WorldWideScience

Sample records for prairie plant fitness

  1. Prairie dogs increase fitness by killing interspecific competitors.

    Science.gov (United States)

    Hoogland, John L; Brown, Charles R

    2016-03-30

    Interspecific competition commonly selects for divergence in ecology, morphology or physiology, but direct observation of interspecific competition under natural conditions is difficult. Herbivorous white-tailed prairie dogs (Cynomys leucurus) employ an unusual strategy to reduce interspecific competition: they kill, but do not consume, herbivorous Wyoming ground squirrels (Urocitellus elegans) encountered in the prairie dog territories. Results from a 6-year study in Colorado, USA, revealed that interspecific killing of ground squirrels by prairie dogs was common, involving 47 different killers; 19 prairie dogs were serial killers in the same or consecutive years, and 30% of female prairie dogs killed at least one ground squirrel over their lifetimes. Females that killed ground squirrels had significantly higher annual and lifetime fitness than non-killers, probably because of decreased interspecific competition for vegetation. Our results document the first case of interspecific killing of competing individuals unrelated to predation (IK) among herbivorous mammals in the wild, and show that IK enhances fitness for animals living under natural conditions. © 2016 The Author(s).

  2. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  3. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies.

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  4. Invasive plants affect prairie soil biology

    Science.gov (United States)

    Non-native or exotic plants often cause ecological and environmental damage in ecosystems where they invade and become established. These invasive plants may be the most serious threat to plant diversity in prairies, especially those in scattered remnants, which may be particularly vulnerable to rap...

  5. 75 FR 21649 - Endangered and Threatened Wildlife and Plants; Attwater's Prairie-Chicken (Tympanuchus cupido...

    Science.gov (United States)

    2010-04-26

    ...] Endangered and Threatened Wildlife and Plants; Attwater's Prairie-Chicken (Tympanuchus cupido attwateri... availability of the Attwater's Prairie-Chicken (Tympanuchus cupido attwateri) Recovery Plan, Second Revision. A recovery plan was originally completed for the Attwater's prairie-chicken in 1983 and revised in 1993...

  6. Interspecific nutrient transfer in a tallgrass prairie plant community

    International Nuclear Information System (INIS)

    Walter, L.E.F.; Hartnett, D.C.; Hetrick, B.A.D.; Schwab, A.P.

    1996-01-01

    Interplant nutrient transfer may be an important ecological process in grasslands, and may significantly influence plant neighborhood interactions. We investigated the potential for phosphorus transfer between the dominant grass Andropogon gerardii and several neighboring plant species in tallgrass prairie via a field 32PO4 labelling experiment. The mean amount of 32P received from donor shoots differed significantly among neighboring species and decreased with increasing distance from the donor. In general, forbs and cool-season C3 grasses received more labelled 32P than warm-season C4 grasses. Phosphorus transfer occurred over distances up to 0.5 m. The effects of species and distance on movement of phosphorus changed with increasing time after labelling. The relative mass of receiver and donor shoots did not affect amounts of 32P transfer. A benomyl fungicide treatment, applied to suppress mycorrhizal activity, likely did not affect existing vegetative hyphae and did not affect the amount of 32P transferred. These studies demonstrate that: (1) phosphorus is transferred among neighboring species in tallgrass prairie plant communities, (2) phosphorus may be transferred over significantly greater distances than reported in other grasslands, and (3) there is differential transfer among co-occurring species. Hypothesized mechanisms accounting for these patterns in tallgrass prairie include mycorrhizal hyphal interconnections and/or extensive and differential root and rhizosphere overlap among neighboring species

  7. Overview of Prairie Planting Techniques and Maintenance Requirements

    Science.gov (United States)

    2007-02-01

    districts have these drills 6 ERDC TN-EMRRP-ER-05 February 2007 available for rent. A three-point broadcast seeder or a fertilizer spreader can...lengthens the growing season for prairie plants but shortens it for many weedy species (Pauly 1997). Fire allows for nutrient recycling in the ecosystem by

  8. 78 FR 75306 - Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken as a Threatened...

    Science.gov (United States)

    2013-12-11

    ...; 4500030113] RIN 1018-AY21 Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken... the conservation of the lesser prairie-chicken (Tympanuchus pallidicinctus). In addition, we announce... prairie-chicken as a threatened species under the Act. We also announce the availability of the final...

  9. 78 FR 26302 - Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken as a Threatened...

    Science.gov (United States)

    2013-05-06

    ...; 4500030113] RIN 1018-AY21 Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken... the lesser prairie-chicken (Tympanuchus pallidicinctus). In addition, we announce the reopening of the public comment period on the December 11, 2012, proposed rule to list the lesser prairie-chicken as a...

  10. 77 FR 24975 - Endangered and Threatened Wildlife and Plants; Revised Recovery Plan for the Utah Prairie Dog

    Science.gov (United States)

    2012-04-26

    ...-FF06E00000] Endangered and Threatened Wildlife and Plants; Revised Recovery Plan for the Utah Prairie Dog... Utah prairie dog (Cynomys parvidens). This species is federally listed as threatened under the... recovery plan for the Utah prairie dog. The Service and other Federal agencies also will take these...

  11. 75 FR 57055 - Endangered and Threatened Wildlife and Plants; Draft Revised Recovery Plan for Utah Prairie Dog

    Science.gov (United States)

    2010-09-17

    ...] Endangered and Threatened Wildlife and Plants; Draft Revised Recovery Plan for Utah Prairie Dog AGENCY: Fish... recovery plan for the Utah prairie dog (Cynomys parvidens). This species is federally listed as threatened... and peer reviewers in an appendix to the approved recovery plan. The Utah prairie dog (Cynomys...

  12. Flora and fauna associated with prairie dog colonies and adjacent ungrazed mixed-grass prairie in western South Dakota

    Science.gov (United States)

    William Agnew; Daniel W. Uresk; Richard M. Hansen

    1986-01-01

    Vegetation, small rodents, and birds were sampled during the growing seasons of 2 years on prairie dog (Cynomys ludovicianus) colonies and adjacent mixed-grass prairie in western South Dakota. Prairie dog grazing decreased mulch cover, maximum height of vegetation, plant species richness, and tended to decrease live plant canopy cover compared to...

  13. 77 FR 46157 - Endangered and Threatened Wildlife and Plants; Revising the Special Rule for the Utah Prairie Dog

    Science.gov (United States)

    2012-08-02

    ... Utah Prairie Dog; Final Rule #0;#0;Federal Register / Vol. 77 , No. 149 / Thursday, August 2, 2012...-AW02 Endangered and Threatened Wildlife and Plants; Revising the Special Rule for the Utah Prairie Dog... special regulations for the conservation of the Utah prairie dog. We are revising our special regulations...

  14. The effects of black-tailed prairie dogs on plant communities within a complex urban landscape: an ecological surprise?

    Science.gov (United States)

    Beals, Stower C; Hartley, Laurel M; Prevéy, Janet S; Seastedt, Timothy R

    2014-05-01

    Historically, prairie dogs (Cynomys spp.) have been considered essential keystone species of western United States grassland ecosystems because they provide unique services and increase vegetation community richness, evenness, and diversity. However, the effects of black-tailed prairie dogs (Cynomys ludovicianus) on lands adjacent to or surrounded by urban areas may not result in the same ecosystem benefits historically associated with their presence. An urban landscape presents prairie dogs with movement challenges unparalleled in natural landscapes, as well as suites of nonnative plant species that are more common in disturbed areas. This study examined a complex ecosystem where vegetation communities are being influenced by directional environmental change, and quantified the synergistic effects resulting from the protective management of a native keystone species. The data set for this analysis was comprised of 71 paired (occupied by prairie dogs vs. unoccupied) vegetation surveys and 156 additional unpaired surveys collected from around the city of Boulder, Colorado, USA for 14 yr. Linear mixed models were used to compare data from transects occupied and unoccupied by prairie dogs, as well as to evaluate the effect of prairie dog occupation duration. In the absence of prairie dogs, vegetation in this region exhibited declines in native grasses, no changes in introduced grasses, and increases in native and nonnative forbs and bare soil over the study interval. In the presence of prairie dogs, these observed directional changes were nearly all amplified at rates four to 10 times greater than when prairie dogs were absent. Areas in Boulder occupied by prairie dogs also had significantly lower richness, evenness, and diversity of plant species, compared to unoccupied areas. Analysis of plant functional groups revealed the significant reduction of perennial native grasses, as well as a significantly higher cover of introduced forbs in occupied areas. Prairie dogs

  15. Climate Effects on Plant Range Distributions and Community Structure of Pacific Northwest Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Bridgham, Scott D. [Univ. of Oregon, Eugene, OR (United States); Johnson, Bart [Univ. of Oregon, Eugene, OR (United States)

    2013-09-26

    Pacific Northwest (PNW) prairies are an imperiled ecosystem that contain a large number of plant species with high fidelity to this habitat. The few remaining high-quality PNW prairies harbor a number of sensitive, rare, and endangered plant species that may be further at-risk with climate change. Thus, PNW prairies are an excellent model system to examine how climate change will affect the distribution of native plant species in grassland sites. Our experimental objectives were to determine: (i) how climate change will affect the range distribution of native plant species; (ii) what life history stages are most sensitive to climate change in a group of key indicator native species; (iii) the robustness of current restoration techniques and suites of species to changing climate, and in particular, the relative competitiveness of native species versus exotic invasive species; and (iv) the effects of climate change on carbon and nutrient cycling and soil-microbial-plant feedbacks. We addressed these objectives by experimentally increasing temperature 2.5 to 3.0 ºC above ambient with overhead infrared lamps and increasing wet-season precipitation by 20% above ambient in three upland prairie sites in central-western Washington, central-western Oregon, and southwestern Oregon from fall 2010 through 2012. Additional precipitation was applied within 2 weeks of when it fell so precipitation intensity was increased, particularly during the winter rainy season but with minimal additions during the summer dry season. These three sites also represent a 520-km natural climate gradient of increasing degree of severity of Mediterranean climate from north to south. After removing the extant vegetation, we planted a diverse suite of 12 native species that have their northern range limit someplace within the PNW in each experimental plot. An additional 20 more wide-spread native species were also planted into each plot. We found that recruitment of plant species within their ranges

  16. Cover Image Identification of Plant Species for Crop Pollinator Habitat Enhancement in the Northern Prairies

    Directory of Open Access Journals (Sweden)

    Diana Bizecki Robson

    2014-09-01

    Full Text Available Wild pollinators have a positive impact on the productivity of insect-pollinated crops. Consequently, landowners are being encouraged to maintain and grow wildflower patches to provide habitat for important pollinators. Research on plant-pollinator interaction matrices indicates that a small number of “core” plants provide a disproportionately high amount of pollen and nectar to insects. This matrix data can be used to help design wildflower plantings that provide optimal resources for desirable pollinators. Existing interaction matrices from three tall grass prairie preserves in the northern prairies were used to identify core plant species that are visited by wild pollinators of a common insect-pollinated crop, namely canola (Brassica napus L.. The wildflower preferences of each insect taxon were determined using quantitative insect visitation and floral abundance data. Phenology data were used to calculate the degree of floral synchrony between the wildflowers and canola. Using this information I ranked the 41 wildflowers that share insect visitors with canola according to how useful they are for providing pollinators with forage before and after canola flowers. The top five species were smooth blue aster (Symphyotrichum laeve (L. A. & D. Löve, stiff goldenrod (Solidago rigida L., wild bergamot (Monarda fistulosa L., purple prairie-clover (Dalea purpurea Vent. and Lindley’s aster (Symphyotrichum ciliolatum (Lindl. A. & D. Löve. By identifying the most important wild insects for crop pollination, and determining when there will be “pollen and nectar gaps”, appropriate plant species can be selected for companion plantings to increase pollinator populations and crop production.

  17. An emerging crisis across northern prairie refuges: Prevalence of invasive plants and a plan for adaptive management

    Science.gov (United States)

    Grant, T.A.; Flanders-Wanner, B.; Shaffer, T.L.; Murphy, R.K.; Knutsen, G.A.

    2009-01-01

    In the northern Great Plains, native prairies managed by the U.S. Fish and Wildlife Service (Service) can be pivotal in conservation of North America's biological diversity. From 2002 to 2006, we surveyed 7,338 belt transects to assess the general composition of mixed-grass and tallgrass prairie vegetation across five "complexes" (i.e., administrative groupings) of national wildlife refuges managed by the Service in North Dakota and South Dakota. Native grasses and forbs were common (mean frequency of occurrence 47%-54%) on two complexes but uncommon (4%-13%) on two others. Conversely, an introduced species of grass, smooth brome (Bromus inermis), accounted for 45% to 49% of vegetation on two complexes and another species, Kentucky bluegrass (Poa pratensis) accounted for 27% to 36% of the vegetation on three of the complexes. Our data confirm prior suspicions of widespread invasion by introduced species of plants on Service-owned tracts of native prairie, changes that likely stem in part from a common management history of little or no disturbance (e.g., defoliation by grazing or fire). However, variability in the degree and type of invasion among prairie tracts suggests that knowledge of underlying causes (e.g., edaphic or climatic factors, management histories) could help managers more effectively restore prairies. We describe an adaptive management approach to acquire such knowledge while progressing with restoration. More specifically, we propose to use data from inventories of plant communities on Service-owned prairies to design and implement, as experiments, optimal restoration strategies. We will then monitor these experiments and use the results to refine future strategies. This comprehensive, process-oriented approach should yield reliable and robust recommendations for restoration and maintenance of native prairies in the northern Great Plains. 2009 by the Board of Regents of the University of Wisconsin System.

  18. Long-term decrease of atmospheric test 137Cs in the soil-prairie plant-milk pathway in southern Chile

    International Nuclear Information System (INIS)

    Schuller, P.; Ellies, A.; Handl, J.

    1998-01-01

    The time dependency of nuclear test 137 Cs in soil, prairie plants, and milk was observed on pastures of seven dairy farms in the 10th Region, Chile, from 1982 to 1997, without any appreciable deposition of radioactive fallout after 1983. Whereas the 137 Cs concentration in the soil decreased at a rate close to that of the radionuclide's physical decay during the whole observation period, the rate of decrease of the 137 Cs concentration in the prairie plants and in the milk, having been very rapid between 1982--1990, became slower between 1991--1997. The effective half-lives of the concentration in plants were found to be 5.6 y and 12 y during the first and second observation periods, respectively. Similar half-lives of 5.5 y and 13 y were found for the concentration decline in milk during each period. These data clearly demonstrate a reduction in the long-term decrease of the 137 Cs plant uptake, and consequently in the decrease of the 137 Cs concentration in milk, resulting from a decline of 137 Cs availability for prairie plants in the Hapludand soils over the whole 15-y observation period

  19. Arthropod consumption by small mammals on prairie dog colonies and adjacent ungrazed mixed grass prairie in western South Dakota

    Science.gov (United States)

    W. Agnew; Daniel W. Uresk; R. M. Hansen

    1988-01-01

    The percentage of arthropods and plants in the diets of seven small rodents captured on prairie dog colonies and adjacent mixed grasslands were estimated by microhistological techniques. Arthropod composition over the two year study averaged 51% and 37% on prairie dog colonies and mixed grasslands, respectively. Composition of arthropods on prairie dog colonies was...

  20. Song and Male Quality in Prairie Warblers

    Science.gov (United States)

    Bruce E. Byers; Michael E. Akresh; David I. King; W. Koenig

    2016-01-01

    To determine if the songs of male prairie warblers could potentially reveal to female listeners information about the quality of singers, we compared various aspects of prairie warbler song structure and performance to attributes that might reflect a male singer's potential to enhance the fitness of his mate. We found that all the tested male attributes—arrival...

  1. Quantifying Hydroperiod, Fire and Nutrient Effects on the Composition of Plant Communities in Marl Prairie of the Everglades: a Joint Probability Method Based Model

    Science.gov (United States)

    Zhai, L.

    2017-12-01

    Plant community can be simultaneously affected by human activities and climate changes, and quantifying and predicting this combined effect on plant community by appropriate model framework which is validated by field data is complex, but very useful to conservation management. Plant communities in the Everglades provide an unique set of conditions to develop and validate this model framework, because they are both experiencing intensive effects of human activities (such as changing hydroperiod by drainage and restoration projects, nutrients from upstream agriculture, prescribed fire, etc.) and climate changes (such as warming, changing precipitation patter, sea level rise, etc.). More importantly, previous research attention focuses on plant communities in slough ecosystem (including ridge, slough and their tree islands), very few studies consider the marl prairie ecosystem. Comparing with slough ecosystem featured by remaining consistently flooded almost year-round, marl prairie has relatively shorter hydroperiod (just in wet-season of one year). Therefore, plant communities of marl prairie may receive more impacts from hydroperiod change. In addition to hydroperiod, fire and nutrients also affect the plant communities in the marl prairie. Therefore, to quantify the combined effects of water level, fire, and nutrients on the composition of the plant communities, we are developing a joint probability method based vegetation dynamic model. Further, the model is being validated by field data about changes of vegetation assemblage along environmental gradients in the marl prairie. Our poster showed preliminary data from our current project.

  2. Prairie revegetation of a strip mine in Illinois: fifteen years after establishment

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, E.A.; Anderson, R.C.; Rodgers, C.S. [Illinois State University, Normal, IL (United States). Dept. of Biological Sciences

    1996-12-01

    The long-term success of prairie planting on a former strip mine in northeastern Illinois was investigated. The site was reclaimed and planted with prairie species in the 1970s. Total biomass increased over time, largely as a result of an increase in biomass of non-prairie species. Biomass of prairie species remained unchanged because of an increase in Panicum virgatum (switchgrass) offsetting decreases in Sorghastrum nutans (Indian grass).

  3. Responses of prairie arthropod communities to fire and fertilizer: Balancing plant and arthropod conservation

    Science.gov (United States)

    Hartley, M.K.; Rogers, W.E.; Siemann, E.; Grace, J.

    2007-01-01

    Fire is an important tool for limiting woody plant invasions into prairies, but using fire management to maintain grassland plant communities may inadvertently reduce arthropod diversity. To test this, we established twenty-four 100 m2 plots in a tallgrass prairie in Galveston County, Texas, in spring 2000. Plots were assigned a fire (no burn, one time burn [2000], two time burn [2000, 2001]) and fertilization treatment (none, NPK addition) in a full factorial design. Fertilization treatments allowed us to examine the effects of fire at a different level of productivity. We measured plant cover by species and sampled arthropods with sweep nets during the 2001 growing season. Path analysis indicated that fertilization reduced while annual fires increased arthropod diversity via increases and decreases in woody plant abundance, respectively. There was no direct effect of fire on arthropod diversity or abundance. Diptera and Homoptera exhibited particularly strong positive responses to fires. Lepidoptera had a negative response to nutrient enrichment. Overall, the negative effects of fire on the arthropod community were minor in contrast to the strong positive indirect effects of small-scale burning on arthropod diversity if conservation of particular taxa is not a priority. The same fire regime that minimized woody plant invasion also maximized arthropod diversity.

  4. Reduction of neonicotinoid insecticide residues in Prairie wetlands by common wetland plants.

    Science.gov (United States)

    Main, Anson R; Fehr, Jessica; Liber, Karsten; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2017-02-01

    Neonicotinoid insecticides are frequently detected in wetlands during the early to mid-growing period of the Canadian Prairie cropping season. These detections also overlap with the growth of macrophytes that commonly surround agricultural wetlands which we hypothesized may reduce neonicotinoid transport and retention in wetlands. We sampled 20 agricultural wetlands and 11 macrophyte species in central Saskatchewan, Canada, over eight weeks to investigate whether macrophytes were capable of reducing movement of neonicotinoids from cultivated fields and/or reducing concentrations in surface water by accumulating insecticide residues into their tissues. Study wetlands were surrounded by clothianidin-treated canola and selected based on the presence (n=10) or absence (n=10) of a zonal plant community. Neonicotinoids were positively detected in 43% of wetland plants, and quantified in 8% of all plant tissues sampled. Three plant species showed high rates of detection: 78% Equisetum arvense (clothianidin, range: wetlands had higher detection frequency and water concentrations of clothianidin (β±S.E.: -0.77±0.26, P=0.003) and thiamethoxam (β±S.E.: -0.69±0.35, P=0.049) than vegetated wetlands. We assessed the importance of wetland characteristics (e.g. vegetative zone width, emergent plant height, water depth) on neonicotinoid concentrations in Prairie wetlands over time using linear mixed-effects models. Clothianidin concentrations were significantly lower in wetlands surrounded by taller plants (β±S.E.: -0.57±0.12, P≤0.001). The results of this study suggest that macrophytes can play an important role in mitigating water contamination by accumulating neonicotinoids and possibly slowing transport to wetlands during the growing season. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Two decades of prairie restoration at Fermilab, Batavia, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Betz, R.F. [Northeastern Illinois Univ., Chicago, IL (United States); Lootens, R.J.; Becker, M.K. [Fermi National Accelerator Lab., Batavia, IL (United States)

    1996-12-31

    Successional Restoration is the method being used to restore the prairie at Fermilab on the former agricultural fields. This involves an initial planting, using aggressive species that have wide ecological tolerances which will grow well on abandoned agricultural fields. Collectively, these species are designated as the prairie matrix. The species used for this prairie matrix compete with and eventually eliminate most weedy species. They also provide an adequate fuel load capable of sustaining a fire within a few years after a site has been initially planted. Associated changes in the biological and physical structure of the soil help prepare the way for the successful introduction of plants of the later successional species. Only after the species of the prairie matrix are well established, is the species diversity increased by introducing species with narrower ecological tolerances. These species are thus characteristic of the later successional stages.

  6. Exudate Chemical Profiles Derived from Lespedeza and Other Tallgrass Prairie Plant Species

    Science.gov (United States)

    2017-05-01

    Chemical Profiles Derived from Lespedeza and Other Tall- grass Prairie Plant Species. ERDC TN-17-1. Vicksburg, MS: U.S. Army Engineer Re- search and...200-1-52. Washington, DC: U.S. Army Corps of Engineers Headquarters, Civil Works. https://www.wbdg.org/ffc/army-coe/public-works-technical-bulletins...ERDC TN-17-1 May 2017 Approved for public release; distribution is unlimited. Exudate Chemical Profiles Derived from Lespedeza and Other

  7. The prairie dog as a keystone species

    Science.gov (United States)

    Kotliar, Natasha B.; Miller, Brian J.; Reading, Richard P.; Clark, Timothy W.; Hoogland, John L.

    2006-01-01

    The prairie dog has a pronounced impact on its grassland ecosystem (King 1955; Uresk and Bjugstad 1983; Miller et al. 1994; Society for Conservation Biology 1994; Wuerthner 1997; Johnsgard 2005). They maintain short vegetation by their grazing and by selective removal of tall plants and shrubs; provide shelter, foraging grounds, and nesting habitat for a diverse array of animals; serve as prey for many predators; and alter soil chemistry.Do these impacts mean that the prairie dog is a keystone species? To investigate, we first scrutinize the definition for a keystone species. We then document both vertebrates and invertebrates that associate with prairie dogs and their colony-sites. We examine ecosystem processes at colony-sites, and then assess whether the prairie dog is a legitimate keystone species. Finally, we explore the implications of keystone status for the conservation of prairie dogs.

  8. 77 FR 73827 - Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken as a Threatened...

    Science.gov (United States)

    2012-12-11

    ... the lesser prairie-chicken (Tympanuchus pallidicinctus), a grassland bird known from southeastern... plants; wind energy development; petroleum production; and presence of roads and manmade vertical structures including towers, utility lines, fences, turbines, wells, and buildings. We will request peer...

  9. Environmental monitoring and ecological studies program. 1974 annual report for the Prairie Island Nuclear Generating Plant near Red Wing, Minnesota. Volume I

    International Nuclear Information System (INIS)

    1975-06-01

    Data are presented from studies on the effects of thermal effluents from the Prairie Island nuclear power plant on water temperature and primary productivity of phytoplankton in the Mississippi River downstream from the site. Results of measurements showed that plant-heated waters had dropped to near normal temperatures at the end of the discharge canal. The size and shape of the thermal plume at Prairie Island were determined. The chemical composition of water samples collected upstream was compared to that of samples collected downstream from the plant. Plankton species and seasonal succession patterns were characterized both at the plant site and downstream from the plant for any evidence of changes resulting from plant operations. The effects of entrainment of plankton in the cooling water system was also studied. Data are included on invertebrates in water samples collected at various locations. (U.S.)

  10. Establishment of prairies

    International Nuclear Information System (INIS)

    Lotero Cadavid, J.

    2001-01-01

    Are analyzed the establishment of prairies, such as the selection of the species, the factors of the environment, the impact in the establishment and forage production and its relation to the soil, the precipitation, the temperature, the light and the biotic factors. It is indicated that the selection of the species to settle down, is directly related with the climate and the soil and they group to be tolerant to drought, tolerant to flood soils, tolerant to humid soils, tolerant to soils very acids, moderately acids and saline. It is noticed that a bad establishment of the grasses can be due to the bad quality of the seed, a temperature and unfavorable humidity can cause low germination; equally seeds planted very deeply in heavy soils with excess of humidity. Considerations are made about the establishment and growth of the prairies in connection with the germination, cultures, sowing density and sowing on time, as well as for the soil preparation, the sowing in terrestrial mechanic and non mechanic and the use of cultivations forms of low cost and fertilization systems; equally the establishment of leguminous in mixture with gramineous, the renovation of prairies and the establishment of pastures

  11. Environmental monitoring and ecological studies program. 1974 annual report for the Prairie Island Nuclear Generating Plant near Red Wing, Minnesota. Volume II

    International Nuclear Information System (INIS)

    1975-06-01

    Data are presented from studies on the effects of thermal effluents from the Prairie Island nuclear power plant on fish and invertebrate populations in the Mississippi River in the vicinity of the plant. Populations of aquatic and terrestrial plants and birds in the immediate vicinity of the plant were also characterized. (U.S.)

  12. Spent fuel storage at Prairie Island: January 1995 status

    International Nuclear Information System (INIS)

    Closs, J.; Kress, L.

    1995-01-01

    The disposal of spent nuclear fuel has been an issue for the US since the inception of the commercial nuclear power industry. In the past decade, it has become a critical factor in the continued operation of some nuclear power plants, including the two units at Prairie Island. As the struggles and litigation over storage alternatives wage on, spent fuel pools continue to fill and plants edge closer to premature shutdown. Due to the delays in the construction of a federal repository, many nuclear power plants have had to seek interim storage alternatives. In the case of Prairie Island, the safest and most feasible option is dry cask storage. This paper discusses the current status of the Independent Spent Fuel Storage Installation (ISFSI) Project at Prairie Island. It provides a historical background to the project, discusses the notable developments over the past year, and presents the projected plans of the Northern States Power Company (NSP) in regards to spent fuel storage

  13. 75 FR 44292 - Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of...

    Science.gov (United States)

    2010-07-28

    ... and DPR-60] Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2... assessment, and behavioral observation) of the unescorted access authorization program when making the... under consideration to determine whether it met the criteria established in NRC Management Directive (MD...

  14. Effect of mid-summer haying on growth and reproduction in prairie forbs

    Science.gov (United States)

    Becky Begay; Helen M. Alexander; Erin Questad

    2011-01-01

    Mid-summer haying is a common management practice for prairies; plant species could differ in the effect of haying on subsequent growth and reproduction. We examined the effect of haying on prairie species by performing a clipping experiment. For each of seven species, sixteen plants were chosen and half were randomly assigned to a clipping treatment and half to a...

  15. Functional consequences of climate change-induced plant species loss in a tallgrass prairie.

    Science.gov (United States)

    Craine, Joseph M; Nippert, Jesse B; Towne, E Gene; Tucker, Sally; Kembel, Steven W; Skibbe, Adam; McLauchlan, Kendra K

    2011-04-01

    Future climate change is likely to reduce the floristic diversity of grasslands. Yet the potential consequences of climate-induced plant species losses for the functioning of these ecosystems are poorly understood. We investigated how climate change might alter the functional composition of grasslands for Konza Prairie, a diverse tallgrass prairie in central North America. With species-specific climate envelopes, we show that a reduction in mean annual precipitation would preferentially remove species that are more abundant in the more productive lowland positions at Konza. As such, decreases in precipitation could reduce productivity not only by reducing water availability but by also removing species that inhabit the most productive areas and respond the most to climate variability. In support of this prediction, data on species abundance at Konza over 16 years show that species that are more abundant in lowlands than uplands are preferentially reduced in years with low precipitation. Climate change is likely to also preferentially remove species from particular functional groups and clades. For example, warming is forecast to preferentially remove perennials over annuals as well as Cyperaceae species. Despite these predictions, climate change is unlikely to unilaterally alter the functional composition of the tallgrass prairie flora, as many functional traits such as physiological drought tolerance and maximum photosynthetic rates showed little relationship with climate envelope parameters. In all, although climatic drying would indirectly alter grassland productivity through species loss patterns, the insurance afforded by biodiversity to ecosystem function is likely to be sustained in the face of climate change.

  16. Relatedness of Macrophomina phaseolina isolates from tallgrass prairie, maize, soybean and sorghum.

    Science.gov (United States)

    Saleh, A A; Ahmed, H U; Todd, T C; Travers, S E; Zeller, K A; Leslie, J F; Garrett, K A

    2010-01-01

    Agricultural and wild ecosystems may interact through shared pathogens such as Macrophomina phaseolina, a generalist clonal fungus with more than 284 plant hosts that is likely to become more important under climate change scenarios of increased heat and drought stress. To evaluate the degree of subdivision in populations of M. phaseolina in Kansas agriculture and wildlands, we compared 143 isolates from maize fields adjacent to tallgrass prairie, nearby sorghum fields, widely dispersed soybean fields and isolates from eight plant species in tallgrass prairie. Isolate growth phenotypes were evaluated on a medium containing chlorate. Genetic characteristics were analysed based on amplified fragment length polymorphisms and the sequence of the rDNA-internal transcribed spacer (ITS) region. The average genetic similarity was 58% among isolates in the tallgrass prairie, 71% in the maize fields, 75% in the sorghum fields and 80% in the dispersed soybean fields. The isolates were divided into four clusters: one containing most of the isolates from maize and soybean, two others containing isolates from wild plants and sorghum, and a fourth containing a single isolate recovered from Solidago canadensis in the tallgrass prairie. Most of the sorghum isolates had the dense phenotype on media containing chlorate, while those from other hosts had either feathery or restricted phenotypes. These results suggest that the tallgrass prairie supports a more diverse population of M. phaseolina per area than do any of the crop species. Subpopulations show incomplete specialization by host. These results also suggest that inoculum produced in agriculture may influence tallgrass prairie communities, and conversely that different pathogen subpopulations in tallgrass prairie can interact there to generate 'hybrids' with novel genetic profiles and pathogenic capabilities.

  17. Evaluation of environmental data relating to selected nuclear power plant sites. Prairie Island Nuclear Generating Plant site

    International Nuclear Information System (INIS)

    Murarka, I.P.

    1976-11-01

    Environmental monitoring data for 1973 through 1975 pertaining to the Prairie Island Nuclear Generating Station (which began commercial operation in December 1973) were analyzed by the most practical qualitative and quantitative methods. Evaluations of aquatic and terrestrial biotic data are presented in this report. The data indicate no significant immediate deleterious effects on the biota from plant operation, thus confirming preoperational predictions. Although the station has not operated long enough to reveal long-term deleterious effects, present indications do not lead to a concerned prediction that any are developing. Recommendations are suggested for improving monitoring techniques

  18. Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils

    International Nuclear Information System (INIS)

    Doherty, Jennifer H.; Ji Baoming; Casper, Brenda B.

    2008-01-01

    Ecotypes of Sorghastrum nutans from a naturally metalliferous serpentine grassland and the tallgrass prairie were assessed for Ni tolerance and their utility in remediation of Ni-polluted soils. Plants were inoculated with serpentine arbuscular mycorrhizal (AM) root inoculum or whole soil microbial communities, originating from either prairie or serpentine, to test their effects on plant performance in the presence of Ni. Serpentine plants had marginally higher Ni tolerance as indicated by higher survival. Ni reduced plant biomass and AM root colonization for both ecotypes. The serpentine AM fungi and whole microbial community treatments decreased plant biomass relative to uninoculated plants, while the prairie microbial community had no effect. Differences in how the soil communities affect plant performance were not reflected in patterns of root colonization by AM fungi. Thus, serpentine plants may be suited for reclamation of Ni-polluted soils, but AM fungi that occur on serpentine do not improve Ni tolerance. - Ni tolerance of Sorghastrum nutans differs slightly between serpentine and prairie populations and is negatively affected by serpentine soil and root inoculation

  19. Proceedings of the third prairie conservation and endangered species workshop

    Energy Technology Data Exchange (ETDEWEB)

    Holroyd, G.L.; Diskson, H.L.; Regnier, M.; Smith, H.C. (eds.)

    1993-01-01

    The Canadian prairies support a major agricultural economy and a declining abundance of wildlife. Soil erosion and water quality threaten the long-term viability of agriculture; half of Canada's endangered and threatened birds and mammals share the prairies. Wise policies of resource management are needed to solve these problems. A workshop was held to address the issue of how to manage the prairies to promote sustained agriculture and to conserve the wildlife that are in jeopardy. Papers were presented on the relationships between agriculture and wildlife, land restoration, climate change, pesticides, the Prairie Conservation Action Plan, plant conservation, amphibians, reptiles, migratory birds and other wildfowl, and mammals. Separate abstracts have been prepared for two papers from this workshop.

  20. Southern marl prairies conceptual ecological model

    Science.gov (United States)

    Davis, S.M.; Loftus, W.F.; Gaiser, E.E.; Huffman, A.E.

    2005-01-01

    About 190,000 ha of higher-elevation marl prairies flank either side of Shark River Slough in the southern Everglades. Water levels typically drop below the ground surface each year in this landscape. Consequently, peat soil accretion is inhibited, and substrates consist either of calcitic marl produced by algal periphyton mats or exposed limestone bedrock. The southern marl prairies support complex mosaics of wet prairie, sawgrass sawgrass (Cladium jamaicense), tree islands, and tropical hammock communities and a high diversity of plant species. However, relatively short hydroperiods and annual dry downs provide stressful conditions for aquatic fauna, affecting survival in the dry season when surface water is absent. Here, we present a conceptual ecological model developed for this landscape through scientific concensus, use of empirical data, and modeling. The two major societal drivers affecting the southern marl prairies are water management practices and agricultural and urban development. These drivers lead to five groups of ecosystem stressors: loss of spatial extent and connectivity, shortened hydroperiod and increased drought severity, extended hydroperiod and drying pattern reversals, introduction and spread of non-native trees, and introduction and spread of non-native fishes. Major ecological attributes include periphyton mats, plant species diversity and community mosaic, Cape Sable seaside sparrow (Ammodramus maritimus mirabilis), marsh fishes and associated aquatic fauna prey base, American alligator (Alligator mississippiensis), and wading bird early dry season foraging. Water management and development are hypothesized to have a negative effect on the ecological attributes of the southern marl prairies in the following ways. Periphyton mats have decreased in cover in areas where hydroperiod has been significantly reduced and changed in community composition due to inverse responses to increased nutrient availability. Plant species diversity and

  1. Prairie Conservation in Canada: The Prairie Conservation Action Plan Experience

    Science.gov (United States)

    Dean Nernberg; David Ingstrup

    2005-01-01

    In Canada, grassland conservation has been mobilized and directed through the development of Prairie Conservation Action Plans and Action Plan Committees in the three prairie provinces of Alberta (45 partner agencies and organizations), Saskatchewan (26 partners), and Manitoba (26 partners). In Alberta, 43 percent of the native prairie remains; in Saskatchewan and...

  2. Forage preferences in two species of prairie dog (Cynomys parvidens and Cynomus ludovicianus): Implications for hibernation and facultative heterothermy

    Science.gov (United States)

    Lehmer, E.M.; Biggins, D.E.; Antolin, M.F.

    2006-01-01

    Several laboratory studies have shown that the ingestion of dietary linoleic (18:2 ??6) acid before winter can promote deep and continuous torpor, whereas excess consumption of ??-linolenic acid (18:3 ??3) can interfere with an animal's ability to reach and maintain low body temperatures during torpor. As mammalian heterotherms obtain linoleic and ??-linolenic acid strictly from the diet, diet selection has been proposed as a mechanism that allows hibernators to ingest levels of linoleic and ??-linolenic acid that promote favorable torpor patterns. Here diet, dietary nutrient content and patterns of forage preference of a representative hibernator, the Utah prairie dog Cynomys parvidens, and a facultative heterotherm, the black-tailed prairie dog Cynomys ludovicianus, were examined under natural field conditions. Diets of black-tailed (BTPD) and Utah prairie dogs (UTPD) differed across seasons (BTPD F26,108=9.59, Pplant species relative to their abundance on colonies in any season. Black-tailed prairie dogs did not consume or avoid consumption of plant species based on levels of total lipids, linoleic acid, ??-linolenic acid or nitrogen. Considering only the plants consumed, black-tailed prairie dogs appeared to prefer plants with low levels of ??-linolenic acid (F1,19=5.81, P=0.03), but there were no detectable relationships between preference and other nutrients. Utah prairie dogs consumed plants higher in ??-linolenic acid (t=1.98, P=0.05) and avoided plants high in linoleic acid (t=-2.02, P=0.04), but consumption-avoidance decisions did not appear to be related to nitrogen or total lipids. Of the plants consumed, Utah prairie dogs again preferred plants high in ??-linolenic acid (F1,17=4.62, P=0.05). Levels of linoleic and ??-linolenic acid were positively correlated in plants consumed by prairie dogs (BTPD Pearson r=0.66, P<0.01; UTPD Pearson r=0.79, P<0.01), reducing the opportunity for independent selection of either lipid. ?? 2006 The Authors.

  3. Assessing diversity of prairie plants using remote sensing

    Science.gov (United States)

    Gamon, J. A.; Wang, R.

    2017-12-01

    Biodiversity loss endangers ecosystem services and is considered as a global change that may generate unacceptable environmental consequences for the Earth system. Global biodiversity observations are needed to provide a better understanding of biodiversity - ecosystem services relationships and to provide a stronger foundation for conserving the Earth's biodiversity. While remote sensing metrics have been applied to estimate α biodiversity directly through optical diversity, a better understanding of the mechanisms behind the optical diversity-biodiversity relationship is needed. We designed a series of experiments at Cedar Creek Ecosystem Science Reserve, MN, to investigate the scale dependence of optical diversity and explore how species richness, evenness, and composition affect optical diversity. We collected hyperspectral reflectance of 16 prairie species using both a full-range field spectrometer fitted with a leaf clip, and an imaging spectrometer carried by a tram system to simulate plot-level images with different species richness, evenness, and composition. Two indicators of spectral diversity were explored: the coefficient of variation (CV) of spectral reflectance in space, and spectral classification using a Partial Least Squares Discriminant Analysis (PLS-DA). Our results showed that sampling methods (leaf clip-derived data vs. image-derived data) affected the optical diversity estimation. Both optical diversity indices were affected by species richness and evenness (Pguide regional studies of biodiversity estimation using high spatial and spectral resolution remote sensing.

  4. Predation of artificial ground nests on white-tailed prairie dog colonies

    Science.gov (United States)

    Baker, B.W.; Stanley, T.R.; Sedgwick, J.A.

    1999-01-01

    Prairie dog (Cynomys spp.) colonies are unique to prairie and shrub-steppe landscapes. However, widespread eradication, habitat loss, and sylvatic plague (Yersinia pestis) have reduced their numbers by 98% since historical times. Birds associated with prairie dogs also are declining. Potential nest predators, such as coyotes (Canis latrans), swift foxes (Vulpes velox), and badgers (Taxidea taxus), may be attracted to colonies where a high concentration of prairie dogs serve as available prey. Increased abundance of small mammals, including prairie dogs, also may increase the risk of predation for birds nesting on colonies. Finally, because grazing by prairie dogs may decrease vegetation height and canopy cover, bird nests may be easier for predators to locate. In this study, we placed 1,444 artificial ground nests on and off 74 white-tailed prairie dog (C. leucurus) colonies to test the hypothesis that nest predation rates are higher on colonies than at nearby off sites (i.e., uncolonized habitat). We sampled colonies from 27 May to 16 July 1997 at the following 3 complexes: Coyote Basin, Utah and Colorado; Moxa Arch, Wyoming; and Shirley Basin, Wyoming. Differences in daily predation rates between colonies and paired off sites averaged 1.0% (P = 0.060). When converted to a typical 14-day incubation period, predation rates averaged 14% higher on colonies (57.7 ?? 2.7%; ?? ?? SE) than at off sites (50.4 ?? 3.1%). Comparisons of habitat variables on colonies to off sites showed percent canopy cover of vegetation was similar (P = 0.114), percent bare ground was higher on colonies (P 0.288). Although we found the risk of nest predation was higher on white-tailed prairie dog colonies than at off sites, fitness of birds nesting on colonies might depend on other factors that influence foraging success, reproductive success, or nestling survival.

  5. Precipitation, Climate Change, and Parasitism of Prairie Dogs by Fleas that Transmit Plague.

    Science.gov (United States)

    Eads, David A; Hoogland, John L

    2017-08-01

    Fleas (Insecta: Siphonaptera) are hematophagous ectoparasites that can reduce the fitness of vertebrate hosts. Laboratory populations of fleas decline under dry conditions, implying that populations of fleas will also decline when precipitation is scarce under natural conditions. If precipitation and hence vegetative production are reduced, however, then herbivorous hosts might suffer declines in body condition and have weakened defenses against fleas, so that fleas will increase in abundance. We tested these competing hypotheses using information from 23 yr of research on 3 species of colonial prairie dogs in the western United States: Gunnison's prairie dog (Cynomys gunnisoni, 1989-1994), Utah prairie dog (Cynomys parvidens, 1996-2005), and white-tailed prairie dog (Cynomys leucurus, 2006-2012). For all 3 species, flea-counts per individual varied inversely with the number of days in the prior growing season with >10 mm of precipitation, an index of the number of precipitation events that might have caused a substantial, prolonged increase in soil moisture and vegetative production. Flea-counts per Utah prairie dog also varied inversely with cumulative precipitation of the prior growing season. Furthermore, flea-counts per Gunnison's and white-tailed prairie dog varied inversely with cumulative precipitation of the just-completed January and February. These results complement research on black-tailed prairie dog (Cynomys ludovicianus) and might have important ramifications for plague, a bacterial disease transmitted by fleas that devastates populations of prairie dogs. In particular, our results might help to explain why, at some colonies, epizootics of plague, which can kill >95% of prairie dogs, are more likely to occur during or shortly after periods of reduced precipitation. Climate change is projected to increase the frequency of droughts in the grasslands of western North America. If so, then climate change might affect the occurrence of plague epizootics

  6. Neonicotinoid insecticide removal by prairie strips in row-cropped watersheds with historical seed coating use

    Science.gov (United States)

    Hladik, Michelle L.; Bradbury, Steven; Schulte, Lisa A.; Helmers, Matthew; Witte, Christopher; Kolpin, Dana W.; Garrett, Jessica D.; Harris, Mary

    2017-01-01

    Neonicotinoids are a widely used class of insecticides that are commonly applied as seed coatings for agricultural crops. Such neonicotinoid use may pose a risk to non-target insects, including pollinators and natural enemies of crop pests, and ecosystems. This study assessed neonicotinoid residues in groundwater, surface runoff water, soil, and native plants adjacent to corn and soybean crop fields with a history of being planted with neonicotinoid-treated seeds from 2008-2013. Data from six sites with the same crop management history, three with and three without in-field prairie strips, were collected in 2015-2016, 2-3 years after neonicotinoid (clothianidin and imidacloprid) seed treatments were last used. Three of the six neonicotinoids analyzed were detected in at least one environmental matrix: the two applied as seed coatings on the fields (clothianidin and imidacloprid) and another widely used neonicotinoid (thiamethoxam). Sites with prairie strips generally had lower concentrations of neonicotinoids: groundwater and footslope soil neonicotinoid concentrations were significantly lower in the sites with prairie strips than those without; mean concentrations for groundwater were 11 and 20 ng/L (p = 0.048) and <1 and 6 ng/g (p = 0.0004) for soil, respectively. Surface runoff water concentrations were not significantly (p = 0.38) different for control sites (44 ng/L) or sites with prairie strips (140 ng/L). Consistent with the decreased inputs of neonicotinoids, concentrations tended to decrease over the sampling timeframe. Two sites recorded concentration increases, however, potentially due to disturbance of previous applications or influence from nearby fields where use of seed treatments continued. There were no detections (limit of detection: 1 ng/g) of neonicotinoids in the foliage or roots of plants comprising prairie strips, indicating a low likelihood of exposure to pollinators and other insects visiting these plants following the cessation of seed

  7. Nutrient addition shifts plant community composition towards earlier flowering species in some prairie ecoregions in the U.S. Central Plains.

    Directory of Open Access Journals (Sweden)

    Lori Biederman

    Full Text Available The distribution of flowering across the growing season is governed by each species' evolutionary history and climatic variability. However, global change factors, such as eutrophication and invasion, can alter plant community composition and thus change the distribution of flowering across the growing season. We examined three ecoregions (tall-, mixed, and short-grass prairie across the U.S. Central Plains to determine how nutrient (nitrogen (N, phosphorus, and potassium (+micronutrient addition alters the temporal patterns of plant flowering traits. We calculated total community flowering potential (FP by distributing peak-season plant cover values across the growing season, allocating each species' cover to only those months in which it typically flowers. We also generated separate FP profiles for exotic and native species and functional group. We compared the ability of the added nutrients to shift the distribution of these FP profiles (total and sub-groups across the growing season. In all ecoregions, N increased the relative cover of both exotic species and C3 graminoids that flower in May through August. The cover of C4 graminoids decreased with added N, but the response varied by ecoregion and month. However, these functional changes only aggregated to shift the entire community's FP profile in the tall-grass prairie, where the relative cover of plants expected to flower in May and June increased and those that flower in September and October decreased with added N. The relatively low native cover in May and June may leave this ecoregion vulnerable to disturbance-induced invasion by exotic species that occupy this temporal niche. There was no change in the FP profile of the mixed and short-grass prairies with N addition as increased abundance of exotic species and C3 graminoids replaced other species that flower at the same time. In these communities a disturbance other than nutrient addition may be required to disrupt phenological

  8. Developing a framework for evaluating tallgrass prairie reconstruction methods and management

    Science.gov (United States)

    Larson, Diane L.; Ahlering, Marissa; Drobney, Pauline; Esser, Rebecca; Larson, Jennifer L.; Viste-Sparkman, Karen

    2018-01-01

    The thousands of hectares of prairie reconstructed each year in the tallgrass prairie biome can provide a valuable resource for evaluation of seed mixes, planting methods, and post-planting management if methods used and resulting characteristics of the prairies are recorded and compiled in a publicly accessible database. The objective of this study was to evaluate the use of such data to understand the outcomes of reconstructions over a 10-year period at two U.S. Fish and Wildlife Service refuges. Variables included number of species planted, seed source (combine-harvest or combine-harvest plus hand-collected), fire history, and planting method and season. In 2015 we surveyed vegetation on 81 reconstructions and calculated proportion of planted species observed; introduced species richness; native species richness, evenness and diversity; and mean coefficient of conservatism. We conducted exploratory analyses to learn how implied communities based on seed mix compared with observed vegetation; which seeding or management variables were influential in the outcome of the reconstructions; and consistency of responses between the two refuges. Insights from this analysis include: 1) proportion of planted species observed in 2015 declined as planted richness increased, but lack of data on seeding rate per species limited conclusions about value of added species; 2) differing responses to seeding and management between the two refuges suggest the importance of geographic variability that could be addressed using a public database; and 3) variables such as fire history are difficult to quantify consistently and should be carefully evaluated in the context of a public data repository.

  9. Factors that affect parasitism of black-tailed prairie dogs by fleas

    Science.gov (United States)

    Eads, David A.; Hoogland, John L.

    2016-01-01

    Fleas (Insecta: Siphonaptera) are hematophagous ectoparasites that feed on vertebrate hosts. Fleas can reduce the fitness of hosts by interfering with immune responses, disrupting adaptive behaviors, and transmitting pathogens. The negative effects of fleas on hosts are usually most pronounced when fleas attain high densities. In lab studies, fleas desiccate and die under dry conditions, suggesting that populations of fleas will tend to decline when precipitation is scarce under natural conditions. To test this hypothesis, we compared precipitation vs. parasitism of black-tailed prairie dogs (Cynomys ludovicianus) by fleas at a single colony during May and June of 13 consecutive years (1976–1988) at Wind Cave National Park, South Dakota, USA. The number of fleas on prairie dogs decreased with increasing precipitation during both the prior growing season (April through August of the prior year) and the just-completed winter–spring (January through April of current year). Due to the reduction in available moisture and palatable forage in dry years, herbivorous prairie dogs might have been food-limited, with weakened behavioral and immunological defenses against fleas. In support of this hypothesis, adult prairie dogs of low mass harbored more fleas than heavier adults. Our results have implications for the spread of plague, an introduced bacterial disease, transmitted by fleas, that devastates prairie dog colonies and, in doing so, can transform grassland ecosystems.

  10. 76 FR 31906 - Endangered and Threatened Wildlife and Plants; Revising the Special Rule for the Utah Prairie Dog

    Science.gov (United States)

    2011-06-02

    ... Special Rule for the Utah Prairie Dog AGENCY: Fish and Wildlife Service, Interior. ACTION: Proposed rule... prairie dog. We are proposing to revise the existing limits on take, and we also propose a new incidental... dogs see: http://www.fws.gov/mountain-prairie/species/mammals/UTprairiedog or http://ecos.fws.gov...

  11. Progress report: baseline monitoring of indicator species (butterflies) at tallgrass prairie restorations

    Science.gov (United States)

    Allain, Larry; Vidrine, Malcolm

    2014-01-01

    This project provides baseline data of butterfly populations at two coastal prairie restoration sites in Louisiana, the Duralde Unit of Lacassine National Wildlife Refuge (hereafter, the Duralde site) and the Cajun Prairie Restoration Project in Eunice (hereafter, the Eunice site). In all, four distinct habitat types representing different planting methods were sampled. These data will be used to assess biodiversity and health of native grasslands and also provide a basis for adaptive management.

  12. Sodium co-limits and catalyzes macronutrients in a prairie food web

    DEFF Research Database (Denmark)

    Kaspari, Michael; Roeder, Karl A.; Benson, Brittany

    2017-01-01

    Nitrogen and phosphorus frequently limit terrestrial plant production, but have a mixed record in regulating the abundance of terrestrial invertebrates. We contrasted four ways that Na could interact with an NP fertilizer to shape the plants and invertebrates of an inland prairie. We applied NP a...

  13. Ecosystem engineering varies spatially: a test of the vegetation modification paradigm for prairie dogs

    Science.gov (United States)

    Baker, Bruce W.; Augustine, David J.; Sedgwick, James A.; Lubow, Bruce C.

    2013-01-01

    Colonial, burrowing herbivores can be engineers of grassland and shrubland ecosystems worldwide. Spatial variation in landscapes suggests caution when extrapolating single-place studies of single species, but lack of data and the need to generalize often leads to ‘model system’ thinking and application of results beyond appropriate statistical inference. Generalizations about the engineering effects of prairie dogs (Cynomys sp.) developed largely from intensive study at a single complex of black-tailed prairie dogs C. ludovicianus in northern mixed prairie, but have been extrapolated to other ecoregions and prairie dog species in North America, and other colonial, burrowing herbivores. We tested the paradigm that prairie dogs decrease vegetation volume and the cover of grasses and tall shrubs, and increase bare ground and forb cover. We sampled vegetation on and off 279 colonies at 13 complexes of 3 prairie dog species widely distributed across 5 ecoregions in North America. The paradigm was generally supported at 7 black-tailed prairie dog complexes in northern mixed prairie, where vegetation volume, grass cover, and tall shrub cover were lower, and bare ground and forb cover were higher, on colonies than at paired off-colony sites. Outside the northern mixed prairie, all 3 prairie dog species consistently reduced vegetation volume, but their effects on cover of plant functional groups varied with prairie dog species and the grazing tolerance of dominant perennial grasses. White-tailed prairie dogs C. leucurus in sagebrush steppe did not reduce shrub cover, whereas black-tailed prairie dogs suppressed shrub cover at all complexes with tall shrubs in the surrounding habitat matrix. Black-tailed prairie dogs in shortgrass steppe and Gunnison's prairie dogs C. gunnisoni in Colorado Plateau grassland both had relatively minor effects on grass cover, which may reflect the dominance of grazing-tolerant shortgrasses at both complexes. Variation in modification of

  14. Plant composition in oak savanna and woodland restoration at Prairie Fork Conservation Area in Missouri

    Science.gov (United States)

    Nadia E. Navarrete-Tindall; J.W. Van Sambeek; Jamie Coe; Warren Taylor

    2007-01-01

    The wooded areas of the Prairie Fork Conservation Area in central Missouri are typical of the oak/hickory forest/prairie transition zone that will require active management to restore pre-settlement, grass dominated savannas and open woodlands to improve habitat for wildlife. We initiated a management program to restore savannas and woodlands by reducing the midstory (...

  15. Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses.

    Science.gov (United States)

    Weremijewicz, Joanna; da Silveira Lobo O'Reilly Sternberg, Leonel; Janos, David P

    2018-01-01

    Arbuscular mycorrhizal fungi form extensive common mycorrhizal networks (CMNs) that may interconnect neighboring root systems of the same or different plant species, thereby potentially influencing the distribution of limiting mineral nutrients among plants. We examined how CMNs affected intra- and interspecific interactions within and between populations of Andropogon gerardii, a highly mycorrhiza dependent, dominant prairie grass and Elymus canadensis, a moderately dependent, subordinate prairie species. We grew A. gerardii and E. canadensis alone and intermixed in microcosms, with individual root systems isolated, but either interconnected by CMNs or with CMNs severed weekly. CMNs, which provided access to a large soil volume, improved survival of both A. gerardii and E. canadensis, but intensified intraspecific competition for A. gerardii. When mixed with E. canadensis, A. gerardii overyielded aboveground biomass in the presence of intact CMNs but not when CMNs were severed, suggesting that A. gerardii with intact CMNs most benefitted from weaker interspecific than intraspecific interactions across CMNs. CMNs improved manganese uptake by both species, with the largest plants receiving the most manganese. Enhanced growth in consequence of improved mineral nutrition led to large E. canadensis in intact CMNs experiencing water-stress, as indicated by 13 C isotope abundance. Our findings suggest that in prairie plant communities, CMNs may influence mineral nutrient distribution, water relations, within-species size hierarchies, and between-species interactions.

  16. Macroinvertebrates in North American tallgrass prairie soils: effects of fire, mowing, and fertilization on density and biomass

    Science.gov (United States)

    M.A. Callaham; J.M. Blair; T.C. Todd; D.J. Kitchen; M.R. Whiles

    2003-01-01

    The responses of tallgrass prairie plant communities and ecosystem processes to fire and grazing are well characterized. However, responses of invertebrate consumer groups. and particularly soil-dwelling organisms, to these disturbances are not well known. At Konza Prairie Biological Station. we sampled soil macroinvertebrates in 1994 and 1999 as part of a long-term...

  17. Restoring sand shinnery oak prairies with herbicide and grazing in New Mexico

    Science.gov (United States)

    Zavaleta, Jennifer C.; Haukos, David A.; Grisham, Blake A.; Boal, Clint W.; Dixon, Charles

    2016-01-01

    Sand shinnery oak (Quercus havardii) prairies are increasingly disappearing and increasingly degraded in the Southern High Plains of Texas and New Mexico. Restoring and managing sand shinnery oak prairie can support biodiversity, specific species of conservation concern, and livestock production. We measured vegetation response to four treatment combinations of herbicide (tebuthiuron applied at 0.60 kg/ha) and moderate-intensity grazing (50% removal of annual herbaceous production) over a 10-year period in a sand shinnery oak prairie of eastern New Mexico. We compared the annual vegetation response to the historical climax plant community (HCPC) as outlined by the U.S. Department of Agriculture Ecological Site Description. From 2 to 10 years postapplication, tebuthiuron-treated plots had reduced shrub cover with twice as much forb and grass cover as untreated plots. Tebuthiuron-treated plots, regardless of the presence of grazing, most frequently met HCPC. Tebuthiuron and moderate-intensity grazing increased vegetation heterogeneity and, based on comparison of the HCPC, successfully restored sand shinnery oak prairie to a vegetation composition similar to presettlement.

  18. Grooming behaviors of black-tailed prairie dogs are influenced by flea parasitism, conspecifics, and proximity to refuge

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Eads, Samantha L.

    2017-01-01

    Grooming is a common animal behavior that aids in ectoparasite defense. Ectoparasites can stimulate grooming, and natural selection can also favor endogenous mechanisms that evoke periodic bouts of “programmed” grooming to dislodge or kill ectoparasites before they bite or feed. Moreover, grooming can function as a displacement or communication behavior. We compared the grooming behaviors of adult female black-tailed prairie dogs (Cynomys ludovicianus) on colonies with or without flea control via pulicide dust. Roughly 91% of the prairie dogs sampled on the non-dusted colony carried at least one flea, whereas we did not find fleas on two dusted colonies. During focal observations, prairie dogs on the non-dusted colony groomed at higher frequencies and for longer durations than prairie dogs on the dusted colonies, lending support to the hypothesis that fleas stimulated grooming. However, the reduced amount of time spent grooming on the dusted colonies suggested that approximately 25% of grooming might be attributed to factors other than direct stimulation from ectoparasites. Non-dusted colony prairie dogs rarely autogroomed when near each other. Dusted colony prairie dogs autogroomed for shorter durations when far from a burrow opening (refuge), suggesting a trade-off between self-grooming and antipredator defense. Allogrooming was detected only on the non-dusted colony and was limited to adult females grooming young pups. Grooming appears to serve an antiparasitic function in C. ludovicianus. Antiparasitic grooming might aid in defense against fleas that transmit the plague bacterium Yersinia pestis. Plague was introduced to North America ca. 1900 and now has a strong influence on most prairie dog populations, suggesting a magnified effect of grooming on prairie dog fitness.

  19. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming.

    Science.gov (United States)

    Xu, Xia; Shi, Zheng; Li, Dejun; Zhou, Xuhui; Sherry, Rebecca A; Luo, Yiqi

    2015-10-01

    Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13-year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000-2006) to 30% in the next 6 years (2007-2012). The two-stage warming stimulation of soil respiration was closely related to warming-induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming-induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming-induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming-induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all P > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems. © 2015 John Wiley & Sons Ltd.

  20. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance

    Science.gov (United States)

    Larson, D.L.; Anderson, P.J.; Newton, W.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  1. Implementation of an advanced digital feedwater control system at the Prairie Island nuclear generating station

    International Nuclear Information System (INIS)

    Paris, R.E.; Gaydos, K.A.; Hill, J.O.; Whitson, S.G.; Wirkkala, R.

    1990-05-01

    EPRI Project RP2126-4 was a cooperative effort between TVA, EPRI, and Westinghouse which resulted in the demonstration of a prototype of a full range, fully automatic feedwater control system, using fault tolerant digital technology, at the TVA Sequoyah simulator site. That prototype system also included advanced signal validation algorithms and an advanced man-machine interface that used CRT-based soft-control technology. The Westinghouse Advanced Digital Feedwater Control System (ADFCS) upgrade, which contains elements that were part of that prototype system, has since been installed at Northern States Power's Prairie Island Unit 2. This upgrade was very successful due to the use of an advanced control system design and the execution of a well coordinated joint effort between the utility and the supplier. The project experience is documented in this report to help utilities evaluate the technical implications of such a project. The design basis of the Prairie Island ADFCS signal validation for input signal failure fault tolerance is outlined first. Features of the industry-proven system control algorithms are then described. Pre-shipment hardware-in-loop and factory acceptance testing of the Prairie Island system are summarized. Post-shipment site testing, including preoperational and plant startup testing, is also summarized. Plant data from the initial system startup is included. The installation of the Prairie Island ADFCS is described, including both the feedwater control instrumentation and the control board interface. Modification of the plant simulator and operator and I ampersand C personnel training are also discussed. 6 refs., 14 figs., 3 tabs

  2. Rangewide genetic analysis of Lesser Prairie-Chicken reveals population structure, range expansion, and possible introgression

    Science.gov (United States)

    Oyler-McCance, Sara J.; DeYoung, Randall W; Fike, Jennifer; Hagen, Christian A.; Johnson, Jeff A.; Larsson, Lena C.; Patten, Michael

    2016-01-01

    The distribution of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) has been markedly reduced due to loss and fragmentation of habitat. Portions of the historical range, however, have been recolonized and even expanded due to planting of conservation reserve program (CRP) fields that provide favorable vegetation structure for Lesser Prairie-Chickens. The source population(s) feeding the range expansion is unknown, yet has resulted in overlap between Lesser and Greater Prairie-Chickens (T. cupido) increasing the potential for hybridization. Our objectives were to characterize connectivity and genetic diversity among populations, identify source population(s) of recent range expansion, and examine hybridization with the Greater Prairie-Chicken. We analyzed 640 samples from across the range using 13 microsatellites. We identified three to four populations corresponding largely to ecoregions. The Shinnery Oak Prairie and Sand Sagebrush Prairie represented genetically distinct populations (F ST > 0.034 and F ST > 0.023 respectively). The Shortgrass/CRP Mosaic and Mixed Grass ecoregions appeared admixed (F ST = 0.009). Genetic diversity was similar among ecoregions and N e ranged from 142 (95 % CI 99–236) for the Shortgrass/CRP Mosaic to 296 (95 % CI 233–396) in the Mixed Grass Prairie. No recent migration was detected among ecoregions, except asymmetric dispersal from both the Mixed Grass Prairie and to a lesser extent the Sand Sagebrush Prairie north into adjacent Shortgrass/CRP Mosaic (m = 0.207, 95 % CI 0.116–0.298, m = 0.097, 95 % CI 0.010–0.183, respectively). Indices investigating potential hybridization in the Shortgrass/CRP Mosaic revealed that six of the 13 individuals with hybrid phenotypes were significantly admixed suggesting hybridization. Continued monitoring of diversity within and among ecoregions is warranted as are actions promoting genetic connectivity and range expansion.

  3. Spatial variation in keystone effects: Small mammal diversity associated with black-tailed prairie dog colonies

    Science.gov (United States)

    Cully, J.F.; Collinge, S.K.; Van Nimwegen, R. E.; Ray, C.; Johnson, W.C.; Thiagarajan, Bala; Conlin, D.B.; Holmes, B.E.

    2010-01-01

    Species with extensive geographic ranges may interact with different species assemblages at distant locations, with the result that the nature of the interactions may vary spatially. Black-tailed prairie dogs Cynomys ludovicianus occur from Canada to Mexico in grasslands of the western Great Plains of North America. Black-tailed prairie dogs alter vegetation and dig extensive burrow systems that alter grassland habitats for plants and other animal species. These alterations of habitat justify the descriptor " ecological engineer," and the resulting changes in species composition have earned them status as a keystone species. We examined the impact of black-tailed prairie dogs on small mammal assemblages by trapping at on- and off-colony locations at eight study areas across the species' geographic range. We posed 2 nested hypotheses: 1) prairie dogs function as a keystone species for other rodent species; and 2) the keystone role varies spatially. Assuming that it does, we asked what are the sources of the variation? Black-tailed prairie dogs consistently functioned as a keystone species in that there were strong statistically significant differences in community composition on versus off prairie dog colonies across the species range in prairie grassland. Small mammal species composition varied along both latitudinal and longitudinal gradients, and species richness varied from 4 to 11. Assemblages closer together were more similar; such correlations approximately doubled when including only on- or off-colony grids. Black-tailed prairie dogs had a significant effect on associated rodent assemblages that varied regionally, dependent upon the composition of the local rodent species pool. Over the range of the black-tailed prairie dog, on-colony rodent richness and evenness were less variable, and species composition was more consistent than off-colony assemblages. ?? 2010 The Authors.

  4. Competition overwhelms the positive plant-soil feedback generated by an invasive plant.

    Science.gov (United States)

    Crawford, Kerri M; Knight, Tiffany M

    2017-01-01

    Invasive plant species can modify soils in a way that benefits their fitness more than the fitness of native species. However, it is unclear how competition among plant species alters the strength and direction of plant-soil feedbacks. We tested how community context altered plant-soil feedback between the non-native invasive forb Lespedeza cuneata and nine co-occurring native prairie species. In a series of greenhouse experiments, we grew plants individually and in communities with soils that differed in soil origin (invaded or uninvaded by L. cuneata) and in soils that were live vs. sterilized. In the absence of competition, L. cuneata produced over 60% more biomass in invaded than uninvaded soils, while native species performance was unaffected. The absence of a soil origin effect in sterile soil suggests that the positive plant-soil feedback was caused by differences in the soil biota. However, in the presence of competition, the positive effect of soil origin on L. cuneata growth disappeared. These results suggest that L. cuneata may benefit from positive plant-soil feedback when establishing populations in disturbed landscapes with few interspecific competitors, but does not support the hypothesis that plant-soil feedbacks influence competitive outcomes between L. cuneata and native plant species. These results highlight the importance of considering whether competition influences the outcome of interactions between plants and soils.

  5. Influence of resource availability on Juniperus virginiana expansion in a forest–prairie ecotone

    Science.gov (United States)

    Despite being native to the United States, Juniperus virginiana has rapidly expanded in prairie ecosystems bringing detrimental ecological effects and increased wildfire risk. We transplanted J. virginiana seedlings in three plant communities to investigate mechanisms driving J. ...

  6. Is biomass a reliable estimate of plant fitness?

    Czech Academy of Sciences Publication Activity Database

    Younginger, B.S.; Sirová, Dagmara; Cruzan, M.B.; Ballhorn, D.J.

    2017-01-01

    Roč. 5, č. 2 (2017), č. článku 1600094. ISSN 2168-0450 Institutional support: RVO:60077344 Keywords : biomass * fecundity * fitness * plant performance * selection Subject RIV: EH - Ecology, Behaviour OBOR OECD: Plant sciences, botany Impact factor: 1.492, year: 2016

  7. Sylvatic plague vaccine and management of prairie dogs

    Science.gov (United States)

    Rocke, Tonie E.

    2012-01-01

    Scientists at the USGS National Wildlife Health Center (NWHC), in collaboration with colleagues at the University of Wisconsin (UW), have developed a sylvatic plague vaccine that shows great promise in protecting prairie dogs against plague (Mencher and others, 2004; Rocke and others, 2010). Four species of prairie dogs reside in the United States and Canada, and all are highly susceptible to plague and regularly experience outbreaks with devastating losses. Along with habitat loss and poisoning, plague has contributed to a significant historical decline in prairie dog populations. By some estimates, prairie dogs now occupy only 1 to 2 percent of their former range (Proctor and others, 2006), with prairie dog colonies being now much smaller and fragmented than they were historically, making individual colonies more vulnerable to elimination by plague (Antolin and others, 2002). At least one species, the Utah prairie dog (Cynomys parvidens) is listed by the U.S. Fish and Wildlife Service (FWS) as "threatened." Controlling plague is a vital concern for ongoing management and conservation efforts for prairie dogs. Current efforts to halt the spread of plague in prairie dog colonies typically rely on dusting individual prairie dog burrows with pesticides to kill plague-infected fleas. Although flea-control insecticides, such as deltamethrin, are useful in stopping plague outbreaks in these prairie dog colonies, dusting of burrows is labor intensive and time consuming and may affect other insects and arthropods. As an alternative approach, NWHC and UW scientists developed a sylvatic plague vaccine (SPV) for prairie dogs that can be delivered via oral bait. Laboratory studies have shown that consumption of this vaccine-laden bait by different prairie dog species results in significant protection against plague infection that can last for at least 9 months (Rocke and others, 2010; Rocke, unpublished). Work has now shifted to optimizing baits and distribution methods for

  8. Assessing changes in biomass, productivity, and C and N stores following Juniperus virginiana forest expansion into tallgrass prairie

    Energy Technology Data Exchange (ETDEWEB)

    Norris, M. D.; Blair, J. M.; Johnson, L. C. [Kansas State Univ., Manhattan, KS (United States); McKane, R. B. [Environmental Protection Agency, Western Ecology Division, Corvallis, OR (United States)

    2001-11-01

    The objective of this study was to assess changes in plant productivity and above-ground plant biomass associated with red cedar forest expansion into areas formerly dominated by tallgrass prairie. Regionally appropriate allometric biomass regression equations were developed for the nondestructive estimation of red cedar biomass in eastern Kansas, followed by quantification of the carbon and nitrogen content of selected biomass components. The equations were applied, along with measurements of leaf litter production, to selected local stands of mature closed-canopy red cedars to estimate above-ground biomass, standing stocks of carbon and nitrogen and annual above-ground net primary productivity. Above-ground plant biomass for these red cedar-dominated sites ranged from 114,100 kg/ha for the youngest stand to 210,700 kg/ha for the oldest. Annual above-ground net primary productivity (ANPP) ranged from 7,250 to 10,440 kg/ha/yr for the oldest and younger red cedar stands respectively. The ANPP in comparable tallgrass prairie sites in this region averages 3,690 k/ha/yr, indicating a large increase in carbon uptake and above-ground storage as a result of the change from prairie to red cedar forests. Comparing these results with similar published data from other sites led to the conclusion that the widespread change from tallgrass to red cedars across the woodland-prairie ecotone has important consequences for regional carbon storage.37 refs., 3 tabs., 3 figs.

  9. Black-tailed prairie dog status and future conservation planning

    Science.gov (United States)

    Daniel W. Mulhern; Craig J. Knowles

    1997-01-01

    The black-tailed prairie dog is one of five prairie dog species estimated to have once occupied up to 100 million ha or more in North America. The area occupied by black-tailed prairie dogs has declined to approximately 2% of its former range. Conversion of habitat to other land uses and widespread prairie dog eradication efforts combined with sylvatic plague,

  10. Prairie Chicken

    Data.gov (United States)

    Kansas Data Access and Support Center — An outline of the general range occupied by greayter and lesser prairie chickens. The range was delineated by expert opinion, then varified by local wildlife...

  11. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie.

    Science.gov (United States)

    Manning, George C; Baer, Sara G; Blair, John M

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies (P soil bulk density were also higher in grazed prairie soil over all fire frequencies (P soil N were positively correlated with FQI (P soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  12. Fitness of Bt-resistant cabbage loopers on Bt cotton plants.

    Science.gov (United States)

    Tetreau, Guillaume; Wang, Ran; Wang, Ping

    2017-10-01

    Development of resistance to the insecticidal toxins from Bacillus thuringiensis (Bt) in insects is the major threat to the continued success of transgenic Bt crops in agriculture. The fitness of Bt-resistant insects on Bt and non-Bt plants is a key parameter that determines the development of Bt resistance in insect populations. In this study, a comprehensive analysis of the fitness of Bt-resistant Trichoplusia ni strains on Bt cotton leaves was conducted. The Bt-resistant T. ni strains carried two genetically independent mechanisms of resistance to Bt toxins Cry1Ac and Cry2Ab. The effects of the two resistance mechanisms, individually and in combination, on the fitness of the T. ni strains on conventional non-Bt cotton and on transgenic Bt cotton leaves expressing a single-toxin Cry1Ac (Bollgard I) or two Bt toxins Cry1Ac and Cry2Ab (Bollgard II) were examined. The presence of Bt toxins in plants reduced the fitness of resistant insects, indicated by decreased net reproductive rate (R 0 ) and intrinsic rate of increase (r). The reduction in fitness in resistant T. ni on Bollgard II leaves was greater than that on Bollgard I leaves. A 12.4-day asynchrony of adult emergence between the susceptible T. ni grown on non-Bt cotton leaves and the dual-toxin-resistant T. ni on Bollgard II leaves was observed. Therefore, multitoxin Bt plants not only reduce the probability for T. ni to develop resistance but also strongly reduce the fitness of resistant insects feeding on the plants. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Native Prairie Adaptive Management: a multi region adaptive approach to invasive plant management on Fish and Wildlife Service owned native prairies

    Science.gov (United States)

    Gannon, Jill J.; Shaffer, Terry L.; Moore, Clinton T.

    2013-01-01

    Much of the native prairie managed by the U.S. Fish and Wildlife Service (FWS) in the Prairie Pothole Region (PPR) of the northern Great Plains is extensively invaded by the introduced cool-season grasses, smooth brome (Bromus inermis) and Kentucky bluegrass (Poa pratensis). Management to suppress these invasive plants has had poor to inconsistent success. The central challenge to managers is selecting appropriate management actions in the face of biological and environmental uncertainties. In partnership with the FWS, the U.S. Geological Survey (USGS) developed an adaptive decision support framework to assist managers in selecting management actions under uncertainty and maximizing learning from management outcomes. This joint partnership is known as the Native Prairie Adaptive Management (NPAM) initiative. The NPAM decision framework is built around practical constraints faced by FWS refuge managers and includes identification of the management objective and strategies, analysis of uncertainty and construction of competing decision models, monitoring, and mechanisms for model feedback and decision selection. Nineteen FWS field stations, spanning four states of the PPR, have participated in the initiative. These FWS cooperators share a common management objective, available management strategies, and biological uncertainties. Though the scope is broad, the initiative interfaces with individual land managers who provide site-specific information and receive updated decision guidance that incorporates understanding gained from the collective experience of all cooperators. We describe the technical components of this approach, how the components integrate and inform each other, how data feedback from individual cooperators serves to reduce uncertainty across the whole region, and how a successful adaptive management project is coordinated and maintained on a large scale. During an initial scoping workshop, FWS cooperators developed a consensus management objective

  14. Prairie Monitoring Protocol Development: North Coast and Cascades Network

    Science.gov (United States)

    McCoy, Allen; Dalby, Craig

    2009-01-01

    The purpose of the project was to conduct research that will guide development of a standard approach to monitoring several components of prairies within the North Coast and Cascades Network (NCCN) parks. Prairies are an important element of the natural environment at many parks, including San Juan Island National Historical Park (NHP) and Ebey's Landing National Historical Reserve (NHR). Forests have been encroaching on these prairies for many years, and so monitoring of the prairies is an important resource issue. This project specifically focused on San Juan Island NHP. Prairies at Ebey's Landing NHR will be monitored in the future, but that park was not mapped as part of this prototype project. In the interest of efficiency, the Network decided to investigate two main issues before launching a full protocol development effort: (1) the imagery requirements for monitoring prairie components, and (2) the effectiveness of software to assist in extracting features from the imagery. Several components of prairie monitoring were initially identified as being easily tracked using aerial imagery. These components included prairie/forest edge, broad prairie composition (for example, shrubs, scattered trees), and internal exclusions (for example, shrubs, bare ground). In addition, we believed that it might be possible to distinguish different grasses in the prairies if the imagery were of high enough resolution. Although the areas in question at San Juan Island NHP are small enough that mapping on the ground with GPS (Global Positioning System) would be feasible, other applications could benefit from aerial image acquisition on a regular, recurring basis and thereby make the investment in aerial imagery worthwhile. The additional expense of orthorectifying the imagery also was determined to be cost-effective.

  15. Revegetation of wellsite disturbances on Fescue Prairie in east-central Alberta

    International Nuclear Information System (INIS)

    Woosaree, J.; Puhl, M.

    1999-01-01

    It has been observed that past methods of revegetating disturbed land in Alberta by using commercially-available species of grasses has had limited success in terms of biodiversity, the reason being that commercial forage species are highly competitive, and as such not only prevented the original prairie species from returning to reclaimed sites, but in some cases they have migrated from reclaimed sites and invaded surrounding native prairie. Alfalfa, crested wheatgrass, Kentucky bluegrass and Canada bluegrass are believed to be the most invasive of these commercially available species. Because their use in the past has resulted in landscape fragmentation, they are not recommended for use on wellsites located on native prairie. The limited mix of available native grass cultivars also have had limited success in increasing species diversity. Cross seeding has been suggested as one method for reducing the effect of inter-specific competition on the species emergence. However, the general view of government and industry is that improved methods of revegetation of wellsite disturbances and new guidelines for determining reclamation success are required to establish more ecologically compatible plant communities on well site disturbances 4 refs., 1 tab., 3 figs

  16. Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie.

    Science.gov (United States)

    Schuster, Michael J

    2016-03-01

    Anthropogenic nitrogen deposition and projected increases in rainfall variability (the frequency of drought and heavy rainfall events) are expected to strongly influence ecosystem processes such as litter decomposition. However, how these two global change factors interact to influence litter decomposition is largely unknown. I examined how increased rainfall variability and nitrogen addition affected mass and nitrogen loss of litter from two tallgrass prairie species, Schizachyrium scoparium and Solidago canadensis, and isolated the effects of each during plant growth and during litter decomposition. I increased rainfall variability by consolidating ambient rainfall into larger events and simulated chronic nitrogen deposition using a slow-release urea fertilizer. S. scoparium litter decay was more strongly regulated by the treatments applied during plant growth than by those applied during decomposition. During plant growth, increased rainfall variability resulted in S. scoparium litter that subsequently decomposed more slowly and immobilized more nitrogen than litter grown under ambient conditions, whereas nitrogen addition during plant growth accelerated subsequent mass loss of S. scoparium litter. In contrast, S. canadensis litter mass and N losses were enhanced under either N addition or increased rainfall variability both during plant growth and during decomposition. These results suggest that ongoing changes in rainfall variability and nitrogen availability are accelerating nutrient cycling in tallgrass prairies through their combined effects on litter quality, environmental conditions, and plant community composition.

  17. Continuous Long-Term Modeling of Shallow Groundwater-Surface Water Interaction: Implications for a Wet Prairie Restoration

    Science.gov (United States)

    Wijayarathne, D. B.; Gomezdelcampo, E.

    2017-12-01

    The existence of wet prairies is wholly dependent on the groundwater and surface water interaction. Any process that alters this interaction has a significant impact on the eco-hydrology of wet prairies. The Oak Openings Region (OOR) in Northwest Ohio supports globally rare wet prairie habitats and the precious few remaining have been drained by ditches, altering their natural flow and making them an unusually variable and artificial system. The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model from the US Army Engineer Research and Development Center was used to assess the long-term impacts of land-use change on wet prairie restoration. This study is the first spatially explicit, continuous, long-term modeling approach for understanding the response of the shallow groundwater system of the OOR to human intervention, both positive and negative. The GSSHA model was calibrated using a 2-year weekly time series of water table elevations collected with an array of piezometers in the field. Basic statistical analysis indicates a good fit between observed and simulated water table elevations on a weekly level, though the model was run on an hourly time step and a pixel size of 10 m. Spatially-explicit results show that removal of a local ditch may not drastically change the amount of ponding in the area during spring storms, but large flooding over the entire area would occur if two other ditches are removed. This model is being used by The Nature Conservancy and Toledo Metroparks to develop different scenarios for prairie restoration that minimize its effect on local homeowners.

  18. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie

    Science.gov (United States)

    Manning, George C.; Baer, Sara G.; Blair, John M.

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies ( P total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies ( P total organic C, and total soil N were positively correlated with FQI ( P quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  19. Interspecific comparisons of sylvatic plague in prairie dogs

    Science.gov (United States)

    Cully, J.F.; Williams, E.S.

    2001-01-01

    Of the 3 major factors (habitat loss, poisoning, and disease) that limit abundance of prairie dogs today, sylvatic plague caused by Yersinia pestis is the 1 factor that is beyond human control. Plague epizootics frequently kill >99% of prairie dogs in infected colonies. Although epizootics of sylvatic plague occur throughout most of the range of prairie dogs in the United States and are well described, long-term maintenance of plague in enzootic rodent species is not well documented or understood. We review dynamics of plague in white-tailed (Cynomys leucurus), Gunnison's (C. gunnisoni), and black-tailed (C. ludovicianus) prairie dogs, and their rodent and flea associates. We use epidemiologic concepts to support an enzootic hypothesis in which the disease is maintained in a dynamic state, which requires transmission of Y. pestis to be slower than recruitment of new susceptible mammal hosts. Major effects of plague are to reduce colony size of black-tailed prairie dogs and increase intercolony distances within colony complexes. In the presence of plague, black-tailed prairie dogs will probably survive in complexes of small colonies that are usually >3 km from their nearest neighbor colonies.

  20. A multivariate analysis of biophysical parameters of tallgrass prairie among land management practices and years

    Science.gov (United States)

    Griffith, J.A.; Price, K.P.; Martinko, E.A.

    2001-01-01

    Six treatments of eastern Kansas tallgrass prairie - native prairie, hayed, mowed, grazed, burned and untreated - were studied to examine the biophysical effects of land management practices on grasslands. On each treatment, measurements of plant biomass, leaf area index, plant cover, leaf moisture and soil moisture were collected. In addition, measurements were taken of the Normalized Difference Vegetation Index (NDVI), which is derived from spectral reflectance measurements. Measurements were taken in mid-June, mid-July and late summer of 1990 and 1991. Multivariate analysis of variance was used to determine whether there were differences in the set of variables among treatments and years. Follow-up tests included univariate t-tests to determine which variables were contributing to any significant difference. Results showed a significant difference (p treatments in the composite of parameters during each of the months sampled. In most treatment types, there was a significant difference between years within each month. The univariate tests showed, however, that only some variables, primarily soil moisture, were contributing to this difference. We conclude that biomass and % plant cover show the best potential to serve as long-term indicators of grassland condition as they generally were sensitive to effects of different land management practices but not to yearly change in weather conditions. NDVI was insensitive to precipitation differences between years in July for most treatments, but was not in the native prairie. Choice of sampling time is important for these parameters to serve effectively as indicators.

  1. Model estimation of land-use effects on water levels of northern Prairie wetlands

    Science.gov (United States)

    Voldseth, R.A.; Johnson, W.C.; Gilmanov, T.; Guntenspergen, G.R.; Millett, B.V.

    2007-01-01

    Wetlands of the Prairie Pothole Region exist in a matrix of grassland dominated by intensive pastoral and cultivation agriculture. Recent conservation management has emphasized the conversion of cultivated farmland and degraded pastures to intact grassland to improve upland nesting habitat. The consequences of changes in land-use cover that alter watershed processes have not been evaluated relative to their effect on the water budgets and vegetation dynamics of associated wetlands. We simulated the effect of upland agricultural practices on the water budget and vegetation of a semipermanent prairie wetland by modifying a previously published mathematical model (WETSIM). Watershed cover/land-use practices were categorized as unmanaged grassland (native grass, smooth brome), managed grassland (moderately heavily grazed, prescribed burned), cultivated crops (row crop, small grain), and alfalfa hayland. Model simulations showed that differing rates of evapotranspiration and runoff associated with different upland plant-cover categories in the surrounding catchment produced differences in wetland water budgets and linked ecological dynamics. Wetland water levels were highest and vegetation the most dynamic under the managed-grassland simulations, while water levels were the lowest and vegetation the least dynamic under the unmanaged-grassland simulations. The modeling results suggest that unmanaged grassland, often planted for waterfowl nesting, may produce the least favorable wetland conditions for birds, especially in drier regions of the Prairie Pothole Region. These results stand as hypotheses that urgently need to be verified with empirical data.

  2. Restoration and winter avian use of isolated prairies in eastern Texas

    Science.gov (United States)

    D. Craig Rudolph; Dave E. Plair; Dan Jones; J. Howard Williamson; Clifford E. Shackelford; Richard R. Schaefer; Joshua B. Pierce

    2014-01-01

    Numerous isolated prairies exist, or existed, on the West Gulf Coastal Plain east of the main distribution of the prairie ecosystem. Changing land-use patterns and suppression of wildfire have destroyed almost all of these small prairie occurrences. Intensified restoration and management of degraded prairie habitat on the Sam Houston National Forest in southeastern...

  3. Soil change induced by prairie dogs across three ecological sites

    Science.gov (United States)

    Prairie dogs (Cynomys spp.) can influence vegetation dynamics and landscape hydrology by altering soil properties, yet few studies have evaluated soil responses to prairie dog activities across a range of soil types. This study was conducted to quantify prairie dog effects on soil properties within...

  4. Ecological and Landscape Drivers of Neonicotinoid Insecticide Detections and Concentrations in Canada's Prairie Wetlands.

    Science.gov (United States)

    Main, Anson R; Michel, Nicole L; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2015-07-21

    Neonicotinoids are commonly used seed treatments on Canada's major prairie crops. Transported via surface and subsurface runoff into wetlands, their ultimate aquatic fate remains largely unknown. Biotic and abiotic wetland characteristics likely affect neonicotinoid presence and environmental persistence, but concentrations vary widely between wetlands that appear ecologically (e.g., plant composition) and physically (e.g., depth) similar for reasons that remain unclear. We conducted intensive surveys of 238 wetlands, and documented 59 wetland (e.g., dominant plant species) and landscape (e.g., surrounding crop) characteristics as part of a novel rapid wetland assessment system. We used boosted regression tree (BRT) analysis to predict both probability of neonicotinoid analytical detection and concentration. BRT models effectively predicted the deviance in neonicotinoid detection (62.4%) and concentration (74.7%) from 21 and 23 variables, respectively. Detection was best explained by shallow marsh plant species identity (34.8%) and surrounding crop (13.9%). Neonicotinoid concentration was best explained by shallow marsh plant species identity (14.9%) and wetland depth (14.2%). Our research revealed that plant composition is a key indicator and/or driver of neonicotinoid presence and concentration in Prairie wetlands. We recommend wetland buffers consisting of diverse native vegetation be retained or restored to minimize neonicotinoid transport and retention in wetlands, thereby limiting their potential effects on wetland-dependent organisms.

  5. Habitat edge, land management, and rates of brood parasitism in tallgrass prairie.

    Science.gov (United States)

    Patten, Michael A; Shochat, Eyal; Reinking, Dan L; Wolfe, Donald H; Sherrod, Steve K

    2006-04-01

    , in that edge effects manifest themselves through the presence of trees, a novel habitat component in much of the tallgrass prairie. Grazing is also a key associate of increased parasitism. Areas managed with prescribed fire, used frequently to increase forage for grazing cattle, may experience higher rates of brood parasitism. Regardless, removing trees and shrubs along roadsides and refraining from planting them along new roads may benefit grassland birds.

  6. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack

    NARCIS (Netherlands)

    Huber, M.; Epping, Janina; Schulze Gronover, C.; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Kollner, T.G.; Vogel, H.; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A.M.; Verhoeven, K.J.F.; Preite, V.; Gershenzon, J.; Erb, M.

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under

  7. Predator selection of prairie landscape features and its relation to duck nest success

    Science.gov (United States)

    Phillips, M.L.; Clark, W.R.; Sovada, M.A.; Horn, D.J.; Koford, Rolf R.; Greenwood, R.J.

    2003-01-01

    Mammalian predation is a major cause of mortality for breeding waterfowl in the U.S. Northern Great Plains, and yet we know little about the selection of prairie habitats by predators or how this influences nest success in grassland nesting cover. We selected 2 41.4-km2 study areas in both 1996 and 1997 in North Dakota, USA, with contrasting compositions of perennial grassland. A study area contained either 15-20% perennial grassland (Low Grassland Composition [LGC]) or 45-55% perennial grassland (High Grassland Composition [HGC]). We used radiotelemetry to investigate the selection of 9 landscape cover types by red fox (Vulpes vulpes) and striped skunk (Mephitis mephitis), while simultaneously recording duck nest success within planted cover. The cover types included the edge and core areas of planted cover, wetland edges within planted cover or surrounded by cropland, pastureland, hayland, cropland, roads, and miscellaneous cover types. Striped skunks selected wetland edges surrounded by agriculture over all other cover types in LGC landscapes (P-values for all pairwise comparisons were foraging efficiency in the interior areas of planted cover and contributed to higher nest success in HGC landscapes. Our observations of predator cover-type selection not only support the restoration and management of large blocks of grassland but also indicate the influence of alternative cover types for mitigating nest predation in the Prairie Pothole Region.

  8. Does Plant Origin Influence the Fitness Impact of Flower Damage? A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Catalina González-Browne

    Full Text Available Herbivory has been long considered an important component of plant-animal interactions that influences the success of invasive species in novel habitats. One of the most important hypotheses linking herbivory and invasion processes is the enemy-release hypothesis, in which exotic plants are hypothesized to suffer less herbivory and fitness-costs in their novel ranges as they leave behind their enemies in the original range. Most evidence, however, comes from studies on leaf herbivory, and the importance of flower herbivory for the invasion process remains largely unknown. Here we present the results of a meta-analysis of the impact of flower herbivory on plant reproductive success, using as moderators the type of damage caused by floral herbivores and the residence status of the plant species. We found 51 papers that fulfilled our criteria. We also included 60 records from unpublished data of the laboratory, gathering a total of 143 case studies. The effects of florivory and nectar robbing were both negative on plant fitness. The methodology employed in studies of flower herbivory influenced substantially the outcome of flower damage. Experiments using natural herbivory imposed a higher fitness cost than simulated herbivory, such as clipping and petal removal, indicating that studies using artificial herbivory as surrogates of natural herbivory underestimate the real fitness impact of flower herbivory. Although the fitness cost of floral herbivory was high both in native and exotic plant species, floral herbivores had a three-fold stronger fitness impact on exotic than native plants, contravening a critical element of the enemy-release hypothesis. Our results suggest a critical but largely unrecognized role of floral herbivores in preventing the spread of introduced species into newly colonized areas.

  9. Avoidance behavior by prairie grouse: implications for development of wind energy.

    Science.gov (United States)

    Pruett, Christin L; Patten, Michael A; Wolfe, Donald H

    2009-10-01

    New wind-energy facilities and their associated power transmission lines and roads are being constructed at a rapid pace in the Great Plains of North America. Nevertheless, little is known about the possible negative effects these anthropogenic features might have on prairie birds, one of the most threatened groups in North America. We examined radiotelemetry tracking locations of Lesser Prairie-Chickens (Tympanuchus pallidicinctus) and Greater Prairie-Chickens (T. cupido) in two locations in Oklahoma to determine whether these birds avoided or changed movement behavior near power lines and paved highways. We tracked 463 Lesser Prairie-Chickens (15,071 tracking locations) and 216 Greater Prairie-Chickens (5,750 locations) for 7 and 3 years, respectively. Individuals of both species avoided power lines by at least 100 m and Lesser Prairie-Chickens avoided one of the two highways by 100 m. Prairie-chickens crossed power lines less often than expected if birds moved randomly (p 0.05). In addition, home ranges of Lesser Prairie-Chickens overlapped the power line less often than would be expected by chance placement of home ranges; this result was supported by kernel-density estimation of home ranges. It is likely that new power lines (and other tall structures such as wind turbines) will lead to avoidance of previously suitable habitat and will serve as barriers to movement. These two factors will likely increase fragmentation in an already fragmented landscape if wind energy development continues in prairie habitats.

  10. Physiologic Reference Ranges for Captive Black-Tailed Prairie Dogs (Cynomys ludovicianus)

    Science.gov (United States)

    Keckler, M Shannon; Gallardo-Romero, Nadia F; Langham, Gregory L; Damon, Inger K; Karem, Kevin L; Carroll, Darin S

    2010-01-01

    The black-tailed prairie dog (Cynomys ludovicianus) is a member of the order Rodentia and the family Sciuridae. Ecologically, prairie dogs are a keystone species in prairie ecology. This species is used as an animal model for human gallbladder disease and diseases caused by infection with Clostridium difficile, Yersinia pestis, Francisella tularensis, and most recently, Orthopoxvirus. Despite increasing numbers of prairie dogs used in research and kept as pets, few data are available on their baseline physiology in animal facility housing conditions. To establish baseline physiologic reference ranges, we designed a study using 18 wild-caught black-tailed prairie dogs. Telemetry data were analyzed to establish circadian rhythms for activity and temperature. In addition, hematologic and serum chemistry analyses were performed. Baseline measurements were used to establish the mean for each animal, which then were compiled and analyzed to determine the reference ranges. Here we present physiologic data on serum chemistry and hematology profiles, as well as weight, core body temperature, and daily activity patterns for black-tailed prairie dogs. These results reflect the use of multiple measurements from species- and age-matched prairie dogs and likely will be useful to ecologists, scientists interested in using this animal model in research, and veterinarians caring for pet prairie dogs. PMID:20587156

  11. A multi-year comparison of IPCI scores for prairie pothole wetlands: implications of temporal and spatial variation

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.

    2011-01-01

    In the prairie pothole region of North America, development of Indices of Biotic Integrity (IBIs) to detect anthropogenic impacts on wetlands has been hampered by naturally dynamic inter-annual climate fluctuations. Of multiple efforts to develop IBIs for prairie pothole wetlands, only one, the Index of Plant Community Integrity (IPCI), has reported success. We evaluated the IPCI and its ability to distinguish between natural and anthropogenic variation using plant community data collected from 16 wetlands over a 4-year-period. We found that under constant anthropogenic influence, IPCI metric scores and condition ratings varied annually in response to environmental variation driven primarily by natural climate variation. Artificially forcing wetlands that occur along continuous hydrologic gradients into a limited number of discrete classes (e.g., temporary, seasonal, and semi-permanent) further confounded the utility of IPCI metrics. Because IPCI scores vary significantly due to natural climate dynamics as well as human impacts, methodology must be developed that adequately partitions natural and anthropogenically induced variation along continuous hydrologic gradients. Until such methodology is developed, the use of the IPCI to evaluate prairie pothole wetlands creates potential for misdirected corrective or regulatory actions, impairment of natural wetland functional processes, and erosion of public confidence in the wetland sciences.

  12. Lesser prairie-chicken avoidance of trees in a grassland landscape

    Science.gov (United States)

    Lautenbach, Joseph M.; Plumb, Reid T.; Robinson, Samantha G.; Hagen, Christian A.; Haukos, David A.; Pitman, James C.

    2016-01-01

    Grasslands are among the most imperiled ecosystems in North America. Reasons that grasslands are threatened include conversion to row-crop agriculture, fragmentation, and changes in fire regimes. The reduction of fire processes in remaining prairies has resulted in tree encroachment and establishment in grasslands, further reducing grassland quantity and quality. Grassland birds have been experiencing precipitous population declines in recent decades, commensurate with landscape changes to grasslands. The lesser prairie-chicken (Tympanuchus pallidicinctus Ridgway) is a declining species of prairie grouse of conservation concern. We used second- and third-order habitat selection metrics to test if female lesser prairie-chickens avoid grasslands where trees were present. Our results indicated that female lesser prairie-chickens selected habitats avoiding the nearest trees by 283 m on average, nearly twice as far as would be expected at random. Lesser prairie-chickens were 40 times more likely to use habitats with tree densities of 0 trees ∙ ha− 1 than habitats with 5 trees ∙ ha− 1. Probability of use indicated that lesser prairie-chickens were 19 times more likely to use habitats 1000 m from the nearest tree when compared with using habitats 0 m from the nearest tree. Nest survival was not affected at densities 2 trees ∙ ha− 1. Avoidance of trees could be due to perceived increased predation risk, reduced habitat quality, or a combination of these potentially confounding factors. Preventing further establishment and expansion of trees in landscapes occupied by lesser prairie-chickens could contribute to the continued persistence of the species. Additionally, restoring grasslands through tree removal may facilitate conservation efforts for grassland species such as the lesser prairie-chicken by improving habitat quality and promoting expansion of occupied range.

  13. Sesquiterpene lactone stereochemistry influences herbivore resistance and plant fitness in the field.

    Science.gov (United States)

    Ahern, Jeffrey R; Whitney, Kenneth D

    2014-03-01

    Stereochemical variation is widely known to influence the bioactivity of compounds in the context of pharmacology and pesticide science, but our understanding of its importance in mediating plant-herbivore interactions is limited, particularly in field settings. Similarly, sesquiterpene lactones are a broadly distributed class of putative defensive compounds, but little is known about their activities in the field. Natural variation in sesquiterpene lactones of the common cocklebur, Xanthium strumarium (Asteraceae), was used in conjunction with a series of common garden experiments to examine relationships between stereochemical variation, herbivore damage and plant fitness. The stereochemistry of sesquiterpene lactone ring junctions helped to explain variation in plant herbivore resistance. Plants producing cis-fused sesquiterpene lactones experienced significantly higher damage than plants producing trans-fused sesquiterpene lactones. Experiments manipulating herbivore damage above and below ambient levels found that herbivore damage was negatively correlated with plant fitness. This pattern translated into significant fitness differences between chemotypes under ambient levels of herbivore attack, but not when attack was experimentally reduced via pesticide. To our knowledge, this work represents only the second study to examine sesquiterpene lactones as defensive compounds in the field, the first to document herbivore-mediated natural selection on sesquiterpene lactone variation and the first to investigate the ecological significance of the stereochemistry of the lactone ring junction. The results indicate that subtle differences in stereochemistry may be a major determinant of the protective role of secondary metabolites and thus of plant fitness. As stereochemical variation is widespread in many groups of secondary metabolites, these findings suggest the possibility of dynamic evolutionary histories within the Asteraceae and other plant families showing

  14. Paltry past-precipitation: Predisposing prairie dogs to plague?

    Science.gov (United States)

    Eads, David; Biggins, Dean E.

    2017-01-01

    The plague bacterium Yersinia pestis was introduced to California in 1900 and spread rapidly as a sylvatic disease of mammalian hosts and flea vectors, invading the Great Plains in the United States by the 1930s to 1940s. In grassland ecosystems, plague causes periodic, devastating epizootics in colonies of black-tailed prairie dogs (Cynomys ludovicianus), sciurid rodents that create and maintain subterranean burrows. In doing so, plague inhibits prairie dogs from functioning as keystone species of grassland communities. The rate at which fleas transmit Y. pestis is thought to increase when fleas are abundant. Flea densities can increase during droughts when vegetative production is reduced and herbivorous prairie dogs are malnourished and have weakened defenses against fleas. Epizootics of plague have erupted frequently in prairie dogs during years in which precipitation was plentiful, and the accompanying cool temperatures might have facilitated the rate at which fleas transmitted Y. pestis. Together these observations evoke the hypothesis that transitions from dry-to-wet years provide conditions for plague epizootics in prairie dogs. Using generalized linear models, we analyzed a 24-year dataset on the occurrence of plague epizootics in 42 colonies of prairie dogs from Colorado, USA, 1982–2005. Of the 33 epizootics observed, 52% erupted during years with increased precipitation in summer. For the years with increased summer precipitation, if precipitation in the prior growing season declined from the maximum of 502 mm to the minimum of 200 mm, the prevalence of plague epizootics was predicted to increase 3-fold. Thus, reduced precipitation may have predisposed prairie dogs to plague epizootics when moisture returned. Biologists sometimes assume dry conditions are detrimental for plague. However, 48% of epizootics occurred during years in which precipitation was scarce in summer. In some cases, an increased abundance of fleas during dry years might

  15. Long-term prairie falcon population changes in relation to prey abundance, weather, land uses, and habitat conditions

    Science.gov (United States)

    Steenhof, Karen; Kochert, Michael N.; Carpenter, L.B.; Lehman, Robert N.

    1999-01-01

    We studied a nesting population of Prairie Falcons (Falco mexicanus) in the Snake River Birds of Prey National Conservation Area (NCA) from 1974-1997 to identify factors that influence abundance and reproduction. Our sampling period included two major droughts and associated crashes in Townsend's ground squirrel (Spermophilus townsendii) populations. The number of Prairie Falcon pairs found on long-term survey segments declined significantly from 1976-1997. Early declines were most severe at the eastern end of the NCA, where fires and agriculture have changed native shrubsteppe habitat. More recent declines occurred in the portion of canyon near the Orchard Training Area (OTA), where the Idaho Army National Guard conducts artillery firing and tank maneuvers. Overall Prairie Falcon reproductive rates were tied closely to annual indexes of ground squirrel abundance, but precipitation before and during the breeding season was related inversely to some measures of reproduction. Most reproductive parameters showed no significant trends over time, but during the 1990s, nesting success and productivity were lower in the stretch of canyon near the OTA than in adjacent areas. Extensive shrub loss, by itself, did not explain the pattern of declines in abundance and reproduction that we observed. Recent military training activities likely have interacted with fire and livestock grazing to create less than favorable foraging opportunities for Prairie Falcons in a large part of the NCA. To maintain Prairie Falcon populations in the NCA, managers should suppress wildfires, restore native plant communities, and regulate potentially incompatible land uses.

  16. Recommended methods for range-wide monitoring of prairie dogs in the United States

    Science.gov (United States)

    McDonald, Lyman L.; Stanley, Thomas R.; Otis, David L.; Biggins, Dean E.; Stevens, Patricia D.; Koprowski, John L.; Ballard, Warren

    2011-01-01

    One of the greatest challenges for conserving grassland, prairie scrub, and shrub-steppe ecosystems is maintaining prairie dog populations across the landscape. Of the four species of prairie dogs found in the United States, the Utah prairie dog (Cynomys parvidens) is listed under the Endangered Species Act (ESA) as threatened, the Gunnison's prairie dog (C. gunnisoni) is a candidate for listing in a portion of its range, and the black-tailed prairie dog (C. ludovicianus) and white-tailed prairie dog (C. leucurus) have each been petitioned for listing at least once in recent history. Although the U.S. Fish and Wildlife Service (USFWS) determined listing is not warranted for either the black-tailed prairie dog or white-tailed prairie dog, the petitions and associated reviews demonstrated the need for the States to monitor and manage for self-sustaining populations. In response to these findings, a multi-State conservation effort was initiated for the nonlisted species which included the following proposed actions: (1) completing an assessment of each prairie dog species in each State, (2) developing a range-wide monitoring protocol for each species using a statistically valid sampling procedure that would allow comparable analyses across States, and (3) monitoring prairie dog status every 3-5 years depending upon the species. To date, each State has completed an assessment and currently is monitoring prairie dog status; however, for some species, the inconsistency in survey methodology has made it difficult to compare data year-to-year or State-to-State. At the Prairie Dog Conservation Team meeting held in November 2008, there was discussion regarding the use of different methods to survey prairie dogs. A recommendation from this meeting was to convene a panel in a workshop-type forum and have the panel review the different methods being used and provide recommendations for range-wide monitoring protocols for each species of prairie dog. Consequently, the Western

  17. Evaluation of Turf-Grass and Prairie-Vegetated Rain Gardens in a Clay and Sand Soil, Madison, Wisconsin, Water Years 2004-08

    Science.gov (United States)

    Selbig, William R.; Balster, Nicholas

    2010-01-01

    The U.S. Geological Survey, in cooperation with a consortium of 19 cities, towns, and villages in Dane County, Wis., undertook a study to compare the capability of rain gardens with different vegetative species and soil types to infiltrate stormwater runoff from the roof of an adjacent structure. Two rain gardens, one planted with turf grass and the other with native prairie species, were constructed side-by-side in 2003 at two locations with different dominant soil types, either sand or clay. Each rain garden was sized to a ratio of approximately 5:1 contributing area to receiving area and to a depth of 0.5 foot. Each rain garden, regardless of vegetation or soil type, was capable of storing and infiltrating most of the runoff over the 5-year study period. Both rain gardens in sand, as well as the prairie rain garden in clay, retained and infiltrated 100 percent of all precipitation and snowmelt events during water years 2004-07. The turf rain garden in clay occasionally had runoff exceed its confining boundaries, but was still able to retain 96 percent of all precipitation and snowmelt events during the same time period. Precipitation intensity and number of antecedent dry days were important variables that influenced when the storage capacity of underlying soils would become saturated, which resulted in pooled water in the rain gardens. Because the rooftop area that drained runoff to each rain garden was approximately five times larger than the area of the rain garden itself, evapotranspiration was a small percentage of the annual water budget. For example, during water year 2005, the maximum evapotranspiration of total influent volume ranged from 21 percent for the turf rain garden in clay to 25 percent for the turf rain garden in sand, and the minimum ranged from 12 percent for the prairie rain garden in clay to 19 percent for the prairie rain garden in sand. Little to no runoff left each rain garden as effluent and a small percentage of runoff returned to the

  18. Disease limits populations: plague and black-tailed prairie dogs

    Science.gov (United States)

    Cully, Jack F.; Johnson, T.; Collinge, S.K.; Ray, C.

    2010-01-01

    Plague is an exotic vector-borne disease caused by the bacterium Yersinia pestis that causes mortality rates approaching 100% in black-tailed prairie dogs (Cynomys ludovicianus). We mapped the perimeter of the active portions of black-tailed prairie dog colonies annually between 1999 and 2005 at four prairie dog colony complexes in areas with a history of plague, as well as at two complexes that were located outside the distribution of plague at the time of mapping and had therefore never been affected by the disease. We hypothesized that the presence of plague would significantly reduce overall black-tailed prairie dog colony area, reduce the sizes of colonies on these landscapes, and increase nearest-neighbor distances between colonies. Within the region historically affected by plague, individual colonies were smaller, nearest-neighbor distances were greater, and the proportion of potential habitat occupied by active prairie dog colonies was smaller than at plague-free sites. Populations that endured plague were composed of fewer large colonies (>100 ha) than populations that were historically plague free. We suggest that these differences among sites in colony size and isolation may slow recolonization after extirpation. At the same time, greater intercolony distances may also reduce intercolony transmission of pathogens. Reduced transmission among smaller and more distant colonies may ultimately enhance long-term prairie dog population persistence in areas where plague is present.

  19. Black-tailed prairie dogs, cattle, and the conservation of North America's arid grasslands.

    Directory of Open Access Journals (Sweden)

    Rodrigo Sierra-Corona

    Full Text Available Prairie dogs (Cynomys spp. have been eliminated from over 95% of their historic range in large part from direct eradication campaigns to reduce their purported competition with cattle for forage. Despite the longstanding importance of this issue to grassland management and conservation, the ecological interactions between cattle and prairie dogs have not been well examined. We address this issue through two complementary experiments to determine if cattle and prairie dogs form a mutualistic grazing association similar to that between prairie dogs and American bison. Our experimental results show that cattle preferentially graze along prairie dog colony edges and use their colony centers for resting, resembling the mutualistic relationship prairie dogs have with American bison. Our results also show that prairie dog colonies are not only an important component of the grassland mosaic for maintaining biodiversity, but also provide benefits to cattle, thereby challenging the long-standing view of prairie dogs as an undesirable pest species in grasslands.

  20. Transformation of Chlorpyrifos and Chlorpyrifos-Methyl in Prairie Pothole Porewaters

    Science.gov (United States)

    Anderson, R. M.; Chin, Y. P.

    2014-12-01

    The prairie pothole region (PPR) extends over approximately 700,000 km2 in the Great Plains region in United States and Canada and is a critical breeding ground for migratory waterfowl, as well as an important ecosystem for diverse invertebrates and aquatic plants (van der Valk, 2003). Consisting of up to 12 million permanent and temporary depressional wetlands, the PPR is negatively impacted by non-point source pesticide pollution due to extensive agricultural development in the region. Recent studies have shown that high (mM) levels of sulfate in the pothole lakes are capable of abiotically reducing dinitroaniline and chloroacetanilide pesticides (Zeng, 2011; Zeng, 2012). In this study the transformation of the organophosphorus pesticide chlorpyrifos (CP) and its analog chlorpyrifos-methyl (CPM) was studied using pore waters sampled from two pothole lakes. CP and CPM have been found to react in the laboratory with sulfur species via a SN2 mechanism, with degradation by sulfur compounds occurring faster than hydrolysis at high pH (Wu, 2006). To date the reaction of CP and CPM in natural environments with sulfur species has not been studied. Chlorpyrifos-methyl underwent rapid degradation in the presence of reduced sulfur species in pore water, while chlorpyrifos degradation occurred at significantly slower rates. Both CP and CPM degradation occurred at comparable rates to what has been previously observed in the laboratory (Wu, 2006). References van der Valk, Arnold G., and Roger L. Pederson. "The SWANCC decision and its implications for prairie potholes." Wetlands 23.3 (2003): 590-596. Wu, Tong, Qiu Gan, and Urs Jans. "Nucleophilic Substitution of Phosphorothionate Ester Pesticides with Bisulfide (HS-) and Polysulfides (Sn2-)." Environmental science & technology 40.17 (2006): 5428-5434. Zeng, Teng, et al. "Pesticide processing potential in prairie pothole porewaters."Environmental science & technology 45.16 (2011): 6814-6822. Zeng, Teng, Yu-Ping Chin, and William

  1. Native prairie revegetation on wellsites in southeastern Alberta

    International Nuclear Information System (INIS)

    Soulodre, E.; Naeth, A.; Hammermeister, A.

    1999-01-01

    The Native Prairie Revegetation Research Project (NPRRP) was initiated to address concerns about wellsite revegetation of native grassland. The objective was to determine the impact of alternative seeding treatments on soil and vegetation and to produce a quantifiable description of what constitutes successful revegetation of native prairie sites. Four wellsites, each site comprising four revegetation treatment plots and an undisturbed control plot, have been chosen for field study. The revegetation treatments included natural recovery without seeding; current mix dominated by native wheatgrass cultivars; simple mix seeding containing wheatgrasses plus other native grasses, and diverse mix seeding with a mixture of wheatgrasses, other grasses and thirteen perennial forbs. The plant communities were monitored for biomass production, species richness, species composition and a combination of factors which include density, frequency, canopy cover and basal cover, these collectively representing importance value. Nitrogen availability in the soil was also monitored. Results showed high importance values for wheatgrasses for all seeded treatments. Perennial non-wheatgrasses had low importance values in the seeded treatment but higher importance in the control plot. The dominance of wheatgrasses in the seeded treatments resulted in communities that differed significantly from both the control and natural recovery communities, probably due to suppression of the growth of other grasses

  2. Factors influencing uptake of sylvatic plague vaccine baits by prairie dogs

    Science.gov (United States)

    Abbott, Rachel C.; Russell, Robin E.; Richgels, Katherine; Tripp, Daniel W.; Matchett, Marc R.; Biggins, Dean E.; Rocke, Tonie E.

    2017-01-01

    Sylvatic plague vaccine (SPV) is a virally vectored bait-delivered vaccine expressing Yersinia pestis antigens that can protect prairie dogs (Cynomys spp.) from plague and has potential utility as a management tool. In a large-scale 3-year field trial, SPV-laden baits containing the biomarker rhodamine B (used to determine bait consumption) were distributed annually at a rate of approximately 100–125 baits/hectare along transects at 58 plots encompassing the geographic ranges of four species of prairie dogs. We assessed site- and individual-level factors related to bait uptake in prairie dogs to determine which were associated with bait uptake rates. Overall bait uptake for 7820 prairie dogs sampled was 70% (95% C.I. 69.9–72.0). Factors influencing bait uptake rates by prairie dogs varied by species, however, in general, heavier animals had greater bait uptake rates. Vegetation quality and day of baiting influenced this relationship for black-tailed, Gunnison’s, and Utah prairie dogs. For these species, baiting later in the season, when normalized difference vegetation indices (a measure of green vegetation density) are lower, improves bait uptake by smaller animals. Consideration of these factors can aid in the development of species-specific SPV baiting strategies that maximize bait uptake and subsequent immunization of prairie dogs against plague.

  3. State of the prairies of marine grasses

    International Nuclear Information System (INIS)

    Barrios, Lina M; Gomez, Diana I

    2002-01-01

    At the end of the year 2000, INVEMAR gave beginning to the project Distribution, it structures and classification of the prairies of marine flowering in the Colombian Caribbean, guided to characterize ecological and environmentally the ecosystems in this Colombian sector, particularly as for its distribution, extension, structures, associate biota and intervention degree. The above-mentioned like answer to the lack of information that was presented to the date in almost all the levels (line bases and ecology) for this ecosystem, required to implement monitoring programs and to adopt conservation strategies for the same one. The information that is presented is based primarily on the results obtained during the execution of the project in mention. An diagnostic is done, a characterization of the prairies, epiphytes covering, associate fauna and it structures of the prairies

  4. Approach to ecological assessment of power-plant-intake (316b) related issues: the Prairie Island case

    International Nuclear Information System (INIS)

    Adams, S.M.; Vaughan, D.S.; Hildebrand, S.G.; Kumar, K.D.

    1981-04-01

    Assessment approaches and strategies useful in addressing important issues in section 316(b) of the 1972 Federal Water Pollution Control Act are illustrated in this report through the analysis and evaluation of the Prairie Island Nuclear Station 316(b) data base. The main issues in 316(b) demonstrations, cooling water intake operation and location, involve determining the impacts of entrainment and impingement. Entrainment impacts were addressed by applying the equivalent adult approach and correcting for inherent biases and by determining the through-plant survival of zooplankton. An assessment of impingement impacts was made by comparing for each of various species the number of fish impinged to estimates of population size. Densities of plankton and fish were compared between the intake area and an alternate area to determine if the location of the present intake minimizes impacts. No definitive conclusion relative to the best location of the intake could be made because of high year to year variability in the data and the differential dominance of trophic groups between areas

  5. Small mammals in successional prairie woodlands of the northern Great Plains

    Science.gov (United States)

    Mark A. Rumble; John E. Gobeille

    2001-01-01

    Prairie woodlands comprise about 1 percent of the landscape in the northern Great Plains. However, prairie woodlands provide habitat for far more than 1 percent of the wildlife species that occur in the prairie region. With increasing pressures on natural resources, managers need methods for managing wildlife habitat and biodiversity that are based on ecological...

  6. Brant Prairie : Union Gas customer service centre, Brantford, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Hensel, M.J.; Thompson, J. [The Walter Fedy Partnership, Kitchener, ON (Canada)

    1998-12-31

    The four-acre ecological restoration of tall grass prairie, wetland and Savannah ecosystems within the Union Gas Customer Service Centre in Brantford, Ontario is discussed. The restoration of the Brant Prairie site was instigated three years ago through Union Gas` land stewardship and environmental action initiative which tried to encourage the diversity and dynamics of each ecosystem, while creating a community resource for visitors to learn about natural heritage. The Brantford initiative includes: (1) protecting the sedge wetland which contained regionally rare species, (2) maintaining the dynamic water budget while protecting the sedge wetland from roadway contaminants, (3) creating a tall grass prairie similar in diversity and aesthetics to Brantford`s surviving prairie remnants, (4) creating a wildlife habitat for butterflies, birds and aquatic species, and (5) rediscovering partridge pea by uncovering a historic seed bank.

  7. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Directory of Open Access Journals (Sweden)

    Meret Huber

    2016-01-01

    Full Text Available Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg. decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha, and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  8. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Science.gov (United States)

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A M; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  9. Alien plant invasion in mixed-grass prairie: effects of vegetation type, stochiasticity, and anthropogenic disturbance in two park units

    Science.gov (United States)

    Larson, Diane L.; Anderson, Patrick J.; Newton, Wesley E.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  10. 78 FR 17224 - Environmental Impact Statement; Proposed South Puget Sound Prairie Habitat Conservation Plan...

    Science.gov (United States)

    2013-03-20

    ... sizable portion of South Puget Sound Prairie habitat is located in the urban-rural interface and in the...-FF01E00000] Environmental Impact Statement; Proposed South Puget Sound Prairie Habitat Conservation Plan... permit application would be associated the South Puget Sound Prairie Habitat Conservation Plan (Prairie...

  11. Fitness and its variation among populations of Acacia tortilis subsp ...

    African Journals Online (AJOL)

    Administrator

    2008-07-23

    Jul 23, 2008 ... Habitat destruction and fragmentation has been an increasingly dominant process shaping landscapes over the last 100 - 150 years ..... not only to estimates for other tropical acacias but for plants in ..... pollinated prairie forb.

  12. Public knowledge and perceptions of black-tailed prairie dogs

    Science.gov (United States)

    Lamb, B.L.; Cline, K.

    2003-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) historically occupied an 11-state region of the United States. We surveyed 1,900 residents (response rate 56%) of this region to understand citizen knowledge and perceptions about prairie dogs and their management. Those who have direct experience - e.g., those who live very close to prairie dog colonies or know the location of the nearest colony - have higher levels of knowledge. A significantly higher level of knowledge was documented among those who were politically active when compared with the general public. Those who found environmental issues difficult to understand were associated with lower knowledge. People with direct experience were likely to hold negative views, whereas those holding environmentalist values were likely to express positive attitudes toward the species. Although those with higher education reported more knowledge, there was no link between a person's level of knowledge and perceptions of prairie dog management.

  13. A Prairie Dog Abatement Program in San Juan County, Utah

    OpenAIRE

    Messmer, Terry A.; Keyes, Jim; McDonald, Roy

    1993-01-01

    Four species of prairie dogs are native to the plains and plateaus of the western United States. The most abundant and widely distributed of these is the blacktailed prairie dog, (Cynomys ludovicianus). This species has been a frequent topic of discussion at previous Great Plains Wildlife Damage Control workshops. Black-tailed prairie dog ecology and management was the topic of a panel discussion held at the Fifth Great Plains Wildlife Damage Control Workshop, in Lincoln, Nebraska (Timm and J...

  14. Use of ecological sites in managing wildlife and livestock: An example with prairie dogs

    Science.gov (United States)

    Prairie dogs are a native rodent found in the mixed grass prairie of the northern Great Plains. Prairie dogs can have an adverse impact on the amount of forages available for grazing livestock. In the Native American community, prairie dogs are often valued as a cultural resource and as an importan...

  15. Influence of land use and climate on wetland breeding birds in the Prairie Pothole region of Canada

    Science.gov (United States)

    Forcey, G.M.; Linz, G.M.; Thogmartin, W.E.; Bleier, W.J.

    2007-01-01

    Bird populations are influenced by a variety of factors at both small and large scales that range from the presence of suitable nesting habitat, predators, and food supplies to climate conditions and land-use patterns. We evaluated the influences of regional climate and land-use variables on wetland breeding birds in the Canada section of Bird Conservation Region 11 (CA-BCR11), the Prairie Potholes. We used bird abundance data from the North American Breeding Bird Survey, land-use data from the Prairie Farm Rehabilitation Administration, and weather data from the National Climatic Data and Information Archive to model effects of regional environmental variables on bird abundance. Models were constructed a priori using information from published habitat associations in the literature, and fitting was performed with WinBUGS using Markov chain Monte Carlo techniques. Both land-use and climate variables contributed to predicting bird abundance in CA-BCR11, although climate predictors contributed the most to improving model fit. Examination of regional effects of climate and land use on wetland birds in CA-BCR11 revealed relationships with environmental covariates that are often overlooked by small-scale habitat studies. Results from these studies can be used to improve conservation and management planning for regional populations of avifauna. ?? 2007 NRC.

  16. Diets of swift foxes (Vulpes velox) in continuous and fragmented prairie in Northwestern Texas

    Science.gov (United States)

    Kamler, J.F.; Ballard, W.B.; Wallace, M.C.; Gipson, P.S.

    2007-01-01

    Distribution of the swift fox (Vulpes velox) has declined dramatically since the 1800s, and suggested causes of this decline are habitat fragmentation and transformation due to agricultural expansion. However, impacts of fragmentation and human-altered habitats on swift foxes still are not well understood. To better understand what effects these factors have on diets of swift foxes, scats were collected in northwestern Texas at two study sites, one of continuous native prairie and one representing fragmented native prairie interspersed with agricultural and fields in the Conservation Reserve Program. Leporids, a potential food source, were surveyed seasonally on both sites. Diets of swift foxes differed between sites; insects were consumed more on continuous prairie, whereas mammals, birds, and crops were consumed more on fragmented prairie. Size of populations of leporids were 2-3 times higher on fragmented prairie, and swift foxes responded by consuming more leporids on fragmented (11.1% frequency occurrence) than continuous (3.8%) prairie. Dietary diversity was greater on fragmented prairie during both years of the study. Differences in diets between sites suggested that the swift fox is an adaptable and opportunistic feeder, able to exploit a variety of food resources, probably in relation to availability of food. We suggest that compared to continuous native prairie, fragmented prairie can offer swift foxes a more diverse prey base, at least within the mosaic of native prairie, agricultural, and fields that are in the Conservation Reserve Program.

  17. MAPK-dependent JA and SA signalling in Nicotiana attenuata affects plant growth and fitness during competition with conspecifics

    Science.gov (United States)

    2012-01-01

    Background Induced defense responses to herbivores are generally believed to have evolved as cost-saving strategies that defer the fitness costs of defense metabolism until these defenses are needed. The fitness costs of jasmonate (JA)-mediated defenses have been well documented. Those of the early signaling units mediating induced resistance to herbivores have yet to be examined. Early signaling components that mediate herbivore-induced defense responses in Nicotiana attenuata, have been well characterized and here we examine their growth and fitness costs during competition with conspecifics. Two mitogen-activated protein kinases (MAPKs), salicylic acid (SA)-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK) are rapidly activated after perception of herbivory and both kinases regulate herbivory-induced JA levels and JA-mediated defense metabolite accumulations. Since JA-induced defenses result in resource-based trade-offs that compromise plant productivity, we evaluated if silencing SIPK (irSIPK) and WIPK (irWIPK) benefits the growth and fitness of plants competiting with wild type (WT) plants, as has been shown for plants silenced in JA-signaling by the reduction of Lipoxygenase 3 (LOX3) levels. Results As expected, irWIPK and LOX3-silenced plants out-performed their competing WT plants. Surprisingly, irSIPK plants, which have the largest reductions in JA signaling, did not. Phytohormone profiling of leaves revealed that irSIPK plants accumulated higher levels of SA compared to WT. To test the hypothesis that these high levels of SA, and their presumed associated fitness costs of pathogen associated defenses in irSIPK plants had nullified the JA-deficiency-mediated growth benefits in these plants, we genetically reduced SA levels in irSIPK plants. Reducing SA levels partially recovered the biomass and fitness deficits of irSIPK plants. We also evaluated whether the increased fitness of plants with reduced SA or JA levels resulted from

  18. Evaluation of Seasonality in Shallow Groundwater Dynamics and Storage in an Urban Prairie Nature Preserve Using a High-Frequency Sensing Network

    Science.gov (United States)

    Rivera, V. A.; Hernandez-Gonzalez, L. M.; Phillips, C. B.; Nair, A.; Negri, M. C.; Gnaedinger, K. J.; Miller, W. M.; Packman, A. I.

    2017-12-01

    Changing regional climate applies stresses to urban areas in the form of altered weather patterns, requiring new strategies for stormwater runoff management and flood mitigation. At the same time, the proportion of people residing in urban areas is increasing and cities are turning to greenspace as a tool for managing runoff. Gensburg Markham Prairie (GMP), located in Markham, Illinois south of Chicago, is an urban prairie nature preserve and a U.S. National Natural Landmark. Owned by Northeastern Illinois University and managed by the Nature Conservancy, GMP receives runoff from surrounding urban areas and provides valuable stormwater storage, while also hosting high biodiversity and providing critical habitat for sensitive and endemic. A successful management strategy for GMP should preserve both of these valuable ecosystem services. To understand GMP's role within the urban environment, we installed a suite of instruments in 2016 and 2017 to measure surface and groundwater levels, rainfall, soil moisture, and electrical conductivity throughout the prairie. This monitoring network includes 40 sensors collecting high frequency data (every 30 minutes). We are also collecting monthly distributed surface and groundwater samples to quantify a range of anions and cations that signal potentially detrimental anthropogenic impacts on the prairie. In addition, we are using historical and ongoing plant distribution surveys to explore the interactions between spatial patterns in vegetation and water dynamics in the prairie. The high measurement frequency and large diversity of sensor types supports holistic investigation of the response of the prairie to diverse events, including summer thunderstorms, winter road salt runoff, and spring snowmelt. The 18 months of data collected to date reveals clear patterns in response to weather events with influence from soil type and spatial variables. We are using time-series analysis with MODFLOW modelling to explore surface

  19. Vulnerability of shortgrass prairie bird assemblages to climate change

    Science.gov (United States)

    Skagen, Susan K.; Dreitz, Victoria; Conrey, Reesa Y.; Yackel, Amy; Panjabi, Arvind O.; Knuffman, Lekha

    2016-01-01

    The habitats and resources needed to support grassland birds endemic to North American prairie ecosystems are seriously threatened by impending climate change. To assess the vulnerability of grassland birds to climate change, we consider various components of vulnerability, including sensitivity, exposure, and adaptive capacity (Glick et al. 2011). Sensitivity encompasses the innate characteristics of a species and, in this context, is related to a species’ tolerance to changes in weather patterns. Groundnesting birds, including prairie birds, are particularly responsive to heat waves combined with drought conditions, as revealed by abundance and distribution patterns (Albright et al. 2010). To further assess sensitivity, we estimated reproductive parameters of nearly 3000 breeding attempts of a suite of prairie birds relative to prevailing weather. Fluctuations in weather conditions in eastern Colorado, 1997-2014, influenced breeding performance of a suite of avian species endemic to the shortgrass prairie, many of which have experienced recent population declines. High summer temperatures and intense rain events corresponded with lower nest survival for most species. Although dry conditions favored nest survival of Burrowing Owls and Mountain Plovers (Conrey 2010, Dreitz et al. 2012), drought resulted in smaller clutch sizes and lower nest survival for passerines (Skagen and Yackel Adams 2012, Conrey et al. in review). Declining summer precipitation may reduce the likelihood that some passerine species can maintain stable breeding populations in this region of the shortgrass prairie.

  20. Is physiological performance a good predictor for fitness? Insights from an invasive plant species.

    Directory of Open Access Journals (Sweden)

    Marco A Molina-Montenegro

    Full Text Available Is physiological performance a suitable proxy of fitness in plants? Although, several studies have been conducted to measure some fitness-related traits and physiological performance, direct assessments are seldom found in the literature. Here, we assessed the physiology-fitness relationship using second-generation individuals of the invasive plant species Taraxacum officinale from 17 localities distributed in five continents. Specifically, we tested if i the maximum quantum yield is a good predictor for seed-output ii whether this physiology-fitness relationship can be modified by environmental heterogeneity, and iii if this relationship has an adaptive consequence for T. officinale individuals from different localities. Overall, we found a significant positive relationship between the maximum quantum yield and fitness for all localities evaluated, but this relationship decreased in T. officinale individuals from localities with greater environmental heterogeneity. Finally, we found that those individuals from localities where environmental conditions are highly seasonal performed better under heterogeneous environmental conditions. Contrarily, under homogeneous controlled conditions, those individuals from localities with low environmental seasonality performed much better. In conclusion, our results suggest that the maximum quantum yield seem to be good predictors for plant fitness. We suggest that rapid measurements, such as those obtained from the maximum quantum yield, could provide a straightforward proxy of individual's fitness in changing environments.

  1. A latex metabolite benefits plant fitness under root herbivore attack

    OpenAIRE

    Huber, M.; Epping, J.; Gronover, C.S.; Fricke, J.; Aziz, Z.; Brillatz, T.; Swyers, M.; Köllner, T.G.; Vogel, H.; Hammerbacher, A.; Triebwasser-Freese, D.; Robert, C.A.M.; Verhoeven, K.; Preite, V.; Gershenzon, J.

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major n...

  2. Resistance to plague among black-tailed prairie dog populations

    Science.gov (United States)

    Rocke, Tonie E.; Williamson, Judy; Cobble, Kacy R.; Busch, Joseph D.; Antolin, Michael F.; Wagner, David M.

    2012-01-01

    In some rodent species frequently exposed to plague outbreaks caused by Yersinia pestis, resistance to the disease has evolved as a population trait. As a first step in determining if plague resistance has developed in black-tailed prairie dogs (Cynomys ludovicianus), animals captured from colonies in a plague-free region (South Dakota) and two plague-endemic regions (Colorado and Texas) were challenged with Y. pestis at one of three doses (2.5, 250, or 2500 mouse LD50s). South Dakota prairie dogs were far more susceptible to plague than Colorado and Texas prairie dogs (pdogs were quite similar in their response, with overall survival rates of 50% and 60%, respectively. Prairie dogs from these states were heterogenous in their response, with some animals dying at the lowest dose (37% and 20%, respectively) and some surviving even at the highest dose (29% and 40%, respectively). Microsatellite analysis revealed that all three groups were distinct genetically, but further studies are needed to establish a genetic basis for the observed differences in plague resistance.

  3. Fitness consequences of indirect plant defence in the annual weed, Sinapis arvensis

    NARCIS (Netherlands)

    Gols, R.; Wagenaar, R.; Poelman, E.H.; Kruidhof, H.M.; van Loon, J.J.A.; Harvey, J.A.

    2015-01-01

    Plant traits that enhance the attraction of the natural enemies of their herbivores have been postulated to function as an 'indirect defence'. An important underlying assumption is that this enhanced attraction results in increased plant fitness due to reduced herbivory. This assumption has been

  4. Fitness consequences of indirect plant defence in the annual weed, Sinapis arvensis

    NARCIS (Netherlands)

    Gols, Rieta; Wagenaar, Roel; Poelman, Erik H.; Kruidhof, H. Marjolein; van Loon, Joop J.A.; Harvey, Jeffrey A.

    2015-01-01

    * Plant traits that enhance the attraction of the natural enemies of their herbivores have been postulated to function as an ‘indirect defence’. An important underlying assumption is that this enhanced attraction results in increased plant fitness due to reduced herbivory. This assumption has been

  5. Prairie Change Analysis 1991-2008

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset displays the results of a prairie/savanna change analysis study completed in May 2010. The area reviewed consists of 1,521 sites identified by Minnesota...

  6. Implementation of Controlled Traffic in the Canadian Prairies: Soil and Plant Dynamics under Simulated and Field Conditions

    Science.gov (United States)

    Guenette, Kris; Hernandez-Ramirez, Guillermo

    2017-04-01

    Achieving resiliency in agroecosystems may be accomplished through the incorporation of contemporary management systems and the diversification of crop rotations with pulse crops, such as controlled traffic farming (CTF) and faba beans (Vicia faba L.). As these practices become more common in the Canadian Prairies, it is imperative to have a well-rounded understanding of how faba beans interact with the soil-plant-atmosphere continuum in conditions found in contemporary management systems. Simulated field conditions emulated soil compaction found in both the trafficked and un-trafficked areas of a CTF system, in which the presence of high water availability was shown to offset the negative results of large applications of compactive effort. Furthermore, low water availability exacerbated differences in plant responses between compaction treatments. The simulated treatment of 1.2 gcm-3 coupled with high water content yielded the most optimal results for most measured parameters, with a contrasting detrimental treatment of 1.4 gcm-3 at low water availability. The simulated field conditions were further bridged through an analysis of two commercial sites in Alberta, Canada that compared both trafficked and un-trafficked soil properties. Soil properties such as available nitrogen (AN), pH, soil total nitrogen (STN), soil organic carbon (SOC), bulk density, macroporosity, soil quality S-Index, plant available water capacity (PAWC) and unsaturated hydraulic conductivity (Km) were analysed and compared among trafficked and un-trafficked areas. The measured soil physical and hydraulic properties of bulk density, macroporosity, S-Index, PAWC and Km were shown to be heavily influenced by the CTF traffic regime, while soil nutrient properties of AN, pH, STN SOC were determined to be dependent on both management and landscape features.

  7. Impact of plant cover on fitness and behavioural traits of captive red-eyed tree frogs (Agalychnis callidryas.

    Directory of Open Access Journals (Sweden)

    Christopher J Michaels

    Full Text Available Despite the importance of ex situ conservation programmes as highlighted in the Amphibian Conservation Action Plan, there are few empirical studies that examine the influence of captive conditions on the fitness of amphibians, even for basic components of enclosure design such as cover provision. Maintaining the fitness of captive amphibian populations is essential to the success of ex situ conservation projects. Here we examined the impact of plant cover on measures of fitness and behaviour in captive red-eyed tree frogs (Agalychnis callidryas. We found significant effects of plant provision on body size, growth rates and cutaneous bacterial communities that together demonstrate a compelling fitness benefit from cover provision. We also demonstrate a strong behavioural preference for planted rather than non-planted areas. We also assessed the impact of plant provision on the abiotic environment in the enclosure as a potential driver of these behavioural and fitness effects. Together this data provides valuable information regarding enclosure design for a non-model amphibian species and has implications for amphibian populations maintained in captivity for conservation breeding programmes and research.

  8. Fitness consequences of indirect plant defence in the annual weed, Sinapis arvensis

    NARCIS (Netherlands)

    Gols, R.; Wagenaar, R.; Poelman, E.H.; Kruidhof, M.; Loon, van J.J.A.; Harvey, J.A.

    2015-01-01

    1. Plant traits that enhance the attraction of the natural enemies of their herbivores have been postulated to function as an ‘indirect defence’. An important underlying assumption is that this enhanced attraction results in increased plant fitness due to reduced herbivory. This assumption has been

  9. Impacts of mesquite distribution on seasonal space use of lesser prairie-chickens

    Science.gov (United States)

    Boggie, Matthew A.; Strong, Cody R.; Lusk, Daniel; Carleton, Scott A.; Gould, William R.; Howard, Randy L.; Nichols, Clay T.; Falkowski, Michael J.; Hagen, Christian A.

