in Cl2(g)- and ClO2-treated water. Sampling date and sampling point also had a significant effect on the abundance of generic Escherichia coli in Cl2(g) treated water but only sampling point was significant in ClO2 treated water. Although the waterborne plant pathogen Phytophthora capsici was detected in five different sources of surface irrigation water using baiting and P. capsici-specific PCR, in vitro studies indicated that ClO2 at concentrations similar to those used to treat irrigation water did not reduce mycelial growth or direct germination of P. capsici sporangia and reduced zoospore populations by less than 50%. This study concludes that injection of ClO2 and Cl2(g) into surface water prior to rapid sand filtration is inadequate in reducing fecal indicator microorganism populations and ClO2 ineffectively kills infectious propagules of P. capsici. Additional research is needed to design a system that effectively targets and significantly reduces both plant and human pathogens that are present in surface irrigation water. A model for a multiple barrier approach to treating surface water for irrigation is proposed.

  15. Elevated atmospheric carbon dioxide effects on soybean and sorghum gas exchange in conventional and no-tillage systems.

    Science.gov (United States)

    Prior, S A; Runion, G B; Rogers, H H; Arriaga, F J

    2010-01-01

    Increasing atmospheric CO(2) concentration has led to concerns about potential effects on production agriculture. In the fall of 1997, a study was initiated to compare the response of two crop management systems (conventional tillage and no-tillage) to elevated CO(2). The study used a split-plot design replicated three times with two management systems as main plots and two atmospheric CO(2) levels (ambient and twice ambient) as split plots using open-top chambers on a Decatur silt loam soil (clayey, kaolinitic, thermic Rhodic Paleudults). The conventional system was a grain sorghum [Sorghum bicolor (L.) Moench.] and soybean [Glycine max (L.) Merr.] rotation with winter fallow and spring tillage practices. In the no-tillage system, sorghum and soybean were rotated, and three cover crops were used [crimson clover (Trifolium incarnatum L.), sunn hemp (Crotalaria juncea L.), and wheat (Triticum aestivum L.)]. Over multiple growing seasons, the effect of management and CO(2) concentration on leaf-level gas exchange during row crop (soybean in 1999, 2001, and 2003; sorghum in 2000, 2002, and 2004) reproductive growth were evaluated. Treatment effects were fairly consistent across years. In general, higher photosynthetic rates were observed under CO(2) enrichment (more so with soybean) regardless of residue management practice. Elevated CO(2) led to decreases in stomatal conductance and transpiration, which resulted in increased water use efficiency. The effects of management system on gas exchange measurements were infrequently significant, as were interactions of CO(2) and management. These results suggest that better soil moisture conservation and high rates of photosynthesis can occur in both tillage systems in CO(2)-enriched environments during reproductive growth.

  16. Reducing Soil CO2 Emission and Improving Upland Rice Yield with no-Tillage, Straw Mulch and Nitrogen Fertilization in Northern Benin

    Science.gov (United States)

    Dossou-Yovo, E.; Brueggemann, N.; Naab, J.; Huat, J.; Ampofo, E.; Ago, E.; Agbossou, E.

    2015-12-01

    To explore effective ways to decrease soil CO2 emission and increase grain yield, field experiments were conducted on two upland rice soils (Lixisols and Gleyic Luvisols) in northern Benin in West Africa. The treatments were two tillage systems (no-tillage, and manual tillage), two rice straw managements (no rice straw, and rice straw mulch at 3 Mg ha-1) and three nitrogen fertilizers levels (no nitrogen, recommended level of nitrogen: 60 kg ha-1, and high level of nitrogen: 120 kg ha-1). Potassium and phosphorus fertilizers were applied to be non-limiting at 40 kg K2O ha-1 and 40 kg P2O5 ha-1. Four replications of the twelve treatment combinations were arranged in a randomized complete block design. Soil CO2 emission, soil moisture and soil temperature were measured at 5 cm depth in 6 to 10 days intervals during the rainy season and every two weeks during the dry season. Soil moisture was the main factor explaining the seasonal variability of soil CO2 emission. Much larger soil CO2 emissions were found in rainy than dry season. No-tillage planting significantly reduced soil CO2 emissions compared with manual tillage. Higher soil CO2 emissions were recorded in the mulched treatments. Soil CO2 emissions were higher in fertilized treatments compared with non fertilized treatments. Rice biomass and yield were not significantly different as a function of tillage systems. On the contrary, rice biomass and yield significantly increased with application of rice straw mulch and nitrogen fertilizer. The highest response of rice yield to nitrogen fertilizer addition was obtained for 60 kg N ha-1 in combination with 3 Mg ha-1 of rice straw for the two tillage systems. Soil CO2 emission per unit grain yield was lower under no-tillage, rice straw mulch and nitrogen fertilizer treatments. No-tillage combined with rice straw mulch and 60 kg N ha-1 could be used by smallholder farmers to achieve higher grain yield and lower soil CO2 emission in upland rice fields in northern Benin.

  17. Soil respiration in a long-term tillage treatment experiment

    Science.gov (United States)

    Gelybó, Györgyi; Birkás, Márta; Dencsö, Márton; Horel, Ágota; Kása, Ilona; Tóth, Eszter

    2016-04-01

    Regular soil CO2 efflux measurements have been carried out at Józsefmajor longterm tillage experimental site in 2014 and 2015 with static chamber technique in no-till and ploughing plots in seven spatial replicates. The trial was established in 2002 on a loamy chernozem soil at the experimental site of the Szent István University nearby the city Hatvan, northern Hungary. At the site sunflower (Helianthus A.) and wheat (Triticum A.) was grown in 2014 and 2015, respectively. Ancillary measurements carried out at the site included weather parameters, soil water content, soil temperature. The aim of the investigation was to detect the effect of soil disturbance and soil tillage treatments on soil CO2 emission in agricultural ecosystems. Soil respiration measurements were carried out every week during the vegetation period and campaign measurements were performed scheduled to tillage application. In this latter case, measurements were carried out 1, 2, 3, 4, 6, 12, 18, 24, 48, 72, 96, 120 hours and 7 days after tillage operation. Results showed that during the vegetation season in the majority of measurement occasions emission was higher in the no-till plots. These differences; however were not found to be statistically significant. Due to the short term effect of tillage treatment, emissions increased following tillage treatment in the ploughed plots. Soil water content was also examined as main driver of soil CO2 fluxes. Soil water content sharply decreases in the surface layer (5-10 cm depth) after tillage treatment indicating a fast drying due to soil disturbance. This effect slowly attenuated and eventually extincted in approx. two weeks. CO2 emission measurements were associated with high uncertainties as a result of the measurement technique. Our further aim is to reduce this uncertainty using independent measurement techniques on the field.

  18. influence of tillage practices on physical properties of a sandy loam ...

    African Journals Online (AJOL)

    DR. AMINU

    Soil organic carbon (OC) and aggregate stability in water (MAW, ASC, DR and WSI) ... Key words: Tillage, Tillage systems, Soil Physical properties, Moisture storage, Physical quality ..... OC/organic matter contents of soils exerts great influe.

  19. [Effects of tillage at pre-planting of winter wheat and summer maize on leaf senescence of summer maize].

    Science.gov (United States)

    Li, Xia; Zhang, Ji-wang; Ren, Bai-zhao; Fan, Xia; Dong, Shu-ting; Liu, Peng; Zhao, Bin

    2015-05-01

    This study explored the effects of different tillage treatments at pre-planting winter wheat and summer maize on leaf senescence physiological characteristics of summer maize in double cropping system. Zhengdan 958 was used as experimental material. Three tillage treatments, including rotary tillage before winter wheat seeding and no-tillage before summer maize seeding (RN), mold- board plow before winter wheat seeding and no-tillage before summer maize seeding (MN), and moldboard plow before winter wheat seeding and rotary tillage before summer maize seeding (MR), were designed to determine the effects of different tillage treatments on leaf area (LA) , leaf area reduction, photosynthetic pigments content, superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities and malondialdehyde (MDA) content in ear leaves of summer maize after tasselling (VT). LA of MN and MR were higher than that of RN from VT to 40 days after tasseling (VT + 40) and LA reduction of MR was the highest after VT + 40. As for MR, MN and NT, the photosynthetic pigments content got the maximum value at 20 days after tasselling (VT + 20) and then decreased, following the change of unimodal curve. At VT + 20, the contents of chlorophyll a in MR and MN were increased by 11.4% and 9.7%, the contents of chlorophyll b in MR and MN were increased by 14.9% and 15.9%, compared with RN. The soluble protein content in ear leaves decreased following the growth process in all treatments, and that of MR and MN remained 11.5% and 24.4% higher than that of RN from VT to VT + 40. SOD, CAT and POD activities of three treatments got the maximum values at VT + 20 and then decreased, following the change of unimodal curve. MDA content increased following the growth process in all treatments and that of RN always remained at high levels. Grain yields of MN and MR were 24.0% and 30.6% greater than that of RN, respectively. Grain yield of MR was 5.2% higher than that of MN. In conclusion, the ability of

  20. Short-term effects of tillage on mineralization of nitrogen and carbon in soil

    OpenAIRE

    Hanne L. Kristensen; Debosz, Kasia; McCarty, Greg W.

    2003-01-01

    Tillage is known to decrease soil organic nitrogen (N) and carbon (C) pools with negative consequences for soil quality. This decrease is thought partly to be caused by exposure of protected organic matter to microbial degradation by the disturbance of soil structure. Little is known, however, about the short-term effects of tillage on mineralization of N and C, and microbial activity. We studied the short-term effects of two types of tillage (conventional plough- and a non-inverting-tillage)...

  1. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen

    OpenAIRE

    Mikha, M.M.; C. W. Rice

    2004-01-01

    Metadata only record This study assesses the impacts of tillage methods (conventional(CT) versus no-tillage(NT)) and nitrogen source (fertilizer(F) versus manure(M)) on soil aggregate size and the associated soil carbon and nitrogen. They find that both no-tillage and manure increase soil aggregate size, with the combination of the two producing the greatest soil aggregation. Likewise, there was greater total carbon and nitrogen in the soil for the no-tillage and manure treatments.

  2. Effect of different fertilizer resources on yield and yield components of grain maize (Zea mays L. affected by tillage managements

    Directory of Open Access Journals (Sweden)

    Ahmad Ghasemi

    2016-03-01

    Full Text Available Introduction Due to the development of sustainable agriculture and the reduction of utilizing chemical fertilizers, it is essential to use organic fertilizer. Organic matter is vital to soil fertility and its productivity. To maintain the level of fertility and the strength of soil, organic matter levels should be maintained at an appropriate level. Unfortunately, the level of organic matter in soil is generally less than 1%. One solution to increase the soil’s organic matter content is to use organic fertilizers such as animal manure, green manure, and vermicompost (Nuralvandy, 2011. As a correction factor, green manure can increase water supply and nutrient soil conservation (Tajbakhsh et al., 2005. Materials and methods In order to assess the effects of fertilizer sources (green manure, cow manure, and chemical fertilizer on maize yield and yield components (KSC 704 under tillage management, a field experiment was carried out at Zahak Agricultural and Natural Resource Research Station in two years (from 2013 to 2014. Before corn planting, barley was planted as green manure in the fall of each year. The experiment was conducted as a split plot arranged in a completely randomized block design with three replications. The main plots were tillage and no tillage, whereas the sub plots were: 1-barley green manure (without application of fertilizer, 2-barley green manure with applying 100% chemical fertilizer (NPK to the barley during cultivation, tillering and stemming stages, 3- green manure with 2/3 of chemical fertilizer to the barley and 1/3 to the maize, 4- green manure with 1/3 of chemical fertilizer to the barley and 2/3 to the maize, 5- barley green manure with 50% animal and chemical manures, 6- barley green manure with 40 t ha-1 of animal manure, 7-control (non-fertilizer application. Corn was planted on 15 March each year. Phosphorus, potassium fertilizer, and animal manure were added to the soil as the base fertilizers. At full

  3. Monoculture Maize (Zea mays L. Cropped Under Conventional Tillage, No-tillage and N Fertilization: (II Fumonisin Incidence on Kernels

    Directory of Open Access Journals (Sweden)

    Carolina Gavazzi

    2009-09-01

    Full Text Available Planting maize under no-tillage is an increasing farming practice for sustainable agriculture and sound environmental management. Although several studies on yield of no-till maize have been done, there is few information about the effect of tillage on fumonisin contamination. The present study was done to determine the effect of notillage and conventional tillage with two rates of nitrogen on fumonisin content in kernels of continuous maize. Average grain contamination with fumonisins B1 and B2 over the years 2004-06 was not significantly different, with mean values of 1682, 1984 and 2504 μg kg-1, respectively. Fumonisin B1 was the most abundant toxin found in the samples. No-tillage significantly affected the incidence of fumonisins during the first year of the trial, in which fumonisin content was significantly higher with no-till (2008 μg kg-1 compared with conventional tillage (1355 μg kg-1. However, no-tillage did not significantly affect the incidence of fumonisins in the second and third years of the study. Fumonisin content at the rate of 300 kg N ha-1 was not statistically different compared to that obtained without N fertilization. The interaction between the soil management system and the rate of applied nitrogen was only evident in the second year. Our results indicate that fumonisin contamination was affected by no-tillage only in the first year. Nitrogen fertilization had no significant effect on fumonisin content in any year. The weather conditions during susceptible stages of maize development have probably overridden the effect of nitrogen fertilization.

  4. Effects of Tillage Management Systems on Residue Cover and Decomposition

    Institute of Scientific and Technical Information of China (English)

    ZHANGZHIGUO; XUQI; 等

    1998-01-01

    The effects of tillage methods on percent surface residue cover remaining and decomposition rates of crop residues were evaluated in this study.The line transect method was used to measure residue cover percentage on continuumous corn(Zea mays L.) plots under no tillage (NT),Conventional tillage(CT),chisel plow(CH),and disk tillage (DT).Samples of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) were used for residue decompostion study,Results showed that the percentage of residue cover remaining was significantly higher for NT than for CH and DT and that for CT was the lowest(<10%),For the same tillage system ,the percent residue cover remaining was significantly higher in the higher fertilizer N rate treatments relative to the lower fertilizer N treatments.weight losses of rye and vetch residues followed a similar pattern under CT and DT ,and they were significantly faster in CT and DT than in NT system ,Alo ,the amounts of residue N remaining during the first 16 weeks were alway higher under NT than under CT and DT.

  5. Pesticide Interactions with N source and Tillage: Effects on soil biota and ecosystem services

    DEFF Research Database (Denmark)

    Jensen, John; Petersen, Søren O; Elsgaard, Lars;

    Pesticide effects on soil biota must be interpreted in the context of the specific management practice, including rotation, fertilization, tillage, and pest control. Tillage, foe example, has been shown to reduce earthworm populations by up to 80%, depending on timing and specific tillage technique...

  6. Dynamics of soil water content under different tillage systems in agro-pastural eco-zone

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The dynamics of soil water content under different tillage systems was studied throughout the growing period of oat (Arena sativa L.).The treatments included tillage system (zero tillage,minimum tillage,and conventional tillage),residue cover (with and without cover),and crop rotation (continuous cropping and crop rotation).The results indicated that soil water content and crop water use efficiency were improved under zero tillage with cover.When crop stubble was removed,soil water content under zero tillage was reduced,especially in the surface soil layer.Compared to conventional tillage,minimum tillage increased soil water content and its storage,either with cover or without cover.For all the three tillage treatments,soil water content with cover was significantly higher than that of without cover.Furthermore,soil water content and crop water use efficiency under crop rotation was consistently higher than continuous cropping.Therefore,it is concluded that minimum tillage with cover is the optimum management system in this area.At present,however,a combination of crop rotation and minimum tillage is a viable option,since there are not enough crop residues available for cover of land.

  7. Comparison of tillage treatments on greenhouse gas fluxes in winter wheat

    Science.gov (United States)

    Tillage is commonly used to control weeds and prepare fields for planting. Repeated tillage can result in soil drying, sudden bursts of mineralized carbon and nitrogen from soil organic matter, and alterations in soil microbial communities. The effects of tillage on winter wheat cropping systems an...

  8. Effects of tillage systems on yield of cotton following canola in Gorgan

    Directory of Open Access Journals (Sweden)

    F. Ghaderi- Far

    2012-04-01

    Full Text Available The conservation system is one of the proper methods avoiding the loss of nutrients, soil erosion, and reduce production costs. This research was examined for studying the influences of tillage systems on the three cotton cultivars at Karkandeh and Hashm-Abad stations in Gorgan. The experiments were conducted in a randomized completely block design as split plot with three replications with five tillage systems (Mould board plough, Chisel, Disc, Strip and no tillage as main plot and three cultivars (Siokra324, Zodrac-Motagenez and Cindoz 80 as sup-plot. The results showed that effects of tillage system was significant on yield. Yield was more in chisel and disk (Conservation tillage by having more monopodial branch length, number of monopodial and sympodial branch, plant height and boll in plant than Mould board plough (conventional tillage and no-tillage system in all cultivars. The Siokra324 cultivar had more yield due to having more boll in plant than two other cultivars. Yield in no-tillage system was lower than conservation and conventional tillage but the grown plants in this system were smaller and had lower branching. Thus population density can be increased for gaining higher yield from this system, and it is recommended to do complete experiments for studying the effects of various population densities in no tillage system and conservation tillage with the conclusive studies are replaced conventional tillage.

  9. The Effects of Different Tillage Systems on Soil Hydrology and Erosion in Southeastern Brazil

    Science.gov (United States)

    Bertolino, A. V. F. A.; Fernandes, N. F.; Souza, A. P.; Miranda, J. P.; Rocha, M. L.

    2009-04-01

    Conventional tillage usually imposes a variety of modifications on soil properties that can lead to important changes in the type and magnitude of the hydrological processes that take place at the upper portion of the soil profile. Plough pan formation, for example, is considered to be an important consequence of conventional tillage practices in southeastern Brazil, decreasing infiltration rates and contributing to soil erosion, especially in steep slopes. In order to characterize the changes in soil properties and soil hydrology due to the plough pan formation we carried out detailed investigations in two experimental plots in Paty do Alferes region, located in the hilly landscape of Serra do Mar in southeastern Brazil, close to Rio de Janeiro city. Farming activities are very important in this area, in particular the ones related to the tomato production. The local hilly topography with short and steep hillslopes, as well as an average annual rainfall of almost 2000 mm, favor surface runoff and the evolution of rill and gully erosion. The two runoff plots are 22m long by 4m wide and were installed side by side along a representative hillslope, both in terms of soil (Oxisol) and steepness. At the lower portion of each plot there is a collecting trough connected by a PVC pipe to a 500 and 1000 liters sediment storage boxes. Soil tillage treatments used in the two plots were: Conventional Tillage (CT), with one plowing using disc-type plow (about 18 cm depth) and one downhill tractor leveling, in addition to burning residues from previous planting; and Minimum Tillage (MT), which did not allow burning residues from previous planting and preserved a vegetative cover between plantation lines. Runoff and soil erosion measurements were carried out in both plots immediately after each rainfall event. In order to characterize soil water movements under the two tillage systems (CT and MT), 06 nests of tensiometers and 04 nests of Watermark sensors were installed in each

  10. Influence of crop rotation and tillage intensity on soil physical properties and functions

    Science.gov (United States)

    Krümmelbein, Julia

    2013-04-01

    Soil tillage intensity can vary concerning tillage depth, frequency, power input into the soil and degree of soil turn-over. Conventional tillage systems where a plough is regularly used to turn over the soil can be differentiated from reduced tillage systems without ploughing but with loosening the upper soil and no tillage systems. Between conventional tillage and no tillage is a wide range of more or less reduced tillage systems. In our case the different tillage intensities are not induced by different agricultural machinery or techniques, but result from varying crop rotations with more or less perennial crops and therefore lower or higher tillage frequency. Our experimental area constitutes of quite unstructured substrates, partly heavily compacted. The development of a functioning soil structure and accumulation of nutrients and organic matter are of high importance. Three different crop rotations induce varying tillage intensities and frequencies. The first crop rotation (Alfalfa monoculture) has only experienced seed bed preparation once and subsequently is wheeled once a year to cut and chaff the biomass. The second crop rotation contains perennial and annual crops and has therefore been tilled more often, while the third crop rotation consists only of annual crops with annual seedbed preparation. Our results show that reduced tillage intensity/frequency combined with the intense root growth of Alfalfa creates the most favourable soil physical state of the substrate compared to increased tillage and lower root growth intensity of the other crop rotations. Soil tillage disturbs soil structure development, especially when the substrate is mechanically unstable as in our case. For such problematic locations it is recommendable to reduce tillage intensity and/or frequency to allow the development of soil structure enhanced by root growth and thereby the accumulation of organic matter and nutrients within the rooting zone.

  11. 29 CFR 780.110 - Operations included in “cultivation and tillage of the soil.”

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Operations included in âcultivation and tillage of the soil... FAIR LABOR STANDARDS ACT General Scope of Agriculture Cultivation and Tillage of the Soil § 780.110 Operations included in “cultivation and tillage of the soil.” “Cultivation and tillage of the soil”...

  12. [Effects of conservation tillage and weed control on soil water and organic carbon contents in winter wheat field].

    Science.gov (United States)

    Han, Hui-Fang; Ning, Tang-Yuan; Li, Zeng-Jia; Tian, Shen-Zhong; Wang, Yu; Zhong, Wei-Lei; Tian, Xin-Xin

    2011-05-01

    Taking a long-term (since 2004) straw-returning winter wheat field as the object, an investigation was made in the wheat growth seasons of 2008-2009 and 2009-2010 to study the effects of different tillage methods (rotary tillage, harrow tillage, no-tillage, subsoil tillage, and conventional tillage) and weed management on the soil water and organic carbon contents. No matter retaining or removing weeds, the weed density under subsoil tillage and no-tillage was much higher than that under rotary tillage, harrow tillage, and conventional tillage. From the jointing to the milking stage of winter wheat, retaining definite amounts of weeds, no matter which tillage method was adopted, could significantly increase the 0-20 cm soil water content, suggesting the soil water conservation effect of retaining weeds. Retaining weeds only increased the soil organic carbon content in 0-20 cm layer at jointing stage. At heading and milking stages, the soil organic carbon contents in 0-20, 20-40, and 40-60 cm layers were lower under weed retaining than under weed removal. Under the conditions of weed removal, the grain yield under subsoil tillage increased significantly, compared with that under the other four tillage methods. Under the conditions of weed retaining, the grain yield was the highest under rotary tillage, and the lowest under conventional tillage.

  13. Potential effect of conservation tillage on sustainable land use : a review of global long-term studies

    NARCIS (Netherlands)

    Wang Xiaobin,; Cai, D.; Hoogmoed, W.B.; Oenema, O.; Perdok, U.D.

    2006-01-01

    Although understood differently in different parts of the world, conservation tillage usually includes leaving crop residues on the soil surface to reduce tillage. Through a global review of long-term conservation tillage research, this paper discusses the long-term effect of conservation tillage on

  14. Effect of Different Tillage Methods on Photosynthetic Characteristics and Yield Formation in Summer Soybean%耕作方式对夏大豆光合特性及产量形成的影响

    Institute of Scientific and Technical Information of China (English)

    徐海东; 唐江华; 苏丽丽; 徐文修; 李亚杰

    2016-01-01

    为筛选出适合北疆地区种植复播大豆高产高效的耕作方式,研究了不同耕作方式对复播大豆光合特性、干物质积累及产量形成的影响。结果表明,翻耕覆膜处理的夏大豆叶面积指数和叶绿素相对含量值均最高,且均表现为翻耕覆膜处理>翻耕处理>旋耕处理>免耕处理,但胞间CO2浓度正好呈现相反规律,翻耕覆膜处理的净光合速率、气孔导度、蒸腾速率分别比翻耕处理、旋耕处理、免耕处理的平均值高出12.81%、30.03%、16.82%,且达显著差异水平(P plowing treatment>rotary tillage treatment>no-tillage treatment,while the intercellular CO2 concentration just right presented a contrary law.The net photosynthetic rate,stomatal conductance and transpiration rate of plowing tillage treatment on an av-erage were higher than that of plowing treatment,rotary tillage,no-tillage by 12.81%,30.03%,16.82% re-spectively,which reached differentially remarkable level (P <0.05).The yield of plowing tillage treatment were higher than that of plowing treatment,rotary tillage treatment,no-tillage treatment by 1 5 .2 1%, 30.82%,31.91% respectively.The average value of grain number per plant,ripe pod per plant,100-grain weight of plowing tillage treatment were higher than that of plowing tillage treatment by 49.27%,48.48%, 14.29%,all of which reached significantly different level.The cultivation of mutiple soybean combined with drip irrigation techniques and farming method of plowing tillage was more advantageous for high yield of summer soybean,under the roughly same conditions with this experimental invironment.

  15. The Effect on Soil Erosion of Different Tillage Applications

    Science.gov (United States)

    Gür, Kazım

    2016-04-01

    The Effects on Soil Erosion of Different Tillage Applications Kazım Gür1, Kazim Çarman2 and Wim M.Cornelis3 1Bahri Daǧdaş International Agricultural Research Instıtute, 42020 Konya, Turkey 2Faculty of Agriculture, Department of Agricultural Machinery, University of Selçuk, 42031 Konya, Turkey 3Department of Soil Management, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, 9000 Gent, Belgium Traditional soil cultivation systems, with excessive and inappropriate soil tillage, will generally lead to soil degradation and loss of soil by wind erosion. Continuous reduced tillage and no-till maintaining soil cover with plant residues called Conservation Agriculture that is considered as effective in reducing erosion. There exist a wide variety of practices using different tools that comply with reduced tillage principles. However, few studies have compared the effect of several of such tools in reducing wind erosion and related soil and surface properties. We therefore measured sediment transport rates over bare soil surfaces (but with under stubbles of wheat, Triticum aestivum L.) subjected to three tillage practices using two pulling type machines and one type of power takeoff movable machines and generated with a portable field wind tunnel. At 10 ms-1, sediment transport rates varied from 107 to 573 gm-1h-1, and from 176 to 768 gm-1h-1 at 13 ms-1. The lowest transport rates were observed for N(no-tillage) and the highest for Rr(L-type rototiller). After tillage, surface roughness, mean weighted diameter, wind erodible fraction, mechanical stability and soil water content were measured as well and varied from 5.0 to 15.9%, 6.9 to 13.8 mm, 14.3 to 29.7%, 79.5 to 93.4% and 8.6 to 15.1%, respectively, with again N is being the most successful practice. In terms of conservation soil tillage technique, it can be said that the applications compared with each other; direct sowing machine is more appropriate and cause to the less erosion.

  16. EFFECTS OF DIFFERENT SOIL TILLAGE SYSTEMS ON NODULATION AND YIELD OF SOYBEAN

    Directory of Open Access Journals (Sweden)

    D. Jug

    2005-12-01

    Full Text Available The primary soil tillage for different crops in Croatia is generally based on mouldboard ploughing which is the most expensive for crops production. Negative effects due to frequent passes by equipment and machines (deterioration of soil structure, soil compaction, lower biogenity and soil tilth, together with negative economical and energetical costs, can be lowered and avoided by introduction of reduced soil tillage or direct drilling (No-tillage. Accordingly, the main goal of this research was to determine effects of conventional and reduced soil tillage systems on yield components and nodulation ability of nitrogen fixing bacteria in soybean crop. The research was established at chernozem soil type of northern Baranja as monofactorial completely randomized block design in four repetitions. The soil tillage variants were as follows: CT Conventional Tillage (primary soil tillage by moldboard ploughing at 25-30 cm depth, DH Multiple Diskharrowing at 10-15 cm as primary tillage, and NT No-tillage system. Results show significantly lower plant density, mass of 1000 grains and grain yield at variants with reduced soil tillage in both investigation years. However, reduced tillage systems had positive trend on nitrogen-fixing bacteria nodulation, since the highest values of number and mass of nodules per plant were recorded. This research was run during the years 2002 and 2003, the last one extremely droughty, thus it requires continuation.

  17. [Effects of tillage methods on soil physicochemical properties and biological characteristics in farmland: A review].

    Science.gov (United States)

    Li, Yu-jie; Wang, Hui; Zhao, Jian-ning; Huangfu, Chao-he; Yang, Dian-lin

    2015-03-01

    Tillage methods affect soil heat, water, nutrients and soil biology in different ways. Reasonable soil management system can not only improve physical and chemical properties of the soil, but also change the ecological process of farmland soil. Conservation tillage can improve the quality of the soil to different degrees. For example, no-tillage system can effectively improve soil enzyme activity. No tillage and subsoiling tillage can provide abundant resources for soil microbe' s growth and reproduction. No tillage, minimum tillage and other conservation tillage methods exert little disturbance to soil animals, and in turn affect the quantity and diversity of the soil animals as well as their population structure. Effects of different tillage methods on soil physical and chemical properties as well as biological characteristics were reviewed in this article, with the soil physical and chemical indices, enzyme activities, soil microbe diversity and soil animals under different tillage patterns analyzed. The possibility of soil quality restoration with appropriate tillage methods and the future research direction were pointed out.

  18. Deciphering drought-induced response patterns at the biochemical and molecular level in maize related to aflatoxin contamination resistance

    Science.gov (United States)

    Drought stress influences crop growth, decreases yield, and exacerbates Aspergillus flavus infection and pre-harvest aflatoxin contamination. In order to dissect drought stress-induced responses in maize, genotypes with contrasting levels of drought tolerance were used to investigate the physiologic...

  19. Contrasting soil microbial responses to fertilization and tillage systems in canola rhizosphere.

    Science.gov (United States)

    Mohammadi, Khosro; Heidari, Gholamreza; Karimi Nezhad, Mohammad Tahsin; Ghamari, Salah; Sohrabi, Yousef

    2012-07-01

    Information regarding the simultaneous evaluation of tillage and fertilization on the soil biological traits in canola production is not available. Therefore, field experiments were conducted in 2007-2010 in a split plot based on randomized complete block design with three replications. Main plots consisted of conventional tillage (CT); minimum tillage (MT) and no tillage (NT). Six strategies of fertilization including (N1): farmyard manure (cattle manure); (N2): compost; (N3): chemical fertilizers; (N4): farmyard manure + compost; (N5): farmyard manure + compost + chemical fertilizers and (N6): control, were arranged in sub plots. Results showed that the addition of organic manure increased the soil microbial biomass. No tillage system increased microbial biomass compared to other tillage systems. The activities of all enzymes were generally higher in the N4 treatment. The activity of phosphatase and urease tended to be higher in the no tillage treatment compared to the CT and MT treatments.

  20. The occurrence of fungi on the stem base and roots of spring wheat (Triticum aestivum L. grown in monoculture depending on tillage systems and catch crops

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present study was carried out in the period 2006-2008 based on an experiment established in 2005. The study evaluated the effect of conservation and plough tillage as well as of four catch crops on the level of infection by fungal pathogens of the stem base and roots of the spring wheat cultivar ‘Zebra’ grown in monoculture. The species composition of fungi colonizing the stem base and roots of spring wheat was determined. The split-plot design of the experiment set up on rendzina soil included plough tillage and conservation tillage with autumn and spring disking of catch crops. The experiment used four methods for regeneration of the spring wheat monoculture stand using the following: undersown red clover and Westerwolds ryegrass crops as well as lacy phacelia and white mustard stubble crops. Plots without catch crops were the control treatment. Red clover and Westerwolds ryegrass catch crops as well as lacy phacelia and white mustard stubble crops had a significant effect on the decrease in the stem base and root infection index of spring wheat compared to the control without catch crops. The disease indices in the tillage treatments under evaluation did not differ significantly from one another. The stem base and roots of spring wheat were most frequently infected by fungi of the genus Fusarium, with F. culmorum being the dominant pathogen of cereals. Compared to conservation tillage, in plough tillage the pathogenic fungus Bipolaris sorokiniana was not found to occur on the stem base and roots. The Westerwolds ryegrass catch crop promoted the occurrence of F. culmorum, both on the stem base and roots of spring wheat.

  1. Nitrogen, tillage, and crop rotation effects on carbon dioxide and methane fluxes from irrigated cropping systems.

    Science.gov (United States)

    Alluvione, Francesco; Halvorson, Ardell D; Del Grosso, Stephen J

    2009-01-01

    Long-term effects of tillage intensity, N fertilization, and crop rotation on carbon dioxide (CO(2)) and methane (CH(4)) flux from semiarid irrigated soils are poorly understood. We evaluated effects of: (i) tillage intensity [no-till (NT) and conventional moldboard plow tillage (CT)] in a continuous corn rotation; (ii) N fertilization levels [0-246 kg N ha(-1) for corn (Zea mays L.); 0 and 56 kg N ha(-1) for dry bean (Phaseolus vulgaris L.); 0 and 112 kg N ha(-1) for barley (Hordeum distichon L.)]; and (iii) crop rotation under NT soil management [corn-barley (NT-CB); continuous corn (NT-CC); corn-dry bean (NT-CDb)] on CO(2) and CH(4) flux from a clay loam soil. Carbon dioxide and CH(4) fluxes were monitored one to three times per week using vented nonsteady state closed chambers. No-till reduced (14%) growing season (154 d) cumulative CO(2) emissions relative to CT (NT: 2.08 Mg CO(2)-C ha(-1); CT: 2.41 Mg CO(2)-C ha(-1)), while N fertilization had no effect. Significantly lower (18%) growing season CO(2) fluxes were found in NT-CDb than NT-CC and NT-CB (11.4, 13.2 and 13.9 kg CO(2)-C ha(-1)d(-1) respectively). Growing season CH(4) emissions were higher in NT (20.2 g CH(4) ha(-1)) than in CT (1.2 g CH(4) ha(-1)). Nitrogen fertilization and cropping rotation did not affect CH(4) flux. Implementation of NT for 7 yr with no N fertilization was not adequate for restoring the CH(4) oxidation capacity of this clay loam soil relative to CT plowed and fertilized soil.

  2. Effects of 30 Years of Crop Rotation and Tillage on Bacterial and Archaeal Ammonia Oxidizers.

    Science.gov (United States)

    Munroe, Jake W; McCormick, Ian; Deen, William; Dunfield, Kari E

    2016-05-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) both mediate soil nitrification and may have specialized niches in the soil. Little is understood of how these microorganisms are affected by long-term crop rotation and tillage practices. In this study, we assessed abundance and gene expression of AOB and AOA under two contrasting crop rotations and tillage regimes at a 30-yr-old long-term experiment on a Canadian silt loam soil. Continuous corn ( L.) (CC) was compared with a corn-corn-soybean [ (L.) Merr.]-winter wheat ( L.) rotation under-seeded with red clover ( L.) (RC), with conventional tillage (CT) and no-till (NT) as subplot treatments. Soil sampling was performed during the first corn year at four time points throughout the 2010 season and at three discrete depths (0-5, 5-15, and 15-30 cm). Overall, AOA abundance was found to be more than 10 times that of AOB, although AOA transcriptional activity was below detectable levels across all treatments. Crop rotation had a marginally significant effect on AOB abundance, with 1.3 times as many gene copies under the simpler CC rotation than under the more diverse RC rotation. More pronounced effects of depth on AOB abundance and gene expression were observed under NT versus CT management, and NT supported higher abundances of total archaea and AOA than CT across the growing season. We suggest that AOB may be more functionally important than AOA in this high-input agricultural soil but that NT management can promote enhanced soil archaeal populations. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. N-utilization in non-inversion tillage systems

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Munkholm, Lars Juhl; Olesen, Jørgen E

    2011-01-01

    When changing from ploughing to non-inversion tillage, N rates are of particular importance both for farmers and the environment. A tillage and fertilizer experiment was established in Denmark under temperate coastal climatic conditions to evaluate the N fertilizer responses on yields and N uptake...... clay kg−1. The tillage treatments were stubble cultivating to 8–10 cm or 3–4 cm, direct drilling, or ploughing to 20 cm. Five different fertilizer N treatments were included: 1:50% (0.50N), 2:75% (0.75N), 3:100% (1.00N), 4:125% (1.25N) of recommended N rates, respectively, and 5: application of 15......–30 kg N ha−1 of the total fertilizer N amount in autumn to autumn-sown crops (1.00NAut). In all the crop rotations, straw was chopped and retained after harvest. Different types of N fertilizer responses were observed in the six crops, but generally yields were lower with non-inversion tillage than...

  4. Soil Tillage Systems and Wheat Yield under Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Pieranna Servadio

    2016-09-01

    Full Text Available In this study, the effects of three different main preparatory tillage operations: ploughing at 0.4 m (P40 and 0.20 m (P20 depth and harrowing at 0.20 m depth (MT were investigated. The tillage operations were carried out at two different times, as the soil water content increased over time from rainfall: (low, 58% (LH and high, 80% (HH of field capacity. Results obtained from the soil monitoring carried out before and after tillage showed high values of soil strength in terms of Penetration resistance and shear strength particularly in deeper soil layers at lower water content. During tillage, fossil-fuel energy requirements for P40 LH and P20 LH were 25% and 35% higher, respectively, with respect to the HH treatments and tractor slip was very high (P40 LH = 32.4% with respect to the P40 HH treatment (16%. Soil water content significantly influenced tractor performance during soil ploughing at 0.40 m depth but no effect was observed for the MT treatment. The highly significant linear relations between grain yield and soil penetration resistance highlight how soil strength may be good indicator of soil productivity. We conclude that ploughing soil to a 0.20 m depth or harrowing soil to a 0.20 m depth is suitable for this type of soil under climate change scenarios.

  5. RESISTANCE OF COATED ELECTRODES SUITABLE FOR RENOVATION OF TILLAGE TOOLS

    OpenAIRE

    2013-01-01

    This article deals with the abrasive wear resistance of additional materials. The resistance of individual materials was figured out by determining a proportional wear resistance on a grinding fabric. Results of the experiment confirmed an increase in welds abrasive wear resistance. Chosen coated electrodes are suitable for the renovation of tillage tools of agricultural machines.

  6. Evaluation of Conservation Tillage Techniques for Maize Production ...

    African Journals Online (AJOL)

    2 International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 5689, Addis Ababa, Ethiopia. አሕፅሮተ-ጥናት .... Previous studies have reported the impacts of CA on yield, soil and water productivity ..... American Society of Agronomy, Madison, pp. 29–43. ... Effect of different tillage systems on the quality and crop.

  7. Residue Management: A Computer Program About Conservation Tillage Decisions.

    Science.gov (United States)

    Thien, Steve J.

    1986-01-01

    Describes a computer program, Residue Management, which is designed to supplement discussions on the Universal Soil Loss Equation and the impact of tillage on soil properties for introductory soil courses. The program advances the user through three stages of residue management. Information on obtaining the program is also included. (ML)

  8. Converting perennial legumes to organic cropland without tillage

    Science.gov (United States)

    Organic producers are interested in developing a no-till system for crop production. In this study, we examined management tactics to convert perennial legumes to annual crops without tillage. Our hypothesis was that reducing carbohydrate production in the fall by mowing would favor winterkill. M...

  9. Tillage as a driver of change in weed communities

    NARCIS (Netherlands)

    Armengot, L.; Blanco-Moreno, J.M.; Bàrberi, P.; Bocci, G.; Carlesi, S.; Aendekerk, R.; Berner, A.; Celette, F.; Grosse, M.; Huiting, H.; Kranzler, A.; Luik, A.; Mäder, P.; Peigné, J.; Stoll, E.; Delfosse, P.; Sukkel, W.; Surböck, A.; Westaway, S.; Sans, F.X.

    2016-01-01

    The adoption of non-inversion tillage practices has been widely promoted due to their potential benefits in reducing energy consumption and greenhouse emissions as well as improving soil fertility. However, the lack of soil inversion usually increases weed infestations and changes the composition

  10. Developments in conservation tillage in rainfed regions of North China

    NARCIS (Netherlands)

    Wang, X.B.; Cai, D.X.; Hoogmoed, W.B.; Oenema, O.; Perdok, U.D.

    2007-01-01

    Dryland regions in northern China account for over 50% of the nation's total area, where farming development is constrained by adverse weather, topography and water resource conditions, low fertility soils, and poor soil management. Conservation tillage research and application in dryland regions of

  11. Effect of no-tillage and tillage on the ecology of mite, Acarina (Oribatida) in two different farming systems of paddy field in Cachar district of Assam.

    Science.gov (United States)

    Singh, Leimapokpam Amarjit; Ray, D C

    2015-01-01

    The present investigation was carried out in Cachar district of Assam over a period of one year (January 2011 - December 2011) to understand the seasonal ecology of Acarina (Oribatida) in rice (Oryza sativa L.) cultivated fields. Population of Oribatida was found to be maximum during August 2011, both in no-tillage (6.32 ± 0.66 No./m2 x 100(2)) and tillage (5.30 ± 0.71 No./M2 x 100(2)) sites in Dorgakona area whereas the peak was recorded during August 2011, both in no-tillage (5.38 ± 0.75 No./m(2) x 100(2)) and tillage (4.69 ± 0.77 No./m2 x 100(2)) in Durby area of study sites. Least population was encountered during January 2011, in both no-tillage (0.98 ± 0.28 ± No./m2 x 100(2)) and tillage (0.98 ± 0.30 No/m2 x 100(2)) sites in Dorgakona area whereas the same was found during November 2011 in no-tillage (0.57 ± 0.31 No.m/2 x 100(2)) and in February 2011 in tillage (0.45 ± 0.21 No./m2 x 100(2)) sites of Durby area. Linear regression analysis with all the environmental variables showed positive and significant influence on the population dynamics whereas relative humidity (R2 = 0.26 p > 0.05) in Dorgakona no-tillage and tillage (R2 = 0.19 P > 0.05) sites and relative humidity in tillage site (R2 = 0.27 P > 0.05) in Durby area showed no influence. Multiple regression analysis showed that the combined effect of climatic variables having a significant influence (p tillage and tillage systems in both the study sites. Rainfall, relative humidity and temperature facilitated the soil moisture, microbial activity and litter decomposition, which in turn may favour the reproduction and growth rate of the species. Among microclimatic conditions all the parameters showed positive and significant influence (P tillage and tillage system on both the sites except pH which showed negative correlation with the population. One way ANOVA revealed significant difference (F = 6.53, P < 0.01) of the Oribatid population between the systems.

  12. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    Science.gov (United States)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  13. Microbial Biomass Carbon Trends in Black and Red Soils Under Single Straw Application: Effect of Straw Placement, Mineral N Addition and Tillage

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Quantifying trends in soil microbial biomass carbon (SMBC) under contrasting management conditions is important in understanding the dynamics of soil organic matter (SOM) in soils and in ensuring their sustainable use. Against such a background, a 60-day greenhouse simulation experiment was carried out to study the effects of straw placement, mineral N source, and tillage on SMBC dynamics in two contrasting soils, red soil (Ferrasol) and black soil (Acrisol). The treatments included straw addition + buried (T1);straw addition + mineral N (T2); and straw addition + tillage (T3). Straw was either buried in the soil or placed on the surface. Sampling was done every 15 days. Straw placement, addition of external mineral N sources (Urea, 46 % N) and soil type affected SMBC. SMBC levels decreased with exposure durations (15 days, 30 days, 45 days, and 60 days). Rate of SMBC fixation was more in buried straw than in surface placed straw at all sampling dates in both soils. Addition of an external N source significantly increased SMBC level. Soil pH increased in both soil types, with a greater increase in black soil than in red soil. The study could not, however, statistically account for the effect of tillage on SMBC levels because of the limited effect of our tillage method due to the artificial barrier to mechanical interference supplied by the mesh bags,although differences in absolute values were quite evident between treatments T1 and T3.``

  14. Effects of Secondary Tillage Implement on Some Properties of Soil and Yield of Sunflower

    Directory of Open Access Journals (Sweden)

    Y. Bayhan

    2007-01-01

    Full Text Available In this study, field cultivator (FC, disk harrow (HD, combination of cultivator with spring teeth and rotary harrow (CS+RH were used as secondary tillage equipment in spring. Physical properties of soil such as bulk density, porosity, mean weight diameter and aggregate stability were determined before and after tillage. Moreover, effect of different seedbed preparation techniques on yield of sunflower was also investigated.In the result of the study, differentiations among the secondary tillage equipment were observed due to bulk density and porosity. Small sized aggregates (1-5mm were highly in tillage with combination of cultivator with spring teeth and rotary harrow. While the mean weight diameter, which shows the durability of aggregates to water, was 2.83 mm before tillage, it was 3.96 mm in tillage with DH, 1.80 mm in tillage with FC and 2.50 mm in tillage with combination equipment. Although the mean weight diameter in tillage with DH increased, decreased in tillage with FC. The best aggregate stability obtained from seedbed preparation by disc harrow. On the other hand field cultivator is the most affective soil embossing tool while the cultivator with spring teeth rotary harrow combination is smashing.The yield values were found 2.002 Mg ha-1 with DH, 2.106 Mg ha-1 with FC, 2.175 Mg ha-1 with CS+RH.

  15. [Effects of Tillage on Soil Respiration and Root Respiration Under Rain-Fed Summer Corn Field].

    Science.gov (United States)

    Lu, Xing-li; Liao, Yun-cheng

    2015-06-01

    To explore the effects of different tillage systems on soil respiration and root respiration under rain-fed condition. Based on a short-term experiment, this paper investigated soil respiration in summer corn growth season under four tillage treatments including subsoiling tillage (ST), no tillage (NT), rotary tillage (RT) and moldboard plow tillage (CT). The contribution of root respiration using root exclusion method was also discussed. The results showed that soil respiration rate presented a single peak trend under four tillage methods during the summer corn growing season, and the maximum value was recorded at the heading stage. The trends of soil respiration were as follows: heading stage > flowering stage > grain filling stage > maturity stage > jointing stage > seedling stage. The trends of soil respiration under different tillage systems were as follows: CT > ST > RT > NT. There was a significant correlation between soil respiration rate and soil temperatures (P tillage systems. Therefore, root exclusion method could be used to study the contribution of crop growth to carbon emission, to compare effects of different tillage systems on the contribution of root respiration provides the bases for selecting the measures to slow down the decomposition of soil carbon.

  16. Evaluation of Tillage, Residue Management and Nitrogen Fertilizer Effects on CO2 Emission in Maize (Zea Mays L. Cultivation

    Directory of Open Access Journals (Sweden)

    Rooholla Moradi

    2016-02-01

    and different levels of N fertilizer (0, 150, 300 and 450 kg urea ha-1 was randomized as a subplot in tillage treatment. The seedbed preparation was made based on common practices at the location. Plot size under the trial was 4 m × 3 m so as to get 70 cm inter row spacing. Maize seeds (single-cross 704 cultivar were hand sown in May for two years. The ideal density of the crops was considered as spacing 20 cm inter plant. As soon as the seeds were sown, irrigation continued every 10 days. No herbicides or chemical fertilizers were applied during the course of the trials and weeding was done manually when necessary. Measurement of CO2 emissions was performed by the closed chamber method. For this purpose, PVC plastic rings (20 cm in diameter and 30 cm height were scattered on each of the plots. The chambers were placed in soil for two hours and the gathered air was collected by 10 ml vacuum syringe. Then, the samples were transferred to the laboratory and CO2 was measured using GC-mass. Results and Discussion: The results showed that CO2 emissions for conventional tillage was about 15 and 10% higher than the reduced tillage in 2011 and 2012, respectively. The CO2 emissions can be taken as indicators of soil tillage effects on the soil ecosystem, because CO2 emissions are closely connected to the microbial turnover and the physical accessibility of organic matter to microbes. These parameters were more available in the conventional tillage than the reduced tillage. CO2 emissions were strongly higher in the remaining residual condition rather than leaving condition in two years. CO2 emissions in the remaining residual condition was about 4.36 and 5.37 times higher than that of the leaving residual condition in 2011 and 2012, respectively. The microbial respiration and humidity of soil in the remaining residual condition is higher than that of the leaving residual condition. CO2 emission was elevated with increasing the rate of N fertilizer. The N fertilizer can

  17. Influence of tillage on adult and immature pea leaf weevil (Coleoptera: Curculionidae) densities in pea.

    Science.gov (United States)

    Hanavan, Ryan P; Bosque-Pérez, Nilsa A; Schotzko, Dennis J; Eigenbrode, Sanford D

    2010-06-01

    The pea leaf weevil, Sitona lineatus (L.) (Coleoptera: Curculionidae), has been a major pest of pea, Pisum sativum L., in eastern Washington and northern Idaho since its introduction to the region in the early 1970s. Eggs are deposited in the spring on the soil surface and first instars hatch and move to pea root nodules, where larvae feed before they pupate and adults emerge in mid- to late summer. No-tillage practices are known to reduce pea leaf weevil colonization in pea, but the effects of tillage on larval densities and subsequent adult emergence have not been examined. During 2005, 2006, and 2007, we compared densities of colonizing adult and immature pea leaf weevils on pea plots grown using conventional tillage and no-tillage. In 2005 and 2006, emergence of adult pea leaf weevil was monitored in the same plots. Densities of colonizing adult and immature pea leaf weevil were significantly higher in conventional tillage plots. Larvae in conventional tillage were further along in development than larvae in no-tillage plots during June and July. Densities of emerging adult pea leaf weevil were significantly greater from conventional tillage than no-tillage plots. Based on densities of colonizing and subsequent emerging adults, survival of weevils from egg through adult was greater in conventional tillage plots. Soils under no-tillage are cooler, resulting in later emergence of the pea crop and delayed root nodule development, possibly affecting the ability of first-instar pea leaf weevil to locate host plant roots. Our results indicate no-tillage fields are less suitable for pea leaf weevil colonization and survival than conventional tillage fields.

  18. [Effects of different tillage measures on upland soil respiration in Loess Plateau].

    Science.gov (United States)

    Sun, Xiao-hua; Zhang, Ren-zhi; Cai, Li-qun; Chen, Qiang-qiang

    2009-09-01

    A field experiment was conducted in Lijiabu Town of Dingxi City, Gansu Province to study the soil respiration and its relations with the canopy temperature and soil moisture content in a rotation system with spring wheat and pea under effects of different tillage measures. Six treatments were installed, i.e., tillage with no straw- or plastic mulch (conventional tillage, T), tillage with straw mulch (TS), tillage with plastic mulch (TP), no-tillage (NT), no-tillage with straw mulch (NTS), and no-tillage with plastic mulch (NTP). During the growth periods of spring wheat and pea, soil respiration had different change patterns, with the peaks appeared at the early jointing, grain-filling, and maturing stages of spring wheat, and at the 5-leaf, silking, flowering and poding, in spring wheat field between treatments NTS and T, and the soil respiration rate was significantlyand maturing stages of pea. There was an obvious difference in the diurnal change of soil respiration lower in NTS than in T; while the soil respiration in pea field had less diurnal chan ge. Soil respiration rate had a significant linear relationship with the canopy temperature of both spring wheat andpea, the correlation coefficient being the highest at booting stage of spring wheat and at flowering and poding stage of pea, followed by at grain-filling stage of spring wheat and at branching stage of pea. There was also a significant parabola relationship between soil respiration rate and soil moisture content, the correlation coefficient being higher under conservation tillage than under conventional tillage, with the highest under NTS. The moisture content in 10-30 cm soil layer of spring wheat field and that in 5-10 cm soil layer of pea field had the greatest effects on soil respiration. Comparing with conventional tillage, all the five conservation tillage measures decreased soil respiration, with the best effects of no-tillage with straw mulch.

  19. Strip Tillage and Early-Season Broadleaf Weed Control in Seeded Onion (Allium cepa

    Directory of Open Access Journals (Sweden)

    Sarah Gegner-Kazmierczak

    2016-03-01

    Full Text Available Field experiments were conducted in 2007 and 2008 near Oakes, North Dakota (ND, USA, to evaluate if strip tillage could be incorporated into a production system of seeded onion (Allium cepa to eliminate the standard use of a barley (Hordeum vulgare companion crop with conventional, full width tillage, yet support common early-season weed control programs. A split-factor design was used with tillage (conventional and strip tillage as the main plot and herbicide treatments (bromoxynil, DCPA, oxyfluorfen, and pendimethalin as sub-plots. Neither tillage nor herbicide treatments affected onion stand counts. Common lambsquarters (Chenopodium album densities were lower in strip tillage compared to conventional tillage up to three weeks after the post-emergence applied herbicides. In general, micro-rate post-emergence herbicide treatments provided greater early-season broadleaf weed control than pre-emergence herbicide treatments. Onion yield and grade did not differ among herbicide treatments because the mid-season herbicide application provided sufficient control/suppression of the early-season weed escapes that these initial weed escapes did not impact onion yield or bulb diameter. In 2007, onion in the strip tillage treatment were larger in diameter resulting in greater total and marketable yields compared to conventional tillage. Marketable onion yield was 82.1 Mg ha−1 in strip tillage and 64.9 Mg ha−1 in conventional tillage. Results indicate that strip tillage use in direct-seeded onion production was beneficial, especially when growing conditions were conducive to higher yields and that the use of strip tillage in onion may provide an alternative to using a companion crop as it did not interfere with either early-season weed management system.

  20. Impact of reduced tillage on the greenhouse gas balance - a meta-analysis

    Science.gov (United States)

    Don, Axel; Jantz, Marc

    2013-04-01

    Minimum tillage and no-tillage has been acknowledged as human induced measure for climate mitigation due to its potential to sequester additional soil carbon. However, there is increasing evidence that reduced tillage affects the vertical distribution of carbon in the soil profile, but hardy increases soil carbon stocks. Additionally, reduced tillage may increase the N2O emissions that would counterbalance the positive effects of soil carbon sequestration. Here we present a new meta-analysis on the full field scale effect of reduced tillage and no-tillage for the temperate zone including soil organic carbon, N2O and diesel derived fossil fuel emissions for field management. This analysis was performed using strict selection criteria and included data from more than 115 sites on soil carbon stock changes and from more than 30 sites with measured N2O fluxes on paired fields with conventional and reduced tillage. Soil organic carbon stocks did hardly increase (mean ±standard deviation: 2 ±11 Mg C ha-1) under no tillage as compared to moldboard ploughing. At 38% of all sites decreasing soil carbon stocks were detected under no-tillage as compared to conventional tillage. On the other hand, N2O emissions increased by around 40% on no-tillage fields with large deviations between sites. Thus, the total greenhouse gas balance turned out to be more negative for most no-tillage fields as compared to conventional tillage fields. The large observed scatter and deviations between sites and their controlling factors are discussed.

  1. 3D Structure of Tillage Soils

    Science.gov (United States)

    González-Torre, Iván; Losada, Juan Carlos; Falconer, Ruth; Hapca, Simona; Tarquis, Ana M.

    2015-04-01

    Soil structure may be defined as the spatial arrangement of soil particles, aggregates and pores. The geometry of each one of these elements, as well as their spatial arrangement, has a great influence on the transport of fluids and solutes through the soil. Fractal/Multifractal methods have been increasingly applied to quantify soil structure thanks to the advances in computer technology (Tarquis et al., 2003). There is no doubt that computed tomography (CT) has provided an alternative for observing intact soil structure. These CT techniques reduce the physical impact to sampling, providing three-dimensional (3D) information and allowing rapid scanning to study sample dynamics in near real-time (Houston et al., 2013a). However, several authors have dedicated attention to the appropriate pore-solid CT threshold (Elliot and Heck, 2007; Houston et al., 2013b) and the better method to estimate the multifractal parameters (Grau et al., 2006; Tarquis et al., 2009). The aim of the present study is to evaluate the effect of the algorithm applied in the multifractal method (box counting and box gliding) and the cube size on the calculation of generalized fractal dimensions (Dq) in grey images without applying any threshold. To this end, soil samples were extracted from different areas plowed with three tools (moldboard, chissel and plow). Soil samples for each of the tillage treatment were packed into polypropylene cylinders of 8 cm diameter and 10 cm high. These were imaged using an mSIMCT at 155keV and 25 mA. An aluminium filter (0.25 mm) was applied to reduce beam hardening and later several corrections where applied during reconstruction. References Elliot, T.R. and Heck, R.J. 2007. A comparison of 2D and 3D thresholding of CT imagery. Can. J. Soil Sci., 87(4), 405-412. Grau, J, Médez, V.; Tarquis, A.M., Saa, A. and Díaz, M.C.. 2006. Comparison of gliding box and box-counting methods in soil image analysis. Geoderma, 134, 349-359. González-Torres, Iván. Theory and

  2. Winter effect on soil microorganisms under different tillage and phosphorus management practices in eastern Canada.

    Science.gov (United States)

    Shi, Yichao; Lalande, Roger; Hamel, Chantal; Ziadi, Noura

    2015-05-01

    Determining how soil microorganisms respond to crop management systems during winter could further our understanding of soil phosphorus (P) transformations. This study assessed the effects of tillage (moldboard plowing or no-till) and P fertilization (0, 17.5, or 35 kg P·ha(-1)) on soil microbial biomass, enzymatic activity, and microbial community structure in winter, in a long-term (18 years) corn (Zea mays L.) and soybean (Glycine max L.) rotation established in 1992 in the province of Quebec, Canada. Soil samples were collected at 2 depths (0-10 and 10-20 cm) in February 2010 and 2011 after the soybean and the corn growing seasons, respectively. Winter conditions increased the amounts of soil microbial biomasses but reduced the overall enzymatic activity of the soil, as compared with fall levels after corn. P fertilization had a quadratic effect on the amounts of total, bacterial, arbuscular mycorrhizal fungi phospholipid fatty acid markers after corn but not after soybean. The soil microbial community following the soybean and the corn crops in winter had a different structure. These findings suggest that winter conditions and crop-year could be important factors affecting the characteristics of the soil microbial community under different tillage and mineral P fertilization.

  3. 东北黑土区典型坡面耕作侵蚀定量分析%Quantitative assessment of tillage erosion on typical sloping field in black soil area of northeast China

    Institute of Scientific and Technical Information of China (English)

    赵鹏志; 陈祥伟; 王恩姮

    2016-01-01

    set as 13.6 km/h and 25 cm, respectively. Prior to tillage operation, the terrain following coordinates and elevation of study area were measured at 20 m intervals along 7 transects, and these data were to produce digital elevation model of study area (320 m×120 m). The results showed that the ratio of tracers recovered after tillage operations to that applied ranged from 95.54% to 98.15%, with an average of 96.96%, showed that the tracer recovery rate was high. And tillage depth estimated by summation curve was 24.9 cm which was consistent with pre-set tillage depth (25.0 cm). These evidences indicated that the technique used in this experiment could appropriately estimate tillage translocation. The average experiment error (4.83%) was lower than reported tillage translocation and erosion studies, which credited to the accurate sampling process. A further analysis was conducted to the first plot (slope gradient 5.02%) with the highest error of 13.34%. We found that variability within the original tracer-labeled plot contributed to the high experiment error. Moldboard plow operation moved great quantities of soil resulting to potential erosive. Tracer concentration at 0-20 cm within plots maintained at a high level in upslope tillage direction while the tracer concentration at 0-20 and 50-150 cm were both higher in downslope direction, indicating that tillage implements translocated more soil and took it far away in downslope direction. Mean soil translocation varied from 10 to 34 m and translocation in mass ranged from 32.68 to 134.14 kg/m. Tillage translocation was significantly affected by slope gradient, especially for upslope tillage. The rate of tillage erosion depended on the interval length of 20 m flocculated in 0.4-11.0 Mg/(hm2·a). Severer tillage erosion was observed on back-slope, shoulder positions and the greater slope positions, comparing to summit and toe-slope positions. The slope gradient of cultivated lands in black soil area is generally smaller

  4. Potential Effect of Conservation Tillage on Sustainable Land Use: A Review of Global Long-Term Studies

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Bin; CAI Dian-Xiong; W. B. HOOGMOED; O. OENEMA; U. D. PERDOK

    2006-01-01

    Although understood differently in different parts of the world, conservation tillage usually includes leaving crop residues on the soil surface to reduce tillage. Through a global review of long-term conservation tillage research, this paper discusses the long-term effect of conservation tillage on sustainable land use, nutrient availability and crop yield response. Research has shown several potential benefits associated with conservation tillage, such as potential carbon sequestration, nutrient availability, and yield response. This research would provide a better perspective of the role of soil conservation tillage and hold promise in promoting application of practical technologies for dryland farming systems in China.

  5. The use of legume cover crops in no-tillage broccoli and cabbage production

    OpenAIRE

    Seward, David L.

    1985-01-01

    Field experiments were conducted in 1983 and 1984 to compare conventional tillage (CT) versus no-tillage (NT) production of broccoli and cabbage. The tillage treatments were applied in combination with four rates of applied nitrogen fertilizer and three cover crops: hairy vetch (Vigia villosa Roth), Austrian winter pea (Fisum arvenu L.), and cereal rye (Secale cereale L.). Transplants of 'Premium Crop' broccoli (Brassica oleracea var. italica Plenck) and 'Market Prize'...

  6. Economic Comparison of the Undercutter and Traditional Tillage Systems for Winter Wheat-Summer Fallow Farming

    OpenAIRE

    2007-01-01

    Wind erosion and blowing dust are major problems for traditional tillage winter wheat-summer fallow in eastern Washington. Wind erosion reduces soil productivity and dust particulates are a major air quality concern. Conservation tillage summer fallow can reduce wind erosion markedly, but is used by relatively few farmers in the low-precipitation (less than 12 inch/year) region of the Inland Pacific Northwest. Barriers to adoption include the cost of conservation tillage implements and reluct...

  7. Tillage for soil and water conservation in the semi-arid tropics

    OpenAIRE

    Hoogmoed, W.B.

    1999-01-01

    Soil tillage is the manipulation of soil which is generally considered as necessary to obtain optimum growth conditions for a crop. In the same time the resulting modification of soil structure has serious implications for the behaviour of the soil to erosive forces by water and wind. In Chapter 1 an introduction is given to the most important aspects: the objectives of tillage, the conflicting requirements set to tillage, the characteristics of soil and water conservation in the semi-arid tr...

  8. Effects of crop rotation, tillage, and fertilizer applications on sorghum head insects.

    Science.gov (United States)

    Chilcutt, Charles F; Matocha, John E

    2007-02-01

    Rotations, tillage, and fertilizer treatments can affect yield, costs, and profitability in sorghum, Sorghum bicolor (L.) Moench, depending on their effects on pests. Rotation or planting different crops reduces soil erosion and pests that build up when a field is planted to the same crop each year. Minimum tillage reduces the number of trips over a field, lessening soil compaction and reducing costs. We examined the effects of fertilizer, tillage, and rotation with cotton, Gossypium hirsutum L., on sorghum head insects during three sampling periods each year from 2000 to 2003. We found that fertilizer treatments did not affect pests or predators. Also, predators were unaffected by rotation and tillage, which some years affected Helicoverpa zea (Boddie) and Oebalus pugnax (F.), both pests that feed on developing sorghum kernels, thereby reducing yield. In 2000, H. zea densities were greater in continuous sorghum, regardless of tillage practice, than in sorghum-cotton rotation. However, in 2003, H. zea densities were greater in minimum tillage plots within sorghum- cotton rotation than minimum tillage plots within continuous sorghum. In 2000, in sorghum- cotton rotation, O. pugnax densities were greater in minimum tillage than conventional tillage plots, whereas in continuous sorghum the opposite was true, O. pugnax were greater in conventional tillage. Also, O. pugnax were greater in sorghum- cotton rotation than in continuous sorghum. In 2002, O. pugnax densities were greater in conventional than minimum tillage plots. These results suggest that rotation of sorghum with cotton can sometimes reduce H. zea, but this reduction may occur with increased density of O. pugnax. Also, reducing tillage may reduce O. pugnax in some instances.

  9. Assessment of tillage systems in organic farming: influence of soil structure on microbial biomass. First results

    OpenAIRE

    Vian, Jean François; Peigné, Joséphine; Chaussod, Rémi; Roger-Estrade, Jean

    2007-01-01

    Soil tillage modifies environmental conditions of soil microorganisms and their ability to release nitrogen. We compare the influence of reduced tillage (RT) and mouldboard ploughing (MP) on the soil microbial functioning in organic farming. In order to connect soil structure generated by these tillage systems on the soil microbial biomass we adopt a particular sampling scheme based on the morphological characterisation of the soil structure by the description of the soil profile. This method...

  10. Conversion of Conservation Tillage to Rotational Tillage to Reduce Phosphorus Losses during Snowmelt Runoff in the Canadian Prairies.

    Science.gov (United States)

    Liu, Kui; Elliott, Jane A; Lobb, David A; Flaten, Don N; Yarotski, Jim

    2014-09-01

    In a preceding study, converting conventional tillage (ConvT) to conservation tillage (ConsT) was reported to decrease nitrogen (N) but to increase phosphorus (P) losses during snowmelt runoff. A field-scale study was conducted from 2004 to 2012 to determine if conversion of ConsT to rotational tillage (RotaT), where conservation tillage was interrupted by a fall tillage pass every other year, could effectively reduce P losses compared with ConsT. The RotaT study was conducted on long-term paired watersheds established in 1993. The ConvT field in the pair has remained under ConvT practice since 1993, whereas tillage was minimized on the ConsT field from 1997 until 2007. In fall 2007, RotaT was introduced to the ConsT field, and heavy-duty cultivator passes were conducted in the late fall of years 2007, 2009, and 2011. Runoff volume and nutrient content were monitored at the edge of the two fields, and soil and crop residue samples were taken in each field. Greater soil Olsen P and more P released from crop residue are likely the reasons for the increased P losses in the ConsT treatment (2004-2007) relative to the ConvT treatment (2004-2007). Analysis of covariance indicated that, compared with ConsT (2004-2007), RotaT (2008-2012) increased the concentrations of dissolved organic carbon (DOC) by 62%, total dissolved N (TDN) by 190%, and total N (TN) by 272% and increased the loads of DOC by 34%, TDN by 34%, and TN by 60%. However, RotaT (2008-2012) decreased soil test P in surface soil, P released from crop residue, and duration of runoff compared with ConsT (2004-2007) and thus decreased the concentrations of total dissolved P (TDP) by 46% and total P (TP) by 38% and decreased the loads of TDP by 56% and TP by 42%. In the Canadian Prairies, where P is a major environmental concern compared with N, RotaT was demonstrated to be an effective practice to reduce P losses compared with ConsT.

  11. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    Optimal use of management systems including tillage and winter cover crops is recommended to improve soil quality and sustain agricultural production. The effects on soil properties of three tillage systems (as main plot) including direct drilling (D), harrowing to a depth of 8 to 10 cm (H......), and moldboard plowing (MP) with and without a cover crop were evaluated in a long-term experiment on a sandy loam soil in Denmark. Chemical, physical, and biological soil properties were measured in the spring of 2012. The field measurements included mean weight diameter (MWD) after the drop-shatter test......, penetration resistance, and visual evaluation of soil structure (VESS). In the laboratory, aggregate strength, water-stable aggregates (WSA), and clay dispersibility were measured. The analyzed chemical and biological properties included soil organic C (SOC), total N, microbial biomass C, labile P and K...

  12. Effects of deep tillage and straw returning on soil microorganism and enzyme activities.

    Science.gov (United States)

    Ji, Baoyi; Hu, Hao; Zhao, Yali; Mu, Xinyuan; Liu, Kui; Li, Chaohai

    2014-01-01

    Two field experiments were conducted for two years with the aim of studying the effects of deep tillage and straw returning on soil microorganism and enzyme activity in clay and loam soil. Three treatments, (1) conventional tillage (CT), shallow tillage and straw returning; (2) deep tillage (DT), deep tillage and straw returning; and (3) deep tillage with no straw returning (DNT), were carried out in clay and loam soil. The results showed that deep tillage and straw returning increased the abundance of soil microorganism and most enzyme activities. Deep tillage was more effective for increasing enzyme activities in clay, while straw returning was more effective in loam. Soil microorganism abundance and most enzyme activities decreased with the increase of soil depth. Deep tillage mainly affected soil enzyme activities in loam at the soil depth of 20-30 cm and in clay at the depth of 0-40 cm. Straw returning mainly affected soil microorganism and enzyme activities at the depths of 0-30 cm and 0-40 cm, respectively.

  13. [Effects of conservation tillage on the composition of soil exchangeable base].

    Science.gov (United States)

    Hu, Ning; Lou, Yi-Lai; Zhang, Xiao-Ke; Liang, Wen-Ju; Liang, Lei

    2010-06-01

    Taking the soil in Zhangwu County of Liaoning Province as test object, a comparative study was made to understand the composition of soil exchangeable base under traditional tillage and 6-year conservation tillage (no-tillage plus straw mulch). Comparing with traditional tillage, conservation tillage increased the total amount of exchangeable base (SEB) and the contents of exchangeable K, Ca, and Mg in top (0-15 cm) soil, suggesting its positive effect in increasing soil nutrient holding capacity and buffering ability. This effect had a close relationship with the changes of soil organic matter and clay contents, according to correlation analysis. In addition, the K/SEB and Ca/Mg ratios were higher, while the (Ca+Mg)/SEB, Ca/K, and Mg/K ratios were lower under conservation tillage than under traditional tillage, illustrating that the effects of conservation tillage on soil exchangeable base were mainly presented in the relative enrichment of soil exchangeable Ca and K, especially K. Conservation tillage increased the stratification ratio (0-5 cm/5-15 cm and 0-5 cm/15-30 cm) of soil exchangeable K, Ca, and Mg, and SEB, suggesting the increase of the vertical variability of SEB in plough layer.

  14. Effect of tillage practices on least limiting water range in Northwest India

    Science.gov (United States)

    Kahlon, Meharban S.; Chawla, Karitika

    2017-04-01

    Tillage practices affect mechanical and hydrological characteristics of soil and subsequently the least limiting water range. This quality indicator under the wheat-maize system of northwest India has not been studied yet. The treatments included four tillage modes, namely conventional tillage, no-tillage without residue, no-tillage with residue, and deep tillage as well as three irrigation regimes based on the irrigation water and pan evaporation ratio i.e. 1.2, 0.9, and 0.6. The experiment was conducted in a split plot design with three replications. At the end of cropping system, the mean least limiting water range (m3 m-3) was found to be highest in deep tillage (0.26) and lowest in notillage without residue (0.15). The field capacity was a limiting factor for the upper range of the least limiting water range beyond soil bulk density 1.41 Mg m-3 and after that 10% air filled porosity played a major role. However, for the lower range, the permanent wilting point was a critical factor beyond soil bulk density 1.50 Mg m-3 and thereafter, the penetration resistance at 2 MPa becomes a limiting factor. Thus, deep tillage under compaction and no-tillage with residue under water stress is appropriate practice for achieving maximum crop and water productivity.

  15. Effect of Interplanting with Zero Tillage and Straw Manure on Rice Growth and Rice Quality

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The interplanting with zero-tillage of rice, i.e. directsowing rice 10-20 days before wheat harvesting, and remaining about 30-cm high stubble after cutting wheat or rice with no tillage, is a new cultivation technology in wheat-rice rotation system. To study the effects of interplanting with zero tillage and straw manure on rice growth and quality, an experiment was conducted in a wheat-rotation rotation system. Four treatments, i.e. ZIS (Zero-tillage, straw manure and rice interplanting), ZI (Zero-tillage, no straw manure and rice interplanting), PTS (Plowing tillage, straw manure and rice transplanting), and PT (Plowing tillage, no straw manure and rice transplanting), were used. ZIS reduced plant height, leaf area per plant and the biomass of rice plants, but the biomass accumulation of rice at the late stage was quicker than that under conventional transplanting cultivation. In the first year (2002), there was no significant difference in rice yield among the four treatments. However, rice yield decreased in interplanting with zero-tillage in the second year (2003). Compared with the transplanting treatments, the number of filled grains per panicle decreased but 1000-grain weight increased in interplanting with zero-tillage, which were the main factors resulting in higher yield. Interplanting with zero-tillage improved the milling and appearance qualities of rice. The rates of milled and head rice increased while chalky rice rate and chalkiness decreased in interplanting with zero-tillage. Zero-tillage and interplanting also affected rice nutritional and cooking qualities. In 2002, ZIS showed raised protein content, decreased amylose content, softer gel consistency, resulting in improved rice quality. In 2003, zero-tillage and interplanting decreased protein content and showed similar amylose content as compared with transplanting treatments. Moreover, protein content in PTS was obviously increased in comparison with the other three treatments. The rice in

  16. Surface runoff, subsurface drainflow and soil erosion as affected by tillage in a clayey Finnish soil

    National Research Council Canada - National Science Library

    Turtola, Eila; Alakukku, Laura; Uusitalo, Risto; Kaseva, Antti

    2007-01-01

    Conservation tillage practices were tested against autumn mouldboard ploughing for differences in physical properties of soil, surface runoff, subsurface drainflow and soil erosion. The study (1991-2001...

  17. Weed infestation of a spring wheat (Triticum aestivum L. crop under the conditions of plough and ploughless tillage

    Directory of Open Access Journals (Sweden)

    Andrzej Woźniak

    2012-12-01

    Full Text Available A field experiment was conducted in the period 2007- 2009 in the Uhrusk Experimental Farm (Lublin region belonging to the University of Life Sciences in Lublin. Different tillage systems - plough and ploughless tillage - were the experimental factors. In the plough tillage system, tillage involved skimming done after the harvest of the forecrop and autumn ploughing. In the ploughless tillage system, only the herbicide Roundup 360 SL (active substance - glyphosate was applied after the harvest of the forecrop. In both tillage treatments, spring tillage involved field cultivating and the use of a tillage assembly consisting of a cultivator, cage roller, and harrow. The present experiment evaluated weed infestation of the crop expressed by the number and air-dry weight of weeds and their species composition. Under the conditions of ploughless tillage, air-dry weight of weeds in the spring wheat crop was shown to increase significantly compared to plough tillage. The tillage systems under comparison did not differentiate the number of weeds per 1 m2. Spring wheat sown using plough tillage was colonized most extensively by the following weed species: Avena fatua L., Stellaria media (L. Vill., Galium aparine L., Amaranthus retroflexus L., Chenopodium album L., and Consolida regalis Gray. In the ploughless tillage treatments, the following weeds were predominant: Stellaria media (L. Vill., Avena fatua L., Fallopia convolvulus (L. A. Löve, Papaver rhoeas L., Amaranthus retroflexus L., Galium aparine L., and Chenopodium album L.

  18. [Effects of no-tillage and stubble-remaining on soil enzyme activities in broadcasting rice seedlings paddy field].

    Science.gov (United States)

    Ren, Wan-Jun; Huang, Yun; Wu, Jin-Xiu; Liu, Dai-Yin; Yang, Wen-Yu

    2011-11-01

    A field experiment was conducted to study the effects of four cultivation modes (conventional tillage, no-tillage, conventional tillage + stubble-remaining, and no-tillage + stubble-remaining) on the activities of urease, acid phosphatase, protease, and cellulose in different soil layers in a broadcasting rice seedlings paddy field. Under the four cultivation modes, the activities of test enzymes were higher in upper than in deeper soil layers, and had a greater difference between the soil layers under no-tillage + stubble-remaining. In upper soil layers, the activities of test enzymes were higher in the treatments of no-tillage than in the treatments of conventional tillage, being the highest under no-tillage + stubble-remaining and the lowest under conventional tillage. In deeper soil layers, the test enzyme activities were the highest under conventional tillage + stubble-remaining, followed by no-tillage + stubble-remaining, no-tillage, and conventional tillage. During the growth period of rice, soil urease and cellulose activities were lower at tillering stage, increased to the maximum at booting stage, and decreased then, soil acid phosphatase activity was higher at tillering stage but lower at elongating stage, whereas soil protease activity peaked at tillering and heading stages.

  19. Saturated hydraulic conductivity and porosity within macroaggregates modified by tillage

    Energy Technology Data Exchange (ETDEWEB)

    Park, E.J.; Smucker, A.J.M. (MSU)

    2010-07-20

    Greater knowledge of intraaggregate porosity modifications by tillage conveys new information for identifying additional hydrologic, ion retention, and aggregate stability responses to specific management practices. Macroaggregates, 2 to 4, 4 to 6.3, and 6.3 to 9.5 mm across, were separated into multiple concentric layers and their porosities were determined. Saturated hydraulic conductivity (K{sub s}) of multiple aggregate fractions from two soil types subjected to conventional tillage (CT), no tillage (NT), and native forest (NF) soils were measured individually to identify the effects of tillage on aggregate structure, porosity, and K{sub s}. Intraaggregate porosities were the highest in NF aggregates. Greater porosities were identified in exterior layers of soil aggregates from all treatments. Lowest intraaggregate porosities were observed in the central regions of CT aggregates. Soil aggregates, 6.3 to 9.5 mm across, had the greatest total porosities, averaging 37.5% for both soil types. Long-term CT reduced intraaggregate porosities and K, within macroaggregates, of the same size fraction, from both the Hoytville silty clay loam and Wooster silt loam soil types. Values for K, of NF aggregates, 5.0 x 10{sup -5} cm s{sup -1}, were reduced 50-fold by long-term CT treatments of the Hoytville series. The K, values through Wooster aggregates from NF, 16.0 x 10{sup -5} cm s{sup -1}, were reduced 80-fold by long-term CT treatments. The K{sub s} values through NF and NT aggregates were positively correlated with their intraaggregate porosities (R{sup 2} = 0.84 for NF and R{sup 2} = 0.45 for NT at P < 0.005). Additional studies are needed to identify rates at which pore geometries within macroaggregates are degraded by CT or improved by NT.

  20. Does strip-tillage could limit the drop of yields on soils of reduced depth of profiles in loess areas?

    Science.gov (United States)

    Rejman, Jerzy; Rafalska-Przysucha, Anna; Jadzczyszyn, Jan; Rodzik, Jan

    2016-04-01

    Strip tillage restrict a tillage operation to seed rows and enables a combination of tillage, sowing and application of fertilizers during one pass of agricultural machines. The practice decreases the costs of fuel and limits the risk of water erosion by the increase of infiltration of soil water. In the studies, we put a hypothesis that strip tillage is a tool to increase the yields on soils of reduced profiles. Studies were carried out in the loess area of the Lublin Upland (Poland). The site is cultivated from the beginning of the 18th century, and strip tillage is performed from 2008. All plant residues is left after harvest in the field and mixed with the soil by disc harrow. Measurements of solum depth (Ap-BC), soil properties and parameters of plant growth were carried out in 108 points in the field of the area of 4 ha. Crops included winter wheat (2014) and maize (2015). Studies showed that the profiles of Haplic Luvisol were largely truncated or overbuilt due to erosion and moldboard plow in the past. Solum depth ranged from 0.2 to 3.6 m (mean=1.29 m, CV=64%), and soils with the non-eroded, slightly, moderately, severely, very severely eroded and depositional profiles represented 13, 32, 10, 5, 8 and 32% of total number of cores, respectively. In a result of modification of profiles, clay content ranged from 84 to 222 (145; 16%) in the layer of 0-15 cm, whereas SOC concentration remained on relatively low level and ranged from 4.3 to 16.8 g/kg (9.1; 21.4%). Soil water content (SWC) within depth of 1-m profile was differentiated at the start of measurements in the middle of June 2015. The SWC was the highest in non-eroded and depositional soils and the smallest in severely and very severely eroded soils. The difference of 5% has maintained during the whole growing season and did not affect the growth of plants till the phase of flowering. Then, the plants on shallower soils passed quicker to the next phenological phases in comparison to the plants on deeper

  1. 秸秆还田条件下小麦耕作模式与施肥技术研究%Study on Wheat Tillage Model and Fertilizer Application under Straw Returning

    Institute of Scientific and Technical Information of China (English)

    张荣亭; 黄翊鹏; 朱长华; 袁圆圆; 刘佳

    2013-01-01

    在小麦高肥水地块,确定秸秆还田与不还田2种还田条件,免耕、深耕和两年旋耕一年深耕3种耕作方式,666.7m2施纯氮15、11、20 kg3个水平,通过区组优化,设计建立不还田免耕(BM)、还田免耕(HM)、还田深耕(HS)和还田综合(HZ)4种耕作模式,在每种耕作模式上进行纯氮3个水平的裂区试验.经过数据调查、统计分析和AHP层次比较,得出在秸秆还田条件下,实行深耕的耕作模式,666.7m2施纯氮15kg、钾肥(K20)5 kg、磷肥(P205)7 kg为最佳方案.%The experiment was conducted in the wheat field with high fertilizer and water supplies. Through block combination optimization of 2 conditions including straw returning and non - straw returning, 3 tillage models including no tillage, deep tillage and two - year rotary tillage plus one year deep tillage, and 3 fertilizer application levels including pure nitrogen fertilizer of 15, 11 and 20 kg per 666.7 m2, 4 experiment platforms were finally designed, namely as non - straw returning plus no - tillage (BM), straw returning plus no -tillage (HM), straw returning plus deep tillage (HS), and straw returning combination (HZ). Three fertilizer levels were done on each platform. Through data survey, statistical analysis and analytic hierarchy process ( AHP), the best scheme was obtained under the straw returning condition, applying deep tillage model with the application of 15 kg N, 5 kg K2O, and 7 kg P2O5 per 666.7m2.

  2. [Effects of different straw recycling and tillage methods on soil respiration and microbial activity].

    Science.gov (United States)

    Li, Xiao-sha; Wu, Ning; Liu, Ling; Feng, Yu-peng; Xu, Xu; Han, Hui-fang; Ning, Tang-yuan; Li, Zeng-jia

    2015-06-01

    To explore the effects of different tillage methods and straw recycling on soil respiration and microbial activity in summer maize field during the winter wheat and summer maize double cropping system, substrate induced respiration method and CO2 release method were used to determine soil microbial biomass carbon, microbial activity, soil respiration, and microbial respiratory quotient. The experiment included 3 tillage methods during the winter wheat growing season, i.e., no-tillage, subsoiling and conventional tillage. Each tillage method was companied with 2 straw management patterns, i.e., straw recycling and no straw. The results indicated that the conservation tillage methods and straw recycling mainly affected 0-10 cm soil layer. Straw recycling could significantly improve the microbial biomass carbon and microbial activity, while decrease microbial respiratory quotient. Straw recycling could improve the soil respiration at both seedling stage and anthesis, however, it could reduce the soil respiration at filling stage, wax ripeness, and harvest stage. Under the same straw application, compared with conventional tillage, the soil respiration and microbial respiratory quotient in both subsoiling and no-tillage were reduced, while the microbial biomass carbon and microbial activity were increased. During the summer maize growing season, soil microbial biomass carbon and microbial activity were increased in straw returning with conservation tillage, while the respiratory quotient was reduced. In 0-10 cm soil layer, compared with conventional tillage, straw recycling with subsoiling and no-tillage significantly increased soil microbial biomass carbon by 95.8% and 74.3%, and increased soil microbial activity by 97.1% and 74.2%, respectively.

  3. Tillage and residue effects on rainfed wheat and corn production in the Semi-Arid Regions of Northern China

    NARCIS (Netherlands)

    Wang, X.B.; Hoogmoed, W.B.; Perdok, U.D.; Cai, D.X.

    2003-01-01

    Field studies on tillage and residue management for spring corn were conducted at two sites, in Tunliu (1987-1990), and Shouyang (1992-1995) counties of Shanxi province in the semihumid arid regions of northern China. This paper discusses the effects of different fall tillage (winter fallow tillage)

  4. Comparison of tillage treatments on greenhouse gas and soil carbon and nitrogen cycling in established winter wheat production

    Science.gov (United States)

    Tillage is commonly used to control weeds and prepare fields for planting. Repeated tillage can result in soil drying, sudden bursts of mineralized carbon and nitrogen from soil organic matter, and alterations in soil microbial communities. The effects of tillage on winter wheat cropping systems an...

  5. Impact of different tillage treatments on soil respiration and microbial activity for different agricultural used soils in Austria

    Science.gov (United States)

    Klik, Andreas; Scholl, Gerlinde; Baatar, Undrakh-Od

    2015-04-01

    Soils can act as a net sink for sequestering carbon and thus attenuating the increase in atmospheric carbon dioxide if appropriate soil and crop management is applied. Adapted soil management strategies like less intensive or even no tillage treatments may result in slower mineralization of soil organic carbon and enhanced carbon sequestration. In order to assess the impact of different soil tillage systems on carbon dioxide emissions due to soil respiration and on soil biological activity parameters, a field study of three years duration (2007-2010)has been performed at different sites in Austria. Following tillage treatments were compared: 1) conventional tillage (CT) with plough with and without cover crop during winter period, 2) reduced tillage (RT) with cultivator with cover crop, and 3) no-till (NT) with cover crop. Each treatment was replicated three times. At two sites with similar climatic conditions but different soil textures soil CO2 efflux was measured during the growing seasons in intervals of one to two weeks using a portable soil respiration system consisting of a soil respiration chamber attached to an infrared gas analyzer. Additionally, concurrent soil temperature and soil water contents of the top layer (0-5 cm)were measured. For these and additional three other sites with different soil and climatic conditions soil samples were taken to assess the impact of tillage treatment on soil biological activity parameters. In spring, summer and autumn samples were taken from each plot at the soil depth of 0-10, 10-20, and 20-30 cm to analyze soil microbial respiration (MR), substrate induced respiration (SIR), beta-glucasidase activity (GLU) and dehydrogenase (BHY). Samples were sieved (2 mm) and stored at 4 °C in a refrigerator. Analyses of were performed within one month after sampling. The measurements show a high spatial variability of soil respiration data even within one plot. Nevertheless, the level of soil carbon dioxide efflux was similar for

  6. Emissions of nitrous oxide from Irish arable soils: effects of tillage and reduced N input

    DEFF Research Database (Denmark)

    Abdalla, M.; Jones, M.B.; Ambus, Per

    2010-01-01

    Nitrous oxide (N2O) flux measurements from an Irish spring barley field managed under conventional and reduced tillage and different N fertilizer applications at the Teagasc Oak Park Research Centre were made for two consecutive seasons. The aim was to investigate the efficacy of reduced tillage ...

  7. Soil tillage, water erosion, and calcium, magnesium and organic carbon losses

    Directory of Open Access Journals (Sweden)

    Bertol Ildegardis

    2005-01-01

    Full Text Available Soil tillage influences water erosion, and consequently, losses of calcium, magnesium and organic carbon in surface runoff. Nutrients and organic carbon are transported by surface runoff in particulate form, adsorbed to soil colloids or soluble in water, depending on the soil tillage system. This study was carried out on an Inceptisol, representative of the Santa Catarina highlands, southern Brazil, between November 1999 and October 2001, under natural rainfall. The soil tillage treatments (no replications were: no-tillage (NT, minimum soil tillage with chiseling + disking (MT, and conventional soil tillage with plowing + two diskings (CT. The crop cycles sequence was soybean (Glycine max, oats (Avena sativa, beans (Phaseolus vulgaris and vetch (Vicia sativa. Conventional soil tillage treatment with plowing + two disking in the absence of crops (BS was also studied. Calcium and magnesium concentrations were determined in both water and sediments of the surface runoff, while organic carbon was measured only in sediments. Calcium and magnesium concentrations were greater in sediments than in surface runoff, while total losses of these elements were greater in surface runoff than in sediments. The greatest calcium and magnesium concentrations in surface runoff were obtained under CT, while in sediments the greatest concentration occurred under MT. Organic carbon concentration in sediments did not differ under the different soil tillage systems, and the greatest total loss was under CT system.

  8. Tillage and crop rotation effects on soil quality in two Iowa fields

    Science.gov (United States)

    Soil quality is affected by inherent (parent material, climate, and topography) and anthropogenic (tillage and crop rotation) factors. We evaluated effects of five tillage treatments on 23 potential soil quality indicators after 31 years in a corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] rotat...

  9. The effect of different tillage and cover crops on soil quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices...

  10. Nitrogen Mineralization Response to Tillage Practices on Low and High Nitrogen Soils

    Science.gov (United States)

    In strip tillage, crop residue is left on soil surface, decreasing the contact between soil and the residue, and therefore reducing decomposition rates compared to conventional tillage methods. Decomposition rates directly affect carbon and nitrogen ratios, which can affect nitrogen mineralization r...

  11. Nutrient cycling and soil biology in row crop systems under intensive tillage

    Science.gov (United States)

    Recent interest in management of the soil biological component to improve soil health requires a better understanding on how management practices (e.g., tillage) and environmental conditions influence soil organisms. Intensive tillage often results in reduced organic matter content in the surface so...

  12. Shallow tillage effects on soil properties for temperate-region hard-setting soils

    DEFF Research Database (Denmark)

    Schjønning, Per; Thomsen, Ingrid Kaag

    2013-01-01

    Shallow tillage (ST; typically ... above (‘ST-upper’) and below (‘ST-lower’) ST primary tillage depth. Soil organic carbon (SOC), water content, bulk density, air-filled pore space (ɛa) and air permeability (ka) at the field-sampled water content were determined. ST increased SOC concentration in the ST-upper soil when compared to MP...

  13. Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land.

    Science.gov (United States)

    Premrov, Alina; Coxon, Catherine E; Hackett, Richard; Kirwan, Laura; Richards, Karl G

    2014-02-01

    There is a growing need to reduce nitrogen losses from agricultural systems to increase food production while reducing negative environmental impacts. The efficacy of vegetation cover for reducing nitrate leaching in tillage systems during fallow periods has been widely investigated. Nitrate leaching reductions by natural regeneration (i.e. growth of weeds and crop volunteers) have been investigated to a lesser extent than reductions by planted cover crops. This study compares the efficacy of natural regeneration and a sown cover crop (mustard) relative to no vegetative cover under both a reduced tillage system and conventional plough-based system as potential mitigation measures for reducing over-winter soil solution nitrate concentrations. The study was conducted over three winter fallow seasons on well drained soil, highly susceptible to leaching, under temperate maritime climatic conditions. Mustard cover crop under both reduced tillage and conventional ploughing was observed to be an effective measure for significantly reducing nitrate concentrations. Natural regeneration under reduced tillage was found to significantly reduce the soil solution nitrate concentrations. This was not the case for the natural regeneration under conventional ploughing. The improved efficacy of natural regeneration under reduced tillage could be a consequence of potential stimulation of seedling germination by the autumn reduced tillage practices and improved over-winter plant growth. There was no significant effect of tillage practices on nitrate concentrations. This study shows that over winter covers of mustard and natural regeneration, under reduced tillage, are effective measures for reducing nitrate concentrations in free draining temperate soils.

  14. Measurements of soil carbon dioxide emissions from two maize agroecosystems at harvest under different tillage conditions.

    Science.gov (United States)

    Giacomo, Gerosa; Angelo, Finco; Fabio, Boschetti; Stefano, Brenna; Riccardo, Marzuoli

    2014-01-01

    In this study a comparison of the soil CO2 fluxes emitted from two maize (Zea mays L.) fields with the same soil type was performed. Each field was treated with a different tillage technique: conventional tillage (30 cm depth ploughing) and no-tillage. Measurements were performed in the Po Valley (Italy) from September to October 2012, covering both pre- and postharvesting conditions, by means of two identical systems based on automatic static soil chambers. Main results show that no-tillage technique caused higher CO2 emissions than conventional tillage (on average 2.78 and 0.79 μmol CO2 m(-2) s(-1), resp.). This result is likely due to decomposition of the organic litter left on the ground of the no-tillage site and thus to an increased microbial and invertebrate respiration. On the other hand, fuel consumption of conventional tillage technique is greater than no-tillage consumptions. For these reasons this result cannot be taken as general. More investigations are needed to take into account all the emissions related to the field management cycle.

  15. Economic Efficiency of Selected Crops Cultivated under Different Technology of Soil Tillage

    Directory of Open Access Journals (Sweden)

    Vach M.

    2016-03-01

    Full Text Available The objective of this study was the model comparison and economic evaluation of different methods of soil tillage and crop stand establishments used. Based on yield results (winter wheat, spring barley, and white mustard cultivated in three-crop rotation from field experiments with conventional, conservation with minimum tillage, and no-tillage methods conducted at the site Prague-Ruzyně, model economic balances were evaluated. Prices of the main products were determined based on the yield results from the period 2010-2013 and the current market prices. In the individual tillage systems, the total costs of production of evaluated crops were counted up and profitability was calculated as a ratio of profit to total costs. The highest total costs of crop cultivation were identified in cereals under conventional soil tillage, on the contrary, the lowest in cereals cultivated under conservation tillage technology. As for the growing technologies, the highest profitability was found in winter wheat, as for the tillage methods, it was in the conservation variant with minimum tillage. The economic evaluation for individual crops was based on standards of growing technologies and particular work operations.

  16. Direct effects of tillage on the activity density of ground beetle (Coleoptera: Carabidae) weed seed predators.

    Science.gov (United States)

    Shearin, A F; Reberg-Horton, S C; Gallandt, E R

    2007-10-01

    Ground beetles are well known as beneficial organisms in agroecosystems, contributing to the predation of a wide range of animal pests and weed seeds. Tillage has generally been shown to have a negative effect on ground beetles, but it is not known whether this is because of direct mortality or the result of indirect losses resulting from dispersal caused by habitat deterioration. In 2005, field experiments measured direct, tillage-induced mortality, of four carabid weed seed predators, Harpalus rufipes DeGeer, Agonum muelleri Herbst, Anisodactylus merula Germar, and Amara cupreolata Putzeys, and one arthropod predator, Pterostichus melanarius Illiger, common to agroecosystems in the northeastern United States. Three tillage treatments (moldboard plow, chisel plow, and rotary tillage) were compared with undisturbed controls at two sites (Stillwater and Presque Isle) and at two dates (July and August) in Maine. Carabid activity density after disturbance was measured using fenced pitfall traps installed immediately after tillage to remove any effects of dispersal. Rotary tillage and moldboard plowing reduced weed seed predator activity density 52 and 54%, respectively. Carabid activity density after chisel plowing was similar to the undisturbed control. This trend was true for each of the weed seed predator species studied. However, activity density of the arthropod predator P. melanarius was reduced by all tillage types, indicating a greater sensitivity to tillage than the four weed seed predator species. These results confirm the need to consider both direct and indirect effects of management in studies of invertebrate seed predators.

  17. Long-term rotation and tillage effects on soil structure and crop yield

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, R; Deen, B

    2013-01-01

    –C–S–S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard ploughing, MP. Topsoil structural quality...

  18. Soil water retention as affected by tillage and residue management in semiarid Spain

    NARCIS (Netherlands)

    Bescansa, P.; Imaz, M.J.; Virto, I.; Enrique, A.; Hoogmoed, W.B.

    2006-01-01

    Conservation tillage preserves soil water and this has been the main reason for its rapid dissemination in rainfed agriculture in semiarid climates. We determined the effects of conservation versus conventional tillage on available soil water capacity (AWC) and related properties at the end of 5 yea

  19. Sustainable semiarid dryland production in relation to tillage effects on Hydrology: 1983-2013

    Science.gov (United States)

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch tillage, SM, as a result of improved soil conditions or water conservation, but knowledge of long-term tillage effects on the comprehensive field hydrology and sustained crop production is needed. ...

  20. Conservation tillage systems and water productivity implications for smallholder farmers in semi-arid Ethiopia

    NARCIS (Netherlands)

    Temesgen, M.L.

    2007-01-01

    Conservation tillage systems have been adopted by farmers in many countries to solve the problem of land degradation and declining water productivity. However, direct application of such tillage systems was not possible among resource poor smallholder farmers in semi arid areas of Ethiopia. Problems

  1. Tillage effects on N2O emissions as influenced by a winter cover crop

    DEFF Research Database (Denmark)

    Petersen, Søren O; Mutegi, James; Hansen, Elly Møller

    2011-01-01

    Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O...

  2. Impacts of organic conservation tillage systems on crops, weeds, and soil quality

    Science.gov (United States)

    Organic farming has been identified as promoting soil quality even though tillage is used for weed suppression. Adopting conservation tillage practices can enhance soil quality in cropping systems where synthetic agrichemicals are used for crop nutrition and weed control. Attempts have been made t...

  3. Measurements of Soil Carbon Dioxide Emissions from Two Maize Agroecosystems at Harvest under Different Tillage Conditions

    Directory of Open Access Journals (Sweden)

    Gerosa Giacomo

    2014-01-01

    Full Text Available In this study a comparison of the soil CO2 fluxes emitted from two maize (Zea mays L. fields with the same soil type was performed. Each field was treated with a different tillage technique: conventional tillage (30 cm depth ploughing and no-tillage. Measurements were performed in the Po Valley (Italy from September to October 2012, covering both pre- and postharvesting conditions, by means of two identical systems based on automatic static soil chambers. Main results show that no-tillage technique caused higher CO2 emissions than conventional tillage (on average 2.78 and 0.79 μmol CO2 m−2 s−1, resp.. This result is likely due to decomposition of the organic litter left on the ground of the no-tillage site and thus to an increased microbial and invertebrate respiration. On the other hand, fuel consumption of conventional tillage technique is greater than no-tillage consumptions. For these reasons this result cannot be taken as general. More investigations are needed to take into account all the emissions related to the field management cycle.

  4. Root growth conditions in the topsoil as affected by tillage intensity

    DEFF Research Database (Denmark)

    Kadziene, Grazina; Munkholm, Lars Juhl; Mutegi, James

    2011-01-01

    in the topsoil. Samples were taken from a 7-year tillage experiment on a Danish sandy loam at Foulum, Denmark (56°30′ N, 9°35′ E) in 2008. The main crop was spring barley followed by either dyer's woad (Isatis tinctoria L.) or fodder radish (Raphanus sativus L.) cover crops as subtreatment. The tillage...

  5. Pesticide Interactions with N source and Tillage: Effects on soil biota and ecosystem services

    DEFF Research Database (Denmark)

    Jensen, John; Petersen, Søren O; Elsgaard, Lars

    . This study was planned to evaluate interactions between pesticide use and other soil management factors. The study was carried out within a long-term tillage experiment using two tillage practices (no-till (NT) and mouldboard ploughing (MP), two contrasting N sources (manure and mineral fertiliser), and two...

  6. Simulation of Tillage Systems Impact on Soil Biophysical Properties Using the SALUS Model

    Directory of Open Access Journals (Sweden)

    Luigi Sartori

    2011-02-01

    Full Text Available A sustainable land management has been defined as the management system that allows for production, while minimizing risk, maintaining quality of soil and water. Tillage systems can significantly decrease soil carbon storage and influence the soil environment of a crop. Crop growth models can be useful tools in evaluating the impact of different tillage systems on soil biophysical properties and on the growth and final yield of the crops. The objectives of this paper were i to illustrate the SALUS model and its tillage component; ii to evaluate the effects of different tillage systems on water infiltration and time to ponding, iii to simulate the effect of tillage systems on some soil biophysical properties. The SALUS (System Approach to Land Use Sustainability model is designed to simulate continuous crop, soil, water and nutrient conditions under different tillage and crop residues management strategies for multiple years. Predictions of changes in surface residue, bulk density, runoff, drainage and evaporation were consistent with expected behaviours of these parameters as described in the literature. The experiment to estimate the time to ponding curve under different tillage system confirmed the theory and showed the beneficial effects of the residue on soil surface with respect to water infiltration. It also showed that the no-tillage system is a more appropriate system to adopt in areas characterized by high intensity rainfall.

  7. Soil nitrogen dynamics and leaching under conservation tillage in the Atlantic Coastal Plain, Georgia, USA

    Science.gov (United States)

    Conservation tillage (CsT) involves management that reduces soil erosion by maintaining crop residue cover on farm fields. Typically, both infiltration and soil organic matter increase over time with CsT practices. We compared the impact of a commonly used CsT practice, strip tillage (ST), to conven...

  8. Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks

    NARCIS (Netherlands)

    Cooper, Julia; Baranski, Marcin; Stewart, Gavin; Nobel-de Lange, Majimcha; Bàrberi, Paolo; Fließbach, Andreas; Peigné, Josephine; Berner, Alfred; Brock, Christopher; Casagrande, Marion; Crowley, Oliver; David, Christophe; Vliegher, De Alex; Döring, Thomas F.; Dupont, Aurélien; Entz, Martin; Grosse, Meike; Haase, Thorsten; Halde, Caroline; Hammerl, Verena; Huiting, Hilfred; Leithold, Günter; Messmer, Monika; Schloter, Michael; Sukkel, Wijnand; Heijden, van der Marcel G.A.; Willekens, Koen; Wittwer, Raphaël; Mäder, Paul

    2016-01-01

    Reduced tillage is increasingly promoted to improve sustainability and productivity of agricultural systems. Nonetheless, adoption of reduced tillage by organic farmers has been slow due to concerns about nutrient supply, soil structure, and weeds that may limit yields. Here, we compiled the resu

  9. Effects of strip and full-width tillage on soil carbon IV oxide-carbon ...

    African Journals Online (AJOL)

    Yomi

    Highest CO2-C fluxes, bacteria ... Key words: Carbon IV oxide-carbon flux, soil bacteria and fungi, strip tillage, full-width tillage, sunflower. .... Urea fertilizer (50 kg N ha-1) and triple ..... mulch on soil physical properties and growth of maize.

  10. Influence of reduced tillage on earthworm and microbial communities under organic arable farming

    NARCIS (Netherlands)

    Kuntz, M.; Berner, A.; Gattinger, A.; Scholberg, J.M.S.; Mäder, P.; Pfiffner, L.

    2013-01-01

    Although reduced tillage is an agricultural practice reported to decrease soil erosion and external inputs while enhancing soil fertility, it has still rarely been adopted by European organic farmers. The objective of this study was to assess the long-term interactive effects of tillage (conventiona

  11. Water Use Efficiency under Different Tillage and Irrigation Systems for Tomato Farming in Southeastern Brazil

    Science.gov (United States)

    Bhering, S. B.; Fernandes, N. F.; Macedo, J. R.

    2009-04-01

    highly degrade the environment, applied without practices of soil and water conservation. Such production systems are associated with a variety of environmental problems, such as soil erosion, the extensive pumping of groundwater, the partial obstruction of surface drainage to form artificial lakes, the contamination of groundwater, among others. The environmental impacts generated by all these problems assume a greater importance due to the complete absence of monitoring the continuous lowering of the water table and the changes in water quality. We consider that the main management strategies for developing sustainable production systems for the tomato farming in this area should be based on monitoring water use efficiency, increasing water availability in the root zone and also preventing runoff, leaching and evaporation of water from the soil. Therefore, techniques were applied as green manures with legumes without incorporation of the biomass, non-mechanized and curve-level soil preparation, planting in level, soil cover with crop residues, fertirrigation with solid fertilization of low value, the conduct of tomato especially supported by plastic string attached to a trellis, drip irrigation, and monitoring soil water potential (SWP) with Watermak sensors. At the end of the tomato cycle, water use efficiency and the productivity were compared at 8 micro-plots installed in the 3 studied production systems: conventional tillage (CT-H), minimum tillage (MT-H), both with "wetting irrigation with garden hose", and no-tillage with drip irrigation (NT-D). For each production system, soil physical properties were characterized and soil water potential (SWP) and soil temperature were continuously monitored at different depths (20, 40, 60 and 80 cm), as well as the total water volume used in each irrigation. In parallel, we also compared the development of the root system and the final productivity for each one of the three production systems. The results obtained in this

  12. Predicting working days for secondary tillage and planting operation in fall

    Directory of Open Access Journals (Sweden)

    A Kosari Moghaddam

    2016-09-01

    Full Text Available Introduction The working day is an important component in selection and analysis of farm machinery systems. The number of working days is affected by various factors such as climate, soil characteristics and type of operation. Daily soil moisture models based on weather long-term data and soil characteristics were almost used for calculating probability of working days. The goal of this study was to develop a simulation model to predict the number of working days for secondary tillage and planting operation in fall at 50, 80 and 90% probability levels. Materials and Methods A Simulation model was developed using 21 years weather data and soil characteristics for calculate daily soil moisture content in Research Station of Ferdowsi University of Mashhad. So soil moisture was calculated using daily soil water equation for top 25 centimeter of soil depth. Moisture equal or lower than 85% of soil field capacity and precipitation lower than 4 millimeter (local data were considered as soil workability criteria. Then the working days were determined for secondary tillage and planting operation at 50, 80 and 90% probability levels in falls. The number of days at 50% probability was the mean over 21 years and the number of days at 80% and 90% were determined for each two weeks period as the average number of working days minus the product of t value and standard deviation of those numbers. Model Evaluation Evaluation of model included a comparison of predicted and the observed the number of working days in Research Station of Ferdowsi University of Mashhad during 2002-2010 and sensitivity analysis was implemented to test the effect of changes in soil workability criterion (80, 90, 95 and 100% of soil field capacity, drainage coefficient (25 % decrease and increase and soil field capacity (40% increase on simulation results. Results and Discussion Comparison of predicted and observed days showed that correlation coefficient was 0.998 and the difference

  13. A simplified modelling approach for quantifying tillage effects on soil carbon stocks

    DEFF Research Database (Denmark)

    Chatskikh, Dmitri; Hansen, Søren; Olesen, Jørgen E.

    2009-01-01

    Soil tillage has been shown to affect long-term changes in soil organic carbon (SOC) content in a number of field experiments. This paper presents a simplified approach for including effects of tillage in models of soil C turnover in the tilled-soil layer. We used an existing soil organic matter...... then compared using slopes of linear regressions of SOC changes over time. Results showed that the SOM model captured observed changes in SOC content from differences in rotations, N application and crop residue management for conventional tillage. On the basis of SOC change data a mean TF of 0.48 (standard...... deviation, SD = 0.12) was estimated for NT. The results indicate that (i) the estimated uncertainty of tillage effects on SOC turnover may be smaller than previously thought and (ii) simple scaling of SOM model parameters may be sufficient to capture the effects of soil tillage on SOM turnover in the tilled...

  14. Effects of ridge tillage on photosynthesis and root characters of rice

    Directory of Open Access Journals (Sweden)

    Yao Yuan-zhi

    2015-03-01

    Full Text Available Rice (Oryza sativa L. is an important crop and breeding has not been able to improve yield. Root characteristics of hybrid rice 'Zhuliangyou 02' under conventional tillage and ridge tillage were studied in a Calcisols in Huaihua, China, from 2011 to 2013 to find better tillage methods to resolve massive water consumption, improve yield, and enhance productivity of agricultural labor for rice cultivation. Results showed ridge tillage increased photosynthetic parameters such as photosynthetic rate (P N, stomatal conductance (g s, and water use efficiency (WUE. It also significantly enhanced rice root number, root activity, and antioxidant enzyme activities; it also increased effective panicle number and actual yield by 22.12% and 15.18%, respectively, and enhanced aerenchymae during the early growth stage. Overall, ridge tillage could promote hybrid rice yields by enhancing root absorption, gas exchange, and reducing water consumption. It could be widely used in rice cultivation.

  15. The effect of tillage intensity on soil structure and winter wheat root/shoot growth

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller; Olesen, Jørgen E

    2008-01-01

    of this study was to investigate the effect of tillage intensity on crop growth dynamics and soil structure. A tillage experiment was established in autumn 2002 on two Danish sandy loams (Foulum and Flakkebjerg) in a cereal-based crop rotation. The tillage systems included in this study were direct drilling (D...... with decreasing tillage intensity for the first year winter wheat at Foulum. In general ploughing resulted in the highest grain yields. This study highlights the important interaction between soil structure and crop growth dynamics....... was followed during the growing seasons using spectral reflectance and mini-rhizotron measurements, respectively. A range of soil physical properties were measured. We found decreased early season shoot and root growth with decreasing tillage intensity. Differences diminished later in the growing season...

  16. Effects of Maize Residue Removal and Tillage on Soil Erosion, Carbon, and Macronutrient Dynamics

    Science.gov (United States)

    Beniston, J.; Shipitalo, M.; Lal, R.; Dayton, E. A.; Hopkins, D.; Jones, F. S.; Joynes, A.; Dungait, J.

    2013-12-01

    Erosion by water is a principal process of soil degradation in agricultural lands. Soil erosion influences the storage and fluxes of C and key macronutrients N and P in soil surface layers. No till (NT) crop management significantly reduces erosion on susceptible landscapes. The selective removal of crop residues for bio-energy production from no-till systems has been suggested as a secondary crop, but the effect of this practice on the conservation benefits of NT has not been quantified. Therefore, this study was initiated in spring 2012 to examine the effects of soil management practices on erosion and associated macronutrient fluxes on erodible soils subjected to a high intensity simulated rain storm at the North Appalachian Experimental Watershed (NAEW) in Coshocton, OH, U.S.A. The soil management practices evaluated included: long term no-till with 100% crop residue (NT100) , no-till with 50% crop reside (NT50), NT with complete crop residue removal (NT0), long term conventional tillage (CT), and long term no-tillage plots that were cultivated (TNT) with a rototiller before the rainfall application. A field rainfall simulator was utilized to apply rainfall at an intensity of 7 cm hr-1 to a 4 m2 area of each plot for 30 minutes. Total runoff from the NT0 plots (22.1 mm) was almost double compared with the NT 50% (13.3 mm), CT (12.8 mm) and TNT (12.8 mm) plots and was more than 5 times greater than the NT100 plots (4.4mm). CT and NT0 plots produced 40 (2.7 Mg ha-1) and 20 times (1.4 Mg ha-1) more soil loss, respectively, than NT100 plots (0.07 Mg ha-1). Tillage of the no-till (TNT) soil produced the largest sediment-bound fluxes of C and N, while sediment-bound P fluxes were largest in the CT soils. Natural abundance δ13C and δ15N values were distinct between eroded sediments and the source topsoils and suggested enhanced loss of older (>28 yrs) C residues in CT plots. All observations suggest NT management provides greater resilience to soils than CT during

  17. Long-term tillage and crop rotation effects on residual nitrate in the crop root zone and nitrate accumulation in the intermediate vadose zone

    Science.gov (United States)

    Katupitiya, A.; Eisenhauer, D.E.; Ferguson, R.B.; Spalding, R.F.; Roeth, F.W.; Bobier, M.W.

    1997-01-01

    Tillage influences the physical and biological environment of soil. Rotation of crops with a legume affects the soil N status. A furrow irrigated site was investigated for long-term tillage and crop rotation effects on leaching of nitrate from the root zone and accumulation in the intermediate vadose zone (IVZ). The investigated tillage systems were disk-plant (DP), ridge-till (RT) and slot-plant (SP). These tillage treatments have been maintained on the Hastings silt loam (Udic Argiustoll) and Crete silt loam (Pachic Argiustoll) soils since 1976. Continuous corn (CC) and corn soybean (CS) rotations were the subtreatments. Since 1984, soybeans have been grown in CS plots in even calendar years. All tillage treatments received the same N rate. The N rate varied annually depending on the root zone residual N. Soybeans were not fertilized with N-fertilizer. Samples for residual nitrate in the root zone were taken in 8 of the 15 year study while the IVZ was only sampled at the end of the study. In seven of eight years, root zone residual soil nitrate-N levels were greater with DP than RT and SP. Residual nitrate-N amounts were similar in RT and SP in all years. Despite high residual nitrate-N with DP and the same N application rate, crop yields were higher in RT and SP except when DP had an extremely high root zone nitrate level. By applying the same N rates on all tillage treatments, DP may have been fertilized in excess of crop need. Higher residual nitrate-N in DP was most likely due to a combination of increased mineralization with tillage and lower yield compared to RT and SP. Because of higher nitrate availability with DP, the potential for nitrate leaching from the root zone was greater with DP as compared to the RT and SP tillage systems. Spring residual nitrate-N contents of DP were larger than RT and SP in both crop rotations. Ridge till and SP systems had greater nitrate-N with CS than CC rotations. Nitrate accumulation in IVZ at the upstream end of the

  18. Adoption of No-Tillage Practices, Other Conservation-Tillage Practices and Herbicide-Resistant Cotton Seed, and Their Synergistic Environmental Impacts

    OpenAIRE

    Roberts, Roland K.; Burton C. English; Gao, Qi; Larson, James A.

    2006-01-01

    If adoption of herbicide-resistant seed and adoption of conservation-tillage practices are determined simultaneously, adoption of herbicide-resistant seed could indirectly reduce soil erosion and adoption of conservation-tillage practices could indirectly reduce residual herbicide use and increase farm profits. Our objective was to evaluate the relationship between these technologies for Tennessee cotton production. Evidence from simultaneous estimation of a trinomial logit model for adoption...

  19. Soil coverage evolution and wind erosion risk on summer crops under contrasting tillage systems

    Science.gov (United States)

    Mendez, Mariano J.; Buschiazzo, Daniel E.

    2015-03-01

    The effectiveness of wind erosion control by soil surface conditions and crop and weed canopy has been well studied in wind tunnel experiments. The aim of this study is to assess the combined effects of these variables under field conditions. Soil surface conditions, crop and weed coverage, plant residue, and non-erodible aggregates (NEA) were measured in the field between the fallow start and the growth period of sunflower (Helianthus annuus) and corn (Zea mays). Both crops were planted on a sandy-loam Entic Haplustoll with conventional-(CT), vertical-(VT) and no-till (NT) tillage systems. Wind erosion was estimated by means of the spreadsheet version the Revised Wind Erosion Equation and the soil coverage was measured each 15 days. Results indicated that wind erosion was mostly negligible in NT, exceeding the tolerable levels (estimated between 300 and 1400 kg ha-1 year-1 by Verheijen et al. (2009)) only in an year with high climatic erosivity. Wind erosion exceeded the tolerable levels in most cases in CT and VT, reaching values of 17,400 kg ha-1. Wind erosion was 2-10 times higher after planting of both crops than during fallows. During the fallows, the soil was mostly well covered with plant residues and NEA in CT and VT and with residues and weeds in NT. High wind erosion amounts occurring 30 days after planting in all tillage systems were produced by the destruction of coarse aggregates and the burying of plant residues during planting operations and rains. Differences in soil protection after planting were given by residues of previous crops and growing weeds. The growth of weeds 2-4 weeks after crop planting contributed to reduce wind erosion without impacting in crops yields. An accurate weeds management in semiarid lands can contribute significantly to control wind erosion. More field studies are needed in order to develop management strategies to reduce wind erosion.

  20. Development and Evaluation of Tractors and Tillage Implements Instrumentation System

    Directory of Open Access Journals (Sweden)

    S. A. Al-Suhaibani

    2010-01-01

    Full Text Available Problem statement: Field machines contribute a major portion of the total cost of crop production. Proper selection and matching of farm machinery is essential in order to reduce the cost of crop production. Performance data for tractors and implements are, therefore, essential for farm machinery operators and manufacturers alike. The aim of this study was to develop and evaluate an instrumentation system for tractor and agricultural implements. Approach: An instrumentation system was developed and mounted on an MF 3090 tractor to measure and record data for the various performance parameters of the tractor and attached tillage implements. The system was designed to measure: drawbar pull, three-point linkage forces, rear and front wheel forces, PTO torque, ground speed, tillage depth, fuel consumption, engine speed and fluid temperatures. Results: The system performed well during the field operations and the results obtained showed that the accuracies of the transducers were acceptable. The wheel torque and weight transducers measured the torque and forces acting on the tractor wheels with high accuracy. The other transducers measured the vertical and the horizontal forces on mounted implements of categories II (40-100 hp and III (80-225 hp. The field tests showed significant increase in the draft with increases in the depth and speed. A general regression equation to predict draft of the implements was developed. Conclusion: The system was capable of measuring the draft of primary tillage implements on sandy loam soils at various speeds and depths with high accuracy. The data was recorded, displayed and analyzes simultaneously.

  1. Residual effect of soil tillage on water erosion from a Typic Paleudalf under long-term no-tillage and cropping systems

    Directory of Open Access Journals (Sweden)

    Mastrângello Enívar Lanzanova

    2013-12-01

    Full Text Available Soil erosion is one of the chief causes of agricultural land degradation. Practices of conservation agriculture, such as no-tillage and cover crops, are the key strategies of soil erosion control. In a long-term experiment on a Typic Paleudalf, we evaluated the temporal changes of soil loss and water runoff rates promoted by the transition from conventional to no-tillage systems in the treatments: bare soil (BS; grassland (GL; winter fallow (WF; intercrop maize and velvet bean (M+VB; intercrop maize and jack bean (M+JB; forage radish as winter cover crop (FR; and winter cover crop consortium ryegrass - common vetch (RG+CV. Intensive soil tillage induced higher soil losses and water runoff rates; these effects persisted for up to three years after the adoption of no-tillage. The planting of cover crops resulted in a faster decrease of soil and water loss rates in the first years after conversion from conventional to no-tillage than to winter fallow. The association of no-tillage with cover crops promoted progressive soil stabilization; after three years, soil losses were similar and water runoff was lower than from grassland soil. In the treatments of cropping systems with cover crops, soil losses were reduced by 99.7 and 66.7 %, compared to bare soil and winter fallow, while the water losses were reduced by 96.8 and 71.8 % in relation to the same treatments, respectively.

  2. Share of anthropophytes in the crop sequence: winter wheat – maize – spring wheat depending on tillage system

    Directory of Open Access Journals (Sweden)

    Tomasz R. Sekutowski

    2014-07-01

    Full Text Available An experiment, conducted over the period 2008–2010, evaluated the effect of tillage system on the occurrence and species composition of anthropophytes in winter wheat, maize and spring wheat. Regardless of crop plant and tillage system, anthropophytes (73.9%, represented by archaeophytes and kenophytes, were the main component of the flora in the crops studied, whereas apophytes accounted for the remaining 26.1%. Most archaeophytes (13 species were found in the spring wheat crop under no-tillage, while their lowest number (6 species occurred in the spring wheat crop under conventional tillage. The only kenophyte, Conyza canadensis, was found to occur in the spring wheat and maize crops in the no-tillage system. The following taxa were dominant species among archeophytes: Geranium pusillum, Anthemis arvensis, and Viola arvensis (regardless of tillage system and crop plant, Anthemis arvensis (in spring wheat – conventional tillage, Echinochloa crus-galli and Setaria glauca (in maize – reduced tillage and no-tillage, Chenopodium album (in maize – no-tillage as well as Apera spica-venti, Anthemis arvensis and Papaver rhoeas (in winter wheat – no-tillage.

  3. Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling

    Directory of Open Access Journals (Sweden)

    Mustafa Ucgul

    2015-09-01

    Full Text Available The energy required for tillage processes accounts for a significant proportion of total energy used in crop production. In many tillage processes decreasing the draft and upward vertical forces is often desired for reduced fuel use and improved penetration, respectively. Recent studies have proved that the discrete element modelling (DEM can effectively be used to model the soil–tool interaction. In his study, Fielke (1994 [1] examined the effect of the various tool cutting edge geometries, namely; cutting edge height, length of underside rub, angle of underside clearance, on draft and vertical forces. In this paper the experimental parameters of Fielke (1994 [1] were simulated using 3D discrete element modelling techniques. In the simulations a hysteretic spring contact model integrated with a linear cohesion model that considers the plastic deformation behaviour of the soil hence provides better vertical force prediction was employed. DEM parameters were determined by comparing the experimental and simulation results of angle of repose and penetration tests. The results of the study showed that the simulation results of the soil-various tool cutting edge geometries agreed well with the experimental results of Fielke (1994 [1]. The modelling was then used to simulate a further range of cutting edge geometries to better define the effect of sweep tool cutting edge geometry parameters on tillage forces. The extra simulations were able to show that by using a sharper cutting edge with zero vertical cutting edge height the draft and upward vertical force were further reduced indicating there is benefit from having a really sharp cutting edge. The extra simulations also confirmed that the interpolated trends for angle of underside clearance as suggested by Fielke (1994 [1] where correct with a linear reduction in draft and upward vertical force for angle of underside clearance between the ranges of −25 and −5°, and between −5 and 0°. The

  4. Conservation tillage versus conventional tillage on carbon stock in a Mediterranean dehesa (southern Spain)

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2014-05-01

    Understanding soil dynamics is essential for making appropriate land management decisions, as soils can affect the carbon content from the atmosphere, emitting large quantities of CO2 or storing carbon. This property is essential for climate change mitigation strategies as agriculture and forestry soil management can affect the carbon cycle. The dehesa is a Mediterranean silvopastoral system formed by grasslands with scattered oaks (Quercus ilex or Q. suber). The dehesa is a pasture where the herbaceous layer is comprised of either cultivated cereals such as oat, barley and wheat or native vegetation dominated by annual species, which are used as grazing resources. In addition, the dehesa is a practice dedicated to the combined production of Iberian swine, sheep, fuel wood, coal and cork, as well as hunting. The dehesa is characterized by the preservation of forest oaks. In this work, we compared two management practices such as organic farming (OF) and conventional tillage (CT) on soil organic carbon stocks (SOC-S) in Cambisols (CM) and Leptosols (LP), and we analyzed the quality of these soils based on stratification ratio (SR) in a Mediterranean dehesa. MATERIAL AND METHODS An analysis of 85 soil profiles was performed in 2009 in Los Pedroches Valley (Cordoba, southern Spain). Two soil management practices were selected: OF (isolated trees of variable densities —15-25— trees ha-1, mostly holm and cork oaks, and patches of shrubs — cistaceae, fabaceae and lamiaceae— with a herbaceous pasture layer mostly composed of therophytic species and livestock are introduced to provide organic fertilizer to the soil, without ploughing and animal manure from the farms may be incorporated) for 20 years and CT (similar to OF, with ploughing —annual passes with a disc harrow and/or cultivator— is aimed at growing grain for livestock or at clearing the encroaching shrubs) in CM and LP. The dehesas studied were silvopastoral systems without cropping. Soil properties

  5. Efeitos de sistemas de preparo do solo no uso da água e na produtividade do feijoeiro Effects of soil tillage systems on the water use and on common bean yield

    Directory of Open Access Journals (Sweden)

    LUIS FERNANDO STONE

    2000-04-01

    Full Text Available Este trabalho teve por objetivo comparar o plantio direto, em duas densidades de palhada, com outros sistemas de preparo do solo, quanto à eficiência do uso da água e à produtividade de duas cultivares de feijoeiro com diferentes arquiteturas de planta. O experimento foi conduzido por quatro anos em um Latossolo Vermelho-Escuro, em Santo Antônio de Goiás, GO, utilizando o delineamento em faixas, com parcela subdividida, com quatro repetições. As faixas A, paralelas a uma linha central de aspersores, consistiram de cinco lâminas de irrigação. Considerando a média dos quatro anos, as quantidades de água aplicadas em cada faixa foram de 399,8; 307,0; 216,8; 128,0 e 54,0 mm. As faixas B, transversais à linha central de aspersores, consistiram de cinco sistemas de preparo do solo: plantio direto, plantio direto mais cobertura morta, grade aradora, arado de aiveca e arado escarificador. Nas subparcelas foram plantadas as cultivares de feijão Aporé e Safira. A magnitude da resposta da produtividade do feijoeiro à lâmina de água aplicada variou com a cultivar e com o sistema de preparo do solo. O sistema de plantio direto, com adequada cobertura morta, propiciou maior economia de água em comparação aos demais sistemas de preparo do solo.The objective of this work was to compare water use efficiency and yield of two common bean cultivars with different plant architectures under no-tillage system, using two amounts of straw in relation to other soil tillage systems. The experiment was carried out during four years on a Dark Red Latosol, in Santo Antônio de Goiás, GO, Brazil. The experimental design was a splitplot strip block with four replications. The A strips, parallel to a sprinkler line source, consisted of five irrigation levels. The four year-average water amounts applied to each strip were: 399.8, 307.0, 216.8, 128.0, and 54.0 mm. The B strips, across to sprinkler line source, consisted of five soil tillage systems: no-tillage

  6. Suitability of technical materials for machinery subsoilers for soil tillage

    Directory of Open Access Journals (Sweden)

    Radek Bednář

    2013-01-01

    Full Text Available Agricultural soil processing belongs to the basic elements in the process of crop production. Currently classic tillage method is decreasing and the only trend has stated as a shallow plowing. Suitable post harvest soil tillage greatly affects yields in the next cycle. The aim of the study is the analysis of abrasive wear of selected construction materials and their subsequent use for DXRV-HD cultivator. The performed tests are focused on monitoring the mechanical properties of the materials and their use for variable cutting tip of cultivator body. Tested materials are divided into four categories. These materials include tool steel (19436, carbon steel (12050, cast iron with globular graphite and welding material supplied as a functional complex on low carbon steel by the Abraweld company. These materials are tested together with the original part of share cultivator. The present experiment is focused on metallorgraphic, mechanical and abrasive analysis. Structural component of the material is identified by metallographic photos and then compared with the impact strength tested on Charpy hammer. Followed the abrasion resistance according to CSN 01 5084 and the total evaluation of the tested samples are done.

  7. Aerodynamic roughness length related to non-aggregated tillage ridges

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available Wind erosion in agricultural soils is dependent, in part, on the aerodynamic roughness length (z0 produced by tillage ridges. Although previous studies have related z0 to ridge characteristics (ridge height (RH and spacing (RS, these relationships have not been tested for tillage ridges observed in the North African agricultural fields. In these regions, due to climate and soil conditions, small plowing tools are largely used. Most of these tools produce non-aggregated and closely-spaced small ridges. Thus, experiments were conducted in a 7-m long wind tunnel to measure z0 for 11 ridge types covering the range of geometric characteristics frequently observed in south Tunisia. Experimental results suggest that RH2/RS is the first order parameter controlling z0. A strong relationship between z0 and RH2/RS is proposed for a wide range of ridge characteristics.

  8. The effect of conservation tillage on crop yield in China

    Directory of Open Access Journals (Sweden)

    Hongwen LI,Jin HE,Huanwen GAO,Ying CHEN,Zhiqiang ZHANG

    2015-06-01

    Full Text Available Traditional agricultural practices have resulted in decreased soil fertility, shortage of water resources and deterioration of agricultural ecological environment, which are seriously affecting grain production. Conservation tillage (CT research has been developed and applied in China since the 1960s and 1970s, and a series of development policies have been issued by the Chinese government. Recent research and application have shown that CT has positive effects on crop yields in China. According to the data from the Conservation Tillage Research Center (CTRC, Chinese Ministry of Agriculture (MOA, the mean crop yield increase can be at least 4% in double cropping systems in the North China Plain and 6% in single cropping systems in the dryland areas of North-east and North-west China. Crop yield increase was particularly significant in dryland areas and drought years. The mechanism for the yield increase in CT system can be attributed to enhanced soil water content and improved soil properties. Development strategies have been implemented to accelerate the adoption of CT in China.

  9. Affects of different tillage managements on soil physical quality in a clayey soil.

    Science.gov (United States)

    Sağlam, Mustafa; Selvi, Kemal Çağatay; Dengiz, Orhan; Gürsoy, Fatma Esra

    2015-01-01

    This study, conducted in 2011, researches the effects of different tillage practices on the physical soil quality of clayey soil. This soil quality index (SQI) assessment was made by studying the changes in physical soil functions such as suitability for root development, facilitation for water entry, movement and storage, and resistance against surface degradation based on tillage management. When compared with the control parcel, statistically significant decreases were seen in the SQI with different tillage practices (p tillage practices, the highest SQI was seen with the plow + rotary tiller + direct seeding machine, while the lowest SQI was seen with the direct drilling practice. On the other hand, the statistically insignificant effects of tillage practices on the soil quality of the study area were considered to be a result of either the study period or the joint effect of soil texture and climatic features. Thus, long-term tillage practices were recommended in order to get healthier information about soil quality by considering soil and climatic conditions. In addition, for heavy clayey soils, reduced tillage practices, which included plowing, were thought to develop physical soil qualities of root development and water movement.

  10. [Impact of tillage practices on microbial biomass carbon in top layer of black soils].

    Science.gov (United States)

    Sun, Bing-jie; Jia, Shu-xia; Zhang, Xiao-ping; Liang, Ai-zhen; Chen, Xue-wen; Zhang, Shi-xiu; Liu, Si-yi; Chen, Sheng-long

    2015-01-01

    A study was conducted on a long-term (13 years) tillage and rotation experiment on black soil in northeast China to determine the effects of tillage, time and soil depth on soil microbial biomass carbon (MBC). Tillage systems included no tillage (NT), ridge tillage (RT) and mould-board plough (MP). Soil sampling was done at 0-5, 5-10 and 10-20 cm depths in June, August and September, 2013, and April, 2014 in the corn phase of corn-soybean rotation plots. MBC content was measured by the chloroform fumigation extraction (CFE) method. The results showed that the MBC content varied with sampling time and soil depth. Soil MBC content was the lowest in April for all three tillage systems, and was highest in June for MP, and highest in August for NT and RT. At each sampling time, tillage system had a significant effect on soil MBC content only in the top 0-5 cm layer. The MBC content showed obvious stratification under NT and RT with a higher MBC content in the top 0-5 cm layer than under MP. The stratification ratios under NT and RT were greatest in September when they were respectively 67.8% and 95.5% greater than under MP. Our results showed that soil MBC contents were greatly affected by the time and soil depth, and were more apparently accumulated in the top layer under NT and RT.

  11. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils.

    Science.gov (United States)

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A S; Wu, Jinshui

    2016-01-22

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation ((14)C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management.

  12. [Effects of tillage mode on black soil's penetration resistance and bulk density].

    Science.gov (United States)

    Chen, Xue-Wen; Zhang, Xiao-Ping; Liang, Ai-Zhen; Jia, Shu-Xia; Shi, Xiu-Huan; Fan, Ru-Qin; Wei, Shou-Cai

    2012-02-01

    Taking an eight-year field experiment site in Dehui County of Jilin Province, Northeast China as test object, this paper studied the effects of different tillage modes (no tillage and ploughing in autumn) on the penetration resistance and bulk density of black soil. No tillage increased the soil penetration resistance, especially at the soil depth of 2.5-17.5 cm. In the continuous cropping of maize and the rotation of maize-soybean, the maximum soil penetration resistance at planting zone under no tillage and ploughing in autumn was 2816 and 1931 kPa, and 2660 and 2051 kPa, respectively, which had no restriction on the crop growth. The curve of soil penetration resistance under ploughing in autumn changed with ridge shape, while that under no tillage changed less. Comparing with ploughing in autumn, no tillage increased the bulk density of 5-20 cm soil layer significantly. Under no tillage, the bulk density of 5-30 cm soil layer changed little, but under ploughing in autumn, soil bulk density increased gradually with increasing soil depth. There was no significant correlation between soil bulk density and soil penetration resistance.

  13. Conservation tillage affects species composition but not species diversity: a comparative study in Northern Italy.

    Science.gov (United States)

    Boscutti, Francesco; Sigura, Maurizia; Gambon, Nadia; Lagazio, Corrado; Krüsi, Bertil O; Bonfanti, Pierluigi

    2015-02-01

    Conservation tillage (CT) is widely considered to be a practice aimed at preserving several ecosystem functions. In the literature, however, there seems to be no clear pattern with regard to its benefits on species diversity and species composition. In Northern Italy, we compared species composition and diversity of both vascular plants and Carabids under two contrasting tillage systems, i.e., CT and conventional tillage, respectively. We hypothesized a significant positive impact of CT on both species diversity and composition. We also considered the potential influence of crop type. The tillage systems were studied under open field conditions with three types of annual crops (i.e., maize, soybean, and winter cereals), using a split-plot design on pairs of adjacent fields. Linear mixed models were applied to test tillage system, crop, and interaction effects on diversity indices. Plant and Carabids communities were analyzed by multivariate methods (CCA). On the whole, 136 plant and 51 carabid taxa were recorded. The two tillage systems studied did not differ in floristic or carabid diversity. Species composition, by contrast, proved to be characteristic for each combination of tillage system and crop type. In particular, CT fields were characterized by nutrient demanding weeds and the associated Carabids. The differences were especially pronounced in fields with winter cereals. The same was true for the flora and Carabids along the field boundaries. For studying the effects of CT practices on the sustainability of agro-ecosystems, therefore, the focus should be on species composition rather than on diversity measures.

  14. [Effects of different tillage methods on phospholipid fatty acids and enzyme activities in calcareous cinnamon soil].

    Science.gov (United States)

    Pei, Xue-Xia; Dang, Jian-You; Zhang, Ding-Yi; Wang, Jiao-Ai; Zhang, Jing

    2014-08-01

    In order to study changes of physical and chemical characteristics and microbial activities in soil under different tillage methods, effects of four tillage methods, rotary tillage (RT), subsoil tillage (ST), conventional tillage (CT) with corn straw returned to soil, and rotary tillage with no corn straw returned to soil (CK), on phospholipid fatty acids (PLFA) characteristics and hydrolase enzymes activities in calcareous cinnamon soil were investigated. The results showed that soil hydrolase enzymes activities, nutrient contents, microbial diversity varied greatly with the different tillage methods. Returning corn straw to soil increased the kinds, amount of soil total PLFAs, bacteria PLFAs and actonomycetes PLFAs, while decreased the fungi PLFAs, indicating that fungi was more adaptable than bacteria to an infertile environment. ST and CT resulted in higher amounts of total PLFAs, which were 74.7% and 53.3% higher than that of CK, indicating they were more beneficial to the growth of plants. They could also improve soil physical and chemical properties, increase alk-phosphatase, protease and urease activities, which would provide a favorable soil condition for high and stable crop yields.

  15. Inoculum Potential of Fusarium spp. Relates to Tillage and Straw Management in Norwegian Fields of Spring Oats.

    Science.gov (United States)

    Hofgaard, Ingerd S; Seehusen, Till; Aamot, Heidi U; Riley, Hugh; Razzaghian, Jafar; Le, Vinh H; Hjelkrem, Anne-Grete R; Dill-Macky, Ruth; Brodal, Guro

    2016-01-01

    The increased occurrence of Fusarium-mycotoxins in Norwegian cereals over the last decade, is thought to be caused by increased inoculum resulting from more cereal residues at the soil surface as a result of reduced tillage practices. In addition, weather conditions have increasingly promoted inoculum development and infection by Fusarium species. The objective of this work was to elucidate the influence of different tillage regimes (autumn plowing; autumn harrowing; spring plowing; spring harrowing) on the inoculum potential (IP) and dispersal of Fusarium spp. in spring oats. Tillage trials were conducted at two different locations in southeast Norway from 2010 to 2012. Oat residues from the previous year's crop were collected within a week after sowing for evaluation. IP was calculated as the percentage of residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. Fusarium avenaceum and F. graminearum were the most common Fusarium species recovered from oat residues. The IP of Fusarium spp. was significantly lower in plowed plots compared to those that were harrowed. Plowing in either the autumn or spring resulted in a low IP. Harrowing in autumn was more effective in reducing IP than the spring harrowing, and IP levels for the spring harrowed treatments were generally higher than all other tillage treatments examined. Surprisingly low levels of F. langsethiae were detected in the residues, although this species is a common pathogen of oat in Norway. The percentage of the residues infested with F. avenaceum, F. graminearum, F. culmorum, and F. langsethiae generally related to the quantity of DNA of the respective Fusarium species determined using quantitative PCR (qPCR). Fusarium dispersal, quantified by qPCR analysis of spore trap samples collected at and after heading, generally corresponded to the IP. Fusarium dispersal was also observed to increase after rainy periods. Our findings are in line with the general

  16. Inoculum potential of Fusarium spp. relates to tillage and straw management in Norwegian fields of spring oats

    Directory of Open Access Journals (Sweden)

    Ingerd Skow Hofgaard

    2016-04-01

    Full Text Available The increased occurrence of Fusarium-mycotoxins in Norwegian cereals over the last decade, is thought to be caused by increased inoculum resulting from more cereal residues at the soil surface as a result of reduced tillage practices. In addition, weather conditions have increasingly promoted inoculum development and infection by Fusarium species. The objective of this work was to elucidate the influence of different tillage regimes (autumn plowing; autumn harrowing; spring plowing; spring harrowing on the inoculum potential (IP and dispersal of Fusarium spp. in spring oats. Tillage trials were conducted at two different locations in southeast Norway from 2010 to 2012. Oat residues from the previous year’s crop were collected within a week after sowing for evaluation. IP was calculated as the percentage of residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. F. avenaceum and F. graminearum were the most common Fusarium species recovered from oat residues. The IP of Fusarium spp. was significantly lower in plowed plots compared to those that were harrowed. Plowing in either the autumn or spring resulted in a low IP. Harrowing in autumn was more effective in reducing IP than the spring harrowing, and IP levels for the spring harrowed treatments were generally higher than all other tillage treatments examined. Surprisingly low levels of F. langsethiae were detected in the residues, although this species is a common pathogen of oat in Norway. The percentage of the residues infested with F. avenaceum, F. graminearum, F. culmorum and F. langsethiae generally related to the quantity of DNA of the respective Fusarium species determined using qPCR. Fusarium dispersal, quantified by quantitative PCR analysis of spore trap samples collected at and after heading, generally corresponded to IP. Fusarium dispersal was also observed to increase after rainy periods. Our findings are in line with the

  17. Inoculum Potential of Fusarium spp. Relates to Tillage and Straw Management in Norwegian Fields of Spring Oats

    Science.gov (United States)

    Hofgaard, Ingerd S.; Seehusen, Till; Aamot, Heidi U.; Riley, Hugh; Razzaghian, Jafar; Le, Vinh H.; Hjelkrem, Anne-Grete R.; Dill-Macky, Ruth; Brodal, Guro

    2016-01-01

    The increased occurrence of Fusarium-mycotoxins in Norwegian cereals over the last decade, is thought to be caused by increased inoculum resulting from more cereal residues at the soil surface as a result of reduced tillage practices. In addition, weather conditions have increasingly promoted inoculum development and infection by Fusarium species. The objective of this work was to elucidate the influence of different tillage regimes (autumn plowing; autumn harrowing; spring plowing; spring harrowing) on the inoculum potential (IP) and dispersal of Fusarium spp. in spring oats. Tillage trials were conducted at two different locations in southeast Norway from 2010 to 2012. Oat residues from the previous year’s crop were collected within a week after sowing for evaluation. IP was calculated as the percentage of residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. Fusarium avenaceum and F. graminearum were the most common Fusarium species recovered from oat residues. The IP of Fusarium spp. was significantly lower in plowed plots compared to those that were harrowed. Plowing in either the autumn or spring resulted in a low IP. Harrowing in autumn was more effective in reducing IP than the spring harrowing, and IP levels for the spring harrowed treatments were generally higher than all other tillage treatments examined. Surprisingly low levels of F. langsethiae were detected in the residues, although this species is a common pathogen of oat in Norway. The percentage of the residues infested with F. avenaceum, F. graminearum, F. culmorum, and F. langsethiae generally related to the quantity of DNA of the respective Fusarium species determined using quantitative PCR (qPCR). Fusarium dispersal, quantified by qPCR analysis of spore trap samples collected at and after heading, generally corresponded to the IP. Fusarium dispersal was also observed to increase after rainy periods. Our findings are in line with the

  18. THE EFFECT OF INTERCROPS AND DIFFERENTIATED TILLAGE ON THE MAIZE YIELDING

    Directory of Open Access Journals (Sweden)

    Andrzej Biskupski

    2014-10-01

    Full Text Available The research was carried out in the years 2008–2010 in the fields of the Experimental Station IUNG at Jelcz-Laskowice. Two-factorial experiments were laid out on the grey-brown podzolic soil formed out of loamy sand silt by the method of randomized subblocks in four replications. The experimental factors were intercrops (mustard and lupine and tillage system (traditional, simplified and zero. Winter wheat was the forecrop and maize the sequent plant. Leaf area index (LAI and mean tip angle (MTA were determined in the stage of early flowering with use of a LAI-2000 meter (LI-COR, USA in four replications. The research was carried out to find out which tillage system and intercrop would positively influence the yielding, selected indices of canopy architecture (height of plants, LAI, MTA and the amount of weeds in maize grown for grain. The yield of maize grain grown in simplified and zero tillage appeared to be lower than that obtained in traditional tillage. The highest LAI index of maize grown after both forecrops was found with traditional tillage, while the lowest with zero one. The highest maize plants were those in conventional tillage. The intercrop which appeared to have the most favourable effect on the height of maize was mustard. Reduced tillage systems increased total weed infestation in comparison to conventional tillage. Compensation of Echinochloa crus-galli, Geranium pusillum and Chenopodium album was noticed. The greatest number of weeds per unit area was found in the experiment after no-tillage system.

  19. Effect of Tillage Systems with Corn Residue on Grain Yield of Rapeseed in Moghan Region

    Directory of Open Access Journals (Sweden)

    J Taghinazhad

    2014-09-01

    Full Text Available This study carried out to evaluate the effect of different tillage systems on rapeseed yield (hayola 401 planted in corn residues. This experiment was done in Moghan region with clay soils during 2009-2012. Different seedbed preparation methods include MT: moldboard + disk tillage (conventional tillage was included, SCT: Stem Crusher + chisel + disk tandem harrow, STT: Stem Crusher + double-disc, CT: chisel + disk tillage and DD: two heavy disks. The experiment was conducted in a randomized complete block design with four replications. The results showed that soil bulk density in the 0-10 cm layer was not significant in different tillage treatments, but it was significantly higher than the conventional tillage in 10-20 cm depth. However, penetration resistance in 10-30 cm under DD was significantly higher than other treatments, but it was not significant in 0-10 cm layer among all tillage treatments. Thus, Comparison of the soil bulk density, penetration resistance, and plant establishment showed that the reduced tillage in canola seedbed preparation was effective. Besides, the surveys indicated that there was a significant different between MWD after primary and secondary tillage. The mean diameter weighted under SCT and DD, were 1.19 and 1.24 cm, respectively had the best status. The highest value and the worst status of this parameter observed for MT which was 1.92 cm. The highest rate of grain yield obtained by application of treatment SCT, and it was 2563.8 kg ha-1, The SCT treatment can be recommended as an effective canola bed preparation due to its significant saving in time and cost after corn harvesting.

  20. Experimental analysis of CO₂ emissions from agricultural soils subjected to five different tillage systems in Lithuania.

    Science.gov (United States)

    Buragienė, Sidona; Šarauskis, Egidijus; Romaneckas, Kęstutis; Sasnauskienė, Jurgita; Masilionytė, Laura; Kriaučiūnienė, Zita

    2015-05-01

    Intensive agricultural production strongly influences the global processes that determine climate change. Thus, tillage can play a very important role in climate change. The intensity of soil carbon dioxide (CO₂) emissions, which contribute to the greenhouse effect, can vary depending on the following factors: the tillage system used, meteorological conditions (which vary in different regions of the world), soil properties, plant residue characteristics and other factors. The main purpose of this research was to analyse and assess the effects of autumn tillage systems with different intensities on CO₂ emissions from soils during different seasons and under the climatic conditions of Central Lithuania. The research was conducted at the Experimental Station of Aleksandras Stulginskis University from 2009 to 2012; and in 2014. The soils at the experimental site were classified as Eutric Endogleyic Planosol (Drainic). The investigations were conducted using five tillage systems with different intensities, typical of the Baltic Region. Deep conventional ploughing was performed at a depth of 230-250 mm, shallow ploughing was conducted at a depth of 120-150 mm, deep loosening was conducted at depths of 250-270 mm, and shallow loosening was conducted at depths of 120-150 mm. The fifth system was a no-tillage system. Overall, autumn tillage resulted in greater CO₂ emissions from the soil over both short- and long-term periods under the climatic conditions of Central Lithuania, regardless of the tillage system applied. The highest soil CO₂ emissions were observed for the conventional deep ploughing tillage system, and the lowest emissions were observed for the no-tillage system. The meteorological conditions greatly influenced the CO₂ emissions from the soil during the spring. Soil CO₂ emissions were enhanced as precipitation and the air and soil temperatures increased. Long-term investigations regarding the dynamics of CO₂ emissions from soils during the maize

  1. Variations in thematic mapper spectra of soil related to tillage and crop residue management - Initial evaluation

    Science.gov (United States)

    Seeley, M. W.; Ruschy, D. L.; Linden, D. R.

    1983-01-01

    A cooperative research project was initiated in 1982 to study differences in thematic mapper spectral characteristics caused by variable tillage and crop residue practices. Initial evaluations of radiometric data suggest that spectral separability of variably tilled soils can be confounded by moisture and weathering effects. Separability of bare tilled soils from those with significant amounts of corn residue is enhanced by wet conditions, but still possible under dry conditions when recent tillage operations have occurred. In addition, thematic mapper data may provide an alternative method to study the radiant energy balance at the soil surface in conjunction with variable tillage systems.

  2. Reducing tillage intensity affects the cumulative emergence dynamics of annual grass weeds in winter cereals

    DEFF Research Database (Denmark)

    Scherner, A; Melander, B; Jensen, P K

    2017-01-01

    Annual grass weeds such as Apera spica-venti and Vulpia myuros are promoted in non-inversion tillage systems and winter cereal-based crop rotations. Unsatisfactory weed control in these conditions is often associated with a poor understanding of the emergence pattern of these weed species. The aim...... drilling delayed the cumulative emergence of A. spica-venti and V. myuros (counted together) in contrast with ploughing, while the emergence pattern of P. annua was unaffected by the type of tillage system. The total density of emerged weed seedlings varied between the tillage systems and years...

  3. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  4. 耕作侵蚀及其农业环境意义%TILLAGE TRANSLOCATION AND TILLAGE EROSION PROCESSES AND THEIR TMPLICATIONS FOR AGRO-ECOSYSTEMS

    Institute of Scientific and Technical Information of China (English)

    李勇; 张建辉; 罗大卫; 张建国

    2000-01-01

    2l世纪来临之际,耕作研究和耕作习惯将发生重大变化。这一革命性变化的驱动力是人们对耕作位移与耕作侵蚀及其农业持续性和环境保护的日益了解和认识。耕作位移是耕作活动造成的土壤移动。因受耕作工具的设计、操作、景观地形和土壤性质等因素的影响,耕作位移在景观内变异很大。耕作位移在景观内的变化导致净土壤重新分配,即耕作侵蚀。典型的情况是耕作连续地导致土壤顺坡移动,造成土壤在坡上部严重流失,而在坡下部堆积。本文描述了耕作位移和耕作侵蚀过程,概括了其最新研究进展,阐述了耕作侵蚀对作物生产力和温室效应等的农业环境意义,提出了土壤侵蚀研究者面临的挑战和机遇。%As we begin the 21st century tillage research and practices will take significant new directions. This revolution will be driven by a growing awareness and understanding of the processes of tillage translocation and tillage erosion and of their implications for agricultural sustainability and environmental protection. Tillage translocation is the resultant displacement of soil by tillage. Soil can be moved meters by a single pass of tillage. The translocation of soil by tillage varies greatly within landscapes as a result of several factors; these include the design and operation of tillage implements and the topographic and soil properties of landscapes. The consequence of this variation in translocation is net soil redistribution within landscapes, i.e. tillage erosion. Typically, tillage results in the progressive downslope movement of soil, causing severe soil loss on upper slope positions and accumulation in lower slope positions. Tillage translocation and tillage erosion processes are described. An overview of the research to date is presented. A broad range of agri-anvironmental implications is examined including: crop productivity and greenhouse gas emission

  5. Evidence of limited carbon sequestration in soils under no-tillage systems in the Cerrado of Brazil.

    Science.gov (United States)

    Corbeels, Marc; Marchão, Robelio Leandro; Neto, Marcos Siqueira; Ferreira, Eliann Garcia; Madari, Beata Emöke; Scopel, Eric; Brito, Osmar Rodrigues

    2016-02-24

    The Brazilian government aims at augmenting the area cropped under no-tillage (NT) from 32 to 40 million ha by 2020 as a means to mitigate CO2 emissions. We estimated soil carbon (C) sequestration under continuous NT systems in two municipalities in the Goiás state that are representative of the Cerrado. A chronosequence of NT fields of different age since conversion from conventional tillage (CT) was sampled in 2003 and 2011. Soil C levels of native Cerrado and pasture were measured for comparison. After about 11 to 14 years, soil C stocks under NT were highest and at the levels of those under natural Cerrado. Average annual rates of soil C sequestration estimated using the chronosequence approach were respectively 1.61 and 1.48 Mg C ha(-1) yr(-1) for the 2003 and 2011 sampling, and were higher than those observed using repeated sampling after eight years. The diachronic sampling revealed that the younger NT fields tended to show higher increases in soil C stocks than the older fields. Converting an extra 8 million ha of cropland from CT to NT represents an estimated soil C storage of about 8 Tg C yr(-1) during 10 to 15 years.

  6. Greenhouse Gas Emissions from Intermittently Flooded (Dambo) Rice under Different Tillage Practices in Chiota Smallholder Farming Area of Zimbabwe

    DEFF Research Database (Denmark)

    Nyamadzawo, George; Wuta, Menas; Chirinda, Ngoni

    2013-01-01

    emissions from dambo rice under different tillage treatments, which were conventional tillage, no tillage, tied ridges, tied fallows, and mulching. Average soil nitrous oxide emissions were 5.9, 0.2, 5.4, 5.2 and 7.8 μg·m−2·hr−1 for tied fal- lows, conventional tillage, tied ridges, mulching and no tillage...... respectively. Average methane emission was 0.35 mg·m−2·hr−1 and maximum as 1.62 mg·m−2·hr−1. Average methane emissions for the different tillage systems were 0.20, 0.18, 0.45, 0.52 and 0.38 mg·m−2·hr−1 for tied fallows, conventional tillage, tied ridges, mulching and no tillage respec- tively. Carbon dioxide...... emissions were 98.1, 56.0, 69.9, 94.8 and 95.5 mg·m−2·hr−1 for tied fallows, conventional tillage, tied ridges, mulching and no tillage respectively. The estimated emissions per 150 day cropping season were 1.4, 3.6 and 0.6 kg·ha−1 for methane, carbon dioxide and nitrous oxide respectively. We concluded...

  7. Conservation tillage in dryland agriculture impacts watershed hydrology

    Science.gov (United States)

    Van Wie, J. B.; Adam, J. C.; Ullman, J. L.

    2013-03-01

    SummaryDryland (non-irrigated) crop production in semi-arid regions requires sufficient water storage in the soil profile to ensure adequate plant available water, particularly in areas where the majority of annual precipitation occurs during the non-growing season. Producers can increase soil water storage through the adoption of best management practices (BMPs) for tillage and crop residue management. The objective of this study was to assess our hypothesis that watershed-wide adoption of no-till (NT) farming would decrease winter water losses and increase early growing season plant available water as compared with conventional tillage (CT) methods. We analyzed water storage potential under assumed full-scale adoption of NT and CT cropping practices in the Palouse region of eastern Washington State by applying the Distributed Hydrology Soil Vegetation Model (DHSVM) with modifications to represent the physical changes to infiltration, evaporation, and runoff that result from tillage management. DHSVM yielded a Nash-Sutcliffe model efficiency (NSE) for streamflow of 0.69 for the watershed-scale simulations over the Palouse River basin, which falls within the NSE ranges reported for DHSVM (0.57-0.91). Surface temperature predictions resulted in an NSE of 0.60, and the model was able to predict the soil state (frozen or unfrozen) 81% of the time. Simulated soil moisture was approximately 50% greater under widespread adoption of CT versus NT management during the majority of the winter months. Predicted volumetric soil moisture content for April 1, 2005 was 29% and 34% under CT and NT management, respectively. This difference in winter and spring soil moisture was caused primarily by decreased evaporation under NT, with minimal effects resulting from changes in infiltration. Two simple crop yield estimation methods indicated that increased spring soil moisture under NT management may result in a 21-26% wheat yield increase. We concluded that NT has the potential to

  8. Changes in the fertility of a leached chernozem under different primary tillage technologies

    Science.gov (United States)

    Korolev, V. A.; Gromovik, A. I.; Borontov, O. K.

    2016-01-01

    Changes in the fertility of a leached chernozem under different tillage technologies (moldboard, non-inversive, and combined tillage) were studied in a multifactor stationary field experiment established in 1985 in Voronezh oblast on a low-humus medium-deep light clayey leached chernozem. The nine-field rotation of cereals and sugar beet was practiced. It was found that the major parameters of soil fertility—the content and qualitative composition of humus and the physicochemical and physical properties of the chernozem—remained relatively stable independently from the applied primary tillage technologies. However, taking into account economic characteristics (crop yields, production costs, energy expenses, etc.), the combined tillage system proved to be most efficient. It can be recommended for cereals-sugar beet rotation systems in the central chernozemic region, as it ensures the highest efficiency of crop growing and preserves the fertility of leached chernozems.

  9. (Test and gather data on sweep spike combination tillage tool)

    Energy Technology Data Exchange (ETDEWEB)

    Lukach, J.

    1992-06-19

    This summary presents the data accumulated to date with only brief comment. It is prepared with the intent that the viewers will offer advice on terminology, data presentation, methods and other. The year end analysis will detail changes in the data due to the tillage treatments. The data is incomplete due to equipment problems and time limitations due to the wet fall and early freeze up. The trial was not completed due to our inability to get the Mikkelsen Chisel Plow Shovel (MCP), a 16 inch sweep with an anhydrous knife, to penetrate untilled land. The MCP shovel penetrated to deep on plowed ground and pulled so hard that the front wheels of our JD4440 tractor were jerked off the ground. The Standard Chisel Plow Shovels (SCP), a 16 inch sweep, worked well and the data is included.

  10. Simultaneous Adoption of Herbicide-Resistance and Conservation-Tillage Cotton Technologies

    OpenAIRE

    Roberts, Roland K.; Burton C. English; Gao, Qi; Larson, James A.

    2006-01-01

    If adoption of herbicide-resistant seed and adoption of conservation-tillage practices are determined simultaneously, adoption of herbicide-resistance seed could indirectly reduce soil erosion and adoption of conservation-tillage practices could indirectly reduce residual herbicide use and increase farm profits. Our objective was to evaluate the relationship between these two technologies for Tennessee cotton production. Evidence from Bayes' theorem and a two-equation logit model suggested a ...

  11. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize

    Directory of Open Access Journals (Sweden)

    Hongguang Cai

    2014-10-01

    Full Text Available A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen (N, phosphorus (P, and potassium (K uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development, increased nutrient accumulation, and increased yield. Compared with conventional soil management (CK, root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm (T1 and subsoil tillage to 50 cm (T2 were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the 12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.

  12. Effects of Tillage Practices on Water Consumption, Water Use Efifciency and Grain Yield in Wheat Field

    Institute of Scientific and Technical Information of China (English)

    ZHENG Cheng-yan; YU Zhen-wen; SHI Yu; CUI Shi-ming; WANG Dong; ZHANG Yong-li; ZHAO Jun-ye

    2014-01-01

    Water shortage is a serious issue threatening the sustainable development of agriculture in the North China Plain, with the winter wheat (Triticum aestivum L.) as its largest water-consuming crop. The effects of tillage practices on the water consumption and water use efifciency (WUE) of wheat under high-yield conditions using supplemental irrigation based on testing soil moisture dynamic change were examined in this study. This experiment was conducted from 2007 to 2010, with ifve tillage practice treatments, namely, strip rotary tillage (SR), strip rotary tillage after subsoiling (SRS), rotary tillage (R), rotary tillage after subsoiling (RS), and plowing tillage (P). The results showed that in the SRS and RS treatments the total water and soil water consumptions were 11.81, 25.18%and 12.16, 14.75%higher than those in SR and R treatments, respectively. The lowest ratio of irrigation consumption to total water consumption in the SRS treatment was 18.53 and 21.88%for the 2008-2009 and 2009-2010 growing seasons, respectively. However, the highest percentage of water consumption was found in the SRS treatment from anthesis to maturity. No signiifcant difference was found between the WUE of the lfag leaf at the later iflling stage in the SRS and RS treatments, but the lfag leaf WUE at these stages were higher than those of other treatments. The SRS and RS treatments exhibited the highest grain yield (9 573.76 and 9 507.49 kg ha-1 for 3-yr average) with no signiifcant difference between the two treatments, followed by P, R and SR treatments. But the SRS treatment had the highest WUE. Thus, the 1-yr subsoiling tillage, plus 2 yr of strip rotary planting operation may be an efifcient measure to increase wheat yield and WUE.

  13. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize

    Institute of Scientific and Technical Information of China (English)

    Hongguang; Cai; Wei; Ma; Xiuzhi; Zhang; Jieqing; Ping; Xiaogong; Yan; Jianzhao; Liu; Jingchao; Yuan; Lichun; Wang; Jun; Ren

    2014-01-01

    A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development,increased nutrient accumulation, and increased yield. Compared with conventional soil management(CK), root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm(T1) and subsoil tillage to 50 cm(T2) were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.

  14. Effects of Subsoiling on Soil Moisture Under No-Tillage for Two Years

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to improve the water use efficiency under conservation tillage, the effects of subsoiling on soil moisture under no tillage were studied. An experiment of 40 cm subsoiling in a field kept under no-tillage for 2 years was operated from 2005 to 2006. Based on the data of the soil moisture and crop yield, the physical basis of subsoiling for water conservation and yield increase was analyzed.The results showed that the soil water storage under subsoiling, from the soil surface to a depth of 100 cm was more than that under no-tillage for the growth season. In the 0-100 cm soil depth,the soil moisture in 50-100 cm depth under subsoiling was more compared with no-tillage, which increased when it's drought and decreased when it's rainy with the increase in soil depth. Compared with no-tillage, subsoiling could reduce the water consumption of oats in the 0-50 cm depth and increase the water consumption in the 50-100 cm depth. Also, subsoiling increased the yield by 18.29% and the water use efficiency by 16.8% in a two-year average. The effects of subsoiling on water conservation and yield increase were affected by precipitation, and a well-proportioned rainfall was better to increase yield and water use efficiency. Meanwhile, subsoiling decreased bulk density, which increased with the available precipitation. Subsoiling under no-tillage is the effective rotation tillage to contain more soil moisture and improve water use efficiency in ecotone of North China.

  15. Comparison of Soil Fauna (Oribatids and Enchytraeids){1mm BetweenConventional and Organic (Tillage and No-1mm TillagePractices) Farming Crop Fields in Japan

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The major soil animal groups, enchytraeid worms and oribatid mites,were compared in the abundance and diversity between conventionalfields (CT) and organic farming fields with tillage (OT) or no-tillage(ON) practices. The values of abundance, species richness, diversityand evenness were significantly larger in OT and ON than in CT,indicating that the abundance and diversity in organic farming fieldswere greater than those in conventional farming. The communitystructure of enchytraeid genera was different between OT and ON.{ Enchytraeus was the most abundant in OT, whileFridericia in ON. The abundance of oribatids in OT was similarto that in ON, while the species richness and diversity in the formerwere smaller. These results suggested that no-tillage practice underorganic management might contribute to the improvement in quality ofsoil mesofauna.

  16. Influence of Conservation Tillage on Soil Aggregates Features in North China Plain

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Tillage greatly influences the aggregation and stability of soil aggregates. This study investigated the effects of conservation tillage on soil aggregate characteristics. During a four-year study period (2001-2005), soils were sampled from no-tillage (NT), rotary tillage (RT), and conventional tillage (moldboard tillage, CT) plots at the Luancheng Agriculture and Ecology Experimental Station in Hebei Province, China, and the amount, size distribution, and fractal dimension of the aggregates were examined by dry and wet sieving methods. The results indicated that NT significantly increased the topsoil (0-5 cm) bulk density (BD), while RT maintained a lower BD as CT. Dry sieving results showed that NT had higher macro-aggregate content (R0.25), and a larger mean weight diameter (MWD) and geometric mean diameter (GMD) than other treatments in the 0-10 cm layer, while RT showed no difference from CT. In wet sieving, results showed that most of the aggregates were unstable, and the MWD and GMD of water-table aggregates showed the trend of NT > RT > CT. At 0-5 cm layer, the fractal dimension (D) of water-stable aggregates under NT was lower than it was under RT and CT. At 5-10 em, RT yielded the highest D, and showed stability. After four years, NT increased the aggregation and the stability of soil aggregates; while due to intense disturbance, the aggregation and stability of the upper layer (0-10 cm) under RT and CT decreased.

  17. [Effects of tillage and straw returning on microorganism quantity, enzyme activities in soils and grain yield].

    Science.gov (United States)

    Zhao, Ya-li; Guo, Hai-bin; Xue, Zhi-wei; Mu, Xin-yuan; Li, Chao-hai

    2015-06-01

    A two-year field study with split plot design was conducted to investigate the effects of different soil tillage (conventional tillage, CT; deep tillage, DT; subsoil tillage, ST) and straw returning (all straw retention, AS; no straw returning, NS) on microorganism quantity, enzyme activities in soil and grain yield. The results showed that, deep or subsoil tillage and straw returning not only reduced the soil bulk density and promoted the content of organic carbon in soil, but increased the soil microbial quantity, soil enzyme activities and grain yield. Furthermore, such influences in maize season were greater than that in wheat season. Compared with CT+NS, DT+AS and ST+AS decreased the soil bulk density at 20-30 cm depth by 8.5% and 6.6%, increased the content of soil organic carbon by 14.8% and 12.4%, increased the microorganism quantity by 45.9% and 33.9%, increased the soil enzyme activities by 34.1% and 25.5%, increased the grain yield by 18.0% and 19.3%, respectively. No significant difference was observed between DT+AS and ST+AS. We concluded that retaining crop residue and deep or subsoil tillage improved soil microorganism quantity, enzyme activities and crop yield.

  18. Impact of tillage erosion on water erosion in a hilly landscape.

    Science.gov (United States)

    Wang, Y; Zhang, J H; Zhang, Z H; Jia, L Z

    2016-05-01

    Little has been known of the interaction between tillage erosion and water erosion, while the two erosion processes was independently studied. Can tillage-induced soil redistribution lead to exaggerated (or retarded) runoff flow and sediment concentrations in steeply sloping fields? A series of simulated tillage and artificial rainfall events were applied to rectangular runoff plots (2m×8m) with a slope of 15° to examine the impacts of tillage erosion intensities on water erosion in the Yangtze Three Gorges Reservoir Area, China. Mean flow velocity, effective/critical shear stress, and soil erodibility factor K were calculated to analyze the differences in hydrodynamic characteristics induced by tillage. Our experimental results suggest that mean runoff rates were 2.26, 1.19, and 0.65Lmin(-1) and that mean soil detachment rates were 1.53, 1.01, and 0.61gm(-2)min(-1) during the 70-min simulated rainfall events for 52-, 31-, and 10-year tillage, respectively. A significant difference (Perosion increases soil erodibility and delivers the soil for water erosion in sloping fields, accelerating water erosion.

  19. The tillage effect on the soil acid and alkaline phosphatase activity

    Directory of Open Access Journals (Sweden)

    Lacramioara Oprica

    2011-12-01

    Full Text Available Phosphatases (acid and alkaline are important in soils because these extracellular enzymes catalyze the hydrolysis of organic phosphate esters to orthophosphate; thus they form an important link between biologically unavailable and mineral phosphorous. Phosphatase activity is sensitive to environmental perturbations such as organic amendments, tillage, waterlogging, compaction, fertilizer additions and thus it is often used as an environmental indicator of soil quality in riparian ecosystems. The aim of the study was to assess the effect of tillage systems on phosphatases activity in a field experiment carried out in Ezăreni farm. The phosphatase activitiy were determined at two depths (7-10 cm and 15-25cm layers of a chernozem soil submitted to conventional tillage (CT in a fertilised and unfertilised experiment. Monitoring soil alkaline phosphatase activity showed, generally, the same in fertilized soil profiles collected from both depths; the values being extremely close. In unfertilized soils, alkaline phosphatase activity is different only in soils that were exposed to unconventional work using disc harrows and 30cm tillage. Both works type (no tillage and conventional tillage cause an intense alkaline phosphatase activity in 7-10 cm soil profile. Acid phosphatase activity is highly fluctuating in both fertilized as well unfertilized soil, this enzyme being influenced by the performed works.

  20. [Effects of tillage mode on water use efficiency and yield of summer maize under different simulated rainfalls].

    Science.gov (United States)

    Chen, Yu; Wen, Xiao-xia; Liao, Yun-cheng

    2013-08-01

    Based on the tillage practices of summer maize and the rainfall pattern in Northwest China, and by using self-made simulated rainfall device, a field experiment was conducted on the effects of plowing, no-tillage, and no-tillage plus mulching on the water use efficiency (WUE) and yield of summer maize under rainfalls 250, 350 and 450 mm from June to September, 2010. Compared with plowing, no-tillage increased the WUE and yield under rainfall 250 mm by 26% and 16.5% and under rainfall 350 mm by 17.6% and 6.1%, respectively. Under rainfall 450 mm, the water storage was smaller in treatment no-tillage than in treatment plowing, and the WUE and yield in treatment no-tillage were 1.1% and 0.6% lower than those in treatment plowing, respectively. No-tillage plus mulching overcame the disadvantage of no-tillage in lesser water-storing under sufficient rainfall than plowing. Under the three rainfalls, no-tillage plus mulching could effectively inhibit the soil evaporation between plants, decrease the invalid water consumption of bare soil, and increase the soil water storage and the rate of evapotranspiration to water consumption. Compared with plowing, no-tillage plus mulching increased the WUE and yield under rainfall 250 mm by 48.6% and 32.9%, under rainfall 350 mm by 51.6% and 27.1%, and under 450 mm rainfall by 23.7% and 13.1%, respectively. In sum, relative to plowing, no-tillage showed its superiority in increasing WUE and yield under rainfalls 250 and 350 mm, whereas no-tillage plus mulching increased the WUE and yield significantly under rainfalls 250 and 450 mm.

  1. The Effects of Different Tillage Methods on Available Soil Potassium Measured by Various Extractors in a Soil with High Specific Surface Area

    Directory of Open Access Journals (Sweden)

    M. Hosseini

    2016-02-01

    Full Text Available Introduction: The effects of any tillage method on soil properties, depends on location (soil, water and air and the number of (years their implementation. Soil compaction reduces yield through increased soil mechanical resistance against root growth and lower water and nutrient use efficiency (Gamda et al. 18 & Ishagh et al 23. Soil surface and sub surface compaction both reduce yield due to limited root growth and plant potassium uptake (Doulan et al. 14. Sabt et al. (50 reported that in the study area, which the lands are mostly illite clay (high specific surface area with sufficient nitrogen, soil potassium is the most important limiting factor for the growth of wheat.Considering the point that loess soils in Golestan Province have a high specific surface area,they can provide potassium for plants to produce crop, but for a higher production, potassium fertilizers should be used. Previous studies indicated that production of wheat is limited due to potassium deficiency (4, 49, 54 and 57. In these soils with a high specific surface area, the speed of movement of potassium from the soil solution is low, and doing solimits wheat yield.In loess soils containing high illite and high specific surface area (eg, soilsin the series of Rahmat Abad of Gorgan, ammonium acetate measured potassium on exchange and solution surfaces, which is highly correlated with grain yield (54 . There is a high correlation between grain yield with overload of potassium and Na TPB extraction (57. The aim of this study was to absorb potassium (limiting factor for plant growth with different tillage systemsat different depths. International recommendations towards reducing the depth and intensity of tillage (from minimum tillage to no-tillage in order to reduce erosion and oxidation of organic substances plays an important role in determining the amount of greenhouse gases. If potassium absorption does not reduceafter reducing tillage intensity,low or no-tillage methods

  2. [Effects of tillage rotation and fertilization on soil aggregates and organic carbon content in corn field in Weibei Highland].

    Science.gov (United States)

    Wang, Li; Li, Jun; Li, Juan; Bai, Wei-Xia

    2014-03-01

    A field experiment on effects of tillage rotation and fertilization on corn continuous cropping-practiced lands was carried out in Heyang of Shaanxi in 2007-2012. The tillage types included annual rotation of no-tillage and subsoiling (NT-ST), subsoiling and conventional tillage (ST-CT), or conventional tillage and no-tillage (CT-NT), and yearly practice of no tillage (NT-NT), subsoiling (ST-ST) or conventional tillage (CT-CT). The fertilization treatments included balanced fertilization, low-rate fertilization and conventional fertilization, which were separately practiced against the different tillage types. The experiment investigated compositions, mean mass diameters (MWD), geometrical mean diameters (GMD) and fraction dimension numbers (D) of soil aggregates in 0-40 cm soil and contents of organic carbon in 0-60 cm soil. The results indicated that: 1) The increased tillage intensity caused the reduced mechanical stability and content of soil aggregates and increased soil organic carbon loss. No-tillage or tillage rotation increased the MWD, GMD and contents of soil organic carbon and soil aggregates with diameters of more than 0.25 mm, but decreased D. Under the same fertilization treatment, the contents of soil aggregates with diameters of more than 0.25 mm were ranked in the order of NT-NT>NT-ST>NT-CT>ST-ST>CT-ST>CT-CT, and under the same tillage rotations, the soil aggregates were more stable with the balanced or low- rate fertilization than with the conventional fertilization. 2) Mathematical fractal dimension fitting of soil aggregates indicated that the fractal dimension numbers of soil aggregates ranged within 2.247-2.681 by dry sieving and 2.897-2.976 by wet sieving. In 0-30 cm soil, the fractal dimension numbers of soil aggregates were significantly lower under no-tillage or tillage rotation than under conventional tillage, and in 0-40 cm soil, the fractal dimensions of soil aggregates increased with soil depth, and tended to stabilize at the soil

  3. [Effects of Long-term Different Tillage Methods on Mercury and Methylmercury Contents in Purple Paddy Soil and Overlying Water].

    Science.gov (United States)

    Wang, Xin-yue; Tang, Zhen-ya; Zhang, Cheng; Wang, Yong-min; Wang, Ding-yong

    2016-03-15

    A long-term experiment was conducted to evaluate the effect of tillage methods on mercury and methylmercury contents in the purple paddy soil and overlying water. The experiment included five tillage methods: no-tillage and fallow in winter, ridge-no-tillage, compartments-no-tillage, paddy-upland rotation and conventional tillage. The results showed that the content of total mercury in soil had the maximum value in the 10-20 cm layer of no-tillage and fallow in winter, ridge-no-tillage and compartments-no-tillage, and the enrichment effect of no-tillage and fallow in winter was especially significant. The concentration of total mercury in soil of paddy-upland rotation and conventional tillage decreased with the increase of the soil depth, and paddy-upland rotation was specifically beneficial to the migration of mercury. The distribution of soil methylmercury was similar to that of total mercury in the soil profile. The methylation ability of soil mercury in the surface and middle of the soil profile was weaker than that at the bottom, while there was an opposite trend for other tillage methods. The concentrations of dissolved mercury ( DHg) and dissolved methylmercury ( DMeHg) in the overlaying water declined with the rise of the water depth in all treatments. The content of DHg in sediment porewater was related to the value of soil total mercury, and they had the same distribution in the soil profile. The content of DMeHg and its proportion accounted for DHg in porewater owned their largest value in the 10-20 cm layer of no-tillage and fallow in winter and ridge-no-tillage, where showed the lowest value of DMeHg in porewater for paddy-upland rotation and conventional tillage. And the percentage of DMeHg in DHg in porewater grew with the increase of soil depth of the latter two methods. Noticeably, the concentration of DMeHg and its proportion accounted for DHg in porewater were both higher than the values in overlying water for all tillage methods.

  4. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation

    Science.gov (United States)

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P.

    2011-01-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (pbiofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665

  5. Phosphorus fractions in an agricultural chronosequence under tillage regimes in the Cerrado area in Goiás, Brazil

    Directory of Open Access Journals (Sweden)

    Roni Fernandes Guareschi

    2016-04-01

    Full Text Available The increase in the amount and quantity of soil organic matter (SOM, as well as the use of phosphorus-based fertilizers in the superficial soil layer in areas under tillage regimes (TR, may affect phosphorus (P dynamics in the soil. Therefore, the aims of the present work were as follows: to evaluate the inorganic and organic fractions of P and its lability levels (labile, moderately labile, and moderately resistant in a Distroferric Red Latosol under tillage regimes (TR 3, 15, and 20 years after implementation, and to compare them with those of areas of native Cerrado and pastures. We also focus on analyzing the correlations of the P fractions in these areas with other soil attributes, such as total carbon and nitrogen levels, light organic matter (LOM, chemical and physical granulometric fractions of the SOM, maximum phosphate adsorption capacity (MPAC, and the remaining phosphorus (Prem. In each of these areas, samples were collected from the 0.0-0.05 and 0.05-0.10 m soil layers. An entirely randomized experimental design was used. After TR implementation, the constant use of phosphorus-based fertilizers as well as the incremental addition of SOM resulted in an increase in the levels of labile, moderate labile, and moderately resistant organic and inorganic P, with a tendency for total P accumulation to be mostly in the inorganic, moderately labile form. The native Cerrado soil presented high levels of labile and moderately labile inorganic P. Pasture areas presented the lowest levels of labile organic and inorganic P, as well as moderately labile and moderately resistant organic P. By principal component analysis (PCA, it was possible to observe alterations in all soil attributes and P levels of the fractions analyzed.

  6. Effect of tillage practices on soil properties and crop productivity in wheat-mungbean-rice cropping system under subtropical climatic conditions.

    Science.gov (United States)

    Alam, Md Khairul; Islam, Md Monirul; Salahin, Nazmus; Hasanuzzaman, Mirza

    2014-01-01

    This study was conducted to know cropping cycles required to improve OM status in soil and to investigate the effects of medium-term tillage practices on soil properties and crop yields in Grey Terrace soil of Bangladesh under wheat-mungbean-T. aman cropping system. Four different tillage practices, namely, zero tillage (ZT), minimum tillage (MT), conventional tillage (CT), and deep tillage (DT), were studied in a randomized complete block (RCB) design with four replications. Tillage practices showed positive effects on soil properties and crop yields. After four cropping cycles, the highest OM accumulation, the maximum root mass density (0-15 cm soil depth), and the improved physical and chemical properties were recorded in the conservational tillage practices. Bulk and particle densities were decreased due to tillage practices, having the highest reduction of these properties and the highest increase of porosity and field capacity in zero tillage. The highest total N, P, K, and S in their available forms were recorded in zero tillage. All tillage practices showed similar yield after four years of cropping cycles. Therefore, we conclude that zero tillage with 20% residue retention was found to be suitable for soil health and achieving optimum yield under the cropping system in Grey Terrace soil (Aeric Albaquept).

  7. Stalk and sucrose yield in response to nitrogen fertilization of sugarcane under reduced tillage

    Directory of Open Access Journals (Sweden)

    Caio Fortes

    2013-01-01

    Full Text Available The objective of this work was to evaluate the agroindustrial production of sugarcane (millable stalks and sucrose yield after successive nitrogen fertilizations of plant cane and ratoons in a reduced tillage system. The experiment was carried out at Jaboticabal, SP, Brazil, on a Rhodic Eutrustox soil, during four consecutive crop cycles (March 2005 to July 2009. Plant cane treatments consisted of N-urea levels (control, 40, 80, and 120 kg ha-1 N + 120 kg ha-1 P2O5 and K2O in furrow application. In the first and second ratoons, the plant cane plots were subdivided in N-ammonium nitrate treatments (control, 50, 100, and 150 kg ha-1 N + 150 kg ha-1 K2O as top dressing over rows. In the third ratoon, N fertilization was leveled to 100 kg ha-1 in all plots, including controls, to detect residual effects of previous fertilizations on the last crop's cycle. Sugarcane ratoon was mechanically harvested. A weighing truck was used to evaluate stalk yield (TCH, and samples were collected in the field for analysis of sugar content (TSH. Increasing N doses and meteorological conditions promote significant responses in TCH and TSH in cane plant and ratoons, in the average and accumulated yield of the consecutive crop cycles.

  8. Influence of cover crops on insect pests and predators in conservation tillage cotton.

    Science.gov (United States)

    Tillman, Glynn; Schomberg, Harry; Phatak, Sharad; Mullinix, Benjamin; Lachnicht, Sharon; Timper, Patricia; Olson, Dawn

    2004-08-01

    higher in cotton fields previously planted in crimson clover compared with control cotton fields for all combined sampling dates in 2001. Intercropping cotton in live strips of cover crop was probably responsible for the relay of G. punctipes onto cotton in these crimson clover fields. Density of O. insidiosus was not significantly different between cover crop and control cotton fields. Lady beetles seemed to relay from cover crops into cotton. Conservation of the habitat of fire ants during planting probably was responsible for the higher density of red imported fire ants observed in all conservation tillage cotton fields relative to control cotton fields. Reduction in the number of times in which economic thresholds for heliothines were exceeded in crimson clover and rye compared with control fields indicated that the buildup of predaceous fire ants and G. punctipes in these cover crops subsequently resulted in reduction in the level of heliothines in conservation tillage cotton with these cover crops compared with conventional tillage cotton without cover crops.

  9. Yield and tillering response of super hybrid rice Liangyoupeijiu to tillage and establishment methods

    Institute of Scientific and Technical Information of China (English)

    M.A.Badshah; Naimei; Tu; Yingbin; Zou; M.Ibrahim; Ke; Wang

    2014-01-01

    Tillering is an important agronomic trait for rice grain production. To evaluate yield and tillering response, Liangyoupeijiu(super hybrid rice) was grown in Hunan, China during 2011–2012 under different methods of tillage(conventional and no-tillage system) and crop establishment methods(transplanting at a spacing of 20 cm × 20 cm with one seedling per hill and direct seeding at a seeding rate of 22.5 kg ha-1). Our results revealed that, at maximum tillering(Max.) and at maturity(MA) stages, direct seeding(DS) resulted in 22% more tillers than transplanting(TP) irrespective of tillage system. Tiller mortality reached a peak between panicle initiation(PI) and booting(BT) stages, and was 16% higher under conventional tillage(CT) than under no-tillage(NT). Transplanting required 29% more time for the completion of tillering and less for DS. Tillering rate was 43% higher in DS than TP under either CT or NT. There was a positive correlation between panicle number per m2and maximum tiller number per m2, but not panicle-bearing tiller rate. The panicle bearing tiller rate was higher under DS than TP and higher under NT than CT. Tiller dry weight gradually increased up to heading(HD) stage, and was 14% higher under TP than DS. Leaf area(cm2tiller-1) gradually increased from Max. to HD stage and then decreased by 34% in conventional tillage transplanting(CTTP) and 45% in no-tillage transplanting(NTTP) from 12DAH–24DAH(days after heading), but was similar(35%) under DS under either CT or NT. Grain yield was higher under CTTP owing to the larger sink size(heavier panicle, more spikelets in per cm length of panicle) than under DS.

  10. Effects of Different Soil Tillage Intensity on Yields of Spring Barley

    Directory of Open Access Journals (Sweden)

    Alena Pernicová

    2014-01-01

    Full Text Available Within the period 1990–2012, effects of different soil tillage intensity on yields of spring barley were studied in a field experiment in the sugar-beet producing region (Ivanovice na Hané, Czech Republic. The forecrop of the spring barley was always sugar beet; following in three different crop rotations, after maize for silage, winter wheat and spring barley. Four variants of tillage were evaluated: Variant 1 – ploughing to the depth of 0.22 m; Variant 2 – shallow ploughing to the depth of 0.15 m; Variant 3 – no tillage; Variant 4 – shallow loosening soil to the depth of 0.10 m.Effect of different tillage on yields of spring barley was statistically insignificant. In all three crop rotations, the highest and the lowest average yields were obtained in Variant 2 (ploughing to the depth of 0.15 m and Variant 1 (ploughing to the depth of 0.22 m, respectively. Average yields in variants of soil tillage were these: variant 1 – 6.42 t.ha−1; variant 2 – 6.57 t.ha−1, variant 3 – 6.53 t.ha−1, variant 4 – 6.50 t.ha−1. The obtained results indicate that in these pedo-climatic conditions reduction of intensity soil tillage represented a very suitable alternative in case of growing spring barley after sugar beet as compared with the conventional method of tillage by ploughing to the depth of 0.22 m.

  11. Efeito prolongado de sistemas de preparo do solo com e sem cultivo de soqueira de cana crua em algumas propriedades físicas do solo Long-term effect of soil tillage systems with and without tillage of green-cane stump in soil physical properties

    Directory of Open Access Journals (Sweden)

    Fábio Camilotti

    2005-04-01

    tillage systems: (i control of stumps with two harrowing, subsoiling plus a levelling harrowing; (ii control of stumps with herbicide and a subsoiling; (iii control of stumps with herbicide; (iv control of stumps with herbicide, subsoiling plus a levelling harrowing. Secondary treatments were stump tillage systems: with and without stump tillage. The split-split-plot treatments were the evaluation time: before and after the 4th cane harvest. Total porosity, macroporosity, microporosity and bulk density were evaluated, besides the tillering and yield of the crop. After four harvests of green-cane there were reduction of the macroporosity with increase of the microporosity in the soil layers below 10 cm, and an increase of soil bulk density in the layer between 20 and 50 cm. Soil bulk density wasn't altered in a consistent way as affected by all treatments. Stump tillage promoted an increased in the macroporosity with decrease of the microporosity, and the inverse effect was observed after the harvest. Soil tillage system and stump tillage didn't affect both tillering and yield of green-cane.

  12. Manejo integrado da brusone em arroz no plantio direto e convencional Integrated rice blast disease management under direct drilling and conventional tillage

    Directory of Open Access Journals (Sweden)

    Gisele Barata da Silva

    2003-04-01

    Full Text Available O objetivo deste trabalho foi desenvolver medidas adequadas para o manejo da brusone (Pyricularia grisea, integrando a resistência da cultivar, práticas culturais e o controle químico. Foram realizados dois experimentos no campo, um no plantio direto (PD e outro no plantio convencional (PC, nos anos agrícolas 1998/1999 e 1999/2000. Os tratamentos, num total de 16, em esquema fatorial 2(4, consistiram de duas cultivares, Carajás e Primavera, duas doses de N, 30 e 60 kg ha-1, sementes não tratadas e tratadas com fungicida pyroquilon e parcelas sem pulverização e com duas pulverizações, na parte aérea das plantas, da mistura dos fungicidas benomyl e difenoconazole. A incidência e a severidade da brusone nas folhas e nas panículas foram significativamente menores no PD em relação ao PC. A cultivar Primavera apresentou maior suscetibilidade à brusone nas folhas, independentemente do sistema de plantio. A dose de 60 kg ha-1 de N contribuiu para aumento da brusone nas folhas, no PD e no PC, no segundo ano. As pulverizações com a mistura de fungicidas reduziram a severidade da brusone nas panículas nos dois sistemas de plantio. A produtividade foi maior no PC do que no PD e a cultivar Carajás foi superior à Primavera.The objective of this work was to develop adequate measures for rice blast (Pyricularia grisea management integrating cultivar resistance, cultural practices and chemical control. Two field experiments were carried out, one under direct drilling and the other one under conventional tillage, during two consecutive rice growing seasons, 1998/1999 and 1999/2000. The treatments totaling 16, in a factorial scheme 2(4, included two cultivars, Carajás and Primavera, two levels of N, 30 and 60 kg ha-1, nontreated seed and seed treated with pyroquilon, plots nonsprayed and sprayed with two applications of fungicide mixture benomyl and difenoconazole. The incidence and severity of leaf and panicle blast were significantly lower

  13. [Effects of long-term tillage and rice straw returning on soil nutrient pools and Cd concentration].

    Science.gov (United States)

    Tang, Wen-guang; Xiao, Xiao-ping; Tang, Hai-ming; Zhang, Hai-lin; Chen, Fu; Chen, Zhong-du; Xue, Jian-fu; Yang, Guang-li

    2015-01-01

    The objective of this study was to assess the effects of tillage and straw returning on soil nutrient and its pools, and soil Cd concentration, and to identify the strategies for rational tillage and remediation of Cd contaminated paddy fields. The experiment was established with no-tillage with straw retention (NTS) , rotary tillage with straw incorporation (RTS) , conventional plow tillage with straw incorporation (CTS), conventional plow tillage with straw removed ( CT) from 2005 to 2013. The results indicated that tillage and rice straw retention had a great impact on soil properties at 0-10 cm soil depth. The soil aeration, and concentrations of soil nutrient and soil Cd increased under CTS, CT, and RTS. Due to the shallow plow layers, soil nutrient pools and the Cd concentration in rice shoot decreased in long-term tilled soil. Under long-term no-tillage, the soil bulk, soil nutrient pools and Cd concentration in rice shoot increased, but concentrations of soil nutrients decreased. In addition, rice straw returning significantly increased the soil nutrient concentrations, cation exchange capacity, depth of plow layer, and soil nutrient pools. However, the Cd in the rice straw was also returned to the soil by rice straw returning, which would not benefit the remediation of soil Cd. Therefore, it is necessary to improve tillage and straw retention practices due to the disadvantages of long-term continuous single tillage method and rice straw returning practices. Some recommended managements (e.g., rotational tillage or subsoiling, reducing straw returning amount, and rotational straw returning) could be good options in enhancing soil fertility and remedying soil pollution.

  14. Soja em sucessão a adubos verdes no sistema de plantio direto e convencional em solo de Cerrado Soybean grown after green manures under no-tillage and conventional management systems in savannah soil

    Directory of Open Access Journals (Sweden)

    Marco Antonio Camillo de Carvalho

    2004-11-01

    Full Text Available A adubação verde é uma prática em que se procura preservar a qualidade do ambiente sem prescindir de produtividades elevadas das culturas e do retorno econômico. O objetivo deste trabalho foi avaliar o desempenho da cultura da soja em sucessão a adubos verdes nos sistemas de plantio direto e de preparo convencional do solo (uma gradagem pesada + duas gradagens leves. O experimento foi realizado num Latossolo Vermelho distrófico, originalmente sob vegetação de Cerrado em Selvíria, MS. Utilizaram-se quatro adubos verdes: mucuna-preta, guandu, crotalária e milheto, e área de pousio (vegetação espontânea. O cultivo de diferentes adubos verdes na primavera não influencia a produtividade da soja em sucessão, tanto em plantio direto quanto no sistema de preparo convencional do solo. Em ano com precipitação normal, o preparo convencional do solo proporciona maior produtividade da soja do que o sistema de plantio direto.The green manures aim to preserve the environment quality without discarding the largest yield of economic crops. The objective of this work was to evaluate the performance of soybean grown after green manures under no-tillage and conventional tillage (one disk harrow + two leveling harrow systems. The experiment was carried out in a Distrophic Red Latossol (typic Hapludox, covered by savannah vegetation, in Selvíria, MS, Brazil. The green manures utilized were: black velvet bean, pigeon pea, sunn hemp, millet and fallow area (spontaneous vegetation. The green manures previously grown in spring do not affect the soybean yield, in both no-tillage and conventional tillage systems. In year without dry periods, the conventional tillage provided greater grain yield.

  15. Sanitary state and yielding of spring barley as dependent on soil tillage method

    Directory of Open Access Journals (Sweden)

    Tomasz P. Kurowski

    2012-12-01

    Full Text Available The effects of traditional tillage cultivation (control treatment, no tillage (instead of tillage the soil was loosened with scruff, and direct sowing (with a special drill into unploughed soil on the health of spring barley cultivar. Klimek were compared in three-field crop rotation (field bean, winter wheat, spring barley in an experiment performed in the years 1997-1999 on the soil of a good wheat complex. The results of phytopathological observations carried out over the vegetation season are presented in the form of an injury index. The following diseases were recorded on spring barley: net blotch (Drechslera teres - net type and spot type, powdery mildew (Blumeria graminis, leaf blotch (Rhynchosporium secalis, eyespot (Tapesia yallundae and foot rot (fungal complex. Tillage system had no a significant influence on the occurrence of both types of net blotch. The intensity of powdery mildew and leaf blotch was the highest in the case of traditional tillage cultivation, and the lowest - in that of no tillage. Direct sowing was conductive to the development of eyespot, and no tillage - to foot rot. Fungi of the genus Fusarium, mainly F. culmorum, and the species Bipolaris sorokiniana, were isolated most frequently from infested stem bases. The weather conditions differed during spring barley grown in the three years analyzed. Mean air temperature in 1997 and 1998 was similar to the many-year average for the city of Olsztyn and its surroundings (13.8°C. In the vegetation season 1999 mean air temperature reached 14.6°C, and was considerably higher than the many-year average. Taking into account total precipitation and distribution in the three-year experimental cycle, 1997 and 1998 can be considered average, and 1999 - wet.The weather conditions had a significant effect on the intensity of all diseases observed on spring barley. The highest yield grain was obtained in the case of traditional tillage cultivation (on average 3.06 t·ha-1 for the

  16. Soil microbial community composition changes according to the tillage practice and plant development stage

    Science.gov (United States)

    Degrune, Florine; Dufrêne, Marc; Colinet, Gilles; Taminiau, Bernard; Hiel, Marie-Pierre; Daube, Georges; Vandenbol, Micheline

    2015-04-01

    Soil microorganisms are abundant and diverse and can have both beneficial and adverse effects on crop growth. Some, such as plant-growth-promoting rhizobacteria and mycorrhizae, are well known to favor crop productivity and plant health. They are notably involved in key processes such as improving plant nutrient acquisition, and they also play major roles in stimulating plant growth and protecting plants against pathogens by producing bioactive substances. Conversely, both agricultural practices and the plant development stage are known to influence the physical and chemical properties of the soil and hence the abundance and diversity of soil microorganisms. Here we investigated the impact of both tillage practice (conventional versus reduced tillage) and plant development stage (germination versus flowering) on the microbial community composition of an agricultural soil supporting a faba bean crop. Samples were taken at a depth of 15-20 cm from a silty soil in Belgium. For bacteria, we observed significant shifts in community composition according to both factors. Some changes were strongly related to the plant development stage and others to the tillage practice. Some taxa, including Gemmatimonas, Xanthomonadaceae, and Sinobacteraceae, showed a higher relative abundance at the flowering stage than at the germination stage, but no effect of tillage practice. Other taxa, including Flovobacterium, Chitinophaga, and Luteolibacter, showed a higher relative abundance under conventional tillage than under reduced tillage, but no change according to the stage of plant development. For fungi, significant shifts in community composition were observed according to the plant development stage. No effect of tillage practice was observed. The relative abundances of certain taxa, including Chaetomium and Clavicipitaceae, were higher during germination than during flowering, whereas other taxa, including Minimedusa and Teberdinia, showed a higher relative abundance during

  17. A multiple soil ecosystem services approach to evaluate the sustainability of reduced tillage systems

    Science.gov (United States)

    Pérès, Guénola; Menasseri, Safya; Hallaire, Vincent; Cluzeau, Daniel; Heddadj, Djilali; Cotinet, Patrice; Manceau, Olivier; Pulleman, Mirjam

    2017-04-01

    In the current context of soil degradation, reduced tillage systems (including reduced soil disturbance, use of cover crops and crop rotation, and improved organic matter management) are expected to be good alternatives to conventional system which have led to a decrease of soil multi-functionality. Many studies worldwide have analysed the impact of tillage systems on different soil functions, but overran integrated view of the impact of these systems is still lacking. The SUSTAIN project (European SNOWMAN programme), performed in France and the Netherlands, proposes an interdisciplinary collaboration. The goals of SUSTAIN are to assess the multi-functionality of soil and to study how reduced-tillage systems impact on multiple ecosystem services such as soil biodiversity regulation (earthworms, nematodes, microorganisms), soil structure maintenance (aggregate stability, compaction, soil erosion), water regulation (run-off, transfer of pesticides) and food production. Moreover, a socio-economic study on farmer networks has been carried out to identify the drivers of adoption of reduced-tillage systems. Data have been collected in long-term experimental fields (5 - 13 years), representing conventional and organic farming strategies, and were complemented with data from farmer networks. The impact of different reduced tillage systems (direct seeding, minimum tillage, non-inverse tillage, superficial ploughing) were analysed and compared to conventional ploughing. Measurements (biological, chemical, physical, agronomical, water and element transfer) have been done at several dates which allow an overview of the evolution of the soil properties according to climate variation and crop rotation. A sociological approach was performed on several farms covering different production types, different courses (engagement in reduced tillage systems) and different geographical locations. Focusing on French trials, this multiple ecosystem services approach clearly showed that

  18. The behavior of tillage tools with acute and obtuse lift angles

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspour-Fard, M. H.; Hoseini, S. A.; Agkhani, M. H.; Sharifi, A.

    2014-06-01

    An experimental investigation was conducted to study the trend of draft force against forward speed and working depth for a range of lift angles beyond acute angles for a simple plane tillage tool. The experiments were performed in an indoor soil bin facility equipped with a tool carriage and a soil preparation unit propelled by an integrated hydraulic power system. The system was also equipped with electronic instrumentation including an Extended Octagonal Ring Transducer (EORT) and a data logger. The factorial experiment (4 × 3 × 3) with three replications was used based on Randomized Complete Block Design (RCBD). The independent variables were lift angle of the blade (45, 70, 90 and 120 degree centigrade), forward speed (2, 4 and 6 km h{sup -}1) and working depth (10, 25 and 40 cm). The variance analysis for the draft force shows that all independent variables affect the draft force at 1% level of significance. The trend of the draft force against working depth and forward speed had almost a linear increase. However, the trend of the draft force against the lift angle is reversed for lift angles > 90 degree centigrade. This finding, conflicts with the results of analytical and numerical studies which extrapolate the results achieved for acute lift angles to obtuse lift angles and have not been reported experimentally. (Author)

  19. Effects of 24 Years of Conservation Tillage Systems on Soil Organic Carbon and Soil Productivity

    Directory of Open Access Journals (Sweden)

    Kenneth R. Olson

    2013-01-01

    Full Text Available The 24-year study was conducted in southern Illinois (USA on land similar to that being removed from Conservation Reserve Program (CRP to evaluate the effects of conservation tillage systems on: (1 amount and rates of soil organic carbon (SOC storage and retention, (2 the long-term corn and soybean yields, and (3 maintenance and restoration of soil productivity of previously eroded soils. The no-till (NT plots did store and retain 7.8 Mg C ha−1 more and chisel plow (CP −1.6 Mg C ha−1 less SOC in the soil than moldboard plow (MP during the 24 years. However, no SOC sequestration occurred in the sloping and eroding NT, CP, and MP plots since the SOC level of the plot area was greater at the start of the experiment than at the end. The NT plots actually lost a total of −1.2 Mg C ha−1, the CP lost −9.9 Mg C ha−1, and the MP lost −8.2 Mg C ha−1 during the 24-year study. The long-term productivity of NT compared favorably with that of MP and CP systems.

  20. The behavior of tillage tools with acute and obtuse lift angles

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Abbaspour-Fard

    2014-01-01

    Full Text Available An experimental investigation was conducted to study the trend of draft force against forward speed and working depth for a range of lift angles beyond acute angles for a simple plane tillage tool. The experiments were performed in an indoor soil bin facility equipped with a tool carriage and a soil preparation unit propelled by an integrated hydraulic power system. The system was also equipped with electronic instrumentation including an Extended Octagonal Ring Transducer (EORT and a data logger. The factorial experiment (4×3×3 with three replications was used based on Randomized Complete Block Design (RCBD. The independent variables were lift angle of the blade (45, 70, 90 and 120°, forward speed (2, 4 and 6 km h-1 and working depth (10, 25 and 40 cm. The variance analysis for the draft force shows that all independent variables affect the draft force at 1% level of significance. The trend of the draft force against working depth and forward speed had almost a linear increase. However, the trend of the draft force against the lift angle is reversed for lift angles >90. This finding, conflicts with the results of analytical and numerical studies which extrapolate the results achieved for acute lift angles to obtuse lift angles and have not been reported experimentally.

  1. Subsoiling and Ridge Tillage Alleviate the High Temperature Stress in Spring Maize in the North China Plain

    Institute of Scientific and Technical Information of China (English)

    TAO Zhi-qiang; SUI Peng; CHEN Yuan-quan; LI Chao; NIE Zi-jin; YUAN Shu-fen; SHI Jiang-tao; GAO Wang-sheng

    2013-01-01

    High temperature stress (HTS) on spring maize (Zea mays L.) during the iflling stage is the key factor that limits the yield increase in the North China Plain (NCP). Subsoiling (SS) and ridge tillage (R) were introduced to enhance the ability of spring maize to resist HTS during the iflling stage. The ifeld experiments were conducted during the 2011 and 2012 maize growing seasons at Wuqiao County, Hebei Province, China. Compared with rotary tillage (RT), the net photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll relative content (SPAD) of maize leaves was increased by 40.0, 42.6, 12.8, and 29.7% under SS, and increased by 20.4, 20.0, 5.4, and 14.2% under R, repectively. However, the treatments reduce the intercellular CO2 concentration under HTS. The SS and R treatments increased the relative water content (RWC) by 11.9 and 6.2%, and the water use efifciency (WUE) by 24.3 and 14.3%, respectively, compared with RT. The SS treatment increased the root length density and soil moisture in the 0-80 cm soil proifle, whereas the R treatment increased the root length density and soil moisture in the 0-40 cm soil proifle compared with the RT treatment. Compared with 2011, the number of days with temperatures33°C was more 2 d and the mean day temperature was higher 0.9°C than that in 2012, whereas the plant yield decreased by 2.5, 8.5 and 10.9%, the net photosynthetic rate reduced by 7.5, 10.5 and 18.0%, the RWC reduced by 3.9, 5.6 and 6.2%, and the WUE at leaf level reduced by 1.8, 5.2 and 13.1% in the SS, R and RT treatments, respectively. Both the root length density and the soil moisture also decreased at different levels. The yield, photosynthetic rate, plant water status, root length density, and soil moisture under the SS and R treatments declined less than that under the RT treatment. The results indicated that SS and R can enhance the HTS resistance of spring maize during the iflling stage, and led to higher yield by directly improving

  2. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity.

    Science.gov (United States)

    Sun, Bingjie; Jia, Shuxia; Zhang, Shixiu; McLaughlin, Neil B; Liang, Aizhen; Chen, Xuewen; Liu, Siyi; Zhang, Xiaoping

    2016-04-01

    Soil microbial community can vary with different agricultural managements, which in turn can affect soil quality. The objective of this work was to evaluate the effects of long-term tillage practice (no tillage (NT) and conventional tillage (CT)) and crop rotation (maize-soybean (MS) rotation and monoculture maize (MM)) on soil microbial community composition and metabolic capacity in different soil layers. Long-term NT increased the soil organic carbon (SOC) and total nitrogen (TN) mainly at the 0-5 cm depth which was accompanied with a greater microbial abundance. The greater fungi-to-bacteria (F/B) ratio was found in NTMS at the 0-5 cm depth. Both tillage and crop rotation had a significant effect on the metabolic activity, with the greatest average well color development (AWCD) value in NTMS soil at all three soil depths. Redundancy analysis (RDA) showed that the shift in microbial community composition was accompanied with the changes in capacity of utilizing different carbon substrates. Therefore, no tillage combined with crop rotation could improve soil biological quality and make agricultural systems more sustainable.

  3. Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).

    Science.gov (United States)

    Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R

    2016-03-01

    Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).

  4. [Effects of Tillage on Distribution of Heavy Metals and Organic Matter Within Purple Paddy Soil Aggregates].

    Science.gov (United States)

    Shi, Qiong-bin; Zhao, Xiu-lan; Chang, Tong-ju; Lu, Ji-wen

    2016-05-15

    A long-term experiment was utilized to study the effects of tillage methods on the contents and distribution characteristics of organic matter and heavy metals (Cu, Zn, Pb, Cd, Fe and Mn) in aggregates with different sizes (including 1-2, 0.25-1, 0.05-0.25 mm and tillage methods including flooded paddy field (FPF) and paddy-upland rotation (PR). The relationship between heavy metals and organic matter in soil aggregates was also analyzed. The results showed that the aggregates of two tillage methods were dominated by 0.05-0.25 mm and tillage methods did not significantly affect the contents of heavy metals in soils, but FPF could enhance the accumulation and distribution of aggregate, organic matter and heavy metals in aggregates with diameters of 1-2 mm and 0.25-1 mm. Correlation analysis found that there was a negative correlation between the contents of heavy metals and organic matter in soil aggregates, but a positive correlation between the amounts of heavy metal and organic matter accumulated in soil aggregates. From the slope of the correlation analysis equations, we could found that the sensitivities of heavy metals to the changes of soil organic matters followed the order of Mn > Zn > Pb > Cu > Fe > Cd under the same tillage. When it came to the same heavy metal, it was more sensitive in PR than in FPF.

  5. Assessment the effects of different tillage methods on chickpea yield and some yield components

    Directory of Open Access Journals (Sweden)

    Abdullah KASAP

    2013-06-01

    Full Text Available This study was carried out to determine the effects of different soil tillage methods on crop yield and some yield components in chickpea cultivation. For this reason, experimental trials were performed in Çayköy and Güzelpınar in Tokat-Kazova during 2008, 2009 and 2010. In this trials Gökçe cultivar of chickpea was used. Six different soil tillage methods were applied which were, mouldboard plough tillage in fall + cultivator in the spring + tooth harrow (Method A, mouldboard plough tillage in spring + cultivator + tooth harrow (Method B, rotary tiller in the spring (Method C, chisel in the spring + disc harrow and slider (Method D, strip tillage with router rotary hoe (Method E and direct seeding (Method F. Trials were set up in completely randomized block design with three replications. The results indicated that the highest average plant and seed yield per square meter was obtained with method A (470.74 g and 260.63 g and followed by method B (459.43 g and 254.18 g and method D (447.82 g and 247.23 g. In terms of factors evaluated; A, B and D methods were superior compared to the other methods.

  6. Seed and Saponin Production of Organic Quinoa (Chenopodium quinoa Willd. for different Tillage and Fertilization

    Directory of Open Access Journals (Sweden)

    Dimitrios BILALIS

    2012-05-01

    Full Text Available Field experiment was conducted to determine the effects of tillage systems and fertilization on growth, yield and quality of quinoa crop (Chenopodium quinoa Willd.. The experiment was laid out in a split-plot design with four replicates, two main plots [conventional tillage (CT and minimum tillage (MT] and three sub-plots (fertilization treatments: control, cow manure and compost. The soil porosity (45.5-49.75% and total nitrogen (0.144-0.173% were higher in soils subjected to MT system than under CT. In soil porosity, an interaction between fertilization and tillage system was found. The highest leaf area index (4.47-5.03, dry weight (8650-9290 kg ha-1 and root density (1.03-1.21 cm cm-3 were also found in MT. Moreover, there were significant differences between the organic fertilization treatments concerning the LAI, dry weight and root density. The highest seed yield (2485-2643 kg ha-1 and saponin content (0.42-0.45% were found in cow manure and compost treatments. Also, the highest saponin yield (7.70-12.05 kg ha-1 was found in the MT system. Saponin yield had positive and significant correlation with total N (r=0.866. In quinoa measurements, an interaction between fertilization and tillage system was not found. The present results indicated that MT and organic fertilization increase saponin yield of quinoa.

  7. INFLUENCE OF SOIL TILLAGE AND LOW HERBICIDE DOSES ON WEED POPULATIONS AND SPRING BARLEY YIELD

    Directory of Open Access Journals (Sweden)

    Mira Knežević

    2003-06-01

    Full Text Available The influence of different tillage variants and low herbicide doses of triasulfuron & chlortoluron mixture (Dicuran forte 80 WP on weed populations and crop yield were studied in spring barley on lessive pseudogley soil in North-Eastern Croatia at the Čačinci locality in 1999. Tillage had no significant influence on annual broad-leaved weed biomass production, which was 22 kg ha-1 , on the average. Chisel ploughing and disk harrowing significantly increased perennial weed biomass by 21 and 44 times, respectively compared to mouldboard ploughing. The average efficacy of total weed biomass control was 95, 89 and 81% at full, onehalf and one-quarter of the recommended herbicide dose, respectively and did not differ very much between tillage treatments. Both reduced herbicide doses ensured very good biomass control of the most abundant weed populations such as Ambrosia artemisiifolia L., Chenopodium album L., Ch. polyspermum L. and Polygonum lapathifolium L. No significant tillage and herbicide dose effects were recorded in barley yields, which ranked from 4.93 t ha-1 in chisel ploughing to 4.48 t ha-1 in disk harrowing. These results suggested a possibility of mouldboard ploughing substitution with reduced tillage practices on lessive pseudogley soil and herbicide dose reduction of triasulfuron & chlortoluron mixture to 50% or more in spring barley.

  8. Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.

    Directory of Open Access Journals (Sweden)

    Seyed Z. Hosseini

    2016-03-01

    Full Text Available Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.. The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1 were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1 also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1.

  9. Carbon dioxide emissions under different soil tillage systems in mechanically harvested sugarcane

    Science.gov (United States)

    Silva-Olaya, A. M.; Cerri, C. E. P.; La Scala, N., Jr.; Dias, C. T. S.; Cerri, C. C.

    2013-03-01

    Soil tillage and other methods of soil management may influence CO2 emissions because they accelerate the mineralization of organic carbon in the soil. This study aimed to quantify the CO2 emissions under conventional tillage (CT), minimum tillage (MT) and reduced tillage (RT) during the renovation of sugarcane fields in southern Brazil. The experiment was performed on an Oxisol in the sugarcane-planting area with mechanical harvesting. An undisturbed or no-till (NT) plot was left as a control treatment. The CO2 emissions results indicated a significant interaction (p residues to the adoption of green cane harvesting. The CO2 emissions in the CT system could respond to a loss of 80% of the potential soil C accumulated over one year as result of the adoption of mechanized sugarcane harvesting. Meanwhile, soil tillage during the renewal of the sugar plantation using RT and MT methods would result in low impact, with losses of 12% and 2% of the C that could potentially be accumulated during a one year period.

  10. Cowpea production as affected by dry spells in no-tillage and conventional crop systems

    Directory of Open Access Journals (Sweden)

    Rômulo Magno Oliveira de Freitas

    2013-12-01

    Full Text Available The objective of this study was to evaluate the effect of different periods of water shortage in no-tillage and conventional crop systems on cowpea yield components and grain yield in the Mossoró-RN region. For this, an experiment was conducted using two tillage systems (conventional and no-tillage subjected to periods of irrigation suspension (2; 6; 10; 14; 18 end 22 days, started at flowering (34 days after sowing. Plants were harvested 70 days after sowing, and the studied variables were: Pods length (CV, number of grains per pod (NGV, number of pods per plant (NPP, the hundred grains weight (PCG and grain yield (kg ha-1. The no-tillage system is more productive than the conventional under both irrigation and water stress treatments. The water stress length affected grain yield and all yield components studied in a negative way, except for the hundred grains weight. Among the systems studied, the no-tillage provides higher values for the yield components, except the hundred grains weight.

  11. Influence of soil tillage and weed suppression on winter wheat yield

    Directory of Open Access Journals (Sweden)

    Mikić Branimir M.

    2011-01-01

    Full Text Available Modern soil tillage systems based on different tools than mouldboard plough have very often stronger weed occurrence, which can be a serious problem for achieving high yields. An obvious solution for weed suppression is a herbicide, whose improper use can deteriorate environment and lead toward serious ecological problems. In order to investigate the interaction between soil tillage and herbicide, trial was set up in Valpovo in seasons 2008/09 - 2010/11. Two soil tillage systems (CT-conventional tillage, based on mouldboard ploughing, and CH-chiselling and disk harrowing, without ploughing and five herbicide treatments (NH-control, no herbicides; H10- recommended dose of Herbaflex (2 l ha-1; H05-half dose of Herbaflex; F10- recommended dose of Fox (1.5 l ha-1; and F05-half dose of Fox were applied to winter wheat crops. Results showed similar effects of soil tillage on the winter wheat yield, whereas different herbicide dosages showed similar weed suppression and influence on winter wheat yield.

  12. Macro- and microscale gaseous diffusion in a Stagnic Luvisol as affected by compaction and reduced tillage

    Directory of Open Access Journals (Sweden)

    A. SIMOJOKI

    2008-12-01

    Full Text Available Intensification of mechanical agriculture has increased the risk for soil compaction and deformation. Simultaneously, reduced tillage practices have become popular due to energy saving and environmental concerns, as they may strengthen and improve the functioning of structured soil pore system. Soil aeration is affected by both compaction and reduced tillage through changes in soil structure and in the distribution of easily decomposable organic matter. We investigated whether a single wheeling by a 35 000 kg sugar-beet harvester in a Stagnic Luvisol derived from loess near Göttingen, Germany, influenced the gas transport properties (air permeability, gaseous macro- and microdiffusivities, oxygen diffusion rate in the topsoil and subsoil samples, and whether the effects were different between long-term reduced tillage and mouldboard ploughing. Poor structure in the topsoil resulted in slow macro- and microscale gas transport at moisture contents near field capacity. The macrodiffusivities in the topsoil under conventional tillage were slower compared with those under conservation treatment, and soil compaction reduced the diffusivities by about half at the soil depths studied. This shows that even one pass with heavy machinery near field capacity impairs soil structure deep into the profile, and supports the view that reduced tillage improves soil structure and aeration compared with ploughing, especially in the topsoil.;

  13. Influence of Tillage Practices and Crop Type on Soil CO2 Emissions

    Directory of Open Access Journals (Sweden)

    Darija Bilandžija

    2016-01-01

    Full Text Available Nonsustainable agricultural practices often lead to soil carbon loss and increased soil carbon dioxide (CO2 emissions into the atmosphere. A research study was conducted on arable fields in central lowland Croatia to measure soil respiration, its seasonal variability, and its response to agricultural practices. Soil C-CO2 emissions were measured with the in situ static chamber method during corn (Zea mays L. and winter wheat (Triticum aestivum L. growing seasons (2012 and 2013, n = 288 in a field experiment with six different tillage treatments. During corn and winter wheat growing season, average monthly soil C-CO2 emissions ranged, respectively, from 6.2–33.6 and 22.1–36.2 kg ha−1 day−1, and were decreasing, respectively, from summer > spring > autumn and summer > autumn > spring. The same tillage treatments except for black fallow differed significantly between studied years (crops regarding soil CO2 emissions. Significant differences in soil C-CO2 emissions between different tillage treatments with crop presence were recorded during corn but not during winter wheat growing season. In these studied agroecological conditions, optimal tillage treatment regarding emitted C-CO2 is plowing to 25 cm along the slope, but it should be noted that CO2 emissions involve a complex interaction of several factors; thus, focusing on one factor, i.e., tillage, may result in a lack of consistency across studies.

  14. Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv. 'Cogshall') in relation to carotenoid content.

    Science.gov (United States)

    Rosalie, Rémy; Joas, Jacques; Deytieux-Belleau, Christelle; Vulcain, Emmanuelle; Payet, Bertrand; Dufossé, Laurent; Léchaudel, Mathieu

    2015-07-20

    The effects of a reduction in water supply during fruit development and postharvest fruit ripening on the oxidative status and the antioxidant defense system were studied in the mango fruit (Mangifera indica L.) cv. Cogshall. Changes in non-enzymatic (ascorbate) and enzymatic (SOD, CAT, APX, MDHAR, DHAR and GR) antioxidants, as well as oxidative parameters (H2O2 and MDA) and major carotenoids, were measured in unripe and ripe fruits from well-irrigated and non-irrigated trees. Under non-limiting water supply conditions, ripening induced oxidation as a result of the production of ROS and decreased ascorbate content. Antioxidant enzymatic systems were activated to protect fruit tissues and to regenerate the ascorbate pool. The carotenoid pool, mainly represented by β-carotene and esterified violaxanthine isomers, accumulated naturally during mango ripening. The suppression of irrigation decreased fruit size and induced accumulation of ABA and of its storage form, ABA-GE, in fruit pulp from the earliest harvest. It also increased oxidation, which was observable by the high levels of ascorbate measured at the early stages at harvest, and by the delay in the time it took to reach the pseudo constant carotene-to-xanthophyll ratio in ripe fruits. Nevertheless, differences between the irrigation treatments on the antioxidant system in ripe fruits were not significant, mainly because of the drastic changes in this system during ripening. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Indicadores da acidez do solo para recomendação de calagem no sistema plantio direto Soil acidity indicators for liming in no-tillage systems

    Directory of Open Access Journals (Sweden)

    Margarete Nicolodi

    2008-02-01

    the yield response to different soil acidity levels and layers in no-tillage systems. Six plantations were sampled in the Planalto region of the state of Rio Grande do Sul, Brazil, with very distinct soil acidity conditions, and that have been cultivated in no-tillage system over a long period. Soil samples were taken from two soil layers (0-10 and 0-20 cm and yields determined at 20 sites of each plantation. Based on regressions between relative grain yield and soil acidity indexes, it can be concluded that none of the soil acidity indicators individually can properly describe crop yield in the no-tillage system. Though significant, the relations between soil acidity indexes and crop yield were low and similar, independent of the soil layer. Thus, either soil layer can be used for liming diagnostic in no-tillage.

  16. [Effects of conservation tillage on soil CO2 and N2O emission during the following winter-wheat season].

    Science.gov (United States)

    Pan, Ying; Hu, Zheng-Hu; Wu, Yang-Zhou; Sun, Yin-Yin; Sheng, Lu; Chen, Shu-Tao; Xiao, Qi-Tao

    2014-07-01

    In order to study the effect of conservation tillage on soil CO2 and N2O emissions in the following crop-growing season, field experiments were conducted in the winter wheat-growing season. Four treatments were conventional tillage (T), no-tillage with no straw cover (NT), no-tillage with straw cover (NTS), and conventional tillage with straw incorporation (TS), respectively. The CO2 and N2O fluxes were measured using a static chamber-gas chromatograph technique. The results showed that in the following winter wheat-growing season, conservation tillage did not change the seasonal pattern of CO2 and N2O emission fluxes from soil, and had no significant effect on crop biomass. Conservation tillage significantly reduced the accumulative amount of CO2 and N2O. Compared with the T treatment, the accumulative amount of CO2 under TS, NT, and NTS treatments were reduced by 5.95% (P = 0.132), 12.94% (P = 0.007), and 13.91% (P = 0.004), respectively, and the accumulative amount of N2O were significantly reduced by 31.23% (P = 0.000), 61.29% (P = 0.000), and 33.08% (P = 0.000), respectively. Our findings suggest that conservation tillage significantly reduced CO2 and N2O emission from soil in the following winter wheat-growing season.

  17. [Effects of tillage conversion on carbon sequestration capability of farmland soil doubled cropped with wheat and corn].

    Science.gov (United States)

    Han, Bin; Kong, Fan-Lei; Zhang, Hai-Lin; Chen, Fu

    2010-01-01

    By the methods of field experiment, laboratory analysis, and in situ investigation, this paper studied the effects of different tillage conversion on the carbon sequestration capability of farmland soil doubled cropped with wheat and corn. Compared with conventional tillage (CTA), conservation tillage practices benefited the accumulation of soil organic carbon, among which, no-tillage plus straw returning (NTS) increased the organic carbon accumulation in 0-5 cm soil layer by 18.0%, rotary tillage plus straw returning (RTS) increased this accumulation in 0-5 and 5-10 cm soil layers by 17.6% and 25.0%, respectively, and conventional tillage plus straw returning (CTS) increased the organic carbon in 10-30 cm soil layer by 31.8%. After the conversion from CTA to NTS, the carbon emission from farm operations decreased by 54.3 kg x hm(-2) x a(-1); while the conversion from CTA to CTS and RTS resulted in an increase of this emission by 46.9 kg x hm(-2) x a(-1) and 34.4 kg x hm(-2) x a(-1), respectively. Considering of the accumulation of soil organic carbon and the carbon emission from farm operations, it could be concluded that the conversion from CTA to conservation tillage changed this farmland soil from carbon source to carbon sink, and the RTS among the three conservation tillage modes resulted in the highest soil carbon sequestration (1011.1 kg x hm(-2) x a(-1)).

  18. Long-Term Effects of Rotational Tillage On Visual Evaluation of Soil Structure, Soil Quality and Crop Yield

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, Richard; Deen, Bill

    L.) and R8, (C-C-S-S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard plowing, MP. Topsoil...

  19. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced-Tillage Systems for Arable Crops

    NARCIS (Netherlands)

    Melander, B.; Munier-Jolain, N.M.; Charles, R.; Wirth, J.; Schwarz, J.; Weide, van der R.Y.; Bonin, L.; Jensen, P.K.; Kudsk, P.K.

    2013-01-01

    Noninversion tillage with tine- or disc-based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape, and maize in Europe. However, new regulations on pesticide use might hinder further expansion of reduc

  20. Irrigation and cultivar effects in no-till, cover crop, and conventional tillage systems in Arkansas Cotton.

    Science.gov (United States)

    This field experiment was conducted in association with a long term tillage study established in fall 2007 at the Judd Hill Foundation Research Farm in Northeast Arkansas to assess agronomic and environmental impacts of conservation tillage systems. In component studies in 2016 we evaluated performa...

  1. Evaluation and Comparison of Different Tillage Methods in Improvement of Salt-affected Soils in Wheat Production

    Directory of Open Access Journals (Sweden)

    M Roozbeh

    2015-07-01

    Full Text Available One of the main strategy for controlling salt-affected soils is to implement proper tillage method. A field experiments was conducted to determine the effect of different tillage methods on salt distribution and wheat yield in saline-sodic soil. The experiment was laid out according to randomized complete block design with three replications. Treatments were studied in the experiment including conventional tillage (T1, reduced tillage (T2, subsoiling+ conventional tillage (T3, subsoiling+reduced tillage (T4, subsoiling+power harrow (T5 and plowing without moldboard (T6. Electrical conductivity (EC Ph of the soil sodium adsorption ratio (SAR and cone index (CI were measured for all treatments. The results showed that the T3 and T4 treatments compared to T1, caused a significant salinity reduction by 17.8 and 10.3%, respectively. The SAR was influenced by different tillage systems. The maximum SAR was observed for T1 system and T2 relative to T1 system reduced SAR by 4.1%. The results also revealed that SAR in T3 system was significantly less than T1 (23.4% and T2 (20.1% systems. Different tillage systems had significant effects on wheat yield.

  2. Minimum tillage and vegetative barrier effects on crop yields in relation to soil water content in the Central Kenya highlands

    NARCIS (Netherlands)

    Guto, S.N.; Ridder, de N.; Giller, K.E.; Pypers, P.; Vanlauwe, B.

    2012-01-01

    The sub-humid zone of Central Kenya is water deficient due to regular intra-seasonal dry spells that constrain rain-fed crop production. A study was initiated to investigate the effects of minimum tillage and vegetative barriers on soil and water conservation and crop yield. There were two tillage p

  3. Tillage and vegetative barrier effects on soil conservation and short-term economic benefits in the Central Kenya highlands

    NARCIS (Netherlands)

    Guto, S.N.; Pypers, P.; Vanlauwe, B.; Ridder, de N.; Giller, K.E.

    2011-01-01

    Minimum tillage and vegetative barriers can conserve soil and water resources in the steep-sloping highlands of East Africa but there has been little adoption by smallholder farmers. Soil conservation efficiency and short-term economic benefits provided by tillage and vegetative barriers were assess

  4. Qualidade e rendimento de sementes de soja produzidas sob cultivo orgânico em plantio direto e preparo reduzido do solo = Quality and production of soybean seeds in no tillage and reduced tillage soil systems

    Directory of Open Access Journals (Sweden)

    Márcia de Medeiros

    2006-01-01

    Full Text Available O objetivo deste trabalho foi determinar a qualidade das sementes de soja em cultivo orgânico sob dois sistemas de manejo do solo, plantio direto e preparo reduzido do solo (escarificação + gradagem na região Oeste do Paraná. Foram utilizados 6 tratamentos para o controle de pragas mais uma testemunha (1.Baculovirus anticarsia; 2.Baculovirus anticarsia + Extrato de Cinamomo; 3.Extrato de Cinamomo; 4.Bacillus thurigiensis; 5.Óleo de Neen; 6.Composto A; 7.Testemunha. Os parâmetros avaliados foram teor de água, peso de100 sementes, porcentagem de germinação, vigor determinado pelo envelhecimento acelerado e teste de tetrazólio e também rendimento de sementes. Os dados obtidos foram analisados pelo teste de Scott – Knott a 5% de significância e permitiram concluir que o alto grau dedeterioração das sementes, provocado pela baixa eficiência dos tratamentos, contribuiu para o decréscimo da qualidade. O sistema de manejo do solo não influenciou no rendimento de sementes e o tratamento com Composto A apresentou maior rendimento.This trial aimed at determining soybean seeds quality in an organic production under two soil management systems: no tillage and reduced tillage (scarification + grading in western region of the State of Paraná. Six treatments were designed to control some weeds plus one check treatment (1.Baculovirus anticarsia; 2.Baculovirus anticarsia +cinnamon extract; 3.Cinnamon extract; 4.Baculovirus thurigiensis; 5.Neen oil; 6.Composite A; 7.Check treatment. Parameters as water content, weight of one hundred seeds, seedling percentage, seeds vigor determined by fast aging, triphenyl tetrazolium chloride andseedling yield were evaluated. The data were analyzed by the Scott Knott test – 5% of significance – which allowed to conclude that the high level of seedling deterioration, derived from the low efficiency of treatments, contributed to the decreased seed quality. However, the soil tillage system did not influence

  5. To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils?

    Science.gov (United States)

    Mangalassery, Shamsudheen; Sjögersten, Sofie; Sparkes, Debbie L; Sturrock, Craig J; Craigon, Jim; Mooney, Sacha J

    2014-04-04

    Soil tillage practices have a profound influence on the physical properties of soil and the greenhouse gas (GHG) balance. However there have been very few integrated studies on the emission of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and soil biophysical and chemical characteristics under different soil management systems. We recorded a significantly higher net global warming potential under conventional tillage systems (26-31% higher than zero tillage systems). Crucially the 3-D soil pore network, imaged using X-ray Computed Tomography, modified by tillage played a significant role in the flux of CO2 and CH4. In contrast, N2O flux was determined mainly by microbial biomass carbon and soil moisture content. Our work indicates that zero tillage could play a significant role in minimising emissions of GHGs from soils and contribute to efforts to mitigate against climate change.

  6. THE INFLUENCE OF MINIMUM TILLAGE SYSTEMS UPON THE SOIL PROPERTIES, YIELD AND ENERGY EFFICIENCY IN SOME ARABLE CROPS

    Directory of Open Access Journals (Sweden)

    Teodor RUSU

    2006-05-01

    Full Text Available The paper presents the influence of the conventional ploughing tillage technology in comparison with the minimum tillage, upon the soil properties, weed control, yield and energy efficiency in the case of maize (Zea mays L., soyabean (Glycine hispida L. and winter wheat (Triticum aestivum L. in a three years crop rotation. For all cultures within the crop rotation, the weed encroachment is maximum for the disc harrow and rotary harrow soil tillage, followed by the chisel and paraplow. The weed encroachment is minimum for the conventional ploughing tillage technology. The results of investigations showed that the yield is a conclusion soil tillage systems influence on soil properties, plant density assurance and on weed control.

  7. Self-Affinity, Self-Similarity and Disturbance of Soil Seed Banks by Tillage.

    Science.gov (United States)

    Dias, Luís S

    2013-07-05

    Soil seed banks were sampled in undisturbed soil and after soil had been disturbed by tillage (tine, harrow or plough). Seeds were sorted by size and shape, and counted. Size-number distributions were fitted by power law equations that allowed the identification of self-similarity and self-affinity. Self-affinity and thus non-random size-number distribution prevailed in undisturbed soil. Self-similarity and thus randomness of size-number distribution prevailed after tillage regardless of the intensity of disturbance imposed by cultivation. The values of fractal dimensions before and after tillage were low, suggesting that short-term, short-range factors govern size-number distribution of soil seed banks.

  8. Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage

    DEFF Research Database (Denmark)

    Peltrea, Clément; Nyord, Tavs; Bruun, Sander

    2015-01-01

    for different organic wastes influenced the specific draught. Overall, the decrease in draught force could lead to a decrease in tractor fuel consumption for soil tillage of up to 25% for compost applied at an accelerated rate and up to 14% for compost applied at a normal rate. This reduced fuel consumption......Abstract Soil application of organic waste products (OWP) can maintain or increase soil organic carbon (SOC) content, which in turn could lead to increased porosity and potentially to reduced energy use for soil tillage. Only a few studies have addressed the effect of SOC content on draught force...... for soil tillage, and this still needs to be addressed for fields that receive diverse types of organic waste of urban, agricultural and agro-industrial origin. The objective of this study was to determine the effect of changes in SOC induced by repeated soil application of OWP on draught force for soil...

  9. Effect of reduced herbicide amounts with minimum tillage systems on weed infestation

    Directory of Open Access Journals (Sweden)

    Schwarz, Jürgen

    2016-02-01

    Full Text Available Minimum tillage, mainly soil cultivation without ploughing is used in Germany on 40% of arable land. In a long-term field trial in Dahnsdorf (federal state of Brandenburg, Germany the impact of reduced tillage on weed occurrence is investigated. At the same time reduced herbicide amounts are also tested. The use of glyphosate for seedbed preparation is not always necessary. The former crop rotation (67% cereals or 50% cereals has even seven years later a big influence on the weed occurrence. The weed occurrences are lower for the crop rotation with the former 50% cereals. After four years the minimum tillage shows a larger effect of weed infestation. For the non ploughed variants it is higher. If reduced herbicide amounts are used at the same time the effect will increase even more. Results for Apera spica-venti are similar, although the conditions for germination in autumn are also relevant.

  10. Assessing Tillage Effects on Soil Hydraulic Properties via Inverse Parameter Estimation using Tension Infiltrometry

    Science.gov (United States)

    Schwen, Andreas; Bodner, Gernot; Loiskandl, Willibald

    2010-05-01

    Hydraulic properties are key factors controlling water and solute movement in soils. While several recent studies have focused on the assessment of the spatial variability of hydraulic properties, the temporal dynamics are commonly not taken into account, primarily because its measurement is costly and time-consuming. However, there is extensive empirical evidence that these properties are subject to temporal changes, particularly in the near-saturated range where soil structure strongly influences water flow. One main source of temporal variability is soil tillage. It can improve macroporosity by loosening the soil and thereby changing the pore-size distribution. Since these modifications are quite unstable over time, the pore space partially collapses after tillage. This effect should be largest for conventional tillage (CT), where the soil is ploughed after harvest every year. Assessing the effect of different tillage treatments on the temporal variability of hydraulic properties requires adequate measurement techniques. Tension infiltrometry has become a popular and convenient method providing not only the hydraulic conductivity function but also the soil rentention properties. The inverse estimation of parameters from infiltration measurements remains challenging, despite some progress since the first approach of Šimůnek et al. (1998). Measured data like the cumulative infiltration, the initial and final volumetric water content, as well as independently measured retention data from soil core analysis with laboratory methods, have to be considered to find an optimum solution describing the soil's pore space. In the present study we analysed tension infiltration measurements obtained several times between August 2008 and December 2009 on an arable field in the Moravian Basin, Lower Austria. The tillage treatments were conventional tillage including ploughing (CT), reduced tillage with chisel only (RT), and no-tillage treatment using a direct seeding

  11. Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system.

    Science.gov (United States)

    Zhu, Liqun; Hu, Naijuan; Yang, Minfang; Zhan, Xinhua; Zhang, Zhengwen

    2014-01-01

    Soil management practices, such as tillage method or straw return, could alter soil organic carbon (C) contents. However, the effects of tillage method or straw return on soil organic C (SOC) have showed inconsistent results in different soil/climate/cropping systems. The Yangtze River Delta of China is the main production region of rice and wheat, and rice-wheat rotation is the most important cropping system in this region. However, few studies in this region have been conducted to assess the effects of different tillage methods combined with straw return on soil labile C fractions in the rice-wheat rotation system. In this study, a field experiment was used to evaluate the effects of different tillage methods, straw return and their interaction on soil total organic C (TOC) and labile organic C fractions at three soil depths (0-7, 7-14 and 14-21 cm) for a rice-wheat rotation in Yangzhong of the Yangtze River Delta of China. Soil TOC, easily oxidizable C (EOC), dissolved organic C (DOC) and microbial biomass C (MBC) contents were measured in this study. Soil TOC and labile organic C fractions contents were significantly affected by straw returns, and were higher under straw return treatments than non-straw return at three depths. At 0-7 cm depth, soil MBC was significantly higher under plowing tillage than rotary tillage, but EOC was just opposite. Rotary tillage had significantly higher soil TOC than plowing tillage at 7-14 cm depth. However, at 14-21 cm depth, TOC, DOC and MBC were significantly higher under plowing tillage than rotary tillage except for EOC. Consequently, under short-term condition, rice and wheat straw both return in rice-wheat rotation system could increase SOC content and improve soil quality in the Yangtze River Delta.

  12. Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system.

    Directory of Open Access Journals (Sweden)

    Liqun Zhu

    Full Text Available Soil management practices, such as tillage method or straw return, could alter soil organic carbon (C contents. However, the effects of tillage method or straw return on soil organic C (SOC have showed inconsistent results in different soil/climate/cropping systems. The Yangtze River Delta of China is the main production region of rice and wheat, and rice-wheat rotation is the most important cropping system in this region. However, few studies in this region have been conducted to assess the effects of different tillage methods combined with straw return on soil labile C fractions in the rice-wheat rotation system. In this study, a field experiment was used to evaluate the effects of different tillage methods, straw return and their interaction on soil total organic C (TOC and labile organic C fractions at three soil depths (0-7, 7-14 and 14-21 cm for a rice-wheat rotation in Yangzhong of the Yangtze River Delta of China. Soil TOC, easily oxidizable C (EOC, dissolved organic C (DOC and microbial biomass C (MBC contents were measured in this study. Soil TOC and labile organic C fractions contents were significantly affected by straw returns, and were higher under straw return treatments than non-straw return at three depths. At 0-7 cm depth, soil MBC was significantly higher under plowing tillage than rotary tillage, but EOC was just opposite. Rotary tillage had significantly higher soil TOC than plowing tillage at 7-14 cm depth. However, at 14-21 cm depth, TOC, DOC and MBC were significantly higher under plowing tillage than rotary tillage except for EOC. Consequently, under short-term condition, rice and wheat straw both return in rice-wheat rotation system could increase SOC content and improve soil quality in the Yangtze River Delta.

  13. Design and field experiment of power consumption measurement system for high stubble returning and tillage machine%高茬秸秆还田耕整机功耗检测系统设计与试验

    Institute of Scientific and Technical Information of China (English)

    张居敏; 贺小伟; 夏俊芳; 张顺; 翟建波; 桂鹏; 张彪

    2014-01-01

    为检测高茬秸秆还田耕整机田间作业功耗,根据功耗检测原理,采用LabVIEW软件,并结合NI数据采集卡、动态扭矩传感器和电感式接近开关等组成的硬件平台,设计了功耗检测系统。标定试验表明,该系统所检测的0~2000 N·m范围内扭矩:最大绝对误差为5.367 N·m,此时相对误差为0.27%;所检测的转速:最大绝对误差为0.261 r/min,此时相对误差为0.073%。以耕深、刀辊转速、机组前进速度为影响因子设计了田间正交试验,结果表明:影响高茬秸秆还田耕整机作业功率消耗的首要因素为耕深,其次为机组前进速度,刀辊转速对功率消耗的影响较小;在满足耕整质量的前提下,同时考虑耕整机作业效率,其较优作业参数为:刀辊转速330 r/min,耕深185 mm,机组前进速度3.36 km/h,其平均作业功耗为52.52 kW,秸秆埋覆率达到96.2%。研究结果为高茬秸秆还田耕整机的节能降耗、动力合理匹配和结构优化设计等工作提供参考依据。%Crop residues incorporated in farmland by mechanical technique could improve soil physics properties and fertility, increasing the yield and revenue, which was an important measure of developing the ecological agriculture and achieving agriculture sustained development. As a kind of soil cultivating machine, the high stubble returning rotary tiller could finish burying the straw, pulverizing the soil clods, and making the soil surface level only by one pass. The machine had several tillage advantages, such as wide tillage width, deep tillage depth, high straw burying rate, high operational efficiency, easy tillage operation and so on. In addition, it could also cut down on tillage time and save labors, which showed great superiority in the field of the straw returning back to farmland machine. The helical rotary blade roller was the main tillage part of the machine, and its power consumption was an

  14. Impact of Tillage and Fertilizer Application Method on Gas Emissions in a Corn Cropping System

    Institute of Scientific and Technical Information of China (English)

    K. SMITH; D. WATTS; T. WAY; H. TORBERT; S. PRIOR

    2012-01-01

    Tillage and fertilization practices used in row crop production are thought to alter greenhouse gas ernissions from soil.This study was conducted to determine the impact of fertilizer sources,land management practices,and fertilizer placement methods on greenhouse gas (CO2,CH4,and N2O) emissions.A new prototype implement developed for applying poultry litter in subsurface bands in the soil was used in this study.The field site was located at the Sand Mountain Research and Extension Center in the Appalachian Plateau region of northeast Alabama,USA,on a Hartsells fine sandy loam (fine-loamy,siliceous,subactive,thermic Typic Hapludults).Measurements of carbon dioxide (CO2),methane (CH4),and nitrous oxide (N2O) emissions followed GRACEnet (greenhouse gas reduction through agricultural carbon enhancement network) protocols to assess the effects of different tillage (conventional vs.no-tillage) and fertilizer placement (subsurface banding vs.surface application) practices in a corn (Zea mays L.) cropping system.Fertilizer sources were urea-ammonium nitrate (UAN),ammonium nitrate (AN) and poultry litter (M) applied at a rate of 170 kg ha -1 of available N.Banding of fertilizer resulted in the greatest concentration of gaseous loss (CO2 and N2O) compared to surface applications of fertilizer.Fertilizer banding increased CO2 and N2O toss on various sampling days throughout the season with poultry litter banding emitting more gas than UAN banding.Conventional tillage practices also resulted in a higher concentration of CO2 and N2O loss when evaluating tillage by sampling day.Throughout the course of this study,CH4 flux was not affected by tillage,fertilizer source,or fertilizer placement method.These results suggest that poultry litter use and banding practices have the potential to increase greenhouse gas emissions.

  15. Tillage as a tool to manage crop residue: impact on sugar beet production.

    Science.gov (United States)

    Hiel, Marie-Pierre; Chélin, Marie; Degrune, Florine; Parvin, Nargish; Bodson, Bernard

    2015-04-01

    Crop residues and plant cover represent a pool of organic matter that can be used either to restore organic matter in soils, and therefore maintain soil fertility, or that can be valorized outside of the field (e.g. energy production). However, it is crucial that the exportation of residues is not done to the detriment of the system sustainability. Three long term experiments have been settled in the loamy region in Belgium. All of them are designed to study the effect of residues management by several tillage systems (conventional plowing versus reduced tillage) on the whole soil-water-plant system. SOLRESIDUS is a field experiment where we study the impact of crop residue management while in SOLCOUVERT and SOLCOUVERT-BIS, we study the impact of cover crop management. SOLRESIDUS was started in 2008. In this field, four contrasted crop residues managements are tested in order to contrast as much as possible the responses from the soil-water plant system. Two practices characterize the four modalities: soil tillage (ploughing at 25 cm depth or reduce tillage at 10 cm max) and residue management (exportation or restitution). SOLCOUVERT and SOLCOUVERT-BIS were started in 2012 and 2013 respectively. In those fields cover crop management is also diverse: destruction of the cover crop by winter ploughing, spring ploughing, strip tillage (with a chemical destruction if needed) or shallow tillage (with a decompaction before cover crop sowing). Although although the overall project aims at studying the impact of management on the whole soil-water-plant system, here we will only present the results concerning crop production (sugar beet) in SOLCOUVERT experiments. The presented data will include germination rate, crop development (biomass quantification and BBCH stages) weeds population, disease occurrence, pest occurrences, nitrogen uptake by plants, quality and quantity of harvested products.

  16. Soil microbial biomass alterations during the maize silage growing season relative to tillage method

    Energy Technology Data Exchange (ETDEWEB)

    Staley, T.E.

    1999-12-01

    Tillage method can significantly alter soil microbial populations and activities. Although considerable literature exists on microbial and soil chemical alterations under various tillage methods, little information exists on soil microbial biomass C (SMB) alterations during the growing season, and especially on the relationship of SMB to crop N use. The objective of this study was to determine the effect of notillage (NT) or conventional tillage (CT), and soil location, on SMB during the growing season. A maize (Zea mays L.) silage/{sup 15}N field experiment, under NT or CT for 3 yr before this study, was used during the fourth growing season. Averaged over sampling times and location (within-row or between-row), SMB in the 0- to 3.8-cm and 3.8- to 7.5-cm soil layers under NT was 87 and 33% greater, respectively, than under CT. Linear regression of soil surface layer (0--3.8 cm) SMB on day-of-year revealed a significant (P {le} 0.10) relationship only within-row and under NT, with a 29% SMB decrease during the growing season. Similar regressions for the other layers and treatments were significant (P > 0.10) or had small seasonal differences. SMB was consistently higher in the between-row locations under both tillage methods. Despite substantial tillage method-induced differences in SMB (50% overall, accompanied by small differential seasonal differences) in the more surficial layers, these alterations appear to have been of little practical consequence, since previous work on these plots revealed essentially no differences in silage utilization of either fertilizer N or soil N relative to tillage method. Thus, the importance of SMB in significantly affecting crop N use in this within-row, banded, maize silage system is questioned.

  17. Tillage management to mitigate herbicide loss in runoff under simulated rainfall conditions.

    Science.gov (United States)

    Locke, Martin A; Zablotowicz, Robert M; Reddy, Krishna N; Steinriede, R Wade

    2008-02-01

    Conservation tillage mitigates soil loss in cropland because plant residues help protect the soil, but effects on pesticide movement in surface runoff are not as straightforward. Effects of soil disturbance on surface runoff loss of chlorimuron and alachlor were evaluated utilizing runoff trays. Soil in the trays was either disturbed (tilled) and kept bare or was not tilled, and existing decomposed plant residue was left on the surface. Rainfall (25mm, 20min) was simulated 1d after alachlor (2.8kg ha(-1)) or chlorimuron (54g ha(-1)) application, and runoff was collected. Runoff fractions were analyzed for herbicide and sediment. Total alachlor loss from bare plots was greater than that in no-tillage plots (4.5% vs. 2.3%, respectively). More than one-third of total alachlor lost from bare plots occurred in the first l of runoff, while no-tillage plots had less runoff volume with a more even distribution of alachlor concentration in the runoff during the rainfall simulation and subsequent runoff period. In contrast, more chlorimuron was lost from no-tillage plots than bare plots (12% vs. 1.5%) even though total runoff volume was lower in the no-tillage plots (10.6mm vs. 13.6mm). This was attributed to dense coverage with partially decomposed plant residue in no-tillage plots (1652kg ha(-1)) that intercepted chlorimuron. It was likely that chlorimuron, a polar compound, was more easily washed off surface plant residues and transported in runoff.

  18. [Effects of long-term tillage measurements on soil aggregate characteristic and microbial diversity].

    Science.gov (United States)

    Li, Jing; Wu, Hui-Jun; Wu, Xue-Ping; Cai, Dian-Xiong; Yao, Yu-Qing; Lü, Jun-Jie; Tian, Yun-Long

    2014-08-01

    Soil aggregate stability and microbial diversity play important roles in nutrient recycling in soil-crop systems. This study investigated the impacts of different soil tillage systems on soil aggregation and soil microbial diversity based on a 15-year long-term experiment on loess soil in Henan Province of China. Treatments included reduced tillage (RT), no-tillage (NT), sub-soiling with mulch (SM), wheat-peanut two crops (TC), and conventional tillage (CT). Soil aggregates were separated by wet sieving method, and soil microbial (bacterial, archaeal and fungal) diversity was examined by using the techniques of denaturing gradient gel electrophoresis (PCR-DGGE) analysis. The results showed that water-stable macroaggregates concent (R0.25) and the mean mass diameter (MWD) in the surface soil significantly increased under NT, SM and TC, R0.25 increased by 21.5%, 29.5% and 69.2%, and MWD increased by 18.0%, 12.2% and 50.4%, respectively, as compared with CT. Tillage practices caused changes in bacterial, archaeal and fungal community compositions. With NT, SM and TC, the bacterial, archaeal and fungal Shannon indices increased by 0.3%, 0.3%, and 0.6%, and 20.2%, 40.5%, and 49.1%, and 23.7%, 19.5%, and 25.8%, respectively, as compared with CT. Both bacterial and archaeal Shannon indices were significantly correlated with the indices of R0.25 and MWD, while the fungal Shannon index was not significantly correlated with these two indices. In conclusion, conservation tillage, including NT and SM, and crop rotation, including TC, improved soil aggregation and soil microbial diversity.

  19. Water Availability for Winter Wheat Affected by Summer Fallow Tillage Practices in Slope Dryland

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-bin; YANG Bo; Roger Hartmann; Donald Gabriels; CAI Dian-xiong; JIN Ke; WU Hui-jun; BAI Zhan-guo; ZHANG Can-jun; YAO Yu-qing; LU Jun-jie; WANG Yu-hong

    2003-01-01

    The tillage experiments for winter wheat were conducted on the slope farmland in Luoyang,Henan Province in the semihumid to arid loess plateau areas of North China. Different tillage methods inclu-ding reduced tillage (RT), no-till (NT), 2 crops/year (2C), subsoiling(SS), and conventional tillage (CT)were compared to determine the effects of tillage methods on soil water conservation, water availability, andwheat yields in a search for better farming systems in the areas. The NT and SS showed good effects on waterconservation. The soil water storage increased 12 - 33 mm with NT and 9 - 24 mm with SS at the end of sum-mer fallow periods. The soil evaporation with NT and SS decreased 7 - 8 mm and 34 - 36 mm during the fallowperiods of 1999 and 2001, respectively. Evapotranspiration (ET) with NT and SS increased about 47 mm dur-ing wheat growth periods of 2000 to 2001. Treatment RT and 2C had low water storage and high water lossesduring the fallow periods. The winter wheat yields with conservation tillage practices were improved in the 2ndyear, increased by 3, 5 and 8 % with RT, NT and SS, respectively, compared with CT. The highest wheatyields were obtained with subsoiling, and the maximum economic benefits from no-till. All conservation tillagepractices provided great benefits to saving energy and labors, reducing operation inputs, and increasing eco-nomic returns. No-till and subsoiling have shown promise in increasing water storage, reducing water loss, en-hancing water availability, and saving energy, as well as increasing wheat yield.

  20. Tillage Management and Seasonal Effects on Denitrifier Community Abundance, Gene Expression and Structure over Winter.

    Science.gov (United States)

    Tatti, Enrico; Goyer, Claudia; Burton, David L; Wertz, Sophie; Zebarth, Bernie J; Chantigny, Martin; Filion, Martin

    2015-10-01

    Tillage effects on denitrifier communities and nitrous oxide (N2O) emissions were mainly studied during the growing season. There is limited information for the non-growing season, especially in northern countries where winter has prolonged periods with sub-zero temperatures. The abundance and structure of the denitrifier community, denitrification gene expression and N2O emissions in fields under long-term tillage regimes [no-tillage (NT) vs conventional tillage (CT)] were assessed during two consecutive winters. NT exerted a positive effect on nirK and nosZ denitrifier abundance in both winters compared to CT. Moreover, the two contrasting managements had an opposite influence on nirK and nirS RNA/DNA ratios. Tillage management resulted in different denitrifier community structures during both winters. Seasonal changes were observed in the abundance and the structure of denitrifiers. Interestingly, the RNA/DNA ratios were greater in the coldest months for nirK, nirS and nosZ. N2O emissions were not influenced by management but changed over time with two orders of magnitude increase in the coldest month of both winters. In winter of 2009-2010, emissions were mainly as N2O, whereas in 2010-2011, when soil temperatures were milder due to persistent snow cover, most emissions were as dinitrogen. Results indicated that tillage management during the growing season induced differences in denitrifier community structure that persisted during winter. However, management did not affect the active cold-adapted community structure.

  1. Effect of different tillage intensity on yields and yield-forming factors in winter wheat

    Directory of Open Access Journals (Sweden)

    Martin Houšť

    2012-01-01

    Full Text Available The paper presents results of a study on application of minimum tillage technologies when growing winter wheat. Experiments were performed in the sugar-beet-growing region with loamy chernozem within the period of 2005–2009. Aanalysed and evaluated were effects of different methods of soil processing on yield-forming factors in stands of winter wheat grown after three different preceding crops (i.e. alfalfa, maize for silage and pea. Evaluated were the following four variants of tillage: (1 conventional ploughing to the depth of 0.22 m (Variant 1; (2 ploughing to the depth of 0.15 m (Variant 2; (3 direct sowing into the untilled soil (Variant 3, and (4 shallow tillage to the depth of 0.10 m (Variant 4.The effect of different tillage intensity on winter wheat yields was statistically non-significant after all forecrops. After alfalfa, the highest and the lowest average yields were recorded in Variant 2 (i.e. with ploughing to the depth of 0.15 m and Variant 3 (direct sowing into the untilled soil, respectively. After maize grown for silage, higher yields were obtained in Variant 2 and Variant 1 (conventional ploughing while in Variants 4 and 3 the obtained yields were lower. When growing winter wheat after pea as a preceding crop, the highest and the lowest average yields were recorded after direct sowing (Variant 3 and in Variant 1 (i.e. ploughing to the depth of 0.22 m, respectively. Results of studies on effect of different tillage technologies on yields of winter wheat crops indicate that under the given pedological and climatic conditions it is possible to apply methods of reduced tillage intensity. However, the choice of the corresponding technology must be performed with regard to the type of preceding crop.

  2. Soil properties and crop yield under different tillage methods for rapeseed cultivation in paddy fields

    Directory of Open Access Journals (Sweden)

    Alizadeh Mohammad Reza

    2015-01-01

    Full Text Available A two-year research was conducted to investigate the effect of different tillage methods on some soil physical characteristics and crop yield in rapeseed cultivation after rice harvesting. Five tillage treatments including: (i using rotavator, once to depth of 10-15 cm (T1, (ii using rotavator, twice to depth of 10-15 cm (T2, (iii using moldboard plow to depth of 25 cm + rotavator, once to depth of 10-15 cm (T3, (iv no-till planting through removing rice stubbles from plots (T4, and (v no-till planting without removing rice stubbles from plots (T5, were evaluated under randomized complete block design (RCBD in three replications. The biannual results revealed that the effect of tillage methods was significant (p<0.01 on soil bulk density, surface residues after tillage, dry mass of weeds, seed germination, and grain yield. T2 and T3 made considerable reduction in soil bulk density compared to other treatments for the 15- to 30-cm tillage depths. In T1, T2, T3, and T4, surface residues after tillage decreased in comparison with T5 by up to 35.37, 50.71, 69.92, and 75.75%, respectively. Having 71.48 g m-2, T5 had the maximum dry mass of weeds while T3 had the minimum one with 37.50 g m-2. Means comparison represented that in T2 and T3, seed germination reached the shortest length of 6.4 days in average. The highest and lowest grain yields were acquired in T3 (1,571 kg ha-1 and T5 (1,339 kg ha-1, respectively. Statistically, there was no significant difference between T1 (1,432 kg ha-1 and T2 (1,537 kg ha-1 compared with T3 in terms of grain yield.

  3. Tillage system does not affect soil macro fauna in southeastern Buenos Aires province, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Manetti, P. L.; Lopez, A. N.; Clemente, N. L.; Faberi, J.

    2010-07-01

    Soil degradation increased incessantly in the Pampas region of Argentina, due to the intensification of agricultural activities, when carried out with conventional tillage (CT) systems. No-tillage system was adopted as conservation practices by the farmers. The objectives of this study were: a) to determine the macro fauna taxa and their relative abundance under CT and NT in two different seasons; and b) to evaluate soil tillage and seasonal effects on the density of the main macro fauna taxa. The study was conducted from 2002 to 2004 in 46 production farms, in Balcarce, Argentina. Ten soil monoliths (25.2 cm side; 30 cm depth) randomly directed field at July-August; and at October- November to determine the number of individuals of macro fauna and Enchytraeidae. Soil macro fauna density did not differ between tillage systems. Oligochaeta Megadrilli density was generally not affected by the tillage system (P > 0.05) except in 2004 when it was greater under CT in July-August (P = 0.0002). Chilopoda density was greater in soils under NT, with significant differences in 2002 in October-November (P = 0.0070). In July-August of 2003 it was higher in CT (P = 0.0109). Diplopoda were more abundant only under NT in July-August 2004 (P = 0.0010). In July-August a significantly (P < 0.05) higher density of Enchytraeidae was found in CT than NT fields. No differences were observed in the taxonomic composition and the relative abundance of the macro fauna when comparing CT and NT. It can be then concluded that in the study region tillage systems affected slightly soil macro fauna and significantly Enchytraeidae. (Author)

  4. Effects of crop rotation and soil tillage on weeds in organic farming

    Directory of Open Access Journals (Sweden)

    Schulz, Franz

    2014-02-01

    Full Text Available An organic long-term field experiment with two factors has been carried out since 1998 at the experimental station Gladbacherhof, University of Giessen. Effects of 3 different farm types (with lifestock raising, stockless farming with rotational set-aside, stockless farming only cash crops combined with 4 tillage treatments (mouldboard plough, two-layer-plough, reduced tillage depth and tillage without plough on plants, soil and environment have been investigated. This article presents results on the coverage rate of arable wild plants (weed coverage, the range of weed species, the abundance of C. arvense (L. Scop. (Canada thistle and the weed phytomass during harvest time of the main crops dependent on farm type and soil tillage. It can be concluded that, compared to conventional economic weed thresholds, the weed coverage was generally relatively low and only limited ranges of species were found. Wild arable plants probably did not have any impact on yields of the cultivated plants due to intensive mechanical regulatory measures. In stockless organic farming without alfalfa-grass in the crop rotation Cirsium arvense (L. Scop. (Canada thistle might become a problem whereas this perennial root-weed does not seem to raise a long term problem in a soil tillage system without ploughing. In all treatments the abundance of weeds like Galium aparine L. (catchweed bedstraw and Stellaria media L. (chickweed was high. However, none of the farm types or soil tillage systems succeeded in providing evidence of promoting rare species or encouraging biodiversity. In order to achieve this special support measures should be implemented.

  5. The Energy Effectiveness Of Crops In Crop Rotation Under Different Soil Tillage Systems

    Directory of Open Access Journals (Sweden)

    Strašil Zdeněk

    2015-09-01

    Full Text Available The paper identifies and compares the energy balance of winter wheat, spring barley and white mustard – all grown in crop rotation under different tillage conditions. The field trial included the conventional tillage (CT method, minimum tillage (MT and a system with no tillage (NT. The energy inputs included both the direct and indirect energy component. Energy outputs are evaluated as gross calorific value (gross heating value of phytomass dry matter of the primary product and the total harvested production. The energy effectiveness (energy output: energy input was selected for evaluation. The greatest energy effectiveness for the primary product was established as 6.35 for barley, 6.04 for wheat and 3.68 for mustard; in the case of total production, it was 9.82 for barley, 10.08 for wheat and 9.72 for mustard. When comparing the different tillage conditions, the greatest energy effectiveness was calculated for the evaluated crops under the MT operation and represented the primary product of wheat at 6.49, barley at 6.69 and mustard at 3.92. The smallest energy effectiveness for the primary product was found in wheat 5.77 and barley 6.10 under the CT option; it was 3.55 for mustard under the option of NT. Throughout the entire cropping pattern, the greatest energy effectiveness was established under the minimum tillage option – 5.70 for the primary product and 10.47 for the total production. On the other hand, the smallest values were calculated under CT – 5.22 for the primary product and 9.71 for total production.

  6. Experiment of "No-Tillage" Farming System on the Volcanic Soils of Tropical Islands of Micronesia

    Directory of Open Access Journals (Sweden)

    Mohammad H. Golabi

    2014-06-01

    The objectives of this study are; 1 to evaluate the use of crop rotation and tillage management for increasing organic-matter content to improve the overall quality of these severely eroded soils, 2 to evaluate the effect of conservation practices on harvested yield and crop productivity of these eroded soils and, 3 to assess the effects of conservation techniques including no-tillage systems on water runoff and infiltration. This paper discusses the effect of conservation strategies and techniques on these severely eroded soils of southern Guam.

  7. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced -Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, Bo; Munier-Jolain, Nicolas; Charles, Raphaël

    2013-01-01

    to allow for more diversification of the crop rotations to combat these weed problems with less herbicide input. Cover crops, stubble management strategies and tactics that strengthen crop growth relative to weed growth are also seen as important components in future IPM systems but their impact in non......-inversion tillage systems needs validation. Direct mechanical weed control methods based on rotating weeding devices such as rotary hoes may become useful in reduced tillage systems where more crop residues and less workable soils are more prevalent but further development is needed for effective application. Owing...

  8. Pre-harvest muskmelon fruit cracking: causes and potential remedies

    Science.gov (United States)

    Fruit cracking is a serious disorder that causes a major loss of marketable yield and revenue in the muskmelon (Cucumis melo L.) fruit industry. The physiological and environmental factors causing cracking are poorly understood. Although generally considered a physiological disorder caused by fluctu...

  9. Efeito da queima da palhada da cana-de-açúcar e de aplicações de vinhaça e adubo nitrogenado em características tecnológicas da cultura Effect of pre-harvest burning and applications of nitrogen fertilizer and vinasse on sugarcane industrial characteristics

    Directory of Open Access Journals (Sweden)

    Alexander Silva de Resende

    2006-12-01

    Full Text Available As práticas da queima, aplicação de vinhaça e fertilizante nitrogenado são comuns na cultura de cana-de-açúcar. No entanto, estudos de longa duração são pouco encontrados na literatura. Neste trabalho, realizado na Usina Cruangi, Timbaúba, PE, transição entre a Zona da Mata e o Agreste daquele Estado, objetivou-se avaliar o efeito da aplicação de N (80 kg ha-1 na forma de uréia, da vinhaça (80 m³ ha-1 e da queima (com ou sem queima da palhada antes do corte, entre 1983 e 1999, em características tecnológicas da cultura de cana-de-açúcar. O delineamento experimental foi o de blocos ao acaso, em esquema fatorial completo 2 x 2 x 2, e quatro repetições. O experimento teve duas fases: a primeira, de 1983-1992, e a segunda, de 1992-1999. A aplicação de N afetou as características tecnológicas da cana-de-açúcar; no entanto, o ganho de produtividade de colmos proporcionado por esta prática favoreceu a produção de açúcar e compensou tais efeitos. A aplicação de vinhaça e a manutenção da palhada no sistema não afetaram, de forma consistente, as características tecnológicas da cultura de cana-de-açúcar, embora tenham influenciado, de forma positiva, a produção de açúcar, de acordo com o ganho de produtividade.Practices of pre-harvest burning and the application of vinasse and N fertilizer are common in sugarcane cultivation. However, results of few long-term studies have been published. This study carried in sugarcane plantations of Cruangi sugar mill, Timbaúba, state of Pernambuco, Brazil, located in the semi-arid-wet transition region of the State aimed at studying the effects of vinasse (80 m³ ha-1 and nitrogen fertilizer (N - 80 kg ha-1 and two harvesting systems (with or without pre-harvest burning on sugarcane yield and industrial parameters in a long-term study (1983 to 1999. The experiment was set up in a 2 x 2 x 2 factorial design in complete randomized blocks with four replicates and had two

  10. Effect of Long-term Minimal and Zero Tillages on Rice and Wheat Yields,Soil Organic Matter and Bulk Density

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A long-term experiment of minimal and zero tillages was carried out on the sandy loam soil from 1985~1996. The results showed that the yields of minimal tillaged rice and wheat were similar to those by conventional tillage. Zero-tillaged wheat yield increased by 5.3% on average, while the zero-tillaged rice yield reduced by 2. 2%. The yields under long-term minimal and zero tillages showed no obvious temporal trend. After five years of the experiment, the soil organic matter contents were in steady state under different tillages, but its distributions in soil layers were different markedly and the richness in upper layer was observed under minimal and zero tillages, with the richness coefficients of 1. 1140 and 1. 1608, on 7-year average ,respectively. The bulk densities among different tillages were insignificantly different in soil layers of 0~7cm and 14~21cm. In the soil layer of 7~14cm,the bulk densities under conventional, minimal and zero tillages were 1.348,1.412 and 1. 410 g/cm3 respectively, minimal and zero tillages resulted in obvious increases in the bulk density.

  11. Influence of Different Straight Tillage & Contour Tillage Measures on Nitrogen Loss from Runoff and Runoff Loss%“大横坡+小顺坡”耕作模式对氮及径流流失的影响

    Institute of Scientific and Technical Information of China (English)

    张怡; 何丙辉; 唐春霞

    2013-01-01

    The effect of different straight tillage & contour tillage measures in plot on nitrogen loss from runoff and runoff loss have been studied in Soil and Water Conservation Station in Zhongxian County, Chongqing. These results indicate that, compared with runoff under total straight tillage measure, runoff of 6 m straight tillage & 2 m contour tillage, 5 m straight tillage & 3 m contour tillage, 4 m straight tillage & 4 m contour tillage reduce 41. 74%, 45. 84% and 59. 63% respectively. There are no significant differences between four kinds of tillage measures on the total nitrogen loss during the duration of rainfall of 6. 62 h-16. 32 h. when less than 5. 12 h, there are significant differences between 4 m straight tillage &-4 m contour tillage and other tillage, and the best effect for 4 m straight tillage & 4 m contour tillage. In the condition of duration of rainfall of 2. 51 h and 3. 22 h, there are significant differences between each other; The soluble nitrogen loss accounts for most of the nitrogen loss from runoff, and the proportion of soluble nitrogen loss accounts for total nitrogen loss is influenced by rainfall intensity and duration of rainfall. The loss of total nitrogen and soluble nitrogen per area of different straight tillage & contour tillage measures are significant lower than that of total straight tillage measure.%以重庆市忠县水土保持试验站为研究平台,对小区尺度下“大横坡+小顺坡”耕作模式对氮及径流流失的影响进行研究,结果表明:与全顺坡模式比较,6 m顺坡+2m横坡模式,5 m顺坡+3m横坡模式和4 m顺坡+4m横坡模式径流量分别减少了41.74%,45.84%和59.63%;在总氮流失上,在降雨历时为6.62~16.32 h,3种“大横坡+小顺坡”耕作模式之间无显著差异,当降雨历时小于5.12h时,4m顺坡+4m横坡模式与其他3种模式差异性显著,以4 m顺坡+4m横坡模式保持总氮效果最好,其中当降雨历时为2.51h和3.22h时,4种耕作模式之间

  12. Impact of tillage practices on soil bacterial diversity and composition under the tobacco-rice rotation in China.

    Science.gov (United States)

    Lei, Yanping; Xiao, Yongliang; Li, Lifeng; Jiang, Chaoqiang; Zu, Chaolong; Li, Tian; Cao, Hui

    2017-05-01

    Tobacco-rice rotation is a common farming system in south China, and many tillage practices such as straw mulching, dolomite dust, and quicklime application have been adopted to improve crop production. These agricultural management practices alter soil physical and chemical properties and affect microbial life environment and community composition. In this research, six tillage practices including no tobacco and rice straw mulching (CK), tobacco and rice straw mulching (TrSr), rice straw returning fire (TrSc), tobacco and rice straw mulching with dolomite dust (TSD), rice straw returning fire and quicklime (TSQ), and rice straw returning fire, quicklime and reduced fertilizer (TSQf) were conducted to detect changes in soil bacterial diversity and composition using Illumina sequencing. The results showed that the total number of operational taxonomic units (OTUs) from the six treatments was 2030, and the number of mutual OTUs among all samples was 550. The TrSc treatment had the highest diversity and richness, while TSQf had the lowest. Soil physio-chemical properties and microbial diversity can influence each other. Proteobacteria and Actinobacteria had the greatest proportion in all treatments. The abundance of Nitrospirae was the highest in the TrSc treatment. The TSQf treatment had the highest abundance of Firmicutes. The abundance of Nitrospira in the TrSc treatment was 2.29-fold over CK. Streptomyces affiliated with Firmicutes improved by 37.33% in TSQf compared to TSQ. TSQf treatment was considered to be the most important factor in determining the relative abundance at the genus level.

  13. Comparison of Soil Fauna (Oribatids and Enchytraeids)Between Conventional and Organic (Tillage and No—Tillage Practices)Farming Crop Fields in Japan

    Institute of Scientific and Technical Information of China (English)

    M.FUJITA; S.FUJIYAMA

    2001-01-01

    The major soil animal groups,enchyraeid worms and oribatid mites,were compared in the abundance and diversity between conventional fields(CT)and organic farming fields with tillage(OT) or no-tillage(ON)practices,The values of abundance,species richness,diversity and evenness were significantly larger in OT and ON than in CT,indicating that the abundance and diversity in organic farming fields were greater than those in conventional farming,The community structure of enchytraeid genera was different between OT and ON,Enchytraeus was the most abundant in OT ,while Fridericia in ON,The abundance of oribatids in OT was similar th that in ON,while the species richness and diversity in the former were smaller,These results suggeste that no-tilage practice under organic management might comtribute to the improvement in quality of soil mesofauna.

  14. Gradual correction of phosphorus availability in the no-tillage system

    Directory of Open Access Journals (Sweden)

    Carlos Hissao Kurihara

    2016-04-01

    Full Text Available ABSTRACT In areas cultivated under no-tillage system, the availability of phosphorus (P can be raised by means of the gradual corrective fertilization, applying phosphorus into sowing furrows at doses higher than those required by the crops. The objective of this work was to establish the amount of P to be applied in soybean crop to increase content of P to pre-established values at the depth of 0.0 to 0.10 m. An experiment was carried out on a clayey Haplorthox soil with a randomized block experimental design distributed in split-split plot, with four replications. Two soybean crop systems (single or intercropped with Panicum maximum Jaca cv. Aruana were evaluated in the plots. In addition, it was evaluated four P levels (0, 60, 120 and 180 kg ha-1 P2O5 applied in the first year in the split plots; and four P levels (0, 30, 60 and 90 kg ha-1 P2O5 applied in the two subsequent crops in the split-split plot. Contents of P were extracted by Mehlich-1 and Anion Exchange Resin methods from soil samples collected in the split-split plot. It was found that it is necessary to apply 19.4 or 11.1 kg ha-1 of P2O5, via triple superphosphate as source, to increase 1 mg dm-3 of P extracted by Mehlich-1 or Resin, respectively, in the 0.0 to 0.10 m layer of depth. The soil drain P character decreases as the amount of this nutrient supplied in the previous crops is increased.

  15. Soil aggregates and associated organic matter under conventional tillage, no-tillage, and forest succession after three decades.

    Directory of Open Access Journals (Sweden)

    Scott Devine

    Full Text Available Impacts of land use on soil organic C (SOC are of interest relative to SOC sequestration and soil sustainability. The role of aggregate stability in SOC storage under contrasting land uses has been of particular interest relative to conventional tillage (CT and no-till (NT agriculture. This study compares soil structure and SOC fractions at the 30-yr-old Horseshoe Bend Agroecosystem Experiment (HSB. This research is unique in comparing NT and CT with adjacent land concurrently undergoing forest succession (FS and in sampling to depths (15-28 cm previously not studied at HSB. A soil moving experiment (SME was also undertaken to monitor 1-yr changes in SOC and aggregation. After 30 years, enhanced aggregate stability under NT compared to CT was limited to a depth of 5 cm, while enhanced aggregate stability under FS compared to CT occurred to a depth of 28 cm and FS exceeded NT from 5-28 cm. Increases in SOC concentrations generally followed the increases in stability, except that no differences in SOC concentration were observed from 15-28 cm despite greater aggregate stability. Land use differences in SOC were explained equally by differences in particulate organic carbon (POC and in silt-clay associated fine C. Enhanced structural stability of the SME soil was observed under FS and was linked to an increase of 1 Mg SOC ha(-1 in 0-5 cm, of which 90% could be attributed to a POC increase. The crushing of macroaggregates in the SME soil also induced a 10% reduction in SOC over 1 yr that occurred under all three land uses from 5-15 cm. The majority of this loss was in the fine C fraction. NT and FS ecosystems had greater aggregation and carbon storage at the soil surface but only FS increased aggregation below the surface, although in the absence of increased carbon storage.

  16. Effects of tillage practices on pea leaf weevil (Sitona lineatus L., Coleoptera: Curculionidae) biology and crop damage: a farm-scale study in the US Pacific Northwest.

    Science.gov (United States)

    Hanavan, R P; Bosque-Pérez, N A

    2012-12-01

    The pea leaf weevil, Sitona lineatus L., is periodically a significant pest of pea, Pisum sativum L., in the Palouse region of northern Idaho and eastern Washington, USA. Previous on-station research demonstrated significantly greater adult pea leaf weevil colonization, immature survival, adult emergence and plant damage in conventional-tillage compared to no-tillage plots of pea. In experiments conducted during the 2006 and 2007 growing seasons, aerial and ground adult pea leaf weevil colonization of large-scale commercial pea fields under different tillage regimes in northern Idaho and eastern Washington was examined for the first time. Initial pea leaf weevil feeding damage, immature weevil densities and subsequent adult emergence from the fields were also assessed. During both years, significantly more adult pea leaf weevils were captured in conventional-tillage than in no-tillage fields during the crop establishment period in May. No-tillage soils remained wet longer in the spring and could not be planted by growers until later than conventional-tillage fields. Pea planted under conventional-tillage emerged earlier and had significantly greater feeding damage by the pea leaf weevil than no-tillage pea. Significantly, greater immature pea leaf weevil densities and subsequent adult emergence were observed in conventional-tillage than in no-tillage pea fields. Delayed development of root nodules in the cooler, moister conditions of no-tillage pea fields likely resulted in escape from attack and injury during the critical growth stages that ultimately influence yield. Results indicate that large-scale commercial no-tillage pea fields are less suitable for colonization and survival of the pea leaf weevil and suffer less weevil damage than fields under conventional tillage.

  17. [Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil].

    Science.gov (United States)

    Chang, Tong-Ju; Cui, Xiao-Qiang; Ruan, Zhen; Zhao, Xiu-Lan

    2014-06-01

    A long-term experiment, conducted at Southwest University since 1990, was used to evaluate the effect of tillage methods on the total and available contents of heavy metals (Fe, Mn, Cu, Zn, Pb, Cd) in the profile of purple paddy soil and the contents of those metals in root, stem leaf and brown rice. The experiment included five tillage methods: conventional tillage, paddy-upland rotation, no-tillage and fallow in winter, ridge-no-tillage and compartments-no-tillage. The results showed that the total concentrations of Fe, Cu, Zn, Pb and Cd in the soil profile had no significant differences among five treatments, but it was found that total Mn has a significant decline in 0-20 cm under conventional tillage, paddy-upland rotation and no-tillage and fallow in winter compared with ridge-no-tillage and compartments-no-tillage. The availability of Fe, Cu, Zn, Pb and Cd decreased with the increase of soil depth in all treatments, but the availability of Mn was found to be the highest in the 20-40 cm layers except those in the paddy-upland rotation. In the ploughed layer, the contents of available Fe, Mn was the highest in paddy-upland rotation, while the contents of available Zn and Pb was the highest in conventional tillage, but tillage treatments had not significant influence to the contents of available Cu. Correlation analysis showed that available Fe was significantly negatively related to the pH values and significantly negatively related to the organic matter of soils, available Mn was significantly negatively related to the pH values and organic matter of soils, whereas the available Zn was significantly positively related to total Zn. The contents of Fe, Mn in rice root, the contents of Fe, Mn, Cu and Cd in rice straw and Cu in brown rice were higher under paddy-upland rotation, ridge-no-tillage and compartments-no-tillage than those in conventional tillage and no-tillage and fellow in winter. Paddy-upland rotation can significantly lower the migration

  18. INFLUENCE OF DIFFERENT SOIL TILLAGE SYSTEMS ON FUEL CONSUMPTION, LABOUR REQUIREMENT AND YIELD IN MAIZE AND WINTER WHEAT PRODUCTION

    Directory of Open Access Journals (Sweden)

    Dubravko Filipović

    2004-12-01

    Full Text Available An experiment with five different tillage systems and their influence on fuel consumption, labour requirement and yield of tested crops was carried out on Albic Luvisol in northwest Slavonia in the period of 1996.-2000. The compared tillage systems were: 1. conventional tillage system (CT, 2. reduced tillage system (RT, 3. conservation tillage system I (CP, 4. conservation tillage system II (CM, 5. no-tillage system (NT. The crop rotation was maize (Zea mays L. - winter wheat (Triticum aestivum L. – maize – winter wheat. Comparing the fuel consumption to CT system, RT system consumed 6.8% less, CP system 12.1% less, CM system 27.4% less, while NT system consumed even 82.7% less fuel. The labour requirement showed that RT system saved 7.6%, while CP system required 21.8% less, CM system 38.6% less labour, respectively. NT system saved 81.7% of labour in comparison to CT system. The highest yield of maize in the first experimental year was achieved under CT system and the lowest under RT system. In all others experimental years the highest yield of winter wheat and maize was achieved under CM system, while the lowest under RT system.

  19. [Diversity of soil fauna in corn fields in Huang-Huai-Hai Plain of China under effects of conservation tillage].

    Science.gov (United States)

    Zhu, Qiang-Gen; Zhu, An-Ning; Zhang, Jia-Bao; Zhang, Huan-Chao; Huang, Ping; Zhang, Cong-Zhi

    2009-10-01

    An investigation was made on the abundance and diversity of soil fauna in the corn fields under conventional and conservation tillage in Huang-Huai-Hai Plain of China. The abundance and diversity of soil fauna were higher at corn maturing (September) than at its jointing stage (July), and higher at jointing stage under conservation tillage than under conventional tillage. Soil fauna mainly distributed in surface soil layer (0-10 cm), but still had a larger number in 10-20 cm layer under conservation tillage. The individuals of acari, diptera, diplura, and microdrile oligochaetes, especially those of acari, were higher under conservation tillage than under conventional tillage. At maturing stage, an obvious effect of straw-returning under conservation tillage was observed, i. e., the more the straw returned, the higher the abundance of soil fauna, among which, the individuals of collembola, acari, coleopteran, and psocoptera, especially those of collembolan, increased significantly. The abundance of collembola at both jointing and maturing stages was significantly positively correlated with the quantity of straw returned, suggesting that collembola played an important role in straw decomposition and nutrient cycling.

  20. [Effect of conservation tillage on weeds in a rotation system on the Loess Plateau of eastern Gansu, Northwest China].

    Science.gov (United States)

    Zhao, Yu-xin; Lu, Jiao-yun; Yang, Hui-min

    2015-04-01

    A field study was conducted to investigate the influences of no-tillage, stubble retention and crop type on weed density, species composition and community feature in a rotation system (winter wheat-common vetch-maize) established 12 years ago on the Loess Plateau of eastern Gansu. This study showed that the weed species composition, density and community feature varied with the change of crop phases. No-tillage practice increased the weed density at maize phase, while rotation with common vetch decreased the density in the no-tillage field. Stubble retention reduced the weed density under maize phase and the lowest density was observed in the no-tillage plus stubble retention field. No-tillage practice significantly increased the weed species diversity under winter wheat phase and decreased the diversity under common vetch phase. At maize phase, a greater species diversity index was observed in the no-tillage field. These results suggested that no-tillage practice and stubble retention possibly suppress specific weeds with the presence of some crops and crop rotation is a vital way to controlling weeds in a farming system.

  1. Influence of tillage practices on soil biologically active organic matter content over a growing season under semiarid Mediterranean climate

    Directory of Open Access Journals (Sweden)

    D. Martín-Lammerding

    2013-02-01

    Full Text Available In semiarid areas, traditional, intensive tillage has led to the depletion of soil organic matter, which has resulted in reduced soil fertility. The aim of the present work was to evaluate the effects of different soil management systems, practised over 12 years, on soil organic carbon (SOC, nitrogen (SN and biologically active organic matter (particulate organic matter [POM]; potentially mineralisable nitrogen [PMN]; microbial biomass [MB]. A Mediterranean Alfisol, located in central Spain, was managed using combinations of conventional tillage (CT, minimum tillage (MT or no-tillage (NT, plus a cropping background of either continuous wheat (WW or a fallow/wheat/pea/barley rotation (FW. Soil was sampled at two depths on four occasions during 2006-2007. The results showed the sampling date and the cropping background to significantly affect the SOC (p<0.0057 and p<0.0001 respectively. Tillage practice, however, had no effect on SOC or SN. The C-and N-POM contents were significantly influenced by the date, tillage and rotation. These variables were significantly higher under NT than CT and under WW than FW. The PMN was influenced by date, tillage and rotation, while C-MB was significantly affected by tillage (p< 0.0063, but not by rotation. The NT plots accumulated 66% C-POM, 60% N-POM, 39% PMN and 84% C-MB more than the CT plots. After more than 12 years, the benefits of conservation practices were found in the considered soil properties, mainly under no tillage. In order to obtain a consistent data set to predict soil biological status, it is necessary further study over time.

  2. Morphology and stability of aggregates of an Oxisol according to tillage system and gypsum application

    Directory of Open Access Journals (Sweden)

    Fábio Régis de Souza

    2012-12-01

    Full Text Available Morphological characterization and aggregate stability is an important factor in evaluating management systems. The aim of this paper is to evaluate the stability and morphology of the aggregates of a dystrophic Oxisol managed with no-tillage and conventional tillage with and without the residual action of gypsum. The experimental design was randomized blocks arranged in split-split plot, where the treatments were two soil management systems (plots with 0 and 2000 kg ha-1 of gypsum (subplots and five depths (0-0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20 and 0.20-0.30 m as the subsubplots, with four replications. The aggregate morphology was determined through images and later evaluated by the Quantporo software. Stability was determined by the wet method. The results showed that the no-tillage system, with or without gypsum residual effect, provided the aggregates with the largest geometric diameters. The combination of no-tillage system and the gypsum residual effect provided rougher aggregates.

  3. Did tillage erosion play a role in millennial scale landscape development?

    NARCIS (Netherlands)

    Baartman, J.E.M.; Temme, A.J.A.M.; Schoorl, J.M.; Braakhekke, M.H.A.; Veldkamp, A.

    2012-01-01

    Landscape evolution models (LEMs) quantitatively simulate processes of sedimentation and erosion on millennial timescales. An important aspect of human impact on erosion is sediment redistribution due to agriculture, referred to herein as tillage erosion. In this study we aim to analyse the potentia

  4. Differences in common bean rhizobial populations associated with soil tillage management in southern Brazil

    NARCIS (Netherlands)

    Kaschuk, G.; Hungria, M.; Santos, J.C.P.; Berton-Junior, J.F.

    2006-01-01

    Progressive adoption of no-tillage (NT) agriculture in the tropics is finally reversing physical, chemical, and biological erosion of soil and in Brazil, an estimated 19 Mha are now devoted to NT. Common bean (Phaseolus vulgaris L.) is a main component of Brazilian agriculture, and enhancement of yi

  5. Water stability of soil aggregates in different systems of Chernozem tillage

    Directory of Open Access Journals (Sweden)

    Jaroslava Bartlová

    2011-01-01

    Full Text Available Effects of various agrotechnical measures on macrostructural changes in the ploughing layer and subsoil were studied within the period of 2008–2010. Soil macrostructure was evaluated on the base of water stability of soil aggregates. Altogether three variants of soil tillage were established, viz. ploughing to the depth of 0.22 m (Variant 1, deep soil loosening to the depth of 0.35–0.40 m (Variant 2, and shallow tillage to the depth of 0.15 m (Variant 3. Experiments were established on a field with Modal Chernozem in the locality Hrušovany nad Jevišovkou (maize-growing region, altitude of 210 m, average annual sum of precipitation 461 mm. In the first experimental year, winter rape was the cultivated crop and it was followed by winter wheat, maize and spring wheat in subsequent years. The aim of this study was to evaluate effects of different methods of tillage on water stability of soil aggregates and on yields of individual crops. An overall analysis of results revealed a positive effect of cultivation without ploughing on water stability of soil aggregates. In the variant with ploughing was found out a statistically significant decrease of this stability. At the same time it was also found out that both minimum tillage and deep soil loosening showed a positive effect on yields of crops under study (above all of maize and winter wheat.

  6. Effects of Conventional and Conservation Tillage on Soil Hydraulic Properties of a Silty-loamy Soil

    DEFF Research Database (Denmark)

    Wahl, Niels Arne; Bens, O.; Buczko, U.

    2004-01-01

    , the methods of visual inventarization of stained and unstained macropores and infiltration measurements with an infiltrometer were applied to the macropore system. Dye tracer experiments with methylene blue as tracer agent yielded a penetration depth of 120 cm on the conservation tillage plot while...

  7. Grass cover crop and tillage method on watermelon production on porous soils

    Science.gov (United States)

    Watermelon [Citrullus lanatus (Thunb.) Cogn.] production in the Southern Plains is often on well-drained soil, which makes conservation of water difficult. Established cover crops can conserve moisture, but it needs to be determined what cover and tillage method provides the most benefit to watermel...

  8. Relating soil microbial activity to water content and tillage-induced differences in soil structure

    DEFF Research Database (Denmark)

    Schjønning, Per; Thomsen, Ingrid Kaag; Petersen, Søren O

    2011-01-01

    , MP, or shallow tillage, ST), in regulating net nitrification, applied here as an index of aerobic microbial activity. Intact soil cores were collected at 0–4 and 14–18 cm depth from a fine sandy (SAND) and a loamy (LOAM) soil. The cores were drained to one of seven matric potentials ranging from − 15...

  9. Tillage for soil and water conservation in the semi-arid Tropics

    NARCIS (Netherlands)

    Hoogmoed, W.

    1999-01-01

    Soil tillage is the manipulation of soil which is generally considered as necessary to obtain optimum growth conditions for a crop. In the same time the resulting modification of soil structure has serious implications for the behaviour of the soil to erosive forces by water and wind. In

  10. A VESS assessment of tillage and stover harvest effects in Iowa, U.S.A.GE

    Science.gov (United States)

    Soil quality/health reflects physical, chemical, and biological properties, processes, and interactions occurring in response to management practices such as tillage and crop residue removal. Increased global interest in harvesting crop residues for bioenergy, animal feed, or other bio-products has ...

  11. Responses by earthworms to reduced tillage in herbicide tolerant maize and Bt maize cropping systems

    DEFF Research Database (Denmark)

    Krogh, P. H.; Griffiths, B.; Demsar, D.

    2007-01-01

    -toxin producing transgenic maize line MON810 was studied for 1 year. At a Danish study site, Foulum (Jutland), one year of Bt corn was followed by 2 years of herbicide tolerant corn. At the French study site the most prominent effects observed were due to the tillage method where RT significantly reduced...

  12. Long-term tillage effects on soil metolachlor sorption and desorption behavior.

    Science.gov (United States)

    Ding, Guangwei; Novak, Jeffrey M; Herbert, Stephen; Xing, Baoshan

    2002-09-01

    Sorption and desorption are two important processes that influence the amount of pesticides retained by soils. However, the detailed sorption mechanisms as influenced by soil tillage management are unclear. This study examined the sorption and desorption characteristics of metolachlor [2-chloro-N-(2-ethyl-6-methyphenyl)-N-(2-methoxy-1-methylethyl)-acetamide] using the soil samples collected from the long-term conservation tillage (CnT) and conventional tillage (CT) research plots established in 1979 in Darlinton, SC. Humic acid (HA) and humin were extracted from the soils and used in the sorption experiments along with the whole soil samples. The sorption experiments were conducted using a batch-equilibration method. Three sequential desorption rinses were carried out following the sorption experiments. By comparing metolachlor sorption and desorption results we observed hysteresis for all soil samples and their organic matter fractions. Sorption nonlinearity (N) and hysteresis were dependent on the structure and composition of soil organic matter (SOM), e.g., Freundlich isotherm exponents (N) of HA and humin from CnT were higher than those of CT treatment, which may be related to high aromaticity of SOM fractions in CT treatment. Sorption capacity (K'f) was positively correlated with soil organic carbon (SOC) content. These results show that long-term tillage management can greatly affect metolachlor sorption and desorption behavior probably by qualitative differences in the structural characteristics of the humic substances.

  13. Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol

    NARCIS (Netherlands)

    Roscoe, R.; Buurman, P.

    2003-01-01

    Reclamation of Brazilian cerrados (savannas) has been intensified in the last decades, with implications for soil quality and soil organic matter (SOM) dynamics. Studying the impact of different tillage systems is essential to define better strategies for land use in Cerrado, which may favor C seque

  14. Tillage for soil and water conservation in the semi-arid tropics

    NARCIS (Netherlands)

    Hoogmoed, W.B.

    1999-01-01

    Soil tillage is the manipulation of soil which is generally considered as necessary to obtain optimum growth conditions for a crop. In the same time the resulting modification of soil structure has serious implications for the behaviour of the soil to erosive forces by water and wind. In Chapter 1 a

  15. Effect of Tillage on Soil Properties and Yield of Sorghum ( Sorghum ...

    African Journals Online (AJOL)

    Effect of Tillage on Soil Properties and Yield of Sorghum ( Sorghum Bicolor (L.) ... second and third experiments and selected soil physical properties were determined. ... Soil pH, organic matter, N, P, K, Ca and Mg were significantly influenced ...

  16. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage

    NARCIS (Netherlands)

    Groenigen, van K.J.; Bloem, J.; Baath, E.; Boeckx, P.; Rousk, J.; Bodé, S.; Forristal, P.D.; Jones, M.B.

    2010-01-01

    Soil tillage practices affect the soil microbial community in various ways, with possible consequences for nitrogen (N) losses, plant growth and soil organic carbon (C) sequestration. As microbes affect soil organic matter (SOM) dynamics largely through their activity, their impact may not be deduce

  17. Water use efficiency of dryland cowpea, sorghum and sunflower under reduced tillage

    Science.gov (United States)

    Drought-adapted, early maturing crops combined with reduced tillage systems have the potential to stabilize and increase dryland crop yields in the Southern High Plains. The objective of this study was to evaluate dryland grain yield response and soil water use for cowpea [Vigna Unguiculata (L.) Wal...

  18. Soil physical quality in contrasting tillage systems in organic and conventional farming

    NARCIS (Netherlands)

    Crittenden, S.; Poot, N.; Heinen, M.; Balen, van D.J.M.; Pulleman, M.M.

    2015-01-01

    Reduced tillage can improve soil physical quality relative to mouldboard ploughing by lessening soil disturbance, leaving organic matter at the soil surface, and stimulating soil biological activity. In organic farming, continuous ploughing may negate benefits to soil structure and function from inc

  19. Emissions of nitrous oxide from Irish arable soils: effects of tillage and reduced N input

    DEFF Research Database (Denmark)

    Abdalla, M.; Jones, M.B.; Ambus, Per;

    2010-01-01

    . Reduced tillage had no significant effect on N2O fluxes from soils or crop grain yield. Multiple regression analysis revealed that soil moisture and an interaction between soil moisture and soil nitrate are the main significant factors affecting N2O flux. The derived emission factor was 0...

  20. Statistical learning algorithms for identifying contrasting tillage practices with landsat thematic mapper data

    Science.gov (United States)

    Tillage management practices have direct impact on water holding capacity, evaporation, carbon sequestration, and water quality. This study examines the feasibility of two statistical learning algorithms, such as Least Square Support Vector Machine (LSSVM) and Relevance Vector Machine (RVM), for cla...

  1. Integration of weed management and tillage practices in spring barley production

    Science.gov (United States)

    Spring barley can be used to diversify and intensify winter wheat-based production systems in the U.S. Pacific Northwest, but the response of barley to conservation tillage systems, which are needed to reduce the risk of soil erosion, is not well documented. The objective of this study was to descri...

  2. Effects of Conventional and Conservation Tillage on Soil Hydraulic Properties of a Silty-loamy Soil

    DEFF Research Database (Denmark)

    Wahl, Niels Arne; Bens, O.; Buczko, U.

    2004-01-01

    a minimum macropore radius of 0.5 mm, range between 0.02% and 0.1%, about one order of magnitude lower than the figure obtained from visual inventarization. The results indicate a greater continuity and connectivity of the macropore system for silty soils with conservation tillage systems. Therefore...

  3. Tillage effects on physical qualities of a vertisol in the central ...

    African Journals Online (AJOL)

    user

    evaluated for their effects on soil physical quality indicators. The study was .... Control. This is the traditional tillage practice known as ridge and furrows. (RFs) used .... kPa and 1500 kPa ceramic plates was used to determine soil water content ...

  4. Comparative assessment of water infiltration of soils under different tillage systems in eastern Botswana

    Science.gov (United States)

    Moroke, T. S.; Dikinya, O.; Patrick, C.

    Water infiltration is an important component of water balance for improving crop production potential in dryland soil tillage systems in Botswana, particularly in the eastern region. Hardsetting soils common in arable lands of Botswana, often require some kind of tillage such as mouldboard ploughing, chiselling and ripping to improve waterharvesting and crop growth conditions. The objective of this study was to compare ponded cumulative infiltration, steady state infiltration rate and sorptivity of soils cultivated using deep ripping, single and double mouldboard ploughing. This study was conducted on Chromic Luvisols (sandy loam), Haplic Luvisols (sandy clay loam), Ferric Luvisols (clay loam), and Ferric Arenosols (sand). Infiltration was measured using double ring infiltrometer method for 4 h. Although infiltration was smaller on traffic line of deep ripping system at all sites, it was only significantly ( P 0.05) different under deep ripped. Cumulative and steady state infiltration rate was greater under sandy than loamy soils, smaller under double ploughing compared with single ploughed and deep ripped soils. Sorptivity was not significantly ( P > 0.05) different among tillage systems but was greater under sandy than sandy loam soils. Information on tillage and infiltration can improve implementation of waterharvesting technologies and crop production in Botswana.

  5. Reduced-tillage organic corn production in a hairy vetch cover crop

    Science.gov (United States)

    There is much interest in developing no-tillage systems for organic farming, however, potential limitations include the inability to control weeds and to provide sufficient crop available N. A three-year field experiment was conducted on organically-certified land to explore the use of roller-crimp...

  6. Tillage systems and cover crops on soil physical properties after soybean cultivation

    Directory of Open Access Journals (Sweden)

    Rafael B. Teixeira

    Full Text Available ABSTRACT Soil management alters soil physical attributes and may affect crop yield. In order to evaluate soil physical attributes in layers from 0 to 0.40 m and soybean grain yield, in the 2012/2013 agricultural year, an essay was installed in the experimental area of the Federal University of Mato Grosso do Sul (UFMS/CPCS. Soil tillage systems were: conventional tillage (CT, minimum tillage (MT and no tillage (DS, the cover crops used were millet, sunn hemp and fallow. The experimental design was randomized blocks with split plots. For the layer of 0.20-0.30 m, millet provided the best results for soil bulk density, macro and microporosity. The resistance to penetration (RP was influenced in the layer of 0-0.10 m, and millet provided lower RP. The DS provided the lowest RP values for the layer of 0.10-0.20 m. The treatments did not influence yield or thousand-seed weight.

  7. Soil physical quality in contrasting tillage systems in organic and conventional farming

    NARCIS (Netherlands)

    Crittenden, S.; Poot, N.; Heinen, M.; Balen, van D.J.M.; Pulleman, M.M.

    2015-01-01

    Reduced tillage can improve soil physical quality relative to mouldboard ploughing by lessening soil disturbance, leaving organic matter at the soil surface, and stimulating soil biological activity. In organic farming, continuous ploughing may negate benefits to soil structure and function from

  8. Tillage and farmyard manure efects on crusting and compacting soils at Katumani, Semi-arid Kenya

    NARCIS (Netherlands)

    Biamah, E.K.; Sterk, G.; Stroosnijder, L.

    2008-01-01

    In semi-arid Kenya, the most dominatn soil types are of limited agricultural productivity due to crusting and compaction. The occurence of soil crusting and compaction is attributed to seasonal rainfall characteristics, physical soil properties and bad tillage practices. Soil crusting and compaction

  9. Analysis and evaluation of tillage on an alfisol ina semi-arid tropical region of India

    NARCIS (Netherlands)

    Klaij, M.C.

    1983-01-01

    Tillage field experiments were conducted on Alfisols in a semi-arid tropical environment in India. The research was conducted within the framework of the Farming Systems Research Program of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).To put the experiments into per

  10. Upland rice under no-tillage preceded by crops for soil cover and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Edemar Moro

    2013-12-01

    Full Text Available The grain yield of upland rice under no-tillage has been unsatisfactory and one reason could be the nitrate/ammonium balance in the soil. Cover crops and nitrogen fertilization can be used to change the nitrate/ammonium relation in the soil and improve conditions for the development of upland rice in the no-tillage (NT system. The aim was to study the effect of cover crops and nitrogen sources on grain yield of upland rice under no tillage. The study was carried out on the Fazenda Experimental Lageado, in Botucatu, State of São Paulo, Brazil, in an Oxisol area under no-tillage for six years. The experiment was arranged in a randomized block split-plot design with four replications. The plots consisted of six cover crop species (Brachiaria brizantha, B. decumbens, B. humidicola, B. ruziziensis, Pennisetum americanum, and Crotalaria spectabilis and the split-plots of seven forms of N fertilizer management. Millet is the best cover crop to precede upland rice under NT. The best form of N application, as nitrate, is in split rates or total rate at topdressing or an ammonium source with or without a nitrification inhibitor, in split doses. When the cover crops C. spectabilis, B. brizantha, B. decumbens, B. humidicola, and B. ruziziensis preceded rice, they induced the highest grain yield when rice was fertilized with N as ammonium sulfate source + nitrification inhibitor in split rates or total dose at topdressing.

  11. Tillage and crop residue effects on rainfed wheat and maize production in Nortern China

    NARCIS (Netherlands)

    Wang Xiaobin,; Wu Huijin,; Dai Kuai,; Zhang Dingchen,; Feng Donghui,; Zhao Quansheng,; Wu Xueping,; Jin Ke,; Cai Diangxiong,; Oenema, O.; Hoogmoed, W.B.

    2012-01-01

    Dryland farming in the dry semi-humid regions of northern China is dominated by mono-cropping systems with mainly maize (Zea mays L.) or wheat (Triticum aestivum), constrained by low and variable rainfall, and by improper management practices. Addressing these problems, field studies on tillage and

  12. One-time tillage of no-till: Effects on nutrients, mycorrhizae, and phosphorus uptake

    Science.gov (United States)

    Stratification of nutrient availability, especially of P, that develops with continuous no-till (NT) can affect runoff nutrient concentration and possibly nutrient uptake. The effects of composted manure application and one-time tillage of NT on the distribution of soil chemical properties, root co...

  13. Comparison of three tillage intensities on grass weed occurrence in cereal rotation

    OpenAIRE

    Salonen, Jukka

    2009-01-01

    In general, a rapid infestation of grass weeds was demonstrated in the plots with direct drilling. On the contrary, hardly any grass weeds infested the ploughed plots. The proportion between grass weeds and broad-leaved weeds differed in three tillage systems.

  14. Influence of tillage system on the weed infestation in a long-term field trial

    Directory of Open Access Journals (Sweden)

    Schwarz, Jürgen

    2014-02-01

    Full Text Available In Germany reduced tillage (without ploughing increased to nearly 40% of arable land. Without using a plough weed infestation generally rises. Simultaneously the use of herbicides increases. In a long-term field trial in Dahnsdorf (federal state of Brandenburg, Germany the impact of reduced tillage on weed occurrence and herbicide use is investigated. The use of glyphosate for seedbed preparation is not always necessary, e.g. in the crop year 2010 glyphosate was not used. The use depends on the rate of weed emergence and the precedent crop. For canola the situation is different, volunteer cereal plants had to be controlled by a graminicide in 6 out of 7 years. In the first years weed emergence is determined by the former crop rotation (cash cropping with 67% cereals vs. forage cropping with 50% cereals and the herbicide strategy. Round about after four years the influence of the reduced tillage appears in case of the dicotyledonous weeds. Emergence of these weeds is promoted by the reduced tillage especially in combination with slightly reduced herbicide amounts (strategy IPS. The species of the dicotyledonous weeds are mainly (about 70% Viola arvensis, Veronica spp., Stellaria media, Matricaria spp. and Centaurea cyanus. For Apera spica-venti the emergence is mainly based on the weather conditions and the germinative terms in autumn.

  15. Impact of conservation tillage and organic farming on the diversity ofarbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Säle, Verena; Aguilera, Paula; Laczko, Endre; Mäder, Paul; Berner, Alfred; Zihlmann, Urs; van der Heijden, Marcel G A; Oehl, Fritz

    2015-01-01

    Communities of arbuscular mycorrhizal fungi (AMF) are strongly affected by land use intensity and soil type. The impact of tillage practices on AMF communities is still poorly understood, especially in organic farming systems. Our objective was to investigate the impact of soil cultivation on AMF co

  16. TILLAGE AND DYNAMICS OF INORGANIC NITROGEN IN ECOLOGICAL AND INTEGRATION MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    J SMATANA

    2002-05-01

    Full Text Available During the period of 1991-1993 in the field experiment, the effect of different soil management (tillage 0,24 m and tillage 0,12-0,15 m in ecological and integration management system on changes of inorganic nitrogen (Nan = N-NH4 + + N-NO3 - content in the soil layer from 0 up to 0,6 m of the soil depth (0,00-0,30 m and 0,30- 0,60 m were studied. Trials were held in a warm climatic zone of the South – Western Slovakia on the brown soil. Different soil management systems (tillage 0,24 m and tillage 0,12-0,15 m considerably did not affected ammonification and nitrification processes in the soil. The sustainability of minimalization via shallow ploughing is not excluded, on the contrary this minimalization may have high a positive influence on economic saving the energy, labour costs, etc. The quantitative and qualitative changes of studied form of N were significantly effected by weather and soil depth. Soil content of N-NH4 + and N-NO3 - was in negative correlation with soil depth.

  17. Dryland malt barley yield and quality affected by tillage, cropping sequence, and nitrogen fertilization

    Science.gov (United States)

    Information is needed on the effects of management practices on dryland malt barley (Hordeum vulgaris L.) and pea (Pisum sativum L.) yields and quality. We evaluated the effects of tillage and cropping sequence combination and N fertilization on dryland malt barley and pea yields, grain characterist...

  18. Tillage, cropping sequence, and nitrogen fertilization influence dryland soil nitrogen dynamics

    Science.gov (United States)

    Management practices are needed to reduce dryland N losses through N leaching and N2O emissions (a greenhouse gas) by increasing soil N storage and reducing N fertilization rate without influencing crop yields. The effects of tillage and cropping sequence combination and N fertilization rate were st...

  19. Malt barley yield and quality affected by irrigation, tillage, crop rotation, and nitrogen fertilization

    Science.gov (United States)

    Little is known about the comparison of management practices on malt barley (Hordeum vulgare L.) yield and quality in irrigated and non-irrigated cropping systems. We evaluated the effects of irrigation, tillage, cropping system, and N fertilization on malt barley yield and quality in a sandy loam s...

  20. Soil carbon and crop yields affected by irrigation, tillage, crop rotation, and nitrogen fertilization

    Science.gov (United States)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  1. [Effects of rotational tillage during summer fallow on wheat field soil water regime and grain yield].

    Science.gov (United States)

    Hou, Xian-qing; Wang, Wei; Han, Qing-fang; Jia, Zhi-kuan; Yan, Bo; Li, Yong-ping; Su, Qin

    2011-10-01

    In 2007-2010, a field experiment was conducted to study the effects of different rotational tillage practices during summer follow on the soil water regime and grain yield in a winter wheat field in Southern Ningxia arid area. Three treatments were installed, i.e., T1 (no-tillage in first year, subsoiling in second year, and no-tillage in third year), T2 (subsoiling in first year, notillage in second year, and subsoiling in third year), and CT (conventional tillage in the 3 years). Through the three years of the tillage practices, the soil water storage efficiency in treatments T1 and T2 was increased averagely by 15.2% and 26.5%, respectively, as compared to CT. In treatments T1 and T2, the potential rainfall use rate was higher, being 37.8% and 38.5%, respectively, and the rainfall use efficiency was increased averagely by 9.9% and 10.7%, respectively, as compared to CT. Rotational tillage during summer fallow could decrease the soil ineffective evaporation significantly, and save the soil water effectively in wheat growth season. At early growth stage, the water storage in 0-200 cm soil layer in treatments T1 and T2 was increased averagely by 6.8% and 9. 4%, as compared to CT; at jointing, heading, and filling stages, the water storage in 0-200 cm soil layer in treatments T1 and T2 had a significant increase, giving greater contribution to the wheat yield than the control. Different rotational tillage practices increased the water consumption by wheat, but in the meantime, increased the grain yield and water use efficiency. In treatments T1 and T2, the water consumption by wheat through the three years was increased averagely by 5.2% and 6.1%, whereas the grain yield and the water use efficiency were increased averagely by 9.9% and 10.6%, and by 4.5% and 4.3%, respectively, as compared to CT. Correlation analysis showed that in Southern Ningxia arid area, the soil water storage at sowing, jointing, heading, and filling stages, especially at heading stage, could

  2. Dust and nutrient enrichment by wind erosion from Danish soils in dependence of tillage direction

    Science.gov (United States)

    Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.

    2016-04-01

    Wind erosion is a selective process, which promotes erosion of fine particles. Therefore, it can be assumed that increasing erosion rates are generally associated with increasing loss of dust sized particles and nutrients. However, this selective process is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. Since tillage ridges are often the only protection measure available on poorly aggregated soils in absence of a protective vegetation cover, it is very important to know which orientation respective to the dominant wind direction provides best protection. This knowledge could be very helpful for planning erosion protection measures on fields with high wind erosion susceptibility. The main objective of this study, therefore, was to determine the effect of tillage direction on dust and nutrient mobilization by wind, using wind tunnel simulations. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios - flat surface, parallel tillage, perpendicular tillage. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 μm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and

  3. Experimental tests on winter cereal: Sod seeding compared to minimum tillage and traditional plowing

    Directory of Open Access Journals (Sweden)

    Antoniotto Guidobono Cavalchini

    2013-09-01

    Full Text Available Compared to traditional plowing and minimum tillage, the sod seeding technique has been tested in order to evaluate the differences in energy consumption, labor and machinery requirement and CO2 emission reduction. The experiments were conducted on winter cereal seeding in a Po valley farm in October 2011. The tests were carried out as follows: wheat variety seeding, over corn and alfalfa crops, in large plots with three repetitions for each thesis. They included: sod seeding anticipated by round up weeding in the case of the plots over alfalfa; traditional plowing at 35 cm followed by rotary tillage and combined seeding (seeder plus rotary tiller; minimum tillage based on ripping at the same depth (35 cm and combined seeder ( seeder plus rotary tiller. The following farm operations - fertilizer, and other agrochemical distributionshave been the same in all the considered theses. The results, statistically significant (P<0.001 in terms of yields, highlighted slight differences: the best data in the case of the traditional plowing both in the case of wheat crop over corn and alfalfa (84.43 and 6.75 t/ha; slightly lower yields for the sod seeding (6.23 and 79.9 t/ha for corn and alfalfa respectively; lower in the case of minimum tillage (5.87; 79.77 t/ha in the two situations. Huge differences in energy and oil consumption have been recorded: in the case of succession to corn 61.47; 35.31; 4.27 kg oil/ha respectively for, traditional plowing, minimum tillage and sod seeding; in the case of alfalfa 61.2; 50.96; 5.14 kg oil/ha respectively for traditional plowing, minimum tillage and sod seeding. The innovative technique, highlighted huge energy saving with an oil consumption equal to 92% and 89% (P<0.001 of what happens in traditional plowing and minimum tillage. Large differences concern labor and machine productivity. These parameters together with oil consumption and machine size [power (kW and weight (t] lead to even greater differences in

  4. 试论耕整机的安装与保养%The Installation and Maintenance of the Tillage Machine

    Institute of Scientific and Technical Information of China (English)

    孙若权

    2015-01-01

    Through the analysis of the tillage machine installation and maintenance,explore tillage whole daily work and safety protection measures,in order to improve the production efficiency of the daily work,provide a useful reference for tillage machine application.%通过分析耕整机的安装与保养,探讨耕整的日常工作及安全防护措施,以期提高日常工作的生产效率,为耕整机的应用提供有益参考。

  5. Water balance and soil losses in an irrigated catchment under conservation tillage in Southern Spain

    Science.gov (United States)

    Cid, Patricio; Mateos, Luciano; Taguas, Encarnación V.; Gómez-Macpherson, Helena

    2013-04-01

    Conservation tillage based on permanent beds with crop-residue retention and controlled traffic has been recently introduced in irrigated annual crops in Southern Spain as one way to improve water infiltration, reduce soil losses, and save energy. The water balance and soil losses in water runoff have been monitored during 4 years in a 28-ha catchment within a production farm where this kind of soil conservation practice was established in 2004 for a maize-cotton-wheat rotation. The catchment average slope is 6 %. Soils are Typic Calcixerept and Typic Haploxerert. The water balance components that were measured include: applied irrigation water, rainfall, and runoff. Runoff was measured at the outlet of the catchment by means of a hydrological station that consisted of long-throated flume, ultrasonic water level sensor, automatic water sampler, data logger and transmission system, weather station, and ancillary equipment. We present here results from three hydrological seasons (October to September): 2009-10, 2010-11, and 2011-12. The first season the catchment was grown with wheat, thus the irrigation depth was small (25 mm); rainfall above average, 1103 mm; and the runoff coefficient was 26 %. In the season 2010-11, the catchment was grown with cotton, the irrigation depth was 503 mm, rainfall was 999 mm, and the seasonal runoff coefficient was 7 %. The last season, the crop was maize, rainfall was below average (368 mm), irrigation 590 mm, and the runoff coefficient as the previous year, 7 %. Soil losses were very small: 0.05, 1.26, and 1.33 t per ha and year, the first, second, and third monitored seasons, respectively. A simple water balance model allowed simulating evapotranspiration, deep percolation and runoff. The Curve Number for the catchment was calibrated using the balance model.

  6. Soybean Tillage Systems and Physical Changes in Surface Layers of Two Albaqualf Soils

    Directory of Open Access Journals (Sweden)

    Gerson Meneghetti Sarzi Sartori

    Full Text Available ABSTRACT A compacted subsurface soil layer can be a limiting factor for soybean growing, reducing soybean yield. The aim of this study was to evaluate the effect of different tillage systems on the physical properties of two Albaqualf soils of the Central Plains region in the state of Rio Grande do Sul in southern Brazil. Two experiments were conducted: one in Santa Maria, RS, during the 2013/14 and 2014/15 crop seasons, and another in Formigueiro, RS, during the 2013/14 crop season. A randomized block experimental design with four replications was used. The treatments were: sowing using an offset double disc (T1; sowing using a fluted coulter disc (wavy disc with 12 waves (T2; sowing with a knife runner opener (T3; sowing with a knife runner opener + press wheel mechanism for ground levelling (T4; sowing using a furrow opener upon a raised bed (T5; and chisel plough + sowing using an offset double-disc (T6. In the 2014/15 growing season, the T4 factor was changed using a knife runner opener 0.05 m from the planting row. A smaller reduction in the compacted subsurface soil layer was observed for both T1 and T2, which exhibited high soil bulk density values for the 2013/14 and 2014/15 crop seasons. Furthermore, T3, T5 and T6 led to a reduction in bulk density, and increasing total porosity and macroporosity in the soil, which consequently increased water infiltration, water storage capacity, and crop yield in areas with the presence of a compacted subsurface soil layer.

  7. Tillage impact on herbicide loss by surface runoff and lateral subsurface flow.

    Science.gov (United States)

    Potter, Thomas L; Bosch, David D; Strickland, Timothy C

    2015-10-15

    There is worldwide interest in conservation tillage practices because they can reduce surface runoff, and agrichemical and sediment losses from farm fields. Since these practices typically increase infiltration, their use may increase subsurface transport of water-soluble contaminants. Thus, to assess long-term environmental benefits of conservation tillage data may be needed that quantify both surface and subsurface contaminant fluxes. This study focused on the herbicide fluometuron (N,N-dimethyl-N'-[3-(trifluoromethyl)phenyl]-urea) and its soil degradate DMF (N-methyl-N'-[3-(trifluoromethyl) phenyl]-urea). Both compounds are classed as "leachable". They were measured for 10 years in surface runoff and lateral subsurface flow from paired fields located on a hill slope in the Atlantic Coastal Plain region of the southeastern USA. One group of fields was conventionally tilled incorporating all crop residues into soil prior to planting. The second was strip tilled, a common conservation tillage practice. Seven fluometuron applications were made to cotton (Gossypium hirsutum) produced in rotation with peanut (Arachis hypogea). Combined fluometuron and DMF surface and subsurface losses from the conventionally tilled fields were equivalent to 1.2% and 0.13% of fluometuron applied and 0.31% and 0.32% from the strip tilled fields. Annual surface runoff losses were significantly greater from the conventionally tilled fields while the strip tilled fields had significantly greater annual subsurface losses. Results demonstrated that shifting from conventional to conservation tillage management of farm fields in this landscape will reduce surface runoff losses of herbicides like fluometuron but subsurface losses will likely increase. The same trends can be expected in landscapes with similar soil and hydrologic properties. This should be considered when planning implementation of programs that promote conservation tillage use.

  8. Ofloxacin sorption in soils after long-term tillage: The contribution of organic and mineral compositions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dandan; Chen, Bingfa; Wu, Min, E-mail: kustless@gmail.com; Liang, Ni; Zhang, Di; Li, Hao; Pan, Bo

    2014-11-01

    Intensive human activities in agricultural areas resulted in significant alteration of soil properties, which consequently change their interactions with various contaminants. This process needs to be incorporated in contaminant behavior prediction and their risk assessment. However, the relevant study is missing. This work was designed to examine the change of soil properties and ofloxacin (OFL) sorption after tillage. Soil samples were collected in Yuanyang, Mengzi, and Dianchi areas with different agricultural activities. Although the mineral compositions of soils from Yuanyang and Dianchi differed greatly, these compositions are similar after tillage, especially for paddy soils. Soil pH decreased generally after OFL sorption, suggesting that ion exchange of OFL with protons in soil organic matter (SOM) was important for OFL sorption. However, a positive relationship between SOM and OFL sorption was not observed. On the contrary, increased SOM decreased OFL sorption when soils from the same geological location were compared. Generally speaking, tillage activities or dense vegetations greatly decreased OFL sorption. The higher OFL sorption in B horizon than A horizon suggested limited leaching of OFL through soil columns. The summed sorption calculated based on the sorption of individual soil components and their percentages in soils was higher than the intact soil. This phenomenon may be understood from the interactions between soil components, such as the coating of SOM on mineral particles. This study emphasizes that soil should be treat as a dynamic environmental matrix when assessing antibiotic behaviors and risks, especially in the area with intense human activities. - Highlights: • Mineral compositions tend to be similar after tillage. • Increased SOM decreases OFL sorption for soils from the same geological location. • Tillage activities or dense vegetations greatly decrease OFL sorption. • The summed sorption of individual soil components is

  9. Greenhouse gas fluxes induced by tillage and fertilisation in an organic grass-clover-wheat sequence

    Science.gov (United States)

    Krauss, Maike; Ruser, Reiner; Hansen, Sissel; Mäder, Paul; Gattinger, Andreas

    2015-04-01

    Reduced tillage is technically a challenging task in organic arable farming due to the weed competition but also concerning the destruction of grass-clover leys. Regarding its climate impact, there are hardly any data existing. Soil-derived greenhouse gas fluxes were therefore monitored in a long-term field trial in Frick/CH. The trial is arranged in a strip-split-plot design on a heavy clay soil and compares since 2002 conventional tillage (up to 15 cm deep mouldboard ploughing) with reduced tillage (skim plough 5 cm deep and occasional chisel ploughing). In addition, cattle slurry only (SL) is compared with a slurry/manure compost treatment (MC) at a rate of 90 kg N/year. MC plots received one manure compost and two slurry batches, the latter applied with SL the same day but with half the amount. The overall management is in compliance with the EU organic farming regulation. Nitrous oxide and methane fluxes were monitored in a two-year period including a grass-clover ley, its destruction and a subsequent winter wheat crop. We adjusted the closed chamber sampling method developed by Flessa et al. (1995) with eight replicates for each treatment. Gas and soil sampling took place weekly with additional measurements after fertiliser and tillage management. Soil samples were analysed for mineralised nitrogen, dissolved organic carbon and water filled pore space. Flux calculation included linear and non-linear regression calculated with the HMR-Model after Pedersen et al. (2010) and Fuss et al. (unpublished). N2O fluxes calculated with the non-linear model were 10% higher than calculated with the linear model only. First results for the grass-clover period show no significant differences in N2O fluxes neither between reduced tillage and ploughing nor between slurry and manure compost/slurry application. However, ley destruction induced high N2O emissions which will be discussed with the subsequent wheat period.

  10. THE IMPACT OF WEED SUPRESSION BY HERBICIDES AND SOIL TILLAGE AT WINTER WHEAT YIELD

    Directory of Open Access Journals (Sweden)

    Branimir Mikić

    2012-12-01

    Full Text Available The research of impact of different herbicide dosages and soil tillage systems on weed population, weed control, winter wheat yield, its components and soil compaction has been conducted on luvisol soil type of Valpovo site during growing seasons 2008/09 and 2010/11. The trial has been set up as split-plot in four repetitions, with two soil tillage treatments (CT-conventional tillage, based on mouldboard ploughing, and CH-chiselling and diskharrowing, without ploughing and five herbicide sub-treatments (0-control, no herbicides; H10-recommended dose of Herbaflex (2 l ha-1; H05-half dose of Herbaflex; F10-recommended dose of Fox (1.5 l ha-1; and F05-half dose of Fox. CT treatment had significantly more weed than RT in over-wet season 2009/10., whereas RT had more weed than CT in drought seasons. The control 0 had the most weed occurrence, whereas H10 treatment had the best weed suppression at both soil tillage treatments. Higher yields were achieved by CT in comparison with RT. The highest winter wheat yield has been recorded at control treatment, whereas both full herbicide dosage treatments (F10 and H10 had lower yield, but significantly only within the RT treatment. Since half herbicide dosage treatments (F05 and H05 were not significantly different neither from higher winter wheat yield achieved at control 0 at both soil tillage treatments, nor from less weeded full herbicide dosage treatments (F10 and H10, they can be recommended for winter wheat production, especially in the conditions of more and more frequent occurrence of weather extremes over Northeastern Croatia.

  11. 秸秆覆盖免耕土壤细菌和真菌生物量与活性的研究%Bacterial and Fungai Biomass and Activities in Straw Mulch No-Tillage Soils

    Institute of Scientific and Technical Information of China (English)

    高云超; 朱文珊; 陈文新

    2001-01-01

    Longterm continuous straw mulch no-tillage increased soil totaland active microbial biomass and activities.Tillage methods influenced soil bacterial and fungal biomass and activities.Conventional tillage increased soil bacterial biomass,but the shapes and distributions of soil bacteria differed insignificantly for different tillage soils.No-tillage increased soil total and active hyphal length and biomass.The bacterial and fungal contributions to respiration differed remarkably for tillage method experimental soils.Conventional tillage surface soil layer concentrated largely fungal component,while no-tillage soil had much bacterial activities.It showed that soil microbial activity and is not consistent with biomass and its composition in different tillage method soils.

  12. Evolution of physical properties of soils according to tillage systems on annual crops/ Evolução de propriedades físicas do solo em função dos sistemas de manejo em culturas anuais

    Directory of Open Access Journals (Sweden)

    Rogério R. M. Ferreira

    2006-06-01

    Full Text Available Soil management must keep the soil physical properties next to the original conditions in natural systems to assure the sustainability of agricultural systems. This review synthesizes the effects of conventional tillage, minimum tillage and no-tillage systems of annual crops, on soil physical properties as bulk density, porosity, soil resistance to root penetration, infiltration speed, hydraulic conductivity,compressibility, organic matter level, soil aggregate size and stability. No-tillage presents advantages on organic matter level, size and stability of aggregates, compressibility and hydraulic conductivity but has limitations on bulk density and resistance to root penetration. Minimum tillage with chisel plow is specially efficient in relation to infiltration speed and hydraulic conductivity, and intermediate between conventional and no-tillage in other aspects. Conventional tillage with total pulverization of soil surface,mainly on tropical conditions, presents the less favorable scores on soil physical properties, close to minimum tillage and no-till only in few circumstances, and frequently the most different from the natural conditions. The conservation systems by their side, despite of similarities in some aspects with natural conditions, are not able to reproduce the conditions of natural forests, savannas or natural pastures, but are in the sustainability direction.Para assegurar a sustentabilidade do sistema produtivo, o manejo do solo deve manter as propriedades físicas do solo o mais próximo das condições originais em que este se encontrava na natureza. Esta revisão sintetiza os efeitos de três sistemas de manejo de solo (convencional, mínimo e direto em culturas anuais sobre as propriedades físicas do solo como densidade, porosidade, resistência à penetração, velocidade de infiltração, condutividade hidráulica, compressibilidade, nível de matéria orgânica, tamanho e estabilidade de agregados. O plantio direto

  13. Short-term Effects of Tillage Practices on Organic Carbon in Clay Loam Soil of Northeast China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A tillage experiment, consisting of moldboard plow (MP), ridge tillage (RT), and no-tillage (NT), was performed in a randomized complete block design with four replicates to study the effect of 3-year tillage management on SOC content and its distribution in surface layer (30 cm) of a clay loam soil in northeast China. NT did not lead to significant increase of SOC in topsoil (0-5 cm) compared with MP and RT; however, the SOC content in NT soil was remarkably reduced at a depth of 5-20 cm. Accordingly, short-term (3-year) NT management tended to stratify SOC concentration, but not necessarily increase its storage in the plow layer for the soil.

  14. Stratification ratios in a rainfed Mediterranean Vertisol in wheat under different tillage, rotation and N fertilization rates

    Science.gov (United States)

    Semiarid Mediterranean climatic conditions and intensive tillage systems accelerate soil organic matter losses. Therefore, assessing agricultural practices that enhance storage of soil organic matter is needed. Stratification of soil properties with soil depth, expressed as a ratio, could indicate s...

  15. Assessing the Soil Physiological Potential Using Pedo-Biological Diagnosis Under Minimum-Tillage System and Mineral Fertilization

    National Research Council Canada - National Science Library

    Lazar Bireescu; Geanina Bireescu; Michele Vincenzo Sellitto

    2014-01-01

    .... Accordingly, the objective of this research was to assess the impact of technological systems by minimum tillage on soil biological activity, using the Pedo-Biological Diagnosis of Soil Resources...

  16. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  17. The effects of minimal tillage, contour cultivation and in-field vegetative barriers on soil erosion and phosphorus loss

    OpenAIRE

    2009-01-01

    Runoff, sediment, total phosphorus and total dissolved phosphorus losses in overland flow were measured for two years on unbounded plots cropped with wheat and oats.\\ud \\ud Half of the field was cultivated with minimum tillage (shallow tillage with a tine cultivator) and half was conventionally ploughed. Within each cultivation treatment there were different treatment areas (TAs). In the first year of the experiment, one TA was cultivated up and down the slope, one TA was cultivated on the co...

  18. Short-term effects of tillage practices on soil organic carbon turnover assessed by δ13C abundance in particle-size fractions of black soils from northeast China.

    Science.gov (United States)

    Liang, Aizhen; Chen, Shenglong; Zhang, Xiaoping; Chen, Xuewen

    2014-01-01

    The combination of isotope trace technique and SOC fractionation allows a better understanding of SOC dynamics. A five-year tillage experiment consisting of no-tillage (NT) and mouldboard plough (MP) was used to study the changes in particle-size SOC fractions and corresponding δ (13)C natural abundance to assess SOC turnover in the 0-20 cm layer of black soils under tillage practices. Compared to the initial level, total SOC tended to be stratified but showed a slight increase in the entire plough layer under short-term NT. MP had no significant impacts on SOC at any depth. Because of significant increases in coarse particulate organic carbon (POC) and decreases in fine POC, total POC did not remarkably decrease under NT and MP. A distinct increase in silt plus clay OC occurred in NT plots, but not in MP plots. However, the δ (13)C abundances of both coarse and fine POC increased, while those of silt plus clay OC remained almost the same under NT. The C derived from C3 plants was mainly associated with fine particles and much less with coarse particles. These results suggested that short-term NT and MP preferentially enhanced the turnover of POC, which was considerably faster than that of silt plus clay OC.

  19. Tillage and planting density affect the performance of maize hybrids in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Tika Baladur Karki

    2015-12-01

    Full Text Available To find out whether the different tillage methods at different planting densities affect the performance of maize hybrids, an experiment was carried out at National Maize Research Program, Rampur during spring season of 2013 and 2014. The experiment was laid out in strip plot design with three replications having 12 treatments. The vertical factor was tillage with conservation tillage (No Tillage + residue=NT and conventional tillage (CT and the horizontal factor were genotypes (Rampur Hybrid-2 and RML-32/RML-17 and in split planting geometries (75cm × 25cm =53333 plants/ha, 70cm × 25cm=57142 plant/ha and 60cm ×25cm= 66666 plants/ha. In both the years, the highest number of cobs (73,177 and 67638/ha was recorded at planting density of 66666/ha. NT had the highest no of kernel rows/cob (14.01 as against 12.12 in CT in 2014. The highest number of kernels (27.3 and 29.29 per row was recorded in NT during 2013 and 2014 respectively. Similarly, in 2014, the highest number of kernels were found in RML-32/RMl-17 (29.17/row and planting density of 53333/ha (28.46/row. In 2013, RML-32/RML-17 produced the highest test weight of 363.94g over the Rampur hybrid-2 with 362.17g. Significantly the highest grain yield of 9240.00 kg/ha in 2013 and 7459.80 kg/ha in 2014 at planting geometry of 65cm ×25cm were recorded. No effects was found by tillage methods for grain yields of maize in 2013, but was found in 2014 (7012.18 kg in NT compared to 6037.59 kg/ha in CT. NT and wider spaced crop matured earlier in both the years; however Rampur hybrid-2 matured earlier to RML-32/RML-17 in 2013. In 2014, harvest index of 47.85 % was recorded in planting geometry of 66666/ha, the highest benefit cost ratio of 1.36 was worked out in NT and 1.46 at the density of 66666/ha. The highest value of 2.46% of soil organic matter was recorded in NT as compared to 2.43% in CT.

  20. Changes to infiltration and soil loss rates during the growing season under conventional and conservation tillage

    Science.gov (United States)

    Jakab, Gergely; Madarász, Balázs; Szabó, Judit; Tóth, Adrienn; Zacháry, Dóra; Szalai, Zoltán; Dyson, Jeremy

    2017-04-01

    Rainfall simulation studies were conducted to determine how infiltration and soil erosion rates vary in field plots under conventional and conservation tillage practices during the growing season: i.) in April while the soil was under green cover; ii.) in May when the soil was a bare seed bed; iii.) in October when the soil was covered in stubble after harvest. At each time, five different rainfall intensities were applied to the plots and the infiltration rate calculated as function of rainfall intensity. The highest infiltration rates were observed on the plot under conservation tillage when it was under the cover crop. Comparing these infiltration rates with those at other times, important differences can be seen. When the soil was prepared as a seedbed, higher infiltration rates occurred when rainfall intensities were less than 80 mm/h. However, when the rainfall intensities were more than 80 mm/h, water infiltration rates were higher when the soil was covered in stubble. This means that natural pore forming processes can be more effective at improving soil drainage potential than temporary improvements created by soil tillage operations. Different methods were used to assess the soil erosion potential. Independently of the method used to calculate soil erodibility, it is obvious that the soil is most vulnerable when prepared as a seedbed. In addition, the highest resistance against soil erosion was observed when the soil was covered with crops. A method of calculating the sediment transporting capacity of runoff found no significant difference between conservation and conventional tillage systems. This contrasts with the Universal Soil Loss Equation method, which indicated differences between the two tillage systems substantial at each time of observation. The lowest difference (less than two times) was when the soil was covered in stubble, which matches with literature data. Overall, conservation tillage resulted in much lower soil erodibility values for the

  1. [Soil respiration and carbon balance in wheat field under conservation tillage].

    Science.gov (United States)

    Zhang, Sai; Wang, Long-Chang; Huang, Zhao-Cun; Jia, Hui-Juan; Ran, Chun-Yan

    2014-06-01

    In order to study the characteristics of carbon sources and sinks in the winter wheat farmland ecosystem in southwest hilly region of China, the LI6400-09 respiratory chamber was adopted in the experiment conducted in the experimental field in Southwest University in Chongqing. The soil respiration and plant growth dynamics were analyzed during the growth period of wheat in the triple intercropping system of wheat-maize-soybean. Four treatments including T (traditional tillage), R (ridge tillage), TS (traditional tillage + straw mulching), and RS (ridge tillage + straw mulching) were designed. Root biomass regression (RR) and root exclusion (RE) were used to compare the contribution of root respiration to total soil respiration. The results showed that the average soil respiration rate was 1.71 micromol x (m2 x s)(-1) with a variation of 0.62-2.91 micromol x (m2 x s)(-1). Significant differences in soil respiration rate were detected among different treatments. The average soil respiration rate of T, R, TS and RS were 1.29, 1.59, 1.99 and 1.96 micromol x (m2 x s)(-1), respectively. R treatment did not increase the soil respiration rate significantly until the jointing stage. Straw mulching treatment significantly increased soil respiration, with a steadily high rate during the whole growth period. During the 169 days of growth, the total soil respiration was 2 266.82, 2799.52, 3 483.73 and 3 443.89 kg x hm(-2) while the cumulative aboveground biomasses were 51 800.84, 59 563.20, 66 015.37 and 7 1331.63 kg x hm(-2). Compared with the control, the yield of R, TS and RS increased by 14.99%, 27.44% and 37.70%, respectively. The contribution of root respiration to total soil respiration was 47.05% by RBR, while it was 53.97% by RE. In the early growth period, the carbon source was weak. The capacity of carbon sink started to increase at the jointing stage and reached the maximum during the filling stage. The carbon budget of wheat field was 5 924.512, 6743.807, 8350

  2. Evaluating the Effect of Tillage on Carbon Sequestration Using the Minimum Detectable Difference Concept

    Institute of Scientific and Technical Information of China (English)

    X. M. YANG; C. F. DRURY; M. M. WANDER; B. D. KAY

    2008-01-01

    Three long-term field trials in humid regions of Canada and the USA were used to evaluate the influence of soil depth and sample numbers on soil organic carbon (SOC) sequestration in no-tillage (NT) and moldboard plow (MP) corn (Zea mays L.) and soybean (Glycine max L.) production systems. The first trial was conducted on a Maryhill silt loam (Typic Hapludalf) at Elora, Ontario, Canada, the second on a Brookston clay loam (Typic Argiaquoll) at Woodslee, Ontario,Canada, and the third on a Thorp silt loam (Argiaquic Argialboll) at Urbana, Illinois, USA. No-tillage led to significantly higher SOC concentrations in the top 5 cm compared to MP at all 3 sites. However, NT resulted in significantly lower SOC in sub-surface soils as compared to MP at Woodslee (10-20 cm, P = 0.01) and Urbana (20-30 cm, P < 0.10).No-tillage had significantly more SOC storage than MP at the Elora site (3.3 Mg C ha-1) and at the Woodslee site (6.2Mg C ha-1) on an equivalent mass basis (1350 Mg ha-1 soil equivalent mass). Similarly, NT had greater SOC storage than MP at the Urbana site (2.7 Mg C ha-1) on an cquivalent mass basis of 675 Mg ha-1 soil. However, these differences disappcared when the entire plow layer was evaluated for both the Woodslee and Urbana sites as a result of the higher SOC concentrations in MP than in NT at depth. Using the minimum detectable difference technique, we observed that up to 1500 soil sample per tillage treatment comparison will have to be collected and analyzed for the Elora and Woodslee sites and over 40 soil samples per tillage treatment comparison for the Urbana to statistically separate significant differences in the SOC contents of sub-plow depth soils. Therefore, it is impracticable, and at the least prohibitively expensive, to detect tillage-induced differences in soil C beyond the plow layer in various soils.

  3. Integrated Palmer Amaranth Management in Glufosinate-Resistant Cotton: II. Primary, Secondary and Conservation Tillage

    Directory of Open Access Journals (Sweden)

    Michael G. Patterson

    2013-01-01

    Full Text Available A three year field experiment was conducted to evaluate the role of soil inversion, cover crops and spring tillage methods for Palmer amaranth between-row (BR and within-row (WR management in glufosinate-resistant cotton. Main plots were two soil inversion treatments: fall inversion tillage (IT and non-inversion tillage (NIT. Subplots were three cover treatments: crimson clover, cereal rye or none (i.e., winter fallow; and the sub subplots were four secondary spring tillage methods: disking followed by (fb cultivator (DCU, disking fb chisel plow (DCH, disking fb disking (DD and no tillage (NT. Averaged over years and soil inversion, the crimson clover produced maximum cover biomass (4390 kg ha−1 fb cereal rye (3698 kg ha−1 and winter fallow (777 kg ha−1. Two weeks after planting (WAP and before the postemergence (POST application, Palmer amaranth WR and BR density were two- and four-times less, respectively, in IT than NIT. Further, Palmer amaranth WR and BR density were reduced two-fold following crimson clover and cereal rye than following winter fallow at 2 WAP. Without IT, early season Palmer amaranth densities were 40% less following DCU, DCH and DD, when compared with IT. Following IT, no spring tillage method improved Palmer amaranth control. The timely application of glufosinate + S-metolachlor POST tank mixture greatly improved Palmer amaranth control in both IT and NIT systems. The highest cotton yields were obtained with DD following cereal rye (2251 kg ha−1, DD following crimson clover (2213 kg ha−1 and DD following winter fallow (2153 kg ha−1. On average, IT cotton yields (2133 kg ha−1 were 21% higher than NIT (1766 kg ha−1. Therefore, from an integrated weed management standpoint, an occasional fall IT could greatly reduce Palmer amaranth emergence on farms highly infested with glyphosate-resistant Palmer amaranth. In addition, a cereal rye or crimson clover cover crop can effectively reduce early season Palmer

  4. Impact of tillage on soil magnetic properties: results over thirty years different cultivation plots

    Science.gov (United States)

    Thiesson, Julien; Kessouri, Pauline; Buvat, Solène; Tabbagh, Alain

    2010-05-01

    Cultivation may favour or not different processes such as air and water circulation, organic matter and fertilizers supplies..., consequently it can a priori induce significant changes in local oxido-reduction conditions which determine the magnetic properties of soils: the soil magnetic signal. If laboratory measurements on soil samples can be slow and irreversible, it is also possible to perform in field measurements by using electromagnetic devices that allow quick and easy measuring over the relevant soil thicknesses both in time (TDEM) and frequency (FDEM) domains. The object of this study is to compare the variation of two magnetic properties (magnetic susceptibility, measured by FDEM apparatus and magnetic viscosity measured by TDEM apparatus) and there ratio along depth for three different types of tillage (no tillage, ploughing, and simplified tillage). An experimental plot of 80 m by 50 m total area, on which these three types of tillage have been conducted for more than thirty years, was surveyed. The plot is divided in five strips of 16 m by 50 m area, each of which being cultivated by one type of tillage only. Each strip is divided in two parts, one half with nitrogen-fixing crop during intercultivation winter period and the other half with bare soil during this period. On each part, the variation along depth of both magnetic properties was assessed by surveying with different devices corresponding to three different volumes of investigation. For the magnetic susceptibility measurements the devices used were the MS2 of Bartington Ltd with the MS2D probe and the CS60 a slingram prototype use in VCP and HCP configurations. For the magnetic viscosity, the devices used were the DECCO from Littlemore ltd. And the VC100, a slingram prototype, used at two heights. Eleven values of the two magnetic properties have been recorded using each device and their medians calculated. The data were inverted to define the median magnetic profiles of each half

  5. Changes in a Rhodic Hapludox under no-tillage and urban waste compost in the northwest of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Moacir Tuzzin de Moraes

    2014-08-01

    Full Text Available The use of urban waste compost as nutrient source in agriculture has been a subject of investigation in Brazil and elsewhere, although the effects on soil physical and chemical properties and processes are still poorly known. The aim of this study was to evaluate the effect of application of urban waste compost and mineral fertilizer on soil aggregate stability and organic carbon and total nitrogen content of a Rhodic Hapludox under no-tillage in the northwestern region of Rio Grande do Sul, Brazil, in the 2009/2010 and 2010/2011 growing seasons. The experiment was arranged in a 2 × 6 (seasons and fertilization factorial in a randomized complete block design with four replications. The factor time consisted of two growing seasons (sunflower in 2009/10 and maize in 2010/11 and the factor fertilization of five rates of urban waste compost (0, 25, 50, 75 and 100 m³ ha-1, and mineral fertilizer. Soil samples were collected from the 0.0-0.10 m layer to determine aggregate stability (mean weight and geometric diameter, soil organic carbon (SOC and total nitrogen (TN. Rates of up to 75 m³ ha-1 of urban waste compost, after two years of application to no-tillage maize and sunflower, improved aggregation compared to mineral fertilization in a Rhodic Hapludox. After the second crop, the SOC and TN contents increased linearly with the levels of urban waste compost.

  6. TILLAGE EFFECTS ON SUNFLOWER (HELIANTHUS ANNUUS, L. EMERGENCE, YIELD, QUALITY, AND FUEL CONSUMPTION IN DOUBLE CROPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    ABDULLAH SESSIZ

    2009-06-01

    Full Text Available The relation between crop growing and soil tillage treatment are play important role in agricultural production. Soils under conventional tillage (CT generally have lower bulk density and associated higher total porosity within the plough layer than under no tillage (NT. No-till farming can reduce soil erosion, conserve soil moisture and minimize labor and fuel consumption. The aim of this study were to investigate the effects of conventional, reduced and notillage methods on soil physical properties, sunfl ower yield and yield components, protein and oil content and fuel consumption in Southeastern of Turkey. Six tillage methods for the second crop sunfl ower were tested and compared each other within after lentil harvesting at 2003 and 2004 years in a clay loam soil. According to results, the fi rst year, the bulk density had decreased from 1.29 to 1.09 g cm-3, the second year the δb had decreased from 1.41 to 1.23 g cm-3. Differences between years and tillage methods in terms of yield were found signifi cant (p<0.05. However, no differences were found between the NT and CT. There were also no signifi cance differences in content of protein, oil and ash among six tillage methods. The highest fuel consumption was measured in conventional method (CT whereas the lowest value was found in direct seeding method as 33.48 L ha-1 and 6.6 L ha-1, respectively.

  7. Assessing the Economic Impact of Inversion Tillage, Cover Crops, and Herbicide Regimes in Palmer Amaranth (Amaranthus palmeri Infested Cotton

    Directory of Open Access Journals (Sweden)

    Leah M. Duzy

    2016-01-01

    Full Text Available Cotton (Gossypium hirsutum L. producers in Alabama are faced with a rapidly expanding problem that decreases yields and increases production costs: herbicide-resistant weeds. Producers increasingly rely on integrated weed management strategies that raise production costs. This analysis evaluated how tillage, cover crops, and herbicide regime affected net returns above variable treatment costs (net returns for cotton production in Alabama from 2009 to 2011 under pressure from Palmer amaranth (Amaranthus palmeri S. Wats.. Annual net returns were compared for two tillage treatments (inversion and noninversion tillage, three cover crops (crimson clover [Trifolium incarnatum L.], cereal rye [Secale cereal L.], and winter fallow, and three herbicide regimes (PRE, POST, and PRE+POST. Results indicate that under heavy Palmer amaranth population densities one year of inversion tillage followed by two years of noninversion tillage, along with a POST or PRE+POST herbicide application had the highest net returns in the first year; however, the economic benefit of inversion tillage, across all herbicide treatments, was nonexistent in 2010 and 2011. Cotton producers with Palmer amaranth infestations would likely benefit from cultural controls, in conjunction with herbicide applications, as part of their weed management system to increase net returns.

  8. Impact of different cropping conditions and tillage practices on the soil fungal abundance of a Phaeozem luvico

    Directory of Open Access Journals (Sweden)

    Romina P. Gómez

    2015-06-01

    Full Text Available Fungal diversity seems to be a good indicator of ecosystem disturbance and functioning. The purpose of this work was to quantify the fungal population as a sensitive indicator of the changes caused by stubble placement in two tillage systems: reduced tillage (RT and conventional tillage (CT with and without cropping. To this end, we determined the effect of soil disturbances such as N fertilization, tillage practice, and cropped area on the soil fungal communities of a Phaeozem luvico of the El Salado river basin (Argentina. Soil samples (at 0-10 cm depth were collected from a field cultivated with wheat at post-harvest, before sowing and at tillering. The relative abundance of individuals of the fungal population was studied on Nash Snyder and Oxgall agar media after different treatments and assessed as colony forming units (CFU/g of soil. The diversity of the fungal population was studied by Shannon´s index (H. The tillage system showed a marked effect only at post-harvest and the number of propagules was highest under RT for both culture media. The largest values of H were found only at post-harvest when Oxgall agar was used. A significant decrease in the values of H was observed when CT and high fertilization was applied in the wheat cropped area. The relative abundance of individuals of the fungal population was different in soils under the different tillage practices.

  9. Soil and crop residue CO2-C emission under tillage systems in sugarcane-producing areas of southern Brazil

    Directory of Open Access Journals (Sweden)

    Luís Gustavo Teixeira

    2013-10-01

    Full Text Available Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp. residues to the short-term CO2-C loss, we studied the influence of several tillage systems: heavy offset disk harrow (HO, chisel plow (CP, rotary tiller (RT, and sugarcane mill tiller (SM in 2008, and CP, RT, SM, moldboard (MP, and subsoiler (SUB in 2009, with and without sugarcane residues relative to no-till (NT in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47 % and 41 %, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.

  10. Production and efficiency of water usage in capsicum crops under no-tillage and conventional planting systems

    Directory of Open Access Journals (Sweden)

    Maria Eliani Holanda Coelho

    Full Text Available This study aimed to evaluate the effect of no-tillage and conventional planting systems, and of weed-management strategies on water-usage efficiency in capsicum crops. The experiment was carried out at the Universidade Federal Rural do Semi-Árido in Mossoró, Rio Grande do Norte, using a split-plot layout in a randomized block design with four replications. The tillage systems were evaluated in the plots, and three weed-management strategies evaluated in the subplots (soil cover with polyethylene film, and with and without weeds. The density and dry mass of the weeds, the commercial and total productivity, and the daily water consumption were all evaluated. It was found that the no-tillage system reduced the density and dry mass of the weeds in comparison to conventional systems, and the interference of these plants reduced commercial productivity under both planting systems. The strategy of weeds under a no-tillage system, despite a higher water consumption, showed a productivity and efficiency of water usage superior to those of the strategies of polyethylene film both under no-tillage and conventional systems, and of weeds under a conventional tillage system.

  11. Effects of Tillage and Mulch Methods on Soil Moisture in Wheat Fields of Loess Plateau,China

    Institute of Scientific and Technical Information of China (English)

    GAOZHIQIANG; YINJUN; 等

    1999-01-01

    Effects of different methods of tillage and mulch on soil moisture at fallow stage were studied in rainy and rain-deficient years.Soil moisture content per 20 cm was measured vertically within 0-300 cm soil layers in an experiment with five treatments:deep-loosening tillage(DLT),traditional tillage(TT),plastic mulch(PM),straw mulch(SM) and plastic plus straw mulch(PSM),All mulch treatments were under no tillage conditions.Total storage of precipitation in soil from 0 to 300cm was determined before sowing,Results showed that the new methods of tillage and mulch were the basic ways to improve water condition in dryland wheat fields.In a rainy year,PM with no tillage played a significant role in storing and conserving precipitation.while in a rain-deficient year,the role was not significant,Due to evaporation.DLT did not promote the storage of soil moisture,SM was the best way to store and conserve soil moisture,In SM treatment the wheat yields increased by more than 20%.

  12. Qualidade de manga 'tommy atkins' pós-colheita com uso de cloreto de cálcio na pré-colheita Quality of 'tommy atkins' mangoes in post-harvest with calcium choride spray use in the pre-harvest period

    Directory of Open Access Journals (Sweden)

    Ronaldo Hissayuki Hojo

    2009-03-01

    Full Text Available Mangas da cultivar Tommy Atkins produzidas em Livramento de Nossa Senhora, Bahia, foram analisadas com o objetivo de verificar a influência da aplicação pré-colheita de cloreto de cálcio na vida útil pós-colheita e em relação ao distúrbio fisiológico. As pulverizações de CaC1(2 foram realizadas em três épocas: 35; 65 e 95 dias após o florescimento. Os tratamentos foram concentrações de cloreto de cálcio: 0,0%; 2,0%; 3,5%; 5,0% e 6,5%. Frutos foram colhidos, transportados para o Laboratório de Biotecnologia da UESB, armazenados em câmara fria a 10ºC e 90% UR e avaliados por período de 35 dias. O delineamento experimental foi o inteiramente casualizado, em esquema fatorial 5 x 6 (concentração x tempo de armazenamento, com 3 repetições e 2 frutos por parcela. Os parâmetros analisados foram: perda de massa, firmeza, acidez titulável, pH, sólidos solúveis, relação sólidos solúveis/acidez, incidência e severidade de colapso interno. Durante o período de armazenamento, observou-se que, a partir do 28º dia de armazenamento, a perda de massa dos frutos foi menor em doses maiores de cloreto de cálcio. A firmeza e o teor de sólidos solúveis foram influenciados em maiores concentrações de CaC1(2, enquanto as demais características não foram influenciadas significativamente. A incidência e a severidade do colapso interno dos frutos não foram afetadas com uso de cloreto de cálcio. Verificou-se que a aplicação pré-colheita de cloreto de cálcio, em doses maiores (> 3,5%, aumenta a vida útil pós-colheita da manga, contudo não reduz a incidência do colapso interno.The fruits produced in Livramento de Nossa Senhora, Bahia, had been analyzed with the objective to verify the influence of spraying application of calcium chloride in pre-harvest period on shelf life of 'Tommy Atkins' mangoes. The sprayings of CaC1(2 were made three times: 35, 65 and 95 days after mango flowering. The used treatments were composed

  13. Qualidade de solo submetido a sistemas de cultivo com preparo convencional e plantio direto Soil quality under tillage and no-tillage cropping systems

    Directory of Open Access Journals (Sweden)

    Eusângela Antônia Costa

    2006-07-01

    Full Text Available O objetivo deste trabalho foi avaliar a qualidade de um Latossolo Vermelho submetido a sistemas de cultivo com preparo convencional e plantio direto. Foram estudadas duas áreas experimentais, localizadas na Embrapa Cerrados, em Planaltina, DF, com oito e dez anos de cultivo. Foram coletadas amostras de solo, em diversas profundidades, nas parcelas experimentais e em área de cerrado nativo. Os seguintes atributos foram avaliados: densidade do solo, porosidade total, capacidade de água disponível, grau de floculação, resistência do solo à penetração, teor de matéria orgânica, capacidade de troca catiônica, fósforo remanescente, carbono da biomassa microbiana e respiração basal. Os dados obtidos foram comparados a valores referenciais quanto à qualidade do solo, mediante modelagem gráfica. Observou-se que a qualidade do solo, em ambos os sistemas de cultivo, é similar quanto aos atributos físicos; os teores de matéria orgânica e fósforo remanescente também são semelhantes, mas a capacidade de troca catiônica é mais alta no solo sob plantio direto. Em relação aos atributos biológicos, o solo sob plantio direto apresenta atividade biológica mais elevada. A qualidade do solo em ambos os sistemas é similar, em relação aos atributos avaliados.The objective of this study was to evaluate the quality of an Oxisol under tillage and no-tillage systems. Two experimental areas were studied, both located in Embrapa Cerrados, Planaltina, DF, Brazil, with eight and ten years of cropping. Soil samples were collected from different depth layers in the experimental plots and native cerrado vegetation area. The following soil atributes were evaluated: bulk density, soil porosity, available water capacity, degree of flocculation, soil resistance to penetration, organic matter content, cation exchange capacity, equilibrium phosphorus, microbial biomass carbon and basal respiration. The data obtained were compared with referential

  14. Chemical, green and organic manure effects on chemical properties on a savannah oxisol and on corn under conventional tillage and no-tillage

    Science.gov (United States)

    Mannigel, Anny R.; Alves, Marlene C.; Valério Filho, Walter V.

    2015-04-01

    Modern agriculture, in general, has always been based on the concept that natural resources are endless; however, this concept is changing. Concern for the environment is increasingly becoming part of farming practices, either by the awareness of society, or because the high cost of fertilizers or even the exhaustion of soils. The objective of this research was to evaluate the effects of the green manure and mineral fertilizer and/or organic manure and, on the chemical properties of an Oxisol, on "Savannah" (cerrado) area in Mato Grosso do Sul-Brazil, cultivated with corn (Zea mays L.) on the following management conditions: no-tillage and conventional tillage, on area previously under pasture (Brachiaria decumbens). The experimental design was a randomized blocks and the tested treatments were: control (without organic manure or chemical fertilizer); chemical fertilizer, as recommended for the culture and based on the chemical soil analysis; organic manure (cow manure); organic manure + half of the mineral fertilizer recommended rate; and the green manure Crotalaria juncea and Pennisetum americanum. The chemical analyses were the soil chemical analysis to the intent of soil fertility. Corn yield was evaluated. The collect of soil samples were realized in depths of 0.00-0.05 m and 0.05-0.10 m and 0.10-0.20 m. The organic manure and the organic manure + half of the mineral recommended rate increased P, Ca, Mg, K and Organic Matter in the first depth (0.00 - 0.05 m). These treatments also increased K and Mg at the second depth analyzed (0.05 - 0.10 m) and K in the depth from 0.10 - 0.20 m. Under conventional tillage management presents better crop results with an average grain yield of 3649 kg ha-1 versus 2374 kg ha-1 obtained under no-tillage. The use of chemical fertilizer, organic manure + half of the mineral recommended rate, Crotalaria juncea, organic manure and Pennisetum americanum increased corn yield by 84, 79, 58, 44 and 41 %, respectively.

  15. [Effect of tillage patterns on the structure of weed communities in oat fields in the cold and arid region of North China].

    Science.gov (United States)

    Zhang, Li; Zhang, Li; Wu, Dong-Xia; Zhang, Jun-Jun

    2014-06-01

    In order to clarify the effects of tillage patterns on farmland weed community structure and crop production characteristics, based on 10 years location experiment with no-tillage, subsoiling and conventional tillage in the cold and arid region of North China, and supplementary experiment of plowing after 10 years no-tillage and subsoiling, oat was planted in 2 soils under different tillage patterns, and field weed total density, dominant weed types, weed diversity index, field weed biomass and oats yield were measured. The results showed that the regional weed community was dominated by foxtail weed (Setaira viridis); the weed density under long-term no-tillage was 2.20-5.14 times of tillage at different growing stages of oat, but there were no significant differences between conditional tillage and plowing after long-term no-tillage and subsoiling. Field weed Shannon diversity indices were 0.429 and 0.531, respectively, for sandy chestnut soil and loamy meadow soil under no-tillage conditions, and field weed biomass values were 1.35 and 2.26 times of plowing treatment, while the oat biomass values were only 2807.4 kg x hm(-2) and 4053.9 kg x hm(-2), decreased by 22.3% and 46.2%, respectively. The results showed that the weed community characteristics were affected by both tillage patterns and soil types. Long-term no-tillage farmland in the cold and arid region of North China could promote the natural evolution of plant communities by keeping more perennial weeds, and the plowing pattern lowered the annual weed density, eliminated perennial weeds with shallow roots, and stimulated perennial weeds with deep roots.

  16. [Effects of no-tillage on soil water content and physical properties of spring corn fields in semiarid region of northern China].

    Science.gov (United States)

    Yu, Hai-Ying; Peng, Wen-Ying; Ma, Xiu; Zhang, Ke-Li

    2011-01-01

    Field experiments were conducted in 2006-2008 to study the effects of no-tillage on the spatiotemporal dynamics of soil water content and related soil physical properties in spring corn fields in Beijing region during growth season. In study period, the water storage in 0-100 cm soil layer in tillage and no-tillage treatments had the same variation trend with time and precipitation, but the water storage at different time periods and under different precipitations was 2.7%-30.3% higher in no-tillage treatment than in tillage treatment. When the precipitation was relatively abundant, the increment of soil water storage was somewhat increased, but no-tillage was still worth to be popularized in the regions relatively deficit in precipitation. Under no-tillage, the average water storage in 0-100 cm soil layer during the three growth seasons in 2006-2008 was 3.4%-12.8% higher than that under conventional tillage, and the increment of the water storage in 0-20 cm and 80-100 cm soil layers under no-tillage was higher than that in intermediate layer, with the highest increment reached 22.2%. No-tillage improved soil water-holding capacity and water use efficiency via decreasing soil bulk density, increasing soil porosity, and promoting the formation of soil water-stable aggregates, and thereby, promoted crop yielding. After 3 years no-tillage, the soil water use efficiency and spring corn yield were increased by 13.3% and 16.4%, respectively, compared with those under conventional tillage.

  17. Physiological Mechanism of High and Stable Yield of No-tillage Cast-transplanted Rice

    Institute of Scientific and Technical Information of China (English)

    LIU Jun; HUANG Qing; FU Hua; LU Xiu-ming; LIU Huai-zhen; LI Kang-huo

    2002-01-01

    Four years' successive comparative experiments showed that no-tillage cast-transplanted rice (NTCTR), compared with conventional tillage cast-transplanted rice (CK), grew slower and produced less tillers at the early growing stage; but, it had shorter ineffective tillering time, less nutrition consumption,stronger individual growth and more uniform growth between individuals andthe colony. These characteristics contribute to the increase not only in the productive tiller percentage but also in the ear quality. Furthermore,the flag leaf of NTCTR had higher photosynthetic rate during the filling stage and no early senescence phenomenon at the late stage, which facilitated the accumulation and the transportation of carbohydrates and improved grain setting rate.

  18. Tillage and residue management effect on soil properties, crop performance and energy relations in greengram (Vigna radiata L. under maize-based cropping systems

    Directory of Open Access Journals (Sweden)

    J.R. Meena

    2015-12-01

    Full Text Available Effect of tillage and crop residue management on soil properties, crop performance, energy relations and economics in greengram (Vigna radiata L. was evaluated under four maize-based cropping systems in an Inceptisol of Delhi, India. Soil bulk density, hydraulic conductivity and aggregation at 0–15 cm layer were significantly affected both by tillage and cropping systems, while zero tillage significantly increased the soil organic carbon content. Yields of greengram were significantly higher in maize–chickpea and maize–mustard systems, more so with residue addition. When no residue was added, conventional tillage required 20% higher energy inputs than the zero tillage, while the residue addition increased the energy output in both tillage practices. Maize–wheat–greengram cropping system involved the maximum energy requirement and the cost of production. However, the largest net return was obtained from the maize–chickpea–greengram system under the conventional tillage with residue incorporation. Although zero tillage resulted in better aggregation, C content and N availability in soil, and reduced the energy inputs, cultivation of summer greengram appeared to be profitable under conventional tillage system with residue incorporation.

  19. Estudo da demanda energética e desagregação do solo em diferentes sequências operacionais de preparo periódico Energetic demand and disaggregation of the soil in different operational sequencies of periodic tillage

    Directory of Open Access Journals (Sweden)

    Nilson Salvador

    2010-06-01

    Full Text Available A correta seleção da sequência operacional do preparo do solo é fundamental para diminuir os custos da mecanização agrícola nas regiões que mobilizam intensamente o solo. Este trabalho teve como objetivo avaliar a demanda energética e a desagregação do solo em diferentes sequências operacionais de subsolagem e sistemas de preparo periódico do solo. O delineamento experimental utilizado foi em esquema fatorial 5x2 com 5 repetições, com blocos dispostos ao acaso, sendo 5 sistemas de preparo do solo (D - Arado de discos, Dn - arado de discos seguido de uma grade niveladora, G - Grade pesada, Gn - grade pesada seguida de uma grade niveladora e E - escarificador e duas sequências de subsolagem (SP - Subsolagem - preparo e PS - Preparo - Subsolagem. Foram avaliados a demanda energética, o consumo de combustível por área e a desagregação do solo. Os resultados evidenciaram que a sequência operacional preparo do solo - subsolagem (PS teve menor requerimento energético, com exceção do escarificador. A seqüência preparo do solo - subsolagem consumiu menos combustível e a desagregação do solo não apresentou variação estatística.The correct selection of the operational sequence of soil tillage is essential to reduce the cost of agricultural mechanization in the regions that mobilize intensively the soil. The objective of this work was to evaluate the energetic demand and disaggregation of the soil in different operational sequences of subsoiling and systems of periodic soil tillage. The experimental design was blocks at random, in a factorial model 5 x 2 with 5 replications, being 5 tillage systems (D - Disc plow, Dn - disc plow followed at leveler rail, G - weight rail, Gn - weight rail followed of leveler rail and E - Stirrer. and two sequencies of subsoiling (SP - Subsoiling - tillage and PS - Tillage - subsoiling. There were evaluated the energetic demand, fuel consumption by area and the soil disaggregation. The

  20. Responses of soil microbial biomass and enzyme activities to tillage and fertilization systems in soybean (Glycine max L. production

    Directory of Open Access Journals (Sweden)

    Gholamreza Heidari

    2016-11-01

    Full Text Available Tillage operation and fertilizer type play important roles in soil properties as far as soil microbial condition is concerned. Information regarding the simultaneous evaluation of the effect of long-term tillage and fertilization on the soil microbial traits of soybean farms is not available. Accordingly, it was hypothesized that, the microbial biomass and enzyme activity, more often than not, respond quickly to changes in soil tillage and fertilization. Therefore, the experiments were aimed at analyzing the responses of soil microbial traits to tillage and fertilization in a soybean field in Kurdistan University, Iran. The field soil is categorized into coarse Loamy, mixed, superactive, calcareous, and mesic Typic Xerorthents. The experiments were arranged in split plot, based on randomized complete block design with three replications. Main plots consisted of long-term (since 2002 tillage systems including conventional tillage (CT, minimum tillage (MT and no-tillage (NT. Eight fertilization methods were employed in the sub-plots, including (F1: farmyard manure (FYM; (F2: compost; (F3: chemical fertilizers; (F4: FYM + compost; (F5: FYM + chemical fertilizers; (F6: compost + chemical fertilizers; (F7: FYM + compost + chemical fertilizers and (F8: Control (without fertilizer. The highest microbial biomass carbon (385.1 μg was observed in NT-F4 treatment. The NT treatment comparatively recorded higher values of acid phosphatase (189.1 μg PNP g-1 h-1, alkaline phosphatase (2879.6 μg PNP g-1 h-1 and dehydrogenase activity (68.1 μg PNP g-1 h-1. The soil treated with a mixture of compost and FYM inputs had the maximum urease activity of all tillage treatments. Organically manured treatment (F4 showed more activity in dehydrogenase (85.7 μg PNP g-1 h-1, acid phosphatase (199.1 µg PNP g-1 h-1 and alkaline phosphatase (3183.6 µg PNP g-1 h-1 compared to those treated with chemical fertilizers. In NT-F4 treatment, using on-farm inputs is most

  1. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions.

    Science.gov (United States)

    García-Marco, Sonia; Abalos, Diego; Espejo, Rafael; Vallejo, Antonio; Mariscal-Sancho, Ignacio

    2016-10-01

    No tillage (NT) has been associated to increased N2O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N2O and CH4 emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N2O emissions by 68% compared to NT and generally led to higher CH4 emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N2O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH4 oxidation was enhanced after liming application due to decreased Al(3+) toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N2O and CH4 emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH4 emissions and, under CT, abate N2O emissions.

  2. Effect of tillage system on distribution of aggregates and organic carbon in a hydragric anthrosol

    Institute of Scientific and Technical Information of China (English)

    GAO Ming; LUO You-Jin; WANG Zi-Fang; TANG Xiao-Hong; WEI Chao-Fu

    2008-01-01

    The effect of different tillage systems on the size distribution of aggregates and organic carbon distribution and storage in different size aggregates in a Hydragric Anthrosol were studied in a long-term experiment in Chongqing,China.The experiment included three tillage treatments:conventional tillage with rotation of rice and winter fallow (CT-r) system,no-till and ridge culture with rotation of rice and rape (RT-rr) system,and conventional tillage with rotation of rice and rape (CT-rr) system.The results showed that the aggregates 0.02-0.25 mm in diameter accounted for the largest portion in each soil layer under all treatments.Compared with the CT-r system,in the 0-10 cm layer,the amount of aggregates>0.02 mm was larger under the RT-rr system,but smaller under the CT-rr system.In the 0-20 cm layer,the organic carbon content of all fractions of aggregates was the highest under the RT-rr system and lowest under the CT-rr system.The total organic carbon content showed a positive linear relationship with the amount of aggregates with diameter ranging from 0.25 to 2 ram.The storage of organic carbon in all fractions of aggregates under the RT-rr system was higher than that under the CT-r system in the 0-20 cm layer,but in the 0-60 cm soil layer,there was no distinct difference.Under the CT-rr system,the storage of organic carbon in all fractions of aggregates was lower than that under the CT-r system;most of the newly lost organic carbon was from the aggregates 0.002-0.02 and 0.02-0.25 mm in diameter.

  3. The Transformation of Agriculture in Brazil Through Development and Adoption of Zero Tillage Conservation Agriculture

    Directory of Open Access Journals (Sweden)

    P.L. de Freitas

    2014-03-01

    These were the turning points in the sustainable development of annual crop farming in Brazil. Today, society recognizes the role of these pioneers as key to achieving social, economic and environmental sustainability. ZT/CA reversed the historically accelerating degradation of soil organic matter and soil structure by abandoning conventional tillage, thus improving soil physical and chemical characteristics. This was achieved by promoting cover cropping and permanent soil cover with crop residues, crop rotations, and complementary, environmentally suitable soil management technologies.

  4. Vertical Mulching e manejo da água em semeadura direta Vertical Mulching and water management in no tillage system

    Directory of Open Access Journals (Sweden)

    Sandra Maria Garcia

    2008-04-01

    soil structure degradation, soil compaction below the arable layer, and decreased macroporosity. These changes resulted in reduced soil water infiltration rate and increased runoff, soil erosion and sedimentation in rivers and reservoirs. In the no tillage system the water erosion from the soil surface is practically controlled, and the terraces were eliminated by the farmers. Nevertheless, the surface flow is higher than it was in the conventional tillage system. With the objective of evaluating the hydrological behavior of vertical mulching in no tillage systems as related to runoff, this study was developed in the growing seasons of 2002/2003 and 2003/2004 on a Red Latosol (Oxisol in the Planalto Médio region of Rio Grande do Sul State, Brazil. A field experiment was installed using plots without vertical mulching, with vertical mulching at every 10 m and with vertical mulching at every 5 m. It was used a randomized block design with three replications. Leveled furrows of vertical mulching, perpendicular to the soil slope (0.08 m wide by 0.38 m deep were dug and filled with straw compacted enough to stabilize the furrow sides. Rainfall intensities of 70 and 106 mm h-1 were simulated on soybean and wheat to determine runoff, soil water infiltration rate, and nutrient and organic carbon concentration in the runoff. The results showed that vertical mulching in no tillage significantly reduces surface runoff and increases the water infiltration rate into the soil. It also reduces the total nutrient and organic carbon losses due to the reduction of water runoff.

  5. Bacterial Community Diversity in Soil Under two Tillage Practices as Determined by Pyrosequencing.

    Science.gov (United States)

    Sengupta, Aditi; Dick, Warren A

    2015-10-01

    The ability of soil to provide ecosystem services is dependent on microbial diversity, with 80-90 % of the processes in soil being mediated by microbes. There still exists a knowledge gap in the types of microorganisms present in soil and how soil management affects them. However, identification of microorganisms is severely limited by classical culturing techniques that have been traditionally used in laboratories. Metagenomic approaches are increasingly becoming common, with current high-throughput sequencing approaches allowing for more in-depth analysis. We conducted a preliminary analysis of bacterial diversity in soils from the longest continuously maintained no-till (NT) plots in the world (52 years) and in adjacent plow-till (PT) plots in Ohio, USA managed similarly except for tillage. Bacterial diversity was determined using a culture-independent approach of high-throughput pyrosequencing of the 16S rRNA gene. Proteobacteria and Acidobacteria were predominant in both samples but the NT soil had a higher number of reads, bacterial richness, and five unique phyla. Four unique phyla were observed in PT and 99 % of the community had relative abundance of tillage tend to homogenize the soil and reduces the unique (i.e., diverse) microenvironments where microbial populations can reside. We conclude that tillage leads to fewer dominant species being present in soil and that these species contribute to a higher percentage of the total community.

  6. Application limestone forms and doses for alfalfa in no-tillage system

    Directory of Open Access Journals (Sweden)

    Letícia Cristina Bertusso Toffolli

    Full Text Available Alfalfa (Medicago sativa L. requires good soil fertility. Brazil is characterized by acidic soils which reduce the potential of the crop. Generally, liming is incorporated into the soil, but in tillage systems it is inadvisable. This study aimed to evaluate the effects of the lime application method and dose on pH, Al+3, V % and Ca+Mg in the soil and on dry matter yield of alfalfa cultivated under a consolidated no-tillage system. The experiment was conducted at the Experimental Station of Paraná Agronomic Institute, located in Pato Branco city, in Paraná state. The plots consisted of the types of lime application (plowing+harrowing, subsoil and surface, the sub-plots was the lime dose (0, 2, 4, 6 and 8 Mg ha-1 and the sub-sub-plots were the sampled soil depth (0-5; 5-10; 10-20 and 20-30 cm. The results show the application of lime, even superficially, caused increases in pH, concentration of Ca and Mg and base saturation of the soil, while also reducing the concentration of Al, especially in the surface layers of the soil. The practice of plowing and harrowing or of subsoiling, with the aim of lime incorporation in a consolidated no-tillage system is unnecessary. If it is required, the application of lime to the soil should be done superficially for alfalfa cultivated in this system.

  7. Using an Agroecosystem Services Approach to Assess