Sample records for practical ice-water heat

  1. Turbulent heat exchange between water and ice at an evolving ice-water interface (United States)

    Ramudu, Eshwan; Hirsh, Benjamin Henry; Olson, Peter; Gnanadesikan, Anand


    We conduct laboratory experiments on the time evolution of an ice layer cooled from below and subjected to a turbulent shear flow of warm water from above. Our study is motivated by observations of warm water intrusion into the ocean cavity under Antarctic ice shelves, accelerating the melting of their basal surfaces. The strength of the applied turbulent shear flow in our experiments is represented in terms of its Reynolds number $\\textit{Re}$, which is varied over the range $2.0\\times10^3 \\le \\textit{Re} \\le 1.0\\times10^4$. Depending on the water temperature, partial transient melting of the ice occurs at the lower end of this range of $\\textit{Re}$ and complete transient melting of the ice occurs at the higher end. Following these episodes of transient melting, the ice reforms at a rate that is independent of $\\textit{Re}$. We fit our experimental measurements of ice thickness and temperature to a one-dimensional model for the evolution of the ice thickness in which the turbulent heat transfer is parameterized in terms of the friction velocity of the shear flow. The melting mechanism we investigate in our experiments can easily account for the basal melting rate of Pine Island Glacier ice shelf inferred from observations.

  2. The Calculated and Measured Performance Characteristics of a Heated-Wire Liquid-Water-Content Meter for Measuring Icing Severity (United States)

    Neel, Carr B.; Steinmetz, Charles P.


    Ground tests have been made of an instrument which, when assembled in a more compact form for flight installation, could be used to obtain statistical flight data on the liquid-water content of icing clouds and to provide an indication of icing severity. The sensing element of the instrument consists of an electrically heated wire which is mounted in the air stream. The degree of cooling of the wire resulting from evaporation of the impinging water droplets is a measure. of the liquid-water content of the cloud. Determination of the value of the liquid-water content from the wire temperature at any instant requires a knowledge of the airspeed, altitude, and air temperature. An analysis was made of the temperature response of a heated wire exposed to an air stream containing water drops. Comparisons were made of the liquid-water content as measured with several heated wires and absorbent cylinders in an artificially produced cloud. For one of the wires, comparative tests were made with a rotating-disk icing-rate meter in an icing wind tunnel. From the test results, it was shown that an instrument for measuring the concentration of liquid water in an air stream can be built using an electrically heated wire of known temperatureresistance characteristics, and that the performance of such a device can be predicted using appropriate theory. Although an instrument in a form suitable for gathering statistical data in flight was not built, the practicability of constructing such an instrument was illustrated. The ground-test results indicated that a flight heated-wire instrument would be simple and durable, would respond rapidly to variations in liquid-water content, and could be used for the measurement of water content in clouds which are above freezing temperature, as well as in icing clouds.

  3. Study on heat transfer performance of water-borne and oily graphene coatings using anti-/de-icing component (United States)

    Chen, Long; Zhang, Yidu; Wu, Qiong; Jie, Zhang


    A graphene coating anti-/de-icing experiment was proposed by employing water-borne and oily graphene coatings on the composite material anti-/de-icing component. Considering the characteristics of helicopter rotor sensitivity to icing, a new graphene coating enhancing thermal conductivity of anti-/de-icing component was proposed. The anti-/de-icing experiment was conducted to validate the effectiveness of graphene coating. The results of the experiment show that the graphene coatings play a prominent role in controlling the heat transfer of anti-/de-icing component. The anti-/de-icing effect of oily graphene coating is superior to water-borne graphene.

  4. Experimental Investigation of Ice Phase Change Material Heat Exchangers (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.


    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  5. Temperature distribution of a water droplet moving on a heated super-hydrophobic surface under the icing condition (United States)

    Yamazaki, Masafumi; Sumino, Yutaka; Morita, Katsuaki


    In the aviation industry, ice accretion on the airfoil has been a hazardous issue since it greatly declines the aerodynamic performance. Electric heaters and bleed air, which utilizes a part of gas emissions from engines, are used to prevent the icing. Nowadays, a new de-icing system combining electric heaters and super hydrophobic coatings have been developed to reduce the energy consumption. In the system, the heating temperature and the coating area need to be adjusted. Otherwise, the heater excessively consumes energy when it is set too high and when the coating area is not properly located, water droplets which are once dissolved possibly adhere again to the rear part of the airfoil as runback ice In order to deal with these problems, the physical phenomena of water droplets on the hydrophobic surface demand to be figured out. However, not many investigations focused on the behavior of droplets under the icing condition have been conducted. In this research, the temperature profiling of the rolling droplet on a heated super-hydrophobic surface is experimentally observed by the dual luminescent imaging.

  6. Turbulent heat transfer as a control of platelet ice growth in supercooled under-ice ocean boundary layers (United States)

    McPhee, Miles G.; Stevens, Craig L.; Smith, Inga J.; Robinson, Natalie J.


    Late winter measurements of turbulent quantities in tidally modulated flow under land-fast sea ice near the Erebus Glacier Tongue, McMurdo Sound, Antarctica, identified processes that influence growth at the interface of an ice surface in contact with supercooled seawater. The data show that turbulent heat exchange at the ocean-ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing, analogous to similar results for moderate melting rates in seawater above freezing. Platelet ice growth appears to increase the hydraulic roughness (drag) of fast ice compared with undeformed fast ice without platelets. Platelet growth in supercooled water under thick ice appears to be rate-limited by turbulent heat transfer and that this is a significant factor to be considered in mass transfer at the underside of ice shelves and sea ice in the vicinity of ice shelves.

  7. The Heat Flux through the Ice Shell on Europa, Constraints from Measurements in Terrestrial Conditions (United States)

    Hruba, J.; Kletetschka, G.


    Heat transport across the ice shell of Europa controls the thermal evolution of its interior. Such process involves energy sources that drive ice resurfacing (1). More importantly, heat flux through the ice shell controls the thickness of the ice (2), that is poorly constrained between 1 km to 30+ km (3). Thin ice would allow ocean water to be affected by radiation from space. Thick ice would limit the heat ocean sources available to the rock-ocean interface at the ocean's bottom due to tidal dissipation and potential radioactive sources. The heat flux structures control the development of geometrical configurations on the Europa's surface like double ridges, ice diapirs, chaos regions because the rheology of ice is temperature dependent (4).Analysis of temperature record of growing ice cover over a pond and water below revealed the importance of solar radiation during the ice growth. If there is no snow cover, a sufficient amount of solar radiation can penetrate through the ice and heat the water below. Due to temperature gradient, there is a heat flux from the water to the ice (Qwi), which may reduce ice growth at the bottom. Details and variables that constrain the heat flux through the ice can be utilized to estimate the ice thickness. We show with this analog analysis provides the forth step towards measurement strategy on the surface of Europa. We identify three types of thermal profiles (5) and fourth with combination of all three mechanisms.References:(1) Barr, A. C., A. P. Showman, 2009, Heat transfer in Europa's icy shell, University of Arizona Press, p. 405-430.(2) Ruiz, J., J. A. Alvarez-Gómez, R. Tejero, and N. Sánchez, 2007, Heat flow and thickness of a convective ice shell on Europa for grain size-dependent rheologies: Icarus, v. 190, p. 145-154.(3) Billings, S. E., S. A. Kattenhorn, 2005, The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges: Icarus, v. 177, p. 397-412.(4) Quick

  8. Instability of water-ice interface under turbulent flow (United States)

    Izumi, Norihiro; Naito, Kensuke; Yokokawa, Miwa


    It is known that plane water-ice interface becomes unstable to evolve into a train of waves. The underside of ice formed on the water surface of rivers are often observed to be covered with ice ripples. Relatively steep channels which discharge melting water from glaciers are characterized by beds covered with a series of steps. Though the flowing agent inducing instability is not water but gas including water vapor, a similar train of steps have been recently observed on the Polar Ice Caps on Mars (Spiral Troughs). They are expected to be caused by the instability of water-ice interface induced by flowing fluid on ice. There have been some studies on this instability in terms of linear stability analysis. Recently, Caporeale and Ridolfi (2012) have proposed a complete linear stability analysis in the case of laminar flow, and found that plane water-ice interface is unstable in the range of sufficiently large Reynolds numbers, and that the important parameters are the Reynolds number, the slope angle, and the water surface temperature. However, the flow inducing instability on water-ice interface in the field should be in the turbulent regime. Extension of the analysis to the case of fully developed turbulent flow with larger Reynolds numbers is needed. We have performed a linear stability analysis on the instability of water-ice interface under turbulent flow conditions with the use of the Reynolds-averaged Navier-Stokes equations with the mixing length turbulent model, the continuity equation of flow, the diffusion/dispersion equation of heat, and the Stefan equation. In order to reproduce the accurate velocity distribution and the heat transfer in the vicinity of smooth walls with the use of the mixing length model, it is important to take into account of the rapid decrease in the mixing length in the viscous sublayer. We employ the Driest model (1956) to the formulation. In addition, as the thermal boundary condition at the water surface, we describe the

  9. Forced convective melting at an evolving ice-water interface (United States)

    Ramudu, Eshwan; Hirsh, Benjamin; Olson, Peter; Gnanadesikan, Anand


    The intrusion of warm Circumpolar Deep Water into the ocean cavity between the base of ice shelves and the sea bed in Antarctica causes melting at the ice shelves' basal surface, producing a turbulent melt plume. We conduct a series of laboratory experiments to investigate how the presence of forced convection (turbulent mixing) changes the delivery of heat to the ice-water interface. We also develop a theoretical model for the heat balance of the system that can be used to predict the change in ice thickness with time. In cases of turbulent mixing, the heat balance includes a term for turbulent heat transfer that depends on the friction velocity and an empirical coefficient. We obtain a new value for this coefficient by comparing the modeled ice thickness against measurements from a set of nine experiments covering one order of magnitude of Reynolds numbers. Our results are consistent with the altimetry-inferred melting rate under Antarctic ice shelves and can be used in climate models to predict their disintegration. This work was supported by NSF grant EAR-110371.

  10. Studies on split heat pipe type adsorption ice-making test unit for fishing boats: Choice of heat pipe medium and experiments under unsteady heating sources

    International Nuclear Information System (INIS)

    Wang, L.W.; Wang, R.Z.; Lu, Z.S.; Chen, C.J.


    The split heat pipe type compound adsorption ice maker for fishing boats not only has the advantage of large volume cooling density but also has the advantage of less power consumption and high heat transfer performance. The available heat pipe media for the split heat pipe type compound adsorption ice maker, which are methanol, acetone and water are studied and compared in this paper, and the heat pipe medium of water shows the better performance for the reason of its stable heating and cooling process and high heat transfer performance. Considering the waste heat recovered from the diesel engine on fishing boats varies when the velocity of the fishing boat changes, the refrigeration performances at the condition of different values of heating power are studied while water is used as the heat pipe medium. Results show that the cooling power, as while as COP and SCP decrease when the heating power decreases. The highest COP and SCP are 0.41 and 731 W/kg, respectively, at the highest heating power of 4.2 kW, and the values decrease by 22% and 33%, respectively, when the heating power decreases by 15%. The values decrease by 32% and 51%, respectively, when the heating power decreases by 30%. The performance of the adsorption ice maker for the fishing boat with the 6160A type diesel engine is estimated, and the results show that the cooling power and ice productivity are as high as 5.44 kW and 1032 kg ice per day, respectively, even if the recovered waste heat decreases by 30% compared with the normal value. It can satisfy the ice requirements of such a fishing boat

  11. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony


    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as specific spacecraft orientations in Low Earth Orbit (LEO) and low beta angle Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  12. High geothermal heat flux measured below the West Antarctic Ice Sheet. (United States)

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil


    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

  13. High geothermal heat flux measured below the West Antarctic Ice Sheet (United States)

    Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil


    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m2. The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  14. Comparison of carbon monoxide levels during heating of ice and water to boiling point with a camping stove. (United States)

    Leigh-Smith, Simon; Watt, Ian; McFadyen, Angus; Grant, Stan


    To determine whether using a camping stove to bring a pan of ice to boiling point produces higher carbon monoxide (CO) concentration than would bringing a pan of water to boiling point. The hypothesis was that ice would cause greater CO concentration because of its greater flame-cooling effect and, consequently, more incomplete combustion. This was a randomized, prospective observational study. After an initial pilot study, CO concentration was monitored during 10 trials for each of ice and water. A partially ventilated 200-L cardboard box model was developed and then used inside a chamber at -6 degrees C. Ice temperature and volume, water temperature and volume, pan size, and flame characteristics were all standardized. Temperature of the heated medium was monitored to determine time to boiling point. Carbon monoxide concentration was monitored every 30 seconds for the first 3 minutes, then every minute until the end of each 10-minute trial. There was no significant difference (P > .05) in CO production levels between ice and water. Each achieved a similar mean plateau level of approximately 400 ppm CO concentration with a similar rate of rise. However, significantly higher (P = .014) CO concentration occurred at 4 and 5 minutes when the flame underwent a yellow flare; this occurred only on 3 occasions when ice was the medium. There were no significant differences for CO production between bringing a pan of ice or water to boiling point. In a small number of ice trials, the presence of a yellow flame resulted in high CO concentration. Yellow flares might occur more often with ice or snow melting, but this has not been proven.

  15. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model (United States)

    Shi, Xiaoxu; Lohmann, Gerrit


    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  16. Large Eddy Simulation of Heat Entrainment Under Arctic Sea Ice (United States)

    Ramudu, Eshwan; Gelderloos, Renske; Yang, Di; Meneveau, Charles; Gnanadesikan, Anand


    Arctic sea ice has declined rapidly in recent decades. The faster than projected retreat suggests that free-running large-scale climate models may not be accurately representing some key processes. The small-scale turbulent entrainment of heat from the mixed layer could be one such process. To better understand this mechanism, we model the Arctic Ocean's Canada Basin, which is characterized by a perennial anomalously warm Pacific Summer Water (PSW) layer residing at the base of the mixed layer and a summertime Near-Surface Temperature Maximum (NSTM) within the mixed layer trapping heat from solar radiation. We use large eddy simulation (LES) to investigate heat entrainment for different ice-drift velocities and different initial temperature profiles. The value of LES is that the resolved turbulent fluxes are greater than the subgrid-scale fluxes for most of our parameter space. The results show that the presence of the NSTM enhances heat entrainment from the mixed layer. Additionally there is no PSW heat entrained under the parameter space considered. We propose a scaling law for the ocean-to-ice heat flux which depends on the initial temperature anomaly in the NSTM layer and the ice-drift velocity. A case study of "The Great Arctic Cyclone of 2012" gives a turbulent heat flux from the mixed layer that is approximately 70% of the total ocean-to-ice heat flux estimated from the PIOMAS model often used for short-term predictions. Present results highlight the need for large-scale climate models to account for the NSTM layer.

  17. Tracing Atlantic Water Signature in the Arctic Sea Ice Cover East of Svalbard

    Directory of Open Access Journals (Sweden)

    Vladimir V. Ivanov


    Full Text Available We focus on the Arctic Ocean between Svalbard and Franz Joseph Land in order to elucidate the possible role of Atlantic water (AW inflow in shaping ice conditions. Ice conditions substantially affect the temperature regime of the Spitsbergen archipelago, particularly in winter. We test the hypothesis that intensive vertical mixing at the upper AW boundary releases substantial heat upwards that eventually reaches the under-ice water layer, thinning the ice cover. We examine spatial and temporal variation of ice concentration against time series of wind, air temperature, and AW temperature. Analysis of 1979–2011 ice properties revealed a general tendency of decreasing ice concentration that commenced after the mid-1990s. AW temperature time series in Fram Strait feature a monotonic increase after the mid-1990s, consistent with shrinking ice cover. Ice thins due to increased sensible heat flux from AW; ice erosion from below allows wind and local currents to more effectively break ice. The winter spatial pattern of sea ice concentration is collocated with patterns of surface heat flux anomalies. Winter minimum sea ice thickness occurs in the ice pack interior above the AW path, clearly indicating AW influence on ice thickness. Our study indicates that in the AW inflow region heat flux from the ocean reduces the ice thickness.

  18. Export of Ice-Cavity Water from Pine Island Ice Shelf, West Antarctica (United States)

    Thurnherr, Andreas; Jacobs, Stanley; Dutrieux, Pierre


    Stability of the West Antarctic Ice Sheet is sensitive to changes in melting at the bottom of floating ice shelves that form the seaward extensions of Antarctic glaciers flowing into the ocean. Not least because observations in the cavities beneath ice shelves are difficult, heat fluxes and melt rates have been inferred from oceanographic measurements obtained near the ice edge (calving fronts). Here, we report on a set of hydrographic and velocity data collected in early 2009 near the calving front of the Amundsen Sea's fast-moving and (until recently) accelerating Pine Island Glacier and its associated ice shelf. CTD profiles collected along the southern half of the meridionally-trending ice front show clear evidence for export of ice-cavity water. That water was carried in the upper ocean along the ice front by a southward current that is possibly related to a striking clockwise gyre that dominated the (summertime) upper-ocean circulation in Pine Island Bay. Signatures of ice-cavity water appear unrelated to current direction along most of the ice front, suggesting that cross-frontal exchange is dominated by temporal variability. However, repeated hydrographic and velocity measurements in a small "ice cove" at the southern end of the calving front show a persistent strong (mean velocity peaking near 0.5 ms-1) outflow of ice-cavity water in the upper 500 m. While surface features (boils) suggested upwelling from deep below the ice shelf, vertical velocity measurements reveal 1) that the mean upwelling within the confines of the cove was too weak to feed the observed outflow, and 2) that large high-frequency internal waves dominated the vertical motion of water inside the cove. These observations indicate that water exchange between the Pine Island Ice Shelf cavity and the Amundsen sea is strongly asymmetric with weak broad inflow at depth and concentrated surface-intensified outflow of melt-laden deep water at the southern edge of the calving front. The lack of

  19. Heat transport in McMurdo Sound first-year fast ice (United States)

    Trodahl, H. J.; McGuinness, M. J.; Langhorne, P. J.; Collins, K.; Pantoja, A. E.; Smith, I. J.; Haskell, T. G.


    We have monitored the temperature field within first-year sea ice in McMurdo Sound over two winter seasons, with sufficient resolution to determine the thermal conductivity from the thermal waves propagating down through the ice. Data reduction has been accomplished by direct reference to energy conservation, relating the rate of change of the internal energy density to the divergence of the heat current density. Use of this procedure, rather than the wave attenuation predicted by the thermal diffusion equation, avoids difficulties arising from a strongly temperature dependent thermal diffusivity. The thermal conductivity is an input parameter for ice growth and climate models, and the values commonly used in the models are predicted to depend on temperature, salinity, and the volume fraction of air. The present measurements were performed at depths in the ice where the air volume is small and the salinity is nearly constant, and they permit the determination of the absolute magnitude of the thermal conductivity and its temperature dependence. The weak temperature dependence is similar to that predicted by the models in the literature, but the magnitude is smaller by ˜10% than the predicted value most commonly used in climate and sea ice models. In the first season we find an additional scatter in the results at driving temperature gradients larger than ˜10-15 °C/m. We suggest that the scatter arises from a nonlinear contribution to the heat current, possibly associated with the onset of convective motion in brine inclusions. Episodic convective events are also observed. We have further determined the growth rate of the ice and compared it with the rate explained by the heat flux from the ice-water interface. The data show a sudden rise of growth rate, without a rise in heat flux through the ice, which coincides in time and depth with the appearance of platelet ice. Finally, we discuss the observation of radiative solar heating at depth in the ice and

  20. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger (United States)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.


    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM's have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation. Nomenclature

  1. Fundamental study on the melting process of crushed ice in a heat storage container; Chikunetsu sonai ni takuwaeta saihyo no yukai ni kansuru kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yanadori, M; Kobori, H [Hitachi, Ltd., Tokyo (Japan); Tsubota, Y [Tokyo Electric Power Co. Inc., Tokyo (Japan)


    This report deals with heat transfer in the melting process of crushed ice filling in a ice/water heat storage container. Volumetric heat transfer rate and melting end-time are measured when rectangular-type, small-stone-type and particle-type ice in the container are melted by circulation hot water. Melting end-time of small-stone-type ice is the shortest and that of particle-type ice is the latest. Volumetric heat transfer rate of small-stone-type ice and rectangular-type ice is larger than that of particle-type ice. The flow rate of circulation hot water throwing in container through a inlet pipe influences remarkably on heat transfer rate. 4 refs., 10 figs.

  2. Studies on cycle characteristics and application of split heat pipe adsorption ice maker

    International Nuclear Information System (INIS)

    Chen, C.J.; Wang, R.Z.; Wang, L.W.; Lu, Z.S.


    A split heat pipe adsorption ice maker, which uses a solidified compound adsorbent (calcium chloride and activated carbon)-ammonia as working pair, is studied. The application of split heat pipe technology in this system (ice maker for fishing boat powered by waste heat of exhaust gases from diesel engine) solves the corrosion problem caused by using seawater to cool the adsorber directly. Therefore, the adsorbers can be cooled or heated by the working substance of the heat pipe in the adsorption or desorption state, respectively. There are two adsorbers in the adsorption ice maker, and each adsorber contains 2.35 kg compound adsorbent in which the mass of calcium chloride is 1.88 kg. The mass transfer performance and volume cooling density of the chemical adsorbent are greatly improved by the use of the compound adsorbent. Water is chosen as the working substance of the heat pipe due to its high cooling power in comparison with the experiments performed using acetone as working substance. When the cycle time is 70 min, the average SCP of ice making is about 329.8-712.8 W/kg calcium chloride with heat and mass recovery, which is approximately 1.6-3.5 times that of the best results of a conventional chemical adsorption ice maker

  3. Sea-ice cover in the Nordic Seas and the sensitivity to Atlantic water temperatures (United States)

    Jensen, Mari F.; Nisancioglu, Kerim H.; Spall, Michael A.


    Changes in the sea-ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. However, with its proximity to the warm Atlantic water, how a sea-ice cover can persist in the Nordic Seas is not well understood. In this study, we apply an eddy-resolving configuration of the Massachusetts Institute of Technology general circulation model with an idealized topography to study the presence of sea ice in a Nordic Seas-like domain. We assume an infinite amount of warm Atlantic water present in the south by restoring the southern area to constant temperatures. The sea-surface temperatures are restored toward cold, atmospheric temperatures, and as a result, sea ice is present in the interior of the domain. However, the sea-ice cover in the margins of the Nordic Seas, an area with a warm, cyclonic boundary current, is sensitive to the amount of heat entering the domain, i.e., the restoring temperature in the south. When the temperature of the warm, cyclonic boundary current is high, the margins are free of sea ice and heat is released to the atmosphere. We show that with a small reduction in the temperature of the incoming Atlantic water, the Nordic Seas-like domain is fully covered in sea ice. Warm water is still entering the Nordic Seas, however, this happens at depths below a cold, fresh surface layer produced by melted sea ice. Consequently, the heat release to the atmosphere is reduced along with the eddy heat fluxes. Results suggest a threshold value in the amount of heat entering the Nordic Seas before the sea-ice cover disappears in the margins. We study the sensitivity of this threshold to changes in atmospheric temperatures and vertical diffusivity.

  4. Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air. (United States)

    Komatsu, Kensuke K; Alexeev, Vladimir A; Repina, Irina A; Tachibana, Yoshihiro


    We carried out upper air measurements with radiosondes during the summer over the Arctic Ocean from an icebreaker moving poleward from an ice-free region, through the ice edge, and into a region of thick ice. Rapid warming of the Arctic is a significant environmental issue that occurs not only at the surface but also throughout the troposphere. In addition to the widely accepted mechanisms responsible for the increase of tropospheric warming during the summer over the Arctic, we showed a new potential contributing process to the increase, based on our direct observations and supporting numerical simulations and statistical analyses using a long-term reanalysis dataset. We refer to this new process as "Siberian Atmospheric Rivers (SARs)". Poleward upglides of SARs over cold air domes overlying sea ice provide the upper atmosphere with extra heat via condensation of water vapour. This heating drives increased buoyancy and further strengthens the ascent and heating of the mid-troposphere. This process requires the combination of SARs and sea ice as a land-ocean-atmosphere system, the implication being that large-scale heat and moisture transport from the lower latitudes can remotely amplify the warming of the Arctic troposphere in the summer.

  5. The Distribution of Basal Water Beneath the Greenland Ice Sheet from Radio-Echo Sounding (United States)

    Jordan, T.; Williams, C.; Schroeder, D. M.; Martos, Y. M.; Cooper, M.; Siegert, M. J.; Paden, J. D.; Huybrechts, P.; Bamber, J. L.


    There is widespread, but often indirect, evidence that a significant fraction of the Greenland Ice Sheet is thawed at the bed. This includes major outlet glaciers and around the NorthGRIP ice-core in the interior. However, the ice-sheet-wide distribution of basal water is poorly constrained by existing observations, and the spatial relationship between basal water and other ice-sheet and subglacial properties is therefore largely unexplored. In principle, airborne radio-echo sounding (RES) surveys provide the necessary information and spatial coverage to infer the presence of basal water at the ice-sheet scale. However, due to uncertainty and spatial variation in radar signal attenuation, the commonly used water diagnostic, bed-echo reflectivity, is highly ambiguous and prone to spatial bias. Here we introduce a new RES diagnostic for the presence of basal water which incorporates both sharp step-transitions and rapid fluctuations in bed-echo reflectivity. This has the advantage of being (near) independent of attenuation model, and enables a decade of recent Operation Ice Bride RES survey data to be combined in a single map for basal water. The ice-sheet-wide water predictions are compared with: bed topography and drainage network structure, existing knowledge of the thermal state and geothermal heat flux, and ice velocity. In addition to the fast flowing ice-sheet margins, we also demonstrate widespread water routing and storage in parts of the slow-flowing northern interior. Notably, this includes a quasi-linear `corridor' of basal water, extending from NorthGRIP to Petermann glacier, which spatially correlates with a region of locally high (magnetic-derived) geothermal heat flux. The predicted water distribution places a new constraint upon the basal thermal state of the Greenland Ice Sheet, and could be used as an input for ice-sheet model simulations.

  6. Dynamics of ice nucleation on water repellent surfaces. (United States)

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L


    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.

  7. Modeling the heating and melting of sea ice through light absorption by microalgae (United States)

    Zeebe, Richard E.; Eicken, Hajo; Robinson, Dale H.; Wolf-Gladrow, Dieter; Dieckmann, Gerhard S.


    In sea ice of polar regions, high concentrations of microalgae are observed during the spring. Algal standing stocks may attain peak values of over 300 mg chl a m-2 in the congelation ice habitat. As of yet, the effect of additional heating of sea ice through conversion of solar radiation into heat by algae has not been investigated in detail. Local effects, such as a decrease in albedo, increasing melt rates, and a decrease of the physical strength of ice sheets may occur. To investigate the effects of microalgae on the thermal regime of sea ice, a time-dependent, one-dimensional thermodynamic model of sea ice was coupled to a bio-optical model. A spectral one-stream model was employed to determine spectral attenuation by snow, sea ice, and microalgae. Beer's law was assumed to hold for every wavelength. Energy absorption was obtained by calculating the divergence of irradiance in every layer of the model (Δz = 1 cm). Changes in sea ice temperature profiles were calculated by solving the heat conduction equation with a finite difference scheme. Model results indicate that when algal biomass is concentrated at the bottom of congelation ice, melting of ice resulting from the additional conversion of solar radiation into heat may effectively destroy the algal habitat, thereby releasing algal biomass into the water column. An algal layer located in the top of the ice sheet induced a significant increase in sea ice temperature (ΔT > 0.3 K) for snow depths less than 5 cm and algal standing stocks higher than 150 mg chl a m-2. Furthermore, under these conditions, brine volume increased by 21% from 181 to 219 parts per thousand, which decreased the physical strength of the ice.

  8. Experimental provocation of 'ice-cream headache' by ice cubes and ice water. (United States)

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan


    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  9. Tendinitis Pain: Should I Apply Ice or Heat? (United States)

    ... is better for relieving tendinitis pain — ice or heat? Answers from Edward R. Laskowski, M.D. When you're first injured, ice is a better choice than heat — especially for about the first three days or ...

  10. Water Ice Clouds and Dust in the Martian Atmosphere Observed by Mars Climate Sounder (United States)

    Benson, Jennifer L.; Kass, David; Heavens, Nicholas; Kleinbohl, Armin


    The water ice clouds are primarily controlled by the temperature structure and form at the water condensation level. Clouds in all regions presented show day/night differences. Cloud altitude varies between night and day in the SPH and tropics: (1) NPH water ice opacity is greater at night than day at some seasons (2) The diurnal thermal tide controls the daily variability. (3) Strong day/night changes indicate that the amount of gas in the atmosphere varies significantly. See significant mixtures of dust and ice at the same altitude planet-wide (1) Points to a complex radiative and thermal balance between dust heating (in the visible) and ice heating or cooling in the infrared. Aerosol layering: (1) Early seasons reveal a zonally banded spatial distribution (2) Some localized longitudinal structure of aerosol layers (3) Later seasons show no consistent large scale organization

  11. The Effect of Seasonal Variability of Atlantic Water on the Arctic Sea Ice Cover (United States)

    Ivanov, V. V.; Repina, I. A.


    Under the influence of global warming, the sea ice in the Arctic Ocean (AO) is expected to reduce with a transition toward a seasonal ice cover by the end of this century. A comparison of climate-model predictions with measurements shows that the actual rate of ice cover decay in the AO is higher than the predicted one. This paper argues that the rapid shrinking of the Arctic summer ice cover is due to its increased seasonality, while seasonal oscillations of the Atlantic origin water temperature create favorable conditions for the formation of negative anomalies in the ice-cover area in winter. The basis for this hypothesis is the fundamental possibility of the activation of positive feedback provided by a specific feature of the seasonal cycle of the inflowing Atlantic origin water and the peaking of temperature in the Nansen Basin in midwinter. The recently accelerated reduction in the summer ice cover in the AO leads to an increased accumulation of heat in the upper ocean layer during the summer season. The extra heat content of the upper ocean layer favors prerequisite conditions for winter thermohaline convection and the transfer of heat from the Atlantic water (AW) layer to the ice cover. This, in turn, contributes to further ice thinning and a decrease in ice concentration, accelerated melting in summer, and a greater accumulation of heat in the ocean by the end of the following summer. An important role is played by the seasonal variability of the temperature of AW, which forms on the border between the North European and Arctic basins. The phase of seasonal oscillation changes while the AW is moving through the Nansen Basin. As a result, the timing of temperature peak shifts from summer to winter, additionally contributing to enhanced ice melting in winter. The formulated theoretical concept is substantiated by a simplified mathematical model and comparison with observations.

  12. Water Based Phase Change Material Heat Exchanger Development (United States)

    Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano


    In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

  13. Precooling With Crushed Ice: As Effective as Heat Acclimation at Improving Cycling Time-Trial Performance in the Heat. (United States)

    Zimmermann, Matthew; Landers, Grant; Wallman, Karen; Kent, Georgina


    This study compared the effects of precooling (ice ingestion) and heat-acclimation training on cycling time-trial (CTT) performance in the heat. Fifteen male cyclists/triathletes completed two 800-kJ CTTs in the heat, with a 12-d training program in between. Initially, all participants consumed 7 g/kg of water (22°C) in 30 min before completing an 800-kJ CTT in hot, humid conditions (pre-CTT) (35°C, 50% relative humidity [RH]). Participants were then split into 2 groups, with the precooling group (n = 7) training in thermoneutral conditions and then undergoing precooling with ice ingestion (7 g/kg, 1°C) prior to the final CTT (post-CTT) and the heat-acclimation group (n = 8) training in hot conditions (35°C, 50% RH) and consuming water (7 g/kg) prior to post-CTT. After training in both conditions, improvement in CTT time was deemed a likely positive benefit (precooling -166 ± 133 s, heat acclimation -105 ± 62 s), with this result being similar between conditions (d = 0.22, -0.68-1.08 90% confidence interval [CI]). Core temperature for post-CTT was lower in precooling than in heat acclimation from 20 min into the precooling period until the 100-kJ mark of the CTT (d > 0.98). Sweat onset occurred later in precooling (250 ± 100 s) than in heat acclimation (180 ± 80 s) for post-CTT (d = 0.65, -0.30-1.50 90% CI). Thermal sensation was lower at the end of the precooling period prior to post-CTT for the precooling trial than with heat acclimation (d = 1.24, 0.90-1.58 90% CI). Precooling with ice ingestion offers an alternative method of improving endurance-cycling performance in hot conditions if heat acclimation cannot be attained.

  14. Positron Lifetimes in Pure and Doped Ice and in Water

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Mogensen, O.; Trumpy, Georg


    for the other components show a complex behavior. The spectra for mono- and polycrystalline light ice and for polycrystalline heavy ice are identical. For water long lifetime components attributed to ortho-Ps are 1.86 nsec, 27% for H2O and 2.01 nsec, 22% for D2O. Theoretical explanations are suggested. Fast......Positron lifetime spectra were measured in mono- and polycrystalline light ice, polycrystalline heavy ice, doped light ice, as well as in light and heavy water. All spectra were resolved into three components. At temperatures between −196° and −100°C the lifetimes and relative intensities...... of the spectra are found by heating above approximately −120°C. Measurements on a number of fast frozen aqueous solutions of acids, bases, and salts are reported, none of them showing as strong influence on the ortho-Ps lifetime as HF. ©1972 The American Institute of Physics...

  15. Ice-water convection in an inclined rectangular cavity filled with a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. (Dept. of Mechanical Engineering, Ecole Polytechnique de Montreal (Canada)); Kahawita, R. (Dept. of Civil Engineering, Ecole Polytechnique de Montreal (Canada))


    This paper reports on the results of a numerical study on the equilibrium state of the convection of water in the presence of ice in an inclined rectangular cavity filled with a porous medium. One side of the cavity is maintained at a temperature higher than the fusion temperature while the opposite side is cooled to a temperature lower than the fusion temperature. The two remaining sides are insulated. Results are analysed in terms of the density inversion parameter, the tilt angle, and the cooling temperature. It appears that the phenomenon of density inversion plays an important role in the equilibrium of an ice-water system when the heating temperature is below 20 . In a vertical cavity, the density inversion causes the formation of two counter-rotating vortices leading to a water volume which is wider at the bottom than at the top. When the cavity is inclined, there exist two branches of solutions which exhibit the bottom heating and the side heating characteristics, respectively (the Benard and side heating branches). Due to the inversion of density, the solution on the Benard branch may fail to converge to a steady state at small tilt angles and exhibits an oscillating behavior. On the side heating branch, a maximum heat transfer rate is obtained at a tilt angle of about 70 but the water volume was found to depend very weakly on the inclination of the cavity. Under the effect of subcooling, the interplay between conduction in the solid phase and convection in the liquid leads to an equilibrium ice-water interface which is most distorted at some intermediate cooling temperature. (orig.)

  16. Demonstration of Super Cooled Ice as a Phase Change Material Heat Sink for Portable Life Support Systems (United States)

    Leimkuehler, Thomas O.; Bue, Grant C.


    A phase change material (PCM) heat sink using super cooled ice as a nontoxic, nonflammable PCM is being developed. The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented along with recommendations for further development of this technology.

  17. Water ice grains in comet C/2013 US10 (Catalina) (United States)

    Protopapa, Silvia; Kelley, Michael S. P.; Yang, Bin; Woodward, Charles E.; Sunshine, Jessica M.


    Knowledge of the the physical properties of water ice in cometary nuclei is critical in determining how the Solar System was formed. While it is difficult to directly study the properties of water ice in comet nuclei, we can study comet interiors through their comae. Cometary activity makes the interiors of these objects available for characterization. However, the properties (grain size, abundance, purity, chemical state) of water-ice grains detected in the coma do not necessarily represent the characteristics of the water ice on the surface and/or in the interior of the nucleus. This is due to the potential physical and chemical evolution of the emitted material. Once in the coma, water-ice grains are heated by sunlight, and if temperatures are warm enough, they sublime. In this case, their sizes and potentially their ice-to-dust fractions are reduced.We present IRTF/SpeX measurements of the Oort cloud comet C/2013 US10 (Catalina), which reached perihelion in Nov 2015 at a heliocentric distance Rh=0.822 AU. Observations of US10 were acquired on UT 2014-08-13, 2016-01-12, and 2016-08-13 (Rh=5.9, 1.3, and 3.9 AU). This set of measurements, spanning a broad range in Rh, are rare and fundamental for estimating how ice grains evolve in the coma. The spectrum obtained close to perihelion is featureless and red sloped, which is consistent with a dust-dominated coma. Conversely, the spectra acquired on August 2014 and 2016 display neutral slopes and absorption bands at 1.5 and 2.0 μm, consistent with the presence of water-ice grains. These variations in water ice with heliocentric distance are correlated with sublimation rates. Additionally, the measurements obtained at 5.8 AU and 3.9 AU are nearly identical, suggesting that water-ice grains, once in the coma, do not sublime significantly. Therefore, the properties of these long-lived water-ice grains may represent their state in the nucleus or immediately after insertion into the coma. We will present radiative

  18. Heating a school by means of waste heat from an ice hall

    International Nuclear Information System (INIS)


    As the first building in Norway, Gimle school in Halden can be heated by means of a special combination system that gives up waste heat from a nearby ice hall and earth heat. This system will reduce the expenses of the municipality with the equivalent of USD 30 000 per year, or 618 000 kWh. 308 000 kWh comes from the refrigeration plant of the ice hall and 310 000 kWh from the ground. Although the system is both environmentally friendly end energy conserving, financial state support has been refused

  19. The effect of a heated skate blade on the ice surface

    Energy Technology Data Exchange (ETDEWEB)

    Hache, A. [Moncton Univ., NB (Canada). Dept. of Physics and Astronomy


    A new hockey skate using a heated blade, called the Therma Blade, cuts ice friction by half, thereby improving skating performance but has created questions about melting and damage of the ice surface. This paper discussed the effect of the heated skate blade on the ice surface. The paper discussed the thermal power produced by the Therma Blade skate, the ice melting capacity of the therma blade, and the ice temperature profile around the heated blade. It also examined the power dissipation by friction comparing the cold versus the heated blade. Units and definitions as well as conversion factors were also presented in appendix format. Constants and technical specifications were listed in an appendix. It was concluded that the maximum melting capacity of the therma blade is 0.7 grams of ice per skate per minute. This is the upper limit as set by the laws of physics, and this requires the skate to be completely static over ice at 0 degrees Celsius and all the power drawn by the battery to reach the ice friction force. 5 refs., 1 tab., 2 figs.

  20. Study of a Coil Heat Exchanger with an Ice Storage System

    Directory of Open Access Journals (Sweden)

    Yan Li


    Full Text Available In this study, a coil heat exchanger with an ice storage system is analyzed by theoretical analysis, numerical analysis, and experimental analysis. The dynamic characteristics of ice thickness variation is studied by means of unstable heat conduction theory in cylindrical coordinates, and the change rule of the ice layer thickness is obtained. The computational fluid dynamics method is employed to simulate the flow field and ice melting process of the coil heat exchanger. The effect of the agitator height on the flow characteristics and heat transfer characteristics is investigated. The numerical results show that the turbulence intensity of the fluid near the wall of the heat exchanger is the largest with an agitator height of 80 mm. Furthermore, the process of ice melting is analyzed. The ice on the outer side of the evaporator tube close to the container wall melts faster than the inner side and this agrees well with the experimental result. The experimental study on the process of the operational period and deicing of the coil heat exchanger is conducted and the temperature variation curves are obtained by the arrangement of thermocouples. It is found that the temperature of the evaporating tube increases with increasing height in the process of ice storage.

  1. Nye Lecture: Water Under Ice: Curiosities, Complexities, and Catastrophes (United States)

    Clarke, G. K.


    Meltwater beneath glaciers and ice sheets activates some of the most curious and impressive phenomena known to glaciology. These range from the generation of miniscule electrokinetic currents by water flow through subglacial sediment to massive outburst floods that rearrange landscapes and deliver freshwater pulses to the ocean. The source of this water varies but is some mix of surface water and water melted from the glacier base by geothermal and frictional heating. The outflow of subglacial water is somewhat affected by bed topography but the dominant influence is from gradients in ice overburden pressure and thus from the surface topography of the ice sheet. Upslope water flow is possible and large adverse bed slopes are required before topographic water traps can exist. As a consequence, subglacial topographic basins tend to be leaky and less than 5% of the area of the contemporary Antarctic Ice Sheet provides suitable habitat for subglacial lakes. Following a variety of subglacial pathways, water can migrate toward the ice margins, either as a liquid or as refrozen meltwater accreted to the ice base. The morphology of the subglacial water system is thought to comprise a combination of sheet-like, channel-like, and vein-like elements, all of which lend themselves to mathematical representation. Water transport processes need not operate in a steady fashion and morphological switching between sheet-like and channel-like endmembers is linked to spectacular events such as glacier surges and outburst floods. Large outbursts of proglacially or subglacially-stored meltwater, the classic Icelandic j{ö}kulhaups, continue to occur in glaciated regions of the world and much larger floods were released during the Late Pleistocene--Early Holocene deglaciation of the Northern Hemisphere. Whether large subglacial lakes like Lake Vostok, Earth's seventh largest lake, have similar potential for delivering cataclysmic floods remains uncertain. The recent detection of a small

  2. A Large Eddy Simulation Study of Heat Entrainment under Sea Ice in the Canadian Arctic Basin (United States)

    Ramudu, E.; Yang, D.; Gelderloos, R.; Meneveau, C. V.; Gnanadesikan, A.


    Sea ice cover in the Arctic has declined rapidly in recent decades. The much faster than projected retreat suggests that climate models may be missing some key processes, or that these processes are not accurately represented. The entrainment of heat from the mixed layer by small-scale turbulence is one such process. In the Canadian Basin of the Arctic Ocean, relatively warm Pacific Summer Water (PSW) resides at the base of the mixed layer. With an increasing influx of PSW, the upper ocean in the Canadian Basin has been getting warmer and fresher since the early 2000s. While studies show a correlation between sea ice reduction and an increase in PSW temperature, others argue that PSW intrusions in the Canadian Basin cannot affect sea ice thickness because the strongly-stratified halocline prevents heat from the PSW layer from being entrained into the mixed layer and up to the basal ice surface. In this study, we try to resolve this conundrum by simulating the turbulent entrainment of heat from the PSW layer to a moving basal ice surface using large eddy simulation (LES). The LES model is based on a high-fidelity spectral approach on horizontal planes, and includes a Lagrangian dynamic subgrid model that reduces the need for empirical inputs for subgrid-scale viscosities and diffusivities. This LES tool allows us to investigate physical processes in the mixed layer at a very fine scale. We focus our study on summer conditions, when ice is melting, and show for a range of ice-drift velocities, halocline temperatures, and halocline salinity gradients characteristic of the Canadian Basin how much heat can be entrained from the PSW layer to the sea ice. Our results can be used to improve parameterizations of vertical heat flux under sea ice in coarse-grid ocean and climate models.

  3. Experimental determination of surface heat transfer coefficient in a dry ice-ethanol cooling bath using a numerical approach. (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    BACKGROUND: Dry ice-ethanol bath (-78 degree C) have been widely used in low temperature biological research to attain rapid cooling of samples below freezing temperature. The prediction of cooling rates of biological samples immersed in dry ice-ethanol bath is of practical interest in cryopreservation. The cooling rate can be obtained using mathematical models representing the heat conduction equation in transient state. Additionally, at the solid cryogenic-fluid interface, the knowledge of the surface heat transfer coefficient (h) is necessary for the convective boundary condition in order to correctly establish the mathematical problem. The study was to apply numerical modeling to obtain the surface heat transfer coefficient of a dry ice-ethanol bath. A numerical finite element solution of heat conduction equation was used to obtain surface heat transfer coefficients from measured temperatures at the center of polytetrafluoroethylene and polymethylmetacrylate cylinders immersed in a dry ice-ethanol cooling bath. The numerical model considered the temperature dependence of thermophysical properties of plastic materials used. A negative linear relationship is observed between cylinder diameter and heat transfer coefficient in the liquid bath, the calculated h values were 308, 135 and 62.5 W/(m 2 K) for PMMA 1.3, PTFE 2.59 and 3.14 cm in diameter, respectively. The calculated heat transfer coefficients were consistent among several replicates; h in dry ice-ethanol showed an inverse relationship with cylinder diameter.

  4. Performance of a swimming pool heating system by utilizing waste energy rejected from an ice rink with an energy storage tank

    International Nuclear Information System (INIS)

    Kuyumcu, Muhammed Enes; Tutumlu, Hakan; Yumrutaş, Recep


    Highlights: • An analytical model of the system, and a computational program were developed. • Transient behavior of the water in the buried energy storage tank was simulated. • Effects of various system parameters on the system performance were investigated. • Long period performance of the system was analyzed and obtained periodic condition. • Optimum ice rink size is determined for a semi-Olympic size swimming pool heating. - Abstract: This study deals with determining the long period performance of a swimming pool heating system by utilizing waste heat energy that is rejected from a chiller unit of ice rink and subsequently stored in an underground thermal energy storage (TES) tank. The system consists of an ice rink, a swimming pool, a spherical underground TES tank, a chiller and a heat pump. The ice rink and the swimming pool are both enclosed and located in Gaziantep, Turkey. An analytical model was developed to obtain the performance of the system using Duhamel’s superposition and similarity transformation techniques. A computational model written in MATLAB program based on the transient heat transfer is used to obtain the annual variation of the ice rink and the swimming pool energy requirements, the water temperature in the TES tank, COP, and optimum ice rink size depending on the different ground, TES tank, chiller, and heat pump characteristics. The results obtained from the analysis indicate that 6–7 years’ operational time span is necessary to obtain the annual periodic operation condition. In addition, an ice rink with a size of 475 m"2 gives the optimum performance of the system with a semi-Olympic size swimming pool (625 m"2).

  5. Theoretical Analysis on Marangoni-driven Cavity Formation in Ice during In Situ Burning of Oil Spills in Ice-infested Waters (United States)

    Farmahini Farahani, H.; Jomaas, G.; Rangwala, A. S.


    In situ burning, intentional burning of discharged oil on the water surface, is a promising response method to oil spill accidents in the Arctic. However, burning of the oil adjacent to ice bodies creates a lateral cavity in the ice. As a result of the cavity formation the removal efficiency which is a key success criterion for in situ burning operation will decrease. The formation of lateral cavities are noticed recently and only a few experimental studies have addressed them. These experiments have shown lateral cavities with a length of severe horizontal temperature gradient which in turn generates a Marangoni flow from hot to cold regions. This is found to be the dominant heat transfer mechanism that is providing the heat for the ice to melt. Here, we introduce an order of magnitude analysis on the governing equations of the ice melting problem to estimate the penetration length of a burning oil near ice. This correlation incorporates the flame heat feedback with the surface flow driven by Marangoni convection. The melting energy continuity is also included in the analysis to complete the energy transfer cycle that leads to melting of the ice. The comparison between this correlation and the existing experimental data shows a very good agreement. Therefore, this correlation can be used to estimate the penetration length for burning of an actual spill and can be applied towards improved guidelines of burning adjacent to ice bodies, so as to enhance the chances for successful implantation of in situ burning.