    2017-01-01

    Loss of native grasslands by anthropogenic disturbances has reduced availability and connectivity of habitat for many grassland species. A primary threat to contiguous grasslands is the encroachment of woody vegetation, which is spurred by disturbances that take on many forms from energy development, fire suppression, and grazing. These disturbances are exacerbated by natural- and human-driven cycles of changes in climate punctuated by drought and desertification conditions. Encroachment of honey mesquite (Prosopis glandulosa) into the prairies of southeastern New Mexico has potentially limited habitat for numerous grassland species, including lesser prairie-chickens (Tympanuchus pallidicinctus). To determine the magnitude of impacts of distribution of mesquite and how lesser prairie-chickens respond to mesquite presence on the landscape in southeastern New Mexico, we evaluated seasonal space use of lesser prairie-chickens in the breeding and nonbreeding seasons. We derived several remotely sensed spatial metrics to characterize the distribution of mesquite. We then used these data to create population-level resource utilization functions and predict intensity of use of lesser prairie-chickens across our study area. Home ranges were smaller in the breeding season compared with the nonbreeding season; however, habitat use was similar across seasons. During both seasons, lesser prairie-chickens used areas closer to leks and largely avoided areas with mesquite. Relative to the breeding season, during the nonbreeding season habitat use suggested a marginal increase in mesquite within areas of low intensity of use, yet aversion to mesquite was strong in areas of medium to high intensity of use. To our knowledge, our study is the first to demonstrate a negative behavioral response by lesser prairie-chickens to woody encroachment in native grasslands. To mitigate one of the possible limiting factors for lesser prairie-chickens, we suggest future conservation

  10. Effects of N on plant response to heat-wave: a field study with prairie vegetation.

    Science.gov (United States)

    Wang, Dan; Heckathorn, Scott A; Mainali, Kumar; Hamilton, E William

    2008-11-01

    More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic ecological impacts. Increasing nitrogen (N) availability and its dynamics will likely impact plant responses to heat stress and carbon (C) sequestration in terrestrial ecosystems. This field study examined the effects of N availability on plant response to heat-stress (HS) treatment in naturally-occurring vegetation. HS (5 d at ambient or 40.5 degrees C) and N treatments (+/-N) were applied to 16 1 m(2) plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass) and Solidago canadensis (warm-season C3 forb). Before, during, and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (P(n)), quantum yield of photosystem II (Phi(PSII)), stomatal conductance (g(s)), and leaf water potential (Psi(w)) of the dominant species and soil respiration (R(soil)) of each plot were measured daily during HS. One week after HS, plots were harvested, and C% and N% were determined for rhizosphere and bulk soil, and above-ground tissue (green/senescent leaf, stem, and flower). Photosynthetic N-use efficiency (PNUE) and N resorption rate (NRR) were calculated. HS decreased P(n), g(s), Psi(w), and PNUE for both species, and +N treatment generally increased these variables (+/-HS), but often slowed their post-HS recovery. Aboveground biomass tended to decrease with HS in both species (and for green leaf mass in S. canadensis), but decrease with +N for A. gerardii and increase with +N for S. canadensis. For A. gerardii, HS tended to decrease N% in green tissues with +N, whereas in S. canadensis, HS increased N% in green leaves. Added N decreased NRR for A. gerardii and HS increased NRR for S. canadensis. These results suggest that heat waves, though transient, could have significant effects on plants, communities, and ecosystem N cycling, and N can influence the effect of heat waves.

  11. Linking phenology and biomass productivity in South Dakota mixed-grass prairie

    Science.gov (United States)

    Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia

    2013-01-01

    Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and

  12. 76 FR 77245 - Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX...

    Science.gov (United States)

    2011-12-12

    ...-FF02R06000] Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX... (EA) for Attwater Prairie Chicken National Wildlife Refuge (Refuge, NWR), located approximately 60... Prairie Chicken NWR draft CCP and EA'' in the subject line of the message. Fax: Attn: Monica Kimbrough...

  13. COMPARISON OF THE POPULATIONS OF COMMON WOOD-NYMPH BUTTERFLIES IN BURNED PRAIRIE, UNBURNED PRAIRIE AND OLD FIELD GRASSES

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, M.; Walton, R.

    2007-01-01

    Common wood-nymph butterfl ies are found throughout the United States and Canada. However, not much is known about how they overwinter or their preferences for particular grasses and habitats. In this study, the impact of prairie management plans on the abundance of the wood-nymph population was assessed, as well as the preference of these butterfl ies for areas with native or non-native grasses. The abundance of common wood-nymph butterfl ies was determined using Pollard walks; more common wood-nymph butterfl ies were found in the European grasses than were found in the burned and unburned prairie sites. The majority of the vegetation at each of the three sites was identifi ed and documented. Using a 1 X 3 ANOVA analysis, it was determined there were signifi cantly more butterfl ies in the European grasses than in the burned and unburned prairie sites (p < 0.0005). There was no signifi cant difference between the burned and unburned treatments of the prairie on the common wood-nymph population. A multiple variable linear regression model described the effect of temperature and wind speed on the number of observed common wood-nymph butterfl ies per hour (p = 0.026). These preliminary results need to be supplemented with future studies. Quadrat analysis of the vegetation from all three sites should be done to search for a correlation between common wood-nymph butterfl y abundance per hour and the specifi c types or quantity of vegetation at each site. The effect of vegetation height and density on the observer’s visual fi eld should also be assessed.

  14. Predation success by a plant-ant indirectly favours the growth and fitness of its host myrmecophyte.

    Directory of Open Access Journals (Sweden)

    Alain Dejean

    Full Text Available Mutualisms, or interactions between species that lead to net fitness benefits for each species involved, are stable and ubiquitous in nature mostly due to "byproduct benefits" stemming from the intrinsic traits of one partner that generate an indirect and positive outcome for the other. Here we verify if myrmecotrophy (where plants obtain nutrients from the refuse of their associated ants can explain the stability of the tripartite association between the myrmecophyte Hirtella physophora, the ant Allomerus decemarticulatus and an Ascomycota fungus. The plant shelters and provides the ants with extrafloral nectar. The ants protect the plant from herbivores and integrate the fungus into the construction of a trap that they use to capture prey; they also provide the fungus and their host plant with nutrients. During a 9-month field study, we over-provisioned experimental ant colonies with insects, enhancing colony fitness (i.e., more winged females were produced. The rate of partial castration of the host plant, previously demonstrated, was not influenced by the experiment. Experimental plants showed higher δ(15N values (confirming myrmecotrophy, plus enhanced vegetative growth (e.g., more leaves produced increased the possibility of lodging ants in leaf pouches and fitness (i.e., more fruits produced and more flowers that matured into fruit. This study highlights the importance of myrmecotrophy on host plant fitness and the stability of ant-myrmecophyte mutualisms.

  15. Impact of Prairie Cover on Hydraulic Conductivity and Storm Water Runoff

    Science.gov (United States)

    Herkes, D. M. G.; Gori, A.; Juan, A.

    2017-12-01

    Houston has long struggled to find effective solutions to its historic flooding problems. Conventional strategies have revolved around constructing hard infrastructure such as levees or regional detention ponds to reduce flood impacts. However, there has been a recent shift to explore the implementation of nature-based solutions in reducing flood impacts. This is due to the price of structural mechanisms, as well as their failure to adequately protect areas from flooding during the latest flood events. One alternative could be utilizing the natural water retention abilities of native Texas prairies. This study examines the effect of Texas prairie areas in increasing soil infiltration capacities, thereby increasing floodwater storage and reducing surface runoff. For this purpose, an infiltration study of 15 sites was conducted on lands owned by the Katy Prairie Conservancy within Cypress Creek watershed. Located in Northwest Houston, it is an area which had been heavily impacted by recent flood events. Each sampling site was selected to represent a particular land cover or vegetation type, ranging from developed open space to native prairies. Field test results are then compared to literature values of soil infiltration capacity in order to determine the infiltration benefit of each vegetation type. Test results show that certain vegetation, especially prairies, significantly increase the infiltration capacity of the underlying soil. For example, the hydraulic conductivity of prairie on sandy loam soil is approximately an order of magnitude higher than that of the soil itself. Finally, a physics-based hydrologic model is utilized to evaluate the flood reduction potential of native Texas prairie. This model represents Cypress Creek watershed in gridded cell format, and allows varying hydraulic and infiltration parameters at each cell. Design storms are run to obtain flow hydrographs for selected watch points in the study area. Two scenarios are simulated and compared

  16. Citizen knowledge and perception of black-tailed prairie dog management: Report to respondents

    Science.gov (United States)

    Sexton, Natalie R.; Brinson, Ayeisha; Ponds, Phadrea D.; Cline, Kurt; Lamb, Berton L.

    2001-01-01

    What do citizens know about black-tailed prairie dogs, and where do they get their information? When management decisions need to be made regarding an animal such as the black-tailed prairie dog, an understanding of the species and its relationship to humans is necessary. This includes knowing the biology of the animal, where it lives, and how it interacts with other animals. But it is equally important for those making decisions about the species to understand citizens’ knowledge and perceptions so managers can effectively communicate with the public and help the public participate in planning and decision making activities. Unfortunately, what is known about public knowledge, perception, and preferences concerning prairie dog management is limited to data from only a few areas. This study attempts to answer the question: What do people in the short-grass prairie region of the United States know and think about black-tailed prairie dogs?

  17. Chicago's Columbus Park: The Prairie Idealized. Teaching with Historic Places.

    Science.gov (United States)

    Bachrach, Julia Sniderman; Nathan, Jo Ann

    Twenty-four year old Jens Jensen came to the United States, settled in Chicago (Illinois), and promptly fell in love with the Midwest's prairie landscape. Although some thought that prairie was boring, monotonous, and ordinary, Jensen saw great beauty in the tree-filled groves, long winding rivers, natural rock formations and waterfalls, and the…

  18. Timing effects of heat-stress on plant physiological characteristics and growth: a field study with prairie vegetation

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2016-11-01

    Full Text Available More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic agricultural, economic and ecological impacts. This field study examined how plant responded to heat-stress (HS treatment at different timing in naturally-occurring vegetation. HS treatment (5 days at 40.5 ºC were applied to 12 1m2 plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass and Solidago canadensis (warm-season C3 forb at different growing stages. During and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (Pn, quantum yield of photosystem II (ФPSII, stomatal conductance (gs, and internal CO2 level (Ci of the dominant species were measured. One week after the last HS treatment, all plots were harvested and the biomass of above-ground tissue and flower weight of the two dominant species was determined. HS decreased physiological performance and growth for both species, with S. canadensis being affected more than A. gerardii, indicated by negative heat stress effect on both physiological and growth responses. There were significant timing effect of heat stress on the two species, with greater reductions in the photosynthesis and productivity occurred when heat stress was applied at later-growing season. The reduction in aboveground productivity in S. canadensis but not A. gerardii could have important implications for plant community structure by increasing the competitive advantage of A. gerardii in this grassland. The present experiment showed that heat stress, though ephemeral, may promote long-term effects on plant community structure, vegetation dynamics, biodiversity, and ecosystem functioning of terrestrial biomes when more frequent and severe heat stress occur in the future.

  19. Prairie dog decline reduces the supply of ecosystem services and leads to desertification of semiarid grasslands.

    Directory of Open Access Journals (Sweden)

    Lourdes Martínez-Estévez

    Full Text Available Anthropogenic impacts on North American grasslands, a highly endangered ecosystem, have led to declines of prairie dogs, a keystone species, over 98% of their historical range. While impacts of this loss on maintenance of grassland biodiversity have been widely documented, much less is known about the consequences on the supply of ecosystem services. Here we assessed the effect of prairie dogs in the supply of five ecosystem services by comparing grasslands currently occupied by prairie dogs, grasslands devoid of prairie dogs, and areas that used to be occupied by prairie dogs that are currently dominated by mesquite scrub. Groundwater recharge, regulation of soil erosion, regulation of soil productive potential, soil carbon storage and forage availability were consistently quantitatively or qualitatively higher in prairie dog grasslands relative to grasslands or mesquite scrub. Our findings indicate a severe loss of ecosystem services associated to the absence of prairie dogs. These findings suggest that contrary to a much publicize perception, especially in the US, prairie dogs are fundamental in maintaining grasslands and their decline have strong negative impacts in human well - being through the loss of ecosystem services.

  20. Assessment of lesser prairie-chicken use of wildlife water guzzlers

    Science.gov (United States)

    Boal, Clint W.; Borsdorf, Philip K.; Gicklhorn, Trevor S.

    2014-01-01

    Man-made water sources have been used as a management tool for wildlife, especially in arid regions, but the value of these water sources for wildlife populations is not well understood. In particular, the value of water as a conservation tool for Lesser Prairie-Chickens (Tympanuchus pallidicinctus) is unknown. However, this is a relevant issue due to a heightened conservation concern for the species and its occupancy of an arid landscape anticipated to experience warmer, drier springs and winters. We assessed if Lesser Prairie-Chickens would use commercially available wildlife water guzzlers and if there was any apparent selection between two design types. We confirmed that Lesser Prairie-Chickens would use bird friendly designed wildlife water guzzlers. Use was primarily during the lekking-nesting period (March–May) and the brood rearing period (June–July) and primarily by males. Although both designs were used, we found significantly greater use of a design that had a wider water trough and ramp built into the tank cover compared to a design that had a longer, narrower trough extending from the tank.Although we were unable to assess the physiological need of surface water by Lesser Prairie-Chickens, we were able to verify that they will use wildlife water guzzlers to access surface water. If it is found surface water is beneficial for Lesser Prairie-Chickens, game bird friendly designed guzzlers may be a useful conservation tool for the species.

  1. Climate change and prairie pothole wetlands: mitigating water-level and hydroperiod effects through upland management

    Science.gov (United States)

    Renton, David A.; Mushet, David M.; DeKeyser, Edward S.

    2015-01-01

    Prairie pothole wetlands offer crucial habitat for North America’s waterfowl populations. The wetlands also support an abundance of other species and provide ecological services valued by society. The hydrology of prairie pothole wetlands is dependent on atmospheric interactions. Therefore, changes to the region’s climate can have profound effects on wetland hydrology. The relevant literature related to climate change and upland management effects on prairie pothole wetland water levels and hydroperiods was reviewed. Climate change is widely expected to affect water levels and hydroperiods of prairie pothole wetlands, as well as the biota and ecological services that the wetlands support. In general, hydrologic model projections that incorporate future climate change scenarios forecast lower water levels in prairie pothole wetlands and longer periods spent in a dry condition, despite potential increases in precipitation. However, the extreme natural variability in climate and hydrology of prairie pothole wetlands necessitates caution when interpreting model results. Recent changes in weather patterns throughout much of the Prairie Pothole Region have been in increased precipitation that results in increased water inputs to wetlands above losses associated with warmer temperatures. However, observed precipitation increases are within the range of natural climate variability and therefore, may not persist. Identifying management techniques with the potential to affect water inputs to prairie pothole wetlands would provide increased options for managers when dealing with the uncertainties associated with a changing climate. Several grassland management techniques (for example, grazing and burning) have the potential to affect water levels and hydroperiods of prairie pothole by affecting infiltration, evapotranspiration, and snow deposition.

  2. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America.

    Science.gov (United States)

    Eads, David A; Biggins, Dean E

    2015-08-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research. © 2015 Society for Conservation Biology.

  3. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.

    2015-01-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research.

  4. Investigating temporal patterns of a native bee community in a remnant North American bunchgrass prairie using blue vane traps.

    Science.gov (United States)

    Kimoto, Chiho; Debano, Sandra J; Thorp, Robbin W; Rao, Sujaya; Stephen, William P

    2012-01-01

    Native bees are important ecologically and economically because their role as pollinators fulfills a vital ecosystem service. Pollinators are declining due to various factors, including habitat degradation and destruction. Grasslands, an important habitat for native bees, are particularly vulnerable. One highly imperiled and understudied grassland type in the United States is the Pacific Northwest Bunchgrass Prairie. No studies have examined native bee communities in this prairie type. To fill this gap, the bee fauna of the Zumwalt Prairie, a large, relatively intact remnant of the Pacific Northwest Bunchgrass Prairie, was examined. Native bees were sampled during the summers of 2007 and 2008 in sixteen 40-ha study pastures on a plateau in northeastern Oregon, using a sampling method not previously used in grassland studies-blue vane traps. This grassland habitat contained an abundant and diverse community of native bees that experienced marked seasonal and inter-annual variation, which appears to be related to weather and plant phenology. Temporal variability evident over the entire study area was also reflected at the individual trap level, indicating a consistent response across the spatial scale of the study. These results demonstrate that temporal variability in bee communities can have important implications for long-term monitoring protocols. In addition, the blue vane trap method appears to be well-suited for studies of native bees in large expanses of grasslands or other open habitats, and may be a useful tool for monitoring native bee communities in these systems.

  5. Drought, Climate Change and the Canadian Prairies

    Science.gov (United States)

    Stewart, R. E.

    2010-03-01

    The occurrence of drought is a ubiquitous feature of the global water cycle. Such an extreme does not necessarily lead to an overall change in the magnitude of the global water cycle but it of course affects the regional cycling of water. Droughts are recurring aspects of weather and climate extremes as are floods and tornadoes, but they differ substantially since they have long durations and lack easily identified onsets and terminations. Drought is a relatively common feature of the North American and Canadian climate system and all regions of the continent are affected from time-to-time. However, it tends to be most common and severe over the central regions of the continent. The Canadian Prairies are therefore prone to drought. Droughts in the Canadian Prairies are distinctive in North America. The large scale atmospheric circulations are influenced by blocking from intense orography to the west and long distances from all warm ocean-derived atmospheric water sources; growing season precipitation is generated by a highly complex combination of frontal and convective systems; seasonality is severe and characterized by a relatively long snow-covered and short growing seasons; local surface runoff is primarily produced by snowmelt water; there is substantial water storage potential in the poorly drained, post-glacial topography; and aquifers are overlain by impermeable glacial till, but there are also important permeable aquifers. One example of Prairie drought is the recent one that began in 1999 with cessation of its atmospheric component in 2004/2005 and many of its hydrological components in 2005. This event produced the worst drought for at least a hundred years in parts of the Canadian Prairies. Even in the dust bowl of the 1930s, no single year over the central Prairies were drier than in 2001. The drought affected agriculture, recreation, tourism, health, hydro-electricity, and forestry in the Prairies. Gross Domestic Product fell some 5.8 billion and

  6. Woody structure facilitates invasion of woody plants by providing perches for birds.

    Science.gov (United States)

    Prather, Chelse M; Huynh, Andrew; Pennings, Steven C

    2017-10-01

    Woody encroachment threatens prairie ecosystems globally, and thus understanding the mechanisms that facilitate woody encroachment is of critical importance. Coastal tallgrass prairies along the Gulf Coast of the US are currently threatened by the spread of several species of woody plants. We studied a coastal tallgrass prairie in Texas, USA, to determine if existing woody structure increased the supply of seeds from woody plants via dispersal by birds. Specifically, we determined if (i) more seedlings of an invasive tree ( Tridacia sebifera ) are present surrounding a native woody plant ( Myrica cerifera ); (ii) wooden perches increase the quantity of seeds dispersed to a grassland; and (iii) perches alter the composition of the seed rain seasonally in prairie habitats with differing amounts of native and invasive woody vegetation, both underneath and away from artificial wooden perches. More T. sebifera seedlings were found within M. cerifera patches than in graminoid-dominated areas. Although perches did not affect the total number of seeds, perches changed the composition of seed rain to be less dominated by grasses and forbs. Specifically, 20-30 times as many seeds of two invasive species of woody plants were found underneath perches independent of background vegetation, especially during months when seed rain was highest. These results suggest that existing woody structure in a grassland can promote further woody encroachment by enhancing seed dispersal by birds. This finding argues for management to reduce woody plant abundance before exotic plants set seeds and argues against the use of artificial perches as a restoration technique in grasslands threatened by woody species.

  7. An adaptive approach to invasive plant management on U.S. Fish and Wildlife Service-owned native prairies in the Prairie Pothole Region: decision support under uncertainity

    Science.gov (United States)

    Gannon, Jill J.; Moore, Clinton T.; Shaffer, Terry L.; Flanders-Wanner, Bridgette

    2011-01-01

    Much of the native prairie managed by the U.S. Fish and Wildlife Service (Service) in the Prairie Pothole Region (PPR) is extensively invaded by the introduced cool-season grasses smooth brome (Bromus inermis) and Kentucky bluegrass (Poa pratensis). The central challenge to managers is selecting appropriate management actions in the face of biological and environmental uncertainties. We describe the technical components of a USGS management project, and explain how the components integrate and inform each other, how data feedback from individual cooperators serves to reduce uncertainty across the whole region, and how a successful adaptive management project is coordinated and maintained on a large scale. In partnership with the Service, the U.S. Geological Survey is developing an adaptive decision support framework to assist managers in selecting management actions under uncertainty and maximizing learning from management outcomes. The framework is built around practical constraints faced by refuge managers and includes identification of the management objective and strategies, analysis of uncertainty and construction of competing decision models, monitoring, and mechanisms for model feedback and decision selection. Nineteen Service field stations, spanning four states of the PPR, are participating in the project. They share a common management objective, available management strategies, and biological uncertainties. While the scope is broad, the project interfaces with individual land managers who provide refuge-specific information and receive updated decision guidance that incorporates understanding gained from the collective experience of all cooperators.

  8. A scaled Lagrangian method for performing a least squares fit of a model to plant data

    International Nuclear Information System (INIS)

    Crisp, K.E.

    1988-01-01

    Due to measurement errors, even a perfect mathematical model will not be able to match all the corresponding plant measurements simultaneously. A further discrepancy may be introduced if an un-modelled change in conditions occurs within the plant which should have required a corresponding change in model parameters - e.g. a gradual deterioration in the performance of some component(s). Taking both these factors into account, what is required is that the overall discrepancy between the model predictions and the plant data is kept to a minimum. This process is known as 'model fitting', A method is presented for minimising any function which consists of the sum of squared terms, subject to any constraints. Its most obvious application is in the process of model fitting, where a weighted sum of squares of the differences between model predictions and plant data is the function to be minimised. When implemented within existing Central Electricity Generating Board computer models, it will perform a least squares fit of a model to plant data within a single job submission. (author)

  9. Butterfly responses to prairie restoration through fire and grazing

    Science.gov (United States)

    Vogel, Jennifer A.; Debinski, Diane M.; Koford, Rolf R.; Miller, J.R.

    2007-01-01

    The development of land for modern agriculture has resulted in losses of native prairie habitat. The small, isolated patches of prairie habitat that remain are threatened by fire suppression, overgrazing, and invasion by non-native species. We evaluated the effects of three restoration practices (grazing only, burning only, and burning and grazing) on the vegetation characteristics and butterfly communities of remnant prairies. Total butterfly abundance was highest on prairies that were managed with burning and grazing and lowest on those that were only burned. Butterfly species richness did not differ among any of the restoration practices. Butterfly species diversity was highest on sites that were only burned. Responses of individual butterfly species to restoration practices were highly variable. In the best predictive regression model, total butterfly abundance was negatively associated with the percent cover of bare ground and positively associated with the percent cover of forbs. Canonical correspondence analysis revealed that sites with burned only and grazed only practices could be separated based on their butterfly community composition. Butterfly communities in each of the three restoration practices are equally species rich but different practices yield compositionally different butterfly communities. Because of this variation in butterfly species responses to different restoration practices, there is no single practice that will benefit all species or even all species within habitat-specialist or habitat-generalist habitat guilds. ?? 2007 Elsevier Ltd. All rights reserved.

  10. Dimensional control of buttwelding pipe fitting for nuclear power plant Class 1 piping systems

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Moore, S.E.; Robinson, J.N.

    1976-11-01

    Dimensional controls of wrought steel buttwelding fittings are examined from the standpoint of design adequacy. A fairly large number of fittings were purchased from different manufacturers. The dimensions of each fitting were measured and correlated along with additional information obtained from the manufacturers in an effort to establish ''standard'' shapes. This information and a critical examination of the present ANSI standards is used to develop a ''Supplementary Standard.'' The Supplementary Standard is intended to provide improved dimensional control and more complete design information for fittings used in Class 1 nuclear power plant piping systems

  11. Conservation Reserve Program mitigates grassland loss in the lesser prairie-chicken range of Kansas

    Science.gov (United States)

    Haukos, David A.; Spencer, David; Hagen, Christian A.; Daniels, Melinda D.; Goodin, Doug

    2017-01-01

    Since the beginning of the 20th century, the overall occupied range of the lesser prairie-chicken (Tympanuchus pallidicinctus) has declined by 84% commensurate with population trends. Much of this decline has been attributed to the loss and fragmentation of native grasslands throughout the lesser prairie-chicken range. However, quantification of changes in land cover in the distribution of the lesser prairie-chicken is lacking. Our objectives were to (1) document changes in the areal extent and connectivity of grasslands in the identified lesser prairie-chicken range in Kansas, USA, (>60% of extant lesser prairie-chicken population) from the 1950s to 2013 using remotely sensed data and (2) assess the potential of the Conservation Reserve Program (U.S. Department of Agriculture Program converting cropland to permanent cover; CRP) to mitigate grassland loss. Digital land cover maps were generated on a decadal time step through spectral classification of LANDSAT images and visual analysis of aerial photographs (1950s and 1960s). Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. With the exception of a single regional portion of the range, nearly all of the grassland converted to cropland in the lesser prairie-chicken range of Kansas occurred prior to the 1950s. Prior to the implementation of CRP, the amount of grassland decreased 3.6% between the 1950s and 1985 from 18,455 km2 to 17,788 km2. Since 1985, the overall amount of grassland in the lesser prairie-chicken range has increased 11.9% to 19,898 km2 due to implementation of CRP, although the area of grassland decreased between 1994 and 2013 as CRP contracts were not renewed by landowners. Since 1986 grassland in Kansas became more connected and less fragmented in response to the CRP. While the CRP has been successful in

  12. Conservation Reserve Program mitigates grassland loss in the lesser prairie-chicken range of Kansas

    Directory of Open Access Journals (Sweden)

    David Spencer

    2017-01-01

    Full Text Available Since the beginning of the 20th century, the overall occupied range of the lesser prairie-chicken (Tympanuchus pallidicinctus has declined by 84% commensurate with population trends. Much of this decline has been attributed to the loss and fragmentation of native grasslands throughout the lesser prairie-chicken range. However, quantification of changes in land cover in the distribution of the lesser prairie-chicken is lacking. Our objectives were to (1 document changes in the areal extent and connectivity of grasslands in the identified lesser prairie-chicken range in Kansas, USA, (>60% of extant lesser prairie-chicken population from the 1950s to 2013 using remotely sensed data and (2 assess the potential of the Conservation Reserve Program (U.S. Department of Agriculture Program converting cropland to permanent cover; CRP to mitigate grassland loss. Digital land cover maps were generated on a decadal time step through spectral classification of LANDSAT images and visual analysis of aerial photographs (1950s and 1960s. Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. With the exception of a single regional portion of the range, nearly all of the grassland converted to cropland in the lesser prairie-chicken range of Kansas occurred prior to the 1950s. Prior to the implementation of CRP, the amount of grassland decreased 3.6% between the 1950s and 1985 from 18,455 km2 to 17,788 km2. Since 1985, the overall amount of grassland in the lesser prairie-chicken range has increased 11.9% to 19,898 km2 due to implementation of CRP, although the area of grassland decreased between 1994 and 2013 as CRP contracts were not renewed by landowners. Since 1986 grassland in Kansas became more connected and less fragmented in response to the CRP. While the CRP has been successful

  13. Field-level financial assessment of contour prairie strips for enhancement of environmental quality.

    Science.gov (United States)

    Tyndall, John C; Schulte, Lisa A; Liebman, Matthew; Helmers, Matthew

    2013-09-01

    The impacts of strategically located contour prairie strips on sediment and nutrient runoff export from watersheds maintained under an annual row crop production system have been studied at a long-term research site in central Iowa. Data from 2007 to 2011 indicate that the contour prairie strips utilized within row crop-dominated landscapes have greater than proportionate and positive effects on the functioning of biophysical systems. Crop producers and land management agencies require comprehensive information about the Best Management Practices with regard to performance efficacy, operational/management parameters, and the full range of financial parameters. Here, a farm-level financial model assesses the establishment, management, and opportunity costs of contour prairie strips within cropped fields. Annualized, depending on variable opportunity costs the 15-year present value cost of utilizing contour prairie strips ranges from $590 to $865 ha(-1) year(-1) ($240-$350 ac(-1) year(-1)). Expressed in the context of "treatment area" (e.g., in this study 1 ha of prairie treats 10 ha of crops), the costs of contour prairie strips can also be viewed as $59 to about $87 per treated hectare ($24-$35 ac(-1)). If prairie strips were under a 15-year CRP contract, total per acre cost to farmers would be reduced by over 85 %. Based on sediment, phosphorus, and nitrogen export data from the related field studies and across low, medium, and high land rent scenarios, a megagram (Mg) of soil retained within the watershed costs between $7.79 and $11.46 mg(-1), phosphorus retained costs between $6.97 and $10.25 kg(-1), and nitrogen retained costs between $1.59 and $2.34 kg(-1). Based on overall project results, contour prairie strips may well become one of the key conservation practices used to sustain US Corn Belt agriculture in the decades to come.

  14. Investigation of the Transcriptome of Prairie Cord Grass, a New Cellulosic Biomass Crop

    Directory of Open Access Journals (Sweden)

    Kristene Gedye

    2010-09-01

    Full Text Available Prairie cordgrass ( Bosc ex Link is being developed as a cellulosic biomass crop. Development of this species will require numerous steps, including breeding, agronomy, and characterization of the species genome. The research in this paper describes the first investigation of the transcriptome of prairie cordgrass via Next Generation Sequencing Technology, 454 GS FLX. A total of 556,198 expressed sequence tags (ESTs were produced from four prairie cordgrass tissues: roots, rhizomes, immature inflorescence, and hooks. These ESTs were assembled into 26,302 contigs and 71,103 singletons. From these data were identified, EST–SSR (simple sequence repeat regions and cell wall biosynthetic pathway genes suitable for the development of molecular markers which can aid the breeding process of prairie cordgrass by means of marker assisted selection.

  15. Investigation of the Transcriptome of Prairie Cord Grass, a New Cellulosic Biomass Crop

    KAUST Repository

    Gedye, Kristene

    2010-09-15

    Prairie cordgrass (Spartina pectinata Bosc ex Link) is being developed as a cellulosic biomass crop. Development of this species will require numerous steps, including breeding, agronomy, and characterization of the species genome. The research in this paper describes the first investigation of the transcriptome of prairie cordgrass via Next Generation Sequencing Technology, 454 GS FLX. A total of 556,198 expressed sequence tags (ESTs) were produced from four prairie cordgrass tissues: roots, rhizomes, immature inflorescence, and hooks. These ESTs were assembled into 26,302 contigs and 71,103 singletons. From these data were identified, EST-SSR (simple sequence repeat) regions and cell wall biosynthetic pathway genes suitable for the development of molecular markers which can aid the breeding process of prairie cordgrass by means of marker assisted selection.

  16. Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes

    Science.gov (United States)

    Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.

    2016-01-01

    Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.

  17. Ecology of fire in shortgrass prairie of the southern Great Plains

    Science.gov (United States)

    Paulette L. Ford; Guy R. McPherson

    1996-01-01

    The ecology of fire in shortgrass prairie of the southern Great Plains includes a complex interaction between the shortgrass prairie ecosystem and its inhabitants, all inextricably linked to land-use patterns. The history of the relationship between man and fire has been filled with ambivalence and mistrust, along with an appreciation of the power of fire as a...

  18. Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees.

    Science.gov (United States)

    Schenk, Mariela; Krauss, Jochen; Holzschuh, Andrea

    2018-01-01

    Global warming can disrupt mutualistic interactions between solitary bees and plants when increasing temperature differentially changes the timing of interacting partners. One possible scenario is for insect phenology to advance more rapidly than plant phenology. However, empirical evidence for fitness consequences due to temporal mismatches is lacking for pollinators and it remains unknown if bees have developed strategies to mitigate fitness losses following temporal mismatches. We tested the effect of temporal mismatches on the fitness of three spring-emerging solitary bee species, including one pollen specialist. Using flight cages, we simulated (i) a perfect synchronization (from a bee perspective): bees and flowers occur simultaneously, (ii) a mismatch of 3 days and (iii) a mismatch of 6 days, with bees occurring earlier than flowers in the latter two cases. A mismatch of 6 days caused severe fitness losses in all three bee species, as few bees survived without flowers. Females showed strongly reduced activity and reproductive output compared to synchronized bees. Fitness consequences of a 3-day mismatch were species-specific. Both the early-spring species Osmia cornuta and the mid-spring species Osmia bicornis produced the same number of brood cells after a mismatch of 3 days as under perfect synchronization. However, O. cornuta decreased the number of female offspring, whereas O. bicornis spread the brood cells over fewer nests, which may increase offspring mortality, e.g. due to parasitoids. The late-spring specialist Osmia brevicornis produced fewer brood cells even after a mismatch of 3 days. Additionally, our results suggest that fitness losses after temporal mismatches are higher during warm than cold springs, as the naturally occurring temperature variability revealed that warm temperatures during starvation decreased the survival rate of O. bicornis. We conclude that short temporal mismatches can cause clear fitness losses in solitary bees

  19. Interactions among American badgers, black-footed ferrets, and prairie dogs in the grasslands of western North America

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Grassel, Shaun M.; Livieri, Travis M.; Licht, Daniel S.; Proulx, Gilbert; Do Linh San, Emmanuel

    2016-01-01

    American badgers (Taxidea taxus) and black-footed ferrets (Mustela nigripes) sometimes occur sympatrically within colonies of prairie dogs (Cynomys spp.) in the grasslands of western North America. From the perspective of a simplified food web, badgers are consumers of ferrets and, to a greater extent, prairie dogs; ferrets are specialized consumers of prairie dogs; and prairie dogs are consumers of vegetation. We review information on the predatory behaviours of badgers, which collectively demonstrate that badgers exhibit complex hunting strategies to improve their probability of capturing prairie dogs and, perhaps, ferrets. We also review studies of interactions between badgers and ferrets, which suggest that there is selective pressure on badgers to compete with ferrets, and pressure on ferrets to compete with and avoid badgers. We then speculate as to how prairie dogs might shape interactions between badgers and ferrets, and how badgers could spread the plague bacterium (Yersinia pestis) among prairie dog colonies. Lastly, we provide recommendations for research on this tractable system of semi-fossorial predators and prey.

  20. Validating DNA Polymorphisms Using KASP Assay in Prairie Cordgrass (Spartina pectinata Link Populations in the U.S.

    Directory of Open Access Journals (Sweden)

    Hannah eGraves

    2016-01-01

    Full Text Available Single nucleotide polymorphisms (SNPs are one of the most abundant DNA variants found in plant genomes and are highly efficient when comparing genome and transcriptome sequences. SNP marker analysis can be used to analyze genetic diversity, create genetic maps, and utilize marker-assisted selection breeding in many crop species. In order to utilize these technologies, one must first identify and validate putative SNPs. In this study, 121 putative SNPs, developed from a nuclear transcriptome of prairie cordgrass (Spartina pectinata Link, were analyzed using KASP technology in order to validate the SNPs. Fifty-nine SNPs were validated using a core collection of 38 natural populations and a phylogenetic tree was created with one main clade. Samples from the same population tended to cluster in the same location on the tree. Polymorphisms were identified within 52.6% of the populations, split evenly between the tetraploid and octoploid cytotypes. Twelve selected SNP markers were used to assess the fidelity of tetraploid crosses of prairie cordgrass and their resulting F2 population. These markers were able to distinguish true crosses and selfs. This study provides insight into the genomic structure of prairie cordgrass, but further analysis must be done on other cytotypes to fully understand the structure of this species. This study validates putative SNPs and confirms the potential usefulness of SNP marker technology in future breeding programs of this species.

  1. Investigation of the Transcriptome of Prairie Cord Grass, a New Cellulosic Biomass Crop

    KAUST Repository

    Gedye, Kristene; Gonzalez-Hernandez, Jose; Ban, Yuguang; Ge, Xijin; Thimmapuram, Jyothi; Sun, Fengjie; Wright, Chris; Ali, Shahjahan; Boe, Arvid; Owens, Vance

    2010-01-01

    in this paper describes the first investigation of the transcriptome of prairie cordgrass via Next Generation Sequencing Technology, 454 GS FLX. A total of 556,198 expressed sequence tags (ESTs) were produced from four prairie cordgrass tissues: roots, rhizomes

  2. Resting state brain networks in the prairie vole.

    Science.gov (United States)

    Ortiz, Juan J; Portillo, Wendy; Paredes, Raul G; Young, Larry J; Alcauter, Sarael

    2018-01-19

    Resting state functional magnetic resonance imaging (rsfMRI) has shown the hierarchical organization of the human brain into large-scale complex networks, referred as resting state networks. This technique has turned into a promising translational research tool after the finding of similar resting state networks in non-human primates, rodents and other animal models of great value for neuroscience. Here, we demonstrate and characterize the presence of resting states networks in Microtus ochrogaster, the prairie vole, an extraordinary animal model to study complex human-like social behavior, with potential implications for the research of normal social development, addiction and neuropsychiatric disorders. Independent component analysis of rsfMRI data from isoflurane-anestethized prairie voles resulted in cortical and subcortical networks, including primary motor and sensory networks, but also included putative salience and default mode networks. We further discuss how future research could help to close the gap between the properties of the large scale functional organization and the underlying neurobiology of several aspects of social cognition. These results contribute to the evidence of preserved resting state brain networks across species and provide the foundations to explore the use of rsfMRI in the prairie vole for basic and translational research.

  3. Demography of black-tailed prairie dog populations reoccupying sites treated with rodenticide

    Science.gov (United States)

    R. P. Cincotta; Daniel W. Uresk; R. M. Hansen

    1987-01-01

    A rodenticide, zinc phosphide, was applied to remove black-tailed prairie dogs (Cynomys ludovicianus) from 6 haofa prairie dog colony in southwestern South Dakota. Another adjacent 6 ha was left untreated. The removal experiment was repeated two consecutive years. Contingency table analysis showed that the resultant population was not homogeneous;...

  4. A proposal to conserve black-footed ferrets and the prairie dog ecosystem

    Science.gov (United States)

    Miller, Brian; Wemmer, Christen; Biggins, Dean; Reading, Richard

    1990-11-01

    Prairie dogs ( Cynomys spp.) have been poisoned throughout this century because of grazing competition with livestock. Recent evidence showed these early claims were exaggerated, but animal control was already entrenched in government policy. As a result, ongoing government subsidized poisoning has reduced prairie dogs to about 2% of their former distribution. The reduction of prairie dogs diminished species diversity in the arid grasslands of North America, including the potential extinction of the black-footed ferret ( Mustela nigripes). Cost-benefit analysis revealed that poisoning costs more than any grazing benefits accrued. This analysis did not consider the long-term costs of reversing ecosystem degradation, the intangible value of biological diversity as a public benefit, or the depletion of biotic resources as a loss of actual or potential wealth. The government presently finances the poisoning policy and the preservation of endangered species like the black-footed ferret, two apparently conflicting programs. We, therefore, propose an integrated management plan that considers both interests. We propose that federal monies allocated to the poisoning program be converted into a rebate for ranchers who manage livestock while preserving the prairie dog community. This would redirect funds and personnel already allocated to prairie dog eradication to an incentive for ranchers who manage for livestock and wildlife. Livestock interests and grassland biotic diversity would both benefit.

  5. Predicting Greater Prairie-Chicken Lek Site Suitability to Inform Conservation Actions.

    Directory of Open Access Journals (Sweden)

    Torre J Hovick

    Full Text Available The demands of a growing human population dictates that expansion of energy infrastructure, roads, and other development frequently takes place in native rangelands. Particularly, transmission lines and roads commonly divide rural landscapes and increase fragmentation. This has direct and indirect consequences on native wildlife that can be mitigated through thoughtful planning and proactive approaches to identifying areas of high conservation priority. We used nine years (2003-2011 of Greater Prairie-Chicken (Tympanuchus cupido lek locations totaling 870 unique leks sites in Kansas and seven geographic information system (GIS layers describing land cover, topography, and anthropogenic structures to model habitat suitability across the state. The models obtained had low omission rates (0.81, indicating high model performance and reliability of predicted habitat suitability for Greater Prairie-Chickens. We found that elevation was the most influential in predicting lek locations, contributing three times more predictive power than any other variable. However, models were improved by the addition of land cover and anthropogenic features (transmission lines, roads, and oil and gas structures. Overall, our analysis provides a hierarchal understanding of Greater Prairie-Chicken habitat suitability that is broadly based on geomorphological features followed by land cover suitability. We found that when land features and vegetation cover are suitable for Greater Prairie-Chickens, fragmentation by anthropogenic sources such as roadways and transmission lines are a concern. Therefore, it is our recommendation that future human development in Kansas avoid areas that our models identified as highly suitable for Greater Prairie-Chickens and focus development on land cover types that are of lower conservation concern.

  6. Lesser prairie-chicken fence collision risk across its northern distribution

    Science.gov (United States)

    Robinson, Samantha G.; Haukos, David A.; Plumb, Reid T.; Hagen, Christian A.; Pitman, James C.; Lautenbach, Joseph M.; Sullins, Daniel S.; Kraft, John D.; Lautenbach, Jonathan D.

    2016-01-01

    Livestock fences have been hypothesized to significantly contribute to mortality of lesser prairie-chickens (Tympanuchus pallidicinctus); however, quantification of mortality due to fence collisions is lacking across their current distribution. Variation in fence density, landscape composition and configuration, and land use could influence collision risk of lesser prairie-chickens. We monitored fences within 3 km of known leks during spring and fall and surveyed for signs of collision occurrence within 20 m of fences in 6 study sites in Kansas and Colorado, USA during 2013 and 2014. We assessed mortality locations of radio-tagged birds (n = 286) for evidence of fence collisions and compared distance to fence relative to random points. Additionally, we quantified locations, propensity, and frequency of fences crossed by lesser prairie-chickens. We tested for landscape and vegetative characteristics that influenced fence-cross propensity and frequency of global positioning system (GPS)-marked birds. A minimum of 12,706 fence crossings occurred by GPS-marked lesser prairie-chickens. We found 3 carcasses and 12 additional possible instances of evidence of collision during >2,800 km of surveyed fences. We found evidence for a single suspected collision based on carcass evidence for 148 mortalities of transmittered birds. Mortality locations of transmittered birds were located at distances from fences 15% farther than expected at random. Our data suggested minimal biological significance and indicated that propensity and frequency of fence crossings were random processes. Lesser prairie-chickens do not appear to be experiencing significant mortality risk due to fence collisions in Kansas and Colorado. Focusing resources on other limiting factors (i.e., habitat quality) has greater potential for impact on population demography than fence marking and removal.

  7. Mountain plover nest survival in relation to prairie dog and fire dynamics in shortgrass steppe

    Science.gov (United States)

    Augustine, David J.; Skagen, Susan K.

    2014-01-01

    Disturbed xeric grasslands with short, sparse vegetation provide breeding habitat for mountain plovers (Charadrius montanus) across the western Great Plains. Maintaining local disturbance regimes through prairie dog conservation and prescribed fire may contribute to the sustainability of recently declining mountain plover populations, but these management approaches can be controversial. We estimated habitat-specific mountain plover densities and nest survival rates on black-tailed prairie dog (Cynomys ludovicianus) colonies and burns in the shortgrass steppe of northeastern Colorado. Mountain plover densities were similar on prairie dog colonies (5.9 birds/km2; 95% CI = 4.7–7.4) and sites burned during the preceding dormant season (6.7 birds/km2; 95% CI = 4.6–9.6), whereas the 29-day nest survival rate was greater on prairie dog colonies (0.81 in 2011 and 0.39 in 2012) compared to the burned sites (0.64 in 2011 and 0.17 in 2012). Reduced nest survival in 2012 compared to 2011 was associated with higher maximum daily temperatures in 2012, consistent with a previous weather-based model of mountain plover nest survival in the southern Great Plains. Measurements of mountain plover density relative to time since disturbance showed that removal of prairie dog disturbance by sylvatic plague reduced mountain plover density by 70% relative to active prairie dog colonies after 1 year. Plover densities declined at a similar rate (by 78%) at burned sites between the first and second post-burn growing season. Results indicate that black-tailed prairie dog colonies are a particularly important nesting habitat for mountain plovers in the southern Great Plains. In addition, findings suggest that prescribed burning can be a valuable means to create nesting habitat in landscapes where other types of disturbances (such as prairie dog colonies) are limited in distribution and size. 

  8. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA.

    Science.gov (United States)

    Tripp, Daniel W; Rocke, Tonie E; Streich, Sean P; Abbott, Rachel C; Osorio, Jorge E; Miller, Michael W

    2015-04-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  9. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA

    Science.gov (United States)

    Tripp, Daniel W.; Rocke, Tonie E.; Streich, Sean P.; Abbott, Rachel C.; Osorio, Jorge E.; Miller, Michael W.

    2015-01-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  10. Exotic plant infestation is associated with decreased modularity and increased numbers of connectors in mixed-grass prairie pollination networks

    Science.gov (United States)

    Larson, Diane L.; Rabie, Paul A.; Droege, Sam; Larson, Jennifer L.; Haar, Milton

    2016-01-01

    The majority of pollinating insects are generalists whose lifetimes overlap flowering periods of many potentially suitable plant species. Such generality is instrumental in allowing exotic plant species to invade pollination networks. The particulars of how existing networks change in response to an invasive plant over the course of its phenology are not well characterized, but may shed light on the probability of long-term effects on plant-pollinator interactions and the stability of network structure. Here we describe changes in network topology and modular structure of infested and non-infested networks during the flowering season of the generalist non-native flowering plant, Cirsium arvense in mixed-grass prairie at Badlands National Park, South Dakota, USA. Objectives were to compare network-level effects of infestation as they propagate over the season in infested and non-infested (with respect to C. arvense) networks. We characterized plant-pollinator networks on 5 non-infested and 7 infested 1-ha plots during 4 sample periods that collectively covered the length of C. arvense flowering period. Two other abundantly-flowering invasive plants were present during this time: Melilotus officinalis had highly variable floral abundance in both C. arvense-infested and non-infested plots andConvolvulus arvensis, which occurred almost exclusively in infested plots and peaked early in the season. Modularity, including roles of individual species, and network topology were assessed for each sample period as well as in pooled infested and non-infested networks. Differences in modularity and network metrics between infested and non-infested networks were limited to the third and fourth sample periods, during flower senescence of C. arvenseand the other invasive species; generality of pollinators rose concurrently, suggesting rewiring of the network and a lag effect of earlier floral abundance. Modularity was lower and number of connectors higher in infested

  11. Sparrow nest survival in relation to prescribed fire and woody plant invasion in a northern mixed-grass prairie

    Science.gov (United States)

    Murphy, Robert K.; Shaffer, Terry L.; Grant, Todd A.; Derrig, James L.; Rubin, Cory S.; Kerns, Courtney K.

    2017-01-01

    Prescribed fire is used to reverse invasion by woody vegetation on grasslands, but managers often are uncertain whether influences of shrub and tree reduction outweigh potential effects of fire on nest survival of grassland birds. During the 2001–2003 breeding seasons, we examined relationships of prescribed fire and woody vegetation to nest survival of clay-colored sparrow (Spizella pallida) and Savannah sparrow (Passerculus sandwichensis) in mixed-grass prairie at Des Lacs National Wildlife Refuge in northwestern North Dakota, USA. We assessed relationships of nest survival to 1) recent fire history, in terms of number of breeding seasons (2, 3, or 4–5) since the last prescribed fire, and 2) prevalence of trees and tall (>1.5 m) shrubs in the landscape and of low (≤1.5 m) shrubs within 5 m of nests. Nest survival of both species exhibited distinct patterns related to age of the nest and day of year, but bore no relationship to fire history. Survival of clay-colored sparrow nests declined as the amount of trees and tall shrubs within 100 m increased, but we found no relationship to suggest nest parasitism by brown-headed cowbirds (Molothrus ater) as an underlying mechanism. We found little evidence linking nest survival of Savannah sparrow to woody vegetation. Our results suggest that fire can be used to restore northern mixed-grass prairies without adversely affecting nest survival of ≥2 widespread passerine species. Survival of nests of clay-colored sparrow may increase when tall woody cover is reduced by fire. Our data lend support to the use of fire for reducing scattered patches of tall woody cover to enhance survival of nests of ≥1 grassland bird species in northern mixed-grass prairies, but further study is needed that incorporates experimental approaches and assessments of shorter term effects of fire on survival of nests of grassland passerines.

  12. The role of prairie dogs as a keystone species: response to Stapp

    Science.gov (United States)

    B. Miller; R. Reading; J. Hoogland; T. Clark; G. Ceballos; R. List; S. Forrest; L. Hanebury; P. Manzano; J. Pacheco; D. Uresk

    2000-01-01

    Stapp (1998) recently argued that it was premature to characterize prairie dogs (Cynomys spp.) as keystone species. In particular, Stapp directed much of his criticism at a paper some of us wrote (Miller et al. 1994). He mistakenly interprets the main objective of our paper as providing evidence that prairie dogs are keystone species. Rather, the...

  13. Prairie chicken populations of the Sheyenne Delta in North Dakota, 1961-1987

    Science.gov (United States)

    Jerry D. Kobriger; David P. Vollink; Michael E. Mcneill; Kenneth F. Higgins

    1988-01-01

    Prairie chickens (Tympanuchus cupido pinnatus) were first censused on the Sheyenne Grasslands in 1961. The population was extremely low in the 1960's, gradually increased in the 1970's, and reached a peak of 410 in 1980. Sufficient evidence exists to link the increase in numbers of prairie chickens on the grasslands from 1961 through 1987...

  14. PSA based plant modifications and back-fits

    International Nuclear Information System (INIS)

    1997-01-01

    The mandate of Principal Working Group No. 5 - Risk Assessment states that 'The group should deal with the technology and methods for identifying contributors to risk and assessing their importance, and appropriate exchanges of information on current research'. Since being formulated in 1982, along with this mandate, the group has also endeavored to develop a common understanding of the different approaches taken in risk assessment. The focus of this report is to provide knowledge to experts on the role Probabilistic Safety Assessment (PSA) has had in safety decision making. PSA is a powerful tool for improving Nuclear Power Plant safety by identifying weaknesses in design or operation and setting priorities for plant modifications and back-fits. While the use is well recognised, it is also true that any safety decision is generally based on several elements, both probabilistic and deterministic. This document provides a general overview of insights gained from the representative set of examples collected from Member countries (Finland, France, Germany, Japan, Korea, Netherlands, Spain, Sweden, Switzerland, United Kingdom, United States). The report starts with basic types of plant modifications which were carried out (e.g. hardware or software, important or minor, etc.) and the characteristics of the PSAs used in the examples (e.g. level and scope, specific or generic, on-going or terminated, etc.). The insights gained from this small collection are then reviewed. The appendix gives a full text version of the Member country contributions

  15. Modelling of seasonal dynamics of Wetland-Groundwater flow interaction in the Canadian Prairies

    Science.gov (United States)

    Ali, Melkamu; Nussbaumer, Raphaël; Ireson, Andrew; Keim, Dawn

    2015-04-01

    Wetland-shallow groundwater interaction is studied at the St. Denis National Wildlife Area in Saskatchewan, Canada, located within the northern glaciated prairies of North America. Ponds in the Canadian Prairies are intermittently connected by fill-spill processes in the spring and growing season of some wetter years. The contribution of the ponds and wetlands to groundwater is still a significant research challenge. The objective of this study is to evaluate model's ability to reproduce observed effects of groundwater-wetland interactions including seasonal pattern of shallow groundwater table, intended flow direction and to quantify the depression induced infiltration from the wetland to the surrounding uplands. The integrated surface-wetland-shallow groundwater processes and the changes in land-energy and water balances caused by the flow interaction are simulated using ParFlow-CLM at a small watershed of 1km2 containing both permanent and seasonal wetland complexes. We compare simulated water table depth with piezometers reading monitored by level loggers at the watershed. We also present the strengths and limitations of the model in reproducing observed behaviour of the groundwater table response to the spring snowmelt and summer rainfall. Simulations indicate that the shallow water table at the uphill recovers quickly after major rainfall events in early summer that generates lateral flow to the pond. In late summer, the wetland supplies water to the surrounding upland when the evapotranspiration is higher than the precipitation in which more water from the root zone is up taken by plants. Results also show that Parflow-CLM is able to reasonably simulate the water table patterns response to summer rainfall, while it is insufficient to reproduce the spring snowmelt infiltration which is the most dominant hydrological process in the Prairies.

  16. Response of C3 and C4 plants to middle-Holocene climatic variation near the prairie-forest ecotone of Minnesota, U.S.A.

    Energy Technology Data Exchange (ETDEWEB)

    Tian, J; Brown, T A; Hu, F S; Stefanova, I; Nelson, D M

    2003-12-24

    Paleorecords of the middle Holocene (MH) from the North American midcontinent can offer insights into ecological responses to pervasive drought that may accompany future climatic warming. We analyzed MH sediments from West Olaf Lake (WOL) and Steel Lake (SL) in Minnesota to examine the effects of warm/dry climatic conditions on prairie-woodland ecosystems. Mineral composition and carbonate {delta}{sup 18}O were used to determine climatic variations, whereas pollen assemblages, charcoal {delta}{sup 13}C, and charcoal accumulation rates were used to reconstruct vegetation composition, C{sub 3} and C{sub 4} plant abundance, and fire. The ratio of aragonite:calcite at WOL and {delta}{sup 18}O at SL suggest that pronounced droughts occurred during the MH but that drought severity decreased with time. From charcoal {delta}{sup 13}C data we estimated that the MH abundance of C{sub 4} plants averaged 50% at WOL and 43% at SL. At WOL C{sub 4} abundance was negatively correlated with aragonite:calcite, suggesting that severe moisture deficits suppressed C{sub 4} plants in favor of weedy C{sub 3} plants (e.g., Ambrosia). As climate ameliorated C{sub 4} abundance increased (from {approx}33 to 66%) at the expense of weedy species, enhancing fuel availability and fire occurrence. In contrast, farther east at SL climate was cooler and wetter than at WOL, and C{sub 4} abundance showed no correlation with {delta}{sup 18}O-inferred aridity. Woody C{sub 3} plants (e.g., Quercus) were more abundant, biomass flammability lower, and fires less important at SL than at WOL. Our results suggest that C{sub 4} plants are adapted to warm/dry climatic conditions, but not to extreme droughts, and that the fire regime is controlled by biomass-climate interactions.

  17. The development and adoption of conservation tillage systems on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    L. Awada

    2014-03-01

    Full Text Available One of the major agricultural innovations on the Canadian Prairies over the last 40 years has been the introduction of conservation tillage (CT. Conservation tillage-a system that includes minimum and zero tillage (ZT -was introduced as an alternative to traditional (conventional tillage (TT to control soil degradation and to promote agricultural sustainability. The development and adoption of CT systems involved pioneer farmers, engineers, scientists, and farmer associations. By the end of the 1970s, CT started to take shape on the Prairies, but for a number of economic, technical, political and social reasons, the adoption of CT did not occur on any major scale before the 1990s. Today, more than 75% of the Prairie's cropland is under some form of CT with more than 50% under ZT. In this paper, the factors behind the development and adoption of conservation tillage technology on the Prairies in the period between 1930 and 2011 are reviewed. Then, some of the benefits of the adoption of CT on the Prairies are highlighted. The data show that CT and ZT became profitable for the majority of farmers during and after the 1990s, and that the increased use of CT contributed to the dramatic decrease in the area under summerfallow and to the increase in the area sown to canola and pulse crops. These changes contributed to the reduction of all forms of land degradation and to decreases in agricultural greenhouse gas (GHG emissions.

  18. A novel approach for assessing density and range-wide abundance of prairie dogs

    Science.gov (United States)

    Aaron N. Facka; Paulette L. Ford; Gary W. Roemer

    2008-01-01

    Habitat loss, introduced disease, and government-sponsored eradication programs have caused population declines in all 5 species of prairie dogs. Black-tailed prairie dogs (Cynomys ludovicianus) currently occupy only about 2% of an extensive geographic range (160 million hectares) and were recently considered for listing under the United States...

  19. Timber resource of Missouri's Prairie, 1972.

    Science.gov (United States)

    Jerold T. Hahn; Alexander Vasilevsky

    1975-01-01

    The third timber inventory of Missouri's Prairie Forest Survey Unit shows substantial declines in both growing-stock and sawtimber volumes between 1959 and 1972. Commercial forest area declined by one-fifth. Presents highlights and statistics on forest area and timber volume, growth, mortality, ownership, and use in 1972.

  20. The relative contribution of diurnal and nocturnal pollinators to plant female fitness in a specialized nursery pollination system.

    Science.gov (United States)

    Scopece, Giovanni; Campese, Lucia; Duffy, Karl J; Cozzolino, Salvatore

    2018-02-01

    Plants involved in specialized pollinator interactions, such as nursery pollination, may experience trade-offs in their female fitness, as the larvae of their pollinators may also consume seeds produced by the flowers they pollinate. These interactions could potentially shift between mutualism and parasitism, depending on the presence and abundance of both the nursery pollinator and of other pollinators. We investigated the fitness trade-off in a Mediterranean plant ( Silene latifolia ), which has a specialist nocturnal nursery pollinator moth ( Hadena bicruris ) and is also visited by several diurnal pollinators. We estimated the pollination rates and fecundity of S. latifolia in both natural and experimental populations in the Mediterranean. We estimated natural pollination rates in different flowering times and with presence/absence of the H. bicruis moth. Then by exposing plants to each pollinator group either during the day or at night, we quantified the contribution of other diurnal pollinators and the specialized nocturnal nursery pollinator to plant female fitness. We found no difference in plant fruit set mediated by diurnal versus nocturnal pollinators, indicating that non-specialist pollinators contribute to plant female fitness. However, in both natural and experimental populations, H. bicruris was the most efficient pollinator in terms of seeds produced per fruit. These results suggest that the female fitness costs generated by nursery pollination can be overcome through higher fertilization rates relative to predation rates, even in the presence of co-pollinators. Quantifying such interactions is important for our understanding of the selective pressures that promote highly specialized mutualisms, such as nursery pollination, in the Mediterranean region, a centre of diversification of the carnation family.

  1. Season and application rates affect vaccine bait consumption by prairie dogs in Colorado and Utah, USA

    Science.gov (United States)

    Tripp, Daniel W.; Rocke, Tonie E.; Streich, Sean P.; Brown, Nathanael L.; Fernandez, Julia Rodriguez-Ramos; Miller, Michael W.

    2014-01-01

    Plague, a zoonotic disease caused by the bacterium Yersinia pestis, causes high rates of mortality in prairie dogs (Cynomys spp.). An oral vaccine against plague has been developed for prairie dogs along with a palatable bait to deliver vaccine and a biomarker to track bait consumption. We conducted field trials between September 2009 and September 2012 to develop recommendations for bait distribution to deliver plague vaccine to prairie dogs. The objectives were to evaluate the use of the biomarker, rhodamine B, in field settings to compare bait distribution strategies, to compare uptake of baits distributed at different densities, to assess seasonal effects on bait uptake, and to measure bait uptake by nontarget small mammal species. Rhodamine B effectively marked prairie dogs' whiskers during these field trials. To compare bait distribution strategies, we applied baits around active burrows or along transects at densities of 32, 65, and 130 baits/ha. Distributing baits at active burrows or by transect did not affect uptake by prairie dogs. Distributing baits at rates of ≥65/ha (or ≥1 bait/active burrow) produced optimal uptake, and bait uptake by prairie dogs in the autumn was superior to uptake in the spring. Six other species of small mammals consumed baits during these trials. All four species of tested prairie dogs readily consumed the baits, demonstrating that vaccine uptake will not be an obstacle to plague control via oral vaccination.

  2. The influence of grazing on surface climatological variables of tallgrass prairie. Final Technical Report

    International Nuclear Information System (INIS)

    Seastedt, T.R.; Dyer, M.I.; Turner, C.L.

    1992-01-01

    Mass and energy exchange between most grassland canopies and the atmosphere are mediated by grazing activities. Ambient temperatures can be increased or decreased by grazers. Data have been assembled from simulated grazing experiments on Konza Prairie Research Natural Area and observations on adjacent pastures grazed by cattle show significant changes in primary production, nutrient content, and bidirectional reflectance characteristics as a function of grazing intensity. The purpose of this research was to provide algorithms that would allow incorporation of grazing effects into models of energy budgets using remote sensing procedures. The approach involved: (1) linking empirical measurements of plant biomass and grazing intensities to remotely sensed canopy reflectance, and (2) using a higher resolution, mechanistic grazing model to derive plant ecophysiological parameters that influence reflectance and other surface climatological variables

  3. 77 FR 75119 - Dakota Prairie Grasslands, North Dakota; Oil and Gas Development Supplemental Environmental...

    Science.gov (United States)

    2012-12-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Dakota Prairie Grasslands, North Dakota; Oil and Gas... to prepare a supplemental environmental impact statement. SUMMARY: In June of 2003, the Dakota... Dakota Prairie Grasslands Land and Resource Management Plan, based on the 2001 Northern Great Plains...

  4. Black-tailed prairie dog (Cynomys ludovicianus) response to seasonality and frequency of fire

    Science.gov (United States)

    Felicia D. Archuleta

    2014-01-01

    Fragmentation of the landscape, habitat loss, and fire suppression, all a result of European settlement and activities, have precipitated both the decline of Black-tailed prairie dog (Cynomys ludovicianus) populations and the occurrence of fire throughout the Great Plains, including the Shortgrass steppe of northeastern New Mexico. The presence of Black-tailed prairie...

  5. Longitudinal Trajectories and Inter-parental Dynamics of Prairie Vole Biparental Care

    Directory of Open Access Journals (Sweden)

    Forrest D. Rogers

    2018-06-01

    Full Text Available For altricial mammalian species, early life social bonds are constructed principally between offspring and their mothers, and the mother-offspring relationship sets the trajectory for offspring bio-behavioral development. In the rare subset of monogamous and biparental species, offspring experience an expanded social network which includes a father. Accordingly, in biparental species fathers also have the potential to influence trajectories of offspring development. Previous semi-natural and laboratory study of one monogamous and biparental species, the prairie vole (Microtus ochrogaster, has given insight into the role that mothers and fathers play in shaping behavioral phenotypes of offspring. Of particular interest is the influence of biparental care in the development of monogamous behavior in offspring. Here, we first briefly review that influence. We then present novel research which describes how parental investment in prairie voles changes across sequential litters of pups, and the extent to which it is coordinated between mothers and fathers. We use approximately 6 years of archival data on prairie vole parenting to investigate trajectories and inter-parent dynamics in prairie vole parenting. We use a series of latent growth models to assess the stability of parental investment across the first 4 l. Our findings suggest that prairie voles display sexually dimorphic patterns of change in parental behavior: mothers' investment declines linearly whereas fathers' pattern of change is characterized by initial decline between litters 1 and 2 with subsequent increase from litters 2 to 4. Our findings also support a conclusion that prairie vole paternal care may be better characterized as compensatory—that is, fathers may compensate for decline in maternal investment. Opposing trends in investment between mothers and fathers ultimately imply stability in offspring investment across sequential litters. These findings, combined with previous

  6. Decline of Hesperia ottoe (Lepidoptera: Hesperiidae in Northern Tallgrass Prairie Preserves

    Directory of Open Access Journals (Sweden)

    Ann B. Swengel

    2013-11-01

    Full Text Available We counted butterflies on transect surveys during Hesperia ottoe flight period in 1988–2011 at tallgrass prairie preserves in four states (Illinois, Iowa, Minnesota, Wisconsin, divided into units cross-referenced to vegetation type and management history. H. ottoe occurred only in dry and sand prairie types, and was significantly more abundant in undegraded than semi-degraded prairie, and in discontinuous sod (with numerous unvegetated areas due to bare sand and/or rock outcrops than in continuous sod. This skipper was significantly more abundant in small sites compared to medium and large sites, even when the analysis was limited to undegraded prairie analyzed separately by sod type. H. ottoe was significantly under-represented in year-burn 0 (the first growing season after fire compared to an expected distribution proportional to survey effort. However, H. ottoe was also over-represented in fire-managed units compared to non-fire-managed units. However, by far most units and sites were in fire management and most populations declined to subdetection during this study. Peak abundance post-fire occurred in a later year-burn in discontinuous sod and was much higher than in continuous sod. We also analyze H. ottoe status and trend in midwestern prairie preserves by compiling a dataset of our and others’ butterfly surveys from 1974 to 2011. Only 1/9 sites with continuous sod had detectable H. ottoe in recent year(s. In discontinuous sod, 2/6 did, with two sites lacking data for the last few years. The number of years H. ottoe was still detectable after preservation and the number of years to consistent non-detection were both significantly higher in discontinuous than continuous sod. Both measures of population persistence averaged over twice as long in discontinuous than continuous sod, and correlated negatively with prairie size. The year when consistent non-detection began varied over several decades among sites. Despite the currently urgent

  7. Decline of Hesperia ottoe (Lepidoptera: Hesperiidae) in Northern Tallgrass Prairie Preserves.

    Science.gov (United States)

    Swengel, Ann B; Swengel, Scott R

    2013-11-20

    We counted butterflies on transect surveys during Hesperia ottoe flight period in 1988-2011 at tallgrass prairie preserves in four states (Illinois, Iowa, Minnesota, Wisconsin), divided into units cross-referenced to vegetation type and management history. H. ottoe occurred only in dry and sand prairie types, and was significantly more abundant in undegraded than semi-degraded prairie, and in discontinuous sod (with numerous unvegetated areas due to bare sand and/or rock outcrops) than in continuous sod. This skipper was significantly more abundant in small sites compared to medium and large sites, even when the analysis was limited to undegraded prairie analyzed separately by sod type. H. ottoe was significantly under-represented in year-burn 0 (the first growing season after fire) compared to an expected distribution proportional to survey effort. However, H. ottoe was also over-represented in fire-managed units compared to non-fire-managed units. However, by far most units and sites were in fire management and most populations declined to subdetection during this study. Peak abundance post-fire occurred in a later year-burn in discontinuous sod and was much higher than in continuous sod. We also analyze H. ottoe status and trend in midwestern prairie preserves by compiling a dataset of our and others' butterfly surveys from 1974 to 2011. Only 1/9 sites with continuous sod had detectable H. ottoe in recent year(s). In discontinuous sod, 2/6 did, with two sites lacking data for the last few years. The number of years H. ottoe was still detectable after preservation and the number of years to consistent non-detection were both significantly higher in discontinuous than continuous sod. Both measures of population persistence averaged over twice as long in discontinuous than continuous sod, and correlated negatively with prairie size. The year when consistent non-detection began varied over several decades among sites. Despite the currently urgent need to identify

  8. The predicted influence of climate change on lesser prairie-chicken reproductive parameters

    Science.gov (United States)

    Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, D.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter's linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Nina events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.

  9. Tuberculosis transmission in the Indigenous peoples of the Canadian prairies.

    Science.gov (United States)

    Patel, Smit; Paulsen, Catherine; Heffernan, Courtney; Saunders, Duncan; Sharma, Meenu; King, Malcolm; Hoeppner, Vernon; Orr, Pamela; Kunimoto, Dennis; Menzies, Dick; Christianson, Sara; Wolfe, Joyce; Boffa, Jody; McMullin, Kathleen; Lopez-Hille, Carmen; Senthilselvan, Ambikaipakan; Long, Richard

    2017-01-01

    The prairie provinces of Canada. To characterize tuberculosis (TB) transmission among the Indigenous and non-Indigenous Canadian-born peoples of the prairie provinces of Canada. A prospective epidemiologic study of consecutively diagnosed adult (age ≥ 14 years) Canadian-born culture-positive pulmonary TB cases on the prairies, hereafter termed "potential transmitters," and the transmission events generated by them. "Transmission events" included new positive tuberculin skin tests (TSTs), TST conversions, and secondary cases among contacts. In the years 2007 and 2008, 222 potential transmitters were diagnosed on the prairies. Of these, the vast majority (198; 89.2%) were Indigenous peoples who resided in either an Indigenous community (135; 68.2%) or a major metropolitan area (44; 22.2%). Over the 4.5-year period between July 1st, 2006 and December 31st 2010, 1085 transmission events occurred in connection with these potential transmitters. Most of these transmission events were attributable to potential transmitters who identified as Indigenous (94.5%). With a few notable exceptions most transmitters and their infected contacts resided in the same community type. In multivariate models positive smear status and a higher number of close contacts were associated with increased transmission; adjusted odds ratios (ORs) and 95% confidence intervals (CIs), 4.30 [1.88, 9.84] and 2.88 [1.31, 6.34], respectively. Among infected contacts, being Indigenous was associated with disease progression; OR and 95% CI, 3.59 [1.27, 10.14] and 6.89 [2.04, 23.25] depending upon Indigenous group, while being an infected casual contact was less likely than being a close contact to be associated with disease progression, 0.66 [0.44, 1.00]. In the prairie provinces of Canada and among Canadian-born persons, Indigenous peoples account for the vast majority of cases with the potential to transmit as well as the vast majority of infected contacts. Active case finding and preventative therapy

  10. Social transfer of alcohol withdrawal-induced hyperalgesia in female prairie voles.

    Science.gov (United States)

    Walcott, Andre T; Smith, Monique L; Loftis, Jennifer M; Ryabinin, Andrey E

    2018-03-27

    The expression of pain serves as a way for animals to communicate potential dangers to nearby conspecifics. Recent research demonstrated that mice undergoing alcohol or morphine withdrawal, or inflammation, could socially communicate their hyperalgesia to nearby mice. However, it is unknown whether such social transfer of hyperalgesia can be observed in other species of rodents. Therefore, the present study investigated if the social transfer of hyperalgesia occurs in the highly social prairie vole (Microtus ochrogaster). We observe that adult female prairie voles undergoing withdrawal from voluntary two-bottle choice alcohol drinking display an increase in nociception. This alcohol withdrawal-induced hypersensitiity is socially transferred to female siblings within the same cage and female strangers housed in separate cages within the same room. These experiments reveal that the social transfer of pain phenomenon is not specific to inbred mouse strains and that prairie voles display alcohol withdrawal and social transfer-induced hyperalgesia.

  11. Magnetic minerals in soils across the forest-prairie ecotone in NW Minnesota

    Science.gov (United States)

    Maxbauer, D.; Feinberg, J. M.; Fox, D. L.; Nater, E. A.

    2016-12-01

    Soil pedogenesis results in a complex assemblage of iron oxide minerals that can be disentangled successfully using sensitive magnetic techniques to better delineate specific soil processes. Here, we evaluate the variability in soil processes within forest, prairie, and transitional soils along an 11 km transect of anthropogenically unaltered soils that span the forest-to-prairie ecotone in NW Minnesota. All soils in this study developed on relatively uniform topography, similar glacial till parent material, under a uniform climate, and presumably over similar time intervals. The forest-to-prairie transition zone in this region is controlled by naturally occurring fires, affording the opportunity to evaluate differences in soil processes related to vegetation (forest versus prairie) and burning (prairie and transitional soils). Results suggest that the pedeogenic fraction of magnetite/maghemite in soils is similar in all specimens and is independent of soil type, vegetation, and any effects of burning. Magnetically enhanced horizons have 45% of remanence held by a low-coercivity pedogenic component (likely magnetite/maghemite) regardless of vegetation cover and soil type. Enhancement ratios for magnetic susceptibility and low-field remanences, often used as indicators of pedogenic magnetic minerals, are more variable but remain statistically equivalent across the transect. These results support the hypothesis that pedogenic magnetic minerals in soils mostly reflect ambient climatic conditions regardless of the variability in soil processes related to vegetation and soil type. The non-pedogenic magnetic mineral assemblage shows clear distinctions between the forest, prairie, and transitional soils in hysteresis properties (remanence and coercivity ratios; Mr/Ms and Bc/Bcr, respectively), suggesting that variable processes in these settings influence the local magnetic mineral assemblage, and that it may be possible to use magnetic minerals in paleosols to constrain

  12. Review of black-tailed prairie dog reintroduction strategies and site selection: Arizona reintroduction

    Science.gov (United States)

    Sarah L. Hale; John L. Koprowski; Holly Hicks

    2013-01-01

    The black-tailed prairie dog (Cynomys ludovicianus) was once widely distributed throughout the western United States; however, anthropogenic influences have reduced the species’ numbers to 2 percent of historical populations. Black-tailed prairie dogs are described as a keystone species in the grassland ecosystem, and provide many unique services, including burrows for...

  13. Technical feasibility and economics of retrofitting an existing nuclear power plant to cogeneration for hot water district heating

    International Nuclear Information System (INIS)

    Kolb, J.O.; Bauman, H.F.; Jones, P.D.

    1984-04-01

    This report gives the results of a study of the hypothetical conversion of the Prairie Island Nuclear Plant of the Northern States Power Company to cogeneration operation to supply a future hot water district heating system load in the Twin Cities of Minneapolis-St. Paul. The conceptual design of the nuclear turbine retrofitted for cogeneration and of a hot water transmission system has been performed, and the capital investment and annual owning and operating costs have been estimated for thermal energy capacities of 600 and 1200 MW(t). Unit costs of thermal energy (in mid-1982 dollars/million Btu) have been estimated for cogenerated hot water at the plant gate and also for the most economic transmission system from Prairie Island to the Twin Cities. The economic results from the analysis of the Prairie Island plant and transmission route have been generalized for other transmission distances in other locations

  14. Technoeconomic analysis of biojet fuel production from camelina at commercial scale: Case of Canadian Prairies.

    Science.gov (United States)

    Li, Xue; Mupondwa, Edmund; Tabil, Lope

    2018-02-01

    This study undertakes technoeconomic analysis of commercial production of hydro-processed renewable jet (HRJ) fuel from camelina oil in the Canadian Prairies. An engineering economic model designed in SuperPro Designer® investigated capital investment, scale, and profitability of producing HRJ and co-products (biodiesel, naphtha, LPG, and propane) based on biorefinery plant sizes of 112.5-675 million L annum -1 . Under base case scenario, the minimum selling price (MSP) of HRJ was $1.06 L -1 for a biorefinery plant with size of 225 million L. However, it could range from $0.40 to $1.71 L -1 given variations in plant capacity, feedstock cost, and co-product credits. MSP is highly sensitive to camelina feedstock cost and co-product credits, with little sensitivity to capital cost, discount rate, plant capacity, and hydrogen cost. Marginal and average cost curves suggest the region could support an HRJ plant capacity of up to 675 million L annum -1 (capital investment of $167 million). Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. Proceedings of the symposium on the management of prairie dog complexes for the reintroduction of the black-footed ferret

    Science.gov (United States)

    Oldemeyer, John L.; Biggins, Dean E.; Miller, Brian J.; Crete, Ronald

    1993-01-01

    The workshop featured a review of current knowledge in the biology of prairie dogs in the context of managing black-footed ferret habitat. The review addressed two main components. The first consisted of a series of papers on prairie dog habitat and biology. The second component of the workshop was a summary of the participants' discussion about managing prairie dog complexes. This discussion was based on the previously identified papers and profited from the participants' expertise on the ecology of black-footed ferrets and prairie dogs. The report provides current and comprehensive information about management of habitat for prairie dogs and black-footed ferrets and is a useful guide for agencies and individuals that manage black-footed ferrets.

  16. Fitness consequences of occasional outcrossing in a functionally asexual plant (Oenothera biennis).

    Science.gov (United States)

    Maron, John L; Johnson, Marc T J; Hastings, Amy P; Agrawal, Anurag A

    2018-02-01

    Many clonal organisms occasionally outcross, but the long-term consequences of such infrequent events are often unknown. During five years, representing three to five plant generations, we followed 16 experimental field populations of the forb, Oenothera biennis, originally planted with the same 18 original genotypes. Oenothera biennis usually self fertilizes, which, due to its genetic system (permanent translocation heterozygosity), results in seeds that are clones of the maternal plant. However, rare outcrossing produces genetically novel offspring (but without recombination or increased heterozygosity). We sought to understand whether novel genotypes produced through natural outcrossing had greater fecundity or different multigenerational dynamics compared to our original genotypes. We further assessed whether any differences in fitness or abundances through time between original and novel genotypes were exaggerated in the presence vs. absence of insect herbivores. Over the course of the experiment, we genotyped >12,500 plants using microsatellite DNA markers to identify and track the frequency of specific genotypes and estimated fecundity on a subset (>3,000) of plants. The effective outcrossing rate was 7.3% in the first year and ultimately 50% of the plants were of outcrossed origin by the final year of the experiment. Lifetime fruit production per plant was on average 32% higher across all novel genotypes produced via outcrossing compared to the original genotypes, and this fecundity advantage was significantly enhanced in populations lacking herbivores. Among 43 novel genotypes that were abundant enough to phenotype with replication, plants produced nearly 30% more fruits than the average of their specific two parental genotypes, and marginally more fruits (8%) than their most fecund parent. Mean per capita fecundity of novel genotypes predicted their relative frequencies at the end of the experiment. Novel genotypes increased more dramatically in

  17. Landscape composition creates a threshold influencing Lesser Prairie-Chicken population resilience to extreme drought

    Science.gov (United States)

    Ross, Beth E.; Haukos, David A.; Hagen, Christian A.; Pitman, James C.

    2016-01-01

    Habitat loss and degradation compound the effects of climate change on wildlife, yet responses to climate and land cover change are often quantified independently. The interaction between climate and land cover change could be intensified in the Great Plains region where grasslands are being converted to row-crop agriculture concurrent with increased frequency of extreme drought events. We quantified the combined effects of land cover and climate change on a species of conservation concern in the Great Plains, the Lesser Prairie-Chicken (Tympanuchus pallidicinctus  ). We combined extreme drought events and land cover change with lek count surveys in a Bayesian hierarchical model to quantify changes in abundance of male Lesser Prairie-Chickens from 1978 to 2014 in Kansas, the core of their species range. Our estimates of abundance indicate a gradually decreasing population through 2010 corresponding to drought events and reduced grassland areas. Decreases in Lesser Prairie-Chicken abundance were greatest in areas with increasing row-crop to grassland land cover ratio during extreme drought events, and decreased grassland reduces the resilience of Lesser Prairie-Chicken populations to extreme drought events. A threshold exists for Lesser Prairie-Chickens in response to the gradient of cropland:grassland land cover. When moving across the gradient of grassland to cropland, abundance initially increased in response to more cropland on the landscape, but declined in response to more cropland after the threshold (δ=0.096, or 9.6% cropland). Preservation of intact grasslands and continued implementation of initiatives to revert cropland to grassland should increase Lesser Prairie-Chicken resilience to extreme drought events due to climate change.

  18. Sylvatic plague vaccine partially protects prairie dogs (Cynomys spp.) in field trials

    Science.gov (United States)

    Rocke, Tonie E.; Tripp, Daniel W.; Russell, Robin E.; Abbott, Rachel C.; Richgels, Katherine; Matchett, Marc R.; Biggins, Dean E.; Griebel, Randall; Schroeder, Greg; Grassel, Shaun M.; Pipkin, David R.; Cordova, Jennifer; Kavalunas, Adam; Maxfield, Brian; Boulerice, Jesse; Miller, Michael W.

    2017-01-01

    Sylvatic plague, caused by Yersinia pestis, frequently afflicts prairie dogs (Cynomys spp.), causing population declines and local extirpations. We tested the effectiveness of bait-delivered sylvatic plague vaccine (SPV) in prairie dog colonies on 29 paired placebo and treatment plots (1–59 ha in size; average 16.9 ha) in 7 western states from 2013 to 2015. We compared relative abundance (using catch per unit effort (CPUE) as an index) and apparent survival of prairie dogs on 26 of the 29 paired plots, 12 with confirmed or suspected plague (Y. pestis positive carcasses or fleas). Even though plague mortality occurred in prairie dogs on vaccine plots, SPV treatment had an overall positive effect on CPUE in all three years, regardless of plague status. Odds of capturing a unique animal were 1.10 (95% confidence interval [C.I.] 1.02–1.19) times higher per trap day on vaccine-treated plots than placebo plots in 2013, 1.47 (95% C.I. 1.41–1.52) times higher in 2014 and 1.19 (95% C.I. 1.13–1.25) times higher in 2015. On pairs where plague occurred, odds of apparent survival were 1.76 (95% Bayesian credible interval [B.C.I.] 1.28–2.43) times higher on vaccine plots than placebo plots for adults and 2.41 (95% B.C.I. 1.72–3.38) times higher for juveniles. Our results provide evidence that consumption of vaccine-laden baits can protect prairie dogs against plague; however, further evaluation and refinement are needed to optimize SPV use as a management tool.

  19. Mine spoil prairies expand critical habitat for endangered and threatened amphibian and reptile species

    Science.gov (United States)

    Lannoo, Michael J.; Kinney, Vanessa C.; Heemeyer, Jennifer L.; Engbrecht, Nathan J.; Gallant, Alisa L.; Klaver, Robert W.

    2009-01-01

    Coal extraction has been occurring in the Midwestern United States for over a century. Despite the pre-mining history of the landscape as woodlands, spent surface coalfields are often reclaimed to grasslands. We assessed amphibian and reptile species on a large tract of coal spoil prairie and found 13 species of amphibians (nine frog and four salamander species) and 19 species of reptiles (one lizard, five turtle, and 13 snake species). Two state-endangered and three state species of special concern were documented. The amphibian diversity at our study site was comparable to the diversity found at a large restored prairie situated 175 km north, within the historic prairie peninsula.

  20. Aerial surveys adjusted by ground surveys to estimate area occupied by black-tailed prairie dog colonies

    Science.gov (United States)

    Sidle, John G.; Augustine, David J.; Johnson, Douglas H.; Miller, Sterling D.; Cully, Jack F.; Reading, Richard P.

    2012-01-01

    Aerial surveys using line-intercept methods are one approach to estimate the extent of prairie dog colonies in a large geographic area. Although black-tailed prairie dogs (Cynomys ludovicianus) construct conspicuous mounds at burrow openings, aerial observers have difficulty discriminating between areas with burrows occupied by prairie dogs (colonies) versus areas of uninhabited burrows (uninhabited colony sites). Consequently, aerial line-intercept surveys may overestimate prairie dog colony extent unless adjusted by an on-the-ground inspection of a sample of intercepts. We compared aerial line-intercept surveys conducted over 2 National Grasslands in Colorado, USA, with independent ground-mapping of known black-tailed prairie dog colonies. Aerial line-intercepts adjusted by ground surveys using a single activity category adjustment overestimated colonies by ≥94% on the Comanche National Grassland and ≥58% on the Pawnee National Grassland. We present a ground-survey technique that involves 1) visiting on the ground a subset of aerial intercepts classified as occupied colonies plus a subset of intercepts classified as uninhabited colony sites, and 2) based on these ground observations, recording the proportion of each aerial intercept that intersects a colony and the proportion that intersects an uninhabited colony site. Where line-intercept techniques are applied to aerial surveys or remotely sensed imagery, this method can provide more accurate estimates of black-tailed prairie dog abundance and trends

  1. Age at Vaccination May Influence Response to Sylvatic Plague Vaccine (SPV) in Gunnison's Prairie Dogs (Cynomys gunnisoni).

    Science.gov (United States)

    Rocke, Tonie E; Tripp, Dan; Lorenzsonn, Faye; Falendysz, Elizabeth; Smith, Susan; Williamson, Judy; Abbott, Rachel

    2015-06-01

    Gunnison's prairie dogs (Cynomys gunnisoni) have been considered at greater risk from Yersinia pestis (plague) infection in the montane portion of their range compared to populations at lower elevations, possibly due to factors related to flea transmission of the bacteria or greater host susceptibility. To test the latter hypothesis and determine whether vaccination against plague with an oral sylvatic plague vaccine (SPV) improved survival, we captured prairie dogs from a C. g. gunnisoni or "montane" population and a C. g. zuniensis or "prairie" population for vaccine efficacy and challenge studies. No differences (P = 0.63) were found in plague susceptibility in non-vaccinated animals between these two populations; however, vaccinates from the prairie population survived plague challenge at significantly higher rates (P plague challenge at a much higher rate than adults (P plague in the C. g. gunnisoni or "montane" populations of Gunnison's prairie dogs, and that SPV could be a useful plague management tool for this species, particularly if targeted at younger cohorts.

  2. Behavior-based rules for fitness-for-duty assessment of nuclear power plant personnel

    International Nuclear Information System (INIS)

    Kennedy, R.S.

    1989-01-01

    The safe and reliable operation of nuclear power plants requires that plant personnel not be under the influence of any substance, legal or illegal, or mentally or physically impaired from any cause that in any way adversely affects their ability to safely and competently perform their duties. This goal has been formalized by the US Nuclear Regulatory Commission in their proposed rule for a fitness-for-duty program. The purpose of this paper is to describe a performance-based tool based on surrogate tests and dose equivalency methodologies that is a viable candidate for fitness-for-duty assessment. The automated performance test system (APTS) is a microcomputer-based human performance test battery that has been developed over a decade of research supported variously by the National Science Foundation, National Aeronautics and Space Administration, US Department of Energy, and the US Navy and Army. Representing the most psychometrically sound test from evaluations of over 150 well-known tests of basic psychomotor and cognitive skills, the battery provides direct prediction of a worker's fitness for duty. Twenty-four tests are suitable for use, and a dozen have thus far been shown to be sensitive to the effects of legal and illegal drugs, alcohol, fatigue, stress, and other causes of impairment

  3. Trichostatin A (TSA) facilitates formation of partner preference in male prairie voles (Microtus ochrogaster).

    Science.gov (United States)

    Duclot, F; Wang, H; Youssef, C; Liu, Y; Wang, Z; Kabbaj, M

    2016-05-01

    In the socially monogamous prairie voles (Microtus ochrogaster), the development of a social bonding is indicated by the formation of partner preference, which involves a variety of environmental and neurochemical factors and brain structures. In a most recent study in female prairie voles, we found that treatment with the histone deacetylase inhibitor trichostatin A (TSA) facilitates the formation of partner preference through up-regulation of oxytocin receptor (OTR) and vasopressin V1a receptor (V1aR) genes expression in the nucleus accumbens (NAcc). In the present study, we tested the hypothesis that TSA treatment also facilitates partner preference formation and alters OTR and V1aR genes expression in the NAcc in male prairie voles. We thus observed that central injection of TSA dose-dependently promoted the formation of partner preference in the absence of mating in male prairie voles. Interestingly, TSA treatment up-regulated OTR, but not V1aR, gene expression in the NAcc similarly as they were affected by mating - an essential process for naturally occurring partner preference. These data, together with others, not only indicate the involvement of epigenetic events but also the potential role of NAcc oxytocin in the regulation of partner preference in both male and female prairie voles. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Timber resource of Minnesota's Prairie unit, 1977.

    Science.gov (United States)

    Jerold T. Hahn; W. Brad Smith

    1980-01-01

    The fourth inventory of Minnesota's Prairie Unit shows that although commercial forest area decreased 31.7% between 1962 and 1977, growing-stock volume increased 22%. This report gives statistical highlights and contains detailed tables of forest area as well as timber volume, growth, mortality, ownership, and use.

  5. Black-footed ferrets and recreational shooting influence the attributes of black-tailed prairie dog burrows

    Science.gov (United States)

    Biggins, Dean E.; Ramakrishnan, Shantini; Goldberg, Amanda R.; Eads, David A.

    2012-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) plug burrows occupied by black-footed ferrets (Mustela nigripes), and they also plug burrows to entomb dead prairie dogs. We further evaluated these phenomena by sampling connectivity and plugging of burrow openings on prairie dog colonies occupied by ferrets, colonies where recreational shooting was allowed, and colonies with neither shooting nor ferrets. We counted burrow openings on line surveys and within plots, classified surface plugging, and used an air blower to examine subsurface connectivity. Colonies with ferrets had lower densities of openings, fewer connected openings (suggesting increased subsurface plugging), and more surface plugs compared to colonies with no known ferrets. Colonies with recreational shooting had the lowest densities of burrow openings, and line-survey data suggested colonies with shooting had intermediate rates of surface plugging. The extent of surface and subsurface plugging could have consequences for the prairie dog community by changing air circulation and escape routes of burrow systems and by altering energetic relationships. Burrow plugging might reduce prairie dogs' risk of predation by ferrets while increasing risk of predation by American badgers (Taxidea taxus); however, the complexity of the trade-off is increased if plugging increases the risk of predation on ferrets by badgers. Prairie dogs expend more energy plugging and digging when ferrets or shooting are present, and ferrets increase their energy expenditures when they dig to remove those plugs. Microclimatic differences in plugged burrow systems may play a role in flea ecology and persistence of the flea-borne bacterium that causes plague (Yersinia pestis).

  6. Midcontinent Prairie-Pothole wetlands and climate change: An Introduction to the Supplemental Issue

    Science.gov (United States)

    Mushet, David M.

    2016-01-01

    The multitude of wetlands in the Prairie Pothole Region of North America forms one of Earth’s largest wetland complexes. The midcontinent location exposes this ecologically and economically important wetland system to a highly variable climate, markedly influencing ponded-water levels, hydroperiods, chemical characteristics, and biota of individual basins. Given their dominance on the landscape and recognized value, great interest in how projected future changes in climate will affect prairie-pothole wetlands has developed and spawned much scientific research. On June 2, 2015, a special symposium, “Midcontinent Prairie-Pothole Wetlands: Influence of a Changed Climate,” was held at the annual meeting of the Society of Wetland Scientists in Providence, Rhode Island, USA. The symposium’s twelve presenters covered a wide range of relevant topics delivered to a standing-room-only audience. Following the symposium, the presenters recognized the need to publish their presented papers as a combined product to facilitate widespread distribution. The need for additional papers to more fully cover the topic of prairie-pothole wetlands and climate change was also identified. This supplemental issue of Wetlands is the realization of that vision.

  7. Raptor community composition in the Texas Southern High Plains lesser prairie-chicken range

    Science.gov (United States)

    Behney, A.C.; Boal, Clint W.; Whitlaw, Heather A.; Lucia, D.R.

    2012-01-01

    Predation can be a factor in preventing prey population growth and sustainability when prey populations are small and fragmented, and when predator density is unrelated to the density of the single prey species. We conducted monthly raptor surveys from February 2007 to May 2009 in adjacent areas of the Texas Southern High Plains (USA) that do and do not support lesser prairie-chickens (Tympanuchus pallidicinctus), a candidate for protection under the Endangered Species Act. During the summer period corresponding to prairie-chicken nesting and brood-rearing, Swainson's hawks (Buteo swainsoni) were the most abundant raptor. During the lekking and overwintering period, the raptor community was diverse, with northern harriers (Circus cyaneus) being the most abundant species. Raptor abundance peaked during the early autumn and was lowest during the spring. Utility poles were a significant predictor of raptor density at survey points and Swainson's hawks and all raptors, pooled, were found in greater densities in non-prairie-chicken habitat dominated by mesquite (Prosopis glandulosa). Avian predation risk on prairie-chickens, based on presence and abundance of raptors, appears to be greatest during winter when there is a more abundant and diverse raptor community, and in areas with utility poles.

  8. Long-term lesser prairie-chicken nest ecology in response to grassland management

    Science.gov (United States)

    Fritts, Sarah R.; Grisham, Blake A.; Haukos, David A.; Boal, Clint W.; Patten, Michael; Wolfe, Don H.; Dixon, Charles; Cox, Robert D.; Heck, Willard R.

    2016-01-01

    Long-term population and range declines from habitat loss and fragmentation caused the lesser prairie-chicken (Tympanuchus pallidicinctus) to be a species of concern throughout its range. Current lesser prairie-chicken range in New Mexico and Texas is partially restricted to sand shinnery oak (Quercus havardii; hereafter shinnery oak) prairies, on which cattle grazing is the main socioeconomic driver for private landowners. Cattle producers within shinnery oak prairies often focus land management on shrub eradication using the herbicide tebuthiuron to promote grass production for forage; however, herbicide application alone, and in combination with grazing, may affect nest site selection and nest survival of lesser prairie-chickens through the reduction of shinnery oak and native grasses. We used a controlled, paired, completely randomized design study to assess the influence of grazing and tebuthiuron application and their combined use on nest site selection and nest survival from 2001 to 2010 in Roosevelt County, New Mexico, USA at 2 spatial scales (i.e., treatment and microhabitat) in 4 treatments: tebuthiuron with grazing, tebuthiuron without grazing, no tebuthiuron with grazing, and a control of no tebuthiuron and no grazing. Grazing treatment was a short-duration system in which plots were grazed once during the dormant season and once during the growing season. Stocking rate was calculated each season based on measured forage production and applied to remove ≤25% of available herbaceous material per season. At the treatment scale, we compared nest site selection among treatments using 1-way χ2 tests and nest survival among treatments using a priori candidate nest survival models in Program MARK. At the microhabitat scale, we identified important habitat predictors of nest site selection and nest survival using logistic regression and a priori candidate nest survival models in Program MARK, respectively. Females typically used treatments as expected and

  9. Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie.

    Directory of Open Access Journals (Sweden)

    Joseph D Coolon

    Full Text Available Anthropogenic changes are altering the environmental conditions and the biota of ecosystems worldwide. In many temperate grasslands, such as North American tallgrass prairie, these changes include alteration in historically important disturbance regimes (e.g., frequency of fires and enhanced availability of potentially limiting nutrients, particularly nitrogen. Such anthropogenically-driven changes in the environment are known to elicit substantial changes in plant and consumer communities aboveground, but much less is known about their effects on soil microbial communities. Due to the high diversity of soil microbes and methodological challenges associated with assessing microbial community composition, relatively few studies have addressed specific taxonomic changes underlying microbial community-level responses to different fire regimes or nutrient amendments in tallgrass prairie. We used deep sequencing of the V3 region of the 16S rRNA gene to explore the effects of contrasting fire regimes and nutrient enrichment on soil bacterial communities in a long-term (20 yrs experiment in native tallgrass prairie in the eastern Central Plains. We focused on responses to nutrient amendments coupled with two extreme fire regimes (annual prescribed spring burning and complete fire exclusion. The dominant bacterial phyla identified were Proteobacteria, Verrucomicrobia, Bacteriodetes, Acidobacteria, Firmicutes, and Actinobacteria and made up 80% of all taxa quantified. Chronic nitrogen enrichment significantly impacted bacterial community diversity and community structure varied according to nitrogen treatment, but not phosphorus enrichment or fire regime. We also found significant responses of individual bacterial groups including Nitrospira and Gammaproteobacteria to long-term nitrogen enrichment. Our results show that soil nitrogen enrichment can significantly alter bacterial community diversity, structure, and individual taxa abundance, which have

  10. Prairie rattlesnake envenomation in 27 New World camelids.

    Science.gov (United States)

    Sonis, J M; Hackett, E S; Callan, R J; Holt, T N; Hackett, T B

    2013-01-01

    Morbidity and case fatality from rattlesnake envenomation is regionally specific because of variability in relative toxicity of the species of snake encountered. A previous report of rattlesnake envenomation in New World camelids (NWC) from the western coastal United States documented high case fatality rates and guarded prognosis for survival. To describe clinical findings, treatments, and outcome of NWC with prairie rattlesnake (Crotalus viridis viridis) envenomation in the Rocky Mountain region of the United States. Twenty-seven NWC admitted to the Colorado State University Veterinary Teaching Hospital for evaluation of acute rattlesnake envenomation between 1992 and 2012. Medical records of NWC evaluated for rattlesnake envenomation as coded by the attending clinician and identified by a database search were reviewed retrospectively. Month of admission, signalment, area of bite, clinical and clinicopathologic data, treatments, and outcome were recorded. Twenty-five llamas and 2 alpacas were admitted for envenomation. Llamas were overrepresented compared to hospital caseload. The face was the most common site of envenomation, observed in 96% of recorded cases. Presenting clinical signs included fever, tachypnea, tachycardia, and respiratory distress. Nine animals required a tracheotomy. Median hospitalization time was 3 days and overall survival rate was 69%. Case fatality rate for prairie rattlesnake envenomation in NWC was lower than that reported in the Western coastal region of the United States and similar to that reported for prairie rattlesnake envenomation in horses. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  11. Interactions of raptors and Lesser Prairie-Chickens at leks in the Texas Southern High Plains

    Science.gov (United States)

    Behney, Adam C.; Boal, Clint W.; Whitlaw, Heather A.; Lucia, Duane R.

    2011-01-01

    We examined behavioral interactions of raptors, Chihuahuan Ravens (Corvus cryptoleucus), and Lesser Prairie-Chickens (Tympanuchus pallidicinctus) at leks in the Texas Southern High Plains. Northern Harriers (Circus cyaneus) and Swainson's Hawks (Buteo swainsoni) were the most common raptors observed at leks. Only 15 of 61 (25%) raptor encounters at leks (0.09/hr) resulted in a capture attempt (0.02/hr). Mean (± SD) time for Lesser Prairie-Chickens to return to lekking behavior following a raptor encounter was 4.2 ± 5.5 min suggesting the disturbance had little influence on lekking behaviors. Lesser Prairie-Chickens engaged in different escape behaviors depending on raptor species and, generally, did not respond to ravens suggesting they are able to assess different predation risks. The raptors in our study area posed little predation risk to lekking prairie-chickens. Behavioral disturbance at leks appears minimal due to the lack of successful predation events, low raptor encounter rates, and short time to return to lekking behavior.

  12. A comparison of cellulosic fuel yields and separated soil-surface CO2 fluxes in maize and prairie biofuel cropping systems

    Science.gov (United States)

    Nichols, Virginia A.

    It has been suggested that strategic incorporation of perennial vegetation into agricultural landscapes could provide ecosystem services while maintaining agricultural productivity. To evaluate potential use of prairie as a Midwestern cellulosic feedstock, we investigated theoretical cellulosic fuel yields, as well as soil-surface carbon dioxide emissions of prairie-based biofuel systems as compared to maize-based systems on fertile soils in Boone County, IA, USA. Investigated systems were: a maize-soybean rotation grown for grain only, continuous maize grown for grain and stover both with and without a winter rye cover crop, and a 31-species reconstructed prairie grown with and without spring nitrogen fertilization for fall-harvested biomass. From 2009-2013, the highest producing system was N-fertilized prairie, averaging 10.4 Mg ha -1 yr-1 above-ground biomass with average harvest removals of 7.8 Mg ha-1 yr-1. The unfertilized prairie produced 7.4 Mg ha-1 yr-1, averaging harvests of 5.3 Mg ha-1 yr-1. Lowest cellulosic biomass harvests were realized from continuous maize systems, averaging 3.5 Mg ha -1 yr-1 when grown with, and 3.7 Mg ha-1 yr-1 when grown without a winter rye cover crop, respectively. Un-fertilized prairie biomass and maize stover had equivalent dietary conversion ratios at 330 g ethanol kg-1 dry biomass, but N-fertilized prairie was lower at 315. Over four years prairie systems averaged 1287 L cellulosic ethanol ha-1 yr-1 more than maize systems, with fertilization increasing prairie ethanol production by 865 L ha-1 yr-1. Harvested biomass accounted for >90% of ethanol yield variation. A major hurdle in carbon cycling studies is the separation of the soil-surface CO2 flux into its respective components. From 2012-2013 we used a shading method to separate soil-surface CO2 resulting from oxidation of soil organic matter and CO2 derived from live-root activity in three systems: unfertilized prairie, N-fertilized prairie, and continuous maize

  13. Carcass Search & Recovery Guidelines for Black Tailed Prairie Dogs

    Science.gov (United States)

    The availability of dead or intoxicated prairie dogs above ground will be monitored, recorded and these carcasses will be properly disposed of, in accordance with the procedures described on this page.

  14. NPP Grassland: Konza Prairie, USA, 1984-1990, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains three ASCII files (.txt format). Two files contain above-ground biomass and productivity data for a humid temperate tall-grass prairie...

  15. Bison grazing increases arthropod abundance and diversity in a tallgrass prairie.

    Science.gov (United States)

    Moran, Matthew D

    2014-10-01

    How grazing-induced ecosystem changes by ungulates indirectly affect other consumers is a question of great interest. I investigated the effect of grazing by American Bison (Bos bison L.) on an arthropod community in tallgrass prairie. Grazing increased the abundance of arthropods, an increase that was present in both herbivorous and carnivorous assemblages, but not in detritivores. The increase in herbivores and reduction in plant biomass from grazing resulted in an arthropod herbivore load almost three times higher in grazed plots compared with controls. Among herbivores, the sap-feeding insect guild was dramatically more abundant, while chewing herbivores were not affected. Herbivorous and carnivorous arthropod richness was higher in grazed plots, although the response was strongest among herbivores. Arthropod abundance on individual grasses and forbs was significantly higher in grazed areas, while plant type had no effect on abundance, indicating that the change was ecosystem-wide and not simply in response to a reduction in grass biomass from grazing. The response of arthropods to grazing was strongest in the early part of the growing season. Published research shows that ungulate grazing, although decreasing available biomass to other consumers, enhances plant quality by increasing nitrogen level in plants. The arthropod results of this study suggest higher plant quality outweighs the potential negative competitive effects of plant biomass removal, although other activities of bison could not be ruled out as the causative mechanism. Because arthropods are extremely abundant organisms in grasslands and a food source for other consumers, bison may represent valuable management tools for maintaining biodiversity.

  16. Managing prairie dogs by managing plague: a vaccine for the future?

    Science.gov (United States)

    Johnson, Terry B.; Rocke, Tonie E.; Gober, Pete; Van Pelt, Bill E.; Miller, Michael W.; Tripp, Daniel W.; Abbott, Rachel C.; Bergman, David L.

    2014-01-01

    The Black-footed Ferret Recovery Implementation Team Executive Committee is conducting a project to develop,and (hopefully) eventually implement, a plague vaccination program for prairie dogs. The project is a component of the WesternAssociation of Fish and Wildlife Agencies Grasslands Conservation Initiative. An effective, field-worthy vaccine against plaguecould be the biggest breakthrough in recovery efforts for the black-footed ferret since the 1981 rediscovery of wild ferrets nearMeeteetse, Wyoming. If proven efficacious, the vaccine could help agencies and stakeholder cooperators maintain specificpopulations of prairie dogs at robust levels, thus enhancing range-wide conservation of those species, as well recovery of the ferret,while enabling control of other prairie dog populations to resolve site-specific agricultural and human health concerns. The resultsof laboratory and field-testing in the early stages of developing this vaccine are preliminary but mostly encouraging. A plan forbroad-scale application is being developed for possible use when testing has been completed and (if warranted) the vaccine isregistered for governmental use. An overview of all aspects of the project is discussed.

  17. Investigation of climate change impacts on Prairie's petroleum industry in Canada

    International Nuclear Information System (INIS)

    Li, J.B.; Huang, G.H.; Chakma, A.; Huang, Y.F.; Zeng, G.M.

    2002-01-01

    Alberta, Saskatchewan, and Manitoba, the three Prairie provinces of Canada, and their economies strongly depend on the petroleum industry. However, climate change may have potential impacts on the sector that could reverberate onto the socio-economic fabric of the provinces. The petroleum industry in the Prairies is faced with a big challenge: how to adapt to the changing climatic conditions so that they maintain or improve their economic and environmental efficiencies. The attitudes of the different stakeholders concerning climate change and the appropriate measures to be implemented by the petroleum industry were obtained through a questionnaire-based survey conducted between February and June 2001. Based on the responses received, a Chi-square statistical test was applied to look at the complex interactions in the results. An analysis of a number of petroleum-related processes and activities vulnerable to climate change was performed. A sound foundation was obtained for the decision-making process on the climate change measures required in the petroleum industry in the Prairies. 14 refs., 7 tabs

  18. Map of mixed prairie grassland vegetation, Rocky Flats, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Clark, S J.V.; Webber, P J; Komarkova, V; Weber, W A

    1980-01-01

    A color vegetation map at the scale of 1:12,000 of the area surrounding the Rocky Flats, Rockwell International Plant near Boulder, Colorado, provides a permanent record of baseline data which can be used to monitor changes in both vegetation and environment and thus to contribute to future land management and land-use policies. Sixteen mapping units based on species composition were identified, and characterized by two 10-m/sup 2/ vegetation stands each. These were grouped into prairie, pasture, and valley side on the basis of their species composition. Both the mapping units and these major groups were later confirmed by agglomerative clustering analysis of the 32 vegetation stands on the basis of species composition. A modified Bray and Curtis ordination was used to determine the environmental factor complexes controlling the distribution of vegetation at Rocky flats. Recommendations are made for future policies of environmental management and predictions of the response to environmental change of the present vegetation at the Rocky Flats site.

  19. Interactive effects between nest microclimate and nest vegetation structure confirm microclimate thresholds for Lesser Prairie-Chicken nest survival

    Science.gov (United States)

    Grisham, Blake A.; Godar, Alixandra J.; Boal, Clint W.; Haukos, David A.

    2016-01-01

    The range of Lesser Prairie-Chickens (Tympanuchus pallidicinctus) spans 4 unique ecoregions along 2 distinct environmental gradients. The Sand Shinnery Oak Prairie ecoregion of the Southern High Plains of New Mexico and Texas is environmentally isolated, warmer, and more arid than the Short-Grass, Sand Sagebrush, and Mixed-Grass Prairie ecoregions in Colorado, Kansas, Oklahoma, and the northeast panhandle of Texas. Weather is known to influence Lesser Prairie-Chicken nest survival in the Sand Shinnery Oak Prairie ecoregion; regional variation may also influence nest microclimate and, ultimately, survival during incubation. To address this question, we placed data loggers adjacent to nests during incubation to quantify temperature and humidity distribution functions in 3 ecoregions. We developed a suite of a priori nest survival models that incorporated derived microclimate parameters and visual obstruction as covariates in Program MARK. We monitored 49 nests in Mixed-Grass, 22 nests in Sand Shinnery Oak, and 30 nests in Short-Grass ecoregions from 2010 to 2014. Our findings indicated that (1) the Sand Shinnery Oak Prairie ecoregion was hotter and drier during incubation than the Mixed- and Short-Grass ecoregions; (2) nest microclimate varied among years within ecoregions; (3) visual obstruction was positively associated with nest survival; but (4) daily nest survival probability decreased by 10% every half-hour when temperature was greater than 34°C and vapor pressure deficit was less than −23 mmHg during the day (about 0600–2100 hours). Our major finding confirmed microclimate thresholds for nest survival under natural conditions across the species' distribution, although Lesser Prairie-Chickens are more likely to experience microclimate conditions that result in nest failures in the Sand Shinnery Oak Prairie ecoregion. The species would benefit from identification of thermal landscapes and management actions that promote cooler, more humid nest microclimates.

  20. Breaking sod or breaking even? Flax on the northern Great Plains and Prairies, 1889-1930.

    Science.gov (United States)

    MacFayden, Joshua D

    2009-01-01

    A new thirst for paint and color in cities made extensive flax production profitable in the northern Great Plains and Prairies and contributed to the cultivation of the most fragile grassland ecosystems. The production of flax seed for linseed oil became an early spin-off of the Prairie wheat economy but, unlike wheat, flax vanished from old land after one or two rotations and reappeared in districts with the most new breaking. Officials explained the migrant crop as preparing native grasslands for cultivation or exhausting soil in old land, but farmers brought flax to their new breaking for other reasons. Producers would only put flax on any land when a range of economic and environmental conditions were in place. It was never sown without promise of adequately high prices or in the absence of affordable seed and other inputs. When price allowed, it usually appeared on new breaking because it could be planted later and transported further without upsetting the balance of other activities and without farmers learning many new techniques. Scientists discovered that diseased soil drove flax off old land, not soil exhaustion. Circumventing the disease was possible but costly, and farmers simply replaced flax with the next most lucrative commodity.

  1. Camel spider (Solifugae) use of prairie dog colonies

    Science.gov (United States)

    Solifugids (camel spiders) are widespread throughout arid regions of western North America and are thought to be important in structuring desert arthropod communities. Despite the ubiquity of camel spiders, little is known about their ecology. Black-tailed prairie dogs (Cynomys ludovicianus) are als...

  2. Deltamethrin flea-control preserves genetic variability of black-tailed prairie dogs during a plague outbreak

    Science.gov (United States)

    Jones, P.H.; Biggins, D.E.; Eads, D.A.; Eads, S.L.; Britten, H.B.

    2012-01-01

    Genetic variability and structure of nine black-tailed prairie dog (BTPD, Cynomys ludovicianus) colonies were estimated with 15 unlinked microsatellite markers. A plague epizootic occurred between the first and second years of sampling and our study colonies were nearly extirpated with the exception of three colonies in which prairie dog burrows were previously dusted with an insecticide, deltamethrin, used to control fleas (vectors of the causative agent of plague, Yersinia pestis). This situation provided context to compare genetic variability and structure among dusted and non-dusted colonies pre-epizootic, and among the three dusted colonies pre- and post-epizootic. We found no statistical difference in population genetic structures between dusted and non-dusted colonies pre-epizootic. On dusted colonies, gene flow and recent migration rates increased from the first (pre-epizootic) year to the second (post-epizootic) year which suggested dusted colonies were acting as refugia for prairie dogs from surrounding colonies impacted by plague. Indeed, in the dusted colonies, estimated densities of adult prairie dogs (including dispersers), but not juveniles (non-dispersers), increased from the first year to the second year. In addition to preserving BTPDs and many species that depend on them, protecting colonies with deltamethrin or a plague vaccine could be an effective method to preserve genetic variability of prairie dogs. ?? 2011 Springer Science+Business Media B.V.

  3. Effects of sexual dimorphism and landscape composition on the trophic behavior of Greater Prairie-Chicken.

    Directory of Open Access Journals (Sweden)

    Beatriz Blanco-Fontao

    Full Text Available Partitioning of ecological niche is expected in lekking species that show marked sexual size dimorphism as a consequence of sex-specific ecological constraints. However, niche partitioning is uncertain in species with moderate sexual dimorphism. In addition, the ecological niche of a species may also be affected by landscape composition; particularly, agricultural fragmentation may greatly influence the trophic behavior of herbivores. We studied trophic niche variation in Greater Prairie-Chickens (Tympanuchus cupido, a grouse species that shows moderate sex-dimorphism. Greater Prairie-Chickens are native to tallgrass prairies of North America, although populations persist in less natural mosaics of cropland and native habitats. We used stable isotope analysis of carbon and nitrogen in blood, claws and feathers to assess seasonal differences in trophic niche breadth and individual specialization between male and female Greater Prairie-Chickens, and between birds living in continuous and fragmented landscapes. We found that females showed broader niches and higher individual specialization than males, especially in winter and autumn. However, differences between females and males were smaller in spring when birds converge at leks, suggesting that females and males may exhibit similar feeding behaviors during the lekking period. In addition, we found that birds living in native prairies showed greater annual trophic variability than conspecifics in agricultural mosaic landscapes. Native habitats may provide greater dietary diversity, resulting in greater diversity of feeding strategies.

  4. Annual Fire, Mowing and Fertilization Effects on Two Cicada Species (Homoptera: Cicadidae) in Tallgrass Prairie

    Science.gov (United States)

    Mac A. Callaham; Matt R. Whiles; John M. Blair

    2002-01-01

    In tallgrass prairie, cicadas emerge annually, are abundant and their emergence can be an important flux of energy and nutrients. However, factors influencing the distribution and abundance of these cicadas are virtually unknown. We examined cicada emergence in plots from a long-term (13 y) experimental manipulation involving common tallgrass prairie management...

  5. Plant community variability on a small area in southeastern Montana

    Science.gov (United States)

    James G. MacCracken; Daniel W. Uresk; Richard M. Hansen

    1984-01-01

    Plant communities are inherently variable due to a number of environmental and biological forces. Canopy cover and aboveground biomass were determined for understory vegetation in plant communities of a prairie grassland-forest ecotone in southeastern Montana. Vegetation units were described using polar ordination and stepwise discriminant analysis. Nine of a total of...

  6. Radionuclides in small mammals of the Saskatchewan prairie, including implications for the boreal forest and Arctic tundra

    International Nuclear Information System (INIS)

    Thomas, P.A.

    1995-01-01

    The focus of the study reported was to collect and examine baseline data on radionuclides in small prairie mammal food chains and to assess the feasibility of using small mammals as radionuclide monitors in terrestrial ecosystems, in anticipation of possible future nuclear developments in northern Saskatchewan and the Northwest Territories. The study report begins with a literature review that summarizes existing data on radionuclides in small mammals, their food, the ambient environment in Canadian terrestrial ecosystems, principles of terrestrial radioecology, soil and vegetation studies, and food chain studies. It then describes a field study conducted to investigate small mammal food chains at three southwestern Saskatchewan prairie sites. Activities included collection and analysis of water, soil, grains, and foliage samples; trapping of small mammals such as mice and voles, and analysis of gastrointestinal tract samples; and determination of food chain transfer of selected radionuclides from soil to plants and to small mammals. Recommendations are made for future analyses and monitoring of small mammals. Appendices include information on radiochemical methods, soil/vegetation studies and small mammal studies conducted at northern Saskatchewan mine sites, and analyses of variance

  7. Native plants fare better against an introduced competitor with native microbes and lower nitrogen availability.

    Science.gov (United States)

    Gaya Shivega, W; Aldrich-Wolfe, Laura

    2017-01-24

    While the soil environment is generally acknowledged as playing a role in plant competition, the relative importance of soil resources and soil microbes in determining outcomes of competition between native and exotic plants has rarely been tested. Resilience of plant communities to invasion by exotic species may depend on the extent to which native and exotic plant performance are mediated by abiotic and biotic components of the soil. We used a greenhouse experiment to compare performance of two native prairie plant species and one exotic species, when grown in intraspecific competition and when each native was grown in interspecific competition with the exotic species, in the presence and absence of a native prairie soil community, and when nitrogen availability was elevated or was maintained at native prairie levels. We found that elevated nitrogen availability was beneficial to the exotic species and had no effect on or was detrimental to the native plant species, that the native microbial community was beneficial to the native plant species and either had no effect or was detrimental to the exotic species, and that intraspecific competition was stronger than interspecific competition for the exotic plant species and vice-versa for the natives. Our results demonstrate that soil nitrogen availability and the soil microbial community can mediate the strength of competition between native and exotic plant species. We found no evidence for native microbes enhancing the performance of the exotic plant species. Instead, loss of the native soil microbial community appears to reinforce the negative effects of elevated N on native plant communities and its benefits to exotic invasive species. Resilience of plant communities to invasion by exotic plant species is facilitated by the presence of an intact native soil microbial community and weakened by anthropogenic inputs of nitrogen. Published by Oxford University Press on behalf of the Annals of Botany Company.

  8. Tier 2 guidelines and remediation of Tebuthiuron on a native prairie site

    Energy Technology Data Exchange (ETDEWEB)

    Bessie, K.; Harckham, N.; Dance, T. [EBA Engineering Consultants Ltd., Calgary, AB (Canada); Burk, A. [EnCana Corp., Calgary, AB (Canada); Stephenson, G. [Stantec Consulting, Guelph, ON (Canada); Corbet, B. [Access Analytical Laboratories Inc., Calgary, AB (Canada)

    2009-10-01

    Tebuthiuron is a sterilant used to control vegetation at upstream and midstream petroleum sites. This article discussed the remediation processes used to reclaim a native prairie site contaminated with tebuthiuron. The site was located within a dry mixed grass natural area. A literature review was conducted to establish soil eco-contact guidelines specific to tebuthiuron. A site-specific ecotoxicity assessment was then conducted using a liquid chromatograph to detect tebuthiuron limits in the contaminated soils. A soil sampling technique was used to delineate the affected areas at the site. Site soils were spiked with various concentrations of tebuthiuron ranging from 0.00003 mg/kg to 3000 mg/kg. Test species included a Folsomia candida, an earthworm, and 4 plant species. The study showed that the invertebrate species were less sensitive to tebuthiuron than the plant species. A groundwater assessment showed that tebuthiuron levels exceeded Tier 1 groundwater remediation guidelines. A multilayer hydro-geological model showed that remediation guidelines were orders of magnitude greater than Tier 1 groundwater remediation. A thermal desorption technique was used to remediate the site. 7 refs., 8 figs.

  9. Prairies Water Management on Corps Lands

    Science.gov (United States)

    2009-02-01

    infiltration, autogenic mechanisms can lead to the recovery of essential soil processes. The Role of Organic Matter in Soil Formation. In a prairie...management in EP-1130-2-540 (USACE 2005), and does not have a fire management training program in place (USACE 2008). Some Corps resource managers...are trained and partner with other entities to conduct prescribed burns on Corps grasslands. However, prescribed burning as a management strategy is

  10. Effects of foliar herbivory by insects on the fitness of Raphanus raphanistrum: damage can increase male fitness.

    Science.gov (United States)

    Strauss, S Y; Conner, J K; Lehtilä, K P

    2001-11-01

    Generally, effects of herbivory on plant fitness have been measured in terms of female reproductive success (seed production). However, male plant fitness, defined as the number of seeds sired by pollen, contributes half of the genes to the next generation and is therefore crucial to the evolution of natural plant populations. This is the first study to examine effects of insect herbivory on both male and female plant reproductive success. Through controlled field and greenhouse experiments and genetic paternity analysis, we found that foliar damage by insects caused a range of responses by plants. In one environment, damaged plants had greater success as male parents than undamaged plants. Neither effects on pollen competitive ability nor pollinator visitation patterns could explain the greater siring success of these damaged plants. Success of damaged plants as male parents appeared to be due primarily to changes in allocation to flowers versus seeds after damage. Damaged plants produced more flowers early in the season, but not more seeds, than undamaged plants. Based on total seed production, male fitness measures from the first third of the season, and flower production, we estimated that damaged and undamaged plants had equal total reproductive success at the end of the season in this environment. In a second, richer environment, damaged and undamaged plants had equal male and female plant fitness, and no traits differed significantly between the treatments. Equal total reproductive success may not be ecologically or evolutionarily equivalent if it is achieved differentially through male versus female fitness. Genes from damaged plants dispersed through pollen may escape attack from herbivores, if such attack is correlated spatially from year to year.

  11. Dynamic Disturbance Processes Create Dynamic Lek Site Selection in a Prairie Grouse.

    Directory of Open Access Journals (Sweden)

    Torre J Hovick

    Full Text Available It is well understood that landscape processes can affect habitat selection patterns, movements, and species persistence. These selection patterns may be altered or even eliminated as a result of changes in disturbance regimes and a concomitant management focus on uniform, moderate disturbance across landscapes. To assess how restored landscape heterogeneity influences habitat selection patterns, we examined 21 years (1991, 1993-2012 of Greater Prairie-Chicken (Tympanuchus cupido lek location data in tallgrass prairie with restored fire and grazing processes. Our study took place at The Nature Conservancy's Tallgrass Prairie Preserve located at the southern extent of Flint Hills in northeastern Oklahoma. We specifically addressed stability of lek locations in the context of the fire-grazing interaction, and the environmental factors influencing lek locations. We found that lek locations were dynamic in a landscape with interacting fire and grazing. While previous conservation efforts have treated leks as stable with high site fidelity in static landscapes, a majority of lek locations in our study (i.e., 65% moved by nearly one kilometer on an annual basis in this dynamic setting. Lek sites were in elevated areas with low tree cover and low road density. Additionally, lek site selection was influenced by an interaction of fire and patch edge, indicating that in recently burned patches, leks were located near patch edges. These results suggest that dynamic and interactive processes such as fire and grazing that restore heterogeneity to grasslands do influence habitat selection patterns in prairie grouse, a phenomenon that is likely to apply throughout the Greater Prairie-Chicken's distribution when dynamic processes are restored. As conservation moves toward restoring dynamic historic disturbance patterns, it will be important that siting and planning of anthropogenic structures (e.g., wind energy, oil and gas and management plans not view lek

  12. Direct and indirect responses of tallgrass prairie butterflies to prescribed burning

    Science.gov (United States)

    Vogel, Jennifer A.; Koford, Rolf R.; Debinski, Diane M.

    2010-01-01

    Fire is an important tool in the conservation and restoration of tallgrass prairie ecosystems. We investigated how both the vegetation composition and butterfly community of tallgrass prairie remnants changed in relation to the elapsed time (in months) since prescribed fire. Butterfly richness and butterfly abundance were positively correlated with the time since burn. Habitat-specialist butterfly richness recovery time was greater than 70 months post-fire and habitat-specialist butterfly abundance recovery time was approximately 50 months post-fire. Thus, recovery times for butterfly populations after prescribed fires in our study were potentially longer than those previously reported. We used Path Analysis to evaluate the relative contributions of the direct effect of time since fire and the indirect effects of time since fire through changes in vegetation composition on butterfly abundance. Path models highlighted the importance of the indirect effects of fire on habitat features, such as increases in the cover of bare ground. Because fire return intervals on managed prairie remnants are often less than 5 years, information on recovery times for habitat-specialist insect species are of great importance. ?? 2010 Springer Science+Business Media B.V.

  13. Preliminary study of prairies forested with Eucalyptus sp. at the northwestern Uruguayan soils

    International Nuclear Information System (INIS)

    Carrasco-Letelier, L.; Eguren, G.; Castineira, C.; Parra, O.; Panario, D.

    2004-01-01

    The forestation of Uruguayan natural prairie soil does not always ensure an increase of soil carbon sink. - The land cover change of Uruguayan Forestal Plan provoked biogeochemical changes on horizon Au 1 of Argiudols; in native prairies which were replaced by monoculture Eucalyptus sp. plantation with 20 year rotations as trees. Five fields forested and six natural prairies were compared. The results not only show a statistical significant soil acidification, diminution of soil organic carbon, increase of aliphaticity degree of humic substances, and increase of affinity and capacity of hydrolytic activity from soil microbial communities for forested sites with Eucalyptus sp. but also, a tendency of podzolization and/or mineralization by this kind of land cover changes, with a net soil organic lost of 16.6 tons ha -1 in the horizon Au 1 of soil under Eucalyptus sp. plantation compared with prairie. Besides, these results point out the necessity of correction of the methodology used by assigned Uruguayan commission to assess the national net emission of greenhouse gases, since the mineralization and/or podzolization process detected in forested soil imply a overestimation of soil organic carbon. The biochemical parameters show a statistical significant correlation between the soil organic carbon status and these parameters which were presented as essential for the correct evaluation of Uruguayan soil carbon sink

  14. Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands

    Science.gov (United States)

    Symstad, Amy J.; Jonas, Jayne L.

    2011-01-01

    Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity.

  15. Climate impacts on the agribusiness sectors of a prairie economy

    International Nuclear Information System (INIS)

    Arthur, L.M.; Kooten, G.C. Van.

    1992-01-01

    Global warming is likely to result in increased agricultural output on the Canadian prairies. However, using input-output analysis, it is shown that the potential impact of global warming on agribusiness, while significant, is both uncertain and relatively small compared to the impact of government agricultural policies pertaining to the grain and livestock sectors. Furthermore, caution is required in deciding whether or not western Canada and prairie agribusinesses are net beneficiaries of a greenhouse effect because climate-induced changes in agricultural output elsewhere in the world still need to be taken into account. Most previous studies on American and European agriculture under the greenhouse effect predict reduced yields of current crops, which could mean improved markets for Canadian crops. 27 refs., 4 figs., 2 tabs

  16. Using occupancy models to investigate the prevalence of ectoparasitic vectors on hosts: an example with fleas on prairie dogs

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Doherty, Paul F.; Gage, Kenneth L.; Huyvaert, Kathryn P.; Long, Dustin H.; Antolin, Michael F.

    2013-01-01

    Ectoparasites are often difficult to detect in the field. We developed a method that can be used with occupancy models to estimate the prevalence of ectoparasites on hosts, and to investigate factors that influence rates of ectoparasite occupancy while accounting for imperfect detection. We describe the approach using a study of fleas (Siphonaptera) on black-tailed prairie dogs (Cynomys ludovicianus). During each primary occasion (monthly trapping events), we combed a prairie dog three consecutive times to detect fleas (15 s/combing). We used robust design occupancy modeling to evaluate hypotheses for factors that might correlate with the occurrence of fleas on prairie dogs, and factors that might influence the rate at which prairie dogs are colonized by fleas. Our combing method was highly effective; dislodged fleas fell into a tub of water and could not escape, and there was an estimated 99.3% probability of detecting a flea on an occupied host when using three combings. While overall detection was high, the probability of detection was always dogs, flea occupancy was heightened in old/natural colonies of prairie dogs, and on hosts that were in poor condition. Occupancy was initially low in plots with high densities of prairie dogs, but, as the study progressed, the rate of flea colonization increased in plots with high densities of prairie dogs in particular. Our methodology can be used to improve studies of ectoparasites, especially when the probability of detection is low. Moreover, the method can be modified to investigate the co-occurrence of ectoparasite species, and community level factors such as species richness and interspecific interactions.

  17. Buried Alive! An Investigation of Plant Dormancy

    Science.gov (United States)

    Allen, Ashley J.; Balschweid, Mark; Hammond, Paul; Henderson, Brian; Johnson, Peggy A.; Kite, Abigayle; Martin, Stephanie

    2004-01-01

    In this investigation, pairs of upper elementary students test germination percentage using seeds of Indian corn ("Zea mays"), scarlet runner beans ("Phaseolus coccineus"), and the prairie cup-plant ("Silphium perfoliatum") grown on rolled, damp paper towels. The pairs compare seeds that have been stratified, a simulation of overwintering and…

  18. Effects of herbivory on the reproductive effort of 4 prairie perennials

    Directory of Open Access Journals (Sweden)

    Bradley Kate L

    2002-02-01

    Full Text Available Abstract Background Herbivory can affect every aspect of a plant's life. Damaged individuals may show decreased survivorship and reproductive output. Additionally, specific plant species (legumes and tissues (flowers are often selectively targeted by herbivores, like deer. These types of herbivory influence a plant's growth and abundance. The objective of this study was to identify the effects of leaf and meristem removal (simulated herbivory within an exclosure on fruit and flower production in four species (Rhus glabra, Rosa arkansana, Lathyrus venosus, and Phlox pilosa which are known targets of deer herbivory. Results Lathyrus never flowered or went to seed, so we were unable to detect any treatment effects. Leaf removal did not affect flower number in the other three species. However, Phlox, Rosa, and Rhus all showed significant negative correlations between seed mass and leaf removal. Meristem removal had a more negative effect than leaf removal on flower number in Phlox and on both flower number and seed mass in Rosa. Conclusions Meristem removal caused a greater response than defoliation alone in both Phlox and Rosa, which suggests that meristem loss has a greater effect on reproduction. The combination of leaf and meristem removal as well as recruitment limitation by deer, which selectively browse for these species, is likely to be one factor contributing to their low abundance in prairies.

  19. Prairie Restoration Project: Alternatives for Identifying Gifted Students

    Science.gov (United States)

    Salisbury, Katie E.; Rule, Audrey C.; Vander Zanden, Sarah M.

    2016-01-01

    An authentic, challenging curriculum engaged middle school students from an urban district in exploratory work related to restoring a small prairie at the school. Integrated science-literacy-arts activities were coupled with a system of thinking skills that helped students view issues from different perspectives. Impassioned guest speakers and an…

  20. Valuing ecosystem and economic services across land-use scenarios in the Prairie Pothole Regions of the Dakotas, USA

    Science.gov (United States)

    Gascoigne, William R.; Hoag, Dana; Koontz, Lynne; Tangen, Brian A.; Shaffer, Terry L.; Gleason, Robert A.

    2011-01-01

    This study uses biophysical values derived for the Prairie Pothole Region (PPR) of North and South Dakota, in conjunction with value transfer methods, to assess environmental and economic tradeoffs under different policy-relevant land-use scenarios over a 20-year period. The ecosystem service valuation is carried out by comparing the biophysical and economic values of three focal services (i.e. carbon sequestration, reduction in sedimentation, and waterfowl production) across three focal land uses in the region [i.e. native prairie grasslands, lands enrolled in the Conservation Reserve and Wetlands Reserve Programs (CRP/WRP), and cropland]. This study finds that CRP/WRP lands cannot mitigate (hectare for hectare) the loss of native prairie from a social welfare standpoint. Land use scenarios where native prairie loss was minimized, and CRP/WRP lands were increased, provided the most societal benefit. The scenario modeling projected native prairie conversion to cropland over the next 20 years would result in a social welfare loss valued at over $4 billion when considering the study's three ecosystem services, and a net loss of about $3.4 billion when reductions in commodity production are accounted for.

  1. Nesting ecology and nest survival of lesser prairie-chickens on the Southern High Plains of Texas

    Science.gov (United States)

    Grisham, Blake A.; Borsdorf, Philip K.; Boal, Clint W.; Boydston, Kathy K.

    2014-01-01

    The decline in population and range of lesser prairie-chickens (Tympanuchus pallidicinctus) throughout the central and southern Great Plains has raised concerns considering their candidate status under the United States Endangered Species Act. Baseline ecological data for lesser prairie-chickens are limited, especially for the shinnery oak-grassland communities of Texas. This information is imperative because lesser prairie-chickens in shinnery oak grasslands occur at the extreme southwestern edge of their distribution. This geographic region is characterized by hot, arid climates, less fragmentation, and less anthropogenic development than within the remaining core distribution of the species. Thus, large expanses of open rangeland with less anthropogenic development and a climate that is classified as extreme for ground nesting birds may subsequently influence nest ecology, nest survival, and nest site selection differently compared to the rest of the distribution of the species. We investigated the nesting ecology of 50 radio-tagged lesser prairie-chicken hens from 2008 to 2011 in the shinnery oak-grassland communities in west Texas and found a substantial amount of inter-annual variation in incubation start date and percent of females incubating nests. Prairie-chickens were less likely to nest near unimproved roads and utility poles and in areas with more bare ground and litter. In contrast, hens selected areas dominated by grasses and shrubs and close to stock tanks to nest. Candidate models including visual obstruction best explained daily nest survival; a 5% increase in visual obstruction improved nest survival probability by 10%. The model-averaged probability of a nest surviving the incubation period was 0.43 (SE = 0.006; 95% CI: 0.23, 0.56). Our findings indicate that lesser prairie-chicken reproduction during our study period was dynamic and was correlated with seasonal weather patterns that ultimately promoted greater grass growth earlier in the

  2. Alcohol’s Effects on Pair-Bond Maintenance in Male Prairie Voles

    Directory of Open Access Journals (Sweden)

    Andre T. Walcott

    2017-11-01

    Full Text Available Alcohol abuse can have devastating effects on social relationships. In particular, discrepant patterns of heavy alcohol consumption are associated with increased rates of separation and divorce. Previous studies have attempted to model these effects of alcohol using socially monogamous prairie voles. These studies showed that alcohol consumption can inhibit the formation of pair bonds in this species. While these findings indicated that alcohol’s effects on social attachments can involve biological mechanisms, the formation of pair bonds does not properly model long-term human attachments. To overcome this caveat, this study explored whether discordant or concordant alcohol consumption between individuals within established pairs affects maintenance of pair bonds in male prairie voles. Male and female prairie voles were allowed to form a pair bond for 1 week. Following this 1-week cohabitation period, males received access to 10% continuous ethanol; meanwhile, their female partners had access to either alcohol and water or just water. When there was a discrepancy in alcohol consumption, male prairie voles showed a decrease in partner preference (PP. Conversely, when concordant drinking occurred, males showed no inhibition in PP. Further analysis revealed a decrease in oxytocin immunoreactivity in the paraventricular nucleus of alcohol-exposed males that was independent of the drinking status of their female partners. On the other hand, only discordant alcohol consumption resulted in an increase of FosB immunoreactivity in the periaqueductal gray of male voles, a finding suggesting a potential involvement of this brain region in the effects of alcohol on maintenance of pair bonds. Our studies provide the first evidence that alcohol has effects on established pair bonds and that partner drinking status plays a large role in these effects.

  3. The influence of environment, sex, and innate timing mechanisms on body temperature patterns of free-ranging black-tailed prairie dogs (Cynomys ludovicianus).

    Science.gov (United States)

    Lehmer, Erin M; Bossenbroek, Jonathan M; Van Horne, Beatrice

    2003-01-01

    Mechanisms that influence body temperature patterns in black-tailed prairie dogs are not well understood. Previous research on both free-ranging and laboratory populations of black-tailed prairie dogs (Cynomys ludovicianus) has suggested that reductions in ambient temperature and food and water deprivation are the primary factors that stimulate torpor in this species. In other species, however, torpor has been shown to be influenced by a multitude of factors, including innate circadian and circannual timing mechanisms, energy status, and reproductive behaviors. Our objective was to clarify the influence of weather, sex, and intrinsic timing mechanisms on the body temperature patterns of free-ranging black-tailed prairie dogs. We monitored body temperatures of eight adult (>1 yr) prairie dogs from November 1999 to June 2000. Prairie dogs showed distinct daily and seasonal body temperature patterns, which reflected changes in ambient temperatures that occurred during these periods. These patterns of daily and seasonal heterothermy suggest that body temperature patterns of black-tailed prairie dogs may be driven by an innate timing mechanism. All prairie dogs entered torpor intermittently throughout winter and spring. Torpor bouts appeared to be influenced by precipitation and reductions in ambient temperature. Our results also suggest that reproductive behaviors and circadian timing may influence torpor in this species.

  4. Plant-conservative agriculture of acid and degraded Raña-grassland enhances diversity of the common soil mites (Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Jorrín, J.; González-Fernández, P.

    2016-11-01

    The seminatural prairie of the Raña of Cañamero (Spain) is a degraded and unproductive agrosystem with acid and stony soils, and low coverage of xerophytic grasses. In a project about secondary reconversion of the raña-prairie to a more productive cropland, an experimental field (EF) was established to assess the effect on plot-productivity of the interaction between correction of soil pH (liming) with three cropping systems: a no-tilled and annually fertilized and improved prairies, and a conventionally-tilled forage crop. The EF model of management was designed as plant-conservative, because no herbicide was applied after seeding to preserve the post-emergence of wild herbs and the natural grass diversity of the prairie. Between 2008 and 2012, we analysed the effect of managing factors (initial conventional-tillage, fertilization, liming and cropping) and agricultural predictors (pH, C:N ratio, soil bulk density and herbaceous biomass) on the alpha(α)-diversity of one of the major group of soil animals, the oribatids. In relation to the raña-prairie, all EF-plots improved their soil bulk density (ρs) and herbaceous biomass (t/ha), and enhanced desirable α-diversity values (richness, abundance and community equity). We conclude that the plant-conservative model: i) do not affect statistically the species richness of the prairie; ii) the desirable α-diversity responses are negatively correlated with soil bulk density and positively with herbaceous biomass, and iii) the low input or minimum intervention model, of an initial and conventional till and annual fertilisation, is the threshold and optimal model of agricultural management to improving oribatids diversity of the raña-soil. (Author)

  5. Oxytocin reduces alcohol consumption in prairie voles.

    Science.gov (United States)

    Stevenson, J R; Wenner, S M; Freestone, D M; Romaine, C C; Parian, M C; Christian, S M; Bohidar, A E; Ndem, J R; Vogel, I R; O'Kane, C M

    2017-10-01

    Alcohol use disorder (AUD) negatively affects millions of people every year in the United States, and effective treatments for AUD are still needed. The neuropeptide oxytocin has shown promise for reducing alcohol drinking in mice and rats. Because oxytocin also plays a key role in complex prosocial behaviors like bonding and attachment, we tested the effect of oxytocin on alcohol drinking in prairie voles, a species that both consumes high amounts of alcohol and forms oxytocin dependent social bonds in a manner similar to humans. Oxytocin treatment (1.0, 3.0, and 10.0mg/kg, i.p.) reduced alcohol consumption in male and female prairie voles in animals that had access to 15% ethanol vs water every other day for 12 alcohol drinking sessions. In animals with continuous access to 15% alcohol and water, oxytocin (3.0mg/kg) reduced alcohol consumption only in the first hour of access after treatment, with no significant effects on consumption over the 24-hr period. In an open field locomotor test, oxytocin (1.0, 3.0, and 10.0mg/kg, i.p.) did not affect overall locomotor activity; however, ethanol (2g/kg, i.p.) increased locomotor activity in males and females, and produced anxiolytic effects (increased time in the center of an open field) in females only. Because prairie voles have been shown to match the alcohol consumption of their cage mate, we evaluated the relationship between cage mates' alcohol drinking. There was an overall pattern of social facilitation (consumption by one cage mate predicted consumption by the other cage mate); however, we found significant individual differences across cages in which many cages did not show significant matching, and, in some cases one cage mate's consumption negatively predicted the other cage mate's consumption. Overall, our data provide support for the potential of oxytocin as a treatment to reduce alcohol consumption. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. 75 FR 70021 - South Dakota Prairie Winds Project; Partial Term Relinquishment and Release of Easement for Wind...

    Science.gov (United States)

    2010-11-16

    ... requested financing for the project from the RUS. PW SD1 has also submitted an application to the Service to...] South Dakota Prairie Winds Project; Partial Term Relinquishment and Release of Easement for Wind Energy... impact statement (FEIS) on the South Dakota Prairie Winds Project issued by the Department of Energy's...

  7. Plant Fitness Assessment for Wild Relatives of Insect Resistant Bt-Crops

    Directory of Open Access Journals (Sweden)

    D. K. Letourneau

    2012-01-01

    Full Text Available When field tests of transgenic plants are precluded by practical containment concerns, manipulative experiments can detect potential consequences of crop-wild gene flow. Using topical sprays of bacterial Bacillus thuringiensis larvicide (Bt and larval additions, we measured fitness effects of reduced herbivory on Brassica rapa (wild mustard and Raphanus sativus (wild radish. These species represent different life histories among the potential recipients of Bt transgenes from Bt cole crops in the US and Asia, for which rare spontaneous crosses are expected under high exposure. Protected wild radish and wild mustard seedlings had approximately half the herbivore damage of exposed plants and 55% lower seedling mortality, resulting in 27% greater reproductive success, 14-day longer life-spans, and 118% more seeds, on average. Seed addition experiments in microcosms and in situ indicated that wild radish was more likely to spread than wild mustard in coastal grasslands.

  8. Widespread Use and Frequent Detection of Neonicotinoid Insecticides in Wetlands of Canada's Prairie Pothole Region

    OpenAIRE

    Main, Anson R.; Headley, John V.; Peru, Kerry M.; Michel, Nicole L.; Cessna, Allan J.; Morrissey, Christy A.

    2014-01-01

    Neonicotinoids currently dominate the insecticide market as seed treatments on Canada's major Prairie crops (e.g., canola). The potential impact to ecologically significant wetlands in this dominantly agro-environment has largely been overlooked while the distribution of use, incidence and level of contamination remains unreported. We modelled the spatial distribution of neonicotinoid use across the three Prairie Provinces in combination with temporal assessments of water and sediment concent...

  9. Specificity in Sociality: Mice and Prairie Voles Exhibit Different Patterns of Peer Affiliation

    Science.gov (United States)

    Beery, Annaliese K.; Christensen, Jennifer D; Lee, Nicole S.; Blandino, Katrina L.

    2018-01-01

    Social behavior is often described as a unified concept, but highly social (group-living) species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster) are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex) during extended choice tests, although short-term preferences are not known. Mice (Mus musculus) are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT) typically used in mice (short, no direct contact), and the partner preference test (PPT) used in voles (long, direct contact). A subset of voles also underwent a PPT using barriers (long, no direct contact). In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of selective social

  10. Specificity in Sociality: Mice and Prairie Voles Exhibit Different Patterns of Peer Affiliation

    Directory of Open Access Journals (Sweden)

    Annaliese K. Beery

    2018-03-01

    Full Text Available Social behavior is often described as a unified concept, but highly social (group-living species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex during extended choice tests, although short-term preferences are not known. Mice (Mus musculus are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT typically used in mice (short, no direct contact, and the partner preference test (PPT used in voles (long, direct contact. A subset of voles also underwent a PPT using barriers (long, no direct contact. In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of

  11. Spread of plague among black-tailed prairie dogs is associated with colony spatial characteristics

    Science.gov (United States)

    Johnson, T.L.; Cully, J.F.; Collinge, S.K.; Ray, C.; Frey, C.M.; Sandercock, B.K.

    2011-01-01

    Sylvatic plague (Yersinia pestis) is an exotic pathogen that is highly virulent in black-tailed prairie dogs (Cynomys ludovicianus) and causes widespread colony losses and individual mortality rates >95%. We investigated colony spatial characteristics that may influence inter-colony transmission of plague at 3 prairie dog colony complexes in the Great Plains. The 4 spatial characteristics we considered include: colony size, Euclidean distance to nearest neighboring colony, colony proximity index, and distance to nearest drainage (dispersal) corridor. We used multi-state mark-recapture models to determine the relationship between these colony characteristics and probability of plague transmission among prairie dog colonies. Annual mapping of colonies and mark-recapture analyses of disease dynamics in natural colonies led to 4 main results: 1) plague outbreaks exhibited high spatial and temporal variation, 2) the site of initiation of epizootic plague may have substantially influenced the subsequent inter-colony spread of plague, 3) the long-term effect of plague on individual colonies differed among sites because of how individuals and colonies were distributed, and 4) colony spatial characteristics were related to the probability of infection at all sites although the relative importance and direction of relationships varied among sites. Our findings suggest that conventional prairie dog conservation management strategies, including promoting large, highly connected colonies, may need to be altered in the presence of plague. ?? 2011 The Wildlife Society.

  12. The relative contribution of climate to changes in lesser prairie-chicken abundance

    Science.gov (United States)

    Ross, Beth E.; Haukos, David A.; Hagen, Christian A.; Pitman, James

    2016-01-01

    Managing for species using current weather patterns fails to incorporate the uncertainty associated with future climatic conditions; without incorporating potential changes in climate into conservation strategies, management and conservation efforts may fall short or waste valuable resources. Understanding the effects of climate change on species in the Great Plains of North America is especially important, as this region is projected to experience an increased magnitude of climate change. Of particular ecological and conservation interest is the lesser prairie-chicken (Tympanuchus pallidicinctus), which was listed as “threatened” under the U.S. Endangered Species Act in May 2014. We used Bayesian hierarchical models to quantify the effects of extreme climatic events (extreme values of the Palmer Drought Severity Index [PDSI]) relative to intermediate (changes in El Niño Southern Oscillation) and long-term climate variability (changes in the Pacific Decadal Oscillation) on trends in lesser prairie-chicken abundance from 1981 to 2014. Our results indicate that lesser prairie-chicken abundance on leks responded to environmental conditions of the year previous by positively responding to wet springs (high PDSI) and negatively to years with hot, dry summers (low PDSI), but had little response to variation in the El Niño Southern Oscillation and the Pacific Decadal Oscillation. Additionally, greater variation in abundance on leks was explained by variation in site relative to broad-scale climatic indices. Consequently, lesser prairie-chicken abundance on leks in Kansas is more strongly influenced by extreme drought events during summer than other climatic conditions, which may have negative consequences for the population as drought conditions intensify throughout the Great Plains.

  13. Restoring fire as an ecological process in shortgrass prairie ecosystems: initial effects of prescribed burning during the dormant and growing seasons.

    Science.gov (United States)

    Brockway, Dale G; Gatewood, Richard G; Paris, Randi B

    2002-06-01

    Prior to Anglo-European settlement, fire was a major ecological process influencing the structure, composition and productivity of shortgrass prairie ecosystems on the Great Plains. However during the past 125 years, the frequency and extent of grassland fire has dramatically declined as a result of the systematic heavy grazing by large herds of domestic cattle and sheep which reduced the available levels of fine fuel and organized fire suppression efforts that succeeded in altering the natural fire regime. The greatly diminished role of recurrent fire in these ecosystems is thought to be responsible for ecologically adverse shifts in the composition, structure and diversity of these grasslands, leading specifically to the rise of ruderal species and invasion by less fire-tolerant species. The purpose of this study was to evaluate the ecological effects of fire season and frequency on the shortgrass prairie and to determine the means by which prescribed fire can best be restored in this ecosystem to provide the greatest benefit for numerous resource values. Plant cover, diversity, biomass and nutrient status, litter cover and soil chemistry were measured prior to and following fire treatments on a buffalograss-blue grama shortgrass prairie in northeastern New Mexico. Dormant-season fire was followed by increases in grass cover, forb cover, species richness and concentrations of foliar P, K, Ca, Mg and Mn. Growing-season fire produced declines in the cover of buffalograss, graminoids and forbs and increases in litter cover and levels of foliar P, K, Ca and Mn. Although no changes in soil chemistry were observed, both fire treatments caused decreases in herbaceous production, with standing biomass resulting from growing-season fire approximately 600 kg/ha and dormant-season fire approximately 1200 kg/ha, compared with controls approximately 1800 kg/ha. The initial findings of this long-term experiment suggest that dormant-season burning may be the preferable method

  14. Use of vegetation sampling and analysis to detect a problem within a portion of a prairie restoration project.

    Science.gov (United States)

    Franson, Raymond; Scholes, Chad; Krabbe, Stephen

    2017-01-02

    In June 2005, the Department of Energy (DOE) began establishing the 60-ha Howell Prairie around the disposal cell at the DOE Weldon Spring Site (WSS). Prairies were historically present in the area of the site. Quantitative Cover sampling was used to quantify Total Cover, Native Grass Cover, Non-Native Grass Cover, Native Forb Cover, Non-Native Forb Cover, Warm Season (C 4 Grass), Cool Season (C 3 Grass), Perennial Cover and Annual Cover, Litter, and Bare Ground. Four permanent vegetation sampling plots were established. The first 4 years of vegetation measurements at Howell Prairie were made during above-average rainfall years on burned and unburned plots. The fifth-year (2012) vegetation measurements were made after below-average rainfall. Five years of results not only document the consistency of the restoration effort in three areas, but also demonstrate deficiencies in Grass Cover in a fourth area. The results are not only useful for Howell Prairie, but will be useful for restoration work throughout the region. Restoration work suffers from a lack of success monitoring and in this case from a lack of available reference areas. Floristic Quality Indices are used to make qualitative comparisons of the site to Konza Prairie sites.

  15. The innate immune response may be important for surviving plague in wild Gunnison's prairie dogs

    Science.gov (United States)

    Busch, Joseph D.; Van Andel, Roger; Stone, Nathan E.; Cobble, Kacy R.; Nottingham, Roxanne; Lee, Judy; VerSteeg, Michael; Corcoran, Jeff; Cordova, Jennifer; Van Pelt, William E.; Shuey, Megan M.; Foster, Jeffrey T.; Schupp, James M.; Beckstrom-Sternberg, Stephen; Beckstrom-Sternberg, James; Keim, Paul; Smith, Susan; Rodriguez-Ramos, Julia; Williamson, Judy L.; Rocke, Tonie E.; Wagner, David M.

    2013-01-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis, with ≥99% mortality reported from multiple studies of plague epizootics. A colony of Gunnison's prairie dogs (Cynomys gunnisoni) in the Aubrey Valley (AV) of northern Arizona appears to have survived several regional epizootics of plague, whereas nearby colonies have been severely affected by Y. pestis. To examine potential mechanisms accounting for survival in the AV colony, we conducted a laboratory Y. pestis challenge experiment on 60 wild-caught prairie dogs from AV and from a nearby, large colony with frequent past outbreaks of plague, Espee (n = 30 per colony). Test animals were challenged subcutaneously with the fully virulent Y. pestis strain CO92 at three doses: 50, 5,000, and 50,000 colony-forming units (cfu); this range is lethal in black-tailed prairie dogs (Cynomys ludovicianus). Contrary to our expectations, only 40% of the animals died. Although mortality trended higher in the Espee colony (50%) compared with AV (30%), the differences among infectious doses were not statistically significant. Only 39% of the survivors developed moderate to high antibody levels to Y. pestis, indicating that mechanisms other than humoral immunity are important in resistance to plague. The ratio of neutrophils to lymphocytes was not correlated with plague survival in this study. However, several immune proteins with roles in innate immunity (VCAM-1, CXCL-1, and vWF) were upregulated during plague infection and warrant further inquiry into their role for protection against this disease. These results suggest plague resistance exists in wild populations of the Gunnison's prairie dog and provide important directions for future studies.

  16. Selected hydrologic data, Camas Prairie, south-central Idaho

    Science.gov (United States)

    Young, H.W.; Backsen, R.L.; Kenyon, K.S.

    1978-01-01

    This report presents data collected during a 1-year study of the water resources of Camas Prairie, Idaho. Included are records of wells, discharge measurements of streams, hydrographs of water levels in wells, water-quality data, and drillers ' logs of wells. The data are conveniently made available to supplement an interpretive report, which will be published separately. (Woodard-USGS)

  17. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    Science.gov (United States)

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Grisham, Blake A.; Timmer, Jennifer M.; Boal, Clint W.; Butler, Matthew; Pitman, James C.; Kyle, Sean; Klute, David; Beauprez, Grant M.; Janus, Allan; Van Pelt, William E.

    2016-01-01

    Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  18. Land use effects on pesticides in sediments of prairie pothole wetlands in North and South Dakota

    Science.gov (United States)

    McMurry, Scott T.; Belden, Jason B.; Smith, Loren M.; Morrison, Shane A.; Daniel, Dale W.; Euliss, Betty R.; Euliss, Ned H. Jr.; Kensinger, Bart J.; Tangen, Brian

    2016-01-01

    Prairie potholes are the dominant wetland type in the intensively cultivated northern Great Plains of North America, and thus have the potential to receive pesticide runoff and drift. We examined the presence of pesticides in sediments of 151 wetlands split among the three dominant land use types, Conservation Reserve Program (CRP), cropland, and native prairie, in North and South Dakota in 2011. Herbicides (glyphosate and atrazine) and fungicides were detected regularly, with no insecticide detections. Glyphosate was the most detected pesticide, occurring in 61% of all wetlands, with atrazine in only 8% of wetlands. Pyraclostrobin was one of five fungicides detected, but the only one of significance, being detected in 31% of wetlands. Glyphosate was the only pesticide that differed by land use, with concentrations in cropland over four-times that in either native prairie or CRP, which were equal in concentration and frequency of detection. Despite examining several landscape variables, such as wetland proximity to specific crop types, watershed size, and others, land use was the best variable explaining pesticide concentrations in potholes. CRP ameliorated glyphosate in wetlands at concentrations comparable to native prairie and thereby provides another ecosystem service from this expansive program.

  19. Students' Perceptions of a Highly Controversial yet Keystone Species, the Black-Tailed Prairie Dog: A Case Study

    Science.gov (United States)

    Fox-Parrish, Lynne; Jurin, Richard R.

    2008-01-01

    The authors used a case-study methodology to explore the perceptions of 30 9th-grade biology students relative to black-tailed prairie dogs. The case study, which involved classroom- and field-based experiences that focused on black-tailed prairie dogs, revealed 3 major themes: apathy, egocentrism, and naive conceptions. The authors had hoped that…

  20. Plant toxicity, adaptive herbivory, and plant community dynamics

    Science.gov (United States)

    Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.

  1. Canola Root–Associated Microbiomes in the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    Chih-Ying Lay

    2018-06-01

    Full Text Available Canola is one of the most economically important crops in Canada, and the root and rhizosphere microbiomes of a canola plant likely impact its growth and nutrient uptake. The aim of this study was to determine whether canola has a core root microbiome (i.e., set of microbes that are consistently selected in the root environment, and whether this is distinct from the core microbiomes of other crops that are commonly grown in the Canadian Prairies, pea, and wheat. We also assessed whether selected agronomic treatments can modify the canola microbiome, and whether this was associated to enhanced yield. We used a field experiment with a randomized complete block design, which was repeated at three locations across the canola-growing zone of Canada. Roots and rhizosphere soil were harvested at the flowering stage of canola. We separately isolated total extractable DNA from plant roots and from adjacent rhizosphere soil, and constructed MiSeq amplicon libraries for each of 60 samples, targeting bacterial, and archaeal 16S rRNA genes and the fungal ITS region. We determined that the microbiome of the roots and rhizosphere of canola was consistently different from those of wheat and pea. These microbiomes comprise several putative plant-growth-promoting rhizobacteria, including Amycolatopsis sp., Serratia proteamaculans, Pedobacter sp., Arthrobacter sp., Stenotrophomonas sp., Fusarium merismoides, and Fusicolla sp., which correlated positively with canola yield. Crop species had a significant influence on bacterial and fungal assemblages, especially within the roots, while higher nutrient input or seeding density did not significantly alter the global composition of bacterial, fungal, or archaeal assemblages associated with canola roots. However, the relative abundance of Olpidium brassicae, a known pathogen of members of the Brassicaceae, was significantly reduced in the roots of canola planted at higher seeding density. Our results suggest that

  2. Grasshopper fecundity responses to grazing and fire in a tallgrass prairie.

    Science.gov (United States)

    Laws, Angela N; Joern, Anthony

    2011-10-01

    Grasshopper abundance and diversity vary with management practices such as fire and grazing. Understanding how grasshopper life history traits such as fecundity respond to management practices is key to predicting grasshopper population dynamics in heterogeneous environments. Landscape-level experimental fire and bison grazing treatments at the Konza Prairie Biological Station (Manhattan, KS) provide an opportunity to examine how management affects grasshopper fecundity. Here we report on grasshopper fecundity for nine common species at Konza Prairie. From 2007 to 2009, adult female grasshoppers were collected every 3 wk from eight watersheds that varied in fire and grazing treatments. Fecundity was measured by examining female reproductive tracts, which contain a record of past and current reproductive activity. Body size was a poor predictor of fecundity for all species. Despite large differences in vegetation structure and composition with management regime (grazing and fire interval), we observed little effect of management on grasshopper fecundity. Habitat characteristics (grasshopper density, vegetation biomass, and vegetation quality; measured in 2008 and 2009) were better predictors of past fecundity than current fecundity, with species-specific responses. Fecundity increased throughout the summer, indicating that grasshoppers were able to acquire sufficient nutritional resources for egg production in the early fall when vegetation quality is generally low. Because fecundity did not vary across management treatments, population stage structure may be more important for determining population level reproduction than management regime at Konza Prairie.

  3. Anticoagulant Prairie Dog Bait Risk Mitigation Measures to Protect Endangered Species

    Science.gov (United States)

    This Web page contains information on how certified pesticide applicators can use anticoagulant prairie dog bait products such as Rozol and Kaput-D while minimizing exposure risks to listed and non-target species.

  4. Food habits of nesting prairie falcons in Campbell County

    Science.gov (United States)

    John R. Squires; Stanley H. Anderson; Robert Oakleaf

    1989-01-01

    Fifteen species of prey were utilized by nesting Prairie Falcons (Falco mexicanus) as determined through pellet analysis. Thirteen-lined Ground Squirrels (Spermophilus tridecemlineatus), the most common prey, were present in 91% of the pellets, followed by Western Meadowlarks (Sturnella neglecta) which were present in 56% of pellets. Horned Larks (Eremophila...

  5. Age at vaccination may influence response to sylvatic plague vaccine (SPV) in Gunnison’s prairie dogs (Cynomys gunnisoni)

    Science.gov (United States)

    Rocke, Tonie E.; Tripp, Daniel W.; Lorenzsonn, Faye; Falendysz, Elizabeth A.; Smith, Susan; Williamson, Judy L.; Abbott, Rachel C.

    2015-01-01

    Gunnison’s prairie dogs (Cynomys gunnisoni) have been considered at greater risk from Yersinia pestis (plague) infection in the montane portion of their range compared to populations at lower elevations, possibly due to factors related to flea transmission of the bacteria or greater host susceptibility. To test the latter hypothesis and determine whether vaccination against plague with an oral sylvatic plague vaccine (SPV) improved survival, we captured prairie dogs from a C. g. gunnisoni or “montane” population and a C. g. zuniensis or “prairie” population for vaccine efficacy and challenge studies. No differences (P = 0.63) were found in plague susceptibility in non-vaccinated animals between these two populations; however, vaccinates from the prairie population survived plague challenge at significantly higher rates (P age, as the prairie group was much younger on average than the montane group. Vaccinates that were juveniles or young adults survived plague challenge at a much higher rate than adults (P ages. These results suggest that host susceptibility is probably not related to the assumed greater risk from plague in the C. g. gunnisoni or “montane” populations of Gunnison’s prairie dogs, and that SPV could be a useful plague management tool for this species, particularly if targeted at younger cohorts.

  6. Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles

    OpenAIRE

    Grippo, Angela J.; Gerena, Davida; Huang, Jonathan; Kumar, Narmda; Shah, Maulin; Ughreja, Raj; Carter, C. Sue

    2007-01-01

    Supportive social interactions may be protective against stressors and certain mental and physical illness, while social isolation may be a powerful stressor. Prairie voles are socially monogamous rodents that model some of the behavioral and physiological traits displayed by humans, including sensitivity to social isolation. Neuroendocrine and behavioral parameters, selected for their relevance to stress and depression, were measured in adult female and male prairie voles following 4 weeks o...

  7. Effects of wind energy development on nesting ecology of greater prairie-chickens in fragmented grasslands.

    Science.gov (United States)

    McNew, Lance B; Hunt, Lyla M; Gregory, Andrew J; Wisely, Samantha M; Sandercock, Brett K

    2014-08-01

    Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for development of renewable energy may overlap with important habitats of declining populations of grassland birds. Greater Prairie-Chickens (Tympanuchus cupido) are an obligate grassland bird species predicted to respond negatively to energy development. We used a modified before-after control-impact design to test for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We located 59 and 185 nests before and after development, respectively, of a 201 MW wind energy facility in Greater Prairie-Chicken nesting habitat and assessed nest site selection and nest survival relative to proximity to wind energy infrastructure and habitat conditions. Proximity to turbines did not negatively affect nest site selection (β = 0.03, 95% CI = -1.2-1.3) or nest survival (β = -0.3, 95% CI = -0.6-0.1). Instead, nest site selection and survival were strongly related to vegetative cover and other local conditions determined by management for cattle production. Integration of our project results with previous reports of behavioral avoidance of oil and gas facilities by other species of prairie grouse suggests new avenues for research to mitigate impacts of energy development. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  8. Intrusion of soil covered uranium mill tailings by whitetail prairie dogs and Richardson's ground squirrels

    International Nuclear Information System (INIS)

    Shuman, R.

    1984-01-01

    The primary objective of the reclamation of uranium mill tailings is the long-term isolation of the matrial from the biosphere. Fossorial and semi-fossorial species represent a potentially disruptive influence as a result of their burrowing habits. The potential for intrusion was investigated with respect to two sciurids, the whitetail prairie dog (Cynomys leucurus) and Richardson's ground squirrel (Spermophilus richardsonii). Populations of prairie dogs were established on a control area, lacking a tailings layer, and two experimental areas, underlain by a waste layer, in southeastern Wyoming. Weekly measurements of prairie dog mound surface activities were conducted to demonstrate penetration, or lack thereof, of the tailings layer. Additionally, the impact of burrowing upon radon flux was determined. Limited penetration of the waste layer was noted after which frequency of inhabitance of the intruding burrow system declined. No significant changes in radon flux were detected. In another experiment, it was found that Richardson's ground squirrels burrowed to less extreme depths when confronted by mill tailings. Additional work at an inactive tailings pile in western Colorado revealed repeated intrusion through a shallow cover, and subsequent transport of radioactive material to the ground surface by prairie dogs. Radon flux from burrow entrances was significantly greater than that from undisturbed ground. Data suggested that textural and pH properties of tailings material may act to discourage repeated intrusion at some sites. 58 references

  9. Uptake of C14-atrazine by prairie grasses in a phytoremediation setting.

    Science.gov (United States)

    Khrunyk, Yuliya; Schiewer, Silke; Carstens, Keri L; Hu, Dingfei; Coats, Joel R

    2017-02-01

    Agrochemicals significantly contribute to environmental pollution. In the USA, atrazine is a widely used pesticide and commonly found in rivers, water systems, and rural wells. Phytoremediation can be a cost-effective means of removing pesticides from soil. The objective of this project was to investigate the ability of prairie grasses to remove atrazine. 14 C-labeled atrazine was added to sterilized sand and water/nutrient cultures, and the analysis was performed after 21 days. Switchgrass and big bluestem were promising species for phytoremediation, taking up about 40% of the applied [ 14 C] in liquid hydroponic cultures, and between 20% and 33% in sand cultures. Yellow Indiangrass showed low resistance to atrazine toxicity and low uptake of [ 14 C] atrazine in liquid hydroponic cultures. Atrazine degradation increased progressively from sand to roots and leaves. Most atrazine taken up by prairie grasses from sand culture was degraded to metabolites, which accounted for 60-80% of [ 14 C] detected in leaves. Deisopropylatrazine (DIA) was the main metabolite detected in sand and roots, whereas in leaves further metabolism took place, forming increased amounts of didealkylatrazine (DDA) and an unidentified metabolite. In conclusion, prairie grasses achieved high atrazine removal and degradation, showing a high potential for phytoremediation.

  10. Fine-scale habitat use of reintroduced black-footed ferrets on prairie dog colonies in New Mexico

    Science.gov (United States)

    Chipault, Jennifer G.; Biggins, Dean E.; Detling, James K.; Long, Dustin H.; Reich, Robin M.

    2012-01-01

    Black-footed ferrets (Mustela nigripes) are among the most endangered animals in North America. Reintroductions of captive-born ferrets onto prairie dog (Cynomys spp.) colonies are crucial to the conservation of the species. In September 2007, captive-born ferrets were released on a black-tailed prairie dog (Cynomys ludovicianus) colony at the Vermejo Park Ranch, New Mexico. Ferret kits experimentally released in areas of comparatively low and high prairie dog burrow densities were located via spotlight surveys. Some maturing ferret kits were subsequently translocated to areas of low and high burrow densities on nearby prairie dog colonies. For 2 months, fine-scale habitat use was quantified by mapping all burrow openings within a 30-m radius of each ferret location. Spatial statistics accounted for autocorrelation in the burrow densities in areas used by ferrets. It was hypothesized that ferrets would select areas of high burrow densities within colonies; however, burrow densities in areas used by ferrets were generally similar to the available burrow densities. Because ferrets used areas with burrow densities similar to densities available at the colony level and because of the potential energetic benefits for ferrets using areas with high burrow densities, releasing ferrets on colonies with high burrow densities might increase reintroduction success.

  11. Base-line data on everglades soil-plant systems: elemental composition, biomass, and soil depth

    International Nuclear Information System (INIS)

    Volk, B.G.; Schemnitz, S.D.; Gamble, J.F.; Sartain, J.B.

    1975-01-01

    Plants and soils from plots in the Everglades Wildlife Management Area, Conservation Area 3, were examined. Chemical composition (N, P, K, Ca, Mg, Na, Cu, Fe, Mn, Zn, Co, Sr, Pb, Ni, Cr, Al, and Si) of most plant and soil digests was determined. Cladium jamaicense was the predominant plant species contributing to biomass in all plots except the wet prairie, where Rhynchospora sp. and Panicum hemitomon were most common. The biomass of dead C. jamaicense was greater than that of the living plants in unburned saw-grass plots. The burned saw grass, muck burn, and wet prairie were characterized by a large number of plant species per square meter but smaller average biomass production than the unburned saw-grass locations. Levels of Cu, Mn, Ca, Mg, K, and N in C. jamaicense differed significantly across locations. Highly significant differences in elemental composition existed between plant species. Concentrations of several elements (particularly Zn, Ca, Mg, P, and N) were low in live C. jamaicense compared with other plant species. Cesium-137 levels ranged from 670 to 3100 pCi/kg in sandy and in organic soils, respectively. Polygonum had a 137 Cs level of 11,600 pCi/kg. Dead C. jamaicense indicated a rapid leaching loss of 137 Cs from dead tissue

  12. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    Energy Technology Data Exchange (ETDEWEB)

    Sandercock, Brett K. [Kansas State University

    2013-05-22

    Executive Summary 1. We investigated the impacts of wind power development on the demography, movements, and population genetics of Greater Prairie-Chickens (Tympanuchus cupido) at three sites in northcentral and eastern Kansas for a 7-year period. Only 1 of 3 sites was developed for wind power, the 201MW Meridan Way Wind Power Facility at the Smoky Hills site in northcentral Kansas. Our project report is based on population data for prairie chickens collected during a 2-year preconstruction period (2007-2008), a 3-year postconstruction period (2009-2011) and one final year of lek surveys (2012). Where relevant, we present preconstruction data from our field studies at reference sites in the northern Flint Hills (2007-2009) and southern Flint Hills (2006-2008). 2. We addressed seven potential impacts of wind power development on prairie chickens: lek attendance, mating behavior, use of breeding habitat, fecundity rates, natal dispersal, survival rates, and population numbers. Our analyses of pre- and postconstruction impacts are based on an analysis of covariance design where we modeled population performance as a function of treatment period, distance to eventual or actual site of the nearest wind turbine, and the interaction of these factors. Our demographic and movement data from the 6-year study period at the Smoky Hills site included 23 lek sites, 251 radio-marked females monitored for 287 bird-years, and 264 nesting attempts. Our genetic data were based on genotypes of 1,760 females, males and chicks that were screened with a set of 27 microsatellite markers that were optimized in the lab. 3. In our analyses of lek attendance, the annual probability of lek persistence during the preconstruction period was ~0.9. During the postconstruction period, distance to nearest turbine did not have a significant effect on the probability of lek persistence. However, the probability of lek persistence increased from 0.69 at 0 m to 0.89 at 30 km from turbines, and most

  13. Production of germline transgenic prairie voles (Microtus ochrogaster) using lentiviral vectors.

    Science.gov (United States)

    Donaldson, Zoe R; Yang, Shang-Hsun; Chan, Anthony W S; Young, Larry J

    2009-12-01

    The study of alternative model organisms has yielded tremendous insights into the regulation of behavioral and physiological traits not displayed by more widely used animal models, such as laboratory rats and mice. In particular, comparative approaches often exploit species ideally suited for investigating specific phenomenon. For instance, comparative studies of socially monogamous prairie voles and polygamous meadow voles have been instrumental toward gaining an understanding of the genetic and neurobiological basis of social bonding. However, laboratory studies of less commonly used organisms, such as prairie voles, have been limited by a lack of genetic tools, including the ability to manipulate the genome. Here, we show that lentiviral vector-mediated transgenesis is a rapid and efficient approach for creating germline transgenics in alternative laboratory rodents. Injection of a green fluorescent protein (GFP)-expressing lentiviral vector into the perivitelline space of 23 single-cell embryos yielded three live offspring (13 %), one of which (33%) contained germline integration of a GFP transgene driven by the human ubiquitin-C promoter. In comparison, transfer of 23 uninjected embryos yielded six live offspring (26%). Green fluorescent protein is present in all tissues examined and is expressed widely in the brain. The GFP transgene is heritable and stably expressed until at least the F(2) generation. This technology has the potential to allow investigation of specific gene candidates in prairie voles and provides a general protocol to pursue germline transgenic manipulation in many different rodent species.

  14. Regional Variation in mtDNA of the Lesser Prairie-Chicken

    Science.gov (United States)

    Hagen, Christian A.; Pitman, James C.; Sandercock, Brett K.; Wolfe, Don H.; Robel, Robel J.; Applegate, Roger D.; Oyler-McCance, Sara J.

    2010-01-01

    Cumulative loss of habitat and long-term decline in the populations of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) have led to concerns for the species' viability throughout its range in the southern Great Plains. For more efficient conservation past and present distributions of genetic variation need to be understood. We examined the distribution of mitochondrial DNA (mtDNA) variation in the Lesser Prairie-Chicken across Kansas, Colorado, Oklahoma, and New Mexico. Throughout the range we found little genetic differentiation except for the population in New Mexico, which was significantly different from most other publications. We did, however, find significant isolation by distance at the rangewide scale (r=0.698). We found no relationship between haplotype phylogeny and geography, and our analyses provide evidence for a post-glacial population expansion within the species that is consistent with the idea that speciation within Tympanuchus is recent. Conservation actions that increase the likelihood of genetically viable populations in the future should be evaluated for implementation.

  15. SEASON OF DELTAMETHRIN APPLICATION AFFECTS FLEA AND PLAGUE CONTROL IN WHITE-TAILED PRAIRIE DOG (CYNOMYS LEUCURUS) COLONIES, COLORADO, USA.

    Science.gov (United States)

    Tripp, Daniel W; Streich, Sean P; Sack, Danielle A; Martin, Daniel J; Griffin, Karen A; Miller, Michael W

    2016-07-01

    In 2008 and 2009, we evaluated the duration of prophylactic deltamethrin treatments in white-tailed prairie dog ( Cynomys leucurus ) colonies and compared effects of autumn or spring dust application in suppressing flea numbers and plague. Plague occurred before and during our experiment. Overall, flea abundance tended to increase from May or June to September, but it was affected by deltamethrin treatment and plague dynamics. Success in trapping prairie dogs (animals caught/trap days) declined between June and September at all study sites. However, by September trap success on dusted sites (19%; 95% confidence interval [CI] 16-22%) was about 15-fold greater than on undusted control sites (1%; CI 0.3-4%; P≤0.0001). Applying deltamethrin dust as early as 12 mo prior seemed to afford some protection to prairie dogs. Our data showed that dusting even a portion of a prairie dog colony can prolong its persistence despite epizootic plague. Autumn dusting may offer advantages over spring in suppressing overwinter or early-spring flea activity, but timing should be adjusted to precede the annual decline in aboveground activity for hibernating prairie dog species. Large colony complexes or collections of occupied but fragmented habitat may benefit from dusting some sites in spring and others in autumn to maximize flea suppression in a portion of the complex or habitat year-round.

  16. Nutrient removal by prairie filter strips in agricultural landscapes

    Science.gov (United States)

    X. Zhou; M.J. Helmers; H. Asbjornsen; R. Kolka; M.D. Tomer; R.M. Cruse

    2014-01-01

    Nitrogen (N) and phosphorus (P) from agricultural landscapes have been identified as primary sources of excess nutrients in aquatic systems. The main objective of this study was to evaluate the effectiveness of prairie filter strips (PFS) in removing nutrients from cropland runoff in 12 small watersheds in central Iowa. Four treatments with PFS of different spatial...

  17. Ecological consequences of shifting the timing of burning tallgrass prairie.

    Directory of Open Access Journals (Sweden)

    E Gene Towne

    Full Text Available In the Kansas Flint Hills, grassland burning is conducted during a relatively narrow window because management recommendations for the past 40 years have been to burn only in late spring. Widespread prescribed burning within this restricted time frame frequently creates smoke management issues downwind. A potential remedy for the concentrated smoke production in late spring is to expand burning to times earlier in the year. Yet, previous research suggested that burning in winter or early spring reduces plant productivity and cattle weight gain while increasing the proportion of undesirable plant species. In order to better understand the ecological consequences of burning at different times of the year, plant production and species abundance were measured for 20 years on ungrazed watersheds burned annually in autumn, winter, or spring. We found that there were no significant differences in total grass production among the burns on either upland or lowland topographic positions, although spring burned watersheds had higher grass culm production and lower forb biomass than autumn and winter burned watersheds. Burning in autumn or winter broadened the window of grass productivity response to precipitation, which reduces susceptibility to mid-season drought. Burning in autumn or winter also increased the phenological range of species by promoting cool-season graminoids without a concomitant decrease in warm-season grasses, potentially widening the seasonal window of high-quality forage. Incorporating autumn and winter burns into the overall portfolio of tallgrass prairie management should increase the flexibility in managing grasslands, promote biodiversity, and minimize air quality issues caused by en masse late-spring burning with little negative consequences for cattle production.

  18. Nectar chemistry mediates the behavior of parasitized bees: consequences for plant fitness.

    Science.gov (United States)

    Richardson, Leif L; Bowers, M Deane; Irwin, Rebecca E

    2016-02-01

    fitness. Taken together, these results demonstrate that nectar secondary metabolites can mediate the behavior of pollinators with subsequent benefits for estimates of plant reproduction.

  19. Characterization of the oxytocin system regulating affiliative behavior in female prairie voles.

    Science.gov (United States)

    Ross, H E; Cole, C D; Smith, Y; Neumann, I D; Landgraf, R; Murphy, A Z; Young, L J

    2009-09-15

    Oxytocin regulates partner preference formation and alloparental behavior in the socially monogamous prairie vole (Microtus ochrogaster) by activating oxytocin receptors in the nucleus accumbens of females. Mating facilitates partner preference formation, and oxytocin-immunoreactive fibers in the nucleus accumbens have been described in prairie voles. However, there has been no direct evidence of oxytocin release in the nucleus accumbens during sociosexual interactions, and the origin of the oxytocin fibers is unknown. Here we show for the first time that extracellular concentrations of oxytocin are increased in the nucleus accumbens of female prairie vole during unrestricted interactions with a male. We further show that the distribution of oxytocin-immunoreactive fibers in the nucleus accumbens is conserved in voles, mice and rats, despite remarkable species differences in oxytocin receptor binding in the region. Using a combination of site-specific and peripheral infusions of the retrograde tracer Fluorogold, we demonstrate that the nucleus accumbens oxytocin-immunoreactive fibers likely originate from paraventricular and supraoptic hypothalamic neurons. This distribution of retrogradely labeled neurons is consistent with the hypothesis that striatal oxytocin fibers arise from collaterals of magnocellular neurons of the neurohypophysial system. If correct, this may serve to coordinate peripheral and central release of oxytocin with appropriate behavioral responses associated with reproduction, including pair bonding after mating, and maternal responsiveness following parturition and during lactation.

  20. Regional differences in mu and kappa opioid receptor G-protein activation in brain in male and female prairie voles.

    Science.gov (United States)

    Martin, T J; Sexton, T; Kim, S A; Severino, A L; Peters, C M; Young, L J; Childers, S R

    2015-12-17

    Prairie voles are unusual mammals in that, like humans, they are capable of forming socially monogamous pair bonds, display biparental care, and engage in alloparental behaviors. Both mu and kappa opioid receptors are involved in behaviors that either establish and maintain, or result from pair bond formation in these animals. Mu and kappa opioid receptors both utilize inhibitory G-proteins in signal transduction mechanisms, however the efficacy by which these receptor subtypes stimulate G-protein signaling across the prairie vole neuraxis is not known. Utilizing [(35)S]GTPγS autoradiography, we characterized the efficacy of G-protein stimulation in coronal sections throughout male and female prairie vole brains by [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin (DAMGO) and U50,488H, selective mu and kappa opioid agonists, respectively. DAMGO stimulation was highest in the forebrain, similar to that found with other rodent species. U-50,488H produced greater stimulation in prairie voles than is typically seen in mice and rats, particularly in select forebrain areas. DAMGO produced higher stimulation in the core versus the shell of the nucleus accumbens (NAc) in females, while the distribution of U-50,488H stimulation was the opposite. There were no gender differences for U50,488H stimulation of G-protein activity across the regions examined, while DAMGO stimulation was greater in sections from females compared to those from males for NAc core, entopeduncular nucleus, and hippocampus. These data suggest that the kappa opioid system may be more sensitive to manipulation in prairie voles compared to mice and rats, and that female prairie voles may be more sensitive to mu agonists in select brain regions than males. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Land-use change, economics, and rural well-being in the Prairie Pothole Region of the United States

    Science.gov (United States)

    Gascoigne, William R.; Hoag, Dana L.K.; Johnson, Rex R.; Koontz, Lynne M.; Thomas, Catherine Cullinane

    2013-01-01

    This fact sheet highlights findings included in a comprehensive new report (see USGS Professional Paper 1800) which investigated land-use change, economic characteristics, and rural community well-being in the Prairie Pothole Region of the United States. Once one of the largest grassland-wetlands ecosystems on earth, the North American prairie has experienced extensive conversion to cultivated agriculture, with farming becoming the dominant land use in the region over the last century. Both perennial habitat lands and agricultural croplands retain importance economically, socially, and culturally. Greatly increased oil and gas development in recent years brought rises in employment and income but also stressed infrastructure, cost of living, and crime rates. Research described in these reports focuses on land-use dynamics and illuminates how economic variables and rural development in the Prairie Pothole Region might be influenced as land uses change.

  2. New insights into the phylogenetics and population structure of the prairie falcon (Falco mexicanus)

    Science.gov (United States)

    Doyle, Jacqueline M.; Bell, Douglas A.; Bloom, Peter H.; Emmons, Gavin; Fesnock, Amy; Katzner, Todd; LePre, Larry; Leonard, Kolbe; SanMiguel, Phillip; Westerman, Rick; DeWoody, J. Andrew

    2018-01-01

    BackgroundManagement requires a robust understanding of between- and within-species genetic variability, however such data are still lacking in many species. For example, although multiple population genetics studies of the peregrine falcon (Falco peregrinus) have been conducted, no similar studies have been done of the closely-related prairie falcon (F. mexicanus) and it is unclear how much genetic variation and population structure exists across the species’ range. Furthermore, the phylogenetic relationship of F. mexicanus relative to other falcon species is contested. We utilized a genomics approach (i.e., genome sequencing and assembly followed by single nucleotide polymorphism genotyping) to rapidly address these gaps in knowledge.ResultsWe sequenced the genome of a single female prairie falcon and generated a 1.17 Gb (gigabases) draft genome assembly. We generated maximum likelihood phylogenetic trees using complete mitochondrial genomes as well as nuclear protein-coding genes. This process provided evidence that F. mexicanus is an outgroup to the clade that includes the peregrine falcon and members of the subgenus Hierofalco. We annotated > 16,000 genes and almost 600,000 high-quality single nucleotide polymorphisms (SNPs) in the nuclear genome, providing the raw material for a SNP assay design featuring > 140 gene-associated markers and a molecular-sexing marker. We subsequently genotyped ~ 100 individuals from California (including the San Francisco East Bay Area, Pinnacles National Park and the Mojave Desert) and Idaho (Snake River Birds of Prey National Conservation Area). We tested for population structure and found evidence that individuals sampled in California and Idaho represent a single panmictic population.ConclusionsOur study illustrates how genomic resources can rapidly shed light on genetic variability in understudied species and resolve phylogenetic relationships. Furthermore, we found evidence of a single, randomly mating

  3. Influence of richness and seeding density on invasion resistance in experimental tallgrass prairie restorations

    Science.gov (United States)

    Nemec, Kristine T.; Allen, Craig R.; Helzer, Christopher J.; Wedin, David A.

    2013-01-01

    In recent years, agricultural producers and non-governmental organizations and agencies have restored thousands of hectares of cropland to grassland in the Great Plains of the United States. However, little is known about the relationships between richness and seeding density in these restorations and resistance to invasive plant species. We assessed the effects of richness and seeding density on resistance to invasive and other unseeded plant species in experimental tallgrass prairie plots in central Nebraska. In 2006, twenty-four 55 m × 55 m plots were planted with six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Conservation Reserve Program mix, CP25), at low and high seeding densities. There was a significant negative relationship between richness and basal cover of unseeded perennial forbs/legumes and unseeded perennial/annual grasses, abundance of bull thistle (Cirsium vulgare), and the number of inflorescences removed from smooth brome (Bromus inermis) transplants. Invasion resistance may have been higher in the high richness treatments because of the characteristics of the dominant species in these plots or because of greater interspecific competition for limiting resources among forbs/legumes with neighboring plants belonging to the same functional group. Seeding density was not important in affecting invasion resistance, except in the cover of unseeded grasses. Increasing seed mix richness may be more effective than increasing the seeding density for decreasing invasion by unseeded perennial species, bull thistle, and smooth brome.

  4. Lesser prairie-chicken nest site selection, microclimate, and nest survival in association with vegetation response to a grassland restoration program

    Science.gov (United States)

    Boal, Clint W.; Grisham, Blake A.; Haukos, David A.; Zavaleta, Jennifer C.; Dixon, Charles

    2014-01-01

    Climate models predict that the region of the Great Plains Landscape Conservation Cooperative (GPLCC) will experience increased maximum and minimum temperatures, reduced frequency but greater intensity of precipitation events, and earlier springs. These climate changes along with different landscape management techniques may influence the persistence of the lesser prairie-chicken (Tympanuchus pallidicinctus), a candidate for protection under the Endangered Species Act and a priority species under the GPLCC, in positive or negative ways. The objectives of this study were to conduct (1) a literature review of lesser prairie-chicken nesting phenology and ecology, (2) an analysis of thermal aspects of lesser prairie-chicken nest microclimate data, and (3) an analysis of nest site selection, nest survival, and vegetation response to 10 years of tebuthiuron and/or grazing treatments. We found few reports in the literature containing useful data on the nesting phenology of lesser prairie-chickens; therefore, managers must rely on short-term observations and measurements of parameters that provide some predictive insight into climate impacts on nesting ecology. Our field studies showed that prairie-chickens on nests were able to maintain relatively consistent average nest temperature of 31 °C and nest humidities of 56.8 percent whereas average external temperatures (20.3–35.0 °C) and humidities (35.2–74.9 percent) varied widely throughout the 24 hour (hr) cycle. Grazing and herbicide treatments within our experimental areas were designed to be less intensive than in common practice. We determined nest locations by radio-tagging hen lesser prairie-chickens captured at leks, which are display grounds at which male lesser prairie-chickens aggregate and attempt to attract a female for mating. Because nest locations selected by hen lesser prairie-chicken are strongly associated with the lek at which they were captured, we assessed nesting habitat use on the basis of hens

  5. The effect of listing the lesser prairie chicken as a threatened species on rural property values.

    Science.gov (United States)

    Wietelman, Derek C; Melstrom, Richard T

    2017-04-15

    This paper estimates the effect of Endangered Species Act protections for the lesser prairie chicken (Tympanuchus pallidicinctus) on rural property values in Oklahoma. The political and legal controversy surrounding the listing of imperiled species raises questions about the development restrictions and opportunity costs the Endangered Species Act imposes on private landowners. Examining parcel-level sales data before and after the listing of the endemic lesser prairie chicken, we employ difference-in-differences (DD) regression to measure the welfare costs of these restrictions. While our basic DD regression provides evidence the listing was associated with a drop in property values, this finding does not hold up in models that control for latent county and year effects. The lack of a significant price effect is confirmed by several robustness checks. Thus, the local economic costs of listing the lesser prairie chicken under the Endangered Species Act appear to have been small. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Vegetation of wetlands of the prairie pothole region

    Science.gov (United States)

    Kantrud, H.A.; Millar, J.B.; Van Der Valk, A.G.; van der Valk, A.

    1989-01-01

    Five themes dominate the literature dealing with the vegetation of palustrine and lacustrine wetlands of the prairie pothole region: environmental conditions (water or moisture regime, salinity), agricultural disturbances (draining, grazing, burning, sedimentation, etc.), vegetation dynamics, zonation patterns, and classification of the wetlands.The flora of a prairie wetland is a function of its water regime, salinity, and disturbance by man. Within a pothole, water depth and duration determines distribution of species. In potholes deep enough to have standing water even during droughts, the central zone will be dominated by submersed species (open water). In wetlands that go dry during periods of drought or annually, the central zone will be dominated by either tall emergent species (deep marsh) or midheight emergents (shallow marsh), respectively. Potholes that are only flooded briefly in the spring are dominated by grasses, sedges, and forbs (wet meadow). Within a pothole, the depth of standing water in the deepest, usually central, part of the basin determines how many zones will be present. Lists of species associated with different water regimes and salinity levels are presented.Disturbances due to agricultural activities have impacted wetlands throughout the region. Drainage has eliminated many potholes, particularly in the southern and eastern parts of the region. Grazing, mowing, and burning have altered the composition of pothole vegetation. The composition of different vegetation types impacted by grazing, haying, and cultivation is presented in a series of tables. Indirect impacts of agriculture (increased sediment, nutrient, and pesticide inputs) are widespread over the region, but their impacts on the vegetation have never been studied.Because of the periodic droughts and wet periods, many palustrine and lacustrine wetlands undergo vegetation cycles associated with water-level changes produced by these wet-dry cycles. Periods of above normal

  7. Serobactins-mediated iron acquisition systems optimize competitive fitness of Herbaspirillum seropedicae inside rice plants.

    Science.gov (United States)

    Rosconi, Federico; Trovero, María F; de Souza, Emanuel M; Fabiano, Elena

    2016-09-01

    Herbaspirillum seropedicae Z67 is a diazotrophic endophyte able to colonize the interior of many economically relevant crops such as rice, wheat, corn and sorghum. Under iron-deficient conditions, this organism secretes serobactins, a suite of lipopetide siderophores. The role of siderophores in the interaction between endophytes and their plant hosts are not well understood. In this work, we aimed to determine the importance of serobactins-mediated iron acquisition systems in the interaction of H. seropedicae with rice plants. First we provide evidence, by using a combination of genome analysis, proteomic and genetic studies, that the Hsero_2345 gene encodes a TonB-dependent receptor involved in iron-serobactin complex internalization when iron bioavailability is low. Our results show that survival of the Hsero_2345 mutant inside rice plants was not significantly different from that of the wild-type strain. However, when plants were co-inoculated at equal ratios with the wild-type strain and with a double mutant defective in serobactins synthesis and internalization, recovery of mutant was significantly impaired after 8 days post-inoculation. These results demonstrate that serobactins-mediated iron acquisition contributes to competitive fitness of H. seropedicae inside host plants. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Environmental Assessment: Black-Tailed Prairie Dog Management Cannon Air Force Base and Melrose Air Force Range, New Mexico

    Science.gov (United States)

    2005-12-01

    requirements are met by metabolizing grazed vegetation. Prairie dogs dig burrows to an average depth of 2-3 meters with some tunnels interconnecting with...the potential to impact non- target species such as mice, kangaroo rats, and some songbirds. Establishing control zones at CAFB and MAFR could not be...Gutierrezia sarothrae), and Russian thistle (Salsola iberica). Water requirements are met by metabolizing grazed vegetation. Prairie dogs dig burrows

  9. Phenotypic and genetic characterization of wildland collections of western and Searls prairie clovers for rangeland revegetation in the western USA

    Science.gov (United States)

    Kishor Bhattarai

    2010-01-01

    Western prairie clover [Dalea ornata (Douglas ex Hook.) Eaton & J. Wright] is a perennial legume that occurs in the northern Great Basin, Snake River Basin, and southern Columbia Plateau, whereas Searls prairie clover [Dalea searlsiae (A. Gray) Barneby], also a perennial legume, occurs in the southern Great Basin and surrounding areas. Understanding the genetic and...

  10. Growth responses, biomass partitioning, and nitrogen isotopes of prairie legumes in response to elevated temperature and varying nitrogen source in a growth chamber experiment.

    Science.gov (United States)

    Whittington, Heather R; Deede, Laura; Powers, Jennifer S

    2012-05-01

    Because legumes can add nitrogen (N) to ecosystems through symbiotic fixation, they play important roles in many plant communities, such as prairies and grasslands. However, very little research has examined the effect of projected climate change on legume growth and function. Our goal was to study the effects of temperature on growth, nodulation, and N chemistry of prairie legumes and determine whether these effects are mediated by source of N. We grew seedlings of Amorpha canescens, Dalea purpurea, Lespedeza capitata, and Lupinus perennis at 25/20°C (day/night) or 28/23°C with and without rhizobia and mineral N in controlled-environment growth chambers. Biomass, leaf area, nodule number and mass, and shoot N concentration and δ(15)N values were measured after 12 wk of growth. Both temperature and N-source affected responses in a species-specific manner. Lespedeza showed increased growth and higher shoot N content at 28°C. Lupinus showed decreases in nodulation and lower shoot N concentration at 28°C. The effect of temperature on shoot N concentration occurred only in individuals whose sole N source was N(2)-fixation, but there was no effect of temperature on δ(15)N values in these plants. Elevated temperature enhanced seedling growth of some species, while inhibiting nodulation in another. Temperature-induced shifts in legume composition or nitrogen dynamics may be another potential mechanism through which climate change affects unmanaged ecosystems.

  11. Assessing the Impact of Climate Variability on Cropland Productivity in the Canadian Prairies Using Time Series MODIS FAPAR

    Directory of Open Access Journals (Sweden)

    Taifeng Dong

    2016-03-01

    Full Text Available Cropland productivity is impacted by climate. Knowledge on spatial-temporal patterns of the impacts at the regional scale is extremely important for improving crop management under limiting climatic factors. The aim of this study was to investigate the effects of climate variability on cropland productivity in the Canadian Prairies between 2000 and 2013 based on time series of MODIS (Moderate Resolution Imaging Spectroradiometer FAPAR (Fraction of Absorbed Photosynthetically Active Radiation product. Key phenological metrics, including the start (SOS and end of growing season (EOS, and the cumulative FAPAR (CFAPAR during the growing season (between SOS and EOS, were extracted and calculated from the FAPAR time series with the Parametric Double Hyperbolic Tangent (PDHT method. The Mann-Kendall test was employed to assess the trends of cropland productivity and climatic variables, and partial correlation analysis was conducted to explore the potential links between climate variability and cropland productivity. An assessment using crop yield statistical data showed that CFAPAR can be taken as a surrogate of cropland productivity in the Canadian Prairies. Cropland productivity showed an increasing trend in most areas of Canadian Prairies, in general, during the period from 2000 to 2013. Interannual variability in cropland productivity on the Canadian Prairies was influenced positively by rainfall variation and negatively by mean air temperature.

  12. Droughts may increase susceptibility of prairie dogs to fleas: Incongruity with hypothesized mechanisms of plague cycles in rodents

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Long, Dustin H.; Gage, Kenneth L.; Antolin, Michael F.

    2016-01-01

    Plague is a reemerging, rodent-associated zoonosis caused by the flea-borne bacterium Yersinia pestis. As a vector-borne disease, rates of plague transmission may increase when fleas are abundant. Fleas are highly susceptible to desiccation under hot-dry conditions; we posited that their densities decline during droughts. We evaluated this hypothesis with black-tailed prairie dogs (Cynomys ludovicianus) in New Mexico, June–August 2010–2012. Precipitation was relatively plentiful during 2010 and 2012 but scarce during 2011, the driest spring–summer on record for the northeastern grasslands of New Mexico. Unexpectedly, fleas were 200% more abundant in 2011 than in 2010 and 2012. Prairie dogs were in 27% better condition during 2010 and 2012, and they devoted 287% more time to grooming in 2012 than in 2011. During 2012, prairie dogs provided with supplemental food and water were in 23% better condition and carried 40% fewer fleas. Collectively, these results suggest that during dry years, prairie dogs are limited by food and water, and they exhibit weakened defenses against fleas. Long-term data are needed to evaluate the generality of whether droughts increase flea densities and how changes in flea abundance during sequences of dry and wet years might affect plague cycles in mammalian hosts.

  13. Resource selection models are useful in predicting fine-scale distributions of black-footed ferrets in prairie dog colonies

    Science.gov (United States)

    Eads, David A.; Jachowski, David S.; Biggins, Dean E.; Livieri, Travis M.; Matchett, Marc R.; Millspaugh, Joshua J.

    2012-01-01

    Wildlife-habitat relationships are often conceptualized as resource selection functions (RSFs)—models increasingly used to estimate species distributions and prioritize habitat conservation. We evaluated the predictive capabilities of 2 black-footed ferret (Mustela nigripes) RSFs developed on a 452-ha colony of black-tailed prairie dogs (Cynomys ludovicianus) in the Conata Basin, South Dakota. We used the RSFs to project the relative probability of occurrence of ferrets throughout an adjacent 227-ha colony. We evaluated performance of the RSFs using ferret space use data collected via postbreeding spotlight surveys June–October 2005–2006. In home ranges and core areas, ferrets selected the predicted "very high" and "high" occurrence categories of both RSFs. Count metrics also suggested selection of these categories; for each model in each year, approximately 81% of ferret locations occurred in areas of very high or high predicted occurrence. These results suggest usefulness of the RSFs in estimating the distribution of ferrets throughout a black-tailed prairie dog colony. The RSFs provide a fine-scale habitat assessment for ferrets that can be used to prioritize releases of ferrets and habitat restoration for prairie dogs and ferrets. A method to quickly inventory the distribution of prairie dog burrow openings would greatly facilitate application of the RSFs.

  14. Water resources of the Prairie Island Indian Reservation, Minnesota, 1994-97

    Science.gov (United States)

    Cowdery, Timothy K.

    1999-01-01

    This evaluation of the water resources on the Prairie Island Indian Reservation includes data collected from 8 surface-water sites and 22 wells during 1994–97 and historical data. The Mississippi River and the lakes and wetlands connected to it are separated from the Vermillion River and the lakes and wetlands connected to it by the surficial aquifer on Prairie Island and by Lock and Dam Number 3. These surface-water groups form hydrologic boundaries of the surficial aquifer. The aquifer is 130–200 feet thick, extends to bedrock (the Franconia Formation, which is also an aquifer), and is composed primarily of sand and gravel, but also contains thin, isolated lenses of finer-grained material. Flow in the surficial aquifer is normally from the Mississippi River to the Vermillion River (southwest). During spring snowmelt or heavy rains, a ground-water mound forms in the center of the study area and causes radial ground-water flow toward the surrounding surface waters.

  15. Climate variability and change and water supply on the Canadian Prairies

    International Nuclear Information System (INIS)

    Nicholaichuk, W.

    1991-01-01

    The status of water resources on the Canadian Prairies, the related results of recent climate change studies, and research needs, are reviewed. With climate change, it is expected that farming practices will be pushed northwards, the precipitation/evapotranspiration balance will shift, and changes will occur in streamflow, flood risk and water quality. While all models show a warming trend on the Prairies, they differ on changes that might be expected. Some indicate increases in precipitation while others indicate decreases. Required research needed to improve understanding of the issues includes: models to improve computations of evapotranspiration and evaporation over large areas; reliable models of glacier behavior and responses to climatic variation and change; improved areal measurements for precipitation, evaporation, soil moisture, groundwater and runoff; improvements in global circulation models that include feedback mechanisms based on physical land/atmosphere processes; validation of hydrological processes at different levels; and assessment of the role of landscape in regional processes under natural conditions and human influence. 6 refs., 1 tab

  16. Direct and indirect effects of climate change on a prairie plant community.

    Directory of Open Access Journals (Sweden)

    Peter B Adler

    2009-09-01

    Full Text Available Climate change directly affects species by altering their physical environment and indirectly affects species by altering interspecific interactions such as predation and competition. Recent studies have shown that the indirect effects of climate change may amplify or counteract the direct effects. However, little is known about the the relative strength of direct and indirect effects or their potential to impact population persistence.We studied the effects of altered precipitation and interspecific interactions on the low-density tiller growth rates and biomass production of three perennial grass species in a Kansas, USA mixed prairie. We transplanted plugs of each species into local neighborhoods of heterospecific competitors and then exposed the plugs to a factorial manipulation of growing season precipitation and neighbor removal. Precipitation treatments had significant direct effects on two of the three species. Interspecific competition also had strong effects, reducing low-density tiller growth rates and aboveground biomass production for all three species. In fact, in the presence of competitors, (log tiller growth rates were close to or below zero for all three species. However, we found no convincing evidence that per capita competitive effects changed with precipitation, as shown by a lack of significant precipitation x competition interactions.We found little evidence that altered precipitation will influence per capita competitive effects. However, based on species' very low growth rates in the presence of competitors in some precipitation treatments, interspecific interactions appear strong enough to affect the balance between population persistence and local extinction. Therefore, ecological forecasting models should include the effect of interspecific interactions on population growth, even if such interaction coefficients are treated as constants.

  17. Ecological Fitness of Non-vector Planthopper Sogatella furcifera on Rice Plants Infected with Rice Black Streaked Dwarf Virus

    Directory of Open Access Journals (Sweden)

    Xiao-chan HE

    2012-12-01

    Full Text Available We evaluated the effects of rice black streak dwarf virus (RBSDV-infested rice plants on the ecological parameters and its relevant defensive and detoxification enzymes of white-backed planthopper (WBPH in laboratory for exploring the relationship between RBSDV and the non-vector planthopper. The results showed that nymph survival rate, female adult weight and fecundity, and egg hatchability of WBPH fed on RBSDV-infested rice plants did not markedly differ from those on healthy plants, whereas the female adult longevity and egg duration significantly shortened on diseased plants. Furthermore, significantly higher activities of defensive enzymes (dismutase, catalase and peroxidase and detoxification enzymes (acetylcholinesterase, carboxylesterase and glutathione S-transferase were found in WBPH adults fed on infected plants. Results implied that infestation by RBSDV increased the ecological fitness of non-vector planthopper population.

  18. Environmentally induced development costs underlie fitness tradeoffs.

    Science.gov (United States)

    Walter, Greg M; Wilkinson, Melanie J; Aguirre, J David; Blows, Mark W; Ortiz-Barrientos, Daniel

    2018-06-01

    Local adaptation can lead to genotype-by-environment interactions, which can create fitness tradeoffs in alternative environments, and govern the distribution of biodiversity across geographic landscapes. Exploring the ecological circumstances that promote the evolution of fitness tradeoffs requires identifying how natural selection operates and during which ontogenetic stages natural selection is strongest. When organisms disperse to areas outside their natural range, tradeoffs might emerge when organisms struggle to reach key life history stages, or alternatively, die shortly after reaching life history stages if there are greater risks of mortality associated with costs to developing in novel environments. We used multiple populations from four ecotypes of an Australian native wildflower (Senecio pinnatifolius) in reciprocal transplants to explore how fitness tradeoffs arise across ontogeny. We then assessed whether the survival probability for plants from native and foreign populations was contingent on reaching key developmental stages. We found that fitness tradeoffs emerged as ontogeny progressed when native plants were more successful than foreign plants at reaching seedling establishment and maturity. Native and foreign plants that failed to reach seedling establishment died at the same rate, but plants from foreign populations died quicker than native plants after reaching seedling establishment, and died quicker regardless of whether they reached sexual maturity or not. Development rates were similar for native and foreign populations, but changed depending on the environment. Together, our results suggest that natural selection for environment-specific traits early in life history created tradeoffs between contrasting environments. Plants from foreign populations were either unable to develop to seedling establishment, or they suffered increased mortality as a consequence of reaching seedling establishment. The observation of tradeoffs together with

  19. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies.

    Science.gov (United States)

    Wernerehl, Robert W; Givnish, Thomas J

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis' continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward "drier" sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500-1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward "wetter" sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the

  20. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies

    Science.gov (United States)

    Wernerehl, Robert W.; Givnish, Thomas J.

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis’ continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward “drier” sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500–1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward “wetter” sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This

  1. Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada's Prairie Pothole Region.

    Science.gov (United States)

    Main, Anson R; Headley, John V; Peru, Kerry M; Michel, Nicole L; Cessna, Allan J; Morrissey, Christy A

    2014-01-01

    Neonicotinoids currently dominate the insecticide market as seed treatments on Canada's major Prairie crops (e.g., canola). The potential impact to ecologically significant wetlands in this dominantly agro-environment has largely been overlooked while the distribution of use, incidence and level of contamination remains unreported. We modelled the spatial distribution of neonicotinoid use across the three Prairie Provinces in combination with temporal assessments of water and sediment concentrations in wetlands to measure four active ingredients (clothianidin, thiamethoxam, imidacloprid and acetamiprid). From 2009 to 2012, neonicotinoid use was increasing; by 2012, applications covered an estimated ∼11 million hectares (44% of Prairie cropland) with >216,000 kg of active ingredients. Thiamethoxam, followed by clothianidin, were the dominant seed treatments by mass and area. Areas of high neonicotinoid use were identified as high density canola or soybean production. Water sampled four times from 136 wetlands (spring, summer, fall 2012 and spring 2013) across four rural municipalities in Saskatchewan similarly revealed clothianidin and thiamethoxam in the majority of samples. In spring 2012 prior to seeding, 36% of wetlands contained at least one neonicotinoid. Detections increased to 62% in summer 2012, declined to 16% in fall, and increased to 91% the following spring 2013 after ice-off. Peak concentrations were recorded during summer 2012 for both thiamethoxam (range: Wetlands situated in barley, canola and oat fields consistently contained higher mean concentrations of neonicotinoids than in grasslands, but no individual crop singularly influenced overall detections or concentrations. Distribution maps indicate neonicotinoid use is increasing and becoming more widespread with concerns for environmental loading, while frequently detected neonicotinoid concentrations in Prairie wetlands suggest high persistence and transport into wetlands.

  2. Autonomic substrates of the response to pups in male prairie voles.

    Directory of Open Access Journals (Sweden)

    William M Kenkel

    Full Text Available Caregiving by nonparents (alloparenting and fathers is a defining aspect of human social behavior, yet this phenomenon is rare among mammals. Male prairie voles (Microtus ochrogaster spontaneously exhibit high levels of alloparental care, even in the absence of reproductive experience. In previous studies, exposure to a pup was selectively associated with increased activity in oxytocin and vasopressin neurons along with decreased plasma corticosterone. In the present study, physiological, pharmacological and neuroanatomical methods were used to explore the autonomic and behavioral consequences of exposing male prairie voles to a pup. Reproductively naïve, adult male prairie voles were implanted with radiotransmitters used for recording ECG, temperature and activity. Males responded with a sustained increase in heart-rate during pup exposure. This prolonged increase in heart rate was not explained by novelty, locomotion or thermoregulation. Although heart rate was elevated during pup exposure, respiratory sinus arrhythmia (RSA did not differ between these males and males exposed to control stimuli indicating that vagal inhibition of the heart was maintained. Blockade of beta-adrenergic receptors with atenolol abolished the pup-induced heart rate increase, implicating sympathetic activity in the pup-induced increase in heart rate. Blockade of vagal input to the heart delayed the males' approach to the pup. Increased activity in brainstem autonomic regulatory nuclei was also observed in males exposed to pups. Together, these findings suggest that exposure to a pup activates both vagal and sympathetic systems. This unique physiological state (i.e. increased sympathetic excitation of the heart, while maintaining some vagal cardiac tone associated with male caregiving behavior may allow males to both nurture and protect infants.

  3. Monkeypox disease transmission in an experimental setting: prairie dog animal model.

    Directory of Open Access Journals (Sweden)

    Christina L Hutson

    Full Text Available Monkeypox virus (MPXV is considered the most significant human public health threat in the genus Orthopoxvirus since the eradication of variola virus (the causative agent of smallpox. MPXV is a zoonotic agent endemic to forested areas of Central and Western Africa. In 2003, MPXV caused an outbreak in the United States due to the importation of infected African rodents, and subsequent sequential infection of North American prairie dogs (Cynomys ludovicianus and humans. In previous studies, the prairie dog MPXV model has successfully shown to be very useful for understanding MPXV since the model emulates key characteristics of human monkeypox disease. In humans, percutaneous exposure to animals has been documented but the primary method of human-to-human MPXV transmission is postulated to be by respiratory route. Only a few animal model studies of MPXV transmission have been reported. Herein, we show that MPXV infected prairie dogs are able to transmit the virus to naive animals through multiple transmission routes. All secondarily exposed animals were infected with MPXV during the course of the study. Notably, animals secondarily exposed appeared to manifest more severe disease; however, the disease course was very similar to those of experimentally challenged animals including inappetence leading to weight loss, development of lesions, production of orthopoxvirus antibodies and shedding of similar levels or in some instances higher levels of MPXV from the oral cavity. Disease was transmitted via exposure to contaminated bedding, co-housing, or respiratory secretions/nasal mucous (we could not definitively say that transmission occurred via respiratory route exclusively. Future use of the model will allow us to evaluate infection control measures, vaccines and antiviral strategies to decrease disease transmission.

  4. Interannual water-level fluctuations and the vegetation of prairie potholes: Potential impacts of climate change

    Science.gov (United States)

    van der Valk, Arnold; Mushet, David M.

    2016-01-01

    Mean water depth and range of interannual water-level fluctuations over wet-dry cycles in precipitation are major drivers of vegetation zone formation in North American prairie potholes. We used harmonic hydrological models, which require only mean interannual water depth and amplitude of water-level fluctuations over a wet–dry cycle, to examine how the vegetation zones in a pothole would respond to small changes in water depth and/or amplitude of water-level fluctuations. Field data from wetlands in Saskatchewan, North Dakota, and South Dakota were used to parameterize harmonic models for four pothole classes. Six scenarios in which small negative or positive changes in either mean water depth, amplitude of interannual fluctuations, or both, were modeled to predict if they would affect the number of zones in each wetland class. The results indicated that, in some cases, even small changes in mean water depth when coupled with a small change in amplitude of water-level fluctuations can shift a prairie pothole wetland from one class to another. Our results suggest that climate change could alter the relative proportion of different wetland classes in the prairie pothole region.

  5. Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments.

    Science.gov (United States)

    Daranas, Núria; Badosa, Esther; Francés, Jesús; Montesinos, Emilio; Bonaterra, Anna

    2018-01-01

    Lactobacillus plantarum strains PM411 and TC92 can efficiently control bacterial plant diseases, but their fitness on the plant surface is limited under unfavourable low relative humidity (RH) conditions. To increase tolerance of these strains to water stress, an adaptive strategy was used consisting of hyperosmotic and acidic conditions during growth. Adapted cells had higher survival rates under desiccation than non-adapted cells. Transcript levels and patterns of general stress-related genes increased immediately after the combined-stress adaptation treatment, and remained unaltered or repressed during the desiccation challenge. However, there were differences between strains in the transcription patterns that were in agreement with a better performance of adapted cells of PM411 than TC92 in plant surfaces under low RH environmental conditions. The combined-stress adaptation treatment increased the survival of PM411 cells consistently in different plant hosts in the greenhouse and under field conditions. Stress-adapted cells of PM411 had similar biocontrol potential against bacterial plant pathogens than non-adapted cells, but with less variability within experiments.

  6. Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments.

    Directory of Open Access Journals (Sweden)

    Núria Daranas

    Full Text Available Lactobacillus plantarum strains PM411 and TC92 can efficiently control bacterial plant diseases, but their fitness on the plant surface is limited under unfavourable low relative humidity (RH conditions. To increase tolerance of these strains to water stress, an adaptive strategy was used consisting of hyperosmotic and acidic conditions during growth. Adapted cells had higher survival rates under desiccation than non-adapted cells. Transcript levels and patterns of general stress-related genes increased immediately after the combined-stress adaptation treatment, and remained unaltered or repressed during the desiccation challenge. However, there were differences between strains in the transcription patterns that were in agreement with a better performance of adapted cells of PM411 than TC92 in plant surfaces under low RH environmental conditions. The combined-stress adaptation treatment increased the survival of PM411 cells consistently in different plant hosts in the greenhouse and under field conditions. Stress-adapted cells of PM411 had similar biocontrol potential against bacterial plant pathogens than non-adapted cells, but with less variability within experiments.

  7. Spatially explicit modeling of lesser prairie-chicken lek density in Texas

    Science.gov (United States)

    Timmer, Jennifer M.; Butler, M.J.; Ballard, Warren; Boal, Clint W.; Whitlaw, Heather A.

    2014-01-01

    As with many other grassland birds, lesser prairie-chickens (Tympanuchus pallidicinctus) have experienced population declines in the Southern Great Plains. Currently they are proposed for federal protection under the Endangered Species Act. In addition to a history of land-uses that have resulted in habitat loss, lesser prairie-chickens now face a new potential disturbance from energy development. We estimated lek density in the occupied lesser prairie-chicken range of Texas, USA, and modeled anthropogenic and vegetative landscape features associated with lek density. We used an aerial line-transect survey method to count lesser prairie-chicken leks in spring 2010 and 2011 and surveyed 208 randomly selected 51.84-km(2) blocks. We divided each survey block into 12.96-km(2) quadrats and summarized landscape variables within each quadrat. We then used hierarchical distance-sampling models to examine the relationship between lek density and anthropogenic and vegetative landscape features and predict how lek density may change in response to changes on the landscape, such as an increase in energy development. Our best models indicated lek density was related to percent grassland, region (i.e., the northeast or southwest region of the Texas Panhandle), total percentage of grassland and shrubland, paved road density, and active oil and gas well density. Predicted lek density peaked at 0.39leks/12.96km(2) (SE=0.09) and 2.05leks/12.96km(2) (SE=0.56) in the northeast and southwest region of the Texas Panhandle, respectively, which corresponds to approximately 88% and 44% grassland in the northeast and southwest region. Lek density increased with an increase in total percentage of grassland and shrubland and was greatest in areas with lower densities of paved roads and lower densities of active oil and gas wells. We used the 2 most competitive models to predict lek abundance and estimated 236 leks (CV=0.138, 95% CI=177-306leks) for our sampling area. Our results suggest that

  8. Evapotranspiration over spatially extensive plant communities in the Big Cypress National Preserve, southern Florida, 2007-2010

    Science.gov (United States)

    Shoemaker, W. Barclay; Lopez, Christian D.; Duever, Michael J.

    2011-01-01

    Evapotranspiration (ET) was quantified over plant communities within the Big Cypress National Preserve (BCNP) using the eddy covariance method for a period of 3 years from October 2007 to September 2010. Plant communities selected for study included Pine Upland, Wet Prairie, Marsh, Cypress Swamp, and Dwarf Cypress. These plant communities are spatially extensive in southern Florida, and thus, the ET measurements described herein can be applied to other humid subtropical locations such as the Everglades.

  9. The parasitic eyeworm Oxyspirura petrowi as a possible cause of decline in the threatened lesser prairie-chicken (Tympanuchus pallidicinctus.

    Directory of Open Access Journals (Sweden)

    Nicholas R Dunham

    Full Text Available Lesser prairie-chickens (Tympanuchus pallidicinctus have been declining range wide since the early 1900's despite efforts to establish conservation and improve their habitat. In early 2014, the lesser prairie-chicken was listed as a threatened species under the U.S Endangered Species Act and the need to find out why they are declining is more important than ever. Nine hunter shot lesser prairie-chickens were donated and sampled for the presence or absence of the eyeworm Oxyspirura petrowi, a known parasite that can cause damage to the eye of its host, and common environmental contaminants. Eyeworm infection was found in 7 of 9 birds (78% infection rate with an infection range between 0-16 O. petrowi per bird. Breast, liver, and fat tissue samples from the lesser prairie-chickens were analyzed for the frequency of 20 organochlorine pesticides. Femurs and livers were also tested on these birds for metal contaminants. Pesticides were found in several samples above the detection limits but were still in the low ng/g range. Notable was the ubiquitous presence of endrin aldehyde across all tissues. One femur showed 5.66 µg/g of lead (Pb but this is still relatively low. No liver samples had elevated mercury (Hg above detection limits. The presence of these organochlorines is consistent with the historic use of pesticides in this region. With pesticide and metals found in such low levels and parasitic nematode infections at rather high levels, it is recommended that these parasites be further evaluated as a contributing factor to the decline of the lesser prairie-chicken.

  10. Generation of data base for on-line fatigue life monitoring of Indian nuclear power plant components: Part I - Generation of Green's functions for end fitting

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Dutta, B.K.; Kushwaha, H.S.

    1994-01-01

    Green's function technique is the heart of the on- line fatigue monitoring methodology. The plant transients are converted to stress and temperature response using this technique. To implement this methodology in a nuclear power plant, Green's functions are to be generated in advance. For structures of complex geometries, Green's functions are to be stored in a data base to convert on-line, the plant data to temperature/stress response, using a personal computer. End fitting, end shield, pressurizer, steam generator tube sheet are few such components of PHWR where fatigue monitoring is needed. In the present paper, Green's functions are generated for end fitting of a 235 MWe Indian PHWR using finite element method. End fitting has been analysed using both 3-D and 2-D (axisymmetric) finite element models. Temperature and stress Green's functions are generated at few critical locations using the code ABAQUS. (author). 10 refs., 11 figs

  11. Using stable isotopes to understand hydrochemical processes in and around a Prairie Pothole wetland in the Northern Great Plains, USA

    International Nuclear Information System (INIS)

    Mills, Christopher T.; Goldhaber, Martin B.; Stricker, Craig A.; Holloway, JoAnn M.; Morrison, Jean M.; Ellefsen, Karl J.; Rosenberry, Donald O.; Thurston, Roland S.

    2011-01-01

    Highlights: → A stable isotope study of the hydrochemistry of a Prairie Pothole wetland system. → δ 18 O H2O and δ 2 H H2O values show salt concentration by transpiration at wetland edge. → A range of δ 34 S SO4 values indicate SO 4 source and reduction processes. → Isotopic mixing lines show interaction of surface and groundwater at wetland edge. - Abstract: Millions of internally drained wetland systems in the Prairie Potholes region of the northern Great Plains (USA and Canada) provide indispensable habitat for waterfowl and a host of other ecosystem services. The hydrochemistry of these systems is complex and a crucial control on wetland function, flora and fauna. Wetland waters can have high concentrations of SO 4 2- due to the oxidation of large amounts of pyrite in glacial till that is in part derived from the Pierre shale. Water chemistry including δ 18 O H2O , δ 2 H H2O , and δ 34 S SO4 values, was determined for groundwater, soil pore water, and wetland surface water in and around a discharge wetland in North Dakota. The isotopic data for the first time trace the interaction of processes that affect wetland chemistry, including open water evaporation, plant transpiration, and microbial SO 4 reduction.

  12. Flea abundance, diversity, and plague in Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in northern New Mexico

    Science.gov (United States)

    Megan M. Friggens; Robert R. Parmenter; Michael Boyden; Paulette L. Ford; Kenneth Gage; Paul Keim

    2010-01-01

    Plague, a flea-transmitted infectious disease caused by the bacterium Yersinia pestis, is a primary threat to the persistence of prairie dog populations (Cynomys spp.). We conducted a 3-yr survey (2004-2006) of fleas from Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in Valles Caldera National Preserve in New Mexico. Our...

  13. Social isolation disrupts innate immune responses in both male and female prairie voles and enhances agonistic behavior in female prairie voles (Microtus ochrogaster).

    Science.gov (United States)

    Scotti, Melissa-Ann L; Carlton, Elizabeth D; Demas, Gregory E; Grippo, Angela J

    2015-04-01

    Psychosocial stress, specifically social isolation, is an important risk factor for the development of a variety of psychological and physiological disorders. Changes in immune function have been hypothesized to mediate this relationship. The current study used the prairie vole (Microtus ochrogaster) model of isolation-induced depressive-like behavior to test whether social isolation led to changes in innate immune function. Specifically, we used hemolytic complement (CH50) and bacteria killing assays to assess innate immunity, in paired or singly housed male and female prairie voles. Further, in a second experiment we tested whether females exposed to an additional short-term social stressor, a resident-intruder trial, would show changes in immune function as well as enhanced hypothalamic pituitary axis (HPA) activity as indicated by elevated plasma corticosterone levels. Socially isolated animals, regardless of sex, had significantly reduced CH50s and bacteria killing ability. Socially isolated females exposed to a resident-intruder stressor also showed reduced CH50s and bacteria killing ability as well as significant increases in aggressive behavior, however, they did not show elevated circulating corticosterone levels. Collectively, these data will help inform our understanding of the relationship between social isolation and physiological and psychological health. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Melanocortin Receptor Agonists Facilitate Oxytocin-Dependent Partner Preference Formation in the Prairie Vole.

    Science.gov (United States)

    Modi, Meera E; Inoue, Kiyoshi; Barrett, Catherine E; Kittelberger, Kara A; Smith, Daniel G; Landgraf, Rainer; Young, Larry J

    2015-07-01

    The central melanocortin (MC) system has been widely studied for its effects on food intake and sexual behavior. However, the MC system, and more specifically the MC4 receptor (MC4R), also interacts with neurochemical systems that regulate socioemotional behaviors, including oxytocin (OT) and dopamine. In monogamous prairie voles, OT and dopamine interact to promote partner preference formation, a laboratory measure of an enduring social bond between mates. Here we investigated the effects of MC receptor activation on partner preference formation in prairie voles, as well as the interaction between the MC and OT systems during this process. Peripheral administration of the brain penetrant MC3/4R receptor peptide agonist, Melanotan II (MTII), and the highly selective, small-molecule MC4R agonist, Pf-446687, enhanced partner preference formation in the prairie vole, but not in the non-monogamous meadow vole. MTII-induced partner preferences were enduring, as they were present 1 week after drug manipulation. The prosocial effects of MCR agonists may be mediated, in part, through modulation of OT, as coadministration of an OT receptor antagonist prevented MTII-induced partner preferences. MTII also selectively activated hypothalamic OT neurons and potentiated central OT release. As OT has been shown to enhance some aspects of social cognition in humans, our data suggest that the MC4R may be a viable therapeutic target for enhancing social function in psychiatric disorders, including autism spectrum disorders and schizophrenia, potentially through activation of the OT system.

  15. Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada's Prairie Pothole Region.

    Directory of Open Access Journals (Sweden)

    Anson R Main

    Full Text Available Neonicotinoids currently dominate the insecticide market as seed treatments on Canada's major Prairie crops (e.g., canola. The potential impact to ecologically significant wetlands in this dominantly agro-environment has largely been overlooked while the distribution of use, incidence and level of contamination remains unreported. We modelled the spatial distribution of neonicotinoid use across the three Prairie Provinces in combination with temporal assessments of water and sediment concentrations in wetlands to measure four active ingredients (clothianidin, thiamethoxam, imidacloprid and acetamiprid. From 2009 to 2012, neonicotinoid use was increasing; by 2012, applications covered an estimated ∼11 million hectares (44% of Prairie cropland with >216,000 kg of active ingredients. Thiamethoxam, followed by clothianidin, were the dominant seed treatments by mass and area. Areas of high neonicotinoid use were identified as high density canola or soybean production. Water sampled four times from 136 wetlands (spring, summer, fall 2012 and spring 2013 across four rural municipalities in Saskatchewan similarly revealed clothianidin and thiamethoxam in the majority of samples. In spring 2012 prior to seeding, 36% of wetlands contained at least one neonicotinoid. Detections increased to 62% in summer 2012, declined to 16% in fall, and increased to 91% the following spring 2013 after ice-off. Peak concentrations were recorded during summer 2012 for both thiamethoxam (range:

  16. Geothermal FIT Design: International Experience and U.S. Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Rickerson, W.; Gifford, J.; Grace, R.; Cory, K.

    2012-08-01

    Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date, a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).

  17. Status of black-tailed prairie dog (Cynomys ludovicianus) in Sonora, Mexico

    Science.gov (United States)

    Reyna A. Castillo-Gamez; Rafael Arenas-Wong; Luis Castillo-Quijada; Verónica Coronado-Peraza; Abigail Enríquez-Munguia; Mirna Federico-Ortega; Alejandra García-Urrutia; Alba Lozano-Gámez; Romeo Méndez-Estrella; Laura Ochoa-Figueroa; J. R. Romo-León; Guy Kruse-Llergo; Iván Parra-Salazar

    2005-01-01

    Prairie dog is a keystone species throughout the habitat where it occurs, but its populations have declined about 98% in the last century. This species has been considered of international importance for the United States of America, Canada, and Mexico. Only two populations are recorded for Mexico, and the westernmost (isolated by Sierra Madre...

  18. Vegetation dynamics of restored and remnant Willamette Valley, OR wet prairie wetlands

    Science.gov (United States)

    Wet prairie wetlands are now one of the rarest habitat types in the Willamette Valley of Oregon, USA. Less than two percent of their historic extent remains, with most having been converted into agricultural fields (Christy and Alverson 2011, ONHP 1983). This habitat is the obl...

  19. Gallbladder contractility and mucus secretion after cholesterol feeding in the prairie dog

    NARCIS (Netherlands)

    Li, Y. F.; Moody, F. G.; Weisbrodt, N. W.; Zalewsky, C. A.; Coelho, J. C.; Senninger, N.; Gouma, D.

    1986-01-01

    The purpose of our study was to evaluate changes in gallbladder contractility and mucus secretion in vitro during the early stages of gallstone formation in prairie dogs. Thirty-two animals were divided into five groups. Control animals were fed a trace cholesterol diet. Experimental animals were

  20. Groundwater connectivity of upland-embedded wetlands in the Prairie Pothole Region

    Science.gov (United States)

    Neff, Brian; Rosenberry, Donald O.

    2018-01-01

    Groundwater connections from upland-embedded wetlands to downstream waterbodies remain poorly understood. In principle, water from upland-embedded wetlands situated high in a landscape should flow via groundwater to waterbodies situated lower in the landscape. However, the degree of groundwater connectivity varies across systems due to factors such as geologic setting, hydrologic conditions, and topography. We use numerical models to evaluate the conditions suitable for groundwater connectivity between upland-embedded wetlands and downstream waterbodies in the prairie pothole region of North Dakota (USA). Results show groundwater connectivity between upland-embedded wetlands and other waterbodies is restricted when these wetlands are surrounded by a mounding water table. However, connectivity exists among adjacent upland-embedded wetlands where water–table mounds do not form. In addition, the presence of sand layers greatly facilitates groundwater connectivity of upland-embedded wetlands. Anisotropy can facilitate connectivity via groundwater flow, but only if it becomes unrealistically large. These findings help consolidate previously divergent views on the significance of local and regional groundwater flow in the prairie pothole region.

  1. Plant diversity and plant identity influence Fusarium communities in soil.

    Science.gov (United States)

    LeBlanc, Nicholas; Kinkel, Linda; Kistler, H Corby

    2017-01-01

    Fusarium communities play important functional roles in soil and in plants as pathogens, endophytes, and saprotrophs. This study tests how rhizosphere Fusarium communities may vary with plant species, changes in the diversity of the surrounding plant community, and soil physiochemical characteristics. Fusarium communities in soil associated with the roots of two perennial prairie plant species maintained as monocultures or growing within polyculture plant communities were characterized using targeted metagenomics. Amplicon libraries targeting the RPB2 locus were generated from rhizosphere soil DNAs and sequenced using pyrosequencing. Sequences were clustered into operational taxonomic units (OTUs) and assigned a taxonomy using the Evolutionary Placement Algorithm. Fusarium community composition was differentiated between monoculture and polyculture plant communities, and by plant species in monoculture, but not in polyculture. Taxonomic classification of the Fusarium OTUs showed a predominance of F. tricinctum and F. oxysporum as well of the presence of a clade previously only found in the Southern Hemisphere. Total Fusarium richness was not affected by changes in plant community richness or correlated with soil physiochemical characteristics. However, OTU richness within two predominant phylogenetic lineages within the genus was positively or negatively correlated with soil physiochemical characteristics among samples within each lineage. This work shows that plant species, plant community richness, and soil physiochemical characteristics may all influence the composition and richness of Fusarium communities in soil.

  2. Transcriptional profile and differential fitness in a specialist milkweed insect across host plants varying in toxicity.

    Science.gov (United States)

    Birnbaum, Stephanie S L; Rinker, David C; Gerardo, Nicole M; Abbot, Patrick

    2017-12-01

    Interactions between plants and herbivorous insects have been models for theories of specialization and co-evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed-specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole-body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP-glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths. © 2017 John Wiley & Sons Ltd.

  3. Evaluation of monkeypox virus infection of prairie dogs (Cynomys ludovicianus) using in vivo bioluminescent imaging

    Science.gov (United States)

    Falendysz, Elizabeth A.; Londoño-Navas, Angela M.; Meteyer, Carol U.; Pussini, Nicola; Lopera, Juan G.; Osorio, Jorge E.; Rocke, Tonie E.

    2014-01-01

    Monkeypox (MPX) is a re-emerging zoonotic disease that is endemic in Central and West Africa, where it can cause a smallpox-like disease in humans. Despite many epidemiologic and field investigations of MPX, no definitive reservoir species has been identified. Using recombinant viruses expressing the firefly luciferase (luc) gene, we previously demonstrated the suitability of in vivo bioluminescent imaging (BLI) to study the pathogenesis of MPX in animal models. Here, we evaluated BLI as a novel approach for tracking MPX virus infection in black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs were affected during a multistate outbreak of MPX in the US in 2003 and have since been used as an animal model of this disease. Our BLI results were compared with PCR and virus isolation from tissues collected postmortem. Virus was easily detected and quantified in skin and superficial tissues by BLI before and during clinical phases, as well as in subclinical secondary cases, but was not reliably detected in deep tissues such as the lung. Although there are limitations to viral detection in larger wild rodent species, BLI can enhance the use of prairie dogs as an animal model of MPX and can be used for the study of infection, disease progression, and transmission in potential wild rodent reservoirs.

  4. Partner Loss in Monogamous Rodents: Modulation of Pain and Emotional Behavior in Male Prairie Voles.

    Science.gov (United States)

    Osako, Yoji; Nobuhara, Reiko; Arai, Young-Chang P; Tanaka, Kenjiro; Young, Larry J; Nishihara, Makoto; Mitsui, Shinichi; Yuri, Kazunari

    2018-01-01

    Pain is modulated by psychosocial factors, and social stress-induced hyperalgesia is a common clinical symptom in pain disorders. To provide a new animal model for studying social modulation of pain, we examined pain behaviors in monogamous prairie voles experiencing partner loss. After cohabitation with novel females, males (n = 79) were divided into two groups on the basis of preference test scores. Half of the males of each group were separated from their partner (loss group), whereas the other half remained paired (paired group). Thus, males from both groups experienced social isolation. Open field tests, plantar tests, and formalin tests were then conducted on males to assess anxiety and pain-related behaviors. Loss males showing partner preferences (n = 20) displayed a significant increase in anxiety-related behavior in the open-field test (central area/total distance: 13.65% [1.58%] for paired versus 6.45% [0.87%] for loss; p partner preferences (r = 0.15). Results indicate that social bonds and their disruption, but not social housing without bonding followed by isolation, modulate pain and emotion in male prairie voles. The prairie vole is a useful model for exploring the neural mechanisms by which social relationships contribute to pain and nociceptive processing in humans.

  5. Sediment removal by prairie filter strips in row-cropped ephemeral watersheds

    Science.gov (United States)

    Matthew J. Helmers; Xiaobo Zhou; Heidi Asbjornsen; Randy Kolka; Mark D. Tomer; Richard M. Cruse

    2012-01-01

    Twelve small watersheds in central Iowa were used to evaluate the eff ectiveness of prairie filter strips (PFS) in trapping sediment from agricultural runoff. Four treatments with PFS of different size and location (100% rowcrop, 10% PFS of total watershed area at footslope, 10% PFS at footslope and in contour strips, 20% PFS at footslope and in contour strips)...

  6. Size and shape information serve as labels in the alarm calls of Gunnison's prairie dogs Cynomys gunnisoni

    Directory of Open Access Journals (Sweden)

    C. N. SLOBODCHIKOFF, William R. BRIGGS, Patricia A DENNIS, Anne-Marie C. HODGE

    2012-10-01

    Full Text Available Some animals have the capacity to produce different alarm calls for terrestrial and aerial predators. However, it is not clear what cognitive processes are involved in generating these calls. One possibility is the position of the predator: Anything on the ground receives a terrestrial predator call, and anything in the air receives an aerial predator call. Another possibility is that animals are able to recognize the physical features of predators and incorporate those into their calls. As a way of elucidating which of these mechanisms plays a primary role in generating the structure of different calls, we performed two field experiments with Gunnison’s prairie dogs. First, we presented the prairie dogs with a circle, a triangle, and a square, each moving across the colony at the same height and speed. Second, we presented the prairie dogs with two squares of differing sizes. DFA statistics showed that 82.6 percent of calls for the circle and 79.2 percent of the calls for the triangle were correctly classified, and 73.3 percent of the calls for the square were classified as either square or circle. Also, 100 percent of the calls for the larger square and 90 percent of the calls for the smaller square were correctly classified. Because both squares and circles are features of terrestrial predators and triangles are features of aerial predators, our results suggest that prairie dogs might have a cognitive mechanism that labels the abstract shape and size of different predators, rather than the position of the predator [Current Zoology 58 (5: 741-748, 2012].

  7. Evaluation of the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002; Bilan des emissions de gaz a effet de serre (CO{sub 2}, CH{sub 4}, N{sub 2}O) en prairie paturee et dans des exploitations d'elevage herbager. GES-Prairies. Rapport de la premiere tranche du projet Decembre 2002

    Energy Technology Data Exchange (ETDEWEB)

    Soussana, J.F

    2002-12-15

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO{sub 2} and CH{sub 4} (by the breeding animals on grass) and N{sub 2}O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  8. Lithological and land-use based assessment of heavy metal pollution in soils surrounding a cement plant in SW Europe.

    Science.gov (United States)

    Cutillas-Barreiro, Laura; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Fernández-Sanjurjo, María José; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos

    2016-08-15

    We study the influence of phasing out a cement plant on the heavy metal (Hg, Pb and Cr) content in the surrounding soils, taking into account factors often neglected, such as contributions due to local lithology or land use. The range of total Hg was 10-144µg kg(-1), reaching up to 41 and 145mgkg(-1) for total contents of Pb and Cr, respectively. Forest soils showed higher concentration of Hg than prairie soils, indicating the importance of land use on the accumulation of volatile heavy metals in soils. In forest soils, total Hg showed a trend to decrease with soil depth, whereas in prairie soils the vertical pattern of heavy metal concentrations was quite homogeneous. In most cases, the distance to the cement plant was not a factor of influence in the soils content of the analyzed heavy metals. Total Pb and Cr contents in soils nearby the cement plant were quite similar to those found in the local lithology, resulting in enrichment factor values (EF's) below 2. This suggests that soil parent material is the main source of these heavy metals in the studied soils, while the contribution of the cement plant to Pb and Cr soil pollution was almost negligible. On the contrary, the soils surrounding the cement plant accumulate a significant amount of Hg, compared to the underlying lithology. This was especially noticeable in forest soils, where Hg EF achieved values up to 36. These results are of relevance, bearing in mind that Hg accumulation in soils may be an issue of environmental concern, particularly in prairie soils, where temporal flooding can favor Hg transformation to highly toxic methyl-Hg. In addition, the concurrence of acid soils and total-Cr concentrations in the range of those considered phytotoxic should be also stressed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Application of a portable microcomputer mental acuity battery for fitness-for-duty assessment in power plant operations

    International Nuclear Information System (INIS)

    Kennedy, R.S.; Turnage, J.T.; Lane, N.E.

    1988-01-01

    A need exists for assessment of fitness-for-duty in power plants. Several microcomputer-based mental acuity test batteries are under development for objective assessment of human performance over repeated measures. One of these, the Automated Performance Test System (APTS), has been shown to be sensitive to various environments and treatments and could prove useful for this purpose. Tests from these batteries should be studied during the naturally occurring stresses of power plant activity (e.g., shift work, sustained operations, sleep deprivation, stressful periods) in order to establish the effects of such issues on performance, and to provide insights and scientific data for the development of standards and regulations

  10. Characteristics of lesser prairie-chicken (Tympanuchus pallidicinctus) long-distance movements across their distribution

    Science.gov (United States)

    Earl, Julia E.; Fuhlendorf, Samuel D.; Haukos, David A.; Tanner, Ashley M.; Elmore, Dwayne; Carleton, Scott A.

    2016-01-01

    Long-distance movements are important adaptive behaviors that contribute to population, community, and ecosystem connectivity. However, researchers have a poor understanding of the characteristics of long-distance movements for most species. Here, we examined long-distance movements for the lesser prairie-chicken (Tympanuchus pallidicinctus), a species of conservation concern. We addressed the following questions: (1) At what distances could populations be connected? (2) What are the characteristics and probability of dispersal movements? (3) Do lesser prairie-chickens display exploratory and round-trip movements? (4) Do the characteristics of long-distance movements vary by site? Movements were examined from populations using satellite GPS transmitters across the entire distribution of the species in New Mexico, Oklahoma, Kansas, and Colorado. Dispersal movements were recorded up to 71 km net displacement, much farther than hitherto recorded. These distances suggest that there may be greater potential connectivity among populations than previously thought. Dispersal movements were displayed primarily by females and had a northerly directional bias. Dispersal probabilities ranged from 0.08 to 0.43 movements per year for both sexes combined, although these movements averaged only 16 km net displacement. Lesser prairie-chickens displayed both exploratory foray loops and round-trip movements. Half of round-trip movements appeared seasonal, suggesting a partial migration in some populations. None of the long-distance movements varied by study site. Data presented here will be important in parameterizing models assessing population viability and informing conservation planning, although further work is needed to identify landscape features that may reduce connectivity among populations.

  11. Mapping wetlands and surface water in the Prairie Pothole Region of North America: Chapter 16

    Science.gov (United States)

    Rover, Jennifer R.; Mushet, David M.

    2015-01-01

    The Prairie Pothole Region (PPR) is one of the most highly productive wetland regions in the world. Prairie Pothole wetlands serve as a primary feeding and breeding habitat for more than one-half of North America’s waterfowl population, as well as a variety of songbirds, waterbirds, shorebirds, and other wildlife. During the last century, extensive land conversions from grassland with wetlands to cultivated cropland and grazed pastureland segmented and reduced wetland habitat. Inventorying and characterizing remaining wetland habitat is critical for the management of wetland ecosystem services. Remote sensing technologies are often utilized for mapping and monitoring wetlands. This chapter presents background specific to the PPR and discusses approaches employed in mapping its wetlands before presenting a case study.

  12. Northern Prairie Wildlife Research Center—Celebrating 50 years of science

    Science.gov (United States)

    Austin, Jane E.; Shaffer, Terry L.; Igl, Lawrence D.; Johnson, Douglas H.; Krapu, Gary L.; Larson, Diane L.; Mech, L. David; Mushet, David M.; Sovada, Marsha A.

    2017-10-30

    The Northern Prairie Wildlife Research Center (NPWRC) celebrated its 50-year anniversary in 2015. This report is written in support of that observance. We document why and how the NPWRC came to be and describe some of its many accomplishments and the influence the Center’s research program has had on natural resource management. The history is organized by major research themes, proceeds somewhat chronologically within each theme, and covers the Center’s first 50 years of research. During that period, Center scientists authored more than 1,700 publications and reports. More than 1,000 seasonal or temporary field personnel, and more than 100 graduate students, contributed to the Center’s success; many went on to have exemplary careers in natural resource management, conservation, and education. The mission of the Northern Prairie Wildlife Research Center today remains true to the original vision: to provide the knowledge needed to understand, conserve, and manage the Nation’s natural resources for current and future generations, with an emphasis on species and ecosystems of the northern Great Plains. The Center’s first 50 years of applied biological research provides a deep scientific foundation on which to address emerging issues for the natural resources in the northern Great Plains and beyond.

  13. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming

    Science.gov (United States)

    Thiagarajan, Bala; Bai, Ying; Gage, Kenneth L.; Cully, Jack F.

    2008-01-01

    Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off.

  14. Evaluation of capture techniques on lesser prairie-chicken trap injury and survival

    Science.gov (United States)

    Grisham, Blake A.; Boal, Clint W.; Mitchell, Natasia R.; Gicklhorn, Trevor S.; Borsdorf, Philip K.; Haukos, David A.; Dixon, Charles

    2015-01-01

    Ethical treatment of research animals is required under the Animal Welfare Act. This includes trapping methodologies that reduce unnecessary pain and duress. Traps used in research should optimize animal welfare conditions within the context of the proposed research study. Several trapping techniques are used in the study of lesser prairie-chickens, despite lack of knowledge of trap injury caused by the various methods. From 2006 to 2012, we captured 217, 40, and 144 lesser prairie-chickens Tympanuchus pallidicinctus using walk-in funnel traps, rocket nets, and drop nets, respectively, in New Mexico and Texas, to assess the effects of capture technique on injury and survival of the species. We monitored radiotagged, injured lesser prairie-chickens 7–65 d postcapture to assess survival rates of injured individuals. Injuries occurred disproportionately among trap type, injury type, and sex. The predominant injuries were superficial cuts to the extremities of males captured in walk-in funnel traps. However, we observed no mortalities due to trapping, postcapture survival rates of injured birds did not vary across trap types, and the daily survival probability of an injured and uninjured bird was ≥99%. Frequency and intensity of injuries in walk-in funnel traps are due to the passive nature of these traps (researcher cannot select specific individuals for capture) and incidental capture of individuals not needed for research. Comparatively, rocket nets and drop nets allow observers to target birds for capture and require immediate removal of captured individuals from the trap. Based on our results, trap injuries would be reduced if researchers monitor and immediately remove birds from walk-in funnels before they injure themselves; move traps to target specific birds and reduce recaptures; limit the number of consecutive trapping days on a lek; and use proper netting techniques that incorporate quick, efficient, trained handling procedures.

  15. Respiratory isolation for tuberculosis: the experience of Indigenous peoples on the Canadian prairies.

    Science.gov (United States)

    Mayan, M; Robinson, T; Gokiert, R; Tremblay, M; Abonyi, S; Long, R

    2017-12-21

    Setting: The Prairie provinces of Canada. Objective: To understand how Indigenous peoples with infectious pulmonary tuberculosis living in different community settings in the Prairie provinces of Canada experience respiratory isolation. Design: Using an exploratory qualitative approach, we interviewed participants living in urban centres, non-remote reserve settings and remote and isolated reserve settings. Results: Through qualitative content analysis of 48 interviews, we determined that participants experienced feelings of confinement regardless of the community setting in which they lived. Participants also experienced family and social disconnect, but the experience was more potent for the remote and isolated reserve participants, who were required to be flown out of their home communities to receive treatment, and for those urban centre and non-remote reserve participants who lacked social connections. The roles of past experiences with sanitoria and of family in providing social support are discussed. Conclusions: The conclusions of this study focus on examining isolation policies and improving the hospital isolation experience.

  16. Responses of Juvenile Black-tailed Prairie Dogs ( Cynomys ludovicianus ) to a Commercially Produced Oral Plague Vaccine Delivered at Two Doses.

    Science.gov (United States)

    Cárdenas-Canales, Elsa M; Wolfe, Lisa L; Tripp, Daniel W; Rocke, Tonie E; Abbott, Rachel C; Miller, Michael W

    2017-10-01

    We confirmed safety and immunogenicity of mass-produced vaccine baits carrying an experimental, commercial-source plague vaccine (RCN-F1/V307) expressing Yersinia pestis V and F1 antigens. Forty-five juvenile black-tailed prairie dogs ( Cynomys ludovicianus ) were randomly divided into three treatment groups (n=15 animals/group). Animals in the first group received one standard-dose vaccine bait (5×10 7 plaque-forming units [pfu]; STD). The second group received a lower-dose bait (1×10 7 pfu; LOW). In the third group, five animals received two standard-dose baits and 10 were left untreated but in contact. Two vaccine-treated and one untreated prairie dogs died during the study, but laboratory analyses ruled out vaccine involvement. Overall, 17 of 33 (52%; 95% confidence interval for binomial proportion [bCI] 34-69%) prairie dogs receiving vaccine-laden bait showed a positive anti-V antibody response on at least one sampling occasion after bait consumption, and eight (24%; bCI 11-42%) showed sustained antibody responses. The STD and LOW groups did not differ (P≥0.78) in their proportions of overall or sustained antibody responses after vaccine bait consumption. Serum from one of the nine (11%; bCI 0.3-48%) surviving untreated, in-contact prairie dogs also had detectable antibody on one sampling occasion. We did not observe any adverse effects related to oral vaccination.

  17. Fitting into the Harsh Reality: Regulation of Irondeficiency Responses in Dicotyledonous Plants

    Institute of Scientific and Technical Information of China (English)

    Rumen Ivanov; Tzvetina Brumbarova; Petra Bauer

    2012-01-01

    Iron is an essential element for life on Earth and its shortage,or excess,in the living organism may lead to severe health disorders.Plants serve as the primary source of dietary iron and improving crop iron content is an important step towards a better public health.Our review focuses on the control of iron acquisition in dicotyledonous plants and monocots that apply a reduction-based strategy in order to mobilize and import iron from the rhizosphere.Achieving a balance between shortage and excess of iron requires a tight regulation of the activity of the iron uptake system.A number of studies,ranging from single gene characterization to systems biology analyses,have led to the rapid expansion of our knowledge on iron uptake in recent years.Here,we summarize the novel insights into the regulation of iron acquisition and internal mobilization from intracellular stores.We present a detailed view of the main known regulatory networks defined by the Arabidopsis regulators FIT and POPEYE (PYE).Additionally,we analyze the root and leaf ironresponsive regulatory networks,revealing novel potential gene interactions and reliable iron-deficiency marker genes.We discuss perspectives and open questions with regard to iron sensing and post-translational regulation.

  18. The use of flagella and motility for plant colonization and fitness by different strains of the foodborne pathogen Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Lisa Gorski

    Full Text Available The role of flagella and motility in the attachment of the foodborne pathogen Listeria monocytogenes to various surfaces is mixed with some systems requiring flagella for an interaction and others needing only motility for cells to get to the surface. In nature this bacterium is a saprophyte and contaminated produce is an avenue for infection. Previous studies have documented the ability of this organism to attach to and colonize plant tissue. Motility mutants were generated in three wild type strains of L. monocytogenes by deleting either flaA, the gene encoding flagellin, or motAB, genes encoding part of the flagellar motor, and tested for both the ability to colonize sprouts and for the fitness of that colonization. The motAB mutants were not affected in the colonization of alfalfa, radish, and broccoli sprouts; however, some of the flaA mutants showed reduced colonization ability. The best colonizing wild type strain was reduced in colonization on all three sprout types as a result of a flaA deletion. A mutant in another background was only affected on alfalfa. The third, a poor alfalfa colonizer was not affected in colonization ability by any of the deletions. Fitness of colonization was measured in experiments of competition between mixtures of mutant and parent strains on sprouts. Here the flaA and motAB mutants of the three strain backgrounds were impaired in fitness of colonization of alfalfa and radish sprouts, and one strain background showed reduced fitness of both mutant types on broccoli sprouts. Together these data indicate a role for flagella for some strains to physically colonize some plants, while the fitness of that colonization is positively affected by motility in almost all cases.

  19. Searls prairie clover (Dalea searlsiae) for rangeland revegetation: Phenotypic and genetic evaluations

    Science.gov (United States)

    Kishor Bhattarai; Shaun Bushman; Douglas A. Johnson; John G. Carman

    2011-01-01

    Few North American legumes are available for use in rangeland revegetation in the western USA, but Searls prairie clover [Dalea searlsiae (A. Gray) Barneby] is one that holds promise. Commercial-scale seed production of this species could address the issues of unreliable seed availability and high seed costs associated with its wildland seed collection. To evaluate its...

  20. 78 FR 29774 - Endangered and Threatened Wildlife and Plants; Draft Revised Supplement to the Grizzly Bear...

    Science.gov (United States)

    2013-05-21

    ...] Endangered and Threatened Wildlife and Plants; Draft Revised Supplement to the Grizzly Bear Recovery Plan... extending the public comment period for a Draft Revised Supplement to the Grizzly Bear Recovery Plan in the... to the Grizzly Bear Recovery Plan is available at http://www.fws.gov/mountain-prairie/species/mammals...

  1. Two sides of a coin: host-plant synchrony fitness trade-offs in the population dynamics of the western spruce budworm.

    Science.gov (United States)

    Régnière, Jacques; Nealis, Vincent G

    2018-02-01

    Conifer-feeding budworms emerge from overwintering sites as small larvae in early spring, several days before budburst, and mine old needles. These early-emerging larvae suffer considerable mortality during this foraging period as they disperse in search of available, current-year buds. Once buds flush, surviving budworms construct feeding shelters and must complete maturation before fresh host foliage senesces and lignifies later in the summer. Late-developing larvae suffer greater mortality and survivors have lower fecundity when feeding on older foliage. Thus, there is a seasonal trade-off in fitness associated with host synchrony: early-emerging budworms have a greater risk of mortality during spring dispersal but gain better access to the most nutritious foliage, while, on the other hand, late-emerging larvae incur a lower risk during the initial foraging period but must contend with rapidly diminishing resource quality at the end of the feeding period. We investigate the balance that results from these early-season and late-season synchrony fitness trade-offs using the concept of the phenological window. Parameters associated with the variation in the phenological window are used to estimate generational fitness as a function of host-plant synchrony. Because defoliation modifies these relationships, it is also included in the analysis. We show that fitness trade-offs characterizing the phenological window result in a robust synchrony relationship between budworm and host plant over a wide geographic range in southern British Columbia, Canada. © 2016 Her Majesty the Queen in Right of Canada Insect Science © 2016 Institute of Zoology, Chinese Academy of Sciences.

  2. Phenotypic and genetic characterization of western prairie clover collections from the western USA

    Science.gov (United States)

    Kishor Bhattarai; B. Shaun Bushman; Douglas A. Johnson; John G. Carman

    2010-01-01

    Few North American legumes are available for rangeland revegetation in the semiarid western United States. Western prairie clover (Dalea ornata [Douglas ex Hook.] Eaton & J. Wright) is a perennial legume with desirable forage characteristics and is distributed in the northern Great Basin, Snake River Basin, and southern Columbia Plateau. Understanding the...

  3. Determining Hydroperiod for Boreal and Prairie Pothole Wetlands using SAR, Optical and LiDAR Remote Sensing Data Fusion

    Science.gov (United States)

    Montgomery, J. S.; Hopkinson, C.; Brisco, B.; Patterson, S.; Chasmer, L.; Mahoney, C.

    2017-12-01

    Cultivation, irrigation networks, and infrastructure have all greatly impacted the ecology and hydrology of the Prairie Pothole and Boreal regions of western Canada. Due to sub-humid climate and high potential evaporation, many wetlands in these natural regions are seldom continuously occupied by water, and are often confined to local depressions. In the Boreal region, wetlands may be difficult to monitor due to their remote location, whereas prairie wetlands have highly varying degrees of surface water and soil saturation throughout the year. This study examines how high-resolution Lidar, Synthetic Aperture Radar (SAR), and optical data can be utilized in spatial-temporal studies to classify wetlands based on water extent, riparian vegetation, and topographic characteristics. An intensity (dB) threshold routine was used to extract open surface water extent to determine hydroperiod. Digital Elevation Models (DEM) are used with a topographic position index to infer local depressions, while Digital Surface Models (DSMs) are used to characterise vegetation structural characteristics within and proximal to wetlands. The proposed framework provides an index of wetland permanence and wetland class, where permanence varies seasonally and annually. Boreal wetland hydroperiod is less variable than that found in prairie pothole wetlands, most notably the semi-permanent class, varying by only 2%, compared to >50% in prairie pothole wetlands. For years studied, prairie pothole wetlands reached maximum water extent following major rainfall events. Seasonal and semi-permanent wetlands were found to have greater change in surface water between years than temporary wetlands (75.3% and 59.1% from average respectively). The lowest frequency of water pixel inundation for seasonal and semi-permanent wetlands was found to be in the year with the most precipitation during the growing season (2013, 384mm), compared to 2014 (289mm), and 2015 (310mm). A combination of statistical analyses

  4. Testing for thresholds in a semiarid grassland: The influence of prairie dogs and plague

    Science.gov (United States)

    State and transition models for semiarid grasslands in the Great Plains of North America suggest that the presence of herbivorous black-tailed prairie dogs (Cynomys ludovicianus) on a site (1) creates a vegetation state characterized by increased dominance of annual forbs and unpalatable bunchgrasse...

  5. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    Energy Technology Data Exchange (ETDEWEB)

    Sandercock, Brett K. [Kansas State Univ., Manhattan, KS (United States)

    2013-05-22

    This report summarizes the results of a seven-year, DOE-funded research project, conducted by researchers from Kansas State University and the National Wind Coordinating Collaborative, to assess the effects of wind energy development in Kansas on the population and reproduction of greater prairie chickens.

  6. Rainwater deficit and irrigation demand for row crops in Mississippi Blackland Prairie

    Science.gov (United States)

    Gary Feng; Ying Ouyang; Ardeshir Adeli; John Read; Johnie Jenkins

    2018-01-01

    Irrigation research in the mid-south United States has not kept pace with a steady increase in irrigated area in recent years. This study used rainfall records from 1895 to 2016 to determine rainwater deficit and irrigation demand for soybean [Glycine max (L.) Merr.], corn (Zea mays L.), and cotton (Gossypium hirsutum L.) in the Blackland Prairie region of Mississippi...

  7. Fitness of crop-wild hybrid sunflower under competitive conditions: implications for crop-to-wild introgression.

    Science.gov (United States)

    Mercer, Kristin L; Emry, D Jason; Snow, Allison A; Kost, Matthew A; Pace, Brian A; Alexander, Helen M

    2014-01-01

    Understanding the likelihood and extent of introgression of novel alleles in hybrid zones requires comparison of lifetime fitness of parents and hybrid progeny. However, fitness differences among cross types can vary depending on biotic conditions, thereby influencing introgression patterns. Based on past work, we predicted that increased competition would enhance introgression between cultivated and wild sunflower (Helianthus annuus) by reducing fitness advantages of wild plants. To test this prediction, we established a factorial field experiment in Kansas, USA where we monitored the fitness of four cross types (Wild, F1, F2, and BCw hybrids) under different levels of interspecific and intraspecific competition. Intraspecific manipulations consisted both of density of competitors and of frequency of crop-wild hybrids. We recorded emergence of overwintered seeds, survival to reproduction, and numbers of seeds produced per reproductive plant. We also calculated two compound fitness measures: seeds produced per emerged seedling and seeds produced per planted seed. Cross type and intraspecific competition affected emergence and survival to reproduction, respectively. Further, cross type interacted with competitive treatments to influence all other fitness traits. More intense competition treatments, especially related to density of intraspecific competitors, repeatedly reduced the fitness advantage of wild plants when considering seeds produced per reproductive plant and per emerged seedling, and F2 plants often became indistinguishable from the wilds. Wild fitness remained superior when seedling emergence was also considered as part of fitness, but the fitness of F2 hybrids relative to wild plants more than quadrupled with the addition of interspecific competitors and high densities of intraspecific competitors. Meanwhile, contrary to prediction, lower hybrid frequency reduced wild fitness advantage. These results emphasize the importance of taking a full life cycle

  8. Fitness of crop-wild hybrid sunflower under competitive conditions: implications for crop-to-wild introgression.

    Directory of Open Access Journals (Sweden)

    Kristin L Mercer

    Full Text Available Understanding the likelihood and extent of introgression of novel alleles in hybrid zones requires comparison of lifetime fitness of parents and hybrid progeny. However, fitness differences among cross types can vary depending on biotic conditions, thereby influencing introgression patterns. Based on past work, we predicted that increased competition would enhance introgression between cultivated and wild sunflower (Helianthus annuus by reducing fitness advantages of wild plants. To test this prediction, we established a factorial field experiment in Kansas, USA where we monitored the fitness of four cross types (Wild, F1, F2, and BCw hybrids under different levels of interspecific and intraspecific competition. Intraspecific manipulations consisted both of density of competitors and of frequency of crop-wild hybrids. We recorded emergence of overwintered seeds, survival to reproduction, and numbers of seeds produced per reproductive plant. We also calculated two compound fitness measures: seeds produced per emerged seedling and seeds produced per planted seed. Cross type and intraspecific competition affected emergence and survival to reproduction, respectively. Further, cross type interacted with competitive treatments to influence all other fitness traits. More intense competition treatments, especially related to density of intraspecific competitors, repeatedly reduced the fitness advantage of wild plants when considering seeds produced per reproductive plant and per emerged seedling, and F2 plants often became indistinguishable from the wilds. Wild fitness remained superior when seedling emergence was also considered as part of fitness, but the fitness of F2 hybrids relative to wild plants more than quadrupled with the addition of interspecific competitors and high densities of intraspecific competitors. Meanwhile, contrary to prediction, lower hybrid frequency reduced wild fitness advantage. These results emphasize the importance of taking

  9. Fitness of Crop-Wild Hybrid Sunflower under Competitive Conditions: Implications for Crop-to-Wild Introgression

    Science.gov (United States)

    Mercer, Kristin L.; Emry, D. Jason; Snow, Allison A.; Kost, Matthew A.; Pace, Brian A.; Alexander, Helen M.

    2014-01-01

    Understanding the likelihood and extent of introgression of novel alleles in hybrid zones requires comparison of lifetime fitness of parents and hybrid progeny. However, fitness differences among cross types can vary depending on biotic conditions, thereby influencing introgression patterns. Based on past work, we predicted that increased competition would enhance introgression between cultivated and wild sunflower (Helianthus annuus) by reducing fitness advantages of wild plants. To test this prediction, we established a factorial field experiment in Kansas, USA where we monitored the fitness of four cross types (Wild, F1, F2, and BCw hybrids) under different levels of interspecific and intraspecific competition. Intraspecific manipulations consisted both of density of competitors and of frequency of crop-wild hybrids. We recorded emergence of overwintered seeds, survival to reproduction, and numbers of seeds produced per reproductive plant. We also calculated two compound fitness measures: seeds produced per emerged seedling and seeds produced per planted seed. Cross type and intraspecific competition affected emergence and survival to reproduction, respectively. Further, cross type interacted with competitive treatments to influence all other fitness traits. More intense competition treatments, especially related to density of intraspecific competitors, repeatedly reduced the fitness advantage of wild plants when considering seeds produced per reproductive plant and per emerged seedling, and F2 plants often became indistinguishable from the wilds. Wild fitness remained superior when seedling emergence was also considered as part of fitness, but the fitness of F2 hybrids relative to wild plants more than quadrupled with the addition of interspecific competitors and high densities of intraspecific competitors. Meanwhile, contrary to prediction, lower hybrid frequency reduced wild fitness advantage. These results emphasize the importance of taking a full life cycle

  10. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    OpenAIRE

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-01-01

    Abstract Background We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We f...

  11. Marked disparity in the epidemiology of tuberculosis among Aboriginal peoples on the Canadian prairies: The challenges and opportunities

    Science.gov (United States)

    Long, Richard; Hoeppner, Vernon; Orr, Pamela; Ainslie, Martha; King, Malcolm; Abonyi, Sylvia; Mayan, Maria; Kunimoto, Dennis; Langlois-Klassen, Deanne; Heffernan, Courtney; Lau, Angela; Menzies, Dick

    2013-01-01

    BACKGROUND: While it is established that Aboriginal peoples in the prairie provinces of Canada are disproportionately affected by tuberculosis (TB), little is known about the epidemiology of TB either within or across provincial borders. METHODS: Provincial reporting systems for TB, Statistics Canada censuses and population estimates of Registered Indians provided by Aboriginal Affairs and Northern Development Canada were used to estimate the overall (2004 to 2008) and pulmonary (2007 to 2008) TB rates in the prairie provinces. The place of residence at diagnosis of pulmonary TB cases in 2007 to 2008 was also documented. RESULTS: The age- and sex-adjusted incidence of TB in Registered Indians was 52.6 per 100,000 person-years, 38 times higher than in Canadian-born ‘others’. Incidence rates in Registered Indians were highest in Manitoba and lowest in Alberta. In Alberta and Saskatchewan, on-reserve rates were more than twice that of off-reserve rates. Rates in the Métis and Registered Indians were similar in Saskatchewan (50.0 and 52.2 per 100,000 person-years, respectively). In 2007 to 2008, approximately 90% of Canadian-born pulmonary TB cases in the prairie provinces were Aboriginal. Outside of one metropolitan area (Winnipeg, Manitoba), most Registered Indian and Métis pulmonary TB cases were concentrated in a relatively small number of communities north of the 53rd parallel. Rates of pulmonary TB in 11 of these communities were >300 per 100,000 person-years. In Manitoba, 49% of off-reserve Registered Indian pulmonary cases were linked to high-incidence reserve communities. INTERPRETATION: The epidemiology of TB among Aboriginal peoples on the Canadian prairies is markedly disparate. Pulmonary TB is highly focal, which is both a concern and an opportunity. PMID:23717818

  12. Spatial and temporal use of a prairie dog colony by coyotes and rabbits: potential indirect effects on endangered black-footed ferrets

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Livieri, Travis M.

    2015-01-01

    In western North America, endangered black-footed ferrets Mustela nigripes are conserved via reintroduction to colonies of prairie dogs Cynomys spp., their primary prey. Predation is an important source of mortality; coyotes Canis latrans appear to be the most problematic predator, accounting for 67% of known predation events on radio-tagged ferrets. Little is known about what factors affect spatial use of prairie dog colonies by coyotes, or how other animals might affect interactions between coyotes and ferrets. During June–October 2007–2008, we used spotlight surveys to monitor coyotes and ferrets (both years) and rabbits Sylvilagus spp. (first year) on a 452-ha colony of black-tailed prairie dogs Cynomys ludovicianus in the Conata Basin, South Dakota. Coyotes appeared to select areas of the colony used by rabbits, suggesting coyotes hunted rabbits, a common item in their diet. Between midnight and sunrise, ferrets were most commonly observed during early morning (01:00–03:00 h), whereas coyotes were observed mostly during dawn (04:00 h – sunrise) when ferrets were rarely seen. These temporal differences in the timing of observations suggest ferrets tend to remain underground in burrows when coyotes are most active. Coyotes appeared to be attracted to rabbits in both space and time, suggesting the risk of predation for ferrets might relate to the abundance and locations of rabbits in prairie dog colonies.

  13. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes.

    Science.gov (United States)

    Cooper, Ryan N; Wissel, Björn

    2012-11-27

    Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes.

  14. Fitness consequences of cotyledon and mature-leaf damage in the ivyleaf morning glory.

    Science.gov (United States)

    Stinchcombe, John R

    2002-04-01

    To understand the evolutionary and ecological consequences of natural enemy damage to plants, it is essential to determine how the fitness effects of damage differ depending on the tissues damaged and the subsequent pattern of damage. In a field experiment with the ivyleaf morning glory, the direct and indirect effects on fitness of herbivore damage to cotyledons and mature leaves was evaluated. Damage to mature leaves had negligible direct effects on fitness and no indirect effects on fitness through other correlated traits. Damage to cotyledons also did not directly affect fitness, but did so indirectly through its effects on plant size. These findings suggest that increased resistance to cotyledon damage or increased compensatory growth following cotyledon damage could be effective strategies for plants of this species to counteract the negative effects of herbivory.

  15. Final performance report to the Department of Energy by Prairie View A ampersand M University High Energy Physics

    International Nuclear Information System (INIS)

    Judd, D.J.

    1992-01-01

    The High Energy Physics (HEP) group at Prairie View A ampersand M University is a collaboratory with Fermi National Accelerator Laboratory (Fermilab), and the universities listed below. The purpose of this collaboration is to contribute to the understanding of heavy quark hadroproduction. Our efforts began in the early 1980's at Fermilab with the study of the charmonium states, J/ψ and χ, (DE-FG-86ER-40297) and presently with the continued studies of the charmonium system and direct photon production (Fermilab experiment E705) and new studies on bottom production (Fermilab experiment E771) in the High Intensity Laboratory (Proton-West Area) of Fermilab. The Prairie View group will, as a part of their task, be directly responsible for a major part of the PWC system upgrade by developing the electronics for the readouts of the PWC pad chambers. Six in all, these chambers, are a part of new multilevel triggering scheme and represents a departure from the triggering methodology of the previous trigger processors in earlier experiments. The Prairie View group is also involved with the Bottom Collider Detector (BCD) Collaboration which is proposing to study bottom production at the Fermilab Collider and at the Superconducting Super Collider (SSC)

  16. Evaluation of Yersinia pestis transmission pathways for sylvatic plague in prairie dog populations in the western U.S.

    Science.gov (United States)

    Richgels, Katherine L. D.; Russell, Robin E.; Bron, Gebbiena; Rocke, Tonie E.

    2016-01-01

    Sylvatic plague, caused by the bacterium Yersinia pestis, is periodically responsible for large die-offs in rodent populations that can spillover and cause human mortalities. In the western US, prairie dog populations experience nearly 100% mortality during plague outbreaks, suggesting that multiple transmission pathways combine to amplify plague dynamics. Several alternate pathways in addition to flea vectors have been proposed, such as transmission via direct contact with bodily fluids or inhalation of infectious droplets, consumption of carcasses, and environmental sources of plague bacteria, such as contaminated soil. However, evidence supporting the ability of these proposed alternate pathways to trigger large-scale epizootics remains elusive. Here we present a short review of potential plague transmission pathways and use an ordinary differential equation model to assess the contribution of each pathway to resulting plague dynamics in black-tailed prairie dogs (Cynomys ludovicianus) and their fleas (Oropsylla hirsuta). Using our model, we found little evidence to suggest that soil contamination was capable of producing plague epizootics in prairie dogs. However, in the absence of flea transmission, direct transmission, i.e., contact with bodily fluids or inhalation of infectious droplets, could produce enzootic dynamics, and transmission via contact with or consumption of carcasses could produce epizootics. This suggests that these pathways warrant further investigation.

  17. Greenhouse gas fluxes of grazed and hayed wetland catchments in the U.S. Prairie Pothole Ecoregion

    Science.gov (United States)

    Finocchiaro, Raymond G.; Tangen, Brian A.; Gleason, Robert A.

    2014-01-01

    Wetland catchments are major ecosystems in the Prairie Pothole Region (PPR) and play an important role in greenhouse gases (GHG) flux. However, there is limited information regarding effects of land-use on GHG fluxes from these wetland systems. We examined the effects of grazing and haying, two common land-use practices in the region, on GHG fluxes from wetland catchments during 2007 and 2008. Fluxes of methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), along with soil water content and temperature, were measured along a topographic gradient every other week during the growing season near Ipswich, SD, USA. Closed, opaque chambers were used to measure fluxes of soil and plant respiration from native sod catchments that were grazed or left idle, and from recently restored catchments which were seeded with native plant species; half of these catchments were hayed once during the growing season. Catchments were adjacent to each other and had similar soils, soil nitrogen and organic carbon content, precipitation, and vegetation. When compared with idle catchments, grazing as a land-use had little effect on GHG fluxes. Likewise, haying had little effect on fluxes of CH4 and N2O compared with non-hayed catchments. Haying, however, did have a significant effect on combined soil and vegetative CO2 flux in restored wetland catchments owing to the immediate and comprehensive effect haying has on plant productivity. This study also examined soil conditions that affect GHG fluxes and provides cumulative annual estimates of GHG fluxes from wetland catchment in the PPR.

  18. Nest Success and Cause-Specific Nest Failure of Grassland Passerines Breeding in Prairie Grazed by Livestock

    Science.gov (United States)

    This manuscript describes two years of field research on ground-nesting songbird species at Zumwalt Prairie Reserve, northeastern Oregon, USA. Cattle-grazing has long been suspected in declines of ground-nesting songbirds in grazed grassland, primarily due to increased trampling...

  19. The nuclear regulatory challenge of judging safety back fits

    International Nuclear Information System (INIS)

    2002-01-01

    The economic pressures of electricity market competition have led nuclear power plant operators to seek ways to increase electricity production and to reduce operating costs at their plants. Corresponding pressures on the regulatory bodies include operator demand to reduce regulatory burdens perceived as unnecessary and general resistance to consider safety back-fits sought by the regulator. The purpose of this report is to describe potential situations giving rise to safety back-fit questions and to discuss regulatory approaches for judging the back-fits. The intended audience for this report is primarily nuclear regulators, although the information and ideas may also be of interest to nuclear operating organisations, other industry organisations and the general public. (author)

  20. Verifying operator fitness - an imperative not an option

    International Nuclear Information System (INIS)

    Scott, A.B. Jr.

    1987-01-01

    In the early morning hours of April 26, 1986, whatever credence those who operate nuclear power plants around the world could then muster, suffered a jarring reversal. Through an incredible series of personal errors, the operators at what was later to be termed one of the best operated plants in the USSR systematically stripped away the physical and procedural safeguards inherent to their installation and precipitated the worst reactor accident the world has yet seen. This challenge to the adequacy of nuclear operators comes at a time when many companies throughout the world - not only those that involve nuclear power - are grappling with the problem of how to assure the fitness for duty of those in their employ, specifically those users of substances that have an impact on the ability to function safely and productively in the workplace. In actuality, operator fitness for duty is far more than the lack of impairment from substance abuse, which many today consider it. Full fitness for duty implies mental and moral fitness, as well, and physical fitness in a more general sense. If we are to earn the confidence of the public, credible ways to verify total fitness on an operator-by-operator basis must be considered

  1. Early Intranasal Vasopressin Administration Impairs Partner Preference in Adult Male Prairie Voles (Microtus ochrogaster

    Directory of Open Access Journals (Sweden)

    Trenton C. Simmons

    2017-06-01

    Full Text Available Research supports a modulatory role for arginine vasopressin (AVP in the expression of socially motivated behaviors in mammals. The acute effects of AVP administration are demonstrably pro-social across species, providing the justification for an ever-increasing measure of clinical interest over the last decade. Combining these results with non-invasive intranasal delivery results in an attractive system for offering intranasal AVP (IN-AVP as a therapeutic for the social impairments of children with autism spectrum disorder. But, very little is known about the long-term effects of IN-AVP during early development. In this experiment, we explored whether a single week of early juvenile administration of IN-AVP (low = 0.05 IU/kg, medium = 0.5 IU/kg, high = 5.0 IU/kg could impact behavior across life in prairie voles. We found increases in fecal boli production during open field and novel object recognition testing for the medium dose in both males and females. Medium-dose females also had significantly more play bouts than control when exposed to novel conspecifics during the juvenile period. Following sexual maturity, the medium and high doses of IN-AVP blocked partner preference formation in males, while no such impairment was found for any of the experimental groups in females. Finally, the high-dose selectively increased adult male aggression with novel conspecifics, but only after extended cohabitation with a mate. Our findings confirm that a single week of early IN-AVP treatment can have organizational effects on behavior across life in prairie voles. Specifically, the impairments in pair-bonding behavior experienced by male prairie voles should raise caution when the prosocial effects of acute IN-AVP demonstrated in other studies are extrapolated to long-term treatment.

  2. Plasma progesterone levels and corpus luteum morphology in the female prairie dog (Cynomys ludovicianus).

    Science.gov (United States)

    Foreman, D; Garris, D

    1984-08-01

    Plasma progesterone levels in female prairie dogs were determined by a radioimmunoassay specific for progesterone. Plasma progesterone levels were determined in samples taken before estrus, at estrus, during the luteal phase, and during anestrus from females maintained all year in the laboratory. Progesterone levels were also determined in plasma samples taken in the laboratory from two pregnant and three postparturient females captured in the field. Progesterone levels were low before estrus and continued low during estrus. They rose on the first week after estrus to 0.8 ng/ml or above and continued at or above this level for 9-14 weeks following estrus. Gestation in prairie dogs is 35 days in this species. Progesterone levels of three postparturient females were above 1.0 ng/ml for 7 weeks after their arrival in the laboratory. These females all had uterine scars showing that they had delivered their litters before they were captured. Two females were determined to be pregnant at the time of their capture. These females later reabsorbed their fetuses (determined by laparotomy). Progesterone values of samples from these females were all above 1.0 ng/ml except for one low value in one female which occurred 3 weeks after her capture and after reabsorption of her fetuses was in progress. The cells of the corpus lutea (CL) of nonpregnant, pregnant, and postparturient females had well-developed rings of cytoplasmic basophilia but as the CL regressed this pattern became disorganized and disappeared. The function of this basophilia is not known. The long luteal phase found in female prairie dogs is compared to those found in other species of mammals. This is the first annually breeding rodent reported to have a longer luteal phase that the period of gestation.

  3. Classification of Prairie basins by their hysteretic connected functions

    Science.gov (United States)

    Shook, K.; Pomeroy, J. W.

    2017-12-01

    Diagnosing climate change impacts in the post-glacial landscapes of the North American Prairies through hydrological modelling is made difficult by drainage basin physiography. The region is cold, dry and flat with poorly developed stream networks, and so the basin area that is hydrologically connected to the stream outlet varies with basin depressional storage. The connected area controls the contributing area for runoff reaching the stream outlet. As depressional storage fills, ponds spill from one to another; the chain of spilling ponds allows water to flow over the landscape and increases the connected area of the basin. As depressional storage decreases, the connected fraction drops dramatically. Detailed, fine-scale models and remote sensing have shown that the relationship between connected area and the depressional storage is hysteretic in Prairie basins and that the nature of hysteresis varies with basin physiography. This hysteresis needs to be represented in hydrological models to calculate contributing area, and therefore streamflow hydrographs. Parameterisations of the hysteresis are needed for large-scale models used for climate change diagnosis. However, use of parameterisations of hysteresis requires guidance on how to represent them for a particular basin. This study shows that it is possible to relate the shape of hysteretic functions as determined by detailed models to the overall physiography of the basin, such as the fraction of the basin below the outlet, and remote sensing estimates of depressional storage, using the size distribution and location of maximum ponded water areas. By classifying basin physiography, the hysteresis of connected area - storage relationships can be estimated for basins that do not have high-resolution topographic data, and without computationally-expensive high-resolution modelling.

  4. Fitness costs of animal medication: antiparasitic plant chemicals reduce fitness of monarch butterfly hosts.

    Science.gov (United States)

    Tao, Leiling; Hoang, Kevin M; Hunter, Mark D; de Roode, Jacobus C

    2016-09-01

    The emerging field of ecological immunology demonstrates that allocation by hosts to immune defence against parasites is constrained by the costs of those defences. However, the costs of non-immunological defences, which are important alternatives to canonical immune systems, are less well characterized. Estimating such costs is essential for our understanding of the ecology and evolution of alternative host defence strategies. Many animals have evolved medication behaviours, whereby they use antiparasitic compounds from their environment to protect themselves or their kin from parasitism. Documenting the costs of medication behaviours is complicated by natural variation in the medicinal components of diets and their covariance with other dietary components, such as macronutrients. In the current study, we explore the costs of the usage of antiparasitic compounds in monarch butterflies (Danaus plexippus), using natural variation in concentrations of antiparasitic compounds among plants. Upon infection by their specialist protozoan parasite Ophryocystis elektroscirrha, monarch butterflies can selectively oviposit on milkweed with high foliar concentrations of cardenolides, secondary chemicals that reduce parasite growth. Here, we show that these antiparasitic cardenolides can also impose significant costs on both uninfected and infected butterflies. Among eight milkweed species that vary substantially in their foliar cardenolide concentration and composition, we observed the opposing effects of cardenolides on monarch fitness traits. While high foliar cardenolide concentrations increased the tolerance of monarch butterflies to infection, they reduced the survival rate of caterpillars to adulthood. Additionally, although non-polar cardenolide compounds decreased the spore load of infected butterflies, they also reduced the life span of uninfected butterflies, resulting in a hump-shaped curve between cardenolide non-polarity and the life span of infected butterflies

  5. Population status of prairie dogs (Cynomys ludovicianus) in the San Pedro River Basin, Sonora

    Science.gov (United States)

    Efren Moreno-Arzate; Carlos A. Lopez Gonzalez; Gerardo Carreon Arroyo

    2013-01-01

    The black tailed prairie dog (Cynomys ludovicianus) is a species of conservation concern for Mexico, the United States and Canada. Populations in Mexico (including those in Sonora), which are considered endangered by the Mexican authority, require additional conservation efforts to maintain them on the long term. Our objective was to determine population size and...

  6. A comparison of native tallgrass prairie and plains bluestem forage systems for cow-calf production in the southern great plains.

    Science.gov (United States)

    Coleman, S W; Phillips, W A; Volesky, J D; Buchanan, D

    2001-07-01

    The objective of this study was to compare an introduced warm-season perennial grass (plains bluestem, Bothriochloa ischaemum) to native tallgrass prairie for cow-calf production. Three systems were used, two based on tallgrass prairie with two different forms of protein supplementation and one based on plains bluestem as the primary forage. The systems were as follows: 1) native tallgrass prairie with pelleted oilseed meal as the winter protein supplement (native-control); 2) native tallgrass prairie with limited access to wheat pasture as the winter protein supplement (native-wheat); and 3) plains bluestem with limited access to wheat pasture as the protein supplement (bluestem-wheat). Oilseed meal protein supplements were fed twice weekly. Cows grazing wheat pasture were allowed 6 h of grazing twice weekly. Ninety-nine cows per year were used over the 3-yr study. Cows were sired by either Charolais, Gelbvieh, Angus, or Hereford bulls out of commercial Angus-Hereford dams. Calves were sired by Simmental bulls. Calving and weaning rate increased over time but did not differ among systems or breed types. System did not influence the size or body condition score of cows or the performance of calves, but changes in the weight and condition scores of cows were greater on either native system than on the bluestem-wheat system. Cows from Charolais and Gelbvieh bulls were taller (P < 0.05), and heavier (P < 0.05), and weaned heavier (P < 0.05) calves than cows from Angus or Hereford bulls. The weight of cows on the bluestem-wheat system tended to decrease over time, whereas cows grazing on the native systems tended to gain weight over time. The native-control system was the most profitable system based on cow production. If excess hay produced from the bluestem-wheat system was sold as a cash crop, then this system was the most profitable. In general, we conclude that limit-grazing wheat pasture is a viable alternative to oilseed meal as protein supplement for wintering

  7. Social isolation alters central nervous system monoamine content in prairie voles following acute restraint.

    Science.gov (United States)

    McNeal, Neal; Anderson, Eden M; Moenk, Deirdre; Trahanas, Diane; Matuszewich, Leslie; Grippo, Angela J

    2018-04-01

    Animal models have shown that social isolation and other forms of social stress lead to depressive- and anxiety-relevant behaviors, as well as neuroendocrine and physiological dysfunction. The goal of this study was to investigate the effects of prior social isolation on neurotransmitter content following acute restraint in prairie voles. Animals were either paired with a same-sex sibling or isolated for 4 weeks. Plasma adrenal hormones and ex vivo tissue concentrations of monoamine neurotransmitters and their metabolites were measured following an acute restraint stressor in all animals. Isolated prairie voles displayed significantly increased circulating adrenocorticotropic hormone levels, as well as elevated serotonin and dopamine levels in the hypothalamus, and potentially decreased levels of serotonin in the frontal cortex. However, no group differences in monoamine levels were observed in the hippocampus or raphe. The results suggest that social stress may bias monoamine neurotransmission and stress hormone function to subsequent acute stressors, such as restraint. These findings improve our understanding of the neurobiological mechanisms underlying the consequences of social stress.

  8. Burning management in the tallgrass prairie affects root decomposition, soil food web structure and carbon flow

    Science.gov (United States)

    Shaw, E. A.; Denef, K.; Milano de Tomasel, C.; Cotrufo, M. F.; Wall, D. H.

    2015-09-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is a common management practice and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable, but significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition which, in turn, is significantly

  9. Presence of Antibodies to Leptospira spp. in Black-tailed Prairie Dogs ( Cynomys ludovicianus ) and Beavers ( Castor canadensis ) in Northwestern Mexico.

    Science.gov (United States)

    López-Pérez, Andrés M; Carreón-Arroyo, Gerardo; Atilano, Daniel; Vigueras-Galván, Ana L; Valdez, Carlos; Toyos, Daniel; Mendizabal, Daniel; López-Islas, Jonathan; Suzán, Gerardo

    2017-10-01

    Leptospires are widespread spirochete bacteria that infect mammals, including rodents and humans. We investigated the presence of Leptospira antibodies in two species of rodents from San Pedro River Basin (SPRB) in northwestern Mexico as part of the black-tailed prairie dog ( Cynomys ludovicianus ) monitoring plan and the North American beaver ( Castor canadensis ) reintroduction program. We sampled a total of 26 black-tailed prairie dogs and three beavers during October-November 2015. We detected antibodies against Leptospira spp. by microagglutination test in 12 (46%) prairie dogs and in two (67%) beavers. The antibody titers for seropositive rodents varied from 1:100 to 1:200, but none of the animals showed clinical signs of disease. We found seven Leptospira spp. serogroups (Autumnalis, Australis, Bataviae, Canicola, Celledoni, Grippotyphosa, and Sejroe) circulating in rodent species in SPRB. We did not find any differences between sex and age concerning Leptospira-positive rodents. Our findings suggest the presence of endemic cycles and potential risks of Leptospira infection in both species from SPRB. Although the impact of this infection on threatened species remains unclear, human activities and environmental stress might facilitate the emergence or reemergence of leptospirosis disease as has been reported elsewhere.

  10. 77 FR 57082 - Prairie Rose Wind, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-09-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2542-000] Prairie Rose Wind, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... Rose Wind, LLC's application for market-based rate authority, with an accompanying rate schedule...

  11. Interannual variability in the extent of wetland-stream connectivity within the Prairie Pothole Region

    Science.gov (United States)

    Melanie Vanderhoof; Laurie Alexander

    2016-01-01

    The degree of hydrological connectivity between wetland systems and downstream receiving waters can be expected to influence the volume and variability of stream discharge. The Prairie Pothole Region contains a high density of depressional wetland features, a consequence of glacial retreat. Spatial variability in wetland density, drainage evolution, and precipitation...

  12. A meta-analysis of lesser prairie-chicken nesting and brood-rearing habitats: implications for habitat management

    Science.gov (United States)

    Hagen, Christian A.; Grisham, Blake A.; Boal, Clint W.; Haukos, David A.

    2013-01-01

    The distribution and range of lesser prairie-chicken (Tympanuchus pallidicinctus) has been reduced by >90% since European settlement of the Great Plains of North America. Currently, lesser prairie-chickens occupy 3 general vegetation communities: sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii), and mixed-grass prairies juxtaposed with Conservation Reserve Program grasslands. As a candidate for protection under the Endangered Species Act, there is a need for a synthesis that characterizes habitat structure rangewide. Thus, we conducted a meta-analysis of vegetation characteristics at nest sites and brood habitats to determine whether there was an overall effect (Hedges' d) of habitat selection and to estimate average (95% CI) habitat characteristics at use sites. We estimated effect sizes (di) from the difference between use (nests and brood sites) and random sampling sites for each study (n = 14), and derived an overall effect size (d++). There was a general effect for habitat selection as evidenced by low levels of variation in effect sizes across studies and regions. There was a small to medium effect (d++) = 0.20-0.82) of selection for greater vertical structure (visual obstruction) by nesting females in both vegetation communities, and selection against bare ground (d++ = 0.20-0.58). Females with broods exhibited less selectivity for habitat components except for vertical structure. The variation of d++ was greater during nesting than brooding periods, signifying a seasonal shift in habitat use, and perhaps a greater range of tolerance for brood-rearing habitat. The overall estimates of vegetation cover were consistent with those provided in management guidelines for the species.

  13. Results from three years on the prairie - improving management through volunteer-collected data

    Science.gov (United States)

    Hadley, N.; Force, A.; Holsinger, K.

    2017-12-01

    Citizen science is a nascent and diversifying field with the ability to support wide-ranging outcomes from volunteer education and empowerment to data-driven decisions. Adventure Scientists is a nonprofit organization that focuses on the latter. We approach citizen science through a solutions-oriented lens, in which quality data can influence decisions leading to improved policy, land management and business practices. All our work is interdisciplinary, as we collaborate with partners in government, academia, industry and nonprofits to help fill their data collection needs. In addressing our partners' data needs, it is critical that we align any newfound knowledge with tangible outcomes. Therefore, our projects and partnerships incorporate concrete theories of change and involve the collaborations and relationships necessary to support decision-making. In this presentation, we will highlight Landmark, a landscape-scale project spanning 30,000 acres of North American prairie in Montana, to illustrate one example of a partnership that resulted in improved management from our volunteer-collected data. This was a multi-year citizen science project, where we assisted the American Prairie Reserve's effort to create the largest grasslands and wildlife protected area in the continental U.S. Our partners identified a need to better understand the extent and diversity of wildlife inhabiting and migrating through the space. To provide this enhanced understanding, we helped design and implement a program to collect key wildlife data on the prairie. We recruited, trained and managed specialized volunteers from the outdoor adventure community. Volunteers were responsible for collecting data year-round on animals moving through the landscape to support their management and protection. After three years of data collection and over 19,000 wildlife observations made while monitoring 29 species, the grasslands preserve is now moving forward with an expansive wildlife dataset to

  14. Effects of exogenous hormones on spermatogenesis in the male prairie dog (Cynomys ludovicianus).

    Science.gov (United States)

    Foreman, D

    1998-01-01

    Male prairie dogs (Cynomys ludovicianus) breed anually and have complete testicular regression. Changes in the seminiferous tubules during the annual cycle have been described recently (Foreman, 1997). This is the first description of spermatogenesis in such a species. The definition of tubular stages during the cycle allows for evaluation of the effects of exogenous hormones, hemicastration, and hemicryptorchidism on spermatogenesis during the annual cycle. Hemicastration was performed during stages of the annual cycle to determine effects of exogenous hormones on remaining testes. Hemicryptorchidism was also done during stages of the annual cycle. FSH, LH, and testosterone were given in high and low doses for short- or long-term treatment periods during stages of the annual cycle. Testicular weights and counts of cell types in tubules of control and treated testes were made on testis tissues. Hemicastration during the out-of-season period does not cause compensatory hypertrophy of the remaining testis, but during recrudescence, hypertrophy of the remaining testis occurs. Hemicastration does not prevent loss of weight by the remaining testis during regression. The seminiferous epithelium of hemicryptorchid prairie dog testes shows damage during spermatogenic activity but not during testicular inactivity. Similarly, hemicryptorchid 15-day-old rat testes do not show damage from hemicryptorchidism. Long-term treatment with FSH preparations during testicular inactivity increased testis weights, spermatogonial proliferation, and spermatocyte differentiation in conjunction with Sertoli cell differentiation. Short-term treatments with low doses increased spermatogonial proliferation and abnormal meiotic activity. Both long- and short-term treatments with LH caused increased sloughing of germ cells and stimulated Leydig and Sertoli cells. Testosterone propionate injections stimulated Sertoli secretions but not Leydig cell activity. Hemicastration during inactivity does

  15. 78 FR 62300 - Prairie Breeze Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2013-10-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER14-25-000] Prairie Breeze Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Breeze Wind Energy LLC's application for market-based rate authority, with an accompanying rate schedule...

  16. Modelling surface-water depression storage in a Prairie Pothole Region

    Science.gov (United States)

    Hay, Lauren E.; Norton, Parker A.; Viger, Roland; Markstrom, Steven; Regan, R. Steven; Vanderhoof, Melanie

    2018-01-01

    In this study, the Precipitation-Runoff Modelling System (PRMS) was used to simulate changes in surface-water depression storage in the 1,126-km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface-water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface-water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application-ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface-water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface-water depression storage in the calibration procedure resulted in accurate changes in surface-water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface-storage to accurately parameterize surface-water depression storage within the USGS NHM.

  17. Patterns of surface burrow plugging in a colony of black-tailed prairie dogs occupied by black-footed ferrets

    Science.gov (United States)

    Eads, David E.; Biggins, Dean E.

    2012-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) can surface-plug openings to a burrow occupied by a black-footed ferret (Mustela nigripes). At a coarse scale, surface plugs are more common in colonies of prairie dogs occupied by ferrets than in colonies without ferrets. However, little is known about spatial and temporal patterns of surface plugging in a colony occupied by ferrets. In a 452-ha colony of black-tailed prairie dogs in South Dakota, we sampled burrow openings for surface plugs and related those data to locations of ferrets observed during spotlight surveys. Of 67,574 burrow openings in the colony between June and September 2007, 3.7% were plugged. In a colony-wide grid of 80 m × 80 m cells, the occurrence of surface plugging (≥1 opening plugged) was greater in cells used by ferrets (93.3% of cells) than in cells not observably used by ferrets (70.6%). Rates of surface plugging (percentages of openings plugged) were significantly higher in cells used by ferrets (median = 3.7%) than in cells without known ferret use (median = 3.2%). Also, numbers of ferret locations in cells correlated positively with numbers of mapped surface plugs in the cells. To investigate surface plugging at finer temporal and spatial scales, we compared rates of surface plugging in 20-m-radius circle-plots centered on ferret locations and in random plots 1–4 days after observing a ferret (Jun–Oct 2007 and 2008). Rates of surface plugging were greater in ferret-plots (median = 12.0%) than in random plots (median = 0%). For prairie dogs and their associates, the implications of surface plugging could be numerous. For instance, ferrets must dig to exit or enter plugged burrows (suggesting energetic costs), and surface plugs might influence microclimates in burrows and consequently influence species that cannot excavate soil (e.g., fleas that transmit the plague bacterium Yersinia pestis).

  18. Stable occupancy by breeding hawks (Buteo spp.) over 25 years on a privately managed bunchgrass prairie in northeastern Oregon, USA

    Science.gov (United States)

    Kennedy, Patricia L.; Bartuszevige, Anne M.; Houle, Marcy; Humphrey, Ann B.; Dugger, Katie M.; Williams, John

    2014-01-01

    Potential for large prairie remnants to provide habitat for grassland-obligate wildlife may be compromised by nonsustainable range-management practices. In 1979–1980, high nesting densities of 3 species of hawks in the genus Buteo—Ferruginous Hawk (Buteo regalis), Red-tailed Hawk (B. jamaicensis), and Swainson's Hawk (B. swainsoni)—were documented on the Zumwalt Prairie and surrounding agricultural areas (34,361 ha) in northeastern Oregon, USA. This area has been managed primarily as livestock summer range since it was homesteaded. Unlike in other prairie remnants, land management on the Zumwalt Prairie was consistent over the past several decades; thus, we predicted that territory occupancy of these 3 species would be stable. We also predicted that territory occupancy would be positively related to local availability of nesting structures within territories. We evaluated these hypotheses using a historical dataset, current survey and habitat data, and occupancy models. In support of our predictions, territory occupancy of all 3 species has not changed over the study period of ∼25 yr, which suggests that local range-management practices are not negatively affecting these taxa. Probability of Ferruginous Hawk occupancy increased with increasing area of aspen, an important nest structure for this species in grasslands. Probability of Swainson's Hawk occupancy increased with increasing area of large shrubs, and probability of Red-tailed Hawk occupancy was weakly associated with area of conifers. In the study area, large shrubs and conifers are commonly used as nesting structures by Swainson's Hawks and Red-tailed Hawks, respectively. Availability of these woody species is changing (increases in conifers and large shrubs, and decline in aspen) throughout the west, and these changes may result in declines in Ferruginous Hawk occupancy and increases in Swainson's Hawk and Red-tailed Hawk occupancy in the future.

  19. Research and Monitoring Special Use Permit [Minnesota Zoo's Prairie Butterfly Conservation Program on Chase Lake National Wildlife Refuge : 2016

    Data.gov (United States)

    Department of the Interior — The Minnesota Zoo’s Prairie Butterfly Conservation Program partners with numerous federal, state, and local agencies to establish the world’s first and only ex situ...

  20. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies

    International Nuclear Information System (INIS)

    Li, Xue; Mupondwa, Edmund

    2014-01-01

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO 2 equivalent and 3.06 to 31.01 kg CO 2 /MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from − 0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. - Highlights: • LCA of camelina-derived biodiesel and jet fuel was based on the Canadian Prairies. • Overall, camelina-derived biodiesel had lower GHG emissions than is biojet fuel. • Camelina jet fuel had lower non-renewable energy (NRE) use than its biodiesel. • Camelina biofuels reduced GHG emissions and NRE use

  1. Microsatellite Markers in the Western Prairie Fringed Orchid, Platanthera praeclara (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Andrew A. Ross

    2013-04-01

    Full Text Available Premise of the study: Primers for 31 microsatellite-containing loci were developed for the threatened orchid Platanthera praeclara to enable characterization of the population genetics of this tallgrass prairie native. Methods and Results: Sixteen polymorphic microsatellite loci were identified from four populations. Six of these loci were not in linkage disequilibrium. The average number of alleles per locus per population ranged from 6.4 to 8.9. Conclusions: The results indicate that six of the polymorphic loci will be useful in future studies of population structure, gene flow, and genetic diversity.

  2. Comparison of cellulosic ethanol yields from midwestern maize and reconstructed tallgrass prairie systems managed for bioenergy

    Science.gov (United States)

    Maize- and prairie-based systems were investigated as cellulosic feedstocks by conducting a 9 ha side-by-side comparison on fertile soils in the Midwestern United States. Maize was grown continuously with adequate fertilization over years both with and without a winter rye cover crop, and the 31-spe...

  3. Effects of cadmium and mycorrhizal fungi on growth, fitness, and cadmium accumulation in flax (Linum usitatissimum; Linaceae).

    Science.gov (United States)

    Hancock, Laura M S; Ernst, Charlotte L; Charneskie, Rebecca; Ruane, Lauren G

    2012-09-01

    Agricultural soils have become contaminated with a variety of heavy metals, including cadmium. The degree to which soil contaminants affect plants may depend on symbiotic relationships between plant roots and soil microorganisms. We examined (1) whether mycorrhizal fungi counteract the potentially negative effects of cadmium on the growth and fitness of flax (Linum usitatissimum) and (2) whether mycorrhizal fungi affect the accumulation of cadmium within plant parts. Two flax cultivars (Linott and Omega) were grown in three soil cadmium environments (0, 5, and 15 ppm). Within each cadmium environment, plants were grown in either the presence or absence of mycorrhizal fungi. Upon senescence, we measured growth and fitness and quantified the concentration of cadmium within plants. Soil cadmium significantly decreased plant fitness, but did not affect plant growth. Mycorrhizal fungi, which were able to colonize roots of plants growing in all cadmium levels, significantly increased plant growth and fitness. Although mycorrhizal fungi counteracted the negative effects of cadmium on fruit and seed production, they also enhanced the concentration of cadmium within roots, fruits, and seeds. The degree to which soil cadmium affects plant fitness and the accumulation of cadmium within plants depended on the ability of plants to form symbiotic relationships with mycorrhizal fungi. The use of mycorrhizal fungi in contaminated agricultural soils may offset the negative effects of metals on the quantity of seeds produced, but exacerbate the accumulation of these metals in our food supply.

  4. Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles.

    Science.gov (United States)

    Grippo, Angela J; Gerena, Davida; Huang, Jonathan; Kumar, Narmda; Shah, Maulin; Ughreja, Raj; Carter, C Sue

    2007-01-01

    Supportive social interactions may be protective against stressors and certain mental and physical illness, while social isolation may be a powerful stressor. Prairie voles are socially monogamous rodents that model some of the behavioral and physiological traits displayed by humans, including sensitivity to social isolation. Neuroendocrine and behavioral parameters, selected for their relevance to stress and depression, were measured in adult female and male prairie voles following 4 weeks of social isolation versus paired housing. In Experiment 1, oxytocin-immunoreactive cell density was higher in the hypothalamic paraventricular nucleus (PVN) and plasma oxytocin was elevated in isolated females, but not in males. In Experiment 2, sucrose intake, used as an operational definition of hedonia, was reduced in both sexes following 4 weeks of isolation. Animals then received a resident-intruder test, and were sacrificed either 10 min later for the analysis of circulating hormones and peptides, or 2h later to examine neural activation, indexed by c-Fos expression in PVN cells immunoreactive for oxytocin or corticotropin-releasing factor (CRF). Compared to paired animals, plasma oxytocin, ACTH and corticosterone were elevated in isolated females and plasma oxytocin was elevated in isolated males, following the resident-intruder test. The proportion of cells double-labeled for c-Fos and oxytocin or c-Fos and CRF was elevated in isolated females, and the proportion of cells double-labeled for c-Fos and oxytocin was elevated in isolated males following this test. These findings suggest that social isolation induces behavioral and neuroendocrine responses relevant to depression in male and female prairie voles, although neuroendocrine responses in females may be especially sensitive to isolation.

  5. The protective effects of social bonding on behavioral and pituitary-adrenal axis reactivity to chronic mild stress in prairie voles.

    Science.gov (United States)

    McNeal, Neal; Appleton, Katherine M; Johnson, Alan Kim; Scotti, Melissa-Ann L; Wardwell, Joshua; Murphy, Rachel; Bishop, Christina; Knecht, Alison; Grippo, Angela J

    2017-03-01

    Positive social interactions may protect against stress. This study investigated the beneficial effects of pairing with a social partner on behaviors and neuroendocrine function in response to chronic mild stress (CMS) in 13 prairie vole pairs. Following 5 days of social bonding, male and female prairie voles were exposed to 10 days of CMS (mild, unpredictable stressors of varying durations, for instance, strobe light, white noise, and damp bedding), housed with either the social partner (paired group) or individually (isolated group). Active and passive behavioral responses to the forced swim test (FST) and tail-suspension test (TST), and plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone, were measured in all prairie voles following the CMS period. Both female and male prairie voles housed with a social partner displayed lower durations of passive behavioral responses (immobility, a maladaptive behavioral response) in the FST (mean ± SEM; females: 17.3 ± 5.4 s; males: 9.3 ± 4.6 s) and TST (females: 56.8 ± 16.4 s; males: 40.2 ± 11.3 s), versus both sexes housed individually (females, FST: 98.6 ± 12.9 s; females, TST: 155.1 ± 19.3 s; males, FST: 92.4 ± 14.1 s; males, TST: 158.9 ± 22.0 s). Female (but not male) prairie voles displayed attenuated plasma stress hormones when housed with a male partner (ACTH: 945 ± 24.7 pg/ml; corticosterone: 624 ± 139.5 ng/ml), versus females housed individually (ACTH: 1100 ± 23.2 pg/ml; corticosterone: 1064 ± 121.7 ng/ml). These results may inform understanding of the benefits of social interactions on stress resilience. Lay Summary: Social stress can lead to depression. The study of social bonding and stress using an animal model will inform understanding of the protective effects of social bonds. This study showed that social bonding in a rodent model can protect against behavioral responses to stress, and may

  6. Implications of climate change for wetland-dependent birds in the Prairie Pothole Region

    Science.gov (United States)

    Steen, Valerie; Skagen, Susan K.; Melcher, Cynthia P.

    2016-01-01

    The habitats and food resources required to support breeding and migrant birds dependent on North American prairie wetlands are threatened by impending climate change. The North American Prairie Pothole Region (PPR) hosts nearly 120 species of wetland-dependent birds representing 21 families. Strategic management requires knowledge of avian habitat requirements and assessment of species most vulnerable to future threats. We applied bioclimatic species distribution models (SDMs) to project range changes of 29 wetland-dependent bird species using ensemble modeling techniques, a large number of General Circulation Models (GCMs), and hydrological climate covariates. For the U.S. PPR, mean projected range change, expressed as a proportion of currently occupied range, was −0.31 (± 0.22 SD; range − 0.75 to 0.16), and all but two species were projected to lose habitat. Species associated with deeper water were expected to experience smaller negative impacts of climate change. The magnitude of climate change impacts was somewhat lower in this study than earlier efforts most likely due to use of different focal species, varying methodologies, different modeling decisions, or alternative GCMs. Quantification of the projected species-specific impacts of climate change using species distribution modeling offers valuable information for vulnerability assessments within the conservation planning process.

  7. Altered Connexin 43 and Connexin 45 protein expression in the heart as a function of social and environmental stress in the prairie vole.

    Science.gov (United States)

    Grippo, Angela J; Moffitt, Julia A; Henry, Matthew K; Firkins, Rachel; Senkler, Jonathan; McNeal, Neal; Wardwell, Joshua; Scotti, Melissa-Ann L; Dotson, Ashley; Schultz, Rachel

    2015-01-01

    Exposure to social and environmental stressors may influence behavior as well as autonomic and cardiovascular regulation, potentially leading to depressive disorders and cardiac dysfunction including elevated sympathetic drive, reduced parasympathetic function, and ventricular arrhythmias. The cellular mechanisms that underlie these interactions are not well understood. One mechanism may involve alterations in the expression of Connexin43 (Cx43) and Connexin45 (Cx45), gap junction proteins in the heart that play an important role in ensuring efficient cell-to-cell coupling and the maintenance of cardiac rhythmicity. The present study investigated the hypothesis that long-term social isolation, combined with mild environmental stressors, would produce both depressive behaviors and altered Cx43 and Cx45 expression in the left ventricle of prairie voles - a socially monogamous rodent model. Adult, female prairie voles were exposed to either social isolation (n = 22) or control (paired, n = 23) conditions (4 weeks), alone or in combination with chronic mild stress (CMS) (1 week). Social isolation, versus paired control conditions, produced significantly (p Social isolation (alone) reduced (p social and environmental stress in the prairie vole.

  8. Belowground Water Dynamics Under Contrasting Annual and Perennial Plant Communities in an Agriculturally-Dominated Landscape

    Science.gov (United States)

    Mora, G.; Asbjornsen, H.; Helmers, M. J.; Shepherd, G. W.

    2005-12-01

    The conversion from grasslands and forests to row-crops in the Midwest has affected soil water cycling because plant characteristics are one of the main parameters determining soil storage capacity, infiltration rates, and surface runoff. Little is known, however, about the extent of modification of soil water dynamics under different plant communities. To address this important issue, we are documenting soil water dynamics under contrasting perennial and annual plant communities in an agriculturally-dominated landscape. Measurements of soil moisture and depths of uptake of source water were obtained for six vegetative cover types (corn and soybean field, brome pasture, degraded savanna, restored savanna, and restored prairie) at the Neal Smith National Wildlife Refuge in Prairie City, Iowa. The depths of uptake of soil water were determined on the basis of oxygen isotope composition of soil water and stem water. Measurements were performed once a month during an entire growing season. Preliminary results indicate that soil water present under the different vegetation types show similar profiles with depth during the dry months. Soil water in the upper 5 cm is enriched in oxygen-18 by about 5 per mil relative to soil water at 100 cm. Our preliminary results also indicate that the isotopic composition of stem water from annual plants is typically higher by about 2 per mil relative to that of stem water from perennial plants during the dry period. Whereas the oxygen isotopic composition for corn stem water is -5.49 per mil, that for elm and oak stem water is -7.62 and -7.51 per mil, respectively. The higher isotope values for corn suggest that annual crop plants are withdrawing water from shallower soil horizons relative to perennial plants. Moreover, our preliminary data suggest lower moisture content in soil under annual plant cover. We propose that the presence of deeper roots in the perennial vegetation allows these plants to tap into deeper water sources when

  9. Population differences in host immune factors may influence survival of Gunnison's prairie dogs (Cynomys Gunnisoni) during plague outbreaks

    Science.gov (United States)

    Busch, Joseph D.; Van Andel, Roger; Cordova, Jennifer; Colman, Rebecca E.; Keim, Paul; Rocke, Tonie E.; Leid, Jeff G.; Van Pelt, William E.; Wagner, David M.

    2011-01-01

    Over the past 40 yr, epizootics of plague (Yersinia pestis) in northern Arizona have reduced populations of the Gunnison’s prairie dog (Cynomys gunnisoni), with the exception of a large population found in the Aubrey Valley (AV). To examine potential mechanisms accounting for their survival, we collected prairie dog serum samples in 2005–2006 from AV and a neighboring population near Seligman (SE), Arizona. We quantified gene expression at 58 diverse immune proteins using a multiplexed enzyme-linked immunosorbent assay panel. We found a subset of proteins important in coagulation and inflammation (tissue factor [TF], calbindin [Cal], and thrombopoietin [TPO]) and T-cell responses (CD40L and CD40) that were present in AV at levels two to eight times greater than SE. These results suggest that AV and SE animals might differ in their ability to mount an immune response.

  10. Steam generator tube fitness-for-service guidelines

    International Nuclear Information System (INIS)

    Gorman, J.A.; Harris, J.E.; Lowenstein, D.B.

    1995-07-01

    The objectives of this project were to characterize defect mechanisms which could affect the integrity of steam generator tubes, to review and critique state-of-the-art Canadian and international steam generator tube fitness-for-service criteria and guidelines, and to obtain recommendations for criteria that could be used to assess fitness-for service guidelines for steam generator tubes containing defects in Canadian power plant service. Degradation mechanisms, that could affect CANDU steam generator tubes in Canada, have been characterized. The design standards and safety criteria that apply to steam generator tubing in nuclear power plant service in Canada and in Belgium, France, Japan, Spain, Sweden, and the USA have been reviewed and described. The fitness-for-service guidelines used for a variety of specific defect types in Canada and internationally have been evaluated and described in detail in order to highlight the considerations involved in developing such defect specific guidelines. Existing procedures for defect assessment and disposition have been identified, including inspection and examination practices. The approaches used in Canada and in Belgium, France, Japan, Spain, Sweden, and the USA for fitness-for-service guidelines were compared and contrasted for a variety of defect mechanisms. The strengths and weaknesses of the various approaches have been assessed. The report presents recommendations on approaches that may be adopted in the development of fitness-for-service guidelines for use in the dispositioning of steam generator tubing defects in Canada. (author). 175 refs., 2 tabs., 28 figs

  11. Prescribed fire: A proposed management tool to facilitate black-tailed prairie dog (Cynomys ludovicianus) colony expansion

    Science.gov (United States)

    Felicia D. Archuleta; Paulette L. Ford

    2013-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) are considered a keystone species in grassland ecosystems. Through their burrowing activities, they conspicuously alter grassland landscapes and provide foraging, shelter and nesting habitat for a diverse array of grassland species, in addition to serving as prey for the endangered black-footed ferret (Mustela nigripes...

  12. A herbicide-resistant ACCase 1781 Setaria mutant shows higher fitness than wild type.

    Science.gov (United States)

    Wang, T; Picard, J C; Tian, X; Darmency, H

    2010-10-01

    It is often alleged that mutations conferring herbicide resistance have a negative impact on plant fitness. A mutant ACCase1781 allele endowing resistance to the sethoxydim herbicide was introgressed from a resistant green foxtail (Setaria viridis (L.) Beauv) population into foxtail millet (S. italica (L.) Beauv.). (1) Better and earlier growth of resistant plants was observed in a greenhouse cabinet. (2) Resistant plants of the advanced BC7 backcross generation showed more vigorous juvenile growth in the field, earlier flowering, more tillers and higher numbers of grains than susceptible plants did, especially when both genotypes were grown in mixture, but their seeds were lighter than susceptible seeds. (3) Field populations originating from segregating hybrids had the expected allele frequencies under normal growth conditions, but showed a genotype shift toward an excess of homozygous resistant plants within 3 years in stressful conditions. Lower seed size, lower germination rate and perhaps unexplored differences in seed longevity and predation could explain how the resistant plants have the same field fitness over the whole life cycle as the susceptible ones although they produce more seeds. More rapid growth kinetics probably accounted for higher fitness of the resistant plants in adverse conditions. The likelihood of a linkage with a beneficial gene is discussed versus the hypothesis of a pleiotropic effect of the ACCase resistance allele. It is suggested that autogamous species like Setaria could not develop a resistant population without the help of a linkage with a gene producing a higher fitness.

  13. Montana Valley and Foothill Prairies Ecoregion: Chapter 6 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Taylor, Janis L.

    2012-01-01

    The Montana Valley and Foothill Prairies Ecoregion comprises numerous intermountain valleys and low-elevation foothill prairies spread across the western half of Montana, on both sides of the Continental Divide (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion, which covers approximately 64,658 km2 (24,965 mi2), includes the Flathead Valley and the valleys surrounding Helena, Missoula, Bozeman, Billings, Anaconda, Dillon, and Lewistown (fig. 1). These valleys are generally characterized by shortgrass prairie vegetation and are flanked by forested mountains (Woods and others, 1999); thus, the valleys’ biotas with regards to fish and insects are comparable. In many cases, the valleys are conduits for some of the largest rivers in the state, including Clark Fork and the Missouri, Jefferson, Madison, Flathead, Yellowstone, Gallatin, Smith, Big Hole, Bitterroot, and Blackfoot Rivers (fig. 2). The Montana Valley and Foothill Prairies Ecoregion also includes the “Rocky Mountain front,” an area of prairies along the eastern slope of the northern Rocky Mountains. Principal land uses within the ecoregion include farming, grazing, and mining. The valleys serve as major transportation and utility corridors and also contain the majority of Montana’s human population. The Montana Valley and Foothill Prairies Ecoregion extends into 17 mostly rural counties throughout western Montana. Only three of the counties—Carbon, Yellowstone, and Missoula—are part of a metropolitan statistical area with contiguous built-up areas tied to an employment center. Nearly two-thirds of Montana residents live in nonmetropolitan counties (Albrecht, 2008). Ten of the counties within the ecoregion had population growth rates greater than national averages (9–13 percent) between 1970 and 2000 (table 1). Ravalli and Gallatin Counties had the highest growth rates. Population growth was largely due to amenity-related inmigration and an economy dependent on tourism

  14. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region.

    Science.gov (United States)

    Werner, Brett A; Johnson, W Carter; Guntenspergen, Glenn R

    2013-09-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946-1975; 1976-2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

  15. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region

    Science.gov (United States)

    Werner, B.A.; Johnson, W. Carter; Guntenspergen, Glenn R.

    2013-01-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

  16. Chlorophacinone residues in mammalian prey at a black-tailed prairie dog colony

    Science.gov (United States)

    Vyas, Nimish B.; Hulse, Craig S.; Rice, Clifford P.

    2012-01-01

    Black-tailed prairie dogs (BTPDs), Cynomys ludovicianus, are an important prey for raptors; therefore, the use of the rodenticide Rozol (0.005% chlorophacinone active ingredient) to control BTPDs raises concern for secondary poisonings resulting from the consumption of contaminated prey by raptors. In the present study, the authors observed Rozol exposure and adverse effects to mammalian prey on 11 of 12 search days of the study. Mammalian hepatic chlorophacinone residues ranged from 0.44 to 7.56 µg/g. Poisoned prey availability was greater than previously reported.

  17. Technical Review on Fitness-for-Service for Buried Pipe by ASME Code Case N-806

    International Nuclear Information System (INIS)

    Park, Sang Kyu; Lee, Yo Seop; So, Il Su; Lim, Bu Taek

    2012-01-01

    Fitness-for-Service is a useful technology to determine replacement timing, next inspection timing or in-service when nuclear power plant's buried pipes are damaged. If is possible for buried pipes to be aged by material loss, cracks and occlusion as operating time goes by. Therefore Fitness-for-Service technology for buried pipe is useful for plant industry to perform replacement and repair. Fitness-for-Service for buried pipe is studied in terms of existing code and standard for Fitness-for-Service and a current developing code case. Fitness-for-Service for buried pipe was performed according to Code Case N-806 developed by ASME (American Society of Mechanical Engineers)

  18. Indicators of wetland condition for the prairie pothole region of the United States.

    Science.gov (United States)

    Guntenspergen, G R; Peterson, S A; Leibowitz, S G; Cowardin, L M

    2002-09-01

    We describe a study designed to evaluate the performance of wetland condition indicators of the Prairie Pothole Region (PPR) of the north central United States. Basin and landscape scale indicators were tested in 1992 and 1993 to determine their ability to discriminate between the influences of grassland dominated and cropland dominated landscapes in the PPR. Paired plots were selected from each of the major regions of the PPR. Among the landscape scale indicators tested, those most capable of distinguishing between the two landscapes were: 1) frequency of drained wetland basins. 2) total length of drainage ditch per plot, 3) amount of exposed soil in the upland subject to erosion, 4) indices of change in area of wetland covered by water, and 5) number of breeding duck pairs. Basin scale indicators including soil phosphorus concentrations and invertebrate taxa richness showed some promise: however, plant species richness was the only statistically significant basin scale indicator distinguishing grassland dominated from cropland dominated landscapes. Although our study found a number of promising candidate indicators, one of our conclusions is that basin scale indicators present a number of implementation problems. including: skill level requirements, site access denials, and recession of site access by landowners. Alternatively, we suggest that the use of landscape indicators based on remote sensing can be an effective means of assessing wetland integrity.

  19. The potential for host switching via ecological fitting in the emerald ash borer-host plant system.

    Science.gov (United States)

    Cipollini, Don; Peterson, Donnie L

    2018-02-27

    The traits used by phytophagous insects to find and utilize their ancestral hosts can lead to host range expansions, generally to closely related hosts that share visual and chemical features with ancestral hosts. Host range expansions often result from ecological fitting, which is the process whereby organisms colonize and persist in novel environments, use novel resources, or form novel associations with other species because of the suites of traits that they carry at the time they encounter the novel environment. Our objective in this review is to discuss the potential and constraints on host switching via ecological fitting in emerald ash borer, Agrilus planipennis, an ecologically and economically important invasive wood boring beetle. Once thought of as an ash (Fraxinus spp.) tree specialist, recent studies have revealed a broader potential host range than was expected for this insect. We discuss the demonstrated host-use capabilities of this beetle, as well as the potential for and barriers to the adoption of additional hosts by this beetle. We place our observations in the context of biochemical mechanisms that mediate the interaction of these beetles with their host plants and discuss whether evolutionary host shifts are a possible outcome of the interaction of this insect with novel hosts.

  20. A Risk Model for the Lyme Disease Vector Ixodes scapularis (Acari: Ixodidae) in the Prairie Provinces of Canada.

    Science.gov (United States)

    Gabriele-Rivet, Vanessa; Koffi, Jules K; Pelcat, Yann; Arsenault, Julie; Cheng, Angela; Lindsay, L Robbin; Lysyk, Timothy J; Rochon, Kateryn; Ogden, Nicholas H

    2017-07-01

    Lyme disease is emerging in Canada due to geographic range expansion of the tick vector Ixodes scapularis Say. Recent areas of emergence include parts of the southeastern Canadian Prairie region. We developed a map of potential risk areas for future I. scapularis establishment in the Canadian Prairie Provinces. Six I. scapularis risk algorithms were developed using different formulations of three indices for environmental suitability: temperature using annual cumulative degree-days > 0 °C (DD > 0 °C; obtained from Moderate Resolution Imaging Spectroradiometer satellite data as an index of conditions that allow I. scapularis to complete its life cycle), habitat as a combined geolayer of forest cover and agricultural land use, and rainfall. The relative performance of these risk algorithms was assessed using receiver-operating characteristic (ROC) area under the curve (AUC) analysis with data on presence-absence of I. scapularis obtained from recent field surveillance in the Prairie Provinces accumulated from a number of sources. The ROC AUC values for the risk algorithms were significantly different (P  0 °C, habitat as a simple dichotomous variable of presence or absence of forest, and normalized rainfall had the highest AUC of 0.74, representing "fair to good" performance of the risk algorithm. This algorithm had good (>80%) sensitivity in predicting positive I. scapularis surveillance sites, but low (50%) specificity as expected in this region where not all environmentally suitable habitats are expected to be occupied. Further prospective studies are needed to validate and perhaps improve the risk algorithm. © Crown copyright 2017.

  1. Welding with the TIG automatic process of the end fittings for the execution of the Embalse nuclear power plant fuel channel rechange

    International Nuclear Information System (INIS)

    Suarez, P.O.

    1990-01-01

    The present work describes the methodology for the cutting of the existing welding and subsequent welding applied by the TIG process of the coupling composed by the shroud ring and the end fitting ring from one of Embalse nuclear power plant's fuel channels. The replacement will be previously determined by the SLAR-ETTE mechanism where a displacement operated among the Gartner Spring rings, the pressure tubes are separated from the Calandria tubes. The welding to be carried out has the function of stamping the CO 2 annular gas (thermal insulator) circulating between the pressure tube and the Calandria one during the functioning of the plant. (Author) [es

  2. The scale dependence of optical diversity in a prairie ecosystem

    Science.gov (United States)

    Gamon, J. A.; Wang, R.; Stilwell, A.; Zygielbaum, A. I.; Cavender-Bares, J.; Townsend, P. A.

    2015-12-01

    Biodiversity loss, one of the most crucial challenges of our time, endangers ecosystem services that maintain human wellbeing. Traditional methods of measuring biodiversity require extensive and costly field sampling by biologists with extensive experience in species identification. Remote sensing can be used for such assessment based upon patterns of optical variation. This provides efficient and cost-effective means to determine ecosystem diversity at different scales and over large areas. Sampling scale has been described as a "fundamental conceptual problem" in ecology, and is an important practical consideration in both remote sensing and traditional biodiversity studies. On the one hand, with decreasing spatial and spectral resolution, the differences among different optical types may become weak or even disappear. Alternately, high spatial and/or spectral resolution may introduce redundant or contradictory information. For example, at high resolution, the variation within optical types (e.g., between leaves on a single plant canopy) may add complexity unrelated to specie richness. We studied the scale-dependence of optical diversity in a prairie ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, USA using a variety of spectrometers from several platforms on the ground and in the air. Using the coefficient of variation (CV) of spectra as an indicator of optical diversity, we found that high richness plots generally have a higher coefficient of variation. High resolution imaging spectrometer data (1 mm pixels) showed the highest sensitivity to richness level. With decreasing spatial resolution, the difference in CV between richness levels decreased, but remained significant. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods.

  3. Texture-contrast profile development across the prairie-forest ecotone in northern Minnesota, USA, and its relation to soil aggregation and clay dispersion.

    Science.gov (United States)

    Kasmerchak, C. S.; Mason, J. A.

    2016-12-01

    Along the prairie-forest ecotone, Alfisols with distinct clay-enriched B horizons are found under forest, established only within the past 4 ka, including outlying patches of prairie groves surrounded by prairie. Grassland soils only 5-10 km away from the vegetation boundary show much weaker texture-contrast. In order for clay to be dispersed it must first be released from aggregates upper horizons, which occurs when exposed top soil undergoes wetting and mechanical stress. The relationship between physiochemical soil characteristics and soil aggregation/clay dispersion is of particular interest in explaining texture-contrast development under forest. Soil samples were collected along a transect in northern Minnesota on gentle slopes in similar glacial sediment. Aggregate stability experiments show Mollisol A and B horizons have the most stable aggregates, while Alfisol E horizons have the weakest aggregates and disintegrate rapidly. This demonstrates the strong influence of OM and exchange chemistry on aggregation. Analysis of other physiochemical soil characteristics such as base saturation and pH follow a gradual decreasing eastward trend across the study sites, and do not abruptly change at the prairie-forest boundary like soil morphology does. Linear models show the strongest relationship between rapid aggregate disintegration and ECEC, although they only explain 47-50% of the variance. Higher surface charge enhances aggregation by allowing for greater potential of cation bridging between OM and clay particles. ECEC also represents multiple soil characteristics such as OC, clay, mineralogy, and carbonate presence, suggesting the relationship between aggregation stability and soil characteristics is not simple. Given the parent material consists of calcareous glacial sediment, abundant Ca2+ and Mg2+ from carbonates weathering also contributes to enhanced aggregation in upper horizons. Differences in the rates of bioturbation, most likely also contribute

  4. Prospective evidence for independent nitrogen and phosphorus limitation of grasshopper (Chorthippus curtipennis) growth in a tallgrass prairie.

    Science.gov (United States)

    Rode, Madison; Lemoine, Nathan P; Smith, Melinda D

    2017-01-01

    Insect herbivores play a pivotal role in regulating plant production and community composition, and their role in terrestrial ecosystems is partly determined by their feeding behavior and performance among plants of differing nutritional quality. Historically, nitrogen (N) has been considered the primary limiting nutrient of herbivorous insects, but N is only one of many potential nutrients important to insect performance. Of these nutrients, phosphorus (P) is perhaps the most important because somatic growth depends upon P-rich ribosomal RNA. Yet relatively few studies have assessed the strength of P-limitation for terrestrial insects and even fewer have simultaneously manipulated both N and P to assess the relative strengths of N- and P-limitation. Here, we tested for potential N and P limitation, as well as N:P co-limitation, on Chorthippis curtipennis (Orthoptera, Acrididae), an abundant member of arthropod communities of central US prairies. Our results demonstrate weak evidence for both N and P limitation of C. curtipennis growth rates in laboratory feeding assays. Importantly, P-limitation was just as strong as N-limitation, but we found no evidence for NP co-limitation in our study. Furthermore, nutrient limitation was not apparent in field studies, suggesting that insect growth rates may be predominately controlled by other factors, including temperature and predation. Our results suggest that P should be jointly considered, along with N, as a primary determinant of herbivore feeding behavior under both current and future climate conditions.

  5. Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum).

    Science.gov (United States)

    Weiner, Jacob; Du, Yan-Lei; Zhang, Cong; Qin, Xiao-Liang; Li, Feng-Min

    2017-09-01

    Although the importance of group selection in nature is highly controversial, several researchers have argued that plant breeding for agriculture should be based on group selection, because the goal in agriculture is to optimize population production, not individual fitness. A core hypothesis behind this claim is that crop genotypes with the highest individual fitness in a mixture of genotypes will not produce the highest population yield, because fitness is often increased by "selfish" behaviors, which reduce population performance. We tested this hypothesis by growing 35 cultivars of spring wheat (Triticum aestivum L.) in mixtures and monocultures, and analyzing the relationship between population yield in monoculture and individual yield in mixture. The relationship was unimodal, as predicted. The highest-yielding populations were from cultivars that had intermediate fitness, and these produced, on average, 35% higher yields than cultivars with the highest fitness. It is unlikely that plant breeding or genetic engineering can improve traits that natural selection has been optimizing for millions of years, but there is unutilized potential in traits that increase crop yield by decreasing individual fitness. © 2017 by the Ecological Society of America.

  6. Fisher's fundamental theorem of inclusive fitness and the change in fitness due to natural selection when conspecifics interact

    NARCIS (Netherlands)

    Bijma, P.

    2010-01-01

    Competition and cooperation is fundamental to evolution by natural selection, both in animals and plants. Here, I investigate the consequences of such interactions for response in fitness due to natural selection. I provide quantitative genetic expressions for heritable variance and response in

  7. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Mupondwa, Edmund, E-mail: Edmund.Mupondwa@agr.gc.ca

    2014-05-01

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO{sub 2} equivalent and 3.06 to 31.01 kg CO{sub 2}/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from − 0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. - Highlights: • LCA of camelina-derived biodiesel and jet fuel was based on the Canadian Prairies. • Overall, camelina-derived biodiesel had lower GHG emissions than is biojet fuel. • Camelina jet fuel had lower non-renewable energy (NRE) use than its biodiesel. • Camelina biofuels reduced GHG emissions and NRE

  8. Wildlife habitat management on the northern prairie landscape

    Science.gov (United States)

    Johnson, Douglas H.; Haseltine, Susan D.; Cowardin, Lewis M.

    1994-01-01

    The northern prairie landscape has changed dramatically within the past century as a result of settlement by Europeans. Natural ecosystems have been disrupted and wildlife populations greatly altered. Natural resource agencies control only limited areas within the landscape, which they cannot manage independently of privately owned lands. Wildlife managers need first to set quantifiable objectives, based on the survival, reproduction, and distribution of wildlife. Second, they need to build public support and partnerships for meeting those objectives. Finally, they need to evaluate progress not only with respect to attitudes of the public and partners but, more importantly, of the wildlife response. This paper describes some useful tools for managing information at all phases of this process. We follow by discussing management options at a landscape level. Examples are given that involve agency lands as well as private lands, managed for biological resources and diversity as well as economic sustainability.

  9. Fit-for-purpose wastewater treatment: Testing to implementation of decision support tool (II).

    Science.gov (United States)

    Chhipi-Shrestha, Gyan; Hewage, Kasun; Sadiq, Rehan

    2017-12-31

    This paper is the second in a series of two papers. In Paper I, a decision support tool (DST), FitWater, was developed for evaluating the potential of wastewater treatment (WWT) trains for various water reuse applications. In the present paper, the proposed DST has been tested and implemented. FitWater has been tested with several existing WWT plants in Canada and the USA, demonstrating FitWater's effectiveness in estimating life cycle cost (LCC), health risk, and energy use. FitWater has also been implemented in a newly planned neighbourhood in the Okanagan Valley (BC, Canada) by developing 12 alternative WWT trains for water reuse in lawn and public parks irrigation. The results show that FitWater can effectively rank WWT train alternatives based on LCC, health risk, amount of reclaimed water, energy use, and carbon emissions. Moreover, functions have been developed for the variation of unit annualized LCC and energy intensity per unit log removal of microorganisms in different treatment technologies with varying plant capacities. The functions have power relations, showing the economies of scale. FitWater can be applied to identify a cost-effective, risk-acceptable, and energy efficient wastewater treatment train with a plant capacity of 500m 3 /day or more. Furthermore, FitWater can be used to assess potential economic impacts of developing microbiologically stringent effluent standards. The capability of FitWater can be enhanced by including physio-chemical quality of wastewater, additional treatment technologies, and carbon emissions from wastewater decomposition processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  11. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  12. Evaluation of crack-like flaw in Japanese fitness-for-service code for nuclear power plant components

    International Nuclear Information System (INIS)

    Kashima, Koichi

    2003-01-01

    For evaluation of faults detected at nuclear appliances, establishment of fitness-for-service code in Japan is focused by most of peoples. The code is a management rule to keep features of the appliances under supplying operation to their constant safe level and is a rule composing a pair with design rule. The codes for nuclear power generation facilities-rules of fitness-for-service for nuclear power plants were issued on May, 2002, by the Japan Society of Mechanical Engineering (JSME), which was added on October, 2002, by its inspection code, for its amendment. Under such states, Japan Government is proceeding on establishment of the fitness-for-service code in Japan on a base of the private rule. Here were introduced present state and tasks on content of crack-like flaw evaluation on the code under an example of the private rule of JSME, which is composed of three items of inspection, evaluation, and recovery and exchange. The evaluation of defects consists of 1) the first step of evaluation of defects and 2) the second step of evaluation of defects. The first step determines the size of defect by modeling form. When the size of defect is smaller than the evaluation criterion, the appliances can be used unconditionally. However, its size is larger than the evaluation criterion, the appliances have to be evaluated by the second step. When the estimated defects size at end of evaluation period is smaller than the permissible value, the appliances can be used within the evaluation period. But, if its size is larger than the permissible value, the appliances have to be recovered and exchanged. Modeling, evaluation criterion, evaluation of destruction, safety standards and future problems are described. (S.Y.)

  13. Evaluation of the greenhouse effect gases (CO2, CH4, N2O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002

    International Nuclear Information System (INIS)

    Soussana, J.F.

    2002-12-01

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO 2 and CH 4 (by the breeding animals on grass) and N 2 O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  14. A proxy of social mate choice in prairie warblers is correlated with consistent, rapid, low-pitched singing

    Science.gov (United States)

    Bruce E. Byers; Michael E. Akresh; David I. King

    2015-01-01

    In songbirds, female mate choice may be influenced by how well a male performs his songs. Performing songs well may be especially difficult if it requires maximizingmultiple aspects of performance simultaneously.We therefore hypothesized that, in a population of prairie warblers, the males most attractive to females would be those with superior performance in more than...

  15. "A Prairie Childhood" by Edith Abbott: An Excerpt from "The Children's Champion," a Biography of Grace Abbott

    Science.gov (United States)

    Sorensen, John

    2003-01-01

    Grace Abbott's courageous struggles--to protect the rights of immigrants, to increase the role of women in government, and to improve the lives of all children--are filled with adventurous tales of the remarkable human ability to seek out suffering and to do something about it. "A Prairie Childhood" is an excerpt from the Grace Abbott biography…

  16. Translocation of heavy metals from soils into floral organs and rewards of Cucurbita pepo: Implications for plant reproductive fitness.

    Science.gov (United States)

    Xun, Erna; Zhang, Yanwen; Zhao, Jimin; Guo, Jixun

    2017-11-01

    Metals and metalloids in soil could be transferred into reproductive organs and floral rewards of hyperaccumulator plants and influence their reproductive success, yet little is known whether non-hyperaccumulator plants can translocate heavy metals from soil into their floral organs and rewards (i.e., nectar and pollen) and, if so, whether plant reproduction will be affected. In our studies, summer squash (Cucurbita pepo L. cv. Golden Apple) was exposed to heavy-metal treatments during bud stage to investigate the translocation of soil-supplemented zinc, copper, nickel and lead into its floral organs (pistil, anther and nectary) and rewards (nectar and pollen) as well as floral metal accumulation effects on its reproduction. The results showed that metals taken up by squash did translocate into its floral organs and rewards, although metal accumulation varied depending on different metal types and concentrations as well as floral organ/reward types. Mean foraging time of honey bees to each male and female flower of squash grown in metal-supplemented soils was shorter relative to that of plants grown in control soils, although the visitation rate of honeybees to both male and female flowers was not affected by metal treatments. Pollen viability, pollen removal and deposition as well as mean mass per seed produced by metal-treated squash that received pollen from plants grown in control soils decreased with elevated soil-supplemented metal concentrations. The fact that squash could translocate soil-supplemented heavy metals into floral organs and rewards indicated possible reproductive consequences caused either directly (i.e., decreasing pollen viability or seed mass) or indirectly (i.e., affecting pollinators' visitation behavior to flowers) to plant fitness. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A fast prediction of plant behaviour in the steam generator tube rupture accident at Mihama unit 2 using a similar case

    International Nuclear Information System (INIS)

    Gofuku, Akio; Tanaka, Yutaka; Numoto, Atsushi; Yoshikawa, Hidekazu.

    1996-01-01

    It is important to predict fast and accurately future trend of behaviour of a nuclear power plant in an emergency situation. The case-based reasoning is a strong tool for this purpose because it solves a problem by effectively using past similar cases. This study investigates the applicability of the case-based reasoning as a fast prediction technique of plant behaviour. This paper discusses a prediction of initial plant behaviour in the steam generator tube rupture accident happened at the Mihama nuclear power plant unit 2 by using the behaviour data of an accident of the same type happened at Prairie Island nuclear power plant unit 1. The prediction results coincide well with the reported plant behaviour although there are several important differences in the detailed plant specifications and operator actions between the two SGTR accidents. (author)

  18. Contributions of seed bank and vegetative propagules to vegetation composition on prairie dog colonies in western South Dakota

    Science.gov (United States)

    Emily R. Helms; Lan Xu; Jack L. Butler

    2012-01-01

    Characterizing the contributions of the seed bank and vegetative propagules will enhance our understanding of community resiliency associated with prairie dog disturbances. Our objective was to determine the effects of ecological condition (EC) and distance from burrows on the soil seed bank and vegetative propagules. Based on species composition of the extant...

  19. Controls on the geochemical evolution of Prairie Pothole Region lakes and wetlands over decadal time scales

    Science.gov (United States)

    Goldhaber, Martin B.; Mills, Christopher T.; Mushet, David M.; McCleskey, R. Blaine; Rover, Jennifer

    2016-01-01

    One hundred sixty-seven Prairie Pothole lakes, ponds and wetlands (largely lakes) previously analyzed chemically during the late 1960’s and early to mid-1970’s were resampled and reanalyzed in 2011–2012. The two sampling periods differed climatically. The earlier sampling took place during normal to slightly dry conditions, whereas the latter occurred during and immediately following exceptionally wet conditions. As reported previously in Mushet et al. (2015), the dominant effect was expansion of the area of these lakes and dilution of their major ions. However, within that context, there were significant differences in the evolutionary pathways of major ions. To establish these pathways, we employed the inverse modeling computer code NetpathXL. This code takes the initial and final lake composition and, using mass balance constrained by the composition of diluting waters, and input and output of phases, calculates plausible geochemical evolution pathways. Despite the fact that in most cases major ions decreased, a subset of the lakes had an increase in SO42−. This distinction is significant because SO42− is the dominant anion in a majority of Prairie Pothole Region wetlands and lakes. For lakes with decreasing SO42−, the proportion of original lake water required for mass balance was subordinate to rainwater and/or overland flow. In contrast, lakes with increasing SO42− between the two sampling episodes tended to be dominated by original lake water. This suite of lakes tended to be smaller and have lower initial SO42−concentrations such that inputs of sulfur from dissolution of the minerals gypsum or pyrite had a significant impact on the final sulfur concentration given the lower dilution factors. Thus, our study provides context for how Prairie Pothole Region water bodies evolve geochemically as climate changes. Because wetland geochemistry in turn controls the ecology of these water bodies, this research contributes to the prediction of the

  20. Climate change and fire effects on a prairie-woodland ecotone: projecting species range shifts with a dynamic global vegetation model

    Science.gov (United States)

    King, David A.; Bachelet, Dominique M.; Symstad, Amy J.

    2013-01-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions

  1. Climate change and fire effects on a prairie-woodland ecotone: projecting species range shifts with a dynamic global vegetation model.

    Science.gov (United States)

    King, David A; Bachelet, Dominique M; Symstad, Amy J

    2013-12-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine-prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and

  2. Fatherhood reduces the survival of adult-generated cells and affects various types of behaviors in the prairie vole (Microtus ochrogaster)

    Science.gov (United States)

    Lieberwirth, Claudia; Wang, Yue; Jia, Xixi; Liu, Yan

    2013-01-01

    Motherhood has profound effects on physiology, neuronal plasticity, and behavior. We conducted a series of experiments to test the hypothesis that fatherhood, similarly to motherhood, affects brain plasticity (such as cell proliferation and survival) and various behaviors in the highly social prairie vole (Microtus ochrogaster). In Experiment 1, adult males were housed with their same-sex cage mate (control), single-housed (isolation), or housed with a receptive female to mate and produce offspring (father) for 6 weeks. Fatherhood significantly reduced cell survival (assessed by bromodeoxyuridine labeling), but not cell proliferation (assessed by Ki67 labeling), in the amygdala, dentate gyrus of the hippocampus, and ventromedial hypothalamus, suggesting that fatherhood affects brain plasticity. In Experiment 2, neither acute (20 min) nor chronic (20 min daily for 10 consecutive days) pup exposure altered cell proliferation or survival in the brain, but chronic pup exposure increased circulating corticosterone levels. These data suggest that reduced cell survival in the brain of prairie vole fathers was unlikely to be due to the level of pup exposure and display of paternal behavior, and may not be mediated by circulating corticosterone. The effects of fatherhood on various behaviors (including anxiety-like, depression-like, and social behaviors) were examined in Experiment 3. The data indicated that fatherhood increased anxiety- and depression-like behaviors as well as altered aggression and social recognition memory in male prairie voles. These results warrant further investigation of a possible link between brain plasticity and behavioral changes observed due to fatherhood. PMID:23899240

  3. Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America

    International Nuclear Information System (INIS)

    Hoggarth, Cameron G.J.; Hall, Britt D.; Mitchell, Carl P.J.

    2015-01-01

    Using enriched stable 201 Hg injections into intact sediment cores, we provide the first reported Hg methylation potential rate constants (k m ) in prairie wetland ponds (0.016–0.17 d −1 ). Our k m values were similar to other freshwater wetlands and did not differ in ponds categorized with high compared to low surface water concentrations of sulphate. Sites with high sulphate had higher proportions of methylmercury (MeHg) in sediment (2.9 ± 1.6% vs. 1.0 ± 0.3%) and higher surface water MeHg concentrations (1.96 ± 1.90 ng L −1 vs. 0.56 ± 0.55 ng L −1 ). Sediment-porewater partitioning coefficients were small, and likely due to high ionic activity. Our work suggests while k m measurements are useful for understanding mercury cycling processes, they are less important than surface water MeHg concentrations for assessing MeHg risks to biota. Significant differences in MeHg concentrations between sites with high and low sulphate concentrations may also inform management decisions concerning wetland remediation and creation. - Highlights: • Wetlands of the PPR provide many vital ecosystem services, but can have high MeHg concentrations. • Methylation potentials in prairie ponds are similar to other freshwater wetlands. • MeHg and %MeHg in surface water of high sulphate ponds was greater than low sulphate ponds. • Sediment-porewater partitioning coefficients were small compared to other systems. • Potential methylation rate constants did not correlate to surface water concentrations. - Prairie wetland ponds with higher sulphate concentrations have greater sediment and surface water methylmercury concentrations, but potential methylation rates do not differ

  4. Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness

    Directory of Open Access Journals (Sweden)

    Nadal Anna

    2012-09-01

    Full Text Available Abstract Background The Biopeptide BP100 is a synthetic and strongly cationic α-helical undecapeptide with high, specific antibacterial activity against economically important plant-pathogenic bacteria, and very low toxicity. It was selected from a library of synthetic peptides, along with other peptides with activities against relevant bacterial and fungal species. Expression of the BP100 series of peptides in plants is of major interest to establish disease-resistant plants and facilitate molecular farming. Specific challenges were the small length, peptide degradation by plant proteases and toxicity to the host plant. Here we approached the expression of the BP100 peptide series in plants using BP100 as a proof-of-concept. Results Our design considered up to three tandemly arranged BP100 units and peptide accumulation in the endoplasmic reticulum (ER, analyzing five BP100 derivatives. The ER retention sequence did not reduce the antimicrobial activity of chemically synthesized BP100 derivatives, making this strategy possible. Transformation with sequences encoding BP100 derivatives (bp100der was over ten-fold less efficient than that of the hygromycin phosphotransferase (hptII transgene. The BP100 direct tandems did not show higher antimicrobial activity than BP100, and genetically modified (GM plants constitutively expressing them were not viable. In contrast, inverted repeats of BP100, whether or not elongated with a portion of a natural antimicrobial peptide (AMP, had higher antimicrobial activity, and fertile GM rice lines constitutively expressing bp100der were produced. These GM lines had increased resistance to the pathogens Dickeya chrysanthemi and Fusarium verticillioides, and tolerance to oxidative stress, with agronomic performance comparable to untransformed lines. Conclusions Constitutive expression of transgenes encoding short cationic α-helical synthetic peptides can have a strong negative impact on rice fitness. However, GM

  5. A comparison of pedigree- and DNA-based measures for identifying inbreeding depression in the critically endangered Attwater's Prairie-chicken.

    Science.gov (United States)

    Hammerly, Susan C; Morrow, Michael E; Johnson, Jeff A

    2013-11-01

    The primary goal of captive breeding programmes for endangered species is to prevent extinction, a component of which includes the preservation of genetic diversity and avoidance of inbreeding. This is typically accomplished by minimizing mean kinship in the population, thereby maintaining equal representation of the genetic founders used to initiate the captive population. If errors in the pedigree do exist, such an approach becomes less effective for minimizing inbreeding depression. In this study, both pedigree- and DNA-based methods were used to assess whether inbreeding depression existed in the captive population of the critically endangered Attwater's Prairie-chicken (Tympanuchus cupido attwateri), a subspecies of prairie grouse that has experienced a significant decline in abundance and concurrent reduction in neutral genetic diversity. When examining the captive population for signs of inbreeding, variation in pedigree-based inbreeding coefficients (f(pedigree)) was less than that obtained from DNA-based methods (f(DNA)). Mortality of chicks and adults in captivity were also positively correlated with parental relatedness (r(DNA)) and f(DNA), respectively, while no correlation was observed with pedigree-based measures when controlling for additional variables such as age, breeding facility, gender and captive/release status. Further, individual homozygosity by loci (HL) and parental rDNA values were positively correlated with adult mortality in captivity and the occurrence of a lethal congenital defect in chicks, respectively, suggesting that inbreeding may be a contributing factor increasing the frequency of this condition among Attwater's Prairie-chickens. This study highlights the importance of using DNA-based methods to better inform management decisions when pedigrees are incomplete or errors may exist due to uncertainty in pairings. © 2013 John Wiley & Sons Ltd.

  6. Prerequisites for understanding climate-change impacts on northern prairie wetlands

    Science.gov (United States)

    Anteau, Michael J.; Wiltermuth, Mark T.; Post van der Burg, Max; Pearse, Aaron T.

    2016-01-01

    The Prairie Pothole Region (PPR) contains ecosystems that are typified by an extensive matrix of grasslands and depressional wetlands, which provide numerous ecosystem services. Over the past 150 years the PPR has experienced numerous landscape modifications resulting in agricultural conversion of 75–99 % of native prairie uplands and drainage of 50–90 % of wetlands. There is concern over how and where conservation dollars should be spent within the PPR to protect and restore wetland basins to support waterbird populations that will be robust to a changing climate. However, while hydrological impacts of landscape modifications appear substantial, they are still poorly understood. Previous modeling efforts addressing impacts of climate change on PPR wetlands have yet to fully incorporate interacting or potentially overshadowing impacts of landscape modification. We outlined several information needs for building more informative models to predict climate change effects on PPR wetlands. We reviewed how landscape modification influences wetland hydrology and present a conceptual model to describe how modified wetlands might respond to climate variability. We note that current climate projections do not incorporate cyclical variability in climate between wet and dry periods even though such dynamics have shaped the hydrology and ecology of PPR wetlands. We conclude that there are at least three prerequisite steps to making meaningful predictions about effects of climate change on PPR wetlands. Those evident to us are: 1) an understanding of how physical and watershed characteristics of wetland basins of similar hydroperiods vary across temperature and moisture gradients; 2) a mechanistic understanding of how wetlands respond to climate across a gradient of anthropogenic modifications; and 3) improved climate projections for the PPR that can meaningfully represent potential changes in climate variability including intensity and duration of wet and dry periods. Once

  7. Conserving Prairie Pothole Region wetlands and surrounding grasslands: evaluating effects on amphibians

    Science.gov (United States)

    Mushet, David M.; Neau, Jordan L.

    2014-01-01

    The maintenance of viable and genetically diverse populations of amphibians in the Prairie Pothole Region of the United States depends on upland as well as wetland over-wintering and landscape level habitat features.Prairie pothole wetlands provide important amphibian breeding habitat while grasslands surrounding these wetlands provide foraging habitat for adults, overwintering habitat for some species, and important connectivity among breeding wetlands.Grasslands surrounding wetlands were found to be especially important for wood frogs and northern leopard frogs, while croplands dominated habitat utilized by Great Plains toads and Woodhouse’s toads.Habitat suitability mapping highlighted (1) the influence of deep-water overwintering wetlands on suitable habitat for four of five anuran species encountered; (2) the lack of overlap between areas of core habitat for both the northern leopard frog and wood frog compared to the core habitat for both toad species; and (3) the importance of conservation programs in providing grassland components of northern leopard frog and wood frog habitat.Currently, there are approximately 7.2 million acres (2.9 million hectares, ha) of habitat in the PPR identified as suitable for amphibians. WRP and CRP wetland and grassland habitats accounted for approximately 1.9 million acres (0.75 million ha) or 26 percent of this total area.Continued loss of amphibian habitat resulting from an ongoing trend of returning PPR conservation lands to crop production, will likely have significant negative effects on the region’s ability to maintain amphibian biodiversity. Conversely, increases in conservation wetlands and surrounding grasslands on the PPR landscape have great potential to positively influence the region’s amphibian populations.

  8. Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient

    Directory of Open Access Journals (Sweden)

    Hannah Wilson

    2016-06-01

    Full Text Available Background: Arbuscular mycorrhizal fungi (AMF provide numerous services to their plant symbionts. Understanding climate change effects on AMF, and the resulting plant responses, is crucial for predicting ecosystem responses at regional and global scales. We investigated how the effects of climate change on AMF-plant symbioses are mediated by soil water availability, soil nutrient availability, and vegetation dynamics. Methods: We used a combination of a greenhouse experiment and a manipulative climate change experiment embedded within a Mediterranean climate gradient in the Pacific Northwest, USA to examine this question. Structural equation modeling (SEM was used to determine the direct and indirect effects of experimental warming on AMF colonization. Results: Warming directly decreased AMF colonization across plant species and across the climate gradient of the study region. Other positive and negative indirect effects of warming, mediated by soil water availability, soil nutrient availability, and vegetation dynamics, canceled each other out. Discussion: A warming-induced decrease in AMF colonization would likely have substantial consequences for plant communities and ecosystem function. Moreover, predicted increases in more intense droughts and heavier rains for this region could shift the balance among indirect causal pathways, and either exacerbate or mitigate the negative, direct effect of increased temperature on AMF colonization.

  9. Does hybridization of endophytic symbionts in a native grass increase fitness in resource-limited environments?

    DEFF Research Database (Denmark)

    Faeth, Stanley H.; Oberhofer, Martina; Saari, Susanna Talvikki

    2017-01-01

    to their grass hosts, especially in stressful environments. We tested the hybrid fitness hypothesis (HFH) that hybrid endophytes enhance fitness in stressful environments relative to non-hybrid endophytes. In a long-term field experiment, we monitored growth and reproduction of hybrid-infected (H+), non......-hybrid infected (NH+), naturally endophyte free (E-) plants and those plants from which the endophyte had been experimentally removed (H- and NH-) in resource-rich and resource-poor environments. Infection by both endophyte species enhanced growth and reproduction. H+ plants outperformed NH+ plants in terms...... of growth by the end of the experiment, supporting HFH. However, H+ plants only outperformed NH+ plants in the resource-rich treatment, contrary to HFH. Plant genotypes associated with each endophyte species had strong effects on growth and reproduction. Our results provide some support the HFH hypothesis...

  10. Combined effects of water, nutrient, and UV-B stress on female fitness in Brassica (Brassicaceae)

    International Nuclear Information System (INIS)

    Conner, J.K.; Zangori, L.A.

    1998-01-01

    Our knowledge of the effects of increased levels of ultraviolet-B radiation (UV-B) on plant fitness is limited mainly to yield studies in a few crop species. Previous greenhouse and garden studies of Brassica have found greater detrimental effects of UV-B on fitness in gardens than in the greenhouse, suggesting the possibility that additional stresses in the field decrease the ability of Brassica to cope with UV-B. Possible interactions between UV-B and water/nutrient stress in determining plant fitness have rarely, if ever, been studied experimentally. Here we report measurements of female fitness in two species of Brassica in an experiment in which both UV-B and levels of water and nutrients were varied in a 2 X 2 factorial design. Water and nutrient stress reduced female fitness in both species, while UV-B caused fitness reductions in only one of the species. There was evidence for interactions between UV-B and water/nutrient stress for only a few of the traits measured; most traits, including those closely related to fitness, showed no evidence of an interaction

  11. Using Halogens (Cl, Br, F, I) and Stable Isotopes of Water (δ18O, δ2H) to Trace Hydrological and Biogeochemical Processes in Prairie Wetlands

    Science.gov (United States)

    Levy, Z. F.; Lu, Z.; Mills, C. T.; Goldhaber, M. B.; Rosenberry, D. O.; Mushet, D.; Siegel, D. I.; Fiorentino, A. J., II; Gade, M.; Spradlin, J.

    2014-12-01

    Prairie pothole wetlands are ubiquitous features of the Great Plains of North America, and important habitat for amphibians and migratory birds. The salinity of proximal wetlands varies highly due to groundwater-glacial till interactions, which influence wetland biota and associated ecosystem functions. Here we use halogens and stable isotopes of water to fingerprint hydrological and biogeochemical controls on salt cycling in a prairie wetland complex. We surveyed surface, well, and pore waters from a groundwater recharge wetland (T8) and more saline closed (P1) and open (P8) basin discharge wetlands in the Cottonwood Lake Study Area (ND) in August/October 2013 and May 2014. Halogen concentrations varied over a broad range throughout the study area (Cl = 2.2 to 170 mg/L, Br = 13 to 2000 μg/L, F = evaporation-enriched pond water (δ18O = -9.5 to -2.71 ‰) mixes with shallow groundwater in the top 0.6 m of fringing wetland soils and 1.2 m of the substrate in the center of P1. Our results suggest endogenous sources for Br and I within the prairie landscape that may be controlled by biological mechanisms or weathering of shale from glacial till.

  12. Patterns and drivers for wetland connections in the Prairie Pothole Region, United States

    Science.gov (United States)

    Vanderhoof, Melanie; Christensen, Jay R.; Alexander, Laurie C.

    2017-01-01

    Ecosystem function in rivers, lakes and coastal waters depends on the functioning of upstream aquatic ecosystems, necessitating an improved understanding of watershed-scale interactions including variable surface-water flows between wetlands and streams. As surface water in the Prairie Pothole Region expands in wet years, surface-water connections occur between many depressional wetlands and streams. Minimal research has explored the spatial patterns and drivers for the abundance of these connections, despite their potential to inform resource management and regulatory programs including the U.S. Clean Water Act. In this study, wetlands were identified that did not intersect the stream network, but were shown with Landsat images (1990–2011) to become merged with the stream network as surface water expanded. Wetlands were found to spill into or consolidate with other wetlands within both small (2–10 wetlands) and large (>100 wetlands) wetland clusters, eventually intersecting a stream channel, most often via a riparian wetland. These surface-water connections occurred over a wide range of wetland distances from streams (averaging 90–1400 m in different ecoregions). Differences in the spatial abundance of wetlands that show a variable surface-water connection to a stream were best explained by smaller wetland-to-wetland distances, greater wetland abundance, and maximum surface-water extent. This analysis demonstrated that wetland arrangement and surface water expansion are important mechanisms for depressional wetlands to connect to streams and provides a first step to understanding the frequency and abundance of these surface-water connections across the Prairie Pothole Region.

  13. A Plant-Feeding Nematode Indirectly Increases the Fitness of an Aphid

    Directory of Open Access Journals (Sweden)

    Grace A. Hoysted

    2017-11-01

    Full Text Available Plants suffer multiple, simultaneous assaults from above and below ground. In the laboratory, pests and/or pathogen attack are commonly studied on an individual basis. The molecular response of the plant to attack from multiple organisms and the interaction of different defense pathways is unclear. The inducible systemic responses of the potato (Solanum tuberosum L. host plant were analyzed to characterize the plant-mediated indirect interactions between a sedentary, endoparasitic nematode (Globodera pallida, and a phloem-sucking herbivore (Myzus persicae. The reproductive success of M. persicae was greater on potato plants pre-infected with G. pallida compared to control plants. Salicylic acid (SA increased systemically in the leaves of potato plants following nematode and aphid infection singly with a corresponding increase in expression of SA-mediated marker genes. An increase in jasmonic acid associated with aphid infection was suppressed when plants were co-infected with nematodes. Our data suggests a positive, asymmetric interaction between a sedentary endoparasitic nematode and a sap-sucking insect. The systemic response of the potato plant following infection with G. pallida indirectly influences the performance of M. persicae. This work reveals additional secondary benefits of controlling individual crop pests.

  14. Effects of including saponins (Micro-aid®) on intake, rumen fermentation, and digestibility in steers fed low-quality prairie hay

    Science.gov (United States)

    Sixteen ruminally-cannulated crossbred steers (529 ± 45 kg initial body weight, BW) were used to evaluate in situ dry matter (DM), neutral detergent fiber (aNDF), and N degradation characteristics of low quality prairie hay, blood urea nitrogen (BUN) and rumen fermentation parameters in steers provi...

  15. Spatially explicit modeling of blackbird abundance in the Prairie Pothole Region

    Science.gov (United States)

    Forcey, Greg M.; Thogmartin, Wayne E.; Linz, George M.; McKann, Patrick C.; Crimmins, Shawn M.

    2015-01-01

    Knowledge of factors influencing animal abundance is important to wildlife biologists developing management plans. This is especially true for economically important species such as blackbirds (Icteridae), which cause more than $100 million in crop damages annually in the United States. Using data from the North American Breeding Bird Survey, the National Land Cover Dataset, and the National Climatic Data Center, we modeled effects of regional environmental variables on relative abundance of 3 blackbird species (red-winged blackbird,Agelaius phoeniceus; yellow-headed blackbird, Xanthocephalus xanthocephalus; common grackle, Quiscalus quiscula) in the Prairie Pothole Region of the central United States. We evaluated landscape covariates at 3 logarithmically related spatial scales (1,000 ha, 10,000 ha, and 100,000 ha) and modeled weather variables at the 100,000-ha scale. We constructed models a priori using information from published habitat associations. We fit models with WinBUGS using Markov chain Monte Carlo techniques. Both landscape and weather variables contributed strongly to predicting blackbird relative abundance (95% credibility interval did not overlap 0). Variables with the strongest associations with blackbird relative abundance were the percentage of wetland area and precipitation amount from the year before bird surveys were conducted. The influence of spatial scale appeared small—models with the same variables expressed at different scales were often in the best model subset. This large-scale study elucidated regional effects of weather and landscape variables, suggesting that management strategies aimed at reducing damages caused by these species should consider the broader landscape, including weather effects, because such factors may outweigh the influence of localized conditions or site-specific management actions. The regional species distributional models we developed for blackbirds provide a tool for understanding these broader

  16. Preserving prairies: Understanding temporal and spatial patterns of invasive annual bromes in the Northern Great Plains

    Science.gov (United States)

    Ashton, Isabel; Symstad, Amy J.; Davis, Christopher; Swanson, Daniel J.

    2016-01-01

    Two Eurasian invasive annual brome grasses, cheatgrass (Bromus tectorum) and Japanese brome (Bromus japonicus), are well known for their impact in steppe ecosystems of the western United States where these grasses have altered fire regimes, reduced native plant diversity and abundance, and degraded wildlife habitat. Annual bromes are also abundant in the grasslands of the Northern Great Plains (NGP), but their impact and ecology are not as well studied. It is unclear whether the lessons learned from the steppe will translate to the mixed-grass prairie where native plant species are adapted to frequent fires and grazing. Developing a successful annual brome management strategy for National Park Service units and other NGP grasslands requires better understanding of (1) the impact of annual bromes on grassland condition; (2) the dynamics of these species through space and time; and (3) the relative importance of environmental factors within and outside managers' control for these spatiotemporal dynamics. Here, we use vegetation monitoring data collected from 1998 to 2015 in 295 sites to relate spatiotemporal variability of annual brome grasses to grassland composition, weather, physical environmental characteristics, and ecological processes (grazing and fire). Concern about the impact of these species in NGP grasslands is warranted, as we found a decline in native species richness with increasing annual brome cover. Annual brome cover generally increased over the time of monitoring but also displayed a 3- to 5-yr cycle of reduction and resurgence. Relative cover of annual bromes in the monitored areas was best predicted by park unit, weather, extant plant community, slope grade, soil composition, and fire history. We found no evidence that grazing reduced annual brome cover, but this may be due to the relatively low grazing pressure in our study. By understanding the consequences and patterns of annual brome invasion, we will be better able to preserve and restore

  17. Fitness

    Science.gov (United States)

    ... gov home http://www.girlshealth.gov/ Home Fitness Fitness Want to look and feel your best? Physical ... are? Check out this info: What is physical fitness? top Physical fitness means you can do everyday ...

  18. Fatherhood reduces the survival of adult-generated cells and affects various types of behavior in the prairie vole (Microtus ochrogaster ).

    Science.gov (United States)

    Lieberwirth, Claudia; Wang, Yue; Jia, Xixi; Liu, Yan; Wang, Zuoxin

    2013-11-01

    Motherhood has profound effects on physiology, neuronal plasticity, and behavior. We conducted a series of experiments to test the hypothesis that fatherhood, similarly to motherhood, affects brain plasticity (such as cell proliferation and survival) and various behaviors in the highly social prairie vole (Microtus ochrogaster). In Experiment 1, adult males were housed with their same-sex cage mate (control), single-housed (isolation), or housed with a receptive female to mate and produce offspring (father) for 6 weeks. Fatherhood significantly reduced cell survival (assessed by bromodeoxyuridine labeling), but not cell proliferation (assessed by Ki67-labeling), in the amygdala, dentate gyrus of the hippocampus, and ventromedial hypothalamus, suggesting that fatherhood affects brain plasticity. In Experiment 2, neither acute (20 min) nor chronic (20 min daily for 10 consecutive days) pup exposure altered cell proliferation or survival in the brain, but chronic pup exposure increased circulating corticosterone levels. These data suggest that reduced cell survival in the brain of prairie vole fathers was unlikely to be due to the level of pup exposure and display of paternal behavior, and may not be mediated by circulating corticosterone. The effects of fatherhood on various behaviors (including anxiety-like, depression-like, and social behaviors) were examined in Experiment 3. The data indicated that fatherhood increased anxiety- and depression-like behaviors as well as altered aggression and social recognition memory in male prairie voles. These results warrant further investigation of a possible link between brain plasticity and behavioral changes observed due to fatherhood. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Grassland canopy parameters and their relationships to remotely sensed vegetation indices in the Nebraska Sand Hills

    Science.gov (United States)

    Wylie, Bruce K.; DeJong, Donovan D.; Tieszen, Larry L.; Biondini, Mario E.

    1996-01-01

    Relationships among spectral vegetation indices and grassland biophysical parameters including the effects of varying levels of standing dead vegetation, range sites, and range plant communities were examined. Range plant communities consisting of northern mixed grass prairie and a smooth brome field as well as range sites and management in a Sand Hills bluestem prairie were sampled with a ground radiometer and for LAI, biomass, chlorophy

  20. Fitness cost of resistance to Bt cotton linked with increased gossypol content in pink bollworm larvae.

    Directory of Open Access Journals (Sweden)

    Jennifer L Williams

    Full Text Available Fitness costs of resistance to Bacillus thuringiensis (Bt crops occur in the absence of Bt toxins, when individuals with resistance alleles are less fit than individuals without resistance alleles. As costs of Bt resistance are common, refuges of non-Bt host plants can delay resistance not only by providing susceptible individuals to mate with resistant individuals, but also by selecting against resistance. Because costs typically vary across host plants, refuges with host plants that magnify costs or make them less recessive could enhance resistance management. Limited understanding of the physiological mechanisms causing fitness costs, however, hampers attempts to increase costs. In several major cotton pests including pink bollworm (Pectinophora gossypiella, resistance to Cry1Ac cotton is associated with mutations altering cadherin proteins that bind this toxin in susceptible larvae. Here we report that the concentration of gossypol, a cotton defensive chemical, was higher in pink bollworm larvae with cadherin resistance alleles than in larvae lacking such alleles. Adding gossypol to the larval diet decreased larval weight and survival, and increased the fitness cost affecting larval growth, but not survival. Across cadherin genotypes, the cost affecting larval growth increased as the gossypol concentration of larvae increased. These results suggest that increased accumulation of plant defensive chemicals may contribute to fitness costs associated with resistance to Bt toxins.

  1. Plant growth inhibition by soluble salts in sewage sludge-amended mine spoils

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C.S.; Anderson, R.C. [Illinois State University, Normal, IL (United States). Dept. of Biological Sciences

    1995-07-01

    The growth response of prairie switchgrass {ital Panicum virgatum}L was compared in strip mine spoil amended with various levels of anaerobically digested waste-activated sewage sludge (0, 56, 111, 222, or 333 dry Mg ha{sup -1}) and commercial fertilizer, pure sludge, and glasshouse soil. Plants were grown in a growth chamber and substrates were maintained at field capacity during the study. Soluble salt concentrations of the substrates increased linearly as a function of sludge amendment and were within the range known to inhibit the growth of many plant species at the high levels of sludge application. There was, however, a linear response of biomass production to increasing levels of sludge amendment. Maintaining substrates at field capacity apparently prevented the high concentration of soluble salts from inhibiting plant growth. The increased biomass yield associated with sludge application was likely due to the increased availability of inorganic nutrients associated with sludge amendment. 22 refs., 2 figs., 2 tabs.

  2. Northern Pintail (Anas acuta survival, recovery, and harvest rates derived from 55 years of banding in Prairie Canada, 1960-2014

    Directory of Open Access Journals (Sweden)

    Blake A. Bartzen

    2017-12-01

    Full Text Available Northern Pintail (Anas acuta; hereafter pintail experienced a significant population decline in North America in the 1980s but did not rebound to the previous population level the way that other prairie dabbling duck species (Anas spp. did once habitat conditions improved. Although the population decline occurred throughout the breeding range of pintails, the decline was most pronounced and sustained in Prairie Canada, i.e., southern Alberta and Saskatchewan. Thus, we estimated and examined annual survival, recovery, and harvest rates of pintails banded in Prairie Canada from 1960-2014. Annual survival rates varied by sex but were relatively high compared to those of other dabbling duck species and increased slightly over the study period to end at 0.64 ± 0.13 (SE and 0.74 ± 0.10 for females and males, respectively. Recovery and harvest rates varied over time but generally declined in the 1980s and increased from the early 1990s until the end of the study period. There was no clear evidence that hunting bag limit restrictions affected annual survival, recovery, or harvest rates. In addition, we could find no compelling evidence that harvest mortality was substantially additive to nonharvest mortality for pintails. However, we could not definitively ascertain the effects of the restrictions, and we suggest that a trial basis of liberalized hunting bag limits would do much to improve the understanding of harvest and population dynamics of pintails and pose little risk to the population. Based on our results, we believe that measures other than harvest restrictions will likely have to be taken to elevate the pintail population to the North American Waterfowl Management Plan objective.

  3. Effects of sex and reproductive experience on the number of orexin A-immunoreactive cells in the prairie vole brain.

    Science.gov (United States)

    Donlin, Michael; Cavanaugh, Breyanna L; Spagnuolo, Olivia S; Yan, Lily; Lonstein, Joseph S

    2014-07-01

    Large populations of cells synthesizing the neuropeptide orexin (OX) exist in the caudal hypothalamus of all species examined and are implicated in physiological and behavioral processes including arousal, stress, anxiety and depression, reproduction, and goal-directed behaviors. Hypothalamic OX expression is sexually dimorphic in different directions in laboratory rats (F>M) and mice (M>F), suggesting different roles in male and female physiology and behavior that are species-specific. We here examined if the number of hypothalamic cells immunoreactive for orexin A (OXA) differs between male and female prairie voles (Microtus ochrogaster), a socially monogamous species that pairbonds after mating and in which both sexes care for offspring, and if reproductive experience influences their number of OXA-immunoreactive (OXA-ir) cells. It was found that the total number of OXA-ir cells did not differ between the sexes, but females had more OXA-ir cells than males in anterior levels of the caudal hypothalamus, while males had more OXA-ir cells posteriorly. Sexually experienced females sacrificed 12 days after the birth of their first litter, or one day after birth of a second litter, had more OXA-ir cells in anterior levels but not posterior levels of the caudal hypothalamus compared to females housed with a brother (incest avoidance prevents sibling mating). Male prairie voles showed no effect of reproductive experience but showed an unexpected effect of cohabitation duration regardless of mating. The sex difference in the distribution of OXA-ir cells, and their increased number in anterior levels of the caudal hypothalamus of reproductively experienced female prairie voles, may reflect a sex-specific mechanism involved in pairbonding, parenting, or lactation in this species. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Hamiltonian inclusive fitness: a fitter fitness concept.

    Science.gov (United States)

    Costa, James T

    2013-01-01

    In 1963-1964 W. D. Hamilton introduced the concept of inclusive fitness, the only significant elaboration of Darwinian fitness since the nineteenth century. I discuss the origin of the modern fitness concept, providing context for Hamilton's discovery of inclusive fitness in relation to the puzzle of altruism. While fitness conceptually originates with Darwin, the term itself stems from Spencer and crystallized quantitatively in the early twentieth century. Hamiltonian inclusive fitness, with Price's reformulation, provided the solution to Darwin's 'special difficulty'-the evolution of caste polymorphism and sterility in social insects. Hamilton further explored the roles of inclusive fitness and reciprocation to tackle Darwin's other difficulty, the evolution of human altruism. The heuristically powerful inclusive fitness concept ramified over the past 50 years: the number and diversity of 'offspring ideas' that it has engendered render it a fitter fitness concept, one that Darwin would have appreciated.

  5. Evapotranspiration and the water budget of prairie potholes in North Dakota

    Science.gov (United States)

    Shjeflo, J.B.

    1968-01-01

    The mass-transfer method was used to study the hydrologic behavior of 10 prairie potholes in central North Dakota during the 5-year period 1960-64. Many of the potholes went dry when precipitation was low. The average evapotranspiration during the May to October period each year was 2.11 feet, and the average seepage was 0.60 foot. These averages remained nearly constant for both wet and dry years. The greatest source of water for the potholes was the direct rainfall on the pond surface; this supplied 1.21 feet per year. Spring snowmelt supplied 0.79 foot of water and runoff from the land surface during the summer supplied 0.53 foot. Even though the water received from snowmelt was only 31 percent of the total, it was probably the most vital part of the annual water supply. This water was available in the spring, when waterfowl were nesting, and generally lasted until about July 1, even with no additional direct rainfall on the pond or runoff from the drainage basin. The average runoff from the land surface into pothole 3 was found to be 1.2 inches per year- 1 inch from snowmelt and 0.2 inch from rainfall.'The presence of growing aquatic plants, such as bulrushes and cattails, was a complicating factor in making measurements. New computation procedures had to be devised to define the variable mass-transfer coefficient. Rating periods were divided into 6-hour units for the vegetated potholes. The instruments had to be carefully maintained, as water levels had to be recorded with such accuracy that changes of 0.001 foot could be detected. In any research project involving the measurements of physical quantities, the results are dependent upon the accuracy and dependability of the instruments used; this was especially true during this project.

  6. Ducks and passerines nesting in northern mixed-grass prairie treated with fire

    Science.gov (United States)

    Grant, Todd A.; Shaffer, Terry L.; Madden, Elizabeth M.; Berkey, Gordon B.

    2011-01-01

    Prescribed fire is an important, ecology-driven tool for restoration of grassland systems. However, prescribed fire remains controversial for some grassland managers because of reported reductions in bird use of recently burned grasslands. Few studies have evaluated effects of fire on grassland bird populations in the northern mixed-grass prairie region. Fewer studies yet have examined the influence of fire on nest density or survival. In our review, we found no studies that simultaneously examined effects of fire on duck and passerine nesting. During 1998—2003, we examined effects of prescribed fire on the density of upland-nesting ducks and passerines nesting in north-central North Dakota, USA. Apparent nest densities of gadwall (Anas strepera), mallard (A. platyrhynchos), and all duck species combined, were influenced by fire history of study units, although the degree of influence was not compelling. Fire history was not related to nest densities of blue-winged teal (A. discors), northern shoveler (A. clypeata), or northern pintail (A. acuta); however, apparent nest densities in relation to the number of postfire growing seasons exhibited a strikingly similar pattern among all duck species. When compared to ducks, fire history strongly influenced apparent nest densities of clay-colored sparrow (Spizella pallida), Savannah sparrow (Passerculus sandwichensis), and bobolink (Dolichonyx oryzivorus). For most species examined, apparent nest densities were lowest in recently burned units, increased during the second postfire growing season, and stabilized or, in some cases, decreased thereafter. Prescribed fire is critical for restoring the ecology of northern mixed-grass prairies and our findings indicate that reductions in nest densities are limited mostly to the first growing season after fire. Our results support the premise that upland-nesting ducks and several grassland passerine species are adapted to periodic fires occurring at a frequency similar to that

  7. Bud-bank and tiller dynamics of co-occurring C3 caespitose grasses in mixed-grass prairie.

    Science.gov (United States)

    Ott, Jacqueline P; Hartnett, David C

    2015-09-01

    Tiller recruitment from the belowground bud bank of caespitose grasses influences their ability to monopolize local resources and, hence, their genet fitness. Differences in bud production and outgrowth among tiller types within a genet and among species may explain co-occurrence of caespitose grasses. This study aimed to characterize genet bud-bank and tiller production and dynamics in two co-occurring species and compare their vegetative reproductive strategies. Bud-bank and tiller dynamics of Hesperostipa comata and Nassella viridula, dominant C3 caespitose grasses in the northern mixed-grass prairie of North America, were assessed throughout an annual cycle. The two species showed similar strategies, maintaining polycyclic tillers and thus creating mixed-age genet bud banks comprising multiple bud cohorts produced in different years. Vegetative tillers produced the majority of buds, whereas flowering tillers contributed little to the bud bank. Buds lived for at least 2 yr and were maintained in multiple developmental stages throughout the year. Because bud longevity rarely exceeded tiller longevity, tiller longevity drove turnover within the bud bank. Tiller population dynamics, more than bud production per tiller, determined the differential contribution of tiller types to the bud bank. Nassella viridula had higher bud production per tiller, a consistent annual tiller recruitment density, and greater longevity of buds on senesced and flowering tillers than H. comata. Co-occurring C3 caespitose grasses had similar bud-bank and tiller dynamics contributing to genet persistence but differed in bud characteristics that could affect genet longevity and species coexistence. © 2015 Botanical Society of America.

  8. Geophysical Investigation of an Abandoned Cemetery: Teachers Discover Evidence of Unmarked Graves in Prairie View, TX

    Science.gov (United States)

    Henning, A. T.; Sawyer, D. S.; Baldwin, R.; Kahera, A.; Thoms, A.

    2007-12-01

    In July 2007, a group of nineteen K-12 teachers investigated an abandoned cemetery in Prairie View, Texas, utilizing ground-penetrating radar (GPR) to image the subsurface. In a period of two weeks, the group acquired and interpreted 59 GPR profiles in Wyatt Chapel Cemetery and surrounding areas in order to determine the local stratigraphy and try to locate unmarked graves. The sandy soil in this area is ideally suited for GPR investigations and numerous geophysical anomalies were identified. Wyatt Chapel Cemetery is located adjacent to the campus of Prairie View A&M University in Prairie View, TX, and is thought to have originated as a slave burial ground in the 1850's. Participants in a summer course at Rice University conducted a geophysical investigation of the site. Participants were in-service K-12 teachers from urban Houston school districts where the majority of students are members of historically underrepresented minority groups. Recruitment efforts targeted educators who are currently teaching science without a science degree. Participants included elementary, middle and high school teachers. This summer experience is followed by a content-intensive academic year course in Physical Geology. GPR is an excellent tool for investigating the sandy soil encountered at Wyatt Chapel Cemetery. The stratigraphy in the area consists of 3-6 feet of reddish-brown, medium-grained sand overlying a light gray, highly compacted clay. The sand-clay boundary appears as a strong reflector on the GPR profiles. Participants identified numerous anomalies in the GPR data and two were excavated. One consisted of a pair of bright hyperbolae, suggesting two edges of a metal object. This excavation resulted in the discovery of a metal plank thought to be a burial cover. The second anomaly consisted of a break in the horizon representing the top of the clay layer, and subsequent excavation revealed a grave shaft. Participants experienced the process of science first-hand and used

  9. Seismicity as dynamic load of pipes and fittings

    International Nuclear Information System (INIS)

    Rejent, B.

    1984-01-01

    The load is discussed of pipe systems and fittings for nuclear power plants which may result from earthquakes, etc. Modifications of the equation of motion are discussed which may be solved using the response spectrum method or the method of direct numerical integration. A mathematical description of both methods is given. The seismic resistance of fittings, pumps, etc., is experimentally determined by loking for their eigenfrequencies and monitoring the response of equipment to resonance oscillations. The principle is described of uniaxial hydraulic and mechanical shock absorbers and a viscous damper. The presented computation method was used for evaluating the primary circuit (Sigma Modrany) and rods for the remote control of fittings (Sigma Hodonin) supplied for the Mochovce nuclear power plant. Variants were compared of seismic protection of the primary circuit by hydraulic and mechanical shock absorbers with viscous dampers and of circuits without any protection. The unprotected system oscillates in the first harmonic, the system with shock absorbers keeps the deflections within the range of the shock absorber function (to 2 mm), and the system using viscous dampers oscillates approximately according to the first waveform with a deflection of around 11 mm. A diagram and a dynamic model are presented of a rod for the remote control of fittings. Figure shows the computation model and the response of this rod in individual time moments, both affected and not affected by play in the dilatation joint. Table shows the effect of play in the dilatation joint on deformation maxima and on rod bend stress from a symmetric load of 8g. (E.S.)

  10. Breeding biologies, pollinators and seed beetles of two prairie-clovers, Dalea ornata and D. searlsiae (Fabaceae: Amorpheae), from the Intermountain West USA

    Science.gov (United States)

    Two prairie-clovers, Dalea ornata and D. searlsiae, are perennial forbs that flower during early summer throughout the Colombia Plateau and Great Basin of the western USA, respectively. Their seed is desirable for use in rangeland restoration. We experimentally characterized the breeding biologies ...

  11. A New Ala-122-Asn Amino Acid Change Confers Decreased Fitness to ALS-Resistant Echinochloa crus-galli

    Directory of Open Access Journals (Sweden)

    Silvia Panozzo

    2017-11-01

    Full Text Available Gene mutations conferring herbicide resistance may cause pleiotropic effects on plant fitness. Knowledge of these effects is important for managing the evolution of herbicide-resistant weeds. An Echinochloa crus-galli population resistant to acetolactate synthase (ALS herbicides was collected in a maize field in north-eastern Italy and the cross-resistance pattern, resistance mechanism and fitness costs associated to mutant-resistant plants under field conditions in the presence or absence of intra-specific competition were determined. The study reports for the first time the Ala-122-Asn amino-acid change in the ALS gene that confers high levels of cross-resistance to all ALS inhibitors tested. Results of 3-year growth analysis showed that mutant resistant E. crus-galli plants had a delayed development in comparison with susceptible plants and this was registered in both competitive (3, 7, and 20 plants m-2 and non-competitive (spaced plants situations. The number of panicles produced by resistant plants was also lower (about 40% fewer panicles than susceptible plants under no-intraspecific competition. Instead, with the increasing competition level, the difference in panicle production at harvest time decreased until it became negligible at 20 plants m-2. Evaluation of total dry biomass as well as biomass allocation in vegetative parts did not highlight any difference between resistant and susceptible plants. Instead, panicle dry weight was higher in susceptible plants indicating that they allocated more biomass than resistant ones to the reproductive organs, especially in no-competition and in competition situations at lower plant densities. The different fitness between resistant and susceptible phenotypes suggests that keeping the infestation density as low as possible can increase the reproduction success of the susceptible phenotype and therefore contribute to lowering the ratio between resistant and susceptible alleles. If adequately

  12. A New Ala-122-Asn Amino Acid Change Confers Decreased Fitness to ALS-Resistant Echinochloa crus-galli.

    Science.gov (United States)

    Panozzo, Silvia; Scarabel, Laura; Rosan, Valentina; Sattin, Maurizio

    2017-01-01

    Gene mutations conferring herbicide resistance may cause pleiotropic effects on plant fitness. Knowledge of these effects is important for managing the evolution of herbicide-resistant weeds. An Echinochloa crus-galli population resistant to acetolactate synthase (ALS) herbicides was collected in a maize field in north-eastern Italy and the cross-resistance pattern, resistance mechanism and fitness costs associated to mutant-resistant plants under field conditions in the presence or absence of intra-specific competition were determined. The study reports for the first time the Ala-122-Asn amino-acid change in the ALS gene that confers high levels of cross-resistance to all ALS inhibitors tested. Results of 3-year growth analysis showed that mutant resistant E. crus-galli plants had a delayed development in comparison with susceptible plants and this was registered in both competitive (3, 7, and 20 plants m -2 ) and non-competitive (spaced plants) situations. The number of panicles produced by resistant plants was also lower (about 40% fewer panicles) than susceptible plants under no-intraspecific competition. Instead, with the increasing competition level, the difference in panicle production at harvest time decreased until it became negligible at 20 plants m -2 . Evaluation of total dry biomass as well as biomass allocation in vegetative parts did not highlight any difference between resistant and susceptible plants. Instead, panicle dry weight was higher in susceptible plants indicating that they allocated more biomass than resistant ones to the reproductive organs, especially in no-competition and in competition situations at lower plant densities. The different fitness between resistant and susceptible phenotypes suggests that keeping the infestation density as low as possible can increase the reproduction success of the susceptible phenotype and therefore contribute to lowering the ratio between resistant and susceptible alleles. If adequately embedded in a

  13. Effects of prescribed burning and litter type on litter decomposition and nutrient release in mixed-grass prairie in Eastern Montana

    Science.gov (United States)

    Fire can affect litter decomposition and carbon (C) and nitrogen (N) dynamics. Here, we examined the effect of summer fire and three litter types on litter decomposition and litter C and N dynamics in a northern mixed-grass prairie over a 24 month period starting ca. 14 months after fire. Over all...

  14. Integrated effect of crop sowing date and herbicide stress on fitness of Bromus diandrus Roth

    Energy Technology Data Exchange (ETDEWEB)

    García, A.L.; Royo-Esnal, A.; Torra, J.; Recasens, J.

    2015-07-01

    Bromus diandrus Roth is a common weed species that has increased in no-tillage dry-land cereal fields in NE Spain because of the limited control options. The fitness response of plants with different emergence times (ETs) and its influence on demography has huge implications in weed management. With this subject, three ETs (F1, F2 and F3) of B. diandrus were established through three crop-sowing dates (D1, Oct.; D2, Nov.; D3, Dec.) for each of the three years in a barley-wheat-wheat rotation. In barley, the herbicides applied were not specific for B. diandrus, whereas in wheat the specific herbicide mesosulfuron-methyl plus iodosulfuron-methyl-sodium was applied. Plant density after treatments and fitness characteristics were estimated for each weed ET. Weed density decreased for later ETs and fitness was density-dependent, showing significantly higher values when a non-specific herbicide was applied, except in number of caryopses per spikelet. The increasing fitness shown by plants with later ETs and the linear relationships of vegetative biomass vs reproductive biomass and fecundity were disrupted by the herbicide mesosulfuron-methyl plus iodosulfuron-methyl-sodium. Plants that had survived this herbicide when wheat was growing had lower values for all the characteristics analysed. After three seasons, as a consequence of decreasing seed recruitment, a practical depletion of the B. diandrus population was achieved in F2 and F3 (<2.8 and <1 plants/m2, respectively) but not in F1 (60.5 plants/m2). This study shows the importance of delayed crop sowing to optimize the control of B. diandrus in cereal fields with no tillage. (Author)

  15. Combined effects of plant competition and insect herbivory hinder invasiveness of an introduced thistle.

    Science.gov (United States)

    Suwa, Tomomi; Louda, Svata M

    2012-06-01

    The biotic resistance hypothesis is a dominant paradigm for why some introduced species fail to become invasive in novel environments. However, predictions of this hypothesis require further empirical field tests. Here, we focus on evaluating two biotic factors known to severely limit plants, interspecific competition and insect herbivory, as mechanisms of biotic resistance. We experimentally evaluated the independent and combined effects of three levels of competition by tallgrass prairie vegetation and two levels of herbivory by native insects on seedling regeneration, size, and subsequent flowering of the Eurasian Cirsium vulgare, a known invasive species elsewhere, and compared its responses to those of the ecologically similar and co-occurring native congener C. altissimum. Seedling emergence of C. vulgare was greater than that of C. altissimum, and that emergence was reduced by the highest level of interspecific competition. Insect leaf herbivory was also greater on C. vulgare than on C. altissimum at all levels of competition. Herbivory on seedlings dramatically decreased the proportion of C. vulgare producing flower heads at all competition levels, but especially at the high competition level. Competition and herbivory interacted to significantly decrease plant survival and biomass, especially for C. vulgare. Thus, both competition and herbivory limited regeneration of both thistles, but their effects on seedling emergence, survival, size and subsequent reproduction were greater for C. vulgare than for C. altissimum. These results help explain the unexpectedly low abundance recorded for C. vulgare in western tallgrass prairie, and also provide strong support for the biotic resistance hypothesis.

  16. Chemical and biotic characteristics of prairie lakes and large wetlands in south-central North Dakota—Effects of a changing climate

    Science.gov (United States)

    Mushet, David M.; Goldhaber, Martin B.; Mills, Christopher T.; McLean, Kyle I.; Aparicio, Vanessa M.; McCleskey, R. Blaine; Holloway, JoAnn M.; Stockwell, Craig A.

    2015-09-28

    The climate of the prairie pothole region of North America is known for variability that results in significant interannual changes in water depths and volumes of prairie lakes and wetlands; however, beginning in July 1993, the climate of the region shifted to an extended period of increased precipitation that has likely been unequaled in the preceding 500 years. Associated changing water volumes also affect water chemical characteristics, with potential effects on fish and wildlife populations. To explore the effect of changing climate patterns, in 2012 and 2013, the U.S. Geological Survey revisited 167 of 178 prairie lakes and large wetlands of south-central North Dakota that were originally sampled in the mid-1960s to mid-1970s. During the earlier sampling period, these lakes and wetlands displayed a great range of chemical characteristics (for example, specific conductance ranged from 365 microsiemens per centimeter at 25 degrees Celsius to 70,300 microsiemens per centimeter at 25 degrees Celsius); however, increased water volumes have resulted in greatly reduced variation among lakes and wetlands and a more homogeneous set of chemical conditions defined by pH, specific conductance, and concentrations of major cations and anions. High concentrations of dissolved solids previously limited fish occurrence in many of the lakes and wetlands sampled; however, freshening of these lakes and large wetlands has allowed fish to populate and flourish where they were previously absent. Conversely, the freshening of previously saline lakes and wetlands has resulted in concurrent shifts away from invertebrate species adapted to live in these highly saline environments. A shift in the regional climate has changed a highly diverse landscape of wetlands (fresh to highly saline) to a markedly more homogeneous landscape that has reshaped the fish and wildlife communities of this ecologically and economically important region.

  17. Nucleus accumbens core medium spiny neuron electrophysiological properties and partner preference behavior in the adult male prairie vole, Microtus ochrogaster.

    Science.gov (United States)

    Willett, Jaime A; Johnson, Ashlyn G; Vogel, Andrea R; Patisaul, Heather B; McGraw, Lisa A; Meitzen, John

    2018-04-01

    Medium spiny neurons (MSNs) in the nucleus accumbens have long been implicated in the neurobiological mechanisms that underlie numerous social and motivated behaviors as studied in rodents such as rats. Recently, the prairie vole has emerged as an important model animal for studying social behaviors, particularly regarding monogamy because of its ability to form pair bonds. However, to our knowledge, no study has assessed intrinsic vole MSN electrophysiological properties or tested how these properties vary with the strength of the pair bond between partnered voles. Here we performed whole cell patch-clamp recordings of MSNs in acute brain slices of the nucleus accumbens core (NAc) of adult male voles exhibiting strong and weak preferences for their respective partnered females. We first document vole MSN electrophysiological properties and provide comparison to rat MSNs. Vole MSNs demonstrated many canonical electrophysiological attributes shared across species but exhibited notable differences in excitability compared with rat MSNs. Second, we assessed male vole partner preference behavior and tested whether MSN electrophysiological properties varied with partner preference strength. Male vole partner preference showed extensive variability. We found that decreases in miniature excitatory postsynaptic current amplitude and the slope of the evoked action potential firing rate to depolarizing current injection weakly associated with increased preference for the partnered female. This suggests that excitatory synaptic strength and neuronal excitability may be decreased in MSNs in males exhibiting stronger preference for a partnered female. Overall, these data provide extensive documentation of MSN electrophysiological characteristics and their relationship to social behavior in the prairie vole. NEW & NOTEWORTHY This research represents the first assessment of prairie vole nucleus accumbens core medium spiny neuron intrinsic electrophysiological properties and

  18. Differences in Foliage Affect Performance of the Lappet Moth, Streblote panda: Implications for Species Fitness

    Science.gov (United States)

    Calvo, D.; Molina, J.M.

    2010-01-01

    Implications for adults' fitness through the foliage effects of five different host plants on larval survival and performance of the lappet moth, Streblote panda Hübner (Lepidoptera: Lasiocampidae), as well as their effect on species fitness were assayed. Larvae were reared under controlled laboratory conditions on excised foliage. Long-term developmental experiments were done using first instar larvae to adult emergence, and performance experiments were done using fifth instar larvae. Survival, development rates, and food use were measured. Foliar traits analysis indicated that leaves of different host plants varied, significantly affecting larvae performance and adult fitness. Pistacia lentiscus L. (Sapindales: Anacardiaceae), Arbutus unedo L. (Ericales: Ericaceae), and Retama sphaerocarpa (L.) Boiss. (Fabales: Fabaceae) were the most suitable hosts. Larvae fed on Tamarix gallica L. (Caryophyllales: Tamaricaceae) and Spartium junceum L. (Fabales: Fabaceae) showed the lowest survival, rates of development and pupal and adult weight. In general, S. panda showed a relatively high capacity to buffer low food quality, by reducing developmental rates and larvae development thereby reaching the minimum pupal weight that ensures adult survival. Less suitable plants seem to have indirect effects on adult fitness, producing smaller adults that could disperse to other habitats. PMID:21062148

  19. Use of Rhodamine B as a biomarker for oral plague vaccination of prairie dogs

    Science.gov (United States)

    Fernandez, Julia Rodriguez-Ramos; Rocke, Tonie E.

    2011-01-01

    Oral vaccination against Yersinia pestis could provide a feasible approach for controlling plague in prairie dogs (Cynomys spp.) for conservation and public health purposes. Biomarkers are useful in wildlife vaccination programs to demonstrate exposure to vaccine baits. Rhodamine B (RB) was tested as a potential biomarker for oral plague vaccination because it allows nonlethal sampling of animals through hair, blood, and feces. We found that RB is an appropriate marker for bait uptake studies of C. ludovicianus) when used at concentrations 10 mg RB per kg target animal mass. Whiskers with follicles provided the best sample for RB detection.

  20. Pre-processing by data augmentation for improved ellipse fitting.

    Science.gov (United States)

    Kumar, Pankaj; Belchamber, Erika R; Miklavcic, Stanley J

    2018-01-01

    Ellipse fitting is a highly researched and mature topic. Surprisingly, however, no existing method has thus far considered the data point eccentricity in its ellipse fitting procedure. Here, we introduce the concept of eccentricity of a data point, in analogy with the idea of ellipse eccentricity. We then show empirically that, irrespective of ellipse fitting method used, the root mean square error (RMSE) of a fit increases with the eccentricity of the data point set. The main contribution of the paper is based on the hypothesis that if the data point set were pre-processed to strategically add additional data points in regions of high eccentricity, then the quality of a fit could be improved. Conditional validity of this hypothesis is demonstrated mathematically using a model scenario. Based on this confirmation we propose an algorithm that pre-processes the data so that data points with high eccentricity are replicated. The improvement of ellipse fitting is then demonstrated empirically in real-world application of 3D reconstruction of a plant root system for phenotypic analysis. The degree of improvement for different underlying ellipse fitting methods as a function of data noise level is also analysed. We show that almost every method tested, irrespective of whether it minimizes algebraic error or geometric error, shows improvement in the fit following data augmentation using the proposed pre-processing algorithm.

  1. Conflicting research on the demography, ecology, and social behavior of Gunnison's prairie dogs (Cynomys gunnisoni)

    Science.gov (United States)

    Hoogland, John L.; Cully, Jack F.; Rayor, Linda S.; Fitzgerald, James P.

    2012-01-01

    Gunnison's prairie dogs (Cynomys gunnisoni) are rare, diurnal, colonial, burrowing, ground-dwelling squirrels. Studies of marked individuals living under natural conditions in the 1970s, 1980s, and 1990s showed that males are heavier than females throughout the year; that adult females living in the same territory are consistently close kin; and that females usually mate with the sexually mature male(s) living in the home territory. Research from 2007 through 2010 challenges all 3 of these findings. Here we discuss how different methods might have led to the discrepancies.

  2. Changing priorities of codes and standards -- quality engineering: Experiences in plant construction, maintenance, and operation

    International Nuclear Information System (INIS)

    Antony, D.D.; Suleski, P.F.; Meier, J.C.

    1994-01-01

    Application of the ASME Code across various fossil and nuclear plants necessitates a Company approach adapted by unique status of each plant. This arises from State Statutes, Federal Regulations and consideration of each plant's as-built history over a broad time frame of design, construction and operation. Additionally, the National Board Inspection Code accompanies Minnesota Statutes for plants owned by Northern States Power Company. This paper addresses some key points on NSP's use of ASME Code as a principal mechanical standard in plant design, construction and operation. A primary resource facilitating review of Code provisions is accurate status on current plant configuration. As plant design changes arise, the Code Edition/Addenda of original construction and installed upgrades or replacements are considered against available options allowed by current standards and dialog with the Jurisdictional Authority. Consistent with the overall goal of safe and reliable plant operation, there are numerous Code details and future needs to be addressed in concert with expected plant economics and planned outages for implementation. The discussion begins in the late 60's with new construction of Monticello and Prairie Island (both nuclear), through Sherburne County Units 1 through 3 (fossil), and their changes, replacements or repairs as operating plants

  3. Reduced plant competition among kin can be explained by Jensen's inequality.

    Science.gov (United States)

    Simonsen, Anna K; Chow, Theresa; Stinchcombe, John R

    2014-12-01

    Plants often compete with closely related individuals due to limited dispersal, leading to two commonly invoked predictions on competitive outcomes. Kin selection, from evolutionary theory, predicts that competition between relatives will likely be weaker. The niche partitioning hypothesis, from ecological theory, predicts that competition between close relatives will likely be stronger. We tested for evidence consistent with either of these predictions by growing an annual legume in kin and nonkin groups in the greenhouse. We grew plant groups in treatments of symbiotic nitrogen fixing bacteria differing in strain identity and composition to determine if differences in the microbial environment can facilitate or obscure plant competition patterns consistent with kin selection or niche partitioning. Nonkin groups had lower fitness than expected, based on fitness estimates of the same genotypes grown among kin. Higher fitness among kin groups was observed in mixtures of N-fixing bacteria strains compared to single inoculations of bacteria strains present in the soil, which increased fitness differences between kin and nonkin groups. Lower fitness in nonkin groups was likely caused by increased competitive asymmetry in nonkin groups due to genetic differences in plant size combined with saturating relationships with plant size and fitness- i.e. Jensen's inequality. Our study suggests that microbial soil symbionts alter competitive dynamics among kin and nonkin. Our study also suggests that kin groups can have higher fitness, as predicted by kin selection theory, through a commonly heritable trait (plant size), without requiring kin recognition mechanisms.

  4. Fitness costs of chemical defense in Plantago lanceolata L.: effects of nutrient and competition stress

    NARCIS (Netherlands)

    Marak, H.B.; Biere, A.; Van Damme, J.M.M.

    2003-01-01

    Fitness costs of defense are often invoked to explain the maintenance of genetic variation in levels of chemical defense compounds in natural plant populations. We investigated fitness costs of iridoid glycosides (IGs), terpenoid compounds that strongly deter generalist insect herbivores, in ribwort

  5. Effects of Wind Energy Development on Nesting Ecology of Greater Prairie-Chickens in Fragmented Grasslands

    Science.gov (United States)

    McNew, Lance B; Hunt, Lyla M; Gregory, Andrew J; Wisely, Samantha M; Sandercock, Brett K

    2014-01-01

    Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for development of renewable energy may overlap with important habitats of declining populations of grassland birds. Greater Prairie-Chickens (Tympanuchus cupido) are an obligate grassland bird species predicted to respond negatively to energy development. We used a modified before–after control–impact design to test for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We located 59 and 185 nests before and after development, respectively, of a 201 MW wind energy facility in Greater Prairie-Chicken nesting habitat and assessed nest site selection and nest survival relative to proximity to wind energy infrastructure and habitat conditions. Proximity to turbines did not negatively affect nest site selection (β = 0.03, 95% CI = −1.2–1.3) or nest survival (β = −0.3, 95% CI = −0.6–0.1). Instead, nest site selection and survival were strongly related to vegetative cover and other local conditions determined by management for cattle production. Integration of our project results with previous reports of behavioral avoidance of oil and gas facilities by other species of prairie grouse suggests new avenues for research to mitigate impacts of energy development. Efectos del Desarrollo de la Energía Eólica sobre la Ecología de Anidación de Gallinas de la Gran Pradera en Pastizales Fragmentados Resumen Se calcula que la energía eólica aportará el 20% de las necesidades energéticas de los Estados Unidos para el 2030, pero nuevos sitios para el desarrollo de energía renovable pueden traslaparse con hábitats importantes de poblaciones declinantes de aves de pastizal. La gallina de la Gran Pradera (Tympanuchus cupido) es una especie de ave obligada de pastizal que se pronostica responderá negativamente al desarrollo energético. Usamos un diseño ADCI modificado para probar los impactos del desarrollo de la energía e

  6. Testing the validity of stock-recruitment curve fits

    International Nuclear Information System (INIS)

    Christensen, S.W.; Goodyear, C.P.

    1988-01-01

    The utilities relied heavily on the Ricker stock-recruitment model as the basis for quantifying biological compensation in the Hudson River power case. They presented many fits of the Ricker model to data derived from striped bass catch and effort records compiled by the National Marine Fisheries Service. Based on this curve-fitting exercise, a value of 4 was chosen for the parameter alpha in the Ricker model, and this value was used to derive the utilities' estimates of the long-term impact of power plants on striped bass populations. A technique was developed and applied to address a single fundamental question: if the Ricker model were applicable to the Hudson River striped bass population, could the estimates of alpha from the curve-fitting exercise be considered reliable. The technique involved constructing a simulation model that incorporated the essential biological features of the population and simulated the characteristics of the available actual catch-per-unit-effort data through time. The ability or failure to retrieve the known parameter values underlying the simulation model via the curve-fitting exercise was a direct test of the reliability of the results of fitting stock-recruitment curves to the real data. The results demonstrated that estimates of alpha from the curve-fitting exercise were not reliable. The simulation-modeling technique provides an effective way to identify whether or not particular data are appropriate for use in fitting such models. 39 refs., 2 figs., 3 tabs

  7. Assessing the Impact of Climate Variability on Cropland Productivity in the Canadian Prairies Using Time Series MODIS FAPAR

    OpenAIRE

    Taifeng Dong; Jiangui Liu; Jiali Shang; Budong Qian; Ted Huffman; Yinsuo Zhang; Catherine Champagne; Bahram Daneshfar

    2016-01-01

    Cropland productivity is impacted by climate. Knowledge on spatial-temporal patterns of the impacts at the regional scale is extremely important for improving crop management under limiting climatic factors. The aim of this study was to investigate the effects of climate variability on cropland productivity in the Canadian Prairies between 2000 and 2013 based on time series of MODIS (Moderate Resolution Imaging Spectroradiometer) FAPAR (Fraction of Absorbed Photosynthetically Active Radiation...

  8. Intervention in independent spent fuel storage facility license application proceedings for storage on the power plant site

    International Nuclear Information System (INIS)

    Jordan, J.

    1992-01-01

    This presentation summarizes the intervention in the Nuclear Regulatory Commission (NRC) licensing process for currently operating Independent Spent fuel Storage Installation (ISFSI) projects at Carolina Power and Light's Company's H.B. Robinson, Duke Power Company's Oconee, and Virginia Power Company's Surry. In addition, intervention at dry storage facilities that are currently under development are also described. The utilities and reactors include Baltimore Gas and Electric Company's Calvert Cliffs, Public Service Company of Colorado's Fort St. Vrain plant, Northern States Power Company's Prairie Island, Wisconsin Electric Power Company's Point Beach, and Consumers Power Company's Palisades

  9. HAMBURG ENERGIE makes biogas plants fit for the balancing energy market; HAMBURG ENERGIE macht Biogasanlagen fit fuer den Regelenergiemarkt

    Energy Technology Data Exchange (ETDEWEB)

    Timmann, Bernd [HAMBURG ENERGIE, Hamburg (Germany). Direktvermarktung und Regelenergie; Bettinger, Carola [HAMBURG ENERGIE, Hamburg (Germany). Forschungsprojekt SMART POWER HAMBURG

    2013-04-15

    HAMBURG ENERGIE GmbH (Hamburg, Federal Republic of Germany) bundles 40 biogas plants with a total capacity of 15 megawatts to a virtual power plant. Thus, also small, decentralized plants may offer negative balancing power and achieve additional profits that were previously available only to large producers. In the medium term, HAMBURG ENERGIE wants to place a performance of 150 MW on the market.

  10. Des broussailles dans les prairies alpines

    Directory of Open Access Journals (Sweden)

    Olivier Camacho

    2009-03-01

    expliquer pourquoi l'embroussaillement gagne des prairies encore exploitées. Si la fauche permet de lutter efficacement contre l’avancée des ligneux, il n’en est pas de même dans les prairies pâturées non fauchées où la capacité de prélèvement par les troupeaux s’avère faible par rapport à la production d’herbe. Cette situation se répète d’année en année et c’est la cause la plus probable de la propagation des ligneux. Pour sécuriser leur système fourrager et pour simplifier le travail, les éleveurs constituent des unités de pâturage surdimensionnées par rapport aux besoins des animaux. Ils mettent en œuvre des pratiques de rattrapage, consistant en un entretien mécanique complémentaire au pâturage, pour contenir la dynamique des ligneux. De telles pratiques, exigeantes en travail, ne sont pas mises en œuvre sur toutes les pâtures. L’analyse des pratiques par des agronomes complète ainsi les études de milieux physiques et socio-économiques tant au niveau de la parcelle pâturée qu’à celui de la vallée.

  11. Size dimorphism, molt status, and body mass variation of Prairie Falcons nesting in the Snake River Birds of Prey National Conservation Area

    Science.gov (United States)

    Steenhof, Karen; McKinley, James O.

    2006-01-01

    Birds face challenges in how they allocate energy during the reproductive season. Most temperate zone species do not breed and molt at the same time, presumably because of the high energy demands of these two activities (Espie et al. 1996 and citations therein). However, representatives of at least four raptor genera are known to molt during the nesting season (Schmutz and Schmutz 1975, Newton and Marquiss 1982, Schmutz 1992, Espie et al. 1996). Molt strategies vary among raptor species depending on prey abundance, migration strategies, and the relative costs of reproduction. Sexually-dimorphic raptors typically have different roles in parenting, which result in different strategies for energy allocation. Male and female Eurasian Kestrels (Falco tinnunculus), for example, exhibit different molt patterns and mass changes during the breeding season (Village 1990). Prairie Falcons (Falco mexicanus) are similar to Eurasian Kestrels in that males provide most of the prey to females and young during the first part of the nesting season (Holthuijzen 1990), but no published data exist on molt patterns or mass changes in Prairie Falcons. Reliable information about raptor molt and morphometrics has important implications for modeling energetics and for understanding the role of sexes in raising young. Such knowledge also has practical application for distinguishing sexes of raptors and for determining appropriate size limits of transmitters used for telemetry studies. In this paper, we report on morphometric characteristics useful in distinguishing sexes of Prairie Falcons captured during several breeding seasons in the Snake River Birds of Prey National Conservation Area (NCA), and we assess changes in mass and molt status through the nesting season.

  12. Plants and arthropods: friends or foes ?

    NARCIS (Netherlands)

    Kant, M.; Williams, M.

    2011-01-01

    Plants are the most abundant terrestrial food sources, and arthropods (insects and arachnids) their most abundant consumers. For this reason plants are heavily defended by thorns, thick impervious coverings, and extraordinary toxins. However, plant fitness also depends upon alliances with arthropods

  13. A projection of lesser prairie chicken (Tympanuchus pallidicinctus) populations range-wide

    Science.gov (United States)

    Cummings, Jonathan W.; Converse, Sarah J.; Moore, Clinton T.; Smith, David R.; Nichols, Clay T.; Allan, Nathan L.; O'Meilia, Chris M.

    2017-08-09

    We built a population viability analysis (PVA) model to predict future population status of the lesser prairie-chicken (Tympanuchus pallidicinctus, LEPC) in four ecoregions across the species’ range. The model results will be used in the U.S. Fish and Wildlife Service's (FWS) Species Status Assessment (SSA) for the LEPC. Our stochastic projection model combined demographic rate estimates from previously published literature with demographic rate estimates that integrate the influence of climate conditions. This LEPC PVA projects declining populations with estimated population growth rates well below 1 in each ecoregion regardless of habitat or climate change. These results are consistent with estimates of LEPC population growth rates derived from other demographic process models. Although the absolute magnitude of the decline is unlikely to be as low as modeling tools indicate, several different lines of evidence suggest LEPC populations are declining.

  14. Homicide in the Canadian Prairies: elderly and nonelderly killings.

    Science.gov (United States)

    Ahmed, A G; Menzies, Robin P D

    2002-11-01

    To examine the psychosocial and clinical characteristics of male perpetrators of elderly and nonelderly homicides in the Canadian Prairies. We examined data drawn from a study of 901 adult homicide offenders who were incarcerated or on parole between 1988 and 1992 in Alberta, Saskatchewan, and Manitoba. Of those studied, 67 men were convicted of homicide involving 79 elderly victims, and 671 were convicted of homicide involving 675 nonelderly victims. Most perpetrators were single and engaged in irregular patterns of employment at the time of their index offence. Fourteen (20.8%) offenders with elderly victims had a history of psychiatric treatment, compared with 98 (14.6%) offenders with nonelderly victims; however, this difference was not statistically significant. Approximately 30% of both groups were diagnosed with personality disorders. A comparison of the index- offence characteristics showed no significant differences between the 2 groups. Our findings suggest that elderly individuals are more likely to be killed in their own homes by strangers. Social isolation appears to be a significant risk factor in cases of elderly homicide.

  15. Inter-annual to multi-decadal variability in prairie water resources over the past millennium

    International Nuclear Information System (INIS)

    Sauchyn, D.

    2008-01-01

    In the Prairie Provinces, declining levels have been recently recorded for various rivers and lakes, and further reductions are projected. These trends reflect human impact in terms of increasing water consumption and possibly anthropogenic climate change. From the coupling of hydrological models and climate change scenarios, researchers have projected lower future summer flows as global warming brings shorter warmer winters and longer and generally drier summers to western Canada. However, the detection and interpretation of trends from gauge records and model outputs are constrained by the relatively short perspective of decades and the uncertainties associated with projecting climate change and its impacts on hydrological regimes. A longer perspective on inter-annual to multi-decadal variability in water resources is available from moisture-sensitive tree-ring chronologies. We have established a dense network of low elevation chronologies spanning the headwaters of the Saskatchewan, Missouri, Churchill and Mackenzie River basins. Standardized tree-ring width for a large sample of trees and sites is a strong regional signal of annual and seasonal hydroclimate, and an especially good proxy of low water levels. Proxy streamflow records, up to 800 years in length, show quasi-periodic variability at inter-annual to multi-decadal scales that correspond to the tempo of sea-surface temperature anomalies. The industrial sponsors of our research, Manitoba Hydro and EPCOR, anticipate the use of our tree-ring reconstructions for informing forecasts of future water supplies and planning adaptation to climate change. Engineers from these companies, and more than 50 other water managers and planners from the Prairie Provinces, attended a workshop in March 2008 to explore potential applications of paleo-hydrological records to water resource management. (author)

  16. Drought-induced recharge promotes long-term storage of porewater salinity beneath a prairie wetland

    Science.gov (United States)

    Levy, Zeno F.; Rosenberry, Donald O.; Moucha, Robert; Mushet, David M.; Goldhaber, Martin B.; LaBaugh, James W.; Fiorentino, Anthony J.; Siegel, Donald I.

    2018-02-01

    Subsurface storage of sulfate salts allows closed-basin wetlands in the semiarid Prairie Pothole Region (PPR) of North America to maintain moderate surface water salinity (total dissolved solids [TDS] from 1 to 10 g L-1), which provides critical habitat for communities of aquatic biota. However, it is unclear how the salinity of wetland ponds will respond to a recent shift in mid-continental climate to wetter co