  6. 21 CFR 135.160 - Water ices. (United States)


    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Water ices. 135.160 Section 135.160 Food and Drugs... CONSUMPTION FROZEN DESSERTS Requirements for Specific Standardized Frozen Desserts § 135.160 Water ices. (a) Description. Water ices are the foods each of which is prepared from the same ingredients and in the same...

  7. Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.


    To provide more accurate ice cloud microphysical properties, the multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems globally over oceans using combined instrument data from Aqua. The liquid water path (LWP) of lower-layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. The properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by matching simulated radiances from a two-cloud-layer radiative transfer model. The results show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and IWP retrievals for ice-over-water cloud systems. The mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over oceans from Aqua are 7.6 and 146.4 gm-2, respectively, down from the initial single-layer retrievals of 17.3 and 322.3 gm-2. The mean IWP for actual single-layer clouds is 128.2 gm-2.

  8. Sputtering of water ice

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.; Schou, J.; Shi, M.; Bahr, D.A.; Atteberrry, C.L.


    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from the decay of H(2p) atoms sputtered by heavy ion impact, but not bulk ice luminescence. Radiolyzed ice does not sputter under 3.7 eV laser irradiation

  9. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid (United States)

    Richardson, M. I.


    southern caps. Similar climate-models of the water cycle also do not need much exchangeable adsorbed water in order to explain the observed vapour distributions. The possibility of liquid water is tantalizing, but difficult to definitively judge. On scales greater than a meter or so, Mars is most definitely well away from the water triple point--although the surface pressure can exceed 6.1 mbars, the partial pressure of water vapor (to which the triple point refers) is at best orders of magnitude lower. Several careful studies have shown, however, that locally transient (meta-stable) liquid is possible, if the net heating of ice deposits is high enough. This process is aided if the total surface pressure exceeds 6.1mbar (this prevents boiling, or the explosive loss of vapour into the atmosphere) or if the liquid is covered by a thin ice shell, and is only possible if surface temperatures exceed 273K (for pure water, or the appropriate eutectic for brines) and if ice is present. The former challenge is much easier to meet than the latter. The melt scenario requires that ice deposited in winter must be protected from sublimation as surface temperatures increase in spring, but then exposed to the peak of solar heating in summer. Available spacecraft observations of seasonal water will be discussed with the aid of GCM model simulations, and examined in the context of water distributions and phases.

  10. Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture (United States)

    Biggs, A. W.


    Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.

  11. Studies of a thermal energy storage unit with ice on coils; Ice on coil gata kori chikunetsuso no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N [Kanagawa Institute of Technology, Kanagawa (Japan)


    Study was made of an ice-on-coil heat storage tank for power load levelling. Prior to the prediction of performance of the system as a whole, the performance of the heat storage tank itself needs to be predicted. A brine (35.9% water solution of ethylene glycol) cooled by a refrigerating machine was poured from the upper end of the piping in the heat storage tank (consisting of 19 spiral pipes or coils arranged in parallel in the vertical direction) for the collection of ice around the coils. Ice grew thicker with the passage of time but there was no remarkable decrease in the transfer of heat because there was an increase in the area of contact between ice and water, and the brine exit temperature remained constant over a prolonged period of time. There was a close agreement between experiment results and theoretical conclusions throughout the heat accumulation process, including changes with time in the thickness of ice on the coils, all pointing to the appropriateness of this analytical effort. To melt the ice, water was poured into the tank top at a predetermined rate. Water chilly at 2-4{degree}C was recovered at the tank bottom, stable in the amount produced. As for the use of spiral pipes for making ice, the laminar heat transfer rate in such pipes are supposed to be more than two times higher than that in straight pipes, and this was quite effective in accelerating heat transfer. 7 refs., 11 figs.

  12. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds (United States)

    Hollingsworth, Jeffery; Kahre, Melinda; Haberle, Robert; Urata, Richard


    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems.Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  13. The effect of ice-cream-scoop water on the hygiene of ice cream. (United States)

    Wilson, I. G.; Heaney, J. C.; Weatherup, S. T.


    A survey of unopened ice cream, ice cream in use, and ice-cream-scoop water (n = 91) was conducted to determine the effect of scoop water hygiene on the microbiological quality of ice cream. An aerobic plate count around 10(6) c.f.u. ml-1 was the modal value for scoop waters. Unopened ice creams generally had counts around 10(3)-10(4) c.f.u. ml-1 and this increased by one order of magnitude when in use. Many scoop waters had low coliform counts, but almost half contained > 100 c.f.u. ml-1. E. coli was isolated in 18% of ice creams in use, and in 10% of unopened ice creams. S. aureus was not detected in any sample. Statistical analysis showed strong associations between indicator organisms and increased counts in ice cream in use. EC guidelines for indicator organisms in ice cream were exceeded by up to 56% of samples. PMID:9287941

  14. Icebase: A suborbital survey to map geothermal heat flux under an ice sheet (United States)

    Purucker, Michael E.; Connerney, John E. P.; Blakely, Richard J.; Bracken, Robert E.; Nowicki, Sophie; Le, Guan; Sabaka, Terence J.; Bonalsky, Todd M.; Kuang, Weijia; Ravat, Dhananjay; Ritz, Catherine; Vaughan, Alan P. M.; Gaina, Carmen; McEnroe, Suzanne; Lesur, Vincent


    NASA will solicit suborbital missions as part of its Earth Venture program element in the coming year. These missions are designed as complete PI-led investigations to conduct innovative hypothesis or scientific question-driven approaches to pressing questions in Earth System science. We propose to carry out a suborbital magnetic survey of Greenland using NASA's Global Hawk unmanned aerial vehicle to produce the first-ever map of the geothermal heat flux under an ice sheet. Better constraints on geothermal heat flux will reduce the uncertainty in future sea level rise, in turn allowing a more informed assessment of its impact on society. The geothermal heat flux depends on conditions such as mantle heat flux, and the tectonic history and heat production of the crust, all of which vary spatially. Underneath ice sheets, the geothermal heat flux influences the basal ice. Therefore heat flux is an important boundary condition in ice sheet modeling. Using magnetic data to constrain heat flux is possible because the magnetic properties of rocks are temperature dependent until they reach the Curie temperature. The technique has applications to understanding the response of Greenland ice sheet to climate forcing because the basal heat flux provides one of the boundary conditions. The technique also helps to locate the oldest ice. The oldest ice in Greenland should be found in areas of very low heat flux, and the identification of those areas is provided by this technique. Ice cores from the areas of oldest ice help to decipher past temperatures and CO2 contents. Our latest model of the geothermal heat flux under the Greenland ice sheet ( is based on low- resolution satellite observations collected by the CHAMP satellite between 2000 and 2010. Those observations will be enhanced by the upcoming Swarm gradient satellite mission, but the resolution will improve by less than a factor of two, from 400 km

  15. Estimating Summer Ocean Heating in the Arctic Ice Pack Using High-Resolution Satellite Imagery (United States)


    8 D. THE BEAUFORT SEA ICE MARGINAL ICE ZONE ...............................9 1. Sea Ice - Albedo Feedback...seasonal evolution of sea ice albedo for MYI (blue) and FYI (red). Plot (c) is the daily solar heat input. Plot (d) is the time averaged solar heat... ice cover has decreased extensively, particularly in the summer months (from Lee et al. 2012). 13 1. Sea Ice - Albedo Feedback Albedo is a

  16. Geothermal Heat Flux Underneath Ice Sheets Estimated From Magnetic Satellite Data

    DEFF Research Database (Denmark)

    Fox Maule, Cathrine; Purucker, M.E.; Olsen, Nils

    The geothermal heat flux is an important factor in the dynamics of ice sheets, and it is one of the important parameters in the thermal budgets of subglacial lakes. We have used satellite magnetic data to estimate the geothermal heat flux underneath the ice sheets in Antarctica and Greenland...

  17. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water (United States)

    Darelius, E.; Fer, I.; Nicholls, K. W.


    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing. PMID:27481659

  18. Control and prevention of ice formation and accretion on heat exchangers for ventilation systems

    DEFF Research Database (Denmark)

    Rahimi, Maral; Afshari, Alireza


    In cold climates, the application of mechanical ventilation systems with heat recovery like are airto-air exchangers is used for reducing energy consumption for heating buildings by transferring heat exhausted air to supply air. However, increase efficiency of heat exchanger results in lower...... exhaust air temperatures and Ice formation on heat exchanger fins, which can cause problem and is not favourable. Therefore, prevention and control of ice formation on heat exchangers is necessary. The existing methods are divided into two different methods: active and passive ice control methods....... The active methods are e.g. bypass, recirculation, preheating. The passive methods relate to the surface characteristics of the heat exchanger fins as they have effect on ice formation in initial phase. All these methods have varying levels of success, cost, and effectiveness, which are depending on the heat...

  19. The impact of short-term heat storage on the ice-albedo feedback loop (United States)

    Polashenski, C.; Wright, N.; Perovich, D. K.; Song, A.; Deeb, E. J.


    The partitioning of solar energy in the ice-ocean-atmosphere environment is a powerful control over Arctic sea ice mass balance. Ongoing transitions of the sea ice toward a younger, thinner state are enhancing absorption of solar energy and contributing to further declines in sea ice in a classic ice-albedo feedback. Here we investigate the solar energy balance over shorter timescales. In particular, we are concerned with short term delays in the transfer of absorbed solar energy to the ice caused by heat storage in the upper ocean. By delaying the realization of ice melt, and hence albedo decline, heat storage processes effectively retard the intra-season ice-albedo feedback. We seek to quantify the impact and variability of such intra-season storage delays on full season energy absorption. We use in-situ data collected from Arctic Observing Network (AON) sea ice sites, synthesized with the results of imagery processed from high resolution optical satellites, and basin-scale remote sensing products to approach the topic. AON buoys are used to monitor the storage and flux of heat, while satellite imagery allows us to quantify the evolution of surrounding ice conditions and predict the aggregate scale solar absorption. We use several test sites as illustrative cases and demonstrate that temporary heat storage can have substantial impacts on seasonal energy absorption and ice loss. A companion to this work is presented by N. Wright at this meeting.

  20. Sputtering of water ice

    DEFF Research Database (Denmark)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.


    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from...

  1. Fine scale monitoring of ice ablation following convective heat transfer: case study based on ice-wedge thermo-erosion on Bylot Island (Canadian High Arctic) and laboratory observations (United States)

    Godin, E.; Fortier, D.


    Thermo-erosion gullies often develop in ice-wedge polygons terrace and contribute to the dynamic evolution of the periglacial landscape. When snowmelt surface run-off concentrated into streams and water tracks infiltrate frost cracks, advective heat flow and convective thermal transfer from water to the ice-wedge ice enable the rapid development of tunnels and gullies in the permafrost (Fortier et al. 2007). Fine scale monitoring of the physical interaction between flowing water and ice rich permafrost had already been studied in a context of thermal erosion of a large river banks in Russia (Costard et al. 2003). Ice wedge polygons thermo-erosion process leading to gullying remains to be physically modelled and quantified. The present paper focus on the fine scale monitoring of thermo-erosion physical parameters both in the field and in laboratory. The physical model in laboratory was elaborated using a fixed block of ice monitored by a linear voltage differential transducer (LVDT) and temperature sensors connected to a logger. A water container with controlled discharge and temperature provided the fluid which flowed over the ice through a hose. Water discharge (Q), water temperature (Tw), ice melting temperature (Ti) and ice ablation rate (Ar) were measured. In laboratory, water at 281 Kelvin (K) flowing on the ice (Ti 273 K) made the ice melt at a rate Ar of 0.002 m min-1, under a continuous discharge of ≈ 8 x 10-7 m3 s-1. In the field, a small channel was dug between a stream and an exposed ice-wedge in a pre-existing active gully, where in 2010 large quantities of near zero snowmelt run-off water contributed to several meters of ice wedge ablation and gully development. Screws were fastened into the ice and a ruler was used to measure the ablation rate every minute. The surface temperature of the ice wedge was monitored with thermocouples connected to a logger to obtain the condition of the ice boundary layer. Discharge and water temperature were measured in

  2. The influence of meridional ice transport on Europa's ocean stratification and heat content (United States)

    Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.


    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  3. Exospheric transport restrictions on water ice in lunar polar traps (United States)

    Hodges, R. R., Jr.


    There is little doubt that at least 10 exp 17 g of water has accreted on the moon as a result of the reduction of ferric iron at the regolith surface by solar wind protons, the vaporization of chondrites, and perhaps comet impacts. Lacking an efficient escape mechanism, most of this water (or its progeny) is probably on the moon now. If the water were to have migrated to permanently shaded cold traps near the lunar poles, ice deposts with densities greater than 1000 g/sq cm would cover the traps, providing accessible resources. However, exospheric transport considerations suggest that the actual amount of water ice in the cold traps is probably too small to be of practical interest. The alternative is global assimilation of most of the water into the regolith, a process that must account for about 30 micromoles of water per gram of soil.

  4. Heat balance studies on sea ice near Syowa Station, East Antarctica


    Ishikawa,Nobuyoshi; Kobayashi,Shun'ichi; Ohta,Tetsuo; Kawaguchi,Sadao


    Heat balance studies were carried out on the Antarctic sea ice surface in the austral spring and summer of 1980. The surface albedo of sea ice covered by a thin snow-layer was kept nearly constant (around 0.8) in spring, but in summer it was reduced to the same value as that of bare ice owing to the change of the surface properties with a great increase in the amount of absorbed net radiation. Variations of heat balance components were presented for every 10 days and two seasons in this paper.

  5. Automation and heat transfer characterization of immersion mode spectroscopy for analysis of ice nucleating particles (United States)

    Beall, Charlotte M.; Stokes, M. Dale; Hill, Thomas C.; DeMott, Paul J.; DeWald, Jesse T.; Prather, Kimberly A.


    Ice nucleating particles (INPs) influence cloud properties and can affect the overall precipitation efficiency. Developing a parameterization of INPs in global climate models has proven challenging. More INP measurements - including studies of their spatial distribution, sources and sinks, and fundamental freezing mechanisms - must be conducted in order to further improve INP parameterizations. In this paper, an immersion mode INP measurement technique is modified and automated using a software-controlled, real-time image stream designed to leverage optical changes of water droplets to detect freezing events. For the first time, heat transfer properties of the INP measurement technique are characterized using a finite-element-analysis-based heat transfer simulation to improve accuracy of INP freezing temperature measurement. The heat transfer simulation is proposed as a tool that could be used to explain the sources of bias in temperature measurements in INP measurement techniques and ultimately explain the observed discrepancies in measured INP freezing temperatures between different instruments. The simulation results show that a difference of +8.4 °C between the well base temperature and the headspace gas results in an up to 0.6 °C stratification of the aliquot, whereas a difference of +4.2 °C or less results in a thermally homogenous water volume within the error of the thermal probe, ±0.2 °C. The results also show that there is a strong temperature gradient in the immediate vicinity of the aliquot, such that without careful placement of temperature probes, or characterization of heat transfer properties of the water and cooling environment, INP measurements can be biased toward colder temperatures. Based on a modified immersion mode technique, the Automated Ice Spectrometer (AIS), measurements of the standard test dust illite NX are reported and compared against six other immersion mode droplet assay techniques featured in Hiranuma et al. (2015) that used

  6. Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery

    International Nuclear Information System (INIS)

    Peris, Bernardo; Navarro-Esbrí, Joaquín; Molés, Francisco


    This work is focused on waste heat recovery of jacket cooling water from Internal Combustion Engines (ICEs). Cooling water heat does not always find use due to its low temperature, typically around 90 °C, and usually is rejected to the ambient despite its high thermal power. An efficient way to take benefit from the ICE cooling water waste heat can be to increase the power output through suitable bottoming Organic Rankine Cycles (ORCs). Thereby, this work simulates six configurations using ten non flammable working fluids and evaluates their performances in efficiency, safety, cost and environmental terms. Results show that the Double Regenerative ORC using SES36 gets the maximum net efficiency of 7.15%, incrementing the ICE electrical efficiency up to 5.3%, although requires duplicating the number of main components and high turbine size. A more rigorous analysis, based on the system feasibility, shows that small improvements in the basic cycle provide similar gains compared to the most complex schemes proposed. So, the single Regenerative ORC using R236fa and the Reheat Regenerative ORC using R134a seem suitable cycles which provide a net efficiency of 6.55%, incrementing the ICE electrical efficiency up to 4.9%. -- Highlights: • Suitable bottoming cycles for ICE cooling water waste heat recovery are studied. • Non flammable working fluids and various ORC configurations are evaluated. • Double regenerative cycle using SES36 is the most efficient configuration. • Regenerative and reheat regenerative ORCs seem feasible cycles. • Electrical efficiency of the ICE can be improved up to 5.3%

  7. Seasonal reversal at Miryang Eoreumgol (Ice Valley), Korea: observation and monitoring (United States)

    Byun, Hi-Ryong; Tanaka, Hiroshi L.; Choi, Pom-Yong; Kim, Do-Woo


    We investigate an anomalous phenomenon evident in the Miryang Eoreumgol (Ice Valley), Korea: The wind and water are cold during summer and warm during winter, and ice formation does not occur in winter but in summer. We have initiated observations and investigations into the origin of heat sources particularly with regard to the mechanism of ice formation in summer. Previous theories, e.g., concerning underground gravity currents, water evaporation, diurnal and seasonal respirations of the talus, effects of ground heat, radiation and topography, etc., are considered. After a calculation of heat sources, we propose two new concepts—a repetitious heat separation mechanism and a positive feedback mechanism of cold air generation—to demonstrate that the heat mechanism of the seasonal reversal of the ice valley may be controlled by the use of the phase change between ice and water vapor with only a small amount of additional unknown energy.

  8. Heating- and pressure-induced transformations in amorphous and hexagonal ice: A computer simulation study using the TIP4P/2005 model (United States)

    Engstler, Justin; Giovambattista, Nicolas


    We characterize the phase behavior of glassy water by performing extensive out-of-equilibrium molecular dynamics simulations using the TIP4P/2005 water model. Specifically, we study (i) the pressure-induced transformations between low-density (LDA) and high-density amorphous ice (HDA), (ii) the pressure-induced amorphization (PIA) of hexagonal ice (Ih), (iii) the heating-induced LDA-to-HDA transformation at high pressures, (iv) the heating-induced HDA-to-LDA transformation at low and negative pressures, (v) the glass transition temperatures of LDA and HDA as a function of pressure, and (vi) the limit of stability of LDA upon isobaric heating and isothermal decompression (at negative pressures). These transformations are studied systematically, over a wide range of temperatures and pressures, allowing us to construct a P-T phase diagram for glassy TIP4P/2005 water. Our results are in qualitative agreement with experimental observations and with the P-T phase diagram obtained for glassy ST2 water that exhibits a liquid-liquid phase transition and critical point. We also discuss the mechanism for PIA of ice Ih and show that this is a two-step process where first, the hydrogen-bond network (HBN) is distorted and then the HBN abruptly collapses. Remarkably, the collapse of the HB in ice Ih occurs when the average molecular orientations order, a measure of the tetrahedrality of the HBN, is of the same order as in LDA, suggesting a common mechanism for the LDA-to-HDA and Ih-to-HDA transformations.

  9. High density amorphous ice and its phase transition to ice XII

    International Nuclear Information System (INIS)

    Kohl, I.


    1998 Lobban et al. reported the neutron diffraction data of a new phase of ice, called ice XII, which formed at 260 K on compression of water within the domain of ice V at a pressure of 0.5 GPa. Surprisingly ice XII forms as an incidental product in the preparation of high-density amorphous ice (HDA) on compression of hexagonale ice (ice Ih) at 77 K up to pressures = 1.3 GPa. A decisive experimental detail is the use of an indium container: when compressing ice Ih in a pressure vessel with indium linings, then reproducibly HDA (high density amorphous ice) forms, but without indium randomly scattered relative amounts of ice XII and HDA form. Ice XII forms on compression of ice Ih at 77 K only via HDA, and not directly from ice Ih. Its formation requires a sudden pronounced apparent pressure drop of ca 0.18 GPa at pressures ca 1.1 GPa. These apparent pressure drops can be caused by buildup friction between the piston and the pressure vessel and its sudden release on further compression. I propose that shock-waves generated by apparent pressure drops cause transient local heating and that this induces nucleation and crystal growth. A specific reproducible method to prepare ice XII is heating HDA in a pressure vessel with indium linings at constant pressures (or constant volume). The ice XII (meta-)stability domain extends between ca 158 and 212 K from ca 0.7 to ca 1.5 GPa. DSC (differential scanning calorimetry) and x-ray powder diffraction revealed, that on heating at atmospheric pressure ice XII transforms directly into cubic ice (ice Ic) at 154 K (heating rate 10 K min - 1) and not into an amorphous form before transition to ice Ic. The enthalpy of the ice XII - ice Ic transition is -1.21 ± 0.07 kJ mol -1 . An estimation of the Gibbs free energy at atmospheric pressure and about 140 K results that ice XII is thermodynamically more stable than ice VI. In the heating curve of ice XII a reversible endothermic step can be found at the onset temperature (heating rate

  10. Heat flux variations over sea-ice observed at the coastal area of the Sejong Station, Antarctica (United States)

    Park, S.; Choi, T.; Kim, S.


    This study presents variations of sensible heat flux and latent heat flux over sea-ice observed in 2011 from the 10-m flux tower located at the coast of the Sejong Station on King George Island, Antarctica. A period from June to November was divided into three parts: "Freezing", "Frozen", and "Melting" periods based on daily monitoring of sea state and hourly photos looking at the Marian Cove in front of the Sejong Station. The division of periods enabled us to look into the heat flux variations depending on the sea-ice conditions. Over freezing sea surface during the freezing period of late June, daily mean sensible heat flux was -11.9 Wm-2 and daily mean latent heat flux was +16.3 Wm-2. Over the frozen sea-ice, daily mean sensible heat flux was -10.4 Wm-2 while daily mean latent heat flux was +2.4 Wm-2. During the melting period of mid-October to early November, magnitudes of sensible heat flux increased to -14.2 Wm-2 and latent heat flux also increased to +13.5 Wm-2. In short, latent heat flux was usually upward over sea-ice most of the time while sensible heat flux was downward from atmosphere to sea-ice. Magnitudes of the fluxes were small but increased when freezing or melting of sea-ice was occurring. Especially, latent heat flux increased five to six times compared to that of "frozen" period implying that early melting of sea-ice may cause five to six times larger supply of moisture to the atmosphere.

  11. Use Of Snow And Ice Melting Heating Cables On Roofs Of Existing Buildings

    Directory of Open Access Journals (Sweden)

    Metin ONAL


    Full Text Available Roofs are construction elements which form the upper part of a building and protect it from the all kinds of fall wind and sun lights. They are made as inclined or terrace shaped according to the climatic characteristics of the area they are located and their intended use. Inclined type roofs are preferred for aesthetic and or functionality. It is in interest of mechanical engineering that falling snow on long and effective regions of winter conditions accumulate on the roof surfaces with low inclination due to adhesion force between snowflakes and the roof covering. The mass of snow that turns into ice due to cold weather and wind creates stalactites in the eaves due to gravity. This snow mass leavesbreaks off from inclined surfaces due to the effect of the sun or any vibration and can damage to people or other objects around the building. Falling snow and ice masses from rooftops in urban areas where winter months are intense are also a matter for engineering applications of landscape architecture. In order to prevent snow and icing on the roofs of the buildings located especially in busy human and vehicle traffic routes the use of heating cables is a practical method. The icing can be prevented by means of the heating cables selected according to the installed power to be calculated based on the type of roof and the current country. The purpose of this study is to introduce heating systems to be mounted on the roofs with a lesser workmanship in a short period instead of difficulties and costs that would occur by increasing the roof inclination in present buildings as well as explaining their working principles.

  12. Periodic fluctuations in deep water formation due to sea ice (United States)

    Saha, R.


    During the last ice age, several abrupt warming events took place, known as Dansgaard-Oeschger (D-O) events. Their effects were felt globally, although the North Atlantic experienced the largest temperature increase. The leading hypothesis to explain their occurrence postulates that the warming was caused by abrupt disruptions of the North Atlantic Current due to meltwater discharge from destabilized ice sheets (Heinrich events). However, the number of warming events outnumber the those of ice-sheet collapse. Thus, the majority of D-O events are not attributed to surface freshwater anomalies, and the underlying mechanism behind their occurrence remain unexplained. Using a simple dynamical model of sea ice and an overturning circulation, I show the existence of self-sustained relaxation oscillations in the overturning circulation. The insulating effect of sea ice is shown to paradoxically lead to a net loss of heat from the top layer of the polar ocean when sea ice retreats. Repeated heat loss results in a denser top layer and a destabilized water column, which triggers convection. The convective state pulls the system out of its preferred mode of circulation, setting up relaxation oscillations. The period of oscillations in this case is linked to the geometry of the ocean basin, if solar forcing is assumed to remain constant. If appropriate glacial freshwater forcing is applied to the model, a pattern of oscillation is produced that bears remarkable similarity to the observed fluctuations in North Atlantic climate between 50,000 and 30,000 years before present.; Comparison of NGRIP δ 18-O (proxy for near surface air temperature) between 50,000 and 30,000 years before present, showing Bond cycles (left) with the model output when forced with appropriate glacial freshwater forcing (right).

  13. Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antarctica (United States)

    Dinniman, Michael S.; Klinck, John M.; Smith, Walker O.


    Satellite imagery shows that there was substantial variability in the sea ice extent in the Ross Sea during 2001-2003. Much of this variability is thought to be due to several large icebergs that moved through the area during that period. The effects of these changes in sea ice on circulation and water mass distributions are investigated with a numerical general circulation model. It would be difficult to simulate the highly variable sea ice from 2001 to 2003 with a dynamic sea ice model since much of the variability was due to the floating icebergs. Here, sea ice concentration is specified from satellite observations. To examine the effects of changes in sea ice due to iceberg C-19, simulations were performed using either climatological ice concentrations or the observed ice for that period. The heat balance around the Ross Sea Polynya (RSP) shows that the dominant term in the surface heat budget is the net exchange with the atmosphere, but advection of oceanic warm water is also important. The area average annual basal melt rate beneath the Ross Ice Shelf is reduced by 12% in the observed sea ice simulation. The observed sea ice simulation also creates more High-Salinity Shelf Water. Another simulation was performed with observed sea ice and a fixed iceberg representing B-15A. There is reduced advection of warm surface water during summer from the RSP into McMurdo Sound due to B-15A, but a much stronger reduction is due to the late opening of the RSP in early 2003 because of C-19.

  14. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point (United States)

    Golliher, Eric L.; Yao, Shi-Chune


    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  15. Modeling the Thickness of Perennial Ice Covers on Stratified Lakes of the Taylor Valley, Antarctica (United States)

    Obryk, M. K.; Doran, P. T.; Hicks, J. A.; McKay, C. P.; Priscu, J. C.


    A one-dimensional ice cover model was developed to predict and constrain drivers of long term ice thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 years (between 1996 and 2012) of ice thickness changes for west lobe of Lake Bonney (average ice thickness = 3.53 m; RMSE = 0.09 m, n = 118) and Lake Fryxell (average ice thickness = 4.22 m; RMSE = 0.21 m, n = 128). Long-term ice thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate ice thickness change depending on the predominant climatic trend (temperature cooling or warming). As such, shallow (< 20 m deep water columns) perennially ice-covered lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term ice thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation.

  16. New possibilities and perspectives of building hotwater line from geothermal wells heat exchanger to TEKO Košice

    Directory of Open Access Journals (Sweden)

    Marína Sidorová


    Full Text Available Thank to favourable geological conditions, Slovakia is a country abundant in the occurrence of low-enthalpy sources. The government of the state sponsors new renewable of the sources ecological energy,including the geothermal energy. Geothermal water is utilized for recreation (swimming pools, spas, agriculture (heating of greenhouses, fishing and heating of houses. The effectivity of utilisation is about 30 % due to its seasonal use. That is why the annual house-heating and the hot water supply from geothermal sources are supported. Recently, the company Slovgeoterm has initiated heating of greenhouses in Podhajska and hospital and 1231 flats in the town Galanta. Nowadays, a research for the biggest geothermal project in the Middle Europe – construction in Košice basin has started.

  17. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR (United States)

    Istomina, Larysa; Heygster, Georg


    With the onset of melt in the Arctic Ocean, the fraction of melt water on sea ice, the melt pond fraction, increases. The consequences are: the reduced albedo of sea ice, increased transmittance of sea ice and affected heat balance of the system with more heat passing through the ice into the ocean, which facilitates further melting. The onset of melt, duration of melt season and melt pond fraction are good indicators of the climate state of the Arctic and its change. In the absence of reliable sea ice thickness retrievals in summer, melt pond fraction retrieval from satellite is in demand as input for GCM as an indicator of melt state of the sea ice. The retrieval of melt pond fraction with a moderate resolution radiometer as AATSR is, however, a non-trivial task due to a variety of subpixel surface types with very different optical properties, which give non-unique combinations if mixed. In this work this has been solved by employing additional information on the surface and air temperature of the pixel. In the current work, a concept of melt pond detection on sea ice is presented. The basis of the retrieval is the sensitivity of AATSR reflectance channels 550nm and 860nm to the amount of melt water on sea ice. The retrieval features extensive usage of a database of in situ surface albedo spectra. A tree of decisions is employed to select the feasible family of in situ spectra for the retrieval, depending on the melt stage of the surface. Reanalysis air temperature at the surface and brightness temperature measured by the satellite sensor are analyzed in order to evaluate the melting status of the surface. Case studies for FYI and MYI show plausible retrieved melt pond fractions, characteristic for both of the ice types. The developed retrieval can be used to process the historical AATSR (2002-2012) dataset, as well as for the SLSTR sensor onboard the future Sentinel-3 mission (scheduled for launch in 2015), to keep the continuity and obtain longer time sequence

  18. Assimilation of ice and water observations from SAR imagery to improve estimates of sea ice concentration

    Directory of Open Access Journals (Sweden)

    K. Andrea Scott


    Full Text Available In this paper, the assimilation of binary observations calculated from synthetic aperture radar (SAR images of sea ice is investigated. Ice and water observations are obtained from a set of SAR images by thresholding ice and water probabilities calculated using a supervised maximum likelihood estimator (MLE. These ice and water observations are then assimilated in combination with ice concentration from passive microwave imagery for the purpose of estimating sea ice concentration. Due to the fact that the observations are binary, consisting of zeros and ones, while the state vector is a continuous variable (ice concentration, the forward model used to map the state vector to the observation space requires special consideration. Both linear and non-linear forward models were investigated. In both cases, the assimilation of SAR data was able to produce ice concentration analyses in closer agreement with image analysis charts than when assimilating passive microwave data only. When both passive microwave and SAR data are assimilated, the bias between the ice concentration analyses and the ice concentration from ice charts is 19.78%, as compared to 26.72% when only passive microwave data are assimilated. The method presented here for the assimilation of SAR data could be applied to other binary observations, such as ice/water information from visual/infrared sensors.

  19. Thick or Thin Ice Shell on Europa? (United States)


    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)

  20. Enhancement of melting heat transfer of ice slurries by an injection flow in a rectangular cross sectional horizontal duct

    International Nuclear Information System (INIS)

    Fujii, Kota; Yamada, Masahiko


    Ice slurries are now commonly used as cold thermal storage materials, and have the potential to be applied to other engineering fields such as quenching metals to control properties, emergency cooling systems, and preservation of food and biomaterials at low temperatures. Although ice slurries have been widely utilized because of their high thermal storage densities, previous studies have revealed that the latent heat of ice particles is not completely released on melting because of insufficient contact between the ice particles and a heated surface. In this study, an injection flow that was bifurcated from the main flow of an ice slurry was employed to promote melting heat transfer of ice particles on a horizontal heated surface. The effects of injection angle and injection flow rate on local heat transfer coefficients and heat transfer coefficient ratios were determined experimentally. The results show that from two to three times higher heat transfer coefficients can be obtained by using large injection flow rates and injection angles. However, low injection angles improved the utilization rate of the latent heat of ice near the injection point by approximately a factor of two compared to that without injection. -- Highlights: • Melting of ice slurries were enhanced by the injection under constant total flow rate. • Contribution of ice particles and their latent heat to heat transfer was investigated. • Effect of velocity ratio of injection to that of main flow was examined. • Effect of the angle of injection flow to the main flow was also examined. • Appropriate conditions for the use of latent heat of ice and heat transfer did not coincide

  1. Loss of sea ice during winter north of Svalbard

    Directory of Open Access Journals (Sweden)

    Ingrid H. Onarheim


    Full Text Available Sea ice loss in the Arctic Ocean has up to now been strongest during summer. In contrast, the sea ice concentration north of Svalbard has experienced a larger decline during winter since 1979. The trend in winter ice area loss is close to 10% per decade, and concurrent with a 0.3°C per decade warming of the Atlantic Water entering the Arctic Ocean in this region. Simultaneously, there has been a 2°C per decade warming of winter mean surface air temperature north of Svalbard, which is 20–45% higher than observations on the west coast. Generally, the ice edge north of Svalbard has retreated towards the northeast, along the Atlantic Water pathway. By making reasonable assumptions about the Atlantic Water volume and associated heat transport, we show that the extra oceanic heat brought into the region is likely to have caused the sea ice loss. The reduced sea ice cover leads to more oceanic heat transferred to the atmosphere, suggesting that part of the atmospheric warming is driven by larger open water area. In contrast to significant trends in sea ice concentration, Atlantic Water temperature and air temperature, there is no significant temporal trend in the local winds. Thus, winds have not caused the long-term warming or sea ice loss. However, the dominant winds transport sea ice from the Arctic Ocean into the region north of Svalbard, and the local wind has influence on the year-to-year variability of the ice concentration, which correlates with surface air temperatures, ocean temperatures, as well as the local wind.

  2. Water ice and sub-micron ice particles on Tethys and Mimas (United States)

    Scipioni, Francesca; Nordheim, Tom; Clark, Roger Nelson; D'Aversa, Emiliano; Cruikshank, Dale P.; Tosi, Federico; Schenk, Paul M.; Combe, Jean-Philippe; Dalle Ore, Cristina M.


    IntroductionWe present our ongoing work, mapping the variation of the main water ice absorption bands, and the distribution of the sub-micron particles, across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). We present our results in the form of maps of variation of selected spectral indicators (depth of absorption bands, reflectance peak height, spectral slopes).Data analysisVIMS acquires hyperspectral data in the 0.3-5.1 μm spectral range. We selected VIMS cubes of Tethys and Mimas in the IR range (0.8-5.1 μm). For all pixels in the selected cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak. Moreover, we considered the spectral indictors for particles smaller than 1 µm [1]: (i) the 2 µm absorption band is asymmetric and (ii) it has the minimum shifted to longer λ (iii) the band depth ratio 1.5/2.0 µm decreases; (iv) the reflection peak at 2.6 µm decreases; (v) the Fresnel reflection peak is suppressed; (vi) the 5 µm reflectance is decreased relative to the 3.6 µm peak. To characterize the global variation of water-ice band depths, and of sub-micron particles spectral indicators, across Mimas and Tethys, we sampled the two satellites’ surfacees with a 1°x1° fixed-resolution grid and then averaged the band depths and peak values inside each square cell.3. ResultsFor both moons we find that large geologic features, such as the Odysseus and Herschel impact basins, do not correlate with water ice’s abundance variation. For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas, the leading and trailing hemispheres appear to be quite similar in water ice abundance, the trailing portion having water ice absorption bands lightly more suppressed than the leading side

  3. Ice sheet hydrology from observations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ-, Stockholm (Sweden)


    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  4. Ice sheet hydrology from observations

    International Nuclear Information System (INIS)

    Jansson, Peter


    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  5. Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water

    International Nuclear Information System (INIS)

    Wang Huajun; Zhao Jun; Chen Zhihao


    Road ice and snow melting based on low temperature geothermal tail water is of significance to realize energy cascading utilization. A small scale ice and snow melting system is built in this work. Experiments of dynamic melting processes of crushed ice, solid ice, artificial snow and natural snow are conducted on concrete pavement. The results show that the melting process of ice and snow includes three phases: a starting period, a linear period and an accelerated period. The critical value of the snow free area ratio between the linear period and the accelerated period is about 0.6. The physical properties of ice and snow, linked with ambient conditions, have an obvious effect on the melting process. The difference of melting velocity and melting time between ice and snow is compared. To reduce energy consumption, the formation of ice on roads should be avoided if possible. The idling process is an effective pathway to improve the performance of melting systems. It is feasible to utilize geothermal tail water of about 40 deg. C for melting ice and snow on winter roads, and it is unnecessary to keep too high fluid temperatures during the practical design and applications. Besides, with the exception of solid ice, the density and porosity of snow and ice tend to be decreasing and increasing, respectively, as the ambient temperature decreases

  6. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone. (United States)

    Kashiwase, Haruhiko; Ohshima, Kay I; Nihashi, Sohey; Eicken, Hajo


    Ice-albedo feedback due to the albedo contrast between water and ice is a major factor in seasonal sea ice retreat, and has received increasing attention with the Arctic Ocean shifting to a seasonal ice cover. However, quantitative evaluation of such feedbacks is still insufficient. Here we provide quantitative evidence that heat input through the open water fraction is the primary driver of seasonal and interannual variations in Arctic sea ice retreat. Analyses of satellite data (1979-2014) and a simplified ice-upper ocean coupled model reveal that divergent ice motion in the early melt season triggers large-scale feedback which subsequently amplifies summer sea ice anomalies. The magnitude of divergence controlling the feedback has doubled since 2000 due to a more mobile ice cover, which can partly explain the recent drastic ice reduction in the Arctic Ocean.

  7. On the Method of Efficient Ice Cold Energy Storage Using a Heat Transfer of Direct Contact Phase Change and a Natural Circulation of a Working Medium in an Enclosure (United States)

    Utaka, Yoshio; Saito, Akio; Nakata, Naoki

    The objectives of this report are to propose a new method of the high performance cold energy storage using ice as a phase change material and to clarify the heat transfer characteristics of the apparatus of ice cold energy storage based on the proposed principle. A working medium vapor layer a water layer and a working medium liquid layer stratified in this order from the top were kept in an enclosure composed of a condenser, an evaporator and a condensate receiver-and-return tube. The direct contact heat transfers between water or ice and a working medium in an enclosure were applied for realizing the high performance cold energy storage and release. In the storage and release processes, water changes the phase between the liquid and the solid, and the working medium cnanges between the vapor and the liquid with a natural circulation. Experimental apparatus was manufactured and R12 and R114 were selected as working media in the thermal energy storage enclosure. It was confirmed by the measurements that the efficient formation and melting of ice were achieved. Then, th e heat transfer characteristics were clarified for the effects of the initial water height, the initial height of woking medium liquid layer and the inlet coolant temperature.

  8. Experimental study of natural convection adjacent to an isothermal vertical ice cylinder in cold pure water

    International Nuclear Information System (INIS)

    Riu, Kap Jong; Yea, Yong Taeg; Park, Sang Hee


    A natural convection adjacent to an isothermal vertical ice cylinder is studied experimentally in cold pure water. The experiments are carried out as changing the temperature of the ambient water and then the flow and heat transfer characteristics is visualized and observed. It is shown that flow patterns are steady state upflow, unsteady state flow, steady state dual flow, and steady state downflow. There is also obtained a heat transfer coefficient and mean Nusselt number at various ambient temperature. These results are in good agreement with the theoretical ones. (Author)

  9. Ice detection in heat pumps and coolers. [By thermal resistance and capacitance detection

    Energy Technology Data Exchange (ETDEWEB)

    Buick, T R; McMullan, J T; Morgan, R; Murray, R B


    Some methods are discussed for detecting the formation of ice on the evaporators of air-source heat pumps and air coolers by electronic means. The sensing of thermal resistance caused by ice build-up can be done by measuring temperature differences between the evaporator and the air, and analyses are presented of the effect of using both linear and non-linear temperature sensors for this purpose. The direct detection of the presence of ice can be done by measuring the capacitance of a suitably-placed pair of plates, and the performance of such a system is analyzed. Preliminary reports are presented of the use of both of these methods of ice detection in the defrosting of an experimental heat pump.

  10. Frozen waterfall (or ice cascade) growth and decay: a thermodynamic approach (United States)

    Gauthier, Francis; Montagnat, Maurine; Weiss, Jérôme; Allard, Michel; Hétu, Bernard


    The ice volume evolution of an ice cascade was studied using a thermodynamic model. The model was developed from meteorological data collected in the vicinity of the waterfall and validated from ice volume measurements estimated from terrestrial LiDAR images. The ice cascade forms over a 45 m high rockwall located in northern Gaspésie, Québec, Canada. Two stages of formation were identified. During the first stage, the growth is mainly controlled by air convection around the flowing and freefalling water. The ice cascade growth rate increases with the decreasing air temperature below 0°C and when the water flow reaches its lowest level. During the second stage, the ice cascade covers the entire rockwall surface, water flow is isolated from the outside environment and ice volume increases asymptotically. Heat is evacuated from the water flow through the ice cover by conduction. The growth is mainly controlled by the radiation energy balance but more specifically by the longwave radiation emitted at the ice surface during the night. In spring, melting of the ice cascade is clearly dependant on the sensible heat carried by the increasing water flow and the diffuse solar radiation received at the ice surface during the day.

  11. Chlorine-containing salts as water ice nucleating particles on Mars (United States)

    Santiago-Materese, D. L.; Iraci, L. T.; Clapham, M. E.; Chuang, P. Y.


    Water ice cloud formation on Mars largely is expected to occur on the most efficient ice nucleating particle available. Salts have been observed on the Martian surface and have been known to facilitate water cloud formation on Earth. We examined heterogeneous ice nucleation onto sodium chloride and sodium perchlorate substrates under Martian atmospheric conditions, in the range of 150 to 180 K and 10-7 to 10-5 Torr water partial pressure. Sub-155 K data for the critical saturation ratio (Scrit) suggests an exponential model best describes the temperature-dependence of nucleation onset of water ice for all substrates tested. While sodium chloride does not facilitate water ice nucleation more easily than bare silicon, sodium perchlorate does support depositional nucleation at lower saturation levels than other substrates shown and is comparable to smectite-rich clay in its ability to support cloud initiation. Perchlorates could nucleate water ice at partial pressures up to 40% lower than other substrates examined to date under Martian atmospheric conditions. These findings suggest air masses on Mars containing uplifted salts such as perchlorates could form water ice clouds at lower saturation ratios than in air masses absent similar particles.


    International Nuclear Information System (INIS)

    Brown, M. E.; Fraser, W. C.; Schaller, E. L.


    We examine a large collection of low-resolution near-infrared spectra of Kuiper Belt objects (KBOs) and centaurs in an attempt to understand the presence of water ice in the Kuiper Belt. We find that water ice on the surface of these objects occurs in three separate manners: (1) Haumea family members uniquely show surfaces of nearly pure water ice, presumably a consequence of the fragmentation of the icy mantle of a larger differentiated proto-Haumea; (2) large objects with absolute magnitudes of H < 3 (and a limited number to H = 4.5) have surface coverings of water ice—perhaps mixed with ammonia—that appears to be related to possibly ancient cryovolcanism on these large objects; and (3) smaller KBOs and centaurs which are neither Haumea family members nor cold-classical KBOs appear to divide into two families (which we refer to as 'neutral' and 'red'), each of which is a mixture of a common nearly neutral component and either a slightly red or very red component that also includes water ice. A model suggesting that the difference between neutral and red objects due to formation in an early compact solar system either inside or outside, respectively, of the ∼20 AU methanol evaporation line is supported by the observation that methanol is only detected on the reddest objects, which are those which would be expected to have the most of the methanol containing mixture.

  13. Geothermal Heat Flux: Linking Deep Earth's Interior and the Dynamics of Large-Scale Ice Sheets (United States)

    Rogozhina, Irina; Vaughan, Alan


    Regions covered by continental-scale ice sheets have the highest degree of uncertainty in composition and structure of the crust and lithospheric mantle, compounded by the poorest coverage on Earth of direct heat flow measurements. In addition to challenging conditions that make direct measurements and geological survey difficult Greenland and Antarctica are known to be geologically complex. Antarctica in particular is marked by two lithospherically distinct zones. In contrast to young and thin lithosphere of West Antarctica, East Antarctica is a collage of thick Precambrian fragments of Gondwana and earlier supercontinents. However, recent observations and modeling studies have detected large systems of subglacial lakes extending beneath much of the East Antarctic ice sheet base that have been linked to anomalously elevated heat flow. Outcrop samples from the rift margin with Australia (Prydz Bay) have revealed highly radiogenic Cambrian granite intrusives that are implicated in regional increase of crustal heat flux by a factor of two to three compared to the estimated continental background. Taken together, these indicate high variability of heat flow and properties of rocks across Antarctica. Similar conclusions have been made based on direct measurements and observations of the Greenland ice sheet. Airborne ice-penetrating radar and deep ice core projects show very high rates of basal melt for parts of the ice sheet in northern and central Greenland that have been explained by abnormally high heat flux. Archaean in age, the Greenland lithosphere was significantly reworked during the Early Proterozoic. In this region, the interpretation of independent geophysical data is complicated by Proterozoic and Phanerozoic collision zones, compounded by strong thermochemical effects of rifting along the western and eastern continental margins between 80 and 25 million years ago. In addition, high variability of heat flow and thermal lithosphere structure in central

  14. Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture (United States)

    Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori

    This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.

  15. Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet (United States)

    Goodge, John W.


    Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow in East Antarctica come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. As has been done with bedrock exposed along coastal margins and in rare inland outcrops, valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th, and K concentrations in a suite of Proterozoic (1.2-2.0 Ga) granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho) of about 2.6 ± 1.9 µW m-3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo) ranging from 33 to 84 mW m-2 and an average of 48.0 ± 13.6 mW m-2. Estimates of heat production obtained for this suite of glacially sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with an average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal characteristics of the granites indicate that crust in central

  16. A quantitative analysis on latent heat of an aqueous binary mixture. (United States)

    Han, Bumsoo; Choi, Jeung Hwan; Dantzig, Jonathan A; Bischof, John C


    The latent heat during phase change of water-NaCl binary mixture was measured using a differential scanning calorimeter, and the magnitude for two distinct phase change events, water/ice and eutectic phase change, were analyzed considering the phase change characteristics of a binary mixture. During the analysis, the latent heat associated with each event was calculated by normalizing the amount of each endothermic peak with only the amount of sample participating in each event estimated from the lever rule for the phase diagram. The resulting latent heat of each phase change measured is 303.7 +/- 2.5 J/g for water/ice phase change, and 233.0 +/- 1.6 J/g for eutectic phase change, respectively regardless of the initial concentration of mixture. Although the latent heats of water/ice phase change in water-NaCl mixtures are closely correlated, further study is warranted to investigate the reason for smaller latent heat of water/ice phase change than that in pure water (335 J/g). The analysis using the lever rule was extended to estimate the latent heat of dihydrate as 115 J/g with the measured eutectic and water/ice latent heat values. This new analysis based on the lever rule will be useful to estimate the latent heat of water-NaCl mixtures at various concentrations, and may become a framework for more general analysis of latent heat of various biological solutions.

  17. Regular network model for the sea ice-albedo feedback in the Arctic. (United States)

    Müller-Stoffels, Marc; Wackerbauer, Renate


    The Arctic Ocean and sea ice form a feedback system that plays an important role in the global climate. The complexity of highly parameterized global circulation (climate) models makes it very difficult to assess feedback processes in climate without the concurrent use of simple models where the physics is understood. We introduce a two-dimensional energy-based regular network model to investigate feedback processes in an Arctic ice-ocean layer. The model includes the nonlinear aspect of the ice-water phase transition, a nonlinear diffusive energy transport within a heterogeneous ice-ocean lattice, and spatiotemporal atmospheric and oceanic forcing at the surfaces. First results for a horizontally homogeneous ice-ocean layer show bistability and related hysteresis between perennial ice and perennial open water for varying atmospheric heat influx. Seasonal ice cover exists as a transient phenomenon. We also find that ocean heat fluxes are more efficient than atmospheric heat fluxes to melt Arctic sea ice.

  18. Water, ice and mud: Lahars and lahar hazards at ice- and snow-clad volcanoes (United States)

    Waythomas, Christopher F.


    Large-volume lahars are significant hazards at ice and snow covered volcanoes. Hot eruptive products produced during explosive eruptions can generate a substantial volume of melt water that quickly evolves into highly mobile flows of ice, sediment and water. At present it is difficult to predict the size of lahars that can form at ice and snow covered volcanoes due to their complex flow character and behaviour. However, advances in experiments and numerical approaches are producing new conceptual models and new methods for hazard assessment. Eruption triggered lahars that are ice-dominated leave behind thin, almost unrecognizable sedimentary deposits, making them likely to be under-represented in the geological record.

  19. Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software

    International Nuclear Information System (INIS)

    Villalpando, Fernando; Reggio, Marcelo; Ilinca, Adrian


    An approach to numerically simulate ice accretion on 2D sections of a wind turbine blade is presented. The method uses standard commercial ANSYS-Fluent and Matlab tools. The Euler-Euler formulation is used to calculate the water impingement on the airfoil, and a UDF (Used Defined Function) has been devised to turn the airfoil's solid wall into a permeable boundary. Mayer's thermodynamic model is implemented in Matlab for computing ice thickness and for updating the airfoil contour. A journal file is executed to systematize the procedure: meshing, droplet trajectory calculation, thermodynamic model application for computing ice accretion, and the updating of airfoil contours. The proposed ice prediction strategy has been validated using iced airfoil contours obtained experimentally in the AMIL refrigerated wind tunnel (Anti-icing Materials International Laboratory). Finally, a numerical prediction method has been generated for anti-icing assessment, and its results compared with data obtained in this laboratory. - Highlights: • A methodology for ice accretion prediction using commercial software is proposed. • Euler model gives better prediction of airfoil water collection with detached flow. • A source term is used to change from a solid wall to a permeable wall in Fluent. • Energy needed for ice-accretion mitigation system is predicted.

  20. Extratropical Weather Systems on Mars: Radiatively-Active Water Ice Effects (United States)

    Hollingsworth, J. L.; Kahre, M. A.; Haberle, R. M.; Urata, R. A.; Montmessin, F.


    Extratropical, large-scale weather disturbances, namely transient, synoptic-period,baroclinic barotropic eddies - or - low- (high-) pressure cyclones (anticyclones), are components fundamental to global circulation patterns for rapidly rotating, differentially heated, shallow atmospheres such as Earth and Mars. Such "wave-like" disturbances that arise via (geophysical) fluid shear instability develop, mature and decay, and travel west-to-east in the middle and high latitudes within terrestrial-like planetary atmospheres. These disturbances serve as critical agents in the transport of heat and momentum between low and high latitudes of the planet. Moreover, they transport trace species within the atmosphere (e.g., water vapor/ice, other aerosols (dust), chemical species, etc). Between early autumn through early spring, middle and high latitudes on Mars exhibit strong equator-to-pole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems [Banfield et al., 2004; Barnes et al., 1993]. A good example of traveling weather systems, frontal wave activity and sequestered dust activity from MGS/MOC image analyses is provided in Figure 1 (cf. Wang et al. [2005]). Utilizing an upgraded and evolving version of the NASA Ames Research Center (ARC) Mars global climate model, investigated here are key dynamical and physical aspects of simulated northern hemisphere (NH) large-scale extratropica lweather systems,with and without radiatively-active water ice clouds. Mars Climate Model:

  1. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure. (United States)

    Hudait, Arpa; Molinero, Valeria


    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  2. Standard Practice for Installation and Service of Solar Domestic Water Heating Systems for One- and Two-Family Dwellings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This practice provides descriptions of solar domestic water heating systems and sets forth installation and service practices in new and existing one- and two-family dwellings to help ensure adequate operation and safety., 1.2 This practice applies regardless of the fraction of heating requirement supplied by solar energy, the type of conventional fuel used in conjunction with solar, or the heat transfer fluid (or fluids) used as the energy transport medium. However, where more stringent requirements are recommended by the manufacturer, these manufacturer requirements shall prevail. 1.3 The values stated in inch-pound units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Sections 6 and 7.

  3. Modeling ground thermal regime of an ancient buried ice body in Beacon Valley, Antarctica using a 1-D heat equation with latent heat effect (United States)

    Liu, L.; Sletten, R. S.; Hallet, B.; Waddington, E. D.; Wood, S. E.


    An ancient massive ice body buried under several decimeters of debris in Beacon Valley, Antarctica is believed to be over one million years old, making it older than any known glacier or ice cap. It is fundamentally important as a reservoir of water, proxy for climatic information, and an expression of the periglacial landscape. It is also one of Earth's closest analog for widespread, near-surface ice found in Martian soils and ice-cored landforms. We are interested in understanding controls on how long this ice may persist since our physical model of sublimation suggests it should not be stable. In these models, the soil temperatures and the gradient are important because it determines the direction and magnitude of the vapor flux, and thus sublimation rates. To better understand the heat transfer processes and constrain the rates of processes governing ground ice stability, a model of the thermal behavior of the permafrost is applied to Beacon Valley, Antarctica. It calculates soil temperatures based on a 1-D thermal diffusion equation using a fully implicit finite volume method (FVM). This model is constrained by soil physical properties and boundary conditions of in-situ ground surface temperature measurements (with an average of -23.6oC, a maximum of 20.5oC and a minimum of -54.3oC) and ice-core temperature record at ~30 m. Model results are compared to in-situ temperature measurements at depths of 0.10 m, 0.20 m, 0.30 m, and 0.45 m to assess the model's ability to reproduce the temperature profile for given thermal properties of the debris cover and ice. The model's sensitivity to the thermal diffusivity of the permafrost and the overlaying debris is also examined. Furthermore, we incorporate the role of ice condensation/sublimation which is calculated using our vapor diffusion model in the 1-D thermal diffusion model to assess potential latent heat effects that in turn affect ground ice sublimation rates. In general, the model simulates the ground thermal

  4. Proceedings of the 19. IAHR international symposium on ice : using new technology to understand water-ice interaction

    International Nuclear Information System (INIS)

    Jasek, M.; Andrishak, R.; Siddiqui, A.


    This conference provided a venue for scientists, engineers and researchers an opportunity to expand their knowledge of water-ice interactions with reference to water resources, river and coastal hydraulics, risk analysis, energy and the environment. The the theme of new technology falls into 3 basic groups, notably measurement and instrumentation; remote sensing; and numerical simulation. The thermal regime of rivers was discussed along with ice mechanics, ice hydraulics, ice structures and modelling ice phenomena. The titles of the sessions were: river ice, glaciers and climate change; freeze-up processes on rivers and oceans; river ice-structure interactions; numerical simulations in ice engineering; river-ice break-up and ice jam formation; ice measurement; Grasse River ice evaluation; evaluation of structural ice control alternatives; remote sensing; hydropower and dam decommissioning; mechanical behaviour of river ice, ice covered flow and thermal modelling; mathematical and computer model formulations for ice friction and sea ice; ice bergs and ice navigation; ice crushing processes; sea ice and shore/structure interactions; ice properties, testing and physical modelling; ice actions on compliant structures; oil spills in ice; desalination, ice thickness and climate change; and, sea ice ridges. The conference featured 123 presentations, of which 20 have been catalogued separately for inclusion in this database. refs., tabs., figs

  5. Field test and sensitivity analysis of a sensible heat balance method to determine ice contents (United States)

    Soil ice content impacts winter vadose zone hydrology. It may be possible to estimate changes in soil ice content with a sensible heat balance (SHB) method, using measurements from heat pulse (HP) sensors. Feasibility of the SHB method is unknown because of difficulties in measuring soil thermal pro...

  6. Numerical modeling of coupled water flow and heat transport in soil and snow (United States)

    Thijs J. Kelleners; Jeremy Koonce; Rose Shillito; Jelle Dijkema; Markus Berli; Michael H. Young; John M. Frank; William Massman


    A one-dimensional vertical numerical model for coupled water flow and heat transport in soil and snow was modified to include all three phases of water: vapor, liquid, and ice. The top boundary condition in the model is driven by incoming precipitation and the surface energy balance. The model was applied to three different terrestrial systems: A warm desert bare...

  7. An integrated approach to the remote sensing of floating ice (United States)

    Campbell, W. J.; Ramseier, R. O.; Weeks, W. F.; Gloersen, P.


    Review article on remote sensing applications to glaciology. Ice parameters sensed include: ice cover vs open water, ice thickness, distribution and morphology of ice formations, vertical resolution of ice thickness, ice salinity (percolation and drainage of brine; flushing of ice body with fresh water), first-year ice and multiyear ice, ice growth rate and surface heat flux, divergence of ice packs, snow cover masking ice, behavior of ice shelves, icebergs, lake ice and river ice; time changes. Sensing techniques discussed include: satellite photographic surveys, thermal IR, passive and active microwave studies, microwave radiometry, microwave scatterometry, side-looking radar, and synthetic aperture radar. Remote sensing of large aquatic mammals and operational ice forecasting are also discussed.

  8. Proton dynamics and the phase diagram of dense water ice. (United States)

    Hernandez, J-A; Caracas, R


    All the different phases of water ice between 2 GPa and several megabars are based on a single body-centered cubic sub-lattice of oxygen atoms. They differ only by the behavior of the hydrogen atoms. In this study, we investigate the dynamics of the H atoms at high pressures and temperatures in water ice from first-principles molecular dynamics simulations. We provide a detailed analysis of the O-H⋯O bonding dynamics over the entire stability domain of the body-centered cubic (bcc) water ices and compute transport properties and vibrational density-of-states. We report the first ab initio evidence for a plastic phase of water and we propose a coherent phase diagram for bcc water ices compatible with the two groups of melting curves and with the multiple anomalies reported in ice VII around 15 GPa.

  9. Martian North Polar Water-Ice Clouds During the Viking Era (United States)

    Tamppari, L. K.; Bass, D. S.


    The Viking Orbiters determined that the surface of Mars' northern residual cap consists of water ice. Observed atmospheric water vapor abundances in the equatorial regions have been related to seasonal exchange between reservoirs such as the polar caps, the regolith and between different phases in the atmosphere. Kahn modeled the physical characteristics of ice hazes seen in Viking Orbiter imaging limb data, hypothesizing that ice hazes provide a method for scavenging water vapor from the atmosphere and accumulating it into ice particles. Given that Jakosky found that these particles had sizes such that fallout times were of order one Martian sol, these water-ice hazes provided a method for returning more water to the regolith than that provided by adsorption alone. These hazes could also explain the rapid hemispheric decrease in atmospheric water in late northern summer as well as the increase during the following early spring. A similar comparison of water vapor abundance versus polar cap brightness has been done for the north polar region. They have shown that water vapor decreases steadily between L(sub s) = 100-150 deg while polar cap albedo increases during the same time frame. As a result, they suggested that late summer water-ice deposition onto the ice cap may be the cause of the cap brightening. This deposition could be due to adsorption directly onto the cap surface or to snowfall. Thus, an examination of north polar waterice clouds could lend insight into the fate of the water vapor during this time period. Additional information is contained in the original extended abstract.

  10. Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China (United States)

    Yang, S.; Shi, Y.


    Ice caves exist in locations where annual average air temperature is higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively investigate the mechanism of formation and preservation of the ice cave, we use the finite-element method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice-water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, colored lights, climatic conditions, etc. for sustainable development of the ice cave as a tourism resource. In some other ice caves in China, managers have installed airtight doors at these ice caves' entrances with the intention of "protecting" these caves, but this in fact prevents cooling in winter and these cave ices will entirely melt within tens of years.

  11. River ice implications related to water power production in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Asvall, R.P. [Norwegian Water Resources and Energy Directorate, Oslo (Norway). Hydrology Dept.


    Nearly 99 per cent of the electricity produced in Norway is based on water power. While the period of large power development is over, the current focus lies in developing small hydroelectric power plants. A new market based energy law was implemented in Norway in 1991 to achieve more efficient use of electricity production by means of market forces. Since water regulation influences ice conditions in lakes and rivers, this paper focused on the implications of changes in ice conditions. In Norway, the expected changes in ice conditions are taken into account when issuing permits for water regulations and schemes for water discharge because some waterways are used as winter roads. Follow-up includes both close and long term observations and measurements. The impact of variable price on power was also discussed, with particular reference to ice conditions in cases where water discharge occurs on rivers. This paper summarized selected ice problems and how they have been handled. The paper also included a summary of anticipated climatic changes relevant to ice conditions.

  12. River ice implications related to water power production in Norway

    International Nuclear Information System (INIS)

    Asvall, R.P.


    Nearly 99 per cent of the electricity produced in Norway is based on water power. While the period of large power development is over, the current focus lies in developing small hydroelectric power plants. A new market based energy law was implemented in Norway in 1991 to achieve more efficient use of electricity production by means of market forces. Since water regulation influences ice conditions in lakes and rivers, this paper focused on the implications of changes in ice conditions. In Norway, the expected changes in ice conditions are taken into account when issuing permits for water regulations and schemes for water discharge because some waterways are used as winter roads. Follow-up includes both close and long term observations and measurements. The impact of variable price on power was also discussed, with particular reference to ice conditions in cases where water discharge occurs on rivers. This paper summarized selected ice problems and how they have been handled. The paper also included a summary of anticipated climatic changes relevant to ice conditions.

  13. The utilization of excess wind-electric power from stock water pumping systems to heat a sector of the stock tank

    Energy Technology Data Exchange (ETDEWEB)

    Nydahl, J.E.; Carlson, B.O. [Univ. of Wyoming, Laramie, WY (United States)


    On the high plains, a wind-electric stock water pumping system produces a significant amount of excess power over the winter months due to intense winds and the decreased water consumption by cattle. The University of Wyoming is developing a multi-tasking system to utilize this excess energy to resistively heat a small sector of the stock tank at its demonstration/experimental site. This paper outlines the detailed heat transfer analysis that predicted drinking water temperature and icing conditions. It also outlines the optimization criteria and the power produced by the Bergey 1500 wind electric system. Results show that heating a smaller insulated tank inserted into the larger tank would raise the drinking water temperature by a maximum of 6.7 {degrees}C and eliminate icing conditions. The returns associated with the additional cattle weight gain, as a result of the consumption of warmer water, showed that system modification costs would be recovered the first year. 12 refs., 11 figs., 2 tabs.

  14. The refreezing of melt ponds on Arctic sea ice (United States)

    Flocco, Daniela; Feltham, Daniel L.; Bailey, Eleanor; Schroeder, David


    The presence of melt ponds on the surface of Arctic sea ice significantly reduces its albedo, inducing a positive feedback leading to sea ice thinning. While the role of melt ponds in enhancing the summer melt of sea ice is well known, their impact on suppressing winter freezing of sea ice has, hitherto, received less attention. Melt ponds freeze by forming an ice lid at the upper surface, which insulates them from the atmosphere and traps pond water between the underlying sea ice and the ice lid. The pond water is a store of latent heat, which is released during refreezing. Until a pond freezes completely, there can be minimal ice growth at the base of the underlying sea ice. In this work, we present a model of the refreezing of a melt pond that includes the heat and salt balances in the ice lid, trapped pond, and underlying sea ice. The model uses a two-stream radiation model to account for radiative scattering at phase boundaries. Simulations and related sensitivity studies suggest that trapped pond water may survive for over a month. We focus on the role that pond salinity has on delaying the refreezing process and retarding basal sea ice growth. We estimate that for a typical sea ice pond coverage in autumn, excluding the impact of trapped ponds in models overestimates ice growth by up to 265 million km3, an overestimate of 26%.

  15. The role of water ice clouds in the Martian hydrologic cycle (United States)

    James, Philip B.


    A one-dimensional model for the seasonal cycle of water on Mars has been used to investigate the direction of the net annual transport of water on the planet and to study the possible role of water ice clouds, which are included as an independent phase in addition to ground ice and water vapor, in the cycle. The calculated seasonal and spatial patterns of occurrence of water ice clouds are qualitatively similar to the observed polar hoods, suggesting that these polar clouds are, in fact, an important component of water cycle. A residual dry ice in the south acts as a cold trap which, in the absence of sources other than the caps, will ultimately attract the water ice from the north cap; however, in the presence of a source of water in northern midlatitudes during spring, it is possible that the observed distribution of vapor and ice can be in a steady state even if a residual CO2 cap is a permanent feature of the system.

  16. Under-ice eddy covariance flux measurements of heat, salt, momentum, and dissolved oxygen in an artificial sea ice pool

    DEFF Research Database (Denmark)

    Else, B. G T; Rysgaard, S.; Attard, K.


    as one possible cause of the high fluxes. Momentum fluxes showed interesting correlations with ice growth and melt but were generally higher than expected. We concluded that with the exception of the conductivity sensor, the eddy covariance system worked well, and that useful information about turbulent......Turbulent exchanges under sea ice play a controlling role in ice mass balance, ice drift, biogeochemistry, and mixed layer modification. In this study, we examined the potential to measure under-ice turbulent exchanges of heat, salt, momentum, and dissolved oxygen using eddy covariance...... in an experimental sea ice facility. Over a 15-day period in January 2013, an underwater eddy covariance system was deployed in a large (500 m3) inground concrete pool, which was filled with artificial seawater and exposed to the ambient (−5 to −30 °C) atmosphere. Turbulent exchanges were measured continuously...

  17. Observational Evidence of a Hemispheric-wide Ice-ocean Albedo Feedback Effect on Antarctic Sea-ice Decay (United States)

    Nihashi, Sohey; Cavalieri, Donald J.


    The effect of ice-ocean albedo feedback (a kind of ice-albedo feedback) on sea-ice decay is demonstrated over the Antarctic sea-ice zone from an analysis of satellite-derived hemispheric sea ice concentration and European Centre for Medium-Range Weather Forecasts (ERA-40) atmospheric data for the period 1979-2001. Sea ice concentration in December (time of most active melt) correlates better with the meridional component of the wind-forced ice drift (MID) in November (beginning of the melt season) than the MID in December. This 1 month lagged correlation is observed in most of the Antarctic sea-ice covered ocean. Daily time series of ice , concentration show that the ice concentration anomaly increases toward the time of maximum sea-ice melt. These findings can be explained by the following positive feedback effect: once ice concentration decreases (increases) at the beginning of the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in ice concentration by the oceanic heat. Results obtained fi-om a simple ice-ocean coupled model also support our interpretation of the observational results. This positive feedback mechanism explains in part the large interannual variability of the sea-ice cover in summer.

  18. Performance and durability tests of smart icephobic coatings to reduce ice adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Janjua, Zaid A.; Turnbull, Barbara [Faculty of Engineering, University of Nottingham (United Kingdom); Choy, Kwang-Leong; Pandis, Christos [Institute for Materials Discovery, University College London (UCL) (United Kingdom); Liu, Junpeng; Hou, Xianghui; Choi, Kwing-So [Faculty of Engineering, University of Nottingham (United Kingdom)


    Highlights: • Repeated ice adhesion and removal occurs on nanocoatings. • Icephobicity of nanocoatings reduces with each test cycle. • Adhesion strength linked to contact angle hysteresis in Gaussian fit. • Icephobicity not linked to hydrophobicity. - Abstract: The accretion of ice can cause damage in applications ranging from power lines and shipping decks, to wind turbines and rail infrastructure. In particular on aircraft, it can change aerodynamic characteristics, greatly affecting the flight safety. Commercial aircraft are therefore required to be equipped with de-icing devices, such as heating mats over the wings. The application of icephobic coatings near the leading edge of a wing can in theory reduce the high power requirements of heating mats, which melt ice that forms there. Such coatings are effective in preventing the accretion of runback ice, formed from airborne supercooled droplets, or the water that the heating mats generate as it is sheared back over the wing's upper surface. However, the durability and the practicality of applying them over a large wing surface have been prohibitive factors in deploying this technology so far. Here, we evaluated the ice adhesion strength of four non-conductive coatings and seven thermally conductive coatings by shearing ice samples from coated plates by spinning them in a centrifuge device. The durability of the coating performance was also assessed by repeating the tests, each time regrowing ice samples on the previously-used coatings. Contact angle parameters of each coating were tested for each test to determine influence on ice adhesion strength. The results indicate that contact angle hysteresis is a crucial parameter in determining icephobicity of a coating and hydrophobicity is not necessarily linked to icephobicity.

  19. Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms. (United States)

    Failor, K C; Schmale, D G; Vinatzer, B A; Monteil, C L


    A growing body of circumstantial evidence suggests that ice nucleation active (Ice + ) bacteria contribute to the initiation of precipitation by heterologous freezing of super-cooled water in clouds. However, little is known about the concentration of Ice + bacteria in precipitation, their genetic and phenotypic diversity, and their relationship to air mass trajectories and precipitation chemistry. In this study, 23 precipitation events were collected over 15 months in Virginia, USA. Air mass trajectories and water chemistry were determined and 33 134 isolates were screened for ice nucleation activity (INA) at -8 °C. Of 1144 isolates that tested positive during initial screening, 593 had confirmed INA at -8 °C in repeated tests. Concentrations of Ice + strains in precipitation were found to range from 0 to 13 219 colony forming units per liter, with a mean of 384±147. Most Ice + bacteria were identified as members of known and unknown Ice + species in the Pseudomonadaceae, Enterobacteriaceae and Xanthomonadaceae families, which nucleate ice employing the well-characterized membrane-bound INA protein. Two Ice + strains, however, were identified as Lysinibacillus, a Gram-positive genus not previously known to include Ice + bacteria. INA of the Lysinibacillus strains is due to a nanometer-sized molecule that is heat resistant, lysozyme and proteinase resistant, and secreted. Ice + bacteria and the INA mechanisms they employ are thus more diverse than expected. We discuss to what extent the concentration of culturable Ice + bacteria in precipitation and the identification of a new heat-resistant biological INA mechanism support a role for Ice + bacteria in the initiation of precipitation.

  20. Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties (United States)

    Marcellini, Moreno; Fernandes, Francisco M.; Dedovets, Dmytro; Deville, Sylvain


    Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.

  1. Could the Hokusai Impact Have Delivered Mercury's Water Ice? (United States)

    Ernst, C. M.; Chabot, N. L.; Barnouin, O. S.


    Hokusai is the best candidate source crater for Mercury’s water-ice inventory if it was primarily delivered by a single impact event. The Hokusai impact could account for the inventory of water ice on Mercury for impact velocities <30 km/s.

  2. Reconciling estimates of the ratio of heat and salt fluxes at the ice-ocean interface (United States)

    Keitzl, T.; Mellado, J. P.; Notz, D.


    The heat exchange between floating ice and the underlying ocean is determined by the interplay of diffusive fluxes directly at the ice-ocean interface and turbulent fluxes away from it. In this study, we examine this interplay through direct numerical simulations of free convection. Our results show that an estimation of the interface flux ratio based on direct measurements of the turbulent fluxes can be difficult because the flux ratio varies with depth. As an alternative, we present a consistent evaluation of the flux ratio based on the total heat and salt fluxes across the boundary layer. This approach allows us to reconcile previous estimates of the ice-ocean interface conditions. We find that the ratio of heat and salt fluxes directly at the interface is 83-100 rather than 33 as determined by previous turbulence measurements in the outer layer. This can cause errors in the estimated ice-ablation rate from field measurements of up to 40% if they are based on the three-equation formulation.

  3. Evolution of Summer Ocean Mixed Layer Heat Content and Ocean/Ice Fluxes in the Arctic Ocean During the Last Decade (United States)

    Stanton, T. P.; Shaw, W. J.


    Since 2002, a series of 28 Autonomous Ocean Flux Buoys have been deployed in the Beaufort Sea and from the North Pole Environmental Observatory. These long-term ice-deployed instrument systems primarily measure vertical turbulent fluxes of heat, salt and momentum at a depth of 2 - 6 m below the ocean/ice interface, while concurrently measuring current profile every 2m down to approximately 40-50m depth, within the seasonal pycnocline. Additional sensors have been added to measure local ice melt rates acoustically, and finescale thermal structure from the eddy correlation flux sensor up into the ice to resolve summer near-surface heating. The AOFB buoys have typically been co-located with Ice Tethered Profilers, that measure the upper ocean T/S structure and ice mass balance instruments. Comparisons of near-surface heat fluxes, heat content and vertical structure over the last decade will be made for buoys in the Beaufort Sea and Transpolar Drift between the North Pole and Spitzbergen. The effects of enhanced basal melting from ice/albedo feedbacks can be clearly seen in the low ice concentration summer conditions found more recently in the Beaufort Sea, while there are less pronounced effects of enhanced summer surface heating in the higher ice concentrations still found in the transpolar drift.


    Energy Technology Data Exchange (ETDEWEB)

    Ueta, S.; Sasaki, T., E-mail:, E-mail: [Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)


    Many extrasolar (bound) terrestrial planets and free-floating (unbound) planets have been discovered. While the existence of bound and unbound terrestrial planets with liquid water is an important question, of particular importance is the question of these planets' habitability. Even for a globally ice-covered planet, geothermal heat from the planetary interior may melt the interior ice, creating an internal ocean covered by an ice shell. In this paper, we discuss the conditions that terrestrial planets must satisfy for such an internal ocean to exist on the timescale of planetary evolution. The question is addressed in terms of planetary mass, distance from a central star, water abundance, and abundance of radiogenic heat sources. In addition, we investigate the structure of the surface H{sub 2}O layers of ice-covered planets by considering the effects of ice under high pressure (high-pressure ice). As a fiducial case, a 1 M{sub ⊕} planet at 1 AU from its central star and with 0.6-25 times the H{sub 2}O mass of the Earth could have an internal ocean. We find that high-pressure ice layers may appear between the internal ocean and the rock portion on a planet with an H{sub 2}O mass over 25 times that of the Earth. The planetary mass and abundance of surface water strongly restrict the conditions under which an extrasolar terrestrial planet may have an internal ocean with no high-pressure ice under the ocean. Such high-pressure ice layers underlying the internal ocean are likely to affect the habitability of the planet.

  5. When Big Ice Turns Into Water It Matters For Houses, Stores And Schools All Over (United States)

    Bell, R. E.


    When ice in my glass turns to water it is not bad but when the big ice at the top and bottom of the world turns into water it is not good. This new water makes many houses, stores and schools wet. It is really bad during when the wind is strong and the rain is hard. New old ice water gets all over the place. We can not get to work or school or home. We go to the big ice at the top and bottom of the world to see if it will turn to water soon and make more houses wet. We fly over the big ice to see how it is doing. Most of the big ice sits on rock. Around the edge of the big sitting on rock ice, is really low ice that rides on top of the water. This really low ice slows down the big rock ice turning into water. If the really low ice cracks up and turns into little pieces of ice, the big rock ice will make more houses wet. We look to see if there is new water in the cracks. Water in the cracks is bad as it hurts the big rock ice. Water in the cracks on the really low ice will turn the low ice into many little pieces of ice. Then the big rock ice will turn to water. That is water in cracks is bad for the houses, schools and businesses. If water moves off the really low ice, it does not stay in the cracks. This is better for the really low ice. This is better for the big rock ice. We took pictures of the really low ice and saw water leaving. The water was not staying in the cracks. Water leaving the really low ice might be good for houses, schools and stores.

  6. Viscosity of interfacial water regulates ice nucleation

    International Nuclear Information System (INIS)

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun; Song, Yanlin


    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J 0 and Γ, in the context of classical nucleation theory. From the extracted J 0 and Γ, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces

  7. Heat flux variations over sea ice observed at the coastal area of the Sejong Station, Antarctica (United States)

    Park, Sang-Jong; Choi, Tae-Jin; Kim, Seong-Joong


    This study presents variations of sensible heat flux and latent heat flux over sea ice observed in 2011 from the 10-m flux tower located at the coast of the Sejong Station on King George Island, Antarctica. A period from July to September was selected as a sea ice period based on daily record of sea state and hourly photos looking at the Marian Cove in front of the Sejong Station. For the sea ice period, mean sensible heat flux is about -11 Wm-2, latent heat flux is about +2 W m-2, net radiation is -12 W m-2, and residual energy is -3 W m-2 with clear diurnal variations. Estimated mean values of surface exchange coefficients for momentum, heat and moisture are 5.15 × 10-3, 1.19 × 10-3, and 1.87 × 10-3, respectively. The observed exchange coefficients of heat shows clear diurnal variations while those of momentum and moisture do not show diurnal variation. The parameterized exchange coefficients of heat and moisture produces heat fluxes which compare well with the observed diurnal variations of heat fluxes.

  8. Hexagonal ice in pure water and biological NMR samples

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thomas; Gath, Julia; Hunkeler, Andreas; Ernst, Matthias, E-mail: [ETH Zurich, Physical Chemistry (Switzerland); Böckmann, Anja, E-mail: [UMR 5086 CNRS, Université de Lyon 1, Institut de Biologie et Chimie des Protéines (France); Meier, Beat H., E-mail: [ETH Zurich, Physical Chemistry (Switzerland)


    Ice, in addition to “liquid” water and protein, is an important component of protein samples for NMR spectroscopy at subfreezing temperatures but it has rarely been observed spectroscopically in this context. We characterize its spectroscopic behavior in the temperature range from 100 to 273 K, and find that it behaves like pure water ice. The interference of magic-angle spinning (MAS) as well as rf multiple-pulse sequences with Bjerrum-defect motion greatly influences the ice spectra.


    Directory of Open Access Journals (Sweden)



    Full Text Available This work consists in the simulation of the ice accretion in the leading edge of aerodynamic profiles and our proposed model encompasses: geometry generation, calculation of the potential flow around the body, boundary layer thickness computation, water droplet trajectory computation, heat and mass balances and the consequent modification of the geometry by the ice growth. The flow calculation is realized with panel methods, using only segments defined over the body contour. The viscous effects are considered using the Karman-Pohlhausen method for the laminar boundary layer. The local heat transfer coefficient is obtained by applying the Smith-Spalding method for the thermal boundary layer. The ice accretion limits and the collection efficiency are determined by computing water droplet trajectories impinging the surface. The heat transfer process is analyzed with an energy and a mass balance in each segment defining the body. Finally, the geometry is modified by the addition of the computed ice thickness to the respective panel. The process by repeating all the steps. The model validation is done using a selection of problems with experimental solution, CIRA (the CESAR project. Hereinafter, results are obtained for different aerodynamic profiles, angles of attack and meteorological parameters

  10. Aerodynamics and thermal physics of helicopter ice accretion (United States)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was

  11. Geothermal Heating, Convective Flow and Ice Thickness on Mars (United States)

    Rosenberg, N. D.; Travis, B. J.; Cuzzi, J.


    Our 3D calculations suggest that hydrothermal circulation may occur in the martian regolith and may significantly thin the surface ice layer on Mars at some locations due to the upwelling of warm convecting fluids driven solely by background geothermal heating. Additional information is contained in the original extended abstract.

  12. Ice slurry ingestion does not enhance self-paced intermittent exercise in the heat. (United States)

    Gerrett, N; Jackson, S; Yates, J; Thomas, G


    This study aimed to determine if ice slurry ingestion improved self-paced intermittent exercise in the heat. After a familiarisation session, 12 moderately trained males (30.4 ± 3.4 year, 1.8 ± 0.1 cm, 73.5 ± 14.3 kg, V˙O 2max 58.5 ± 8.1 mL/kg/min) completed two separate 31 min self-paced intermittent protocols on a non-motorised treadmill in 30.9 ± 0.9 °C, 41.1 ± 4.0% RH. Thirty minutes prior to exercise, participants consumed either 7.5 g/kg ice slurry (0.1 ± 0.1 °C) (ICE) or 7.5 g/kg water (23.4 ± 0.9 °C) (CONTROL). Despite reductions in T c (ΔT c : -0.51 ± 0.3 °C, P exercise, ICE did not enhance self-paced intermittent exercise compared to CONTROL. The average speed during the walk (CONTROL: 5.90 ± 1.0 km, ICE: 5.90 ± 1.0 km), jog (CONTROL: 8.89 ± 1.7 km, ICE: 9.11 ± 1.5 km), run (CONTROL: 12.15 ± 1.7 km, ICE: 12.54 ± 1.5 km) and sprint (CONTROL: 17.32 ± 1.3 km, ICE: 17.18 ± 1.4 km) was similar between conditions (P > 0.05). Mean T sk , T b , blood lactate, heart rate and RPE were similar between conditions (P > 0.05). The findings suggest that lowering T c prior to self-paced intermittent exercise does not translate into an improved performance. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Efficacy of sanitized ice in reducing bacterial load on fish fillet and in the water collected from the melted ice. (United States)

    Feliciano, Lizanel; Lee, Jaesung; Lopes, John A; Pascall, Melvin A


    This study investigated the efficacy of sanitized ice for the reduction of bacteria in the water collected from the ice that melted during storage of whole and filleted Tilapia fish. Also, bacterial reductions on the fish fillets were investigated. The sanitized ice was prepared by freezing solutions of PRO-SAN (an organic acid formulation) and neutral electrolyzed water (NEW). For the whole fish study, the survival of the natural microflora was determined from the water of the melted ice prepared with PRO-SAN and tap water. These water samples were collected during an 8 h storage period. For the fish fillet study, samples were inoculated with Escherichia coli K12, Listeria innocua, and Pseudomonas putida then stored on crushed sanitized ice. The efficacies of these were tested by enumerating each bacterial species on the fish fillet and in the water samples at 12 and 24 h intervals for 72 h, respectively. Results showed that each bacterial population was reduced during the test. However, a bacterial reduction of fillet samples. A maximum of approximately 2 log CFU and > 3 log CFU reductions were obtained in the waters sampled after the storage of whole fish and the fillets, respectively. These reductions were significantly (P < 0.05) higher in the water from sanitized ice when compared with the water from the unsanitized melted ice. These results showed that the organic acid formulation and NEW considerably reduced the bacterial numbers in the melted ice and thus reduced the potential for cross-contamination.

  14. Caltech water-ice dusty plasma: preliminary results (United States)

    Bellan, Paul; Chai, Kilbyoung


    A water-ice dusty plasma laboratory experiment has begun operation at Caltech. As in Ref., a 1-5 watt parallel-plate 13.56 MHz rf discharge plasma has LN2-cooled electrodes that cool the neutral background gas to cryogenic temperatures. However, instead of creating water vapor by in-situ deuterium-oxygen bonding, here the neutral gas is argon and water vapor is added in a controlled fashion. Ice grains spontaneously form after a few seconds. Photography with a HeNe line filter of a sheet of HeNe laser light sheet illuminating a cross section of dust grains shows a large scale whorl pattern composed of concentric sub-whorls having wave-like spatially varying intensity. Each sub-whorl is composed of very evenly separated fine-scale stream-lines indicating that the ice grains move in self-organized lanes like automobiles on a multi-line highway. HeNe laser extinction together with an estimate of dust density from the intergrain spacing in photographs indicates a 5 micron nominal dust grain radius. HeNe laser diffraction patterns indicate the ice dust grains are large and ellipsoidal at low pressure (200 mT) but small and spheroidal at high pressure (>600 mT). Supported by USDOE.

  15. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy


    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  16. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump (United States)


    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range of...

  17. Ice slurry applications

    Energy Technology Data Exchange (ETDEWEB)

    Kauffeld, M. [Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe (Germany); Wang, M.J.; Goldstein, V. [Sunwell Technologies Inc., 180 Caster Avenue, Woodbridge, L4L 5Y (Canada); Kasza, K.E. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)


    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single-phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. (author)

  18. Original deep convection in the atmosphere of Mars driven by the radiative impact of dust and water-ice particles (United States)

    Spiga, A.; Madeleine, J. B.; Hinson, D.; Millour, E.; Forget, F.; Navarro, T.; Määttänen, A.; Montmessin, F.


    We unveil two examples of deep convection on Mars - in dust storms and water-ice clouds - to demonstrate that the radiative effect of aerosols and clouds can lead to powerful convective motions just as much as the release of latent heat in moist convection

  19. Viscosity of rock-ice mixtures and applications to the evolution of icy satellites (United States)

    Friedson, A. J.; Stevenson, D. J.


    Theory and experiments are used to establish lower and upper bounds on the ratio of actual viscosity to pure ice viscosity for a suspension of rock particles in a water ice matrix. A rheological model for rock-ice mixtures is described, establishing bounds for the range of possible viscosity enhancements provided by a suspension of silicate spheres in an ice matrix. A parametrized thermal convection model is described and used to determine a criterion for criticality, defined as the heat flow and/or silicate volume fraction for which the satellite temperature profile intercepts the melting curve of water ice. The consequences of achieving this critical state are examined, and it is shown that under certain circumstances a 'runaway' differentiation can occur in which the silicates settle to form a core and extensive melting of water ice takes place, the latent heat being supplied by the gravitational energy of differentiation. A possible application of these results to Ganymede and Callisto is described.


    Directory of Open Access Journals (Sweden)

    A. M. Gajiyev


    Full Text Available Abstract. The necessity of the use of technology and analytically summarizes the methods of desalination of seawater and brackish waters. Tasked to investigate the processes occurring in the desalination plant with the continuous process of freezing of ice on heat transfer surface with a film mode of fluid motion.To solve this problem the article deals with mathematical cal model of ice formation on heat transfer surfaces and thermo-electric distiller. The model allows us to estimate the rise time and the thickness of the ice under specified conditions of temperature and flow of water. It is shown that the use of thermoelectric converters allows the flexibility to adjust the mode of ice formation. Solved the problem of determining the maximum thickness of the ice at which freezing is possible film of water flowing through it at a predetermined temperature of the cooling plate and the cooling capacity of the thermoelectric battery.It is established that the performance of thermoelectric opreznitive of the system increases due to the increase in the number of cooled surfaces, and the use of the heat from the hot junction of the converters for melting of ice increases the energy efficiency of the system as a whole. 

  1. Ice sheet hydrology - a review

    International Nuclear Information System (INIS)

    Jansson, Peter; Naeslund, Jens-Ove; Rodhe, Lars


    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  2. Ice sheet hydrology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)


    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging


    International Nuclear Information System (INIS)

    Honda, M.; Kudo, T.; Terada, H.; Takato, N.; Takatsuki, S.; Nakamoto, T.; Inoue, A. K.; Fukagawa, M.; Tamura, M.


    We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H 2 O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without the photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models


    Energy Technology Data Exchange (ETDEWEB)

    Honda, M. [Department of Physics, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011 (Japan); Kudo, T.; Terada, H.; Takato, N. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, Hawaii 96720 (United States); Takatsuki, S.; Nakamoto, T. [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Inoue, A. K. [College of General Education, Osaka Sangyo University, Daito, Osaka 574-8530 (Japan); Fukagawa, M.; Tamura, M. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)


    We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H{sub 2}O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without the photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models.

  5. A scheme for parameterizing ice cloud water content in general circulation models (United States)

    Heymsfield, Andrew J.; Donner, Leo J.


    A method for specifying ice water content in GCMs is developed, based on theory and in-cloud measurements. A theoretical development of the conceptual precipitation model is given and the aircraft flights used to characterize the ice mass distribution in deep ice clouds is discussed. Ice water content values derived from the theoretical parameterization are compared with the measured values. The results demonstrate that a simple parameterization for atmospheric ice content can account for ice contents observed in several synoptic contexts.

  6. Heterogeneous Ice Nucleation: Interplay of Surface Properties and Their Impact on Water Orientations. (United States)

    Glatz, Brittany; Sarupria, Sapna


    Ice is ubiquitous in nature, and heterogeneous ice nucleation is the most common pathway of ice formation. How surface properties affect the propensity to observe ice nucleation on that surface remains an open question. We present results of molecular dynamics studies of heterogeneous ice nucleation on model surfaces. The models surfaces considered emulate the chemistry of kaolinite, an abundant component of mineral dust. We investigate the interplay of surface lattice and hydrogen bonding properties in affecting ice nucleation. We find that lattice matching and hydrogen bonding are necessary but not sufficient conditions for observing ice nucleation at these surfaces. We correlate this behavior to the orientations sampled by the metastable supercooled water in contact with the surfaces. We find that ice is observed in cases where water molecules not only sample orientations favorable for bilayer formation but also do not sample unfavorable orientations. This distribution depends on both surface-water and water-water interactions and can change with subtle modifications to the surface properties. Our results provide insights into the diverse behavior of ice nucleation observed at different surfaces and highlight the complexity in elucidating heterogeneous ice nucleation.

  7. Complex astrophysical experiments relating to jets, solar loops, and water ice dusty plasma (United States)

    Bellan, P. M.; Zhai, X.; Chai, K. B.; Ha, B. N.


    > Recent results of three astrophysically relevant experiments at Caltech are summarized. In the first experiment magnetohydrodynamically driven plasma jets simulate astrophysical jets that undergo a kink instability. Lateral acceleration of the kinking jet spawns a Rayleigh-Taylor instability, which in turn spawns a magnetic reconnection. Particle heating and a burst of waves are observed in association with the reconnection. The second experiment uses a slightly different setup to produce an expanding arched plasma loop which is similar to a solar corona loop. It is shown that the plasma in this loop results from jets originating from the electrodes. The possibility of a transition from slow to fast expansion as a result of the expanding loop breaking free of an externally imposed strapping magnetic field is investigated. The third and completely different experiment creates a weakly ionized plasma with liquid nitrogen cooled electrodes. Water vapour injected into this plasma forms water ice grains that in general are ellipsoidal and not spheroidal. The water ice grains can become quite long (up to several hundred microns) and self-organize so that they are evenly spaced and vertically aligned.

  8. Snow and ice blocking of tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Lia, Leif


    Hydroelectric power development in cold regions causes much concern about operational reliability and dam safety. This thesis studies the temperature distribution in tunnels by means of air temperature measurements in six tunnel spillways and five diversion tunnels. The measurements lasted for two consecutive winters. The air through flow tunnel is used as it causes cooling of both rock and water. In open spillway tunnels, frost reaches the entire tunnel. In spillway tunnels with walls, the frost zones reach about 100 m from the downstream end. In mildly-inclined diversion tunnels, a frost free zone is located in the middle of the tunnel and snow and ice problems were only observed in the inlet and outlet. Severe aufeis is accumulation is observed in the frost zones. The heat transfer from rock to air, water and ice is calculated and used in a prediction model for the calculation of aufeis build-up together with local field observation data. The water penetration of snow plugs is also calculated, based on the heat balance. It takes 20 to 50 days for water to enter the blocked tunnel. The empirical values are 30 to 60 days, but only 1 day if the temperature of the snow pack is 0{sup o}C. Sensitivity analyses are carried out for temperature variations in rock, snow, water and ice. Systematic field observation shows that it is important for hydropower companies to know about the effects of snow and ice blocking in an area. A risk analysis of dam safety is presented for a real case. Finally, the thesis proposes solutions which can reduce the snow and ice problems. 79 refs., 63 figs., 11 tabs.

  9. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles. (United States)

    Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry


    Freeze-thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice-liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree-water relations. We investigated water fluxes induced by ice formation during freeze-thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark's living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze-thaw cycles in tree stems. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Friction of ice measured using lateral force microscopy

    International Nuclear Information System (INIS)

    Bluhm, Hendrik; Inoue, Takahito; Salmeron, Miquel


    The friction of nanometer thin ice films grown on mica substrates is investigated using atomic force microscopy (AFM). Friction was found to be of similar magnitude as the static friction of ice reported in macroscopic experiments. The possible existence of a lubricating film of water due to pressure melting, frictional heating, and surface premelting is discussed based on the experimental results using noncontact, contact, and lateral force microscopy. We conclude that AFM measures the dry friction of ice due to the low scan speed and the squeezing out of the water layer between the sharp AFM tip and the ice surface. (c) 2000 The American Physical Society

  11. The impact of radiatively active water-ice clouds on Martian mesoscale atmospheric circulations (United States)

    Spiga, A.; Madeleine, J.-B.; Hinson, D.; Navarro, T.; Forget, F.


    Background and Goals Water ice clouds are a key component of the Martian climate [1]. Understanding the properties of the Martian water ice clouds is crucial to constrain the Red Planet's climate and hydrological cycle both in the present and in the past [2]. In recent years, this statement have become all the more true as it was shown that the radiative effects of water ice clouds is far from being as negligible as hitherto believed; water ice clouds plays instead a key role in the large-scale thermal structure and dynamics of the Martian atmosphere [3, 4, 5]. Nevertheless, the radiative effect of water ice clouds at lower scales than the large synoptic scale (the so-called meso-scales) is still left to be explored. Here we use for the first time mesoscale modeling with radiatively active water ice clouds to address this open question.

  12. Investigation of heterogeneous ice nucleation in pollen suspensions and washing water (United States)

    Dreischmeier, Katharina; Budke, Carsten; Koop, Thomas


    Biological particles such as pollen often show ice nucleation activity at temperatures higher than -20 °C. Immersion freezing experiments of pollen washing water demonstrate comparable ice nucleation behaviour as water containing the whole pollen bodies (Pummer et al., 2012). It was suggested that polysaccharide molecules leached from the grains are responsible for the ice nucleation. Here, heterogeneous ice nucleation in birch pollen suspensions and their washing water was investigated by two different experimental methods. The optical freezing array BINARY (Bielefeld Ice Nucleation ARraY) allows the direct observation of freezing of microliter-sized droplets. The IN spectra obtained from such experiments with birch pollen suspensions over a large concentration range indicate several different ice nucleation active species, two of which are present also in the washing water. The latter was probed also in differential scanning calorimeter (DSC) experiments of emulsified sub-picoliter droplets. Due to the small droplet size in the emulsion samples and at small concentration of IN in the washing water, such DSC experiments can exhibit the ice nucleation behaviour of a single nucleus. The two heterogeneous freezing signals observed in the DSC thermograms can be assigned to two different kinds of ice nuclei, confirming the observation from the BINARY measurements, and also previous studies on Swedish birch pollen washing water (Augustin et al., 2012). The authors gratefully acknowledge funding by the German Research Foundation (DFG) through the project BIOCLOUDS (KO 2944/1-1) and through the research unit INUIT (FOR 1525) under KO 2944/2-1. We particularly thank our INUIT partners for fruitful collaboration and sharing of ideas and IN samples. S. Augustin, H. Wex, D. Niedermeier, B. Pummer, H. Grothe, S. Hartmann, L. Tomsche, T. Clauss, J. Voigtländer, K. Ignatius, and F. Stratmann, Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989

  13. A Simple Calorimetric Experiment that Highlights Aspects of Global Heat Retention and Global Warming (United States)

    Burley, Joel D.; Johnston, Harold S.


    In this laboratory experiment, general chemistry students measure the heating curves for three different systems: (i) 500 g of room-temperature water heated by a small desk lamp, (ii) 500 g of an ice-water mixture warmed by conduction with room-temperature surroundings, and (iii) 500 g of an ice-water mixture heated by a small desk lamp and by…

  14. Observations of brine plumes below melting Arctic sea ice

    Directory of Open Access Journals (Sweden)

    A. K. Peterson


    Full Text Available In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m−2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  15. Observations of brine plumes below melting Arctic sea ice (United States)

    Peterson, Algot K.


    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  16. The phase diagram of water at negative pressures: virtual ices. (United States)

    Conde, M M; Vega, C; Tribello, G A; Slater, B


    The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.

  17. The Contribution of Water Ice Clouds to the Water Cycle in the North Polar Region of Mars: Preliminary Analysis (United States)

    Bass, D. S.; Tamppari, L. K.


    While it has long been known that Mars' north residual polar cap and the Martian regolith are significant sources of atmospheric water vapor, the amount of water vapor observed in the northern spring season by the Viking Mars Atmospheric Water Detector instrument (MAWD) cannot be attributed to cap and regolith sources alone. Kahn suggested that ice hazes may be the mechanism by which additional water is supplied to the Martian atmosphere. Additionally, a significant decrease in atmospheric water vapor was observed in the late northern summer that could not be correlated with the return of the cold seasonal C02 ice. While the detection of water ice clouds on Mars indicate that water exists in Mars' atmosphere in several different phases, the extent to which water ice clouds play a role in moving water through the Martian atmosphere remains uncertain. Work by Bass et. al. suggested that the time dependence of water ice cap seasonal variability and the increase in atmospheric water vapor depended on the polar cap center reaching 200K, the night time saturation temperature. Additionally, they demonstrated that a decrease in atmospheric water vapor may be attributed to deposition of water ice onto the surface of the polar cap; temperatures were still too warm at this time in the summer for the deposition of carbon dioxide. However, whether water ice clouds contribute significantly to this variability is unknown. Additional information is contained in original extended abstract.

  18. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice (United States)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.


    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  19. A simulation study of homogeneous ice nucleation in supercooled salty water (United States)

    Soria, Guiomar D.; Espinosa, Jorge R.; Ramirez, Jorge; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo


    We use computer simulations to investigate the effect of salt on homogeneous ice nucleation. The melting point of the employed solution model was obtained both by direct coexistence simulations and by thermodynamic integration from previous calculations of the water chemical potential. Using a seeding approach, in which we simulate ice seeds embedded in a supercooled aqueous solution, we compute the nucleation rate as a function of temperature for a 1.85 NaCl mol per water kilogram solution at 1 bar. To improve the accuracy and reliability of our calculations, we combine seeding with the direct computation of the ice-solution interfacial free energy at coexistence using the Mold Integration method. We compare the results with previous simulation work on pure water to understand the effect caused by the solute. The model captures the experimental trend that the nucleation rate at a given supercooling decreases when adding salt. Despite the fact that the thermodynamic driving force for ice nucleation is higher for salty water for a given supercooling, the nucleation rate slows down with salt due to a significant increase of the ice-fluid interfacial free energy. The salty water model predicts an ice nucleation rate that is in good agreement with experimental measurements, bringing confidence in the predictive ability of the model. We expect that the combination of state-of-the-art simulation methods here employed to study ice nucleation from solution will be of much use in forthcoming numerical investigations of crystallization in mixtures.

  20. Eulerian Method for Ice Crystal Icing

    NARCIS (Netherlands)

    Norde, Ellen; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie

    In this study, an ice accretion method aimed at ice crystal icing in turbofan engines is developed and demonstrated for glaciated as well as mixed-phase icing conditions. The particle trajectories are computed by an Eulerian trajectory method. The effects of heat transfer and phase change on the

  1. Physical modeling and monitoring of the process of thermal-erosion of an ice-wedge during a partially-controlled field experiment (Bylot Island, NU, Canada) (United States)

    Godin, E.; Fortier, D.


    Syngenetic ice-wedges polygons are widespread periglacial features of the Arctic. On Bylot Island, Nunavut, Canada, numerous thermo-erosion gullies up to several 100's m in length developed in polygonal wetlands during the last decades. These gullies contributed to drainage of these wetlands and changed dramatically local ecological conditions. Concentrated and repeated snowmelt surface runoff infiltrated frost cracks, where convective heat transfer between flowing water and ice initiated piping in ice wedges leading to the rapid development of tunnels and gullies in the permafrost (Fortier D. et al., 2007). We conducted field experiments to quantify the convection process and speed of ice wedges ablation. The experiments were accomplished between the 23/06/2013 and the 05/07/2013 over A; an exposed sub-horizontal ice-wedge surface and B; a tunnel in an ice-wedge crack. The ice was instrumented with graduated sticks to calculate the ice ablation following the flow of a defined amount of water. A fixed quantity of water obtained from a nearby waterfall was diverted over the ice through a PVC pipe. Water temperature Wt (K), quantity Wq (L s-1 or m3 s-1), ice ablation rate Iar (m s-1) and convective heat transfer coefficient α (W m-2 K) were obtained during the 5 experiments. The objective of this paper is to quantify the heat transfer process from field measurements from an ice wedge under ablation and to compare with coefficients from previous researches and in the literature. For each experiment with the ice-surface scenario, water temperature varied between 280 K and 284 K. Discharge varied between 0.0001 and 0.0003 m3 s-1. Ablation rate varied between 1.8 * 10-5 and 0.0004 m s-1. Heat transfer coefficient varied between 706 and 11 655 W m-2 K and between 54 and 4802 W of heat was transferred to ice. For each experiment with the tunnel scenario, water temperature was 284 K × 1 K. Discharge was 0.0002 m3 s-1. Ablation rate varied between 0.0001 and 0.0003 m s-1

  2. Effetively trapping air or lqiud water for anti-icing applications (United States)

    Wang, Jianjun


    Icing on solid surfaces leads to operational difficulties and high maintenance efforts for power networks, aircrafts, ships, ground transportation vehicles and house-hold refrigerators, to name but a few. In extreme cases, icing on surfaces causes disastrous events such as crash of aircrafts and collapse of power networks, which result in severe economic impact and large loss of life. This talk is focused on the fundamentals of the ice formation and adhesion of ice with solid substrates aiming for fighting against icing on solid surfaces. When the supercooling is low, it would be possible to remove supercooled liquid water from the solid surfaces before freezing occurs. To achieve this, we design and constructed surfaces that can trap the air at the subfreezing temperature thus condensed water microdroplets could be spontaneously removed after the coalescence. When the supercooling is high, icing on surfaces occurs spontaniously. In this case, we constructed coatings on which aqueous lubricating layer could be trapped, thus the ice adhesion on the coating is so low that the ice formed atop could be removed by a wind action or its own gravity.


    Energy Technology Data Exchange (ETDEWEB)

    Levi, A.; Podolak, M. [Department of Geophysics and Planetary Science, Tel Aviv University, Tel Aviv 69978 (Israel); Sasselov, D., E-mail: [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)


    Whether volatiles can be entrapped in a background matrix composing planetary envelopes and be dragged via convection to the surface is a key question in understanding atmospheric fluxes, cycles, and composition. In this paper, we consider super-Earths with an extensive water mantle (i.e., water planets), and the possibility of entrapment of methane in their extensive water-ice envelopes. We adopt the theory developed by van der Waals and Platteeuw for modeling solid solutions, often used for modeling clathrate hydrates, and modify it in order to estimate the thermodynamic stability field of a new phase called methane filled ice Ih. We find that in comparison to water ice VII the filled ice Ih structure may be stable not only at the high pressures but also at the high temperatures expected at the core-water mantle transition boundary of water planets.

  4. Ice-Release and Erosion Resistant Materials for Wind Turbines (United States)

    Zhang, Wei; Brinn, Cameron; Cook, Alex; Pascual-Marquez, Fernando


    Icing conditions may cause wind turbine generators to partially lose productivity or to be completely shut down to avoid structural damage. At present, commercially available technologies to mitigate this problem consist of expensive, energy hungry heating elements, which costs roughly 70,000 euro per medium size turbine. Conventional passive ice protection coating systems heavily rely on delicate surface structures and expensive materials to create water repellent superhydrophobic / low surface energy surfaces, which have been proven to be ineffective against ice accumulation. The lack of performance among conventional ice protection materials stems from a flaw in the approach to the problem: failure to recognize that water in its liquid form (WATER) and water in its solid form (ICE) are two different things. Something that works for WATER does not automatically work for ICE. Another reason is that many superhydrophobic materials are often reliant upon often fragile micro-structured surfaces to achieve their intended effects. This paper discusses a fundamentally different approach to the creation of a robust, low cost, durable, and multifunctional materials for ice release and erosion resistance. This National Science Foundation sponsored ice-release coating technology holds promise for protecting wind turbine blades and towers, thus potentially increasing reliability for power generation under icing conditions. Because of the vulnerability of wind turbine blades to ice buildup and erosion damages, wind farm facilities stand to reap considerable benefits.

  5. Load Shifting and Storage of Cooling Energy through Ice Bank or Ice Slurry Systems: modelling and experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grozdek, Marino


    part of the refrigeration system in dairy and cheese factory 'Antun Bohnec' in the city of Ludbreg in Croatia. Experimental findings were compared to the simulation model. The software 'BankaLeda' presents a strong optimization tool for designers and engineers in the field by providing a high degree of freedom in defining particular system design and operating parameters. It offers a basis for assessment and testing of a new energy efficient system arrangements and measures. Besides it will give decision makers the ability to test potential solutions in the process of CTES system design. In the second part of the thesis ice slurry pressure drop and heat transfer in horizontal straight tubes have been experimentally investigated. In particular a mixture of 10.3 % of ethanol and water with an initial freezing point of -4.4 deg C was considered. It was found that the behaviour of ice slurry flow is changing with time and that ice slurry pressure drop is generally higher than for single phase flow. However for ice concentrations of 15 % and higher, for certain velocities ice slurry pressure drop is found to be of a similar value as for single phase fluid. Moreover, if ice slurry is to be used as a energy transport media it is recommended to keep the ice mass fraction at a level of 20 %. With tube geometry and thermophysical properties of a carrier fluid the heat transfer of ice slurry is generally a function of ice mass fraction and velocity. The imposed heat flux has no or has just minor influence on the heat transfer coefficient. Up to ice mass fraction between 10-15 % the mean heat transfer coefficient shows only slight (laminar flow) or no increase (turbulent flow) in comparison to single phase flow. Beyond that ice mass fraction the heat transfer coefficient is increasing significantly. The test data for pressure drop and heat transfer in laminar and turbulent regime was compared to several correlations from the literature. A new correlations for

  6. Polyamorphism in Water: Amorphous Ices and their Glassy States (United States)

    Amann-Winkel, K.; Boehmer, R.; Fujara, F.; Gainaru, C.; Geil, B.; Loerting, T.


    Water is ubiquitous and of general importance for our environment. But it is also known as the most anomalous liquid. The fundamental origin of the numerous anomalies of water is still under debate. An understanding of these anomalous properties of water is closely linked to an understanding of the phase diagram of the metastable non-crystalline states of ice. The process of pressure induced amorphization of ice was first observed by Mishima et al. [1]. The authors pressurized hexagonal ice at 77 K up to a pressure of 1.6 GPa to form high density amorphous ice (HDA). So far three distinct structural states of amorphous water are known [2], they are called low- (LDA), high- (HDA) and very high density amorphous ice (VHDA). Since the discovery of multiple distinct amorphous states it is controversy discussed whether this phenomenon of polyamorphism at high pressures is connected to the occurrence of more than one supercooled liquid phase [3]. Alternatively, amorphous ices have been suggested to be of nanocrystalline nature, unrelated to liquids. Indeed inelastic X-ray scattering measurements indicate sharp crystal-like phonons in the amorphous ices [4]. In case of LDA the connection to the low-density liquid (LDL) was inferred from several experiments including the observation of a calorimetric glass-to-liquid transition at 136 K and ambient pressure [5]. Recently also the glass transition in HDA was observed at 116 K at ambient pressure [6] and at 140 K at elevated pressure of 1 GPa [7], using calorimetric measurements as well as dielectric spectroscopy. We discuss here the general importance of amorphous ices and their liquid counterparts and present calorimetric and dielectric measurements on LDA and HDA. The good agreement between dielectric and calorimetric results convey for a clearer picture of water's vitrification phenomenon. [1] O. Mishima, L. D. Calvert, and E. Whalley, Nature 314, 76, 1985 [2] D.T. Bowron, J. L. Finney, A. Hallbrucker, et al., J. Chem

  7. Ice versus liquid water saturation in simulations of the indian summer monsoon (United States)

    Glazer, Russell H.; Misra, Vasubandhu


    At the same temperature, below 0 °C, the saturation vapor pressure (SVP) over ice is slightly less than the SVP over liquid water. Numerical models use the Clausius-Clapeyron relation to calculate the SVP and relative humidity, but there is not a consistent method for the treatment of saturation above the freezing level where ice and mixed-phase clouds may be present. In the context of current challenges presented by cloud microphysics in climate models, we argue that a better understanding of the impact that this treatment has on saturation-related processes like cloud formation and precipitation, is needed. This study explores the importance of the SVP calculation through model simulations of the Indian summer monsoon (ISM) using the regional spectral model (RSM) at 15 km grid spacing. A combination of seasonal and multiyear simulations is conducted with two saturation parameterizations. In one, the SVP over liquid water is prescribed through the entire atmospheric column (woIce), and in another the SVP over ice is used above the freezing level (wIce). When SVP over ice is prescribed, a thermodynamic drying of the middle and upper troposphere above the freezing level occurs due to increased condensation. In the wIce runs, the model responds to the slight decrease in the saturation condition by increasing, relative to the SVP over liquid water only run, grid-scale condensation of water. Increased grid-scale mean seasonal precipitation is noted across the ISM region in the simulation with SVP over ice prescribed. Modification of the middle and upper troposphere moisture results in a decrease in mean seasonal mid-level cloud amount and an increase in high cloud amount when SVP over ice is prescribed. Multiyear simulations strongly corroborate the qualitative results found in the seasonal simulations regarding the impact of ice versus liquid water SVP on the ISM's mean precipitation and moisture field. The mean seasonal rainfall difference over All India between wIce

  8. Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice (United States)

    Vance, Steve; Bouffard, Mathieu; Choukroun, Mathieu; Sotin, Christophe


    The large icy moons of Jupiter contain vast quantities of liquid water, a key ingredient for life. Ganymede and Callisto are weaker candidates for habitability than Europa, in part because of the model-based assumption that high-pressure ice layers cover their seafloors and prevent significant water-rock interaction. Water-rock interactions may occur, however, if heating at the rock-ice interface melts the high pressure ice. Highly saline fluids would be gravitationally stable, and might accumulate under the ice due to upward migration, refreezing, and fractionation of salt from less concentrated liquids. To assess the influence of salinity on Ganymede's internal structure, we use available phase-equilibrium data to calculate activity coefficients and predict the freezing of water ice in the presence of aqueous magnesium sulfate. We couple this new equation of state with thermal profiles in Ganymede's interior-employing recently published thermodynamic data for the aqueous phase-to estimate the thicknesses of layers of ice I, III, V, and VI. We compute core and silicate mantle radii consistent with available constraints on Ganymede's mass and gravitational moment of inertia. Mantle radii range from 800 to 900 km for the values of salt and heat flux considered here (4-44 mW m-2 and 0 to 10 wt% MgSO4). Ocean concentrations with salinity higher than 10 wt% have little high pressure ice. Even in a Ganymede ocean that is mostly liquid, achieving such high ocean salinity is permissible for the range of likely S/Si ratios. However, elevated salinity requires a smaller silicate mantle radius to satisfy mass and moment-of-inertia constraints, so ice VI is always present in Ganymede's ocean. For lower values of heat flux, oceans with salinity as low as 3 wt% can co-exist with ice III. Available experimental data indicate that ice phases III and VI become buoyant for salinity higher than 5 wt% and 10 wt%, respectively. Similar behavior probably occurs for ice V at salinities

  9. Simulation and experiment of the unsteady heat transport in the onset time of nucleation and crystallization of ice from the subcooled solution

    Energy Technology Data Exchange (ETDEWEB)

    Qin, F.G.F.; Jian Chao Zhao; Russell, A.B.; Xiao Dong Chen; Chen, J.J. [University of Auckland (New Zealand). Dept. of Chemical and Materials Engineering; Robertson, L. [Fonterra Research Centre, Palmerston North (New Zealand)


    Heat transfer is an unsteady process in the initial period of ice nucleation or phase transition from aqueous solution. During this period the latent heat of freezing increases the temperature in bulk solution monotonously until the system reaches equilibrium. Meanwhile heat can transfer from the solution to the environment or vise versa. The analysis of this unsteady heat transfer process leads to the establishment of a mathematical model, which is represented by two simultaneous differential equations. Using the Laplace transform and inverse transform, and incorporating the initial condition of ice nucleation, we obtained an analytical solution of this model. Further discussion of the model's fitness by comparing to the experimental data leads to a recognition that ice fouling (or ice adhesion) on the cooler wall should be highlighted in estimating the heat transfer resistance at the very beginning of the ice formation. The model fits to the experimental data satisfactorily. (author)


    Energy Technology Data Exchange (ETDEWEB)

    Terada, Hiroshi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Tokunaga, Alan T., E-mail: [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu 96822 (United States)


    We present the 1.9-4.2 {mu}m spectra of the five bright (L {<=} 11.2) young stars associated with silhouette disks with a moderate to high inclination angle of 39 Degree-Sign -80 Degree-Sign in the M42 and M43 regions. The water ice absorption is seen toward d121-1925 and d216-0939, while the spectra of d182-316, d183-405, and d218-354 show no water ice feature around 3.1 {mu}m within the detection limits. By comparing the water ice features toward nearby stars, we find that the water ice absorption toward d121-1925 and d216-0939 most likely originates from the foreground material and the surrounding disk, respectively. The angle of the disk inclination is found to be mainly responsible for the difference of the optical depth of the water ice among the five young stars. Our results suggest that there is a critical inclination angle between 65 Degree-Sign and 75 Degree-Sign for the circumstellar disk where the water ice absorption becomes strong. The average density at the disk surface of d216-0939 was found to be 6.38 Multiplication-Sign 10{sup -18} g cm{sup -3}. The water ice absorption band in the d216-0939 disk is remarkable in that the maximum optical depth of the water ice band is at a longer wavelength than detected before. It indicates that the primary carrier of the feature is purely crystallized water ice at the surface of the d216-0939 disk with characteristic size of {approx}0.8 {mu}m, which suggests grain growth. This is the first direct detection of purely crystallized water ice in a silhouette disk.

  11. The interaction of radio frequency electromagnetic fields with atmospheric water droplets and applications to aircraft ice prevention. Thesis (United States)

    Hansman, R. J., Jr.


    The feasibility of computerized simulation of the physics of advanced microwave anti-icing systems, which preheat impinging supercooled water droplets prior to impact, was investigated. Theoretical and experimental work performed to create a physically realistic simulation is described. The behavior of the absorption cross section for melting ice particles was measured by a resonant cavity technique and found to agree with theoretical predictions. Values of the dielectric parameters of supercooled water were measured by a similar technique at lambda = 2.82 cm down to -17 C. The hydrodynamic behavior of accelerated water droplets was studied photograhically in a wind tunnel. Droplets were found to initially deform as oblate spheroids and to eventually become unstable and break up in Bessel function modes for large values of acceleration or droplet size. This confirms the theory as to the maximum stable droplet size in the atmosphere. A computer code which predicts droplet trajectories in an arbitrary flow field was written and confirmed experimentally. The results were consolidated into a simulation to study the heating by electromagnetic fields of droplets impinging onto an object such as an airfoil. It was determined that there is sufficient time to heat droplets prior to impact for typical parameter values. Design curves for such a system are presented.

  12. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models

    Directory of Open Access Journals (Sweden)

    S. Goeller


    Full Text Available There is currently no doubt about the existence of a widespread hydrological network under the Antarctic Ice Sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux–basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  13. A balanced water layer concept for subglacial hydrology in large scale ice sheet models (United States)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.


    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  14. Current status of and problems in ice heat storage systems contributing to improving load rate. Proliferation of the ice heat storage type air conditioning system and roles of the Heat Pump and Heat Storage Center; Fukaritsu kaizen ni kokensuru kori chikunetsu system no genjo to kadai. Kori chikunetsushiki kucho system no fukyu to heat pump chikunetsu center no yakuwari

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, T.


    This paper introduces the roles played by the `Heat Pump and Heat Storage Center`. This foundation had been performing research and development and international information exchange in devices and equipment as the `Heat Pump Technology Development Center`. Development of heat storage type air conditioning systems as a measure for load leveling, and efforts of their proliferation and enlightenment were added to the business activities. As a result, the foundation`s name was changed to the present name. Its activities being planned and performed include: interest supplementing operation for installation of an air conditioning system of the heat pump system using storage of latent heat such as ice heat storage, holding seminars for promoting proliferation of the ice heat storage type air conditioning system, opening the home page, participation in exhibitions of various types, and preparation of different publicity tools. More specifically, carrying series advertisements in newspapers and magazines, holding nation-wide symposiums tying up with Japan Economic Press, publishing an organ newspaper targeted at both of experts and general people, and preparation of general pamphlets to introduce comprehensively the information about heat storage. 3 figs., 1 tab.

  15. The role of fluid temperature and form on endurance performance in the heat. (United States)

    Tan, P M S; Lee, J K W


    Exercising in the heat often results in an excessive increase in body core temperature, which can be detrimental to health and endurance performance. Research in recent years has shifted toward the optimum temperature at which drinks should be ingested. The ingestion of cold drinks can reduce body core temperature before exercise but less so during exercise. Temperature of drinks does not seem to have an effect on the rate of gastric emptying and intestinal absorption. Manipulating the specific heat capacity of a solution can further induce a greater heat sink. Ingestion of ice slurry exploits the additional energy required to convert the solution from ice to water (enthalpy of fusion). Body core temperature is occasionally observed to be higher at the point of exhaustion with the ingestion of ice slurry. There is growing evidence to suggest that ingesting ice slurry is an effective and practical strategy to prevent excessive rise of body core temperature and improve endurance performance. This information is especially important when only a fixed amount of fluid is allowed to be carried, often seen in some ultra-endurance events and military operations. Future studies should evaluate the efficacy of ice slurry in various exercise and environmental conditions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Two-phase convection in Ganymede's high-pressure ice layer - Implications for its geological evolution (United States)

    Kalousová, Klára; Sotin, Christophe; Choblet, Gaël; Tobie, Gabriel; Grasset, Olivier


    Ganymede, the largest moon in the solar system, has a fully differentiated interior with a layer of high-pressure (HP) ice between its deep ocean and silicate mantle. In this paper, we study the dynamics of this layer using a numerical model of two-phase ice-water mixture in two-dimensional Cartesian geometry. While focusing on the generation of water at the silicate/HP ice interface and its upward migration towards the ocean, we investigate the effect of bottom heat flux, the layer thickness, and the HP ice viscosity and permeability. Our results suggest that melt can be generated at the silicate/HP ice interface for small layer thickness ( ≲ 200 km) and high values of heat flux ( ≳ 20 mW m-2) and viscosity ( ≳ 1015 Pa s). Once generated, the water is transported through the layer by the upwelling plumes. Depending on the vigor of convection, it stays liquid or it may freeze before melting again as the plume reaches the temperate (partially molten) layer at the boundary with the ocean. The thickness of this layer as well as the amount of melt that is extracted from it is controlled by the permeability of the HP ice. This process constitutes a means of transporting volatiles and salts that might have dissolved into the melt present at the silicate/HP ice interface. As the moon cools down, the HP ice layer becomes less permeable because the heat flux from the silicates decreases and the HP ice layer thickens.

  17. Heterogeneous ice nucleation in aqueous solutions: the role of water activity. (United States)

    Zobrist, B; Marcolli, C; Peter, T; Koop, T


    Heterogeneous ice nucleation experiments have been performed with four different ice nuclei (IN), namely nonadecanol, silica, silver iodide and Arizona test dust. All IN are either immersed in the droplets or located at the droplets surface. The IN were exposed to various aqueous solutions, which consist of (NH4)2SO4, H2SO4, MgCl2, NaCl, LiCl, Ca(NO3)2, K2CO3, CH3COONa, ethylene glycol, glycerol, malonic acid, PEG300 or a NaCl/malonic acid mixture. Freezing was studied using a differential scanning calorimeter and a cold finger cell. The results show that the heterogeneous ice freezing temperatures decrease with increasing solute concentration; however, the magnitude of this effect is solute dependent. In contrast, when the results are analyzed in terms of the solution water activity a very consistent behavior emerges: heterogeneous ice nucleation temperatures for all four IN converge each onto a single line, irrespective of the nature of the solute. We find that a constant offset with respect to the ice melting point curve, Deltaaw,het, can describe the observed freezing temperatures for each IN. Such a behavior is well-known for homogeneous ice nucleation from supercooled liquid droplets and has led to the development of water-activity-based ice nucleation theory. The large variety of investigated solutes together with different general types of ice nuclei studied (monolayers, ionic crystals, covalently bound network-forming compounds, and a mixture of chemically different crystallites) underlines the general applicability of water-activity-based ice nucleation theory also for heterogeneous ice nucleation in the immersion mode. Finally, the ice nucleation efficiencies of the various IN, as well as the atmospheric implication of the developed parametrization are discussed.

  18. Triple Isotope Water Measurements of Lake Untersee Ice using Off-Axis ICOS (United States)

    Berman, E. S.; Huang, Y. W.; Andersen, D. T.; Gupta, M.; McKay, C. P.


    Lake Untersee (71.348°S, 13.458°E) is the largest surface freshwater lake in the interior of the Gruber Mountains of central Queen Maud Land in East Antarctica. The lake is permanently covered with ice, is partly bounded by glacier ice and has a mean annual air temperature of -10°C. In contrast to other Antarctic lakes the dominating physical process controlling ice-cover dynamics is low summer temperatures and high wind speeds resulting in sublimation rather than melting as the main mass-loss process. The ice-cover of the lake is composed of lake-water ice formed during freeze-up and rafted glacial ice derived from the Anuchin Glacier. The mix of these two fractions impacts the energy balance of the lake, which directly affects ice-cover thickness. Ice-cover is important if one is to understand the physical, chemical, and biological linkages within these unique, physically driven ecosystems. We have analyzed δ2H, δ18O, and δ17O from samples of lake and glacier ice collected at Lake Untersee in Dec 2014. Using these data we seek to answer two specific questions: Are we able to determine the origin and history of the lake ice, discriminating between rafted glacial ice and lake water? Can isotopic gradients in the surface ice indicate the ablation (sublimation) rate of the surface ice? The triple isotope water analyzer developed by Los Gatos Research (LGR 912-0032) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures δ2H, δ18O, and δ17O from water, as well as the calculated d-excess and 17O-excess. The laboratory precision in high performance mode for both δ17O and δ18O is 0.03 ‰, and for δ2H is 0.2 ‰. Methodology and isotope data from Lake Untersee samples are presented. Figure: Ice samples were collected across Lake Untersee from both glacial and lake ice regions for this study.

  19. Extreme learning machine: a new alternative for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters. (United States)

    Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei


    Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.

  20. Accretion growth of water-ice grains in astrophysically-relevant dusty plasma experiment (United States)

    Chai, Kil-Byoung; Marshall, Ryan; Bellan, Paul


    The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera equipped with a long-distance microscope lens. It is found that (i) the ice grain number density decreases four-fold as the average grain length increases from 20 to 80 um, (ii) the ice grain length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge so the agglomeration growth is prevented by their strong mutual repulsion. It is concluded that direct accretion of water molecules is in good agreement with the observed ice grain growth. The volumetric packing factor of the ice grains must be less than 0.25 in order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains; this conclusion is consistent with ice grain images showing a fractal character.

  1. First Detection of Water Ice and Organics on an Asteroid: A Possible Link to the Origin of Earth's Water (United States)

    Hargrove, Kelsey D.; Campins, H.; Pinilla-Alonso, N.; Howell, E. S.; Kelley, M. S.; Licandro, J.; Mothédiniz, T.; Fernández, Y.; Ziffer, J.


    We report the detection of water ice and organics on the surface of asteroid 24 Themis. Our rotationally-resolved infrared (2-4 µm) spectra of this asteroid indicate that the ice and organics are widespread on its surface. The spectral difference with other asteroids observed in the same manner, makes 24 Themis unique so far. Our identification of water ice and organic compounds on this asteroid agrees with independent results (Rivkin and Emery 2010). At first glance, the presence of any surface ice on 24 Themis, particularly over a significant fraction of its surface, is puzzling because of the instability for exposed water ice at Themis's heliocentric distance ( 3.2 AU). Nevertheless, there are several possible sources for this unstable ice and identifying them is likely to be diagnostic of other processes on primitive asteroids. The presence of water ice on 24 Themis supports the idea that ice sublimation drives the cometary activity in two small members of the Themis dynamical family, labeled "Main Belt comets” by Hsieh and Jewitt (2006). It also helps to address other relevant questions, such as, how abundant is water ice in the outer asteroid belt and where was the "snow” line when the solar system formed? The answers to these questions could transform current views of primitive asteroids, delivery of water and organic molecules to Earth, and models of Solar System formation. This research was published in the April 29, 2010 issue of the journal Nature. Hargrove and Campins are visiting astronomers at the Infrared Telescope Facility (IRTF), which is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration

  2. Ice slurry flow and heat transfer during flow through tubes of rectangular and slit cross-sections

    Directory of Open Access Journals (Sweden)

    Niezgoda-Żelasko Beata


    Full Text Available The paper presents the results of experimental research of pressure drop and heat transfer coefficients of ice slurry during its flow through tubes of rectangular and slit cross-sections. Moreover, the work discusses the influence of solid particles, type of motion and cross-section on the changes in the pressure drop and heat transfer coefficient. The analysis presented in the paper allows for identification of the criterial relations used to calculate the Fanning factor and the Nusselt number for laminar and turbulent flow, taking into account elements such as phase change, which accompanies the heat transfer process. Ice slurry flow is treated as a generalized flow of a non-Newtonian fluid.

  3. The potential influence of Asian and African mineral dust on ice, mixed-phase and liquid water clouds

    Directory of Open Access Journals (Sweden)

    A. Wiacek


    Full Text Available This modelling study explores the availability of mineral dust particles as ice nuclei for interactions with ice, mixed-phase and liquid water clouds, also tracking the particles' history of cloud-processing. We performed 61 320 one-week forward trajectory calculations originating near the surface of major dust emitting regions in Africa and Asia using high-resolution meteorological analysis fields for the year 2007. Dust-bearing trajectories were assumed to be those coinciding with known dust emission seasons, without explicitly modelling dust emission and deposition processes. We found that dust emissions from Asian deserts lead to a higher potential for interactions with high ice clouds, despite being the climatologically much smaller dust emission source. This is due to Asian regions experiencing significantly more ascent than African regions, with strongest ascent in the Asian Taklimakan desert at ~25%, ~40% and 10% of trajectories ascending to 300 hPa in spring, summer and fall, respectively. The specific humidity at each trajectory's starting point was transported in a Lagrangian manner and relative humidities with respect to water and ice were calculated in 6-h steps downstream, allowing us to estimate the formation of liquid, mixed-phase and ice clouds. Downstream of the investigated dust sources, practically none of the simulated air parcels reached conditions of homogeneous ice nucleation (T≲−40 °C along trajectories that have not experienced water saturation first. By far the largest fraction of cloud forming trajectories entered conditions of mixed-phase clouds, where mineral dust will potentially exert the biggest influence. The majority of trajectories also passed through atmospheric regions supersaturated with respect to ice but subsaturated with respect to water, where so-called "warm ice clouds" (T≳−40 °C theoretically may form prior to supercooled water or mixed-phase clouds. The importance of "warm ice

  4. Standard Practice for Determining Resistance of Solar Collector Covers to Hail by Impact With Propelled Ice Balls

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This practice covers a procedure for determining the ability of cover plates for flat-plate solar collectors to withstand impact forces of falling hail. Propelled ice balls are used to simulate falling hailstones. This practice is not intended to apply to photovoltaic cells or arrays. 1.2 This practice defines two types of test specimens, describes methods for mounting specimens, specifies impact locations on each test specimen, provides an equation for determining the velocity of any size ice ball, provides a method for impacting the test specimens with ice balls, and specifies parameters that must be recorded and reported. 1.3 This practice does not establish pass or fail levels. The determination of acceptable or unacceptable levels of ice-ball impact resistance is beyond the scope of this practice. 1.4 The size of ice ball to be used in conducting this test is not specified in this practice. This practice can be used with various sizes of ice balls. 1.5 The categories of solar collector cover plat...

  5. Sea ice roughness: the key for predicting Arctic summer ice albedo (United States)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.


    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  6. Perennial water stratification and the role of freshwater in the mass balance of Arctic ice shelves and multiyear landfast sea ice

    International Nuclear Information System (INIS)

    Jeffries, M.O.


    A number of the ice shelves of northern Ellesmere Island in the Canadian High Arctic owe their origin to multiyear landfast sea ice (MLSI) growth during the post-Hypsithermal cooling ca. 3,000-4,000 BP. Since they grew in response to an arctic-wide climatic deterioration and contain evidence of occasional post-4,000 BP climatic ameliorations, they may be expected to be sensitive to future global climate changes manifested in the High Arctic. The purpose of this paper is to examine ice-ocean interactions and feedbacks, and the response of the ice shelves and the MLSI to the improved summer climate of the last ca. 100 years, and implications for the future. There is good evidence that there has been a negative surface mass balance since the turn of the century. Mass balance measurements on the Ward Hunt Ice Shelf between 1966 and 1985 indicate a total ice loss of 1.371 m at a mean annual rate of 68.5 mm. The interannual pattern of accumulation and ablation and the long-term losses on the ice shelf are similar to other Canadian High Arctic glacier mass balance records. It is evident from water and ice core records of salinity, δ 18 0 and tritium, that perennial water stratification is common below and behind the ice shelves and MLSI. The coastal waters are highly stratified, with anything from 0.5 m to 41.0 m of freshwater interposed between the overlying ice and underlying seawater. The primary source of the freshwater is summer run-off of snow-meltwater from the adjacent land and from the ice itself. There is minimal mixing between the influent freshwater and seawater, and the freshwater is either dammed behind the ice shelves and the MLSI, with subsequent under-ice freshwater outflows, or pooled in under-ice depressions

  7. Heat sources for glacial ice melt in a West Greenland tidewater outlet glacier fjord: The role of subglacial freshwater discharge

    DEFF Research Database (Denmark)

    Bendtsen, Jørgen; Mortensen, John; Lennert, Kunuk


    The melting of tidewater outlet glaciers from the Greenland Ice Sheet contributes significantly to global sea level rise. Accelerated mass loss is related to melt-processes in front of calving glaciers, yet the role of ocean heat transports is poorly understood. Here we present the first direct...... of the area near the glacier showed that ice melt was mainly due to ocean heat transport and that direct plume-associated melt was only important in periods with high meltwater discharge rates of ~100 m3 s−1. Ocean mixing outside of the plume area was thus the primary heat source for melting glacier ice....

  8. Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes (United States)

    Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon


    Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.

  9. Pressure melting and ice skating (United States)

    Colbeck, S. C.


    Pressure melting cannot be responsible for the low friction of ice. The pressure needed to reach the melting temperature is above the compressive failure stress and, if it did occur, high squeeze losses would result in very thin films. Pure liquid water cannot coexist with ice much below -20 °C at any pressure and friction does not increase suddenly in that range. If frictional heating and pressure melting contribute equally, the length of the wetted contact could not exceed 15 μm at a speed of 5 m/s, which seems much too short. If pressure melting is the dominant process, the water films are less than 0.08 μm thick because of the high pressures.

  10. Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Lu, Zong; Whitman, Matthew S.


    The balance of thermokarst lakes with bedfast- and floating-ice regimes across Arctic lowlands regulates heat storage, permafrost thaw, winter-water supply, and over-wintering aquatic habitat. Using a time-series of late-winter synthetic aperture radar (SAR) imagery to distinguish lake ice regimes in two regions of the Arctic Coastal Plain of northern Alaska from 2003–2011, we found that 18% of the lakes had intermittent ice regimes, varying between bedfast-ice and floating-ice conditions. Comparing this dataset with a radar-based lake classification from 1980 showed that 16% of the bedfast-ice lakes had shifted to floating-ice regimes. A simulated lake ice thinning trend of 1.5 cm/yr since 1978 is believed to be the primary factor driving this form of lake change. The most profound impacts of this regime shift in Arctic lakes may be an increase in the landscape-scale thermal offset created by additional lake heat storage and its role in talik development in otherwise continuous permafrost as well as increases in over-winter aquatic habitat and winter-water supply.

  11. Arctic Sea Ice Basal Melt Onset Variability and Associated Ocean Surface Heating (United States)

    Merrick, R. A.; Hutchings, J. K.


    The interannual and regional variability in Arctic sea ice melt has previously been characterized only in terms of surface melting. A focus on the variability in the onset of basal melt is additionally required to understand Arctic melt patterns. Monitoring basal melt provides a glimpse into the importance of ocean heating to sea ice melt. This warming is predominantly through seawater exposure due to lead opening and the associated solar warming at the ocean's surface. We present the temporal variability in basal melt onset observed by ice mass balance buoys throughout the Arctic Ocean since 2003, providing a different perspective than the satellite microwave data used to measure the onset of surface melt. We found that melt onset varies greatly, even for buoys deployed within 100km of each other. Therefore large volumes of data are necessary to accurately estimate the variability of basal melt onset. Once the variability of basal melt onset has been identified, we can investigate how this range has been changing as a response to atmospheric and oceanic warming, changes in ice morphology as well as the intensification of the ice albedo feedback.

  12. Study of practical application of ice-aided air-conditioning to mushroom culture; Shiitake saibaiyo kori chikunetsu reidanbo system no jitsuyoka kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Niiyama, K. [Kansai Electric Power Co. Inc., Osaka (Japan)


    This is an ice-aided heat pump system powered by electricity, intended for 'shiitake' mushroom culture. The experimentally built heat pump is used in a 200 square-yard-large shiitake culturing facility in the Kinki district, Japan, and an environmental temperature control test is conducted for a culturing house accommodating 6000 mushroom beds. The cold heat storing capacity in summer is found to be 202Mcal (ice percentage: 66%), and the heat storing capacity in winter 69Mcal (water temperature: 60 degrees). The system is capable of performing air-conditioning while storing heat, and all phases of operation are switched over from one two another automatically, with the exception of the switching between the cooling season and the warming season. In a culturing test conducted in the mushroom beds, with the system kept in operation for approximately 3 months, 5 packs (500g) of mushrooms are collected per bed. This means that the 1-day-1-cycle variable temperature control system achieves an increase of 20 percent over the conventional constant temperature control system which yields only 4 packs. In another test in which 4 kinds of seeds are sown, it is found that variable temperature control is superior to constant temperature control in terms of harvest in the summertime cooling operation. (NEDO)

  13. The effect of severe storms on the ice cover of the northern Tatarskiy Strait (United States)

    Martin, Seelye; Munoz, Esther; Drucker, Robert


    Passive microwave images from the Special Sensor Microwave Imager are used to study the volume of ice and sea-bottom water in the Japan Sea as affected by winds and severe storms. The data set comprises brightness temperatures gridded on a polar stereographic projection, and the processing is accomplished with a linear algorithm by Cavalieri et al. (1983) based on the vertically polarized 37-GHz channel. The expressions for calculating heat fluxes and downwelling radiation are given, and ice-cover fluctuations are correlated with severe storm events. The storms generate large transient polynya that occur simultaneously with the strongest heat fluxes, and severe storms are found to contribute about 25 percent of the annual introduction of 25 cu km of ice in the region. The ice production could lead to the renewal of enough sea-bottom water to account for the C-14 data provided, and the generation of Japan Sea bottom water is found to vary directly with storm activity.

  14. Pediatric heat-related illness: recommendations for prevention and management [digest]. (United States)

    Dunn, Roberta J; Kim, Tommy Y; Chaudhari, Pradip


    Infants, children, and adolescents are at increased risk for heat-related illness due to their inability to remove themselves from dangerous environments. Evidence shows that morbidity and mortality from heat illness is related to the length of time core temperature is elevated, so rapid reduction and accurate serial measurements are crucial to prevention of organ system damage and death. The primary methods of patient cooling are conduction (ice-water immersion, cold packs) and convection (moisture and moving air). The choice of method used may depend on availability of equipment, but there is evidence that can guide optimal use of resources. This issue presents evidence-based recommendations and best practices in heat-illness resuscitation, including managing children who are obese, have special needs or take medications, and advocacy for prevention strategies. [Points & Pearls is a digest of Pediatric Emergency Medicine Practice].

  15. Winter snow conditions on Arctic sea ice north of Svalbard during the Norwegian young sea ICE (N-ICE2015) expedition (United States)

    Merkouriadi, Ioanna; Gallet, Jean-Charles; Graham, Robert M.; Liston, Glen E.; Polashenski, Chris; Rösel, Anja; Gerland, Sebastian


    Snow is a crucial component of the Arctic sea ice system. Its thickness and thermal properties control heat conduction and radiative fluxes across the ocean, ice, and atmosphere interfaces. Hence, observations of the evolution of snow depth, density, thermal conductivity, and stratigraphy are crucial for the development of detailed snow numerical models predicting energy transfer through the snow pack. Snow depth is also a major uncertainty in predicting ice thickness using remote sensing algorithms. Here we examine the winter spatial and temporal evolution of snow physical properties on first-year (FYI) and second-year ice (SYI) in the Atlantic sector of the Arctic Ocean, during the Norwegian young sea ICE (N-ICE2015) expedition (January to March 2015). During N-ICE2015, the snow pack consisted of faceted grains (47%), depth hoar (28%), and wind slab (13%), indicating very different snow stratigraphy compared to what was observed in the Pacific sector of the Arctic Ocean during the SHEBA campaign (1997-1998). Average snow bulk density was 345 kg m-3 and it varied with ice type. Snow depth was 41 ± 19 cm in January and 56 ± 17 cm in February, which is significantly greater than earlier suggestions for this region. The snow water equivalent was 14.5 ± 5.3 cm over first-year ice and 19 ± 5.4 cm over second-year ice.

  16. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model (United States)

    Kahre, Melinda A.; Hollingsworth, Jeffery


    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  17. Ice and water droplets on graphite: A comparison of quantum and classical simulations

    International Nuclear Information System (INIS)

    Ramírez, Rafael; Singh, Jayant K.; Müller-Plathe, Florian; Böhm, Michael C.


    Ice and water droplets on graphite have been studied by quantum path integral and classical molecular dynamics simulations. The point-charge q-TIP4P/F potential was used to model the interaction between flexible water molecules, while the water-graphite interaction was described by a Lennard-Jones potential previously used to reproduce the macroscopic contact angle of water droplets on graphite. Several energetic and structural properties of water droplets with sizes between 10 2 and 10 3 molecules were analyzed in a temperature interval of 50–350 K. The vibrational density of states of crystalline and amorphous ice drops was correlated to the one of ice Ih to assess the influence of the droplet interface and molecular disorder on the vibrational properties. The average distance of covalent OH bonds is found 0.01 Å larger in the quantum limit than in the classical one. The OO distances are elongated by 0.03 Å in the quantum simulations at 50 K. Bond distance fluctuations are large as a consequence of the zero-point vibrations. The analysis of the H-bond network shows that the liquid droplet is more structured in the classical limit than in the quantum case. The average kinetic and potential energy of the ice and water droplets on graphite has been compared with the values of ice Ih and liquid water as a function of temperature. The droplet kinetic energy shows a temperature dependence similar to the one of liquid water, without apparent discontinuity at temperatures where the droplet is solid. However, the droplet potential energy becomes significantly larger than the one of ice or water at the same temperature. In the quantum limit, the ice droplet is more expanded than in a classical description. Liquid droplets display identical density profiles and liquid-vapor interfaces in the quantum and classical limits. The value of the contact angle is not influenced by quantum effects. Contact angles of droplets decrease as the size of the water droplet increases

  18. Solar power from the supermarket. Water heating, space heating and air conditioning with solar collectors

    Energy Technology Data Exchange (ETDEWEB)


    The different ways of utilizing solar energy are discussed. So far, top water heating is still the most practicable and most economical solution. Model houses with solar collectors, built by BBC and Philips, are dealt with in particular.

  19. Modeling of Heat and Mass Transfer in a TEC-Driven Lyophilizer (United States)

    Yuan, Zeng-Guang; Hegde, Uday; Litwiller, Eric; Flynn, Michael; Fisher, John


    Dewatering of wet waste during space exploration missions is important for crew safety as it stabilizes the waste. It may also be used to recover water and serve as a preconditioning step for waste compaction. A thermoelectric cooler (TEC)-driven lyophilizer is under development at NASA Ames Research Center for this purpose. It has three major components: (i) an evaporator section where water vapor sublimes from the frozen waste, (ii) a condenser section where this water vapor deposits as ice, and (iii) a TEC section which serves as a heat pump to transfer heat from the condenser to the evaporator. This paper analyses the heat and mass transfer processes in the lyophilizer in an effort to understand the ice formation behavior in the condenser. The analysis is supported by experimental observations of ice formation patterns in two different condenser units.

  20. Improved Instrument for Detecting Water and Ice in Soil (United States)

    Buehler, Martin; Chin, Keith; Keymeulen, Didler; McCann, Timothy; Seshadri, Suesh; Anderson, Robert


    An instrument measures electrical properties of relatively dry soils to determine their liquid water and/or ice contents. Designed as a prototype of instruments for measuring the liquid-water and ice contents of lunar and planetary soils, the apparatus could also be utilized for similar purposes in research and agriculture involving terrestrial desert soils and sands, and perhaps for measuring ice buildup on aircraft surfaces. This instrument is an improved version of the apparatus described in Measuring Low Concentrations of Liquid Water and Ice in Soil (NPO-41822), NASA Tech Briefs, Vol. 33, No. 2 (February 2009), page 22. The designs of both versions are based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and the magnitude and phase angle of impedance changes accordingly) with increasing water content. The previous version included an impedance spectrometer and a jar into which a sample of soil was placed. Four stainless-steel screws at the bottom of the jar were used as electrodes of a fourpoint impedance probe connected to the spectrometer. The present instrument does not include a sample jar and can be operated without acquiring or handling samples. Its impedance probe consists of a compact assembly of electrodes housed near the tip of a cylinder. The electrodes protrude slightly from the cylinder (see Figure 1). In preparation for measurements, the cylinder is simply pushed into the ground to bring the soil into contact with the electrodes.

  1. Circulation and water properties in the landfast ice zone of the Alaskan Beaufort Sea (United States)

    Weingartner, Thomas J.; Danielson, Seth L.; Potter, Rachel A.; Trefry, John H.; Mahoney, Andy; Savoie, Mark; Irvine, Cayman; Sousa, Leandra


    Moorings, hydrography, satellite-tracked drifters, and high-frequency radar data describe the annual cycle in circulation and water properties in the landfast ice zone (LIZ) of the Alaskan Beaufort Sea. Three seasons, whose duration and characteristics are controlled by landfast ice formation and ablation, define the LIZ: ;winter;, ;break-up;, and ;open-water;. Winter begins in October with ice formation and ends in June when rivers commence discharging. Winter LIZ ice velocities are zero, under-ice currents are weak ( 5 cm s-1), and poorly correlated with winds and local sea level. The along-shore momentum balance is between along-shore pressure gradients and bottom and ice-ocean friction. Currents at the landfast ice-edge are swift ( 35 cm s-1), wind-driven, with large horizontal shears, and potentially unstable. Weak cross-shore velocities ( 1 cm s-1) imply limited exchanges between the LIZ and the outer shelf in winter. The month-long break-up season (June) begins with the spring freshet and concludes when landfast ice detaches from the bottom. Cross-shore currents increase, and the LIZ hosts shallow ( 2 m), strongly-stratified, buoyant and sediment-laden, under-ice river plumes that overlie a sharp, 1 m thick, pycnocline across which salinity increases by 30. The plume salt balance is between entrainment and cross-shore advection. Break-up is followed by the 3-month long open-water season when currents are swift (≥20 cm s-1) and predominantly wind-driven. Winter water properties are initialized by fall advection and evolve slowly due to salt rejection from ice. Fall waters and ice within the LIZ derive from local rivers, the Mackenzie and/or Chukchi shelves, and the Arctic basin.

  2. The Large Scale Distribution of Water Ice in the Polar Regions of the Moon (United States)

    Jordan, A.; Wilson, J. K.; Schwadron, N.; Spence, H. E.


    For in situ resource utilization, one must know where water ice is on the Moon. Many datasets have revealed both surface deposits of water ice and subsurface deposits of hydrogen near the lunar poles, but it has proved difficult to resolve the differences among the locations of these deposits. Despite these datasets disagreeing on how deposits are distributed on small scales, we show that most of these datasets do agree on the large scale distribution of water ice. We present data from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO), LRO's Lunar Exploration Neutron Detector (LEND), the Neutron Spectrometer on Lunar Prospector (LPNS), LRO's Lyman Alpha Mapping Project (LAMP), LRO's Lunar Orbiter Laser Altimeter (LOLA), and Chandrayaan-1's Moon Mineralogy Mapper (M3). All, including those that show clear evidence for water ice, reveal surprisingly similar trends with latitude, suggesting that both surface and subsurface datasets are measuring ice. All show that water ice increases towards the poles, and most demonstrate that its signature appears at about ±70° latitude and increases poleward. This is consistent with simulations of how surface and subsurface cold traps are distributed with latitude. This large scale agreement constrains the origin of the ice, suggesting that an ancient cometary impact (or impacts) created a large scale deposit that has been rendered locally heterogeneous by subsequent impacts. Furthermore, it also shows that water ice may be available down to ±70°—latitudes that are more accessible than the poles for landing.

  3. Patterns of ice nuclei from natural water sources in the mountains of Tirol, Austria (United States)

    Baloh, Philipp; Hanlon, Regina; Pietsch, Renee; Anderson, Christopher; Schmale, David G., III; Grothe, Hinrich


    Heterogeneous ice nucleation—the process by which particles can nucleate ice between 0 and -35°C—is important for generating artificial snow. Though abiotic and biotic ice nuclei are present in many different natural and managed ecosystems, little is known about their nature, sources, and ecological roles. We collected samples of water and snow from the mountains of Tyrol, Austria in June, July, and November, 2016. The collected water was mostly from sources with minimal anthropogenic pollution, since most of the water from the sampled streams came from glacial melt. The samples were filtered through a 0.22μm filter, and microorganisms were cultured on different types of media. Resulting colonies were tested for their ice nucleation ability using a droplet freezing assay and identified to the level of the species. The unfiltered water and the filtered water will be subjected to additional assays using cryo microscopy and vibrational microscopy (IR and Raman- spectroscopy). Preliminary analyses suggested that the percentage of ice-nucleating microbes varied with season; greater percentages of ice nucleating microbes were present during colder months. The glacial melt also varies strongly over the year with the fraction of mineral dust suspended in it which serves as an inorganic ice nucleation agent. Further investigation of these samples may help to show the combined ice nuleation abilities of biological and non biological particles present in the mountains of Tirol, Austria. Future work may shed light on how the nucleation properties of the natural water changes with the time of the year and what may be responsible for these changes.

  4. Water from abandoned mines as a heat source: practical experiences of open- and closed-loop strategies, United Kingdom


    Banks, D; Athresh, A; Al-Habaibeh, A; Burnside, N


    Pilot heat pump systems have been installed at two former collieries in Yorkshire/Derbyshire, England, to extract heat from mine water. The installations represent three fundamental configurations of heat exchanger. At Caphouse Colliery, mine water is pumped through a heat exchanger coupled to a heat pump and then discharged to waste (an open-loop heat exchange system). The system performs with high thermal efficiency, but the drawbacks are: (1) it can only be operated when mine water is bein...

  5. Determination of ice content in hardened concrete by low-temperature calorimetry

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette Rica


    Low-temperature calorimetry has been used to determine the ice content in concrete at different temperatures when exposed to low-temperature environments. However, the analysis of the ice content from the measured data of heat flow is not straightforward. In this study, two important factors...... influencing the ice content calculation are discussed. The importance of the baseline determination for the calculation of the ice content is realized. Two different methods of generating the baseline are discussed. First, the ‘J-baseline’ is discussed which is a recently proposed extrapolation method based...... the ‘J-baseline’ method and the ‘C-baseline’ method can be used to calculate the approximate baseline. The heat of fusion of the water confined in small pores is another important parameter to be considered in ice content calculation. This property must be carefully analyzed in order to accurately...

  6. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. (United States)

    Regand, A; Goff, H D


    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  7. A New Discrete Element Sea-Ice Model for Earth System Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Adrian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Sea ice forms a frozen crust of sea water oating in high-latitude oceans. It is a critical component of the Earth system because its formation helps to drive the global thermohaline circulation, and its seasonal waxing and waning in the high north and Southern Ocean signi cantly affects planetary albedo. Usually 4{6% of Earth's marine surface is covered by sea ice at any one time, which limits the exchange of heat, momentum, and mass between the atmosphere and ocean in the polar realms. Snow accumulates on sea ice and inhibits its vertical growth, increases its albedo, and contributes to pooled water in melt ponds that darken the Arctic ice surface in the spring. Ice extent and volume are subject to strong seasonal, inter-annual and hemispheric variations, and climatic trends, which Earth System Models (ESMs) are challenged to simulate accurately (Stroeve et al., 2012; Stocker et al., 2013). This is because there are strong coupled feedbacks across the atmosphere-ice-ocean boundary layers, including the ice-albedo feedback, whereby a reduced ice cover leads to increased upper ocean heating, further enhancing sea-ice melt and reducing incident solar radiation re ected back into the atmosphere (Perovich et al., 2008). A reduction in perennial Arctic sea-ice during the satellite era has been implicated in mid-latitude weather changes, including over North America (Overland et al., 2015). Meanwhile, most ESMs have been unable to simulate observed inter-annual variability and trends in Antarctic sea-ice extent during the same period (Gagne et al., 2014).

  8. Air-sea flux of CO2 in arctic coastal waters influenced by glacial melt water and sea ice

    DEFF Research Database (Denmark)

    Sejr, Mikael Kristian; Krause-Jensen, Dorte; Rysgaard, Søren


    Annual air–sea exchange ofCO2 inYoung Sound,NEGreenlandwas estimated using pCO2 surface-water measurements during summer (2006–2009) and during an ice-covered winter 2008. All surface pCO2 values were below atmospheric levels indicating an uptake of atmospheric CO2. During sea ice formation...... and thereby efficiently blocked air–sea CO2 exchange. During sea ice melt, dissolution of CaCO3 combined with primary production and strong stratification of the water column acted to lower surface-water pCO2 levels in the fjord. Also, a large input of glacial melt water containing geochemically reactive...... year-to-year variation in annual gas exchange....

  9. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone (United States)

    Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.


    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong

  10. Oxygen exchange and ice melt measured at the ice-water interface by eddy correlation

    DEFF Research Database (Denmark)

    Long, M.H.; Koopmans, D.; Berg, P.


    heterotrophic with a daily gross primary production of 0.69 mmol O2 mĝ̂'2 dĝ̂'1 and a respiration rate of ĝ̂'2.13 mmol O2 mĝ̂'2 dĝ̂'1 leading to a net ecosystem metabolism of ĝ̂'1.45 mmol O2 mĝ̂'2 dĝ̂'1. This application of the eddy correlation technique produced high temporal resolution O2 fluxes and ice melt......This study examined fluxes across the ice-water interface utilizing the eddy correlation technique. Temperature eddy correlation systems were used to determine rates of ice melting and freezing, and O2 eddy correlation systems were used to examine O2 exchange rates driven by biological and physical...

  11. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production (United States)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.


    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  12. Degradation of ground ice in a changing climate: the potential impact of groundwater flow (United States)

    de Grandpré, I.; Fortier, D.; Stephani, E.


    Climate changes affecting the North West portion of Canada alter the thermal state of the permafrost and promote ground ice degradation. Melting of ground ice leads to greater water flow into the ground and to significant hydraulic changes (i.e. drainage of peatland and lakes, triggering of thermokarst and new groundwater flow patterns). Road infrastructures built on permafrost are particularly sensitive to permafrost degradation. Road construction and maintenance induce heat flux into the ground by the increase of solar radiation absorption (comparing to natural ground), the increase of snow cover on side slopes, the infiltration of water in embankment material and the migration of surface water in the active layer. The permafrost under the roads is therefore submitted to a warmer environment than in natural ground and his behavior reflects how the permafrost will act in the future with the global warming trend. The permafrost degradation dynamic under a road was studied at the Beaver Creek (Yukon) experimental site located on the Alaska Highway. Permafrost was characterized as near-zero Celcius and highly susceptible to differential thaw-settlement due to the ground ice spatial distribution. Ice-rich cryostructures typical of syngenetic permafrost (e.g. microlenticular) were abundant in the upper and lower cryostratigraphic units of fine-grained soils (Units 1, 2A, and 2C). The middle ice-poor silt layer (Unit 2B) characterized by porous cryostructure comprised the top of a buried ice-wedge network extending several meters in the underlying layers and susceptible to degradation by thermo-erosion. These particular features of the permafrost at the study site facilitated the formation of taliks (unfrozen zones) under the road which leaded to a greater water flow. We believe that water flow is promoting an acceleration of permafrost degradation by advective heat transfer. This process remains poorly studied and quantified in permafrost environment. Field data on

  13. Technical fact sheets on the impacts of new energy efficiency technologies and measures in ice rinks

    Energy Technology Data Exchange (ETDEWEB)



    This paper presents energy efficiency facts on ice rinks and arenas to advise and inform refrigeration and building professionals. The aim of the paper was to facilitate estimation and compare impacts of various energy efficiency measures and new technologies on the consumption of energy and the reduction of greenhouse gas (GHG) emissions. A computer-based tool modelling ice rink energy consumption was constructed based on DOE-2.1E software. The simulation tool was developed to study the sensitivity of various eco-energetic technologies applied to arenas. Results of the simulations have made it possible to construct 8 facts sheets, including information on simulated heat exchange; calculation of energy consumption for heating and refrigeration; the incorporation of several types of Heating Ventilation and Air Conditioning (HVAC) systems; and to show various strategies of operation. To account for the effects of ice within a building, calculation routines in the form of functional values were added. The model addressed the following parameters: climate; characteristics of the envelope; lighting power and intensity; temperature of the resurfacing water; ice sheet temperature; humidity level of the ice rink; fresh air intake; emissivity index of the ceiling above the ice sheet; refrigeration systems according to type, capacity, output and operation mode; capacity output and operation mode of the air heating system, including heat recovery from the refrigeration system; and capacity, output and operation mode of the domestic and resurfacing hot water heating system, including heat recovery from the refrigeration system. Fact sheets were presented for the type of technology; description; direct or indirect benefits; energy-savings potential; environmental impacts; specific comments from specialists; and a set of charts to facilitate comprehension. tabs., figs.

  14. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area. (United States)

    Gustafsson, O; Andersson, P; Axelman, J; Bucheli, T D; Kömp, P; McLachlan, M S; Sobek, A; Thörngren, J-O


    To evaluate the two hypotheses of locally elevated exposure of persistent organic pollutants (POPs) in ice-associated microenvironments and ice as a key carrier for long-range transport of POPs to the Arctic marginal ice zone (MIZ), dissolved and particulate polychlorinated biphenyls (PCBs) were analyzed in ice, snow, ice-interstitial water (IIW), seawater in the melt layer underlying the ice, and in ice-rafted sediment (IRS) from the Barents Sea MIZ to the high Arctic in the summer of 2001. Ultra-clean sampling equipment and protocols were specially developed for this expedition, including construction of a permanent clean room facility and a stainless steel seawater intake system on the I/B ODEN as well as two mobile 370 l ice-melting systems. Similar concentrations were found in several ice-associated compartments. For instance, the concentration of one of the most abundant congeners, PCB 52, was typically on the order of 0.1-0.3 pg l(-1) in the dissolved (melted) phase of the ice, snow, IIW, and underlying seawater while its particulate organic-carbon (POC) normalized concentrations were around 1-3 ng gPOC(-1) in the ice, snow, IIW, and IRS. The solid-water distribution of PCBs in ice was well correlated with and predictable from K(ow) (ice log K(oc)-log K(ow) regressions: p<0.05, r2=0.78-0.98, n=9), indicating near-equilibrium partitioning of PCBs within each local ice system. These results do generally not evidence the existence of physical microenvironments with locally elevated POP exposures. However, there were some indications that the ice-associated system had harbored local environments with higher exposure levels earlier/before the melting/vegetative season, as a few samples had PCB concentrations elevated by factors of 5-10 relative to the typical values, and the elevated levels were predominantly found at the station where melting had putatively progressed the least. The very low PCB concentrations and absence of any significant concentration

  15. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area

    International Nuclear Information System (INIS)

    Gustafsson, Oe.; Andersson, P.; Axelman, J.; Bucheli, T.D.; Koemp, P.; McLachlan, M.S.; Sobek, A.; Thoerngren, J.-O.


    To evaluate the two hypotheses of locally elevated exposure of persistent organic pollutants (POPs) in ice-associated microenvironments and ice as a key carrier for long-range transport of POPs to the Arctic marginal ice zone (MIZ), dissolved and particulate polychlorinated biphenyls (PCBs) were analyzed in ice, snow, ice-interstitial water (IIW), seawater in the melt layer underlying the ice, and in ice-rafted sediment (IRS) from the Barents Sea MIZ to the high Arctic in the summer of 2001. Ultra-clean sampling equipment and protocols were specially developed for this expedition, including construction of a permanent clean room facility and a stainless steel seawater intake system on the I/B ODEN as well as two mobile 370 l ice-melting systems. Similar concentrations were found in several ice-associated compartments. For instance, the concentration of one of the most abundant congeners, PCB 52, was typically on the order of 0.1-0.3 pg l -1 in the dissolved (melted) phase of the ice, snow, IIW, and underlying seawater while its particulate organic-carbon (POC) normalized concentrations were around 1-3 ng gPOC -1 in the ice, snow, IIW, and IRS. The solid-water distribution of PCBs in ice was well correlated with and predictable from K ow (ice log K oc -log K ow regressions: p 2 =0.78-0.98, n=9), indicating near-equilibrium partitioning of PCBs within each local ice system. These results do generally not evidence the existence of physical microenvironments with locally elevated POP exposures. However, there were some indications that the ice-associated system had harbored local environments with higher exposure levels earlier/before the melting/vegetative season, as a few samples had PCB concentrations elevated by factors of 5-10 relative to the typical values, and the elevated levels were predominantly found at the station where melting had putatively progressed the least. The very low PCB concentrations and absence of any significant concentration gradients, both

  16. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights (United States)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang


    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  17. Elevator deflections on the icing process (United States)

    Britton, Randall K.


    The effect of elevator deflection of the horizontal stabilizer for certain icing parameters is investigated. Elevator deflection can severely change the lower and upper leading-edge impingement limits, and ice can accrete on the elevator itself. Also, elevator deflection had practically no effect on the maximum local collection efficiency. It is shown that for severe icing conditions (large water droplets), elevator deflections that increase the projected height of the airfoil can significantly increase the total collection efficiency of the airfoil.

  18. Water ice clouds observations with PFS on Mars Express (United States)

    Moroz, V. I.; Zasova, L. V.; Formisano, V.; Grassi, D.; Ignatiev, N. I.; Giuranna, M.; Maturilli, A.; Pfs Team

    The water ice cloud observation is one of the scientific goals of PFS. Presence and properties of the ice particles are identified from absorption features, observed in both spectral ranges of PFS. Being in the near perihelion condition, the temperature of the Martian atmosphere is pretty high and ice clouds exist only in some places, for example, related to topography or at north high latitudes et etc. The ice clouds are observed often above the tops of the volcanoes. We have found the ice clouds above Olympus (orbit 37) and Ascraeus Mons (orbit 68). Effective radius of particles according to the thermal IR is preliminary estimated of 1 μ m, which leads to the visual opacity of 0.2 -0.3 above Olympus and of maximum of 0.6 above Ascraeus Mons. In the case of Ascraeus Mons the ice clouds are observed on the south slope near the top of the volcano. The maximum surface temperature, observed there, results in the upward flux of warm air, which, cooling, provides the condensation of H2O. We will present a detailed analysis of the ice clouds, observed over the planet in the IR spectral range.

  19. Computer model of the refrigeration system of an ice rink

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedou, G.; Zmeureanu, R. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Giguere, D. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre


    This paper presented a refrigeration system model of an existing ice rink using a component approach. The chillers, the ice-concrete slab and the controller were the 3 main components used in the simulations which were performed using both open and closed loop systems. The simulated ice rink refrigeration system was based on measurements taken in an existing indoor ice rink located in Montreal, Quebec. Measurements of the refrigeration system included electricity demand; heat flux on the ice sheet; exterior air temperature; ice temperature; return brine temperature; brine temperature at the pump; brine temperature at both evaporator exits; and refrigerant temperature and pressure at the expansion and condenser valve exits. Simulation results and measurements were found to be in good agreement. A computer model of the refrigeration system was developed using the TRNSYS 16 program. The refrigeration system was composed of 2 chillers using refrigerant R-22. The impact of heat recovery from the condensers on the energy demand for sanitary water heating was also estimated. The potential reduction of equivalent carbon dioxide emissions was calculated using the total equivalent warming impact (TEWI) criterion in an effort to estimate the refrigeration impact on global warming. 12 refs., 4 tabs., 12 figs.

  20. Photolytic degradation of methyl-parathion and fenitrothion in ice and water: Implications for cold environments

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jan [Lancaster Environment Centre, Centre for Chemicals Management, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Kurkova, Romana; Klanova, Jana [RECETOX, Faculty of Science, Masaryk University, Kamenice 3, 625 00 Brno (Czech Republic); Klan, Petr, E-mail: klan@sci.muni.c [Dept of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A8, 625 00 Brno (Czech Republic); Halsall, Crispin J., E-mail: [Lancaster Environment Centre, Centre for Chemicals Management, Lancaster University, Lancaster LA1 4YQ (United Kingdom)


    Here we investigate the photodegradation of structurally similar organophosphorus pesticides; methyl-parathion and fenitrothion in water (20 deg. C) and ice (-15 deg. C) under environmentally-relevant conditions with the aim of comparing these laboratory findings to limited field observations. Both compounds were found to be photolyzed more efficiently in ice than in aqueous solutions, with quantum yields of degradation being higher in ice than in water (fenitrothion > methyl-parathion). This rather surprising observation was attributed to the concentration effect caused by freezing the aqueous solutions. The major phototransformation products included the corresponding oxons (methyl-paraoxon and fenitroxon) and the nitrophenols (3-methyl-nitrophenol and nitrophenol) in both irradiated water and ice samples. The presence of oxons in ice following irradiation, demonstrates an additional formation mechanism of these toxicologically relevant compounds in cold environments, although further photodegradation of oxons in ice indicates that photochemistry of OPs might be an environmentally important sink in cold environments. - Photodegradation of methyl-parathion and fenitrothion in water and ice under environmentally-relevant conditions is described.

  1. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water (United States)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas


    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  2. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    International Nuclear Information System (INIS)

    Chiu, Janet; Giovambattista, Nicolas; Starr, Francis W.


    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  3. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Janet; Giovambattista, Nicolas [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States); Starr, Francis W. [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)


    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  4. The role of ice dynamics in shaping vegetation in flowing waters. (United States)

    Lind, Lovisa; Nilsson, Christer; Polvi, Lina E; Weber, Christine


    Ice dynamics is an important factor affecting vegetation in high-altitude and high-latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze-up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow-flowing reaches develop a surface-ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects - mostly cell damage - happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams

  5. Determination of a Critical Sea Ice Thickness Threshold for the Central Arctic Ocean (United States)

    Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.


    While sea ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea ice pack, determining the spatial variability of sea ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea ice transitions from the thickest multi-year ice to the very thin marginal ice seas. This provides an ideal location to simulate how the diminishing Arctic sea ice interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface air temperature increase as sea ice thickness transitions from perennial ice to seasonal ice. While models predict a sea ice free Arctic at the end of the warm season in future decades, sea ice will continue to transform

  6. Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice (United States)

    Alexeev, Vladimir A.; Walsh, John E.; Ivanov, Vladimir V.; Semenov, Vladimir A.; Smirnov, Alexander V.


    Arctic sea ice over the last few decades has experienced a significant decline in coverage both in summer and winter. The currently warming Atlantic Water layer has a pronounced impact on sea ice in the Nordic Seas (including the Barents Sea). More open water combined with the prevailing atmospheric pattern of airflow from the southeast, and persistent North Atlantic storms such as the recent extremely strong Storm Frank in December 2015, lead to increased energy transport to the high Arctic. Each of these storms brings sizeable anomalies of heat to the high Arctic, resulting in significant warming and slowing down of sea ice growth or even melting. Our analysis indicates that the recently observed sea ice decline in the Nordic Seas during the cold season around Svalbard, Franz Joseph Land and Novaya Zemlya, and the associated heat release from open water into the atmosphere, contributed significantly to the increase in the downward longwave radiation throughout the entire Arctic. Added to other changes in the surface energy budget, this increase since the 1960s to the present is estimated to be at least 10 W m-2, which can result in thinner (up to at least 15-20 cm) Arctic ice at the end of the winter. This change in the surface budget is an important contributing factor accelerating the thinning of Arctic sea ice.

  7. Imitation experiment for water-treatment by heat of solar collector and hot pump

    International Nuclear Information System (INIS)

    Liao Yuanzong; Liu Shuqing; Pang Heding; Zhao Zhongxin; Zhang Biguang; Wang Xiping; Huo Guangqing


    The author presents an imitation experiment in which solar collector and hot pump are jointed for supplying heat to evaporate cleaned water and diffuse it into air. The effects of the temperature and the quantity of supplying air, and circumstance conditions on evaporation quantity are studied. The ratio of evaporating quantity to consuming energy, the efficiency of evaporation, average efficiency of solar collector and supplying heat coefficient of heat pump are measured. The experiment shows that this supplying heat model is practicable, economic and efficient for treating cleaned water

  8. Rapid changes in surface water carbonate chemistry during Antarctic sea ice melt (United States)

    Jones, Elizabeth M.; Bakker, Dorothee C. E.; Venables, Hugh J.; Whitehouse, Michael J.; Korb, Rebecca E.; Watson, Andrew J.


    ABSTRACT The effect of sea ice melt on the carbonate chemistry of surface waters in the Weddell-Scotia Confluence, Southern Ocean, was investigated during January 2008. Contrasting concentrations of dissolved inorganic carbon (DIC), total alkalinity (TA) and the fugacity of carbon dioxide (fCO2) were observed in and around the receding sea ice edge. The precipitation of carbonate minerals such as ikaite (CaCO3.6H2O) in sea ice brine has the net effect of decreasing DIC and TA and increasing the fCO2 in the brine. Deficits in DIC up to 12 +/- 3 μmol kg-1 in the marginal ice zone (MIZ) were consistent with the release of DIC-poor brines to surface waters during sea ice melt. Biological utilization of carbon was the dominant processes and accounted for 41 +/- 1 μmol kg-1 of the summer DIC deficit. The data suggest that the combined effects of biological carbon uptake and the precipitation of carbonates created substantial undersaturation in fCO2 of 95 μatm in the MIZ during summer sea ice melt. Further work is required to improve the understanding of ikaite chemistry in Antarctic sea ice and its importance for the sea ice carbon pump.

  9. Sea Ice and Hydrographic Variability in the Northwest North Atlantic (United States)

    Fenty, I. G.; Heimbach, P.; Wunsch, C. I.


    marginal ice zone is mainly ablated via large sustained turbulent ocean enthalpy fluxes. The sensible heat required for these sustained fluxes is drawn from a reservoir of warm subsurface waters of subtropical origin entrained into the mixed layer via convective mixing. Analysis of ocean surface buoyancy fluxes during the period preceding quasi-equilibrium reveals that low-salinity upper ocean anomalies are required for ice to advance seaward of the Arctic Water/Irminger Water thermohaline front in the northern Labrador Sea. Anomalous low-salinity waters inhibit mixed layer deepening, shielding the advancing ice pack from the subsurface heat reservoir, and are conducive to a positive surface stratification enhancement feedback from ice meltwater release. Interestingly, the climatological location of the front coincides with the minimum observed wintertime ice extent; positive ice extent anomalies may require hydrographic preconditioning. If true, the export of low-salinity anomalies from melting Arctic ice associated with future warming may be predicted to lead positive ice extent anomalies in Labrador Sea via the positive surface stratification enhancement mechanism feedback outlined above.

  10. Sea ice - Multiyear cycles and white ice (United States)

    Ledley, T. S.


    The multiyear thickness cycles represent one of the interesting features of the sea ice studies performed by Semtner (1976) and Washington et al. (1976) with simple thermodynamic models of sea ice. In the present article, a description is given of results which show that the insulating effect of snow on the surface of the sea ice is important in producing these multiyear cycles given the physics included in the model. However, when the formation of white ice is included, the cycles almost disappear. White ice is the ice which forms at the snow-ice interface when the snow layer becomes thick enough to depress the ice below the water level. Water infiltrates the snow by coming through the ice at leads and generally freezes there, forming white ice.

  11. Modeling Europa's Ice-Ocean Interface (United States)

    Elsenousy, A.; Vance, S.; Bills, B. G.


    This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.

  12. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.


    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  13. Radiation Effects in Hydrogen-Laden Porous Water Ice Films: Implications for Interstellar Ices (United States)

    Raut, Ujjwal; Baragiola, Raul; Mitchell, Emma; Shi, Jianming

    H _{2} molar remains trapped in the ice even upon removal of ambient gas-phase H _{2}, and is stable to 170 K, where the ice film desorbs. We will describe the dependence of net loss of adsorbed hydrogen on important parameters such as ice film thickness and the ratio of ion flux (f) to H _{2} flux (F _{H}). Both fluxes are higher by orders of magnitude than interstellar values. However, the information obtained from these experiments, especially the behavior in the limit of low flux (f Journal, 1983. 275: p. 391-404. 3.Shi, J., B.D. Teolis, and R.A. Baragiola, Irradiation-enhanced adsorption and trapping of O2 on nanoporous water ice. Physical Review B, 2009. 79(23): p. 235422. 4.Raut, U., et al., Compaction of microporous amorphous solid water by ion irradiation. Journal of Chemical Physics, 2007. 126(24): p. 244511.

  14. Thermal desorption of formamide and methylamine from graphite and amorphous water ice surfaces (United States)

    Chaabouni, H.; Diana, S.; Nguyen, T.; Dulieu, F.


    Context. Formamide (NH2CHO) and methylamine (CH3NH2) are known to be the most abundant amine-containing molecules in many astrophysical environments. The presence of these molecules in the gas phase may result from thermal desorption of interstellar ices. Aims: The aim of this work is to determine the values of the desorption energies of formamide and methylamine from analogues of interstellar dust grain surfaces and to understand their interaction with water ice. Methods: Temperature programmed desorption (TPD) experiments of formamide and methylamine ices were performed in the sub-monolayer and monolayer regimes on graphite (HOPG) and non-porous amorphous solid water (np-ASW) ice surfaces at temperatures 40-240 K. The desorption energy distributions of these two molecules were calculated from TPD measurements using a set of independent Polanyi-Wigner equations. Results: The maximum of the desorption of formamide from both graphite and ASW ice surfaces occurs at 176 K after the desorption of H2O molecules, whereas the desorption profile of methylamine depends strongly on the substrate. Solid methylamine starts to desorb below 100 K from the graphite surface. Its desorption from the water ice surface occurs after 120 K and stops during the water ice sublimation around 150 K. It continues to desorb from the graphite surface at temperatures higher than160 K. Conclusions: More than 95% of solid NH2CHO diffuses through the np-ASW ice surface towards the graphitic substrate and is released into the gas phase with a desorption energy distribution Edes = 7460-9380 K, which is measured with the best-fit pre-exponential factor A = 1018 s-1. However, the desorption energy distribution of methylamine from the np-ASW ice surface (Edes = 3850-8420 K) is measured with the best-fit pre-exponential factor A = 1012 s-1. A fraction of solid methylamine monolayer of roughly 0.15 diffuses through the water ice surface towards the HOPG substrate. This small amount of methylamine

  15. EPR Evidence of Liquid Water in Ice: An Intrinsic Property of Water or a Self-Confinement Effect? (United States)

    Thangswamy, Muthulakshmi; Maheshwari, Priya; Dutta, Dhanadeep; Rane, Vinayak; Pujari, Pradeep K


    Liquid water (LW) existence in pure ice below 273 K has been a controversial aspect primarily because of the lack of experimental evidence. Recently, electron paramagnetic resonance (EPR) has been used to study deeply supercooled water in a rapidly frozen polycrystalline ice. The same technique can also be used to probe the presence of LW in polycrystalline ice that has formed through a more conventional, slow cooling one. In this context, the present study aims to emphasize that in case of an external probe involving techniques such as EPR, the results are influenced by the binary phase (BP) diagram of the probe-water system, which also predicts the existence of LW domains in ice, up to the eutectic point. Here we report the results of our such EPR spin-probe studies on water, which demonstrate that smaller the concentration of the probe stronger is the EPR evidence of liquid domains in polycrystalline ice. We used computer simulations based on stochastic Liouville theory to analyze the lineshapes of the EPR spectra. We show that the presence of the spin probe modifies the BP diagram of water, at very low concentrations of the spin probe. The spin probe thus acts, not like a passive reporter of the behavior of the solvent and its environment, but as an active impurity to influence the solvent. We show that there exists a lower critical concentration, below which BP diagram needs to be modified, by incorporating the effect of confinement of the spin probe. With this approach, we demonstrate that the observed EPR evidence of LW domains in ice can be accounted for by the modified BP diagram of the probe-water system. The present work highlights the importance of taking cognizance of the possibility of spin probes affecting the host systems, when interpreting the EPR (or any other probe based spectroscopic) results of phase transitions of host, as its ignorance may lead to serious misinterpretations.

  16. Investigations on the formation of frost on lamella heat-exchangers used in heat pumps; LOREF: Luftkuehler-Optimierung mit Reduktion von Eis- und Frostbildung. Untersuchung der Frostbildung fuer Lamellenluftkuehler von Waermepumpen

    Energy Technology Data Exchange (ETDEWEB)

    Sahinagic, R.; Imholz, M.; Berlinger, L.; Huber, H.; Hilfiker, K. [Hochschule fuer Technik und Architektur (HTA) Lucerne, Institut fuer Produktentwicklung, Thermische Verfahren und Anlagen (TVA), Horw (Switzerland)


    This comprehensive final report presents the results of the LOREF project carried out at the University of Applied Science in Horw, Switzerland, on the formation of frost on lamella air-coolers used in heat pumps. The report presents the results of extensive tests on the formation of frost on the lamella of the heat exchangers used in air-water heat pumps. The mathematical relationships and the theory behind the formation of frost on cooled surfaces are discussed in detail. The results of numerical simulations and practical tests are presented. The practical tests involved the observation of ice and frost formation on various surface forms. The results of the physical tests and observations are quoted in detail. The mathematical modelling method used and the associated results are discussed. The report is rounded off with an appendix containing tables, diagrams and photos.

  17. Experimental study of heat transfer and pressure drop characteristics of air/water and air-steam/water heat exchange in a polymer compact heat exchanger

    NARCIS (Netherlands)

    Cheng, L.; Geld, van der C.W.M.


    Experiments of heat transfer and pressure drop in a polymer compact heat exchanger made of PolyVinyliDene-Fluoride were conducted under various conditions for air/water heat exchange and air-steam/water heat exchange, respectively. The overall heat transfer coefficients of air-steam/water heat

  18. Rapid formation of a sea ice barrier east of Svalbard (United States)

    Nghiem, S. V.; van Woert, M. L.; Neumann, G.


    Daily SeaWinds scatterometer images acquired by the QuikSCAT satellite show an elongated sea ice feature that formed very rapidly (˜1-2 days) in November 2001 east of Svalbard over the Barents Sea. This sea ice structure, called "the Svalbard sea ice barrier," spanning approximately 10° in longitude and 2° in latitude, restricts the sea route and poses a significant navigation hazard. The secret of its formation appears to lie in the bottom of the sea: A comparison between bathymetry from the International Bathymetric Chart of the Arctic Ocean data and the pattern of sea ice formation from scatterometer data reveals that the sea ice barrier conforms well with and stretches above a deep elongated channel connecting the Franz Josef-Victoria Trough to the Hinlopen Basin between Svalbard and Franz Josef Land. Historic hydrographic data from this area indicate that this sea channel contains cold Arctic water less than 50 m below the surface. Strong and persistent cold northerly winds force strong heat loss from this shallow surface layer, leading to the rapid formation of the sea ice barrier. Heat transfer rates estimated from European Centre for Medium-Range Weather Forecasts temperature and wind data over this region suggest that the surface water along the deep channel can be rapidly cooled to the freezing point. Scatterometer results in 1999-2003 show that sea ice forms in this area between October and December. Understanding the ice formation mechanisms helps to select appropriate locations for deployment of buoys measuring wind and air-sea temperature profile and to facilitate ice monitoring, modeling, and forecasting.

  19. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao


    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  20. Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: A microautoradiographic study. (United States)

    Grossmann, S


    Metabolic activity of bacteria was investigated in open water, newly forming sea ice, and successive stages of pack ice in the Weddell Sea. Microautoradiography, using [(3)H]leucine as substrate, was compared with incorporation rates of [(3)H]leucine into proteins. Relation of [(3)H]leucine incorporation to the biomass of active bacteria provides information about changes of specific metabolic activity of cells. During a phytoplankton bloom in an ice-free, stratified water column, total numbers of bacteria in the euphotic zone averaged 2.3 × 10(5) ml(-1), but only about 13% showed activity via leucine uptake. Growth rate of the active bacteria was estimated as 0.3-0.4 days(-1). Total cell concentration of bacteria in 400 m depth was 6.6 × 10(4) ml(-1). Nearly 50% of these cells were active, although biomass production and specific growth rate were only about one-tenth that of the surface populations. When sea ice was forming in high concentrations of phytoplankton, bacterial biomass in the newly formed ice was 49.1 ng C ml(-1), exceeding that in open water by about one order of magnitude. Attachment of large bacteria to algal cells seems to cause their enrichment in the new ice, since specific bacterial activity was reduced during ice formation, and enrichment of bacteria was not observed when ice formed at low algal concentration. During growth of pack ice, biomass of bacteria increased within the brine channel system. Specific activity was still reduced at these later stages of ice development, and percentages of active cells were as low as 3-5%. In old, thick pack ice, bacterial activity was high and about 30% of cells were active. However, biomass-specific activity of bacteria remained significantly lower than that in open water. It is concluded that bacterial assemblages different to those of open water developed within the ice and were dominated by bacteria with lower average metabolic activity than those of ice-free water.

  1. How ice shelf morphology controls basal melting (United States)

    Little, Christopher M.; Gnanadesikan, Anand; Oppenheimer, Michael


    The response of ice shelf basal melting to climate is a function of ocean temperature, circulation, and mixing in the open ocean and the coupling of this external forcing to the sub-ice shelf circulation. Because slope strongly influences the properties of buoyancy-driven flow near the ice shelf base, ice shelf morphology plays a critical role in linking external, subsurface heat sources to the ice. In this paper, the slope-driven dynamic control of local and area-integrated melting rates is examined under a wide range of ocean temperatures and ice shelf shapes, with an emphasis on smaller, steeper ice shelves. A 3-D numerical ocean model is used to simulate the circulation underneath five idealized ice shelves, forced with subsurface ocean temperatures ranging from -2.0°C to 1.5°C. In the sub-ice shelf mixed layer, three spatially distinct dynamic regimes are present. Entrainment of heat occurs predominately under deeper sections of the ice shelf; local and area-integrated melting rates are most sensitive to changes in slope in this "initiation" region. Some entrained heat is advected upslope and used to melt ice in the "maintenance" region; however, flow convergence in the "outflow" region limits heat loss in flatter portions of the ice shelf. Heat flux to the ice exhibits (1) a spatially nonuniform, superlinear dependence on slope and (2) a shape- and temperature-dependent, internally controlled efficiency. Because the efficiency of heat flux through the mixed layer decreases with increasing ocean temperature, numerical simulations diverge from a simple quadratic scaling law.

  2. Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean (United States)

    Hattermann, T.; Smedsrud, L. H.; Nøst, O. A.; Lilly, J. M.; Galton-Fenzi, B. K.


    Melting at the base of floating ice shelves is a dominant term in the overall Antarctic mass budget. This study applies a high-resolution regional ice shelf/ocean model, constrained by observations, to (i) quantify present basal mass loss at the Fimbul Ice Shelf (FIS); and (ii) investigate the oceanic mechanisms that govern the heat supply to ice shelves in the Eastern Weddell Sea. The simulations confirm the low melt rates suggested by observations and show that melting is primarily determined by the depth of the coastal thermocline, regulating deep ocean heat fluxes towards the ice. Furthermore, the uneven distribution of ice shelf area at different depths modulates the melting response to oceanic forcing, causing the existence of two distinct states of melting at the FIS. In the simulated present-day state, only small amounts of Modified Warm Deep Water enter the continental shelf, and ocean temperatures beneath the ice are close to the surface freezing point. The basal mass loss in this so-called state of "shallow melting" is mainly controlled by the seasonal inflow of solar-heated surface water affecting large areas of shallow ice in the upper part of the cavity. This is in contrast to a state of "deep melting", in which the thermocline rises above the shelf break depth, establishing a continuous inflow of Warm Deep Water towards the deep ice. The transition between the two states is found to be determined by a complex response of the Antarctic Slope Front overturning circulation to varying climate forcings. A proper representation of these frontal dynamics in climate models will therefore be crucial when assessing the evolution of ice shelf basal melting along this sector of Antarctica.

  3. Bio-optical properties of Arctic drift ice and surface waters north of Svalbard from winter to spring (United States)

    Kowalczuk, Piotr; Meler, Justyna; Kauko, Hanna M.; Pavlov, Alexey K.; Zabłocka, Monika; Peeken, Ilka; Dybwad, Christine; Castellani, Giulia; Granskog, Mats A.


    We have quantified absorption by CDOM, aCDOM(λ), particulate matter, ap(λ), algal pigments, aph(λ), and detrital material, aNAP(λ), coincident with chlorophyll a in sea ice and surface waters in winter and spring 2015 in the Arctic Ocean north of Svalbard. The aCDOM(λ) was low in contrast to other regions of the Arctic Ocean, while ap(λ) has the largest contribution to absorption variability in sea ice and surface waters. ap(443) was 1.4-2.8 times and 1.3-1.8 times higher than aCDOM(443) in surface water and sea ice, respectively. aph(λ) contributed 90% and 81% to ap(λ), in open leads and under-ice waters column, and much less (53%-74%) in sea ice, respectively. Both aCDOM(λ) and ap(λ) followed closely the vertical distribution of chlorophyll a in sea ice and the water column. We observed a tenfold increase of the chlorophyll a concentration and nearly twofold increase in absorption at 443 nm in sea ice from winter to spring. The aCDOM(λ) dominated the absorption budget in the UV both in sea ice and surface waters. In the visible range, absorption was dominated by aph(λ), which contributed more than 50% and aCDOM(λ), which contributed 43% to total absorption in water column. Detrital absorption contributed significantly (33%) only in surface ice layer. Algae dynamics explained more than 90% variability in ap(λ) and aph(λ) in water column, but less than 70% in the sea ice. This study presents detailed absorption budget that is relevant for modeling of radiative transfer and primary production.


    Directory of Open Access Journals (Sweden)

    Denysova Alla


    Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

  5. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations (United States)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.


    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  6. The influence of the hydrologic cycle on the extent of sea ice with climatic implications (United States)

    Dean, Kenneson G.; Stringer, William J.; Searcy, Craig


    Multi-temporal satellite images, field observations, and field measurements were used to investigate the mechanisms by which sea ice melts offshore from the Mackenzie River delta. Advanced Very High Resolution Radiometer (AVHRR) satellite data recorded in 1986 were analyzed. The satellite data were geometrically corrected and radiometrically calibrated so that albedo and temperature values could be extracted. The investigation revealed that sea ice melted approximately 2 weeks earlier offshore from the Mackenzie River delta than along coasts where river discharge is minimal or non-existent. There is significant intra-delta variability in the timing and patterns of ice melt. An estimation of energy flux indicates that 30 percent more of the visible wavelength energy and 25 percent more of the near-infrared wavelength energy is absorbed by water offshore of the delta compared to coastal areas with minimal river discharge. The analysis also revealed that the removal of sea ice involves the following: over-ice-flooding along the coast offshore from river delta channels; under-ice flow of 'warm' river water; melting and calving of the fast ice; and, the formation of a bight in the pack ice edge. Two stages in the melting of sea ice were identified: (1) an early stage where heat is supplied to overflows largely by solar radiation, and (2) a later stage where heat is supplied by river discharge in addition to solar radiation. A simple thermodynamic model of the thaw process in the fast ice zone was developed and parameterized based on events recorded by the satellite images. The model treats river discharge as the source of sensible heat at the base of the ice cover. The results of a series of sensitivity tests to assess the influence of river discharge on the near shore ice are presented.

  7. The barrier to ice nucleation in monatomic water (United States)

    Prestipino, Santi


    Crystallization from a supercooled liquid initially proceeds via the formation of a small solid embryo (nucleus), which requires surmounting an activation barrier. This phenomenon is most easily studied by numerical simulation, using specialized biased-sampling techniques to overcome the limitations imposed by the rarity of nucleation events. Here, I focus on the barrier to homogeneous ice nucleation in supercooled water, as represented by the monatomic-water model, which in the bulk exhibits a complex interplay between different ice structures. I consider various protocols to identify solidlike particles on a computer, which perform well enough for the Lennard-Jones model, and compare their respective impact on the shape and height of the nucleation barrier. It turns out that the effect is stronger on the nucleus size than on the barrier height. As a by-product of the analysis, I determine the structure of the nucleation cluster, finding that the relative amount of ice phases in the cluster heavily depends on the method used for classifying solidlike particles. Moreover, the phase which is most favored during the earlier stages of crystallization may happen, depending on the nucleation coordinate adopted, to be different from the stable polymorph. Therefore, the quality of a reaction coordinate cannot be assessed simply on the basis of the barrier height obtained. I explain how this outcome is possible and why it just points out the shortcoming of collective variables appropriate to simple fluids in providing a robust method of particle classification for monatomic water.

  8. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.


    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  9. Heat comfort and practice theory

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten


      This paper has both a theoretical and a practical idea and content. The theoretical aim is to use and develop practice theory from Schatzki, Reckwitz and Warde to be more applicable in understanding everyday routines. The theoretical development will focus on how routines exist in close...... of ventilating and regulating the heat. Analysis in this paper builds on qualitative interviews with households living in identical houses, where those using the least energy for heating use one third of those using the most do. Focus is on describing similarities and differences in practices as well...

  10. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice. (United States)

    Eronen-Rasimus, Eeva; Lyra, Christina; Rintala, Janne-Markus; Jürgens, Klaus; Ikonen, Vilma; Kaartokallio, Hermanni


    Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community. © FEMS 2014. All rights reserved. For permissions, please e-mail:

  11. Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle (United States)

    Tschauner, O.; Huang, S.; Greenberg, E.; Prakapenka, V. B.; Ma, C.; Rossman, G. R.; Shen, A. H.; Zhang, D.; Newville, M.; Lanzirotti, A.; Tait, K.


    Water-rich regions in Earth’s deeper mantle are suspected to play a key role in the global water budget and the mobility of heat-generating elements. We show that ice-VII occurs as inclusions in natural diamond and serves as an indicator for such water-rich regions. Ice-VII, the residue of aqueous fluid present during growth of diamond, crystallizes upon ascent of the host diamonds but remains at pressures as high as 24 gigapascals; it is now recognized as a mineral by the International Mineralogical Association. In particular, ice-VII in diamonds points toward fluid-rich locations in the upper transition zone and around the 660-kilometer boundary.

  12. Microwave radiometric aircraft observations of the Fabry-Perot interference fringes of an ice-water system (United States)

    Harrington, R. F.; Swift, C. T.; Fedors, J. C.


    Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.

  13. The practicality of defensive ice walls: How would the great ice wall in Game of Thrones hold up? (United States)

    Truffer, M.


    The Game of Thrones great ice wall is a colossal feature stretching several hundred miles and over 200 m high. Its purpose is to defend the realm from the wildlings. It is generally pictured as a near vertical wall. An ice wall of these proportions poses interesting challenges, mainly because ice acts as a non-linear shear-thinning fluid. A 200 m high vertical wall would create a large effective stress near its base of almost 1.8 MPa. Typical stresses responsible for ice flow in glaciers and ice sheets are more than a magnitude lower (0.1 MPa). Extrapolating a commonly used flow law for temperate ice to such high stresses would lead to strain rates at the bottom of the wall in excess of 1/day, meaning the wall would rapidly collapse and spread laterally under its own weight. To keep the wall stable, it would help to cool it significantly, as the flow of ice is also very temperature dependent. Cooling to a chilly -40 C would reduce strain rates by two orders of magnitude, but this still leads to significant slumping of the wall within just a few weeks. A time-dependent similarity solution for simplified ice flow equations that describe the evolving shape of the ice wall was provided by Halfar (1981), and demonstrates the rapid decay of the wall. A simple estimate can be derived by assuming that ice is a perfectly plastic fluid, able to maintain a basal shear stress of about 0.1 MPa. A stable ice wall would then spread laterally to about 4 km width. The resulting slope would only be steep at the very margin and the ice wall would loose much of its defensive capabilities. I conclude that the ice wall as proposed would not be a practicable defense under typical Earth conditions, and special magical powers would be necessary to maintain its shape, even for just a few days.

  14. Thermodynamic analysis of vapor compression heat pump cycle for tap water heating and development of CO_2 heat pump water heater for residential use

    International Nuclear Information System (INIS)

    Saikawa, Michiyuki; Koyama, Shigeru


    Highlights: • The ideal vapor compression cycle for tap water heating and its COP were defined. • It was verified theoretically that CO_2 achieves the highest COP for tap water heating. • The prototype of CO_2 heat pump water heater for residential use was developed. • Further COP improvement of CO_2 heat pump water heater was estimated. - Abstract: The ideal vapor compression cycle for tap water heating and its coefficient of performance (COP) have been studied theoretically at first. The ideal cycle is defined as the cycle whose high temperature heat source varies temperature with constant specific heat and other processes are same as the reverse Carnot cycle. The COP upper limit of single stage compression heat pump cycle for tap water heating with various refrigerants such as fluorocarbons and natural refrigerants was calculated. The refrigerant which achieves the highest COP for supplying hot water is CO_2. Next, the prototype of CO_2 heat pump water heater for residential use has been developed. Its outline and experimental results are described. Finally its further possibility of COP improvement has been studied. The COP considered a limit from a technical point of view was estimated about 6.0 at the Japanese shoulder season (spring and autumn) test condition of heating water from 17 °C to 65 °C at 16 °C heat source air temperature (dry bulb)/12 °C (wet bulb).

  15. Possible significance of cubic water-ice, H2O-Ic, in the atmospheric water cycle of Mars (United States)

    Gooding, James L.


    The possible formation and potential significance of the cubic ice polymorph on Mars is discussed. When water-ice crystallizes on Earth, the ambient conditions of temperature and pressure result in the formation of the hexagonal ice polymorph; however, on Mars, the much lower termperature and pressures may permit the crystallization of the cubic polymorph. Cubic ice has two properties of possible importance on Mars: it is an excellant nucleator of other volatiles (such as CO2), and it undergoes an exothermic transition to hexagonal ice at temperatures above 170 K. These properties may have significant implications for both martian cloud formation and the development of the seasonal polar caps.

  16. The Influence of Ice-Ocean Interactions on Europa's Overturning Circulation (United States)

    Zhu, P.; Manucharyan, G. E.; Thompson, A. F.; Goodman, J. C.; Vance, S.


    Jupiter's moon Europa appears to have a global liquid ocean, which is located beneath an ice shell that covers the moon's entire surface. Linking ocean dynamics and ice-ocean interactions is crucial to understanding observed surface features on Europa as well as other satellite measurements. Ocean properties and circulation may also provide clues as to whether the moon has the potential to support extraterrestrial life through chemical transport governed by ice-ocean interactions. Previous studies have identified a Hadley cell-like overturning circulation extending from the equator to mid latitudes. However, these model simulations do not consider ice-ocean interactions. In this study, our goal is to investigate how the ocean circulation may be affected by ice. We study two ice-related processes by building idealized models. One process is horizontal convection driven by an equator-to-pole buoyancy difference due to latitudinal ice transport at the ocean surface, which is found to be much weaker than the convective overturning circulation. The second process we consider is the freshwater layer formed by ice melting at the equator. A strong buoyancy contrast between the freshwater layer and the underlying water suppresses convection and turbulent mixing, which may modify the surface heat flux from the ocean to the bottom of the ice. We find that the salinity of the ocean below the freshwater layer tends to be homogeneous both vertically and horizontally with the presence of an overturning circulation. Critical values of circulation strength constrain the freshwater layer depth, and this relationship is sensitive to the average salinity of the ocean. Further coupling of temperature and salinity of the ice and the ocean that includes mutual influences between the surface heat flux and the freshwater layer may provide additional insights into the ice-ocean feedback, and its influence on the latitudinal difference of heat transport.

  17. Theory of ice-skating (United States)

    Le Berre, Martine; Pomeau, Yves


    Almost frictionless skating on ice relies on a thin layer of melted water insulating mechanically the blade of the skate from ice. Using the basic equations of fluid mechanics and Stefan law, we derive a set of two coupled equations for the thickness of the film and the length of contact, a length scale which cannot be taken as its value at rest. The analytical study of these equations allows to define a small a-dimensional parameter depending on the longitudinal coordinate which can be neglected everywhere except close to the contact points at the front and the end of the blade, where a boundary layer solution is given. This solution provides without any calculation the order of magnitude of the film thickness, and its dependence with respect to external parameters like the velocity and mass of the skater and the radius of profile and bite angle of the blade, in good agreement with the numerical study. Moreover this solution also shows that a lubricating water layer of macroscopic thickness always exists for standard values of ice skating data, contrary to what happens in the case of cavitation of droplets due to thermal heating (Leidenfrost effect).

  18. Basic Physical Properties of Ammonia-Rich Ice (United States)

    Shandera, S. E.; Lorenz, R. D.


    We report simple measurements of the thermal conductivity, mechanical strength and microwave absorptivity of ammonia hydrate ices, which are likely to be abundant in the Saturnian system. Understanding the dielectric properties of ammonia ice could play an important role in interpreting data from the Cassini spacecraft, which will image Titan's surface by radar in 2004. Thermal conductivity measurements were made by freezing a thin copper wire in the center of ice samples. The wire acted as both heater and temperature sensor, calibrated by a thermocouple also frozen in the sample. Ices with concentrations of 5- 30% ammonia were compared to pure water ice and ices containing salts. Thermal conductivity was found to decrease with increasing concentration of ammonia - a factor of 3 or 4 less than pure water ice for the 30% peritectic composition. Microwave absorptivity was measured by placing insulated ice samples and calibration materials in a conventional microwave oven. The microwave absorptivity was found to increase with increasing concentration of ammonia, although the effect is strongly temperature dependent, and heat leak from the room made quantitative measurement difficult. Mechanical strength was estimated using a ball bearing/accelerometer indentation method. For temperatures 100-150K, ammonia-rich ice has a Young's modulus about 10x smaller than pure ice. These properties affect tidal dissipation and the likelihood and style of cryovolcanism on (and the radar appearance of) the icy satellites and Titan. This work was supported by the Cassini RADAR team and the Arizona Space Grant Consortium.

  19. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    Caixin Wang


    Full Text Available Snow ice and superimposed ice formation on landfast sea ice in a Svalbard fjord, Kongsfjorden, was investigated with a high-resolution thermodynamic snow and sea-ice model, applying meteorological weather station data as external forcing. The model shows that sea-ice formation occurs both at the ice bottom and at the snow/ice interface. Modelling results indicated that the total snow ice and superimposed ice, which formed at the snow/ice interface, was about 14 cm during the simulation period, accounting for about 15% of the total ice mass and 35% of the total ice growth. Introducing a time-dependent snow density improved the modelled results, and a time-dependent oceanic heat flux parameterization yielded reasonable ice growth at the ice bottom. Model results suggest that weather conditions, in particular air temperature and precipitation, as well as snow thermal properties and surface albedo are the most critical factors for the development of snow ice and superimposed ice in Kongsfjorden. While both warming air and higher precipitation led to increased snow ice and superimposed ice forming in Kongsfjorden in the model runs, the processes were more sensitive to precipitation than to air temperature.

  20. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern


    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  1. Competition for water vapour results in suppression of ice formation in mixed-phase clouds

    Directory of Open Access Journals (Sweden)

    E. L. Simpson


    Full Text Available The formation of ice in clouds can initiate precipitation and influence a cloud's reflectivity and lifetime, affecting climate to a highly uncertain degree. Nucleation of ice at elevated temperatures requires an ice nucleating particle (INP, which results in so-called heterogeneous freezing. Previously reported measurements for the ability of a particle to nucleate ice have been made in the absence of other aerosol which will act as cloud condensation nuclei (CCN and are ubiquitous in the atmosphere. Here we show that CCN can outcompete INPs for available water vapour thus suppressing ice formation, which has the potential to significantly affect the Earth's radiation budget. The magnitude of this suppression is shown to be dependent on the mass of condensed water required for freezing. Here we show that ice formation in a state-of-the-art cloud parcel model is strongly dependent on the criteria for heterogeneous freezing selected from those previously hypothesised. We have developed an alternative criteria which agrees well with observations from cloud chamber experiments. This study demonstrates the dominant role that competition for water vapour can play in ice formation, highlighting both a need for clarity in the requirements for heterogeneous freezing and for measurements under atmospherically appropriate conditions.

  2. Competition for water vapour results in suppression of ice formation in mixed-phase clouds (United States)

    Simpson, Emma L.; Connolly, Paul J.; McFiggans, Gordon


    The formation of ice in clouds can initiate precipitation and influence a cloud's reflectivity and lifetime, affecting climate to a highly uncertain degree. Nucleation of ice at elevated temperatures requires an ice nucleating particle (INP), which results in so-called heterogeneous freezing. Previously reported measurements for the ability of a particle to nucleate ice have been made in the absence of other aerosol which will act as cloud condensation nuclei (CCN) and are ubiquitous in the atmosphere. Here we show that CCN can outcompete INPs for available water vapour thus suppressing ice formation, which has the potential to significantly affect the Earth's radiation budget. The magnitude of this suppression is shown to be dependent on the mass of condensed water required for freezing. Here we show that ice formation in a state-of-the-art cloud parcel model is strongly dependent on the criteria for heterogeneous freezing selected from those previously hypothesised. We have developed an alternative criteria which agrees well with observations from cloud chamber experiments. This study demonstrates the dominant role that competition for water vapour can play in ice formation, highlighting both a need for clarity in the requirements for heterogeneous freezing and for measurements under atmospherically appropriate conditions.

  3. Experimental study of the polyamorphism of water. I. The isobaric transitions from amorphous ices to LDA at 4 MPa (United States)

    Handle, Philip H.; Loerting, Thomas


    The existence of more than one solid amorphous state of water is an extraordinary feature. Since polyamorphism might be connected to the liquid-liquid critical point hypothesis, it is particularly important to study the relations amongst the different amorphous ices. Here we study the polyamorphic transformations of several high pressure amorphous ices to low-density amorphous ice (LDA) at 4 MPa by isobaric heating utilising in situ volumetry and ex situ X-ray diffraction. We find that very-high density amorphous ice (VHDA) and unannealed high density amorphous ice (HDA) show significant relaxation before transforming to LDA, whereby VHDA is seen to relax toward HDA. By contrast, expanded HDA shows almost no relaxation prior to the transformation. The transition to LDA itself obeys criteria for a first-order-like transition in all cases. In the case of VHDA, even macroscopic phase separation is observed. These findings suggest that HDA and LDA are two clearly distinct polyamorphs. We further present evidence that HDA reaches the metastable equilibrium at 140 K and 0.1 GPa but only comes close to that at 140 K and 0.2 GPa. The most important is the path independence of the amorphous phase reached at 140 K and 0.1 GPa.

  4. Modelling of destructive ability of water-ice-jet while machine processing of machine elements

    Directory of Open Access Journals (Sweden)

    Burnashov Mikhail


    Full Text Available This paper represents the classification of the most common contaminants, appearing on the surfaces of machine elements after a long-term service.The existing well-known surface cleaning methods are described and analyzed in the framework of this paper. The article is intended to provide the reader with an understanding of the process of cleaning and removing contamination from machine elements surface by means of water-ice-jet with preprepared beforehand particles, as well as the process of water-ice-jet formation. The paper deals with the description of such advantages of this method as low costs, wastelessness, high quality of the surface, undergoing processing, minimization of harmful impact upon environment and eco-friendliness, which makes it differ radically from formerly known methods. The scheme of interection between the surface and ice particle is represented. A thermo-physical model of destruction of contaminants by means of a water-ice-jet cleaning technology was developed on its basis. The thermo-physical model allows us to make setting of processing mode and the parameters of water-ice-jet scientifically substantiated and well-grounded.

  5. Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations (United States)

    Stein, R. H.; Fahl, K.; Gierz, P.; Niessen, F.; Lohmann, G.


    Over the last about four decades, coinciding with global warming and atmospheric CO2increase, the extent and thickness of Arctic sea ice has decreased dramatically, a decrease much more rapid than predicted by climate models. The driving forces of this change are still not fully understood. In this context, detailed paleoclimatic records going back beyond the timescale of direct observations, i.e., high-resolution Holocene records but also records representing more distant warm periods, may help to to distinguish and quantify more precisely the natural and anthropogenic greenhouse gas forcing of global climate change and related sea ice decrease. Here, we concentrate on sea ice biomarker records representing the penultimate glacial/last interglacial (MIS 6/MIS 5e) and the Holocene time intervals. Our proxy records are compared with climate model simulations using a coupled atmosphere-ocean general circulation model (AOGCM). Based on our data, polynya-type sea ice conditions probably occurred off the major ice sheets along the northern Barents and East Siberian continental margins during late MIS 6. Furthermore, we demonstrate that even during MIS 5e, i.e., a time interval when the high latitudes have been significantly warmer than today, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Assuming a closed Bering Strait (no Pacific Water inflow) during early MIS 5, model simulations point to a significantly reduced sea ice cover in the central Arctic Ocean, a scenario that is however not supported by the proxy record and thus seems to be less realistic. Our Holocene biomarker proxy records from the Chukchi Sea indicate that main factors controlling the millennial Holocene variability in sea ice are probably changes in surface water and heat flow from the Pacific into the Arctic Ocean as well as the long-term decrease in summer insolation

  6. Heat exchanger for solar water heaters (United States)

    Cash, M.; Krupnick, A. C.


    Proposed efficient double-walled heat exchanger prevents contamination of domestic water supply lines and indicates leakage automatically in solar as well as nonsolar heat sources using water as heat transfer medium.


    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Abbot, Dorian S. [Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Liu, Yonggang [Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ 08544 (United States); Hu, Yongyun, E-mail: [Laboratory for Climate and Atmosphere-Ocean Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing (China)


    Surface liquid water is essential for standard planetary habitability. Calculations of atmospheric circulation on tidally locked planets around M stars suggest that this peculiar orbital configuration lends itself to the trapping of large amounts of water in kilometers-thick ice on the night side, potentially removing all liquid water from the day side where photosynthesis is possible. We study this problem using a global climate model including coupled atmosphere, ocean, land, and sea ice components as well as a continental ice sheet model driven by the climate model output. For a waterworld, we find that surface winds transport sea ice toward the day side and the ocean carries heat toward the night side. As a result, nightside sea ice remains O(10 m) thick and nightside water trapping is insignificant. If a planet has large continents on its night side, they can grow ice sheets O(1000 m) thick if the geothermal heat flux is similar to Earth's or smaller. Planets with a water complement similar to Earth's would therefore experience a large decrease in sea level when plate tectonics drives their continents onto the night side, but would not experience complete dayside dessiccation. Only planets with a geothermal heat flux lower than Earth's, much of their surface covered by continents, and a surface water reservoir O(10%) of Earth's would be susceptible to complete water trapping.

  8. A combined thermodynamic cycle used for waste heat recovery of internal combustion engine

    International Nuclear Information System (INIS)

    He, Maogang; Zhang, Xinxin; Zeng, Ke; Gao, Ke


    In this paper, we present a steady-state experiment, energy balance and exergy analysis of exhaust gas in order to improve the recovery of the waste heat of an internal combustion engine (ICE). Considering the different characteristics of the waste heat of exhaust gas, cooling water, and lubricant, a combined thermodynamic cycle for waste heat recovery of ICE is proposed. This combined thermodynamic cycle consists of two cycles: the organic Rankine cycle (ORC), for recovering the waste heat of lubricant and high-temperature exhaust gas, and the Kalina cycle, for recovering the waste heat of low-temperature cooling water. Based on Peng–Robinson (PR) equation of state (EOS), the thermodynamic parameters in the high-temperature ORC were calculated and determined via an in-house computer program. Suitable working fluids used in high-temperature ORC are proposed and the performance of this combined thermodynamic cycle is analyzed. Compared with the traditional cycle configuration, more waste heat can be recovered by the combined cycle introduced in this paper. -- Highlights: ► We study the energy balance of fuel in internal combustion engine. ► Heat recovery effect of exhaust gas is good when ICE is at a high-load condition. ► We propose a new combined thermodynamic cycle for waste heat of ICE. ► The combined cycle has a higher recovery efficiency than previous configurations.

  9. Ice Water Classification Using Statistical Distribution Based Conditional Random Fields in RADARSAT-2 Dual Polarization Imagery (United States)

    Zhang, Y.; Li, F.; Zhang, S.; Hao, W.; Zhu, T.; Yuan, L.; Xiao, F.


    In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF) algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ) and show a robust distinction of ice and water.

  10. Diffusion and infrared properties of molecules in ice mantles

    International Nuclear Information System (INIS)

    Schmitt, B.; Grim, R.; Greenberg, J.M.


    Within dense molecular clouds the formation of frozen icy mantles on interstellar dust grains is thought to be the result of various growth conditions. The molecules, which make up the ice mantles are probably completely mixed. To study the physical properties of such ice mixtures the experiments were performed on the evaporation processes and on the spectroscopic properties of CO, CO2, and CH4 in water rich ices. The decrease in concentration of volatile molecules in ice samples deposited at 10 K and subsequently heated is found to occur essentially in two steps. The first one, corresponding to an evaporation of part of the volatile molecules, starts at about 25 K for CO, 32 K for CH4, and 70 K for CO2. During the crystallization of H2O ice at temperatures greater than 120 K a second evaporation occurs leading to the complete disappearance of the volatile molecules in the solid phase. The main astrophysical implications of the diffusion and spectroscopic behaviors are presented. The possible effects of a heating source on the fraction of volatile molecules, such as CO trapped in grain mantles, are discussed

  11. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonality Retreating Marginal Ice Zone (United States)


    fluxes of heat, salt, and momentum. Hourly GPS fixes tracked the motion of the supporting ice floes and T/C recorders sampled the ocean waters just... sampled in a range of ice conditions from full ice cover to nearly open water and observed a variety of stratification and ocean velocity signals (e.g...From - To) 12/30/2016 final 01-Nov-2011to 30-Sep-201 6 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Autonomous observations of the upper ocean

  12. Heavy ion irradiation of crystalline water ice. Cosmic ray amorphisation cross-section and sputtering yield (United States)

    Dartois, E.; Augé, B.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J. J.; Kamalou, O.; Lv, X. Y.; Rothard, H.; da Silveira, E. F.; Thomas, J. C.


    Context. Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. Aims: We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. Methods: We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). Results: The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic stopping power. Conclusions: The final state of cosmic ray irradiation for porous amorphous and crystalline ice, as monitored by infrared spectroscopy, is the same, but with a large difference in cross-section, hence in time scale in an astrophysical context. The cosmic ray water-ice sputtering rates compete with the UV photodesorption yields reported in the literature. The prevalence of direct cosmic ray sputtering over cosmic-ray induced photons photodesorption may be particularly true for ices strongly bonded to the ice mantles surfaces, such as hydrogen-bonded ice structures or more generally the so-called polar ices. Experiments performed at the Grand Accélérateur National d'Ions Lourds (GANIL) Caen, France. Part of this work has been financed by the French INSU-CNRS programme "Physique et Chimie du Milieu Interstellaire" (PCMI) and the ANR IGLIAS.

  13. Ice Thickness, Melting Rates and Styles of Activity in Ice-Volcano Interaction (United States)

    Gudmundsson, M. T.


    In most cases when eruptions occur within glaciers they lead to rapid ice melting, jokulhlaups and/or lahars. Many parameters influence the style of activity and its impact on the environment. These include ice thickness (size of glacier), bedrock geometry, magma flow rate and magma composition. The eruptions that have been observed can roughly be divided into: (1) eruptions under several hundred meters thick ice on a relatively flat bedrock, (2) eruptions on flat or sloping bed through relatively thin ice, and (3) volcanism where effects are limitied to confinement of lava flows or melting of ice by pyroclastic flows or surges. This last category (ice-contact volcanism) need not cause much ice melting. Many of the deposits formed by Pleistocene volcanism in Iceland, British Columbia and Antarctica belong to the first category. An important difference between this type of activity and submarine activity (where pressure is hydrostatic) is that pressure at vents may in many cases be much lower than glaciostatic due to partial support of ice cover over vents by the surrounding glacier. Reduced pressure favours explosive activity. Thus the effusive/explosive transition may occur several hundred metres underneath the ice surface. Explosive fragmentation of magma leads to much higher rates of heat transfer than does effusive eruption of pillow lavas, and hence much higher melting rates. This effect of reduced pressure at vents will be less pronounced in a large ice sheet than in a smaller glacier or ice cap, since the hydraulic gradient that drives water away from an eruption site will be lower in the large glacier. This may have implications for form and type of eruption deposits and their relationship with ice thickness and glacier size.

  14. Explicit prediction of ice clouds in general circulation models (United States)

    Kohler, Martin


    ) and falling snow (diagnosed) components. An empirical parameterization of the effect of upward turbulent water fluxes in cloud layers is obtained from the CRM simulations by (1) identifying the time-scale of conversion of cloud ice to snow as the key parameter, and (2) regressing it onto cloud differential IR heating and environmental static stability. The updated UCLA-GCM achieves close agreement with observations in global mean top of atmosphere fluxes (within 1--4 W/m2). Artificially suppressing the impact of cloud turbulent fluxes reduces the global mean ice water path by a factor of 3 and produces errors in each of solar and IR fluxes at the top of atmosphere of about 5--6 W/m2.

  15. Energy performance of air-to-water and water-to-water heat pumps in hotel applications

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Chan, Wilco W.


    We present work on measurement of the energy performance of heat pumps for hotel operations in subtropical climates. Two city hotels in Hong Kong were investigated. The first case was an application of an air-to-water heat pump to provide heating for an outdoor swimming pool during the heating season. The second case was the installation of three water-to-water heat pumps to complement an existing boiler system for hot water supply. The heating energy output and corresponding electricity use were measured. The heat pump energy efficiency was evaluated in terms of the coefficient of performance (COP), defined as the heating energy output to the electrical energy use. The air-to-water heat pump provided 49.1 MW h heating while consuming 24.6 MW h electricity during the 6((1)/(2))-month heating season from mid-October to April. For the water-to-water heat pumps, the estimated annual heating output and the electricity use were 952 and 544 MW h, respectively. It was found that the heat pumps generally operated in a COP range of 1.5-2.4, and the payback period was about two years, which was considered financially attractive

  16. Oxo Crater on (1) Ceres: Geological History and the Role of Water-ice

    Energy Technology Data Exchange (ETDEWEB)

    Nathues, A.; Platz, T.; Hoffmann, M.; Thangjam, G.; Le Corre, L.; Reddy, V. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Goettingen (Germany); Cloutis, E. A.; Applin, D. M. [University of Winnipeg, Winnipeg, MB R3B 2E9 (Canada); Mengel, K. [IELF, TU Clausthal, Adolph-Roemer-Straße 2A, D-38678 Clausthal-Zellerfeld (Germany); Protopapa, S. [University of Maryland, Department of Astronomy, College Park, MD 20742 (United States); Takir, D. [SETI Institute, Mountain View, CA 94043 (United States); Preusker, F. [German Aerospace Center (DLR), Institute of Planetary Research, D-12489 Berlin (Germany); Schmidt, B. E. [Georgia Institute of Technology, Atlanta, GA (United States); Russell, C. T., E-mail: [Institute of Geophysics and Planetary Physics, Dept. of Earth, Planetary and Space Sciences, University of California Los Angeles, Los Angeles, CA (United States)


    Dwarf planet Ceres (∅ ∼ 940 km) is the largest object in the main asteroid belt. Investigations suggest that Ceres is a thermally evolved, volatile-rich body with potential geological activity, a body that was never completely molten, but one that possibly partially differentiated into a rocky core and an ice-rich mantle, and may contain remnant internal liquid water. Thermal alteration and the infall of exogenic material contribute to producing a (dark) carbonaceous chondritic-like surface containing ammoniated phyllosilicates. Here we report imaging and spectroscopic analyses of data on the bright Oxo crater derived from the Framing Camera and the Visible and Infrared Spectrometer on board the Dawn spacecraft. We confirm that the transitional complex crater Oxo (∅ ∼ 9 km) exhibits exposed surface water-ice. We show that this water-ice-rich material is associated exclusively with two lobate deposits at pole-facing scarps, deposits that also contain carbonates and admixed phyllosilicates. Due to Oxo’s location at −4802 m below the cerean reference ellipsoid and its very young age of only 190 ka (1 σ : +100 ka, −70 ka), Oxo is predestined for ongoing water-ice sublimation.

  17. Thermodynamical effects accompanied freezing of two water layers separated by sea ice sheet (United States)

    Bogorodsky, Petr; Marchenko, Aleksey


    The process of melt pond freezing is very important for generation of sea ice cover thermodynamic and mass balance during winterperiod. However, due to significant difficulties of field measurements the available data of model estimations still have no instrumental confirmation. In May 2009 the authors carried out laboratory experiment on freezing of limited water volume in the University Centre in Svalbard ice tank. In the course of experiment fresh water layer of 27.5 cm thickness at freezing point poured on the 24 cm sea ice layer was cooled during 50 hours at the temperature -10º C and then once again during 60 hours at -20º C. For revealing process typical characteristics the data of continuous measurements of temperature and salinity in different phases were compared with data of numerical computations obtained with thermodynamic model which was formulated in the frames of 1-D equation system (infinite extension of water freezing layer) and adapted to laboratory conditions. The known surprise of the experiment became proximity of calculated and measured estimates of process dynamics that confirmed the adequacy of the problem mathematical statement (excluding probably process finale stage). This effect can be explained by formation of cracks on the upper layer of ice at sharp decreases of air temperature, which temporary compensated hydrostatic pressure growth during freezing of closed water volume. Another compensated mechanism can be migration of brine through the lower layer of ice under influence of vertical pressure gradient and also rejection of gas dissolved in water which increased its compressibility. During 110 hours cooling thickness of water layer between ice layers reduced approximately to 2 cm. According to computations this layer is not chilled completely but keeps as thin brine interlayer within ice body whose thickness (about units of mm) is determined by temperature fluctuations of cooled surface. Nevertheless, despite good coincidence of

  18. Use of ice storage equipment in the food industry

    Energy Technology Data Exchange (ETDEWEB)

    Vries, H. de


    The manufacture of foods in its widest sense demands a 'balanced supply of cooling'. Whenever 'cold requirement' occurs in different ways during production, the ice storage equipment in particular for 'cooling supplies'. The cooling performance (amount of cold from horizontal tubes and slabs or from horizontal pipes given off to the water flowing past) that can be expected from modern ice storage equipment, is made clear numerically. The way the storage vessel is constructed and its design have particular influence on the energy-saving quality (stirring mechanism with high performance at low pump capacity). Optimisation results for a plate evaporator design combined with a heat exchange system are presented. These include running cost savings of up to 18% in a yoghurt factory, a maltery and an ice cream factory. By means of this heat pump compound, environmental energy can be used in cold storage.

  19. Sea ice-albedo climate feedback mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J.L.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States); Ebert, E.E. [Bureau of Meterology Research Center, Melbourne (Australia)


    The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the area cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics). The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution., the Ebert and Curry model, the Mayjut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing. 22 refs., 6 figs., 1 tab.

  20. High Ice Water Concentrations in the 19 August 2015 Coastal Mesoconvective System (United States)

    Proctor, Fred H.; Harrah, Steven; Switzer, George F.; Strickland, Justin K.; Hunt, Patricia J.


    During August 2015, NASA's DC-8 research aircraft was flown into High Ice Water Content (HIWC) events as part of a three-week campaign to collect airborne radar data and to obtain measurements from microphysical probes. Goals for this flight campaign included improved characterization of HIWC events, especially from an airborne radar perspective. This paper focuses on one of the flight days, in which a coastal mesoscale convective system (MCS) was investigated for HIWC conditions. The system appears to have been maintained by bands of convection flowing in from the Gulf of Mexico. These convective bands were capped by a large cloud canopy, which masks the underlying structure if viewed from an infrared sensing satellite. The DC-8 was equipped with an IsoKinetic Probe that measured ice concentrations of up to 2.3 g m(exp -3) within the cloud canopy of this system. Sustained measurements of ice crystals with concentrations exceeding 1 g m(exp -3) were encountered for up to ten minutes of flight time. Airborne Radar reflectivity factors were found to be weak within these regions of high ice water concentrations, suggesting that Radar detection of HIWC would be a challenging endeavor. This case is then investigated using a three-dimensional numerical cloud model. Profiles of ice water concentrations and radar reflectivity factor demonstrate similar magnitudes and scales between the flight measurements and model simulation. Also discussed are recent modifications to the numerical model's ice-microphysics that are based on measurements during the flight campaign. The numerical model and its updated ice-microphysics are further validated with a simulation of a well-known case of a supercell hailstorm measured during the Cooperative Convective Precipitation Experiment. Differences in HIWC between the continental supercell and the coastal MCS are discussed.

  1. Surface treatment to reduce icing; Oberflaechenbehandlung zur Vereisungsverringerung

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, P.; Kulik, G.; Zehnder, M.


    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of work done at the Swiss Federal Institute of Technology in Lausanne, Switzerland, on reducing ice formation on the evaporators of air-water heat-pumps and speeding-up the defrosting cycle by making their surfaces hydrophobic. The authors report that highest water repellence was achieved by high surface roughness and application of a strongly hydrophobic per fluorosilane coating. The results of tests carried out with uncoated and differently coated sample heat exchangers are presented. Three geometrically identical miniaturised heat exchangers were used that differed in roughness and surface wettability. Surprisingly, the rough and strongly repellent heat-exchanger showed worse defrosting behaviour than the uncoated heat-exchanger. The flat and hydrophobic-coated heat-exchanger showed the best performance. The amount of frost formed was 25% less and defrosting time was much shorter.

  2. Thermal relaxation and heat transport in spin ice Dy{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Klemke, Bastian; Meissner, M.; Tennant, D.A. [Helmholtz-Zentrum Berlin (Germany); Technische Universitaet Berlin (Germany); Strehlow, P. [Technische Universitaet Berlin (Germany); Physikalisch Technische Bundesanstalt, Institut Berlin (Germany); Kiefer, K. [Helmholtz-Zentrum Berlin (Germany); Grigera, S.A. [School of Physics and Astronomy, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, La Plata (Argentina)


    The thermal properties of single crystalline Dy{sub 2}Ti{sub 2}O{sub 7} have been studied at temperature below 30 K and magnetic fields applied along [110] direction up to 1.5 T. Based on a thermodynamic field theory (TFT) various heat relaxation and thermal transport measurements were analysed. So we were able to present not only the heat capacity of Dy{sub 2}Ti{sub 2}O{sub 7}, but also for the first time the different contributions of the magnetic excitations and their corresponding relaxation times in the spin ice phase. In addition, the thermal conductivity and the shortest relaxation time were determined by thermodynamic analysis of steady state heat transport measurements. Finally, we were able to reproduce the temperature profiles recorded in heat pulse experiments on the basis of TFT using the previously determined heat capacity and thermal conductivity data without additional parameters. Thus, TFT has been proved to be thermodynamically consistent in describing three thermal transport experiments on different time scales. The observed temperature and field dependencies of heat capacity contributions and relaxation times indicate the magnetic excitations in the spin ice Dy{sub 2}Ti{sub 2}O{sub 7} as thermally activated monopole-antimonopole defects.

  3. Trapping of CH4, CO, and CO2 in Amorphous Water Ice (United States)

    Mastrapa, R. M. E.; Brown, R. H.; Anicich, V. G.; Cohen, B. A.; Dai, W.; Lunine, J. I.


    In this study, CO, CH4, and CO2 were trapped in H2O at temperatures as low as 20 K and pressures between 10-5 and 10-8 Torr. IR spectra were taken of each sample before sublimation to confirm the presence of volatiles. The samples were then heated at rates from 0.25 K/min to 1 K/min and the escape ranges were measured with a mass spectrometer. The volatiles escaped from the ice mixtures in temperature ranges similar to those found in previous work (1, 2, 3), namely 48-52 K, 145-160 K, 170-185 K. H2O is released from 150 K to 185 K. However, the temperature range of escape is strongly dependent on deposition temperature and heating rate. If the deposition temperature is below the point where the solid volatile rapidly sublimates in the ambient environment of our experiment, then the first range of volatile escape is centered around it's sublimation point, and there is little of the volatile remaining from 170-185 K. The location of the third escape range shifts to lower temperatures with slower sublimation rate. It was determined that 0.5 K/min is the ideal sample heating rate to determine these escape ranges. In our data, the infrared spectrum of CO trapped in water ice shows a splitting of the 2145 cm-1 solid CO line into two bands at 2343 cm-1 and 2135 cm-1. These shifts are similar to those seen by Sandford, et al. (4). (1) Bar-Nun, A., G. Herman, D. Laufer, and M. L. Rappaport, (1985), Icarus, 63, 317-332. (2) Bar-Nun, A., J. Dror, E. Kochavi, and D. Laufer, (1987), Physical Review B, 35, no. 5, 2427-2435. (3) Hudson, R. L., and B. Donn, (1991), Icarus, 94, 326-332. (4) Sandford, S. A., L. J. Allamandola, A. G. G. M. Tielens, and G. J. Valero, (1988), Astrophysical Journal, 329, 498-510.

  4. Direct calculation of ice homogeneous nucleation rate for a molecular model of water (United States)

    Haji-Akbari, Amir; Debenedetti, Pablo G.


    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature. PMID:26240318

  5. Ergogenic effects of precooling with cold water immersion and ice ingestion: A meta-analysis. (United States)

    Choo, Hui C; Nosaka, Kazunori; Peiffer, Jeremiah J; Ihsan, Mohammed; Abbiss, Chris R


    This review evaluated the effects of precooling via cold water immersion (CWI) and ingestion of ice slurry/slushy or crushed ice (ICE) on endurance performance measures (e.g. time-to-exhaustion and time trials) and psychophysiological parameters (core [T core ] and skin [T skin ] temperatures, whole body sweat [WBS] response, heart rate [HR], thermal sensation [TS], and perceived exertion [RPE]). Twenty-two studies were included in the meta-analysis based on the following criteria: (i) cooling was performed before exercise with ICE or CWI; (ii) exercise longer than 6 min was performed in ambient temperature ≥26°C; and (iii) crossover study design with a non-cooling passive control condition. CWI improved performance measures (weighted average effect size in Hedges' g [95% confidence interval] + 0.53 [0.28; 0.77]) and resulted in greater increase (ΔEX) in T skin (+4.15 [3.1; 5.21]) during exercise, while lower peak T core (-0.93 [-1.18; -0.67]), WBS (-0.74 [-1.18; -0.3]), and TS (-0.5 [-0.8; -0.19]) were observed without concomitant changes in ΔEX-T core (+0.19 [-0.22; 0.6]), peak T skin (-0.67 [-1.52; 0.18]), peak HR (-0.14 [-0.38; 0.11]), and RPE (-0.14 [-0.39; 0.12]). ICE had no clear effect on performance measures (+0.2 [-0.07; 0.46]) but resulted in greater ΔEX-T core (+1.02 [0.59; 1.45]) and ΔEX-T skin (+0.34 [0.02; 0.67]) without concomitant changes in peak T core (-0.1 [-0.48; 0.28]), peak T skin (+0.1 [-0.22; 0.41]), peak HR (+0.08 [-0.19; 0.35]), WBS (-0.12 [-0.42; 0.18]), TS (-0.2 [-0.49; 0.1]), and RPE (-0.01 [-0.33; 0.31]). From both ergogenic and thermoregulatory perspectives, CWI may be more effective than ICE as a precooling treatment prior to exercise in the heat.

  6. LOREF: Air cooler optimisation with reduction of ice and frost formation - Optimisation of lamella air-coolers/evaporators of air/water heat pumps - Part 2: mathematical-physical simulation of the lamella air-coolers with condensate and frost formation; LOREF: Luftkuehler-Optimierung mit Reduktion von Eis- und Frostbildung - Optimierung des Lamellenluftkuehlers/Verdampfers von Luft/Wasser-Waermepumpen - Teil 2: mathematisch-physikalische Simulation des Lamellenluftkuehlers mit Kondensat- und Frostbildung

    Energy Technology Data Exchange (ETDEWEB)

    Sahinagic, R.; Gasser, L.; Wellig, B.; Hilfiker, K.


    The average coefficient of performance (COP) of air/water heat pumps shall be further improved over the next decade. Its success will strongly depend on two measures: by altering the characteristic of the heat pump through continuous operation instead of on/off operation, and further, by reducing the formation of frost and ice. Frost significantly reduces the air flow, and consequently also the heat and mass transfer in the fin tube evaporator. The formation of frost and ice is influenced by a complex interaction between the fin tube evaporator, the characteristic of the fan and of the heat pump itself. An accurate prediction of these processes is required to optimize the design of the fin tube evaporator in combination with fan and heat pump to further improve the overall efficiency. Based on the theory of simultaneous heat and mass transfer combined with partial condensation and desublimation, a simulation program for the prediction of frost and ice formation has been developed, being valid over the wide range of the ambient air (from -10 {sup o}C to 15 {sup o}C and dry to saturated air). The humidity is deposited either as condensate, frost, ice or as a combination of them on the fins and tubes of the evaporator. It was a major challenge to create a correlation for the physical properties of the frost and ice layer in the unsteady processes. By numerous experiments, four regions of physical properties are distinguished, depending on the temperature at the boundary layer between air and frost or ice: condensate above -2.7 {sup o}C, condensate and ice between -3.5 {sup o}C to -2.7 {sup o}C, ice and frost between -5.2 {sup o}C to -3.5 {sup o}C and frost formed directly by desublimation below -5.2 {sup o}C. A high reliability has been obtained with the mathematical-physical simulation program proven over the entire applicable range of air temperature and humidity, temperature difference for heat transfer, air velocity and geometry of the fin tube evaporator. (author)

  7. Role of Solar Water Heating in Multifamily Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Williamson, James [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)


    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: 1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads; 2) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes; 3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating; and 4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  8. Up-going Red Water in the Ice at the Bottom of the World: Picture Taking Boxes and Listening Boxes Tell Us How and Why (United States)

    Carr, C. G.; Pettit, E. C.


    Blood Falls is a place where red water comes out from under ice to the top of the ice and makes a strange red water fall. This ice is part of the big ice at the bottom of the world. The red water only comes out at some times and not every year, but it always comes out at the same place. The red water is important because it has tiny tiny not-animal life that tells us how life could be on other worlds. Knowing about the ice and red water is important because this ice is cold, colder than other ice in other places, and we want to know how water can get through. We didn't know why the red water comes up from under the ice when it does or how. We wanted to understand how the ice breaks and we watched the ice by taking pictures all year to see when the red water comes out. We found out that in the cold part of one year, the red water came out even though the air was not warm enough for water to be water! We think the red water comes out because the red water is blocked under the heavy ice and gets pushed tight. In the cold part of the year, cracks break down from the air into the ice and other cracks break up from under the ice because the red water is so pushed. The cracks from the top and bottom of the ice join, and the red water comes out. We used listening boxes that can feel how the ground moves to understand that the ice is breaking at the bottom and we can see that it breaks at the top of the ice. The red water can stay water and not ice inside the big ice because the red water has tiny pieces of the same stuff that can turn ice into water on the roads. If the ice breaks in the cold time, no water can get in from the top of the ice, so the red water under the ice stays clean from the air water. If the ice breaks in the warm time of year, water could get in from the top of the ice and make the red water under the ice not clean from the air. Since we saw in our pictures that the red water came out in the cold time of year, this means the red water could stay clean

  9. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces. (United States)

    Gerber, R Benny; Varner, Mychel E; Hammerich, Audrey D; Riikonen, Sampsa; Murdachaew, Garold; Shemesh, Dorit; Finlayson-Pitts, Barbara J


    CONSPECTUS: Reactions on water and ice surfaces and in other aqueous media are ubiquitous in the atmosphere, but the microscopic mechanisms of most of these processes are as yet unknown. This Account examines recent progress in atomistic simulations of such reactions and the insights provided into mechanisms and interpretation of experiments. Illustrative examples are discussed. The main computational approaches employed are classical trajectory simulations using interaction potentials derived from quantum chemical methods. This comprises both ab initio molecular dynamics (AIMD) and semiempirical molecular dynamics (SEMD), the latter referring to semiempirical quantum chemical methods. Presented examples are as follows: (i) Reaction of the (NO(+))(NO3(-)) ion pair with a water cluster to produce the atmospherically important HONO and HNO3. The simulations show that a cluster with four water molecules describes the reaction. This provides a hydrogen-bonding network supporting the transition state. The reaction is triggered by thermal structural fluctuations, and ultrafast changes in atomic partial charges play a key role. This is an example where a reaction in a small cluster can provide a model for a corresponding bulk process. The results support the proposed mechanism for production of HONO by hydrolysis of NO2 (N2O4). (ii) The reactions of gaseous HCl with N2O4 and N2O5 on liquid water surfaces. Ionization of HCl at the water/air interface is followed by nucleophilic attack of Cl(-) on N2O4 or N2O5. Both reactions proceed by an SN2 mechanism. The products are ClNO and ClNO2, precursors of atmospheric atomic chlorine. Because this mechanism cannot result from a cluster too small for HCl ionization, an extended water film model was simulated. The results explain ClNO formation experiments. Predicted ClNO2 formation is less efficient. (iii) Ionization of acids at ice surfaces. No ionization is found on ideal crystalline surfaces, but the process is efficient on


    Energy Technology Data Exchange (ETDEWEB)

    Terada, Hiroshi; Pyo, Tae-Soo; Minowa, Yosuke; Hayano, Yutaka; Oya, Shin; Hattori, Masayuki; Takami, Hideki [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Tokunaga, Alan T. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Watanabe, Makoto [Department of Cosmosciences, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Saito, Yoshihiko [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Ito, Meguru [Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2 (Canada); Iye, Masanori, E-mail: [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)


    We present the near-infrared images and spectra of four silhouette disks in the Orion Nebula Cluster (M42) and M43 using the Subaru Adaptive Optics system. While d053-717 and d141-1952 show no water ice feature at 3.1 {mu}m, a moderately deep ({tau}{sub ice} {approx} 0.7) water ice absorption is detected toward d132-1832 and d216-0939. Taking into account the water ice so far detected in the silhouette disks, the critical inclination angle to produce a water ice absorption feature is confirmed to be 65 Degree-Sign -75 Degree-Sign . As for d216-0939, the crystallized water ice profile is exactly the same as in the previous observations taken 3.63 years ago. If the water ice material is located at 30 AU, then the observations suggest it is uniform at a scale of about 3.5 AU.

  11. Collective solar hot water: best practices

    International Nuclear Information System (INIS)

    Beutin, Philippe; Grouzard, Patrice; Coroller, Francoise


    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a collection of good practices concerning the selection and installation of collective solar water heating systems in France. A first note presents the Garantie de Resultats solaires (GRS - Guarantee of Solar Results), a kind of certification that gives a long term guarantee of the annual solar energy produced quantity as a function of the hot water consumption. An overview of the collective solar market is given, followed by informations on the financial incentives for feasibility studies and installations, the technical design and optimization of a collective solar project, its economic assessment, etc. Numerous examples of collective of solar heating operations in collective buildings are presented, in various regions of France, in the east (Alsace), the center (Auvergne, Ile de France (Paris region)), and the south (Languedoc-Roussillon, Midi-Pyrennes, PACA), giving technical data, financing, partnerships, etc

  12. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops. (United States)

    Yang, Fan; Cruikshank, Owen; He, Weilue; Kostinski, Alex; Shaw, Raymond A


    Ice nucleation is the crucial step for ice formation in atmospheric clouds and therefore underlies climatologically relevant precipitation and radiative properties. Progress has been made in understanding the roles of temperature, supersaturation, and material properties, but an explanation for the efficient ice nucleation occurring when a particle contacts a supercooled water drop has been elusive for over half a century. Here, we explore ice nucleation initiated at constant temperature and observe that mechanical agitation induces freezing of supercooled water drops at distorted contact lines. Results show that symmetric motion of supercooled water on a vertically oscillating substrate does not freeze, no matter how we agitate it. However, when the moving contact line is distorted with the help of trace amounts of oil or inhomogeneous pinning on the substrate, freezing can occur at temperatures much higher than in a static droplet, equivalent to ∼10^{10} increase in nucleation rate. Several possible mechanisms are proposed to explain the observations. One plausible explanation among them, decreased pressure due to interface curvature, is explored theoretically and compared with the observational results quasiquantitatively. Indeed, the observed freezing-temperature increase scales with contact line speed in a manner consistent with the pressure hypothesis. Whatever the mechanism, the experiments demonstrate a strong preference for ice nucleation at three-phase contact lines compared to the two-phase interface, and they also show that movement and distortion of the contact line are necessary contributions to stimulating the nucleation process.

  13. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath


    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  14. Sea Ice Ecosystems (United States)

    Arrigo, Kevin R.


    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  15. Heat pipe based cold energy storage systems for datacenter energy conservation

    International Nuclear Information System (INIS)

    Singh, Randeep; Mochizuki, Masataka; Mashiko, Koichi; Nguyen, Thang


    In the present paper, design and economics of the novel type of thermal control system for datacenter using heat pipe based cold energy storage has been proposed and discussed. Two types of cold energy storage system namely: ice storage system and cold water storage system are explained and sized for datacenter with heat output capacity of 8800 kW. Basically, the cold energy storage will help to reduce the chiller running time that will save electricity related cost and decrease greenhouse gas emissions resulting from the electricity generation from non-renewable sources. The proposed cold energy storage system can be retrofit or connected in the existing datacenter facilities without major design changes. Out of the two proposed systems, ice based cold energy storage system is mainly recommended for datacenters which are located in very cold locations and therefore can offer long term seasonal storage of cold energy within reasonable cost. One of the potential application domains for ice based cold energy storage system using heat pipes is the emergency backup system for datacenter. Water based cold energy storage system provides more compact size with short term storage (hours to days) and is potential for datacenters located in areas with yearly average temperature below the permissible cooling water temperature (∼25 o C). The aforesaid cold energy storage systems were sized on the basis of metrological conditions in Poughkeepsie, New York. As an outcome of the thermal and cost analysis, water based cold energy storage system with cooling capability to handle 60% of datacenter yearly heat load will provide an optimum system size with minimum payback period of 3.5 years. Water based cold energy storage system using heat pipes can be essentially used as precooler for chiller. Preliminary results obtained from the experimental system to test the capability of heat pipe based cold energy storage system have provided satisfactory outcomes and validated the proposed

  16. Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations (United States)

    de Barros, A. L. F.; Mattioda, A. L.; Ricca, A.; Cruz-Diaz, G. A.; Allamandola, L. J.


    This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C24H12:H2O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H2O, pyrene:H2O, and benzo[ghi]perylene:H2O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO2 and H2CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H+) are formed. The rate constants for the decay of neutral coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H2O photoproducts have mid-infrared spectroscopic signatures in the 5-8 μm region that can contribute to the interstellar ice components described by Boogert et al. as C1-C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.

  17. Irradiation of astrophysical ice grains by cosmic-ray ions: a REAX simulation study (United States)

    Mainitz, Martin; Anders, Christian; Urbassek, Herbert M.


    Context. The impact of cosmic rays on ice grains delivers considerable energy, inducing chemical reactions and molecule ejection. Aims: We study the effects of cosmic ray impact on ice grains, including shock wave expansion, grain heating, molecule fragmentation, formation of chemical reaction products, sputtering and evaporation. Methods: Molecular-dynamics simulations using the REAX potential allow us to follow the processes occurring in the irradiated ice grain; the mechanical, thermal and chemical consequences are simulated. The ice grain consists of a mixture of water, carbon dioxide, methanol and ammonia. The case of 1 keV/nm energy deposition is studied as an example. Results: The ion track emits a shock wave into the ambient grain. Due to the strong heating, abundant molecule fragmentation is observed; several of the fragments either recombine or form new product molecules. Prompt sputtering from the ion track is followed by evaporation from the surface of the heated grain. We present mass spectra of the chemically transformed species in the grain and in the ejecta.

  18. LOREF: Air cooler optimisation with reduction of ice and frost formation - Optimisation of lamella air-coolers/evaporators of air/water heat pumps - Part 1: theoretical and experimental research; LOREF: Luftkuehler-Optimierung mit Reduktion von Eis- und Frostbildung - Optimierung des Lamellenluftkuehlers/Verdampfers von Luft/Wasser-Waermepumpen - Teil 1: theoretische und experimentelle Untersuchungen

    Energy Technology Data Exchange (ETDEWEB)

    Berlinger, L.; Imholz, M.; Albert, M.; Wellig, B.; Hilfiker, K.


    The use of air/water heat pumps for heating of houses is progressively increasing. It is to be expected that the average coefficient of performance (COP) can be improved substantially over the next decade. Its success will depend on controlling and reducing the formation of frost and ice which reduce the air flow and the heat and mass transfer in the fin tube evaporator. In the LOREF research project a mathematical-physical simulation program has been developed which permits to calculate the formation of condensate, ice and frost and also the pressure loss of the air as a function of space and time at any condition of the ambient air. The theoretical results have been validated by numerous experiments in which the air temperature and humidity, the temperature difference and the air velocity have been systematically varied. Particular emphasis has been given to the geometries of the fin tube evaporator. Several fin partitions along the cooler have been investigated. Using the simulation program the evaporator of a commercial heat pump was optimized and experimentally compared to the original evaporator. The resulting seasonal performance factors were nearly equal what confirms the small differences obtained by simulations. Nevertheless, the optimized evaporator features advantages in respect of the defrosting with ambient air because of its bigger fin spacing and the resulting decrease in pressure drop. The results of the LOREF research project are now the basis for the overall optimization of air/water heat pumps. (author)

  19. The study of fresh-water lake ice using multiplexed imaging radar (United States)

    Leonard, Bryan M.; Larson, R.W.


    The study of ice in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring ice in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of ice cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of ice in Whitefish Bay (Lake Superior) indicates that the combination of the ice/water interlace and the ice/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the ice has a very low relative dielectric permittivity (types studied include newly formed black ice, pancake ice, and frozen and consolidated pack and brash ice.Although ice thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the ice thickness may be provided. In addition, certain ice features (e.g. ridges, ice-foot formation, areas of brash ice) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.

  20. Experimental Research of a Water-Source Heat Pump Water Heater System


    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang


    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  1. Ice haze, snow, and the Mars water cycle

    International Nuclear Information System (INIS)

    Kahn, R.


    Images of the limb of Mars reveal discrete cloud layers between 20 and 80 km above the surface. They appear to be composed of water ice and have a number of characteristics similar to hazes that produce diamond dust precipitation in the continental Antarctic of Earth. Temperatures from 170 K to 190 K are deduced at the condensation levels. Eddy diffusion coefficients around 10 5 cm 2 s -1 , typical of a nonconvecting atmosphere, are also derived in the haze regions at times when the atmosphere is relatively clear of dust. This parameter apparently changes by more than 3 orders of magnitude with season and local conditions, with important implications for vertical transport of water and dust and for models of photochemistry and middle atmosphere dynamics. For the cases studied, particle sizes vary systematically by more than an order of magnitude with condensation level, in such a way that the characteristic fall time for particles is always about 1 Mars day, which is the dominant thermal forcing time. The hazes may play a key role in the seasonal water cycle of Mars. They provide a mechanism for growing particles large enough to move atmospheric water closer to the surface, thereby improving the efficiency of adsorption and ice deposit formation in the regolith. This is particularly likely in late northern summer, when the rapid hemispheric decrease in atmospheric water vapor may reflect the precipitation of snow. This rapid decrease in late summer involves atmospheric water vapor in about the quantities needed to supply the mid-latitude regolith with the water that appears in the atmosphere early in the following spring

  2. The effects of sub-ice-shelf melting on dense shelf water formation and export in idealized simulations of Antarctic margins (United States)

    Marques, Gustavo; Stern, Alon; Harrison, Matthew; Sergienko, Olga; Hallberg, Robert


    Dense shelf water (DSW) is formed in coastal polynyas around Antarctica as a result of intense cooling and brine rejection. A fraction of this water reaches ice shelves cavities and is modified due to interactions with sub-ice-shelf melt water. This modified water mass contributes to the formation of Antarctic Bottom Water, and consequently, influences the large-scale ocean circulation. Here, we investigate the role of sub-ice-shelf melting in the formation and export of DSW using idealized simulations with an isopycnal ocean model (MOM6) coupled with a sea ice model (SIS2) and a thermodynamic active ice shelf. A set of experiments is conducted with variable horizontal grid resolutions (0.5, 1.0 and 2.0 km), ice shelf geometries and atmospheric forcing. In all simulations DSW is spontaneously formed in coastal polynyas due to the combined effect of the imposed atmospheric forcing and the ocean state. Our results show that sub-ice-shelf melting can significantly change the rate of dense shelf water outflows, highlighting the importance of this process to correctly represent bottom water formation.

  3. Ocean-driven heating of Europa's icy shell at low latitudes (United States)

    Soderlund, K. M.; Schmidt, B. E.; Wicht, J.; Blankenship, D. D.


    The ice shell of Jupiter's moon Europa is marked by regions of disrupted ice known as chaos terrains that cover up to 40% of the satellite's surface, most commonly occurring within 40° of the equator. Concurrence with salt deposits implies a coupling between the geologically active ice shell and the underlying liquid water ocean at lower latitudes. Europa's ocean dynamics have been assumed to adopt a two-dimensional pattern, which channels the moon's internal heat to higher latitudes. Here we present a numerical model of thermal convection in a thin, rotating spherical shell where small-scale convection instead adopts a three-dimensional structure and is more vigorous at lower latitudes. Global-scale currents are organized into three zonal jets and two equatorial Hadley-like circulation cells. We find that these convective motions transmit Europa's internal heat towards the surface most effectively in equatorial regions, where they can directly influence the thermo-compositional state and structure of the ice shell. We suggest that such heterogeneous heating promotes the formation of chaos features through increased melting of the ice shell and subsequent deposition of marine ice at low latitudes. We conclude that Europa's ocean dynamics can modulate the exchange of heat and materials between the surface and interior and explain the observed distribution of chaos terrains.

  4. Spring snow conditions on Arctic sea ice north of Svalbard, during the Norwegian Young Sea ICE (N-ICE2015) expedition (United States)

    Gallet, Jean-Charles; Merkouriadi, Ioanna; Liston, Glen E.; Polashenski, Chris; Hudson, Stephen; Rösel, Anja; Gerland, Sebastian


    Snow is crucial over sea ice due to its conflicting role in reflecting the incoming solar energy and reducing the heat transfer so that its temporal and spatial variability are important to estimate. During the Norwegian Young Sea ICE (N-ICE2015) campaign, snow physical properties and variability were examined, and results from April until mid-June 2015 are presented here. Overall, the snow thickness was about 20 cm higher than the climatology for second-year ice, with an average of 55 ± 27 cm and 32 ± 20 cm on first-year ice. The average density was 350-400 kg m-3 in spring, with higher values in June due to melting. Due to flooding in March, larger variability in snow water equivalent was observed. However, the snow structure was quite homogeneous in spring due to warmer weather and lower amount of storms passing over the field camp. The snow was mostly consisted of wind slab, faceted, and depth hoar type crystals with occasional fresh snow. These observations highlight the more dynamic character of evolution of snow properties over sea ice compared to previous observations, due to more variable sea ice and weather conditions in this area. The snowpack was isothermal as early as 10 June with the first onset of melt clearly identified in early June. Based on our observations, we estimate than snow could be accurately represented by a three to four layers modeling approach, in order to better consider the high variability of snow thickness and density together with the rapid metamorphose of the snow in springtime.

  5. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization. (United States)

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric


    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.

  6. Archival processes of the water stable isotope signal in East Antarctic ice cores (United States)

    Casado, Mathieu; Landais, Amaelle; Picard, Ghislain; Münch, Thomas; Laepple, Thomas; Stenni, Barbara; Dreossi, Giuliano; Ekaykin, Alexey; Arnaud, Laurent; Genthon, Christophe; Touzeau, Alexandra; Masson-Delmotte, Valerie; Jouzel, Jean


    The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.

  7. Surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) in ice-free and ice-covered waters

    KAUST Repository

    Solberg, Ingrid


    Upward-facing echosounders that provided continuous, long-term measurements were applied to address the surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) throughout an entire winter in a 150-m-deep Norwegian fjord. During ice-free conditions, the sprat surfaced and released gas bubbles at night with an estimated surfacing rate of 3.5 times per fish day-1. The vertical swimming speeds during surfacing were considerably higher (~10 times) than during diel vertical migrations, especially when returning from the surface, and particularly when the fjord was not ice covered. The sprat released gas a few hours after surfacing, suggesting that the sprat gulped atmospheric air during its excursions to the surface. While the surface activity increased after the fjord became ice covered, the records of gas release decreased sharply. The under-ice fish then displayed a behavior interpreted as "searching for the surface" by repeatedly ascending toward the ice, apparently with limited success of filling the swim bladder. This interpretation was supported by lower acoustic target strength in ice-covered waters. The frequent surfacing behavior demonstrated in this study indicates that gulping of atmospheric air is an important element in the life of sprat. While at least part of the population endured overwintering in the ice-covered habitat, ice covering may constrain those physostome fishes that lack a gas-generating gland in ways that remain to be established. 2013 The Author(s).

  8. Towards evidence-based emergency medicine: best BETs from the Manchester Royal Infirmary. BET 3: In patients with heatstroke is whole-body ice-water immersion the best cooling method? (United States)

    Newport, Matthew; Grayson, Alan


    A short cut review was carried out to establish whether whole body ice immersion was an effective way of cooling in patients presenting with heat stroke. One systematic review and three studies were directly relevant to the question. The author, date and country of publication, patient group studied, study type, relevant outcomes, results and study weaknesses of these papers are tabulated. The clinical bottom line was that immersion in ice-water was the most effective modality of lowering core body temperature in exertional heatstroke and shivering and vasoconstriction concerns were unfounded.

  9. Increased Ice-age Influence of Antarctic Intermediate Water. (United States)

    Muratli, J.; McManus, J.; Mix, A.; Chase, Z.


    A depth transect of three ODP sites collected along the central Chile Margin constrain Antarctic Intermediate Water (AAIW) distributions and regional export production over the last 30 ka. Reduced Re and Cd, and increased Mn are proxies for higher bottom water oxygenation; 230Th-normalized burial of opal is a proxy for productivity. Mn/Al is high during the glacial interval at all three sites, suggesting high oxygenation and the retreat of the oxygen minimum zone during this period. At Site 1233, within the core of modern AAIW, Re and Cd are unchanged from detrital values throughout the last 30 ky, implying continuously oxic conditions. In contrast, at the northern sites 1234 and 1235, which reside below and above AAIW respectively, Re and Cd rise rapidly from low glacial values at ~15ka, signifying lower oxygen concentrations at the sea floor during Holocene time relative to ice-age conditions. Local productivity, recorded in Th-normalized opal burial, is highest during the glacial interval at both sites 1233 and 1234, and varies independently from the redox proxies. We conclude that local productivity does not drive bottom water oxygenation here, and that ventilation of the shallow subsurface southeast Pacific increased during the last ice age, with an expanded depth range of AAIW relative to the present.

  10. Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water&ice Dusty Plasma Experiment (United States)

    Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.


    The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (I) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (II) the major axis length has a log-normal distribution rather than a power-law dependence, and (III) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (I.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ˜0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.

  11. An Interdecadal Increase in the Spring Bering Sea Ice Cover in 2007

    Directory of Open Access Journals (Sweden)

    Renguang eWu


    Full Text Available The sea ice coverage of the Northern Hemisphere as a whole has been declining since 1979. On contrary, the March-April sea ice concentration in the Bering Sea experienced a prominent increase in year 2007. The present study documents the changes in surface air temperature, surface heat fluxes, sea surface temperature, and atmospheric circulation accompanying the above interdecadal change in the Bering Sea ice concentration. It is shown that an obvious decrease in surface air temperature, sea surface temperature, and surface net shortwave radiation occurred in concurrent with the sea ice increase. The surface air temperature decrease is associated with a large-scale circulation change, featuring a decrease in sea level pressure extending from the Pacific coast of Alaska to northwestern Europe and an increase in sea level pressure over the high-latitude Asia and the high-latitude North Atlantic Ocean. The enhancement of northwesterly winds over the Bering Sea led to a large decrease in surface air temperature there. The associated increase in upward turbulent heat flux cooled the sea surface temperature in the waters south of the ice covered region, favoring the southward expansion of ice extent. This, together with a positive ice-albedo feedback, amplified the sea ice anomalies after they were initiated, leading to the interdecadal increase in sea ice in the Bering Sea.

  12. Thermal analysis and modeling of a swimming pool heating system by utilizing waste energy rejected from a chiller unit of an ice rink

    Directory of Open Access Journals (Sweden)

    Kuyumcu Muhammed Enes


    Full Text Available This study deals with the thermal analysis and modeling of a swimming pool heating system in which the waste energy rejected from the chiller unit of an ice rink is used as an energy source. The system consists of a swimming pool and an ice rink coupled by a chiller unit. The swimming pool and the ice rink both indoor types and were constructed in city of Gaziantep, Turkey. The thermal energy requirement for each section is determined by thermal analysis of each component of the system. Effects of different design parameters such as ceiling insulation thickness, ceiling emissivity, Carnot efficiency factor and size of the ice rink on the thermal energy requirements and coefficient of performance of the chiller unit are investigated. As a result of analyses of the system, the minimum ice rink area is determined in order to meet annual total heat energy demand of the olympic-sized swimming pool.

  13. The De-Icing Comparison Experiment (D-ICE): A campaign for improving data retention rates of radiometric measurements under icing conditions in cold regions (United States)

    Cox, C. J.; Morris, S. M.


    Longwave and shortwave radiative fluxes are fundamental quantities regularly observed globally using broadband radiometers. In cold climates, frost, rime, snow and ice (collectively, "icing") frequently builds up on sensor windows, contaminating measurements. Since icing occurs under particular meteorological conditions, associated data losses constitutes a climatological bias. Furthermore, the signal caused by ice is difficult to distinguish from that of clouds, hampering efforts to identify contaminated from real data in post-processing. Because of the sensitivity of radiometers to internal temperature instabilities, there are limitations to using heat as a de-icing method. The magnitude of this problem is indicated by the large number of research institutions and commercial vendors that have developed various de-icing strategies. The D-ICE campaign has been designed to bring together a large number of currently available systems to quantitatively evaluate and compare ice-migration strategies and also to characterize the potentially adverse effects of the techniques themselves. For D-ICE, a variety of automated approaches making use of ventilation, heating, modified housings and alcohol spray are being evaluated alongside standard units operating with only the regularly scheduled manual cleaning by human operators at the NOAA Baseline Surface Radiation Network (BSRN) station in Utqiaġvik (formerly Barrow), Alaska. Previous experience within the BSRN community suggests that aspiration of ambient air alone may be sufficient to maintain ice-free radiometers without increasing measurement uncertainty during icing conditions, forming the main guiding hypothesis of the experiment. Icing on the sensors is monitored visually using cameras recording images every 15 minutes and quantitatively using an icing probe and met station. The effects of applied heat on infrared loss in pyranometers will be analyzed and the integrated effect of icing on monthly averages will be

  14. Air-sea interaction regimes in the sub-Antarctic Southern Ocean and Antarctic marginal ice zone revealed by icebreaker measurements (United States)

    Yu, Lisan; Jin, Xiangze; Schulz, Eric W.; Josey, Simon A.


    This study analyzed shipboard air-sea measurements acquired by the icebreaker Aurora Australis during its off-winter operation in December 2010 to May 2012. Mean conditions over 7 months (October-April) were compiled from a total of 22 ship tracks. The icebreaker traversed the water between Hobart, Tasmania, and the Antarctic continent, providing valuable in situ insight into two dynamically important, yet poorly sampled, regimes: the sub-Antarctic Southern Ocean and the Antarctic marginal ice zone (MIZ) in the Indian Ocean sector. The transition from the open water to the ice-covered surface creates sharp changes in albedo, surface roughness, and air temperature, leading to consequential effects on air-sea variables and fluxes. Major effort was made to estimate the air-sea fluxes in the MIZ using the bulk flux algorithms that are tuned specifically for the sea-ice effects, while computing the fluxes over the sub-Antarctic section using the COARE3.0 algorithm. The study evidenced strong sea-ice modulations on winds, with the southerly airflow showing deceleration (convergence) in the MIZ and acceleration (divergence) when moving away from the MIZ. Marked seasonal variations in heat exchanges between the atmosphere and the ice margin were noted. The monotonic increase in turbulent latent and sensible heat fluxes after summer turned the MIZ quickly into a heat loss regime, while at the same time the sub-Antarctic surface water continued to receive heat from the atmosphere. The drastic increase in turbulent heat loss in the MIZ contrasted sharply to the nonsignificant and seasonally invariant turbulent heat loss over the sub-Antarctic open water.Plain Language SummaryThe icebreaker Aurora Australis is a research and supply vessel that is regularly chartered by the Australian Antarctic Division during the southern summer to operate in waters between Hobart, Tasmania, and Antarctica. The vessel serves as the main lifeline to three permanent research stations on the

  15. Bibliography of Ice Properties and Forecasting Related to Transportation in Ice-Covered Waters. (United States)


    N. and Tabata , T., Ice study in the Gulf of Peschanskii, I.S., Ice science and ice technology, Bothnia, III: observations on large grains of and by Sterrett, K.F., The arctic environment and the hitting ice floes. Results of these measurements have arctic surface effect vehicle, growth, temperature 26-3673 effects, ice cover thickness. 28-557 Determining contact stresses when a ship’s stem hits the ice, Kheisin, D.E

  16. A practical cooling strategy for reducing the physiological strain associated with firefighting activity in the heat. (United States)

    Barr, D; Gregson, W; Sutton, L; Reilly, T


    The aim of this study was to establish whether a practical cooling strategy reduces the physiological strain during simulated firefighting activity in the heat. On two separate occasions under high ambient temperatures (49.6 +/- 1.8 degrees C, relative humidity (RH) 13 +/- 2%), nine male firefighters wearing protective clothing completed two 20-min bouts of treadmill walking (5 km/h, 7.5% gradient) separated by a 15-min recovery period, during which firefighters were either cooled (cool) via application of an ice vest and hand and forearm water immersion ( approximately 19 degrees C) or remained seated without cooling (control). There was no significant difference between trials in any of the dependent variables during the first bout of exercise. Core body temperature (37.72 +/- 0.34 vs. 38.21 +/- 0.17 degrees C), heart rate (HR) (81 +/- 9 vs. 96 +/- 17 beats/min) and mean skin temperature (31.22 +/- 1.04 degrees C vs. 33.31 +/- 1 degrees C) were significantly lower following the recovery period in cool compared with control (p second bout of activity in cool compared to control. Mean skin temperature, HR and thermal sensation were significantly lower during bout 2 in cool compared with control (p < 0.05). It is concluded that this practical cooling strategy is effective at reducing the physiological strain associated with demanding firefighting activity under high ambient temperatures.

  17. Tidal Heating in Multilayered Terrestrial Exoplanets (United States)

    Henning, Wade G.; Hurford, Terry


    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R(sub E) is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  18. Tidal heating in multilayered terrestrial exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Wade G.; Hurford, Terry, E-mail: [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)


    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R{sub E} is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  19. Tidal heating in multilayered terrestrial exoplanets

    International Nuclear Information System (INIS)

    Henning, Wade G.; Hurford, Terry


    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R E is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  20. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms (United States)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.


    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters

  1. Bulk water freezing dynamics on superhydrophobic surfaces (United States)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.


    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  2. Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    De Barros, A. L. F. [Departamento de Física, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Av. Maracanã 229, 20271-110 Rio de Janeiro, RJ (Brazil); Mattioda, A. L.; Ricca, A.; Cruz-Diaz, G.A.; Allamandola, L. J. [NASA Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035-1000 (United States)


    This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C{sub 24}H{sub 12}:H{sub 2}O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H{sub 2}O, pyrene:H{sub 2}O, and benzo[ghi]perylene:H{sub 2}O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO{sub 2} and H{sub 2}CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H{sup +}) are formed. The rate constants for the decay of neutral coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H{sub 2}O photoproducts have mid-infrared spectroscopic signatures in the 5–8 μ m region that can contribute to the interstellar ice components described by Boogert et al. as C1–C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.

  3. Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations

    International Nuclear Information System (INIS)

    De Barros, A. L. F.; Mattioda, A. L.; Ricca, A.; Cruz-Diaz, G.A.; Allamandola, L. J.


    This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C 24 H 12 :H 2 O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H 2 O, pyrene:H 2 O, and benzo[ghi]perylene:H 2 O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO 2 and H 2 CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H + ) are formed. The rate constants for the decay of neutral coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H 2 O photoproducts have mid-infrared spectroscopic signatures in the 5–8 μ m region that can contribute to the interstellar ice components described by Boogert et al. as C1–C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.

  4. Multipole moments of water molecules in clusters and ice Ih from first principles calculations

    International Nuclear Information System (INIS)

    Batista, E.R.; Xantheas, S.S.; Jonsson, H.


    We have calculated molecular multipole moments for water molecules in clusters and in ice Ih by partitioning the charge density obtained from first principles calculations. Various schemes for dividing the electronic charge density among the water molecules were used. They include Bader close-quote s zero flux surfaces and Voronoi partitioning schemes. A comparison was also made with an induction model including dipole, dipole-quadrupole, quadrupole-quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments. We have found that the different density partitioning schemes lead to widely different values for the molecular multipoles, illustrating how poorly defined molecular multipoles are in clusters and condensed environments. For instance, the magnitude of the molecular dipole moment in ice Ih ranges between 2.3 D and 3.1 D depending on the partitioning scheme used. Within each scheme, though, the value for the molecular dipole moment in ice is larger than in the hexamer. The magnitude of the molecular dipole moment in the clusters shows a monotonic increase from the gas phase value to the one in ice Ih, with the molecular dipole moment in the water ring hexamer being smaller than the one in ice Ih for all the partitioning schemes used. copyright 1999 American Institute of Physics

  5. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds (United States)

    Smith, R. G.; Charnely, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.


    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 micron, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 micron. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 micron found on the long-wavelength wing of the 3 micron H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% +/- 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  6. The quantum phase-transitions of water (United States)

    Fillaux, François


    It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.

  7. An Imminent Revolution in Modeling Interactions of Ice Sheets With Climate (United States)

    Hughes, T.


    by radar, seismic, and magnetic profiling, and direct measurement of basal conditions by deep drilling and coring into the ice and the bed. These data allow calculating the geothermal heat flux and mapping flow of basal meltwater from geothermal sources to sinks at the termini of ice streams, which discharge up to 90 percent of the ice. James Fastook has a preliminary solution of the full momentum equation needed to model ice streams. Douglas MacAyeal has pioneered modeling catastrophic ice-shelf disintegration that releases "armadas" of icebergs into the world ocean, to extract heat from ocean surface water and thereby reduce the critical ocean-to-atmosphere heat exchange that drives global climate. Ice sheets are the only component of Earth's climate machine that can destroy itself-- swiftly--and thereby radically and rapidly alter global climate and sea level.

  8. Methane excess in Arctic surface water-triggered by sea ice formation and melting. (United States)

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G


    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  9. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    Directory of Open Access Journals (Sweden)

    D. M. Lienhard


    secondary organic aerosol (SOA material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA, levoglucosan, levoglucosan/NH4HSO4, raffinose are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.

  10. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael


    District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  11. Analysis of the Effect of Water Activity on Ice Formation Using a New Theory of Nucleation (United States)

    Barahona, Donifan


    In this work a new theory of nucleation is developed and used to investigate the effect of water activity on the formation of ice within super-cooled droplets. The new theory is based on a novel concept where the interface is assumed to be made of liquid molecules trapped by the solid matrix. Using this concept new expressions are developed for the critical ice germ size and the nucleation work, with explicit dependencies on temperature and water activity. However unlike previous approaches, the new theory does not depend on the interfacial tension between liquid and ice. Comparison against experimental results shows that the new theory is able to reproduce the observed effect of water activity on nucleation rate and freezing temperature. It allows for the first time a theoretical derivation of the constant shift in water activity between melting and nucleation. The new theory offers a consistent thermodynamic view of ice nucleation, simple enough to be applied in atmospheric models of cloud formation.

  12. Ice Caps and Ice Belts: The Effects of Obliquity on Ice−Albedo Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Brian E. J. [Department of Atmospheric and Environmental Sciences, University at Albany (State University of New York), 1400 Washington Avenue, Albany, NY 12222 (United States); Cronin, Timothy W. [Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bitz, Cecilia M., E-mail: [Department of Atmospheric Sciences, MS 351640, University of Washington, Seattle, WA 98195-1640 (United States)


    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice−albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  13. Fundamental Ice Crystal Accretion Physics Studies (United States)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan


    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  14. New measurements on water ice photodesorption and product formation under ultraviolet irradiation (United States)

    Cruz-Diaz, Gustavo A.; Martín-Doménech, Rafael; Moreno, Elena; Muñoz Caro, Guillermo M.; Chen, Yu-Jung


    The photodesorption of icy grain mantles has been claimed to be responsible for the abundance of gas-phase molecules towards cold regions. Being water a ubiquitous molecule, it is crucial to understand its role in photochemistry and its behaviour under an ultraviolet field. We report new measurements on the ultraviolet (UV) photodesorption of water ice and its H2, OH, and O2 photoproducts using a calibrated quadrupole mass spectrometer. Solid water was deposited under ultra-high-vacuum conditions and then UV-irradiated at various temperatures starting from 8 K with a microwave discharged hydrogen lamp. Deuterated water was used for confirmation of the results. We found a photodesorption yield of 1.3 × 10-3 molecules per incident photon for water and 0.7 × 10-3 molecules per incident photon for deuterated water at the lowest irradiation temperature, 8 K. The photodesorption yield per absorbed photon is given and comparison with astrophysical scenarios, where water ice photodesorption could account for the presence of gas-phase water towards cold regions in the absence of a thermal desorption process, is addressed.

  15. Metal-ion catalyzed polymerization in the eutectic phase in water-ice

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain; Szostak, Jack W.


    The emergence of an RNA world requires among other processes the non-enzymatic, template-directed replication of genetic polymers such as RNA or related nucleic acids, possibly catalyzed by metal ions. The absence of uridilate derivative polymerization on adenine containing templates has been...... the main issue preventing an efficient template-directed RNA polymerization. We report here the investigation of template-directed RNA polymerization in the eutectic phase in water-ice. In particular, it was found that activated Uridilate monomers in the presence of metal-ion catalysts could efficiently......-pairing opportunities. These results suggest that a template-directed RNA polymerization catalyzed by metal-ions could be carried out under eutectic phase in water-ice conditions....

  16. Experimental study of gas engine driven air to water heat pump in cooling mode

    International Nuclear Information System (INIS)

    Elgendy, E.; Schmidt, J.


    Nowadays a sustainable development for more efficient use of energy and protection of the environment is of increasing importance. Gas engine heat pumps represent one of the most practicable solutions which offer high energy efficiency and environmentally friendly for heating and cooling applications. In this paper, the performance characteristics of gas engine driven heat pump used in water cooling were investigated experimentally without engine heat recovery. The effects of several important factors (evaporator water inlet temperature, evaporator water volume flow rate, ambient air temperature, and engine speed) on the performance of gas engine driven heat pump were studied in a wide range of operating conditions. The results showed that primary energy ratio of the system increased by 22.5% as evaporator water inlet temperature increased from 13 o C to 24 o C. On the other hand, varying of engine speed from 1300 rpm to 1750 rpm led to decrease in system primary energy ratio by 13%. Maximum primary energy ratio has been estimated with a value of two over a wide range of operating conditions.

  17. The Utilisation of Solar System in Combined Heating System of Water

    Directory of Open Access Journals (Sweden)

    Ján Jobbágy


    Full Text Available The paper assessed the topicality and returns of solar system utilization to heating of water. Practical measurements were conducted after reconstruction of the family house. (in Nesvady, Slovak republic, on which the solar system were assembled. The system consists of the gas heater, solar panels, distributions and circulation pump. The solar system was assembled due to decreasing of operation costs and connected with conventional already used gas heating system by boiler Quantum (V = 115 L. The conventional system was used for 21 days to gather basic values for evaluation. At this point it was observed that 11.93 m3 of gas is needed to heat up 1 m3 of water. Used water in this case was heated from initial 16.14 °C to 52.04 °C of output temperature. Stand by regime of boiler was characterized by 0.012 m3.h-1 consumption of gas. The rest of the measurements represent the annual (from 03/2013 to 02/2014 operation process of boiler Tatramat VTS 200L (trivalent with 200 litres of volume (as a part of Thermosolar solar system. The solar collectors TS 300 are also part of the solar system. An input and output temperatures of heating water we observed along with water and gas consumption, intensity of solar radiation and actual weather conditions. The amount of heat produced by solar system was then calculated. Total investment on solar system were 2,187.7 € (1,475.7 € with subsidy. Therefore, return on investment for the construction of the solar system was set at 23 years even with subsidy.

  18. Numerical analysis on thermal characteristics and ice melting efficiency for microwave deicing vehicle (United States)

    Wang, Can; Yang, Bo; Tan, Gangfeng; Guo, Xuexun; Zhou, Li; Xiong, Shengguang


    In the high latitudes, the icy patches on the road are frequently generated and have a wide distribution, which are difficult to remove and obviously affect the normal usage of the highways, bridges and airport runways. Physical deicing, such as microwave (MW) deicing, help the ice melt completely through heating mode and then the ice layer can be swept away. Though it is no pollution and no damage to the ground, the low efficiency hinders the development of MW deicing vehicle equipped without sufficient speed. In this work, the standard evaluation of deicing is put forward firstly. The intensive MW deicing is simplified to ice melting process characterized by one-dimensional slab with uniform volumetric energy generation, which results in phase transformation and interface motion between ice and water. The heating process is split into the superposition of three parts — non-heterogeneous heating for ground without phase change, heat transfer with phase change and the heat convection between top surface of ice layer and flow air. Based on the transient heat conduction theory, a mathematical model, combining electromagnetic and two-phase thermal conduction, is proposed in this work, which is able to reveal the relationship between the deicing efficiency and ambient conditions, as well as energy generation and material parameters. Using finite difference time-domain, this comprehensive model is developed to solve the moving boundary heat transfer problem in a one-dimensional structured gird. As a result, the stimulation shows the longitudinal temperature distributions in all circumstances and quantitative validation is obtained by comparing simulated temperature distributions under different conditions. In view of the best economy and fast deicing, these analytic solutions referring to the complex influence factors of deicing efficiency demonstrate the optimal matching for the new deicing design.

  19. Ocean stratification reduces melt rates at the grounding zone of the Ross Ice Shelf (United States)

    Begeman, C. B.; Tulaczyk, S. M.; Marsh, O.; Mikucki, J.; Stanton, T. P.; Hodson, T. O.; Siegfried, M. R.; Powell, R. D.; Christianson, K. A.; King, M. A.


    Ocean-driven melting of ice shelves is often invoked as the primary mechanism for triggering ice loss from Antarctica. However, due to the difficulty in accessing the sub-ice-shelf ocean cavity, the relationship between ice-shelf melt rates and ocean conditions is poorly understood, particularly near the transition from grounded to floating ice, known as the grounding zone. Here we present the first borehole oceanographic observations from the grounding zone of Antarctica's largest ice shelf. Contrary to predictions that tidal currents near grounding zones should mix the water column, driving high ice-shelf melt rates, we find a stratified sub-ice-shelf water column. The vertical salinity gradient dominates stratification over a weakly unstable vertical temperature gradient; thus, stratification takes the form of a double-diffusive staircase. These conditions limit vertical heat fluxes and lead to low melt rates in the ice-shelf grounding zone. While modern grounding zone melt rates may presently be overestimated in models that assume efficient tidal mixing, the high sensitivity of double-diffusive staircases to ocean freshening and warming suggests future melt rates may be underestimated, biasing projections of global sea-level rise.

  20. Hydroelectric power development and the ice regime of inland waters: A northern community perspective

    International Nuclear Information System (INIS)

    Gerard, R.


    Inland waters play a vital role in the life of the many small northern communities which depend in large measure on the provisions of the natural environment for their sustenance. These communities are therefore particularly vulnerable to changes in the ice regime of these waters, especially changes that are irregular. However, the north is also the site of much of Canada's hydroelectric power development and potential, developments that have a major influence on the ice regime of effected waters. As a contribution to the background information required for the necessary discussions and negotiations associated with such developments, the various aspects of the natural ice regime, the possible effects of hydroelectric development and operation on this regime, and its consequences, are briefly reviewed. The emphasis has been placed on changes that will likely be of most significance to northern communities in the bedrock-controlled country of the western Canadian Shield. The major direct, and in some circumstances life-threatening, impact of changes to the ice regime is on trafficability of the iceways that play such a vital role in the life of the communities. Hence particular emphasis has been placed on this aspect and on the formation of the slush and thin ice conditions that are the bane of over-ice travel and that are subject to unexpected changes by hydroelectric development and operation. To place these changes and their effects in some perspective, the nature of a hydroelectric development is also briefly described and an effort made to indicate the large costs incurred if these developments are restrained in their operation to avoid or mitigate some of the effects on the ice regime. 31 refs., 57 figs., 1 tab

  1. The minimal ice water caloric test compared with established vestibular caloric test procedures. (United States)

    Schmäl, Frank; Lübben, Björn; Weiberg, Kerstin; Stoll, Wolfgang


    Caloric testing of the vestibular labyrinth is usually performed by classical caloric test procedures (CCTP) using water warmed to 30 degrees C and 44 degrees C. Ice water irrigation (4 degrees C) is usually not performed, although it might be useful as a bedside test. To verify the validity of the Minimal Ice Water Caloric Test (MIWCT), comparative video-oculographic investigations were performed in 22 healthy subjects using ice water (0.5 ml, 1.0 ml, 2 ml), CCTP, and cold air (27 degrees C). Frequency, amplitude, slow phase velocity (SPV), the onset, and the duration of nystagmus were documented. After addition of three ice cubes, the temperature of conventional tap water (16 degrees C) fell within 13 min to 4 degrees C. In pessimum position the subjects demonstrated no nystagmus response. Compared to CCTP, MIWCT was associated with a significantly later onset of nystagmus and a significant prolongation of the nystagmus reaction. In contrast to air stimulation (27 degrees C), a significant Spearman's correlation was noted between MIWCT (1 and 2 ml) and established CCTP in respect of essential nystagmus parameters (frequency, amplitude and SPV). Furthermore, MIWCT (0.5 and 1 ml) showed a higher sensitivity and specificity with regard to the detection of canal paresis based on Jongkees' formula compared to stimulation with air 27 degrees C. Thus, MIWCT appears to be a suitable procedure for bedside investigation of vestibular function outside the vestibular laboratory, e.g. in a hospital ward, where bedridden patients with vertigo occasionally require vestibular testing.

  2. Experimental investigation on water quality standard of Yangtze River water source heat pump. (United States)

    Qin, Zenghu; Tong, Mingwei; Kun, Lin


    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  3. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation. (United States)

    Chavan, Shreyas; Park, Deokgeun; Singla, Nitish; Sokalski, Peter; Boyina, Kalyan; Miljkovic, Nenad


    Frost spreads on nonwetting surfaces during condensation frosting via an interdroplet frost wave. When a supercooled condensate water droplet freezes on a hydrophobic or superhydrophobic surface, neighboring droplets still in the liquid phase begin to evaporate. Two possible mechanisms govern the evaporation of neighboring water droplets: (1) The difference in saturation pressure of the water vapor surrounding the liquid and frozen droplets induces a vapor pressure gradient, and (2) the latent heat released by freezing droplets locally heats the substrate, leading to evaporation of nearby droplets. The relative significance of these two mechanisms is still not understood. Here, we study the significance of the latent heat released into the substrate by freezing droplets, and its effect on adjacent droplet evaporation, by studying the dynamics of individual water droplet freezing on aluminum-, copper-, and glass-based hydrophobic and superhydrophobic surfaces. The latent heat flux released into the substrate was calculated from the measured droplet sizes and the respective freezing times ( t f ), defined as the time from initial ice nucleation within the droplet to complete droplet freezing. To probe the effect of latent heat release, we performed three-dimensional transient finite element simulations showing that the transfer of latent heat to neighboring droplets is insignificant and accounts for a negligible fraction of evaporation during microscale frost wave propagation. Furthermore, we studied the effect of substrate thermal conductivity on the transfer of latent heat transfer to neighboring droplets by investigating the velocity of ice bridge formation. The velocity of the ice bridge was independent of the substrate thermal conductivity, indicating that adjacent droplet evaporation during condensation frosting is governed solely by vapor pressure gradients. This study not only provides key insights into the individual droplet freezing process but also

  4. Optimal Electromagnetic (EM) Geophysical Techniques to Map the Concentration of Subsurface Ice and Adsorbed Water on Mars and the Moon (United States)

    Stillman, D. E.; Grimm, R. E.


    Water ice is ubiquitous in our Solar System and is a probable target for planetary exploration. Mapping the lateral and vertical concentration of subsurface ice from or near the surface could determine the origin of lunar and martian ice and quantify a much-needed resource for human exploration. Determining subsurface ice concentration on Earth is not trivial and has been attempted previously with electrical resistivity tomography (ERT), ground penetrating radar (GPR), airborne EM (AEM), and nuclear magnetic resonance (NMR). These EM geophysical techniques do not actually detect ice, but rather the absence of unfrozen water. This causes a non-unique interpretation of frozen and dry subsurface sediments. This works well in the arctic because most locations are not dry. However, for planetary exploration, liquid water is exceedingly rare and subsurface mapping must discriminate between an ice-rich and a dry subsurface. Luckily, nature has provided a unique electrical signature of ice: its dielectric relaxation. The dielectric relaxation of ice creates a temperature and frequency dependence of the electrical properties and varies the relative dielectric permittivity from ~3.1 at radar frequencies to >100 at low frequencies. On Mars, sediments smaller than silt size can hold enough adsorbed unfrozen water to complicate the measurement. This is because the presence of absorbed water also creates frequency-dependent electrical properties. The dielectric relaxation of adsorbed water and ice can be separated as they have different shapes and frequency ranges as long as a spectrum spanning the two relaxations is measured. The volume concentration of ice and adsorbed water is a function of the strength of their relaxations. Therefore, we suggest that capacitively-coupled dielectric spectroscopy (a.k.a. spectral induced polarization or complex resistivity) can detect the concentration of both ice and adsorbed water in the subsurface. To prove this concept we have collected

  5. Evaluation of cardiovascular demands of game play and practice in women's ice hockey. (United States)

    Spiering, Barry A; Wilson, Meredith H; Judelson, Daniel A; Rundell, Kenneth W


    Preparation for the physical demands of competition often involves game simulation during practice. This paradigm is thought to promote physiological adaptations that enhance maximal performance. However, a mismatch between practice intensity and actual competition intensity may not provide adequate training to achieve optimal game-play fitness. The purpose of this study was to evaluate the effectiveness of practice in meeting the cardiovascular demands of a women's ice hockey game. Heart rate (HR) data from 11 U.S. National Women's Ice Hockey team members were collected (5-second intervals) during a game and a typical practice session. Data was normalized to individual HRmax determined during Vo(2)max testing. Working time was defined as a game shift or practice-working interval. Mean working HR was greater during the game than the practice, 90 +/- 2% and 76 +/- 3% of HRmax, respectively (p game or practice) >90% HRmax was also longer during the game than the practice, 10.5 +/- 4.1% and 5.6 +/- 3.5% (p 80% HRmax, and mean resting HR were not different between game and practice (68 +/- 7% vs. 69 +/- 5%, 23.2 +/- 5.3% vs. 26.1 +/- 9.2%, and 59 +/- 8% vs. 56 +/- 5%, respectively). Elite women hockey players experience significantly greater cardiovascular load during game play than during practice. This mismatch in cardiovascular demand may prevent players from achieving "game shape," thus affecting competition play.

  6. Ice recrystallization inhibition in ice cream by propylene glycol monostearate. (United States)

    Aleong, J M; Frochot, S; Goff, H D


    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  7. ICE911 Research: Floating Safe Inert Materials to Preserve Ice and Conserve Water in Order to Mitigate Climate Change Impacts (United States)

    Field, L. A.; Manzara, A.; Chetty, S.; Venkatesh, S.; Scholtz, A.


    Ice911 Research has conducted years of field testing to develop and test localized reversible engineering techniques to mitigate the negative impacts of polar ice melt. The technology uses environmentally safe materials to reflect energy in carefully selected, limited areas from summertime polar sun. The technology is now being adapted to help with California's drought. We have tested the albedo modification technique on a small scale over seven Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small artificial pond in Minnesota about 100 ft in diameter and 6 ft deep at the center, using various materials and an evolving array of instrumentation. On the pond in Minnesota, this year's test results for ice preservation, using hollow glass spheres deployed over our largest test areas yet, showed that glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. This year Ice911 also undertook its first small Arctic field test in Barrow, Alaska on a lake in Barrow's BEO area, and results are still coming in. The technology that Ice911 has been developing for ice preservation has also been shown to keep small test areas of water cooler, in various small-scale tests spanning years. We believe that with some adaptations of the technology, the materials can be applied to reservoirs and lakes to help stretch these precious resources further in California's ongoing drought. There are several distinct advantages for this method over alternatives such as large reverse osmosis projects or building new reservoirs, which could possibly allow a drought-stricken state to build fewer of these more-costly alternatives. First, applying an ecologically benign surface treatment of Ice911's materials can be accomplished within a season, at a lower cost, with far less secondary environmental impact, than such capital-and-time-intensive infrastructure projects. Second, keeping

  8. Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR (United States)

    Zhou, Xiaohai; Zhou, Jian; Kinzelbach, Wolfgang; Stauffer, Fritz


    The freezing temperature of water in soil is not constant but varies over a range determined by soil texture. Consequently, the amounts of unfrozen water and ice change with temperature in frozen soil, which in turn affects hydraulic, thermal, and mechanical properties of frozen soil. In this paper, an Am-241 gamma ray source and time-domain reflectometry (TDR) were combined to measure unfrozen water content and ice content in frozen soil simultaneously. The gamma ray attenuation was used to determine total water content. The TDR was used to determine the dielectric constant of the frozen soil. Based on a four-phase mixing model, the amount of unfrozen water content in the frozen soil could be determined. The ice content was inferred by the difference between total water content and unfrozen water content. The gamma ray attenuation and the TDR were both calibrated by a gravimetric method. Water contents measured by gamma ray attenuation and TDR in an unfrozen silt column under infiltration were compared and showed that the two methods have the same accuracy and response to changes of water content. Unidirectional column freezing experiments were performed to apply the combined method of gamma ray attenuation and TDR for measuring unfrozen water content and ice content. The measurement error of the gamma ray attenuation and TDR was around 0.02 and 0.01 m3/m3, respectively. The overestimation of unfrozen water in frozen soil by TDR alone was quantified and found to depend on the amount of ice content. The higher the ice content, the larger the overestimation. The study confirmed that the combined method could accurately determine unfrozen water content and ice content in frozen soil. The results of soil column freezing experiments indicate that total water content distribution is affected by available pore space and the freezing front advance rate. It was found that there is similarity between the soil water characteristic and the soil freezing characteristic of

  9. 'Pioneer' - A controlled air-water heat pump for the replacement of oil-fired and electric heating systems; Geregelte Waermepumpe Pioneer. Geregelte Luft-Wasser-Waermepumpe fuer Sanierungen von Oel- und Elektroheizungen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Boeckh, P. von; Borer, M.; Borer, T. [Fachhochschule beider Basel FHBB, Dept. Industrie, Abtlg. Maschinenbau, Muttenz (Switzerland); Eggenberger, H.J. [Solartis GmbH, WP-Versuchslabor EICH, Fuellinsdorf (Switzerland)


    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that involved the development of an air-water heat pump system that could replace existing oil-fired and electric heating systems. The system features variable-frequency compressor and ventilator drives and was tested on a special test bed that provided appropriately prepared primary air. The measurements and optimisations made included the definition of optimal parameters for ventilator and de-icing system, measurement of performance coefficients and noise emissions as well as on the suitability of the system for hot-water generation. The authors quote figures that show that the performance of the variable-speed system is much better than systems running in stop-and-go mode.

  10. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center (United States)

    Oliver, Michael J.


    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal

  11. Counterintuitive Constraints on Chaos Formation Set by Heat Flux through Europa's Ocean (United States)

    Goodman, J. C.


    Models for the formation of disruptive chaos features on the icy surface of Europa fall into two broad categories: either chaos is formed when basal heating causes localized melting and thinning of the ice shell, or basal heating drives diapiric convection within the ice shell. We argue that in both of these cases, heating of the ice shell from below does not lead to chaos formation at the location of heating. If chaos is formed when a localized oceanic heat source, such as a hydrothermal plume, "melts through" the ice crust, we must consider what happens to the melted liquid. If Europa's ocean is salty, the melt will form a buoyant pool inside the melted cavity, leading to a stable interface between cold fresh meltwater and warm salty seawater. This stable interface acts like an ablative heat shield, protecting the ice from further damage. Some heat can be transferred across the stable layer by double diffusion, but this transfer is very inefficient. We calculate that local ocean heating cannot be balanced by local flux through the stable layer: instead, the warm ocean water must spread laterally until it is delivering heat to the ice base on a regional or global scale (a heating zone hundreds or thousands of km across, for conservative parameters.) If chaos is formed by diapiric solid-state convection within the ice shell, many investigators have assumed that diapirism and chaos should be most prevalent where the basal heat flux is strongest. We argue that this is not the case. In Rayleigh-Benard convection, increasing the heat flux will make convection more vigorous --- if and only if the convecting layer thickness does not change. We argue that increased basal heat flux will thin the ice shell, reducing its Rayleigh number and making convection less likely, not more. This insight allows us to reverse the logic of recent discussions of the relationship between ocean circulation and chaos (for instance, Soderlund et al, 2013 LPSC). We argue that global oceanic

  12. Thermodynamic Heat Water by The Condenser of Refrigerator

    International Nuclear Information System (INIS)

    Ben Slama, Romdhane


    The present innovation relates to the coupling of a refrigerator to a cumulus to heat water and this, thanks to the heat yielded to the level of the condenser of the refrigerating system even. The heating of water is carried out thus without energy over consumption. The quantity of heat transferred by the water-cooled condenser is sufficient to raise the temperature of this latter with 60 degree at the end of five hours. This can satisfy completely or partially the requirements out of hot water of a family which can distribute its requirements out of hot water all along the day and the week. The quantity of heat recovered by water to heat rises with four multiples the power consumption by the compressor. The system thus makes it possible to save energy and to safeguard the environment

  13. Local heat transfer where heated rods touch in axially flowing water

    International Nuclear Information System (INIS)

    Kast, S.J.


    An anlaytic model is developed to predict the azimuthal width of a stablesteam blanket region near the line of contact between two heated rods cooled by axially flowing water at high pressure. The model is intended to aid analysis of reduced surface heat transfer capability for the abnormal configuration of nuclear fuel rods bowed into contact in the core of a pressurized water nuclear reactor. The analytic model predicts the azimuthal width of the steam blanket zone having reduced surface heat transfer as a function of rod average heat flux, subchannel coolant conditions and rod dimensions. The analytic model is developed from a heat balance between the heat generated in the wall of a heated empty tube and the heat transported away by transverse mixing and axial convection in the coolant subchannel. The model is developed for seveal geometries including heated rods in line contact, a heated rod touching a short insulating plane and a heated rod touching the inside of a metal guide tube

  14. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf (United States)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.


    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude

  15. Tropical cloud buoyancy is the same in a world with or without ice (United States)

    Seeley, Jacob T.; Romps, David M.


    When convective clouds grow above the melting line, where temperatures fall below 0°C, condensed water begins to freeze and water vapor is deposited. These processes release the latent heat of fusion, which warms cloud air, and many previous studies have suggested that this heating from fusion increases cloud buoyancy in the upper troposphere. Here we use numerical simulations of radiative-convective equilibrium with and without ice processes to argue that tropical cloud buoyancy is not systematically higher in a world with fusion than in a world without it. This insensitivity results from the fact that the environmental temperature profile encountered by developing tropical clouds is itself determined by convection. We also offer a simple explanation for the large reservoir of convective available potential energy in the tropical upper troposphere that does not invoke ice.

  16. Deglacial and Holocene sea-ice variability north of Iceland and response to ocean circulation changes (United States)

    Xiao, Xiaotong; Zhao, Meixun; Knudsen, Karen Luise; Sha, Longbin; Eiríksson, Jón; Gudmundsdóttir, Esther; Jiang, Hui; Guo, Zhigang


    Sea-ice conditions on the North Icelandic shelf constitute a key component for the study of the climatic gradients between the Arctic and the North Atlantic Oceans at the Polar Front between the cold East Icelandic Current delivering Polar surface water and the relatively warm Irminger Current derived from the North Atlantic Current. The variability of sea ice contributes to heat reduction (albedo) and gas exchange between the ocean and the atmosphere, and further affects the deep-water formation. However, lack of long-term and high-resolution sea-ice records in the region hinders the understanding of palaeoceanographic change mechanisms during the last glacial-interglacial cycle. Here, we present a sea-ice record back to 15 ka (cal. ka BP) based on the sea-ice biomarker IP25, phytoplankton biomarker brassicasterol and terrestrial biomarker long-chain n-alkanols in piston core MD99-2272 from the North Icelandic shelf. During the Bølling/Allerød (14.7-12.9 ka), the North Icelandic shelf was characterized by extensive spring sea-ice cover linked to reduced flow of warm Atlantic Water and dominant Polar water influence, as well as strong meltwater input in the area. This pattern showed an anti-phase relationship with the ice-free/less ice conditions in marginal areas of the eastern Nordic Seas, where the Atlantic Water inflow was strong, and contributed to an enhanced deep-water formation. Prolonged sea-ice cover with occasional occurrence of seasonal sea ice prevailed during the Younger Dryas (12.9-11.7 ka) interrupted by a brief interval of enhanced Irminger Current and deposition of the Vedde Ash, as opposed to abruptly increased sea-ice conditions in the eastern Nordic Seas. The seasonal sea ice decreased gradually from the Younger Dryas to the onset of the Holocene corresponding to increasing insolation. Ice-free conditions and sea surface warming were observed for the Early Holocene, followed by expansion of sea ice during the Mid-Holocene.

  17. Loss of sea ice in the Arctic. (United States)

    Perovich, Donald K; Richter-Menge, Jacqueline A


    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  18. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates. (United States)

    Knopf, Daniel A; Rigg, Yannick J


    Homogeneous ice nucleation plays an important role in the formation of cirrus clouds with subsequent effects on the global radiative budget. Here we report on homogeneous ice nucleation temperatures and corresponding nucleation rate coefficients of aqueous droplets serving as surrogates of biomass burning aerosol. Micrometer-sized (NH(4))(2)SO(4)/levoglucosan droplets with mass ratios of 10:1, 1:1, 1:5, and 1:10 and aqueous multicomponent organic droplets with and without (NH(4))(2)SO(4) under typical tropospheric temperatures and relative humidities are investigated experimentally using a droplet conditioning and ice nucleation apparatus coupled to an optical microscope with image analysis. Homogeneous freezing was determined as a function of temperature and water activity, a(w), which was set at droplet preparation conditions. The ice nucleation data indicate that minor addition of (NH(4))(2)SO(4) to the aqueous organic droplets renders the temperature dependency of water activity negligible in contrast to the case of aqueous organic solution droplets. The mean homogeneous ice nucleation rate coefficient derived from 8 different aqueous droplet compositions with average diameters of ∼60 μm for temperatures as low as 195 K and a(w) of 0.82-1 is 2.18 × 10(6) cm(-3) s(-1). The experimentally derived freezing temperatures and homogeneous ice nucleation rate coefficients are in agreement with predictions of the water activity-based homogeneous ice nucleation theory when taking predictive uncertainties into account. However, the presented ice nucleation data indicate that the water activity-based homogeneous ice nucleation theory overpredicts the freezing temperatures by up to 3 K and corresponding ice nucleation rate coefficients by up to ∼2 orders of magnitude. A shift of 0.01 in a(w), which is well within the uncertainty of typical field and laboratory relative humidity measurements, brings experimental and predicted freezing temperatures and homogeneous ice

  19. Current status of and problems in ice heat storage systems contributing to improving load rate. Proliferation and expanded use are intended by using the heat storage commission system and development of low-cost heat storage tanks (Kansai Electric Power Co. Inc.); Fukaritsu kaizen ni kokensuru kori chikunetsu system no genjo to kadai. Chikunetsu jutaku seido ya teikakaku chikunetsuso kaihatsu de fukyu kakudai mezasu (Kansai Denryoku)

    Energy Technology Data Exchange (ETDEWEB)

    Fujise, M. [Kansai Electric Power Co. Inc., Osaka (Japan)


    This paper introduces activities performed by Kansai Electric Power Co., Inc. on ice heat storage systems. In the work on ice heat storage proliferation activities, systems for preferential treatment on power charge and a bounty for the system proliferation are available. Utilizing the ice heat storage system allows customers to use low-priced nighttime power as defined in an ice heat adjustment contract. Since this system reduces the power requirement under the contract, the running cost becomes less expensive. Furthermore, power charge discount system has been applied since fiscal 1997 according to a `heat storage peak adjustment contract`. In addition, in order to reduce the initial cost for an ice heat storage device, a system has been established, in which electric power companies pay bounty to device manufacturers for sales for proliferation. Under this system, if two ice heat storage units corresponding to 110 freezing tons are installed in an office building with an area of 10,000 m {sup 2}, a cost reduction of about 2.3 million yen is possible. For the purpose of reducing burden of initial investment on customers, a `lease system` and a `heat storage commission system` have been established to install and maintain air conditioners. 6 figs., 1 tab.

  20. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat (United States)

    Durner, George M.; Whiteman, J.P.; Harlow, H.J.; Amstrup, Steven C.; Regehr, E.V.; Ben-David, M.


    Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness.


    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. G.; Wright, C. M.; Robinson, G. [School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600 (Australia); Charnley, S. B. [Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Pendleton, Y. J. [NASA Lunar Science Institute, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Maldoni, M. M., E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Geoscience Australia, Canberra, ACT 2601 (Australia)


    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H{sub 2}O{sub 2}), for the production of water (H{sub 2}O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H{sub 2}O{sub 2} ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H{sub 2}O{sub 2} should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H{sub 2}O{sub 2}/H{sub 2}O ice films between 2.5 and 200 {mu}m, from 10 to 180 K, containing 3%, 30%, and 97% H{sub 2}O{sub 2} ice. Integrated absorbances for all the absorption features in low-temperature H{sub 2}O{sub 2} ice have been derived from these spectra. For identifying H{sub 2}O{sub 2} ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 {mu}m. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H{sub 2}O ice absorption bands, no absorption features are found that can definitely be identified with H{sub 2}O{sub 2} ice. In the absence of definite H{sub 2}O{sub 2} features, the H{sub 2}O{sub 2} abundance is constrained by its possible contribution to the weak absorption feature near 3.47 {mu}m found on the long-wavelength wing of the 3 {mu}m H{sub 2}O ice band. This gives an average upper limit for H{sub 2}O{sub 2}, as a percentage of H{sub 2}O, of 9% {+-} 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  2. Fabrication and icing property of superhydrophilic and superhydrophobic aluminum surfaces derived from anodizing aluminum foil in a sodium chloride aqueous solution (United States)

    Song, Meirong; Liu, Yuru; Cui, Shumin; Liu, Long; Yang, Min


    An aluminum foil with a rough surface was first prepared by anodic treatment in a neutral aqueous solution with the help of pitting corrosion of chlorides. First, the hydrophobic Al surface (contact angle around 79°) became superhydrophilic (contact angle smaller than 5°) after the anodizing process. Secondly, the superhydrophilic Al surface became superhydrophobic (contact angle larger than 150°) after being modified by oleic acid. Finally, the icing property of superhydrophilic, untreated, and superhydrophobic Al foils were investigated in a refrigerated cabinet at -12 °C. The mean total times to freeze a water droplet (6 μL) on the three foils were 17 s, 158 s and 1604 s, respectively. Thus, the superhydrophilic surface accelerates the icing process, while the superhydrophobic surface delays the process. The main reason for this transition might mainly result from the difference of the contact area of the water droplet with Al substrate: the increase in contact area with Al substrate will accelerate the heat conduct process, as well as the icing process; the decrease in contact area with Al substrate will delay the heat conduct process, as well as the icing process. Compared to the untreated Al foil, the contact area of the water droplet with the Al substrate was higher on superhydrophilic surface and smaller on the superhydrophobic surface, which led to the difference of the heat transfer time as well as the icing time.

  3. Process Analytical Technology in Freeze-Drying: Detection of the Secondary Solute + Water Crystallization with Heat Flux Sensors. (United States)

    Wang, Qiming; Shalaev, Evgenyi


    In situ and non-invasive detection of solute crystallization during freeze-drying would facilitate cycle optimization and scale-up from the laboratory to commercial manufacturing scale. The objective of the study is to evaluate heat flux sensor (HFS) as a tool for monitoring solute crystallization and other first-order phase transitions (e.g., onset of freezing). HFS is a thin-film differential thermopile, which acts as a transducer to generate an electrical signal proportional to the total heat applied to its surface. In this study, HFS is used to detect both primary (ice formation) and secondary (also known as eutectic) solute + water crystallization during cooling and heating of solutions in a freeze-dryer. Binary water-solute mixtures with typical excipients concentrations (e.g., 0.9% of NaCl and 5% mannitol) and fill volumes (1 to 3 ml/vial) are studied. Secondary crystallization is detected by the HFS during cooling in all experiments with NaCl solutions, whereas timing of mannitol crystallization depends on the cooling conditions. In particular, mannitol crystallization takes place during cooling, if the cooling rate is lower than the critical value. On the other hand, if the cooling rate exceeds the critical cooling rate, mannitol crystallization during cooling is prevented, and crystallization occurs during subsequent warming or annealing. It is also observed that, while controlled ice nucleation allows initiation of the primary freezing event in different vials simultaneously, there is a noticeable vial-to-vial difference in the timing of secondary crystallization. The HFS could be a valuable process monitoring tool for non-invasive detection of various crystallization events during freeze-drying manufacturing.

  4. Review of Anti-Icing/Ice Release Systems (United States)


    walkways, and superstructure which the US Navy has shown 1 for a Green Arctic Patrol Vessel can be supplied by waste heat recovery from engine...adhesion strength than the ice does, thus facilitating shear. It has been found that such treatments depend on the chemical nature and condition of...application. • Ablative or Depletion Coatings: where the coating fails cohesively as ice is sheared away, or where low surface energy or oily additives

  5. Heat Transfer Basics and Practice

    CERN Document Server

    Böckh, Peter


    The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author’s experience indicates that students, after 40 lectures and exercises ...

  6. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵


    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  7. Analysis of Water Extraction From Lunar Regolith (United States)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.


    Distribution of water concentration on the Moon is currently an area of active research. Recent studies suggest the presence of ice particles, and perhaps even ice blocks and ice-cemented regolith on the Moon. Thermal extraction of the in-situ water is an attractive means of sa tisfying water requirements for a lunar mission. In this paper, a model is presented to analyze the processes occurring during the heat-up of icy regolith and extraction of the evolved water vapor. The wet regolith is assumed to be present in an initially evacuated and sealed cell which is subsequently heated. The first step of the analysis invol ves calculating the gradual increase of vapor pressure in the closed cell as the temperature is raised. Then, in the second step, the cell is evacuated to low pressure (e.g., vacuum), allowing the water vapor to leave the cell and be captured. The parameters affecting water vap or pressure build-up and evacuation for the purpose of extracting water from lunar regolith are discussed in the paper. Some comparisons wi th available experimental measurements are also made.

  8. An Assessment of the Icing Blade and the SEA Multi-Element Sensor for Liquid Water Content Calibration of the NASA GRC Icing Research Tunnel (United States)

    Steen, Laura E.; Ide, Robert F.; Van Zante, Judith Foss


    The Icing Research Tunnel at NASA Glenn has recently switched to from using the Icing Blade to using the SEA Multi-Element Sensor (also known as the multi-wire) for its calibration of cloud liquid water content. In order to perform this transition, tests were completed to compare the Multi-Element Sensor to the Icing Blade, particularly with respect to liquid water content, airspeed, and drop size. The two instruments were found to compare well for the majority of Appendix C conditions. However, it was discovered that the Icing Blade under-measures when the conditions approach the Ludlam Limit. This paper also describes data processing procedures for the Multi-Element Sensor in the IRT, including collection efficiency corrections, mounting underneath a splitter plate, and correcting for a jump in the compensation wire power. Further data is presented to describe the repeatability of the IRT with the Multi-Element sensor, health-monitoring checks for the instrument, and a sensing-element configuration comparison.

  9. The coefficient of friction, particularly of ice

    International Nuclear Information System (INIS)

    Mills, Allan


    The static and dynamic coefficients of friction are defined, and values from 0.3 to 0.6 are quoted for common materials. These drop to about 0.15 when oil is added as a lubricant. Water ice at temperatures not far below 0 °C is remarkable for low coefficients of around 0.05 for static friction and 0.04–0.02 for dynamic friction, but these figures increase as the temperature diminishes. Reasons for the slipperiness of ice are summarized, but they are still not entirely clear. One hypothesis suggests that it is related to the transient formation of a lubricating film of liquid water produced by frictional heating. If this is the case, some composition melting a little above ambient temperatures might provide a skating rink that did not require expensive refrigeration. Various compositions have been tested, but an entirely satisfactory material has yet to be found

  10. Protozoan Bacterivory in the Ice and the Water Column of a Cold Temperate Lagoon. (United States)

    Sime-Ngando; Demers; Juniper


    > Abstract Bacterial abundance and bacterivorous protist abundance and activity were examined in ice-brine and water column communities of a cold temperate Japanese lagoon (Saroma-Ko Lagoon, Hokkaido, 44 degreesN, 144 degreesE), during the late winter phase of ice community development (February-March 1992). Bacterial abundance averaged 6 and 1 x 10(5) cells ml-1 in the ice-brine and plankton samples, respectively, and generally decreased during the sampling period. Bacterivorous protists, identified based on direct observation of short-term (Protist abundance averaged 4 x 10(3) and 8.1 cells ml-1 in the ice-brine and 0.3 x 10(3) and 1.2 cells ml-1 in the plankton, for flagellates and ciliates, respectively. In contrast to bacteria, the abundance of protists generally increased throughout the sampling period, indicating predator-prey interactions. Protistan bacterivory, measured from the rate of FLB disappearance over 24 h, averaged 36% (ice) and 24% (plankton) of bacterial standing stock and exhibited the same seasonal pattern as for protist abundance. The calculated specific clearance (range, 2-67 nl protozoa-1 h-1) and ingestion (protists" on nonbacterial food items were also provided. Although alternative sources of bacterial loss are likely to be of importance, this study provides evidence for the potential of protozoan assemblages as bacterial grazers in both sea ice-brine biota and water column at the southern limit of sea ice in the northern hemisphere.

  11. Fiscal 1993 investigational report on heat pump heat storage technology; 1993 nendo heat pump chikunetsu gijutsu ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    This project is for an investigation into the heat pump (HP) use heat storage technology, with the aim of clarifying the present status of HP heat storage technology, the utilization status, and the developmental trend of technology and of contributing to the spread of heat energy effective use using HP heat storage technology and to the promotion of the technical development. Accordingly, the evaluation of the following was made: sensible heat (SH), latent heat (LH), chemical heat storage technology (CH), and heat storage technology (HS). Investigations were made on the sensible heat use heat storage technology of water, brine, stone, soil, etc. in terms of SH; the phase change sensible heat use heat storage technology of ice, hydrate salt, paraffins, etc. in terms of LH; hydration, hydroxide, 2-propanol pyrolysis, adsorption of silica gel, zeolite and water, and heat storage technology using metal hydride, etc. in terms of CH. In terms of HS, the following were studied and evaluated from the study results of the heat storage system in which HP is applied to the sensible heat and latent heat type heat storage technology: contribution to the power load levelling and the reduction of heat source capacity, heat recovery and the use of unused energy, improvement of the system efficiency by combining HP and heat storage technology. 24 refs., 242 figs., 56 tabs.

  12. Penetrating Shortwave Radiation and Sea Ice Algae feedbacks using the Community Earth System Model (United States)

    Arntsen, A. E.; Perovich, D. K.; Bailey, D. A.; Holland, M. M.


    Transmittance of solar radiation through the sea ice cover determines energy transfer to the upper ocean in the form of heat as well as photosynthetically active radiation (PAR) available for the growth of under ice phytoplankton and bottom ice algal communities. A thinning ice cover, increased pond coverage, and earlier melt onset has increased light availability to the upper ocean in contemporary Arctic ice-covered waters. To investigate seasonal and spatial variability of solar shortwave irradiance penetrating the ice cover in the Beaufort and Chukchi Sea regions, we use the fully coupled Community Earth System Model (CESM) in conjunction with a multistream radiative transfer model constrained and initiated by in situ observations. Results inform the importance of light attenuation by ice-based algal pigments within large scale global climate models. We demonstrate the presence of bio-optical feedbacks related to a younger ice cover and examine how these relationships are impacting the trajectory of under ice blooms and the energy budget of the ice-ocean system.

  13. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets. (United States)

    Knopf, Daniel A; Alpert, Peter A


    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, a(w), which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, J(het), to be uniquely expressed by T and a(w), a result we term the a(w) based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, J(het), frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(J(het)) values for the various IN types derived exclusively by Tand a(w), provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Lastly, we demonstrate that ABIFM can

  14. Energy-efficient and cost-effective in-house substations bypass for improving thermal and DHW (domestic hot water) comfort in bathrooms in low-energy buildings supplied by low-temperature district heating

    DEFF Research Database (Denmark)

    Brand, Marek; Dalla Rosa, Alessandro; Svendsen, Svend


    temperature and additional cooling of bypass water by 3.9 °C, reducing the heat loss from the DH network by 13% and covering 40% of the heat used in the bathroom FH. The use of the bypass flow in bathroom FH is a cost-effective solution exploiting the heat that would otherwise be lost in the DH network......Using a bypass to redirect a small flow through the in-house DH (district heating) substation directly to the return pipe is a commonly used but energy-inefficient solution to keep the DH network “warm” during non-heating seasons. Instead, this water can be redirected to the bathroom FH (floor...... heating) to cool down further and thus reduce the heat lost from bypass operation while tempering the bathroom floor and guaranteeing fast provision of DHW (domestic hot water). We used the commercial software IDA-ICE to model a reference building where we implemented various solutions for controlling...

  15. Effect of aspect ratio on natural convective heat transfer adjacent to a vertival isothermal cylinder immersed in pure water

    International Nuclear Information System (INIS)

    Riu, Kap Jong; Eum, Yong Kyoon; Park, Sung Soon


    A numerical analysis is performed about the effect of aspect ratio on heat transfer adjacent to a vertical-isothermal cylinder of 0 deg C in pure water. The numerical results for the effect of aspect ratio are presented for ambient water temperature from 1.0 deg C to 15.0 deg C. They include velocity profiles, temperature profiles and mean Nusselt number for the entire flow field. The mean Nusselt numbers of vertival-isothermal cylinder are compared with that of vertival-isothermal plate in increasing aspect ratio of cylinder. Furthermore, the mean Nusselt numbers of unsteady region in the range of 0.084< R<0.328 are obtained by curve-fitting. The natural convection caused by phase change was investigated by experiments when the vertical ice cylinder was immersed in the pure water of which the tempetature range is from 2.0 to 10.0 deg C. Each figure shows a time-exposure photograph of flow occuring at the respective ambient water temperature conditions. As the ambient water temperature is increased from 2.0 to 10.0 deg C, the regimes of upward steady state flows, steady state dual flows and downward steady state flows are observed. Also, the variations of shapes of melting ice cylinder are investigated.(Author)

  16. Bare ice fields developed in the inland part of the Antarctic ice sheet

    Directory of Open Access Journals (Sweden)

    Shuhei Takahashi


    Full Text Available Observations of a bare ice field were carried out at Seal Rock in the Sor Rondane area, East Antarctica. A large sublimation rate, 200 to 280mm/a, was observed on the bare ice field. Air temperature on the bare ice was about 1℃ higher than that on the snow surface. The large sublimation rate was explained from the low albedo of bare ice; its value was roughly estimated from heat budget considerations. The bare ice fields were classified into 4 types according to origin.


    Energy Technology Data Exchange (ETDEWEB)

    Bordalo, V.; Da Silveira, E. F. [Departamento de Fisica/Laboratorio do Acelerador Van de Graaff, Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de S. Vicente 225, 22451-900 Rio de Janeiro, RJ (Brazil); Lv, X. Y.; Domaracka, A.; Rothard, H.; Boduch, P. [Centre de Recherche sur les Ions, les Materiaux et la Photonique (CEA/CNRS/ENSICAEN/Universite de Caen-Basse Normandie), CIMAP-CIRIL-GANIL, Boulevard Henri Becquerel, BP 5133, F-14070 Caen Cedex 05 (France); Seperuelo Duarte, E., E-mail: [Grupo de Fisica e Astronomia, Instituto Federal do Rio de Janeiro, Rua Lucio Tavares 1045, 26530-060 Nilopolis, RJ (Brazil)


    Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH{sub 3}) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H{sub 2}O). FTIR spectroscopy is used to monitor pure NH{sub 3} and NH{sub 3}-H{sub 2}O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N{sub 2}H{sub 4}), diazene (N{sub 2}H{sub 2} isomers), molecular hydrogen (H{sub 2}), and nitrogen (N{sub 2}) were identified after irradiation of pure NH{sub 3} ices. Nitrous oxide (N{sub 2}O), nitrogen oxide (NO), nitrogen dioxide (NO{sub 2}), and hydroxylamine (NH{sub 2}OH) are some of the products of the NH{sub 3}-H{sub 2}O ice radiolysis. The spectral band at 6.85 {mu}m was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH{sub 4}{sup +}) and amino (NH{sub 2}) radicals, data suggest a small contribution of NH{sub 2}OH to this band profile after high fluences of irradiation of NH{sub 3}-H{sub 2}O ices. The spectral shift of the NH{sub 3} ''umbrella'' mode (9.3 {mu}m) band is parameterized as a function of NH{sub 3}/H{sub 2}O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH{sub 3}-H{sub 2}O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H{sub 2}O in the ice and a power law relationship between stopping power and NH{sub 3} destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.

  18. Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery

    International Nuclear Information System (INIS)

    Li, Yuzhong; Yan, Min; Zhang, Liqiang; Chen, Guifang; Cui, Lin; Song, Zhanlong; Chang, Jingcai; Ma, Chunyuan


    Highlights: • A method is developed for deep cooling of flue gas in coal-fired boilers. • The method can recover both latent heat and water from flue gas. • The method utilizes FGD scrubber as a deep cooling exchanger. • The method adopts the direct heat exchange mode to avoid the corrosion problem. - Abstract: Flue gas waste heat recovery and utilization is an efficient means to improve the energy efficiency of coal-fired power plants. At present, the surface corrosion and fouling problems of heat exchanger hinder the development of flue gas deep cooling. In this study, a novel flue gas deep cooling method that can reduce flue gas temperature below the dew point of vapor to recover latent heat and obtain clean water simultaneously is proposed to achieve improved energy efficiency. The heat transfer mode of this method is the direct contact mode, which takes the scrubber, e.g. the flue gas desulfurization (FGD) scrubber, as the deep cooling exchanger. The flash evaporation and condensation (FEC) device and heat pump (HP) are utilized to provide low-temperature medium, such as FGD slurry or water, for washing and deep cooling flue gas, to collect recovered water, and to absorb recovered waste heat. This method is called as the FEC–HP method. This paper elaborated on two optional models of the proposed method. The mechanism for recovering heat and water was also analyzed using the customized flue gas humidity chart, and the method to quantitate recovered heat and water, as well as the results of the case of a 300 MW coal-fired generator set were provided. Net present value calculations showed that this method is profitable in the scenario of burning high-water-content coals. Several potential advantages of this method and suggestions for practical application were also discussed.

  19. The Response of Ice Sheets to Climate Variability (United States)

    Snow, K.; Goldberg, D. N.; Holland, P. R.; Jordan, J. R.; Arthern, R. J.; Jenkins, A.


    West Antarctic Ice Sheet loss is a significant contributor to sea level rise. While the ice loss is thought to be triggered by fluctuations in oceanic heat at the ice shelf bases, ice sheet response to ocean variability remains poorly understood. Using a synchronously coupled ice-ocean model permitting grounding line migration, this study evaluates the response of an ice sheet to periodic variations in ocean forcing. Resulting oscillations in grounded ice volume amplitude is shown to grow as a nonlinear function of ocean forcing period. This implies that slower oscillations in climatic forcing are disproportionately important to ice sheets. The ice shelf residence time offers a critical time scale, above which the ice response amplitude is a linear function of ocean forcing period and below which it is quadratic. These results highlight the sensitivity of West Antarctic ice streams to perturbations in heat fluxes occurring at decadal time scales.

  20. The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners

    International Nuclear Information System (INIS)

    Yi Xiaowen; Lee, W.L.


    An experimental study on the performance of a domestic water-cooled air-conditioner (WAC) using tube-in-tube helical heat exchanger for preheating of domestic hot water was carried out. The main aims are to identify the comprehensive energy performance (space cooling and hot water preheating) of the WAC and the optimum design of the helical heat exchanger taking into account the variation in tap water flow rate. A split-type WAC was set up for experimental study at different indoor and outdoor conditions. The cooling output, the amount of recovered heat, and the power consumption for different hot water flow rates were measured. The experimental results showed that the cooling coefficient of performance (COP) of the WAC improves with the inclusion of the heat recovery option by a minimum of 12.3%. This can be further improved to 20.6% by an increase in tap water flow rate. Same result was observed for the comprehensive COP of the WAC. The maximum achievable comprehensive COP was 4.92 when the tap water flow rate was set at 7.7 L/min. The overall heat transfer coefficient of the helical heat exchanger under various operating conditions were determined by Wilson plot. A mathematical model relating the over all heat transfer coefficient to the outer pipe diameter was established which provides a convenient way of optimising the design of the helical heat exchanger

  1. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)


    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  2. How efficient are heat pumps? Investigations in practical operation; Wie effizient sind Waermepumpen? Messungen im Praxisbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Miara, Marek [Fraunhofer ISE, Freiburg (Germany)


    Heat pump systems win ever larger market shares within the range of the heating and hot water preparation in buildings. But, how great is their efficiency in the practical operation? What are the factors which affect the efficiency? In order to evaluate the ecological, energetic and economic criteria better, Fraunhofer ISE (Freiburg, Federal Republic of Germany) has investigated nearly two hundred heat pump systems scientifically. The contribution under consideration summarizes the most current results and the most important realizations.

  3. Thermodynamic analysis on an instantaneous water heating system of shower wastewater source heat pump

    Directory of Open Access Journals (Sweden)

    Yuguo Wu


    Full Text Available Water reuse and desalination systems are energy intensive processes, and their increasing use is leading energy consumption within water systems to be an increasingly important issue. Shower wastewater contains large amounts of heat, so there is an opportunity to recover energy from shower water to offset energy consumption elsewhere in water systems. This paper found ways to increase the output of hot water and lower the energy consumption by establishing a thermodynamic model of an instantaneous wastewater source heat pump. The system proved to be very effective, the heating COP (coefficient of performance can reach 3.3 even in the winter. Under the conditions of limited heat transfer area, reducing the suction pressure of a compressor is a more feasible way to increase the hot water output to meet the needs of users rather than increasing the discharge pressure. Besides, increasing the heat transfer area of the evaporator is a more effective option. When the heat transfer area of evaporator varies from 0.5 to 1.0 square meters, a notable change is that the heating COP increases from 3.283 to 3.936. The heating COP in a system with a recuperator can reach 5.672, almost double that compared to the original systems.

  4. Electrophysiological and behavioural responses of turbot (Scophthalmus maximus) cooled in ices water

    NARCIS (Netherlands)

    Lambooij, E.; Bracke, M.B.M.; Reimert, H.G.M.; Foss, A.; Imsland, A.; Vis, van de J.W.


    Behavioural, neural and physiological aspects related to pre-slaughter cooling of turbot habituated to two environmental temperatures (18.7 and 12.0 °C) were investigated. Six fish in both treatments were immersed in ice water for 75 min. For control, four fish were immersed in water under their

  5. Solar Energy for Space Heating & Hot Water. (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  6. Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies (United States)

    Journaux, Baptiste; Daniel, Isabelle; Petitgirard, Sylvain; Cardon, Hervé; Perrillat, Jean-Philippe; Caracas, Razvan; Mezouar, Mohamed


    Water-rich planetary bodies including large icy moons and ocean exoplanets may host a deep liquid water ocean underlying a high-pressure icy mantle. The latter is often considered as a limitation to the habitability of the uppermost ocean because it would limit the availability of nutrients resulting from the hydrothermal alteration of the silicate mantle located beneath the deep ice layer. To assess the effects of salts on the physical properties of high-pressure ices and therefore the possible chemical exchanges and habitability inside H2O-rich planetary bodies, we measured partitioning coefficients and densities in the H2O-RbI system up to 450 K and 4 GPa; RbI standing as an experimentally amenable analog of NaCl in the H2O-salt solutions. We measured the partitioning coefficient of RbI between the aqueous fluid and ices VI and VII, using in-situ Synchrotron X-ray Fluorescence (XRF). With in-situ X-ray diffraction, we measured the unit-cell parameters and the densities of the high-pressure ice phases in equilibrium with the aqueous fluid, at pressures and temperatures relevant to the interior of planetary bodies. We conclude that RbI is strongly incompatible towards ice VI with a partitioning coefficient Kd(VI-L) = 5.0 (± 2.1) ṡ10-3 and moderately incompatible towards ice VII, Kd(VII-L) = 0.12 (± 0.05). RbI significantly increases the unit-cell volume of ice VI and VII by ca. 1%. This implies that RbI-poor ice VI is buoyant compared to H2O ice VI while RbI-enriched ice VII is denser than H2O ice VII. These new experimental results might profoundly impact the internal dynamics of water-rich planetary bodies. For instance, an icy mantle at moderate conditions of pressure and temperature will consist of buoyant ice VI with low concentration of salt, and would likely induce an upwelling current of solutes towards the above liquid ocean. In contrast, a deep and/or thick icy mantle of ice VII will be enriched in salt and hence would form a stable chemical boundary

  7. An analytical method for defining the pump`s power optimum of a water-to-water heat pump heating system using COP

    Directory of Open Access Journals (Sweden)

    Nyers Jozsef


    Full Text Available This paper analyzes the energy efficiency of the heat pump and the complete heat pump heating system. Essentially, the maximum of the coefficient of performance of the heat pump and the heat pump heating system are investigated and determined by applying a new analytical optimization procedure. The analyzed physical system consists of the water-to-water heat pump, circulation and well pump. In the analytical optimization procedure the "first derivative equal to zero" mathematical method is applied. The objective function is the coefficient of performance of the heat pump, and the heat pump heating system. By using the analytical optimization procedure and the objective function, as the result, the local and the total energy optimum conditions with respect to the mass flow rate of hot and cold water i. e. the power of circulation or well pump are defined.

  8. UV/Vis spectroscopy of C60 embedded in water ice

    DEFF Research Database (Denmark)

    Cuylle, Steven; Linnartz, Harold; Thrower, John


    Electronic solid state spectra are recorded for C60 embedded in 40 K water ice using broad band direct absorption spectroscopy, and assigned with reference to existing matrix data. The results are interesting in view of the recent gas phase detection of fullerenes in the interstellar medium...

  9. Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea (United States)

    Serreze, Mark C.; Crawford, Alex D.; Stroeve, Julienne C.; Barrett, Andrew P.; Woodgate, Rebecca A.


    As assessed over the period 1979-2014, the date that sea ice retreats to the shelf break (150 m contour) of the Chukchi Sea has a linear trend of -0.7 days per year. The date of seasonal ice advance back to the shelf break has a steeper trend of about +1.5 days per year, together yielding an increase in the open water period of 80 days. Based on detrended time series, we ask how interannual variability in advance and retreat dates relate to various forcing parameters including radiation fluxes, temperature and wind (from numerical reanalyses), and the oceanic heat inflow through the Bering Strait (from in situ moorings). Of all variables considered, the retreat date is most strongly correlated (r ˜ 0.8) with the April through June Bering Strait heat inflow. After testing a suite of statistical linear models using several potential predictors, the best model for predicting the date of retreat includes only the April through June Bering Strait heat inflow, which explains 68% of retreat date variance. The best model predicting the ice advance date includes the July through September inflow and the date of retreat, explaining 67% of advance date variance. We address these relationships by discussing heat balances within the Chukchi Sea, and the hypothesis of oceanic heat transport triggering ocean heat uptake and ice-albedo feedback. Developing an operational prediction scheme for seasonal retreat and advance would require timely acquisition of Bering Strait heat inflow data. Predictability will likely always be limited by the chaotic nature of atmospheric circulation patterns.

  10. Saturated flow boiling heat transfer in water-heated vertical annulus

    International Nuclear Information System (INIS)

    Sun Licheng; Yan Changqi; Sun Zhonning


    This paper describes the saturated flow boiling heat transfer characteristics of water at 1 atm and low velocities in water-heated vertical annuli with equivalent diameters of 10 mm and 6 mm. Test section is consisted of two concentric circular tubes outer of which is made of quartz, so the whole test courses can be visualized. There are three main flow patterns of bubble flow, churn flow and churn-annular flow in the annuli, most important of which is churn flow. Flooding is the mechanism of churn flow and churn can enhance the heat transport between steam and water; Among the three factors of mass flux, inlet subcooling and annulus width, the last one has great effect on heat transport, moderately decreasing the annulus width can enhance the heat transfer; Combined annular flow model with theory of flooding and turbulent Prandtl Number, the numerical value of heat flux is given, the shape of test boiling curve and that of calculated by model is very alike, but there is large discrepancy between test data and calculated results, the most possible reason is that some parameters given by fluid flooding model are based on experimental data of common circular tubes, but not of annuli. Doing more research on flooding in annulus, particularly narrow annulus, is necessary for calculating the saturated boiling in annulus. (authors)

  11. Atlantic water heat transfer through the Arctic Gateway (Fram Strait) during the Last Interglacial (United States)

    Zhuravleva, Anastasia; Bauch, Henning A.; Spielhagen, Robert F.


    The Last Interglacial in the Arctic region is often described as a time with warmer conditions and significantly less summer sea ice than today. The role of Atlantic water (AW) as the main oceanic heat flux agent into the Arctic Ocean remains, however, unclear. Using high-resolution stable isotope and faunal records from the only deep Arctic Gateway, the Fram Strait, we note for the upper water column a diminished influence of AW and generally colder-than-Holocene surface ocean conditions. After the main Saalian deglaciation had terminated, a first intensification of northward-advected AW happened ( 124 ka). However, an intermittent sea surface cooling, triggered by meltwater release at 122 ka, caused a regional delay in the further development towards peak interglacial conditions. Maximum AW heat advection occurred during late MIS 5e (118.5-116 ka) and interrupted a longer-term cooling trend at the sea surface that started from about 120 ka on. Such a late occurrence of the major AW-derived near-surface warming in the Fram Strait - this is in stark contrast to an early warm peak in the Holocene - compares well in time with upstream records from the Norwegian Sea, altogether implying a coherent development of south-to-north ocean heat transfer through the eastern Nordic Seas and into the high Arctic during the Last Interglacial.

  12. Azimuthal Structure of the Sand Erg that Encircles the North Polar Water-Ice Cap (United States)

    Teodoro, L. A.; Elphic, R. C.; Eke, V. R.; Feldman, W. C.; Maurice, S.; Pathare, A.


    The sand erg that completely encircles the perennial water-ice cap that covers the Martian north geographic pole displays considerable azimuthal structure as seen in visible and near-IR images. Much of this structure is associated with the terminations of the many steep troughs that cut spiral the approximately 3 km thick polar ice cap. Other contributions come from the katabatic winds that spill over steep-sided edges of the cap, such as what bounds the largest set of dunes that comprise Olympia Undae. During the spring and summer months when these winds initiate from the higher altitudes that contain sublimating CO2 ice, which is very cold and dry, heat adiabatically when they compress as they lose altitude. These winds should then remove H2O moisture from the uppermost layer of the sand dunes that are directly in their path. Two likely locations where this desiccation may occur preferentially is at the termination of Chasma Boreale and the ice cap at Olympia Undae. We will search for this effect by sharpening the spatial structure of the epithermal neutron counting rates measured at northern high latitudes using the Mars Odyssey Neutron Spectrometer (MONS). The epithermal range of neutron energies is nearly uniquely sensitive to the hydrogen content of surface soils, which should likely be in the form of H2O/OH molecules/radicals. We therefore convert epithermal counting rates in terms of Water-Equivalent-Hydrogen, WEH. However, MONS counting-rate data have a FWHM of ~550 km., which is sufficiently broad to prevent a close association of WEH variability with images of geological features. In this study, we reduce spurious features in the instrument smeared neutron counting rates through deconvolution. We choose the PIXON numerical deconvolution technique for this purpose. This technique uses a statistical approach (Pina 2001, Eke 2001), which is capable of removing spurious features in the data in the presence of noise. We have previously carried out a detailed

  13. Estimating Past Temperature Change in Antarctica Based on Ice Core Stable Water Isotope Diffusion (United States)

    Kahle, E. C.; Markle, B. R.; Holme, C.; Jones, T. R.; Steig, E. J.


    The magnitude of the last glacial-interglacial transition is a key target for constraining climate sensitivity on long timescales. Ice core proxy records and general circulation models (GCMs) both provide insight on the magnitude of climate change through the last glacial-interglacial transition, but appear to provide different answers. In particular, the magnitude of the glacial-interglacial temperature change reconstructed from East Antarctic ice-core water-isotope records is greater ( 9 degrees C) than that from most GCM simulations ( 6 degrees C). A possible source of this difference is error in the linear-scaling of water isotopes to temperature. We employ a novel, nonlinear temperature-reconstruction technique using the physics of water-isotope diffusion to infer past temperature. Based on new, ice-core data from the South Pole, this diffusion technique suggests East Antarctic temperature change was smaller than previously thought. We are able to confirm this result using a simple, water-isotope fractionation model to nonlinearly reconstruct temperature change at ice core locations across Antarctica based on combined oxygen and hydrogen isotope ratios. Both methods produce a temperature change of 6 degrees C for South Pole, agreeing with GCM results for East Antarctica. Furthermore, both produce much larger changes in West Antarctica, also in agreement with GCM results and independent borehole thermometry. These results support the fidelity of GCMs in simulating last glacial maximum climate, and contradict the idea, based on previous work, that the climate sensitivity of current GCMs is too low.

  14. Demand side management in South Africa at industrial residence water heating systems using in line water heating methodology

    International Nuclear Information System (INIS)

    Rankin, R.; Rousseau, P.G.


    The South African electrical utility, ESKOM, currently focuses its demand side management (DSM) initiatives on controlling electrical load between 18:00 and 20:00 each day, which is the utility's peak demand period. Funding is provided to energy service companies (ESCo's) to implement projects that can achieve load shifting out of this period. This paper describes how an improved in line water heating concept developed in previous studies was implemented into several real life industrial sanitary water heating systems to obtain the DSM load shift required by ESKOM. Measurements from a selection of these plants are provided to illustrate the significant load reductions that are being achieved during 18:00-20:00. The measured results also show that the peak load reduction is achieved without adversely affecting the availability of sufficient hot water to the persons using the showering and washing facilities served by the water heating system. A very good correlation also exists between these measured results and simulations that were done beforehand to predict the DSM potential of the project. The in line water heater concept provides an improved solution for DSM at sanitary water heating systems due to the stratified manner in which hot water is supplied to the tanks. This provides an improved hot water supply to users when compared to conventional in tank heating systems, even with load shifting being done. It also improves the storage efficiency of a plant, thereby allowing the available storage capacity of a plant to be utilized to its full extent for load shifting purposes

  15. Great Lakes Daily Ice Observations at NOAA Water Level Gauge Sites (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains daily visual ice observations taken yearly from 1 November to 30 April at NOAA/National Ocean Service water level gauge sites in the Great...

  16. Detection prospects for GeV neutrinos from collisionally heated gamma-ray bursts with IceCube/DeepCore. (United States)

    Bartos, I; Beloborodov, A M; Hurley, K; Márka, S


    Jet reheating via nuclear collisions has recently been proposed as the main mechanism for gamma-ray burst (GRB) emission. In addition to producing the observed gamma rays, collisional heating must generate 10-100 GeV neutrinos, implying a close relation between the neutrino and gamma-ray luminosities. We exploit this theoretical relation to make predictions for possible GRB detections by IceCube + DeepCore. To estimate the expected neutrino signal, we use the largest sample of bursts observed by the Burst and Transient Source Experiment in 1991-2000. GRB neutrinos could have been detected if IceCube + DeepCore operated at that time. Detection of 10-100 GeV neutrinos would have significant implications, shedding light on the composition of GRB jets and their Lorentz factors. This could be an important target in designing future upgrades of the IceCube + DeepCore observatory.

  17. Endmembers of Ice Shelf Melt (United States)

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.


    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after

  18. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev; Chan, Derek Y.  C.; Thoroddsen, Sigurdur T


    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  19. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev


    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  20. Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys (United States)

    Feng, Libang; Yan, Zhongna; Shi, Xueting; Sultonzoda, Firdavs


    Ice formation and frost deposition on cryogenic equipment and systems can result in serious problems and huge economic loss. Hence, it is quite necessary to develop new materials to prevent icing and frosting on cold surfaces in engineering fields. Here, a superhydrophobic aluminum alloy with enhanced anti-frosting, anti-icing, and self-cleaning performance has been developed by a facile one-step method. The anti-frosting/icing performance of superhydrophobic aluminum alloys is confirmed by frosting/icing time delay, consolidating and freezing temperature reduction, and lower amount of frost/ice adhesion. Meanwhile, the excellent self-cleaning performance is authenticated by the fact that simulated pollution particles can be cleaned out by rolling water droplets completely. Finally, based on the classical nucleation theory, anti-icing and anti-frosting mechanisms of the superhydrophobic aluminum alloys are deduced. Results show that grounded on "air cushion" and "heat insulation" effect, a larger nucleation barrier and a lower crystal growth rate can be observed, which, hence, inhibit ice formation and frost deposition. It can be concluded that preparing superhydrophobic surfaces would be an effective strategy for improving anti-icing, anti-frosting, and self-cleaning performance of aluminum alloys.

  1. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt? (United States)

    Gradinger, Rolf; Bluhm, Bodil; Iken, Katrin


    The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate ( N=24-65 per station) 0.25 m 2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind l -1 (median 0.8 ind l -1). In level ice, low ice algal pigment concentrations (Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind l -1, median 40 ind l -1), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind m -2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of

  2. Solar Water Heating System for Biodiesel Production

    Directory of Open Access Journals (Sweden)



    Full Text Available Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  3. Solar Water Heating System for Biodiesel Production (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi


    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  4. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Seongsuk Lee


    Full Text Available The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP F13 Special Sensor Microwave/Imagers (SSMI and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily and monthly sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole even during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA.

  5. Water on Mars: Inventory, distribution, and possible sources of polar ice (United States)

    Clifford, S. M.


    Theoretical considerations and various lines of morphologic evidence suggest that, in addition to the normal seasonal and climatic exchange of H2O that occurs between the Martian polar caps, atmosphere, and mid to high latitude regolith, large volumes of water have been introduced into the planet's long term hydrologic cycle by the sublimation of equatorial ground ice, impacts, catastrophic flooding, and volcanism. Under the climatic conditions that are thought to have prevailed on Mars throughout the past 3 to 4 b.y., much of this water is expected to have been cold trapped at the poles. The amount of polar ice contributed by each of the planet's potential crustal sources is discussed and estimated. The final analysis suggests that only 5 to 15 pct. of this potential inventory is now in residence at the poles.

  6. The Penetration of Solar Radiation Into Carbon Dioxide Ice (United States)

    Chinnery, H. E.; Hagermann, A.; Kaufmann, E.; Lewis, S. R.


    Icy surfaces behave differently to rocky or regolith-covered surfaces in response to irradiation. A key factor is the ability of visible light to penetrate partially into the subsurface. This results in the solid-state greenhouse effect, as ices can be transparent or translucent to visible and shorter wavelengths, while opaque in the infrared. This can lead to significant differences in shallow subsurface temperature profiles when compared to rocky surfaces. Of particular significance for modeling the solid-state greenhouse effect is the e-folding scale, otherwise known as the absorption scale length, or penetration depth, of the ice. While there have been measurements for water ice and snow, pure and with mixtures, to date, there have been no such measurements published for carbon dioxide ice. After an extensive series of measurements we are able to constrain the e-folding scale of CO2 ice for the cumulative wavelength range 300 to 1,100 nm, which is a vital parameter in heat transfer models for the Martian surface, enabling us to better understand surface-atmosphere interactions at Mars' polar caps.

  7. Report on an investigation into heat pumps in China in fiscal 1995; 1995 nendo Chugoku ni okeru heat pump system ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    The paper surveyed the present status, the status of spread, and the technical development of the technology of heat pumps for residential and industrial uses in China. Main examples of installation of heat pumps are cited below: steam drive absorption type refrigerators in Beijing; sea water heat source turbo heat pumps in Qingdao; hot water drive absorption type refrigerators in Beijing; oil-fueled absorption type water cooling and heating appliances in Beijing; ice latent heat storage airconditioning systems using electrically-driven screw chiller in Beijing; temperature rising systems using electrically-driven heat pump of the solar energy utilization warm water swimming pool in Guangdong Province; cooling water supply using waste heat utilization absorption type refrigerator of the alcohol plant in Shandong Province; timber drying systems using electrically-driven heat pump, and marine product cultivation systems in Quangdong Province; distillation systems using steam turbine heat pump in Jiangxi Province. The demand for heat pumps is expected to be 20 million units under the 9th 5-year plan, and the development of equipment is thought to go toward promotion of energy conservation, low noise, multi-type or multi-functional air conditioning equipment, and computer use. 137 figs., 40 tabs.

  8. Experimental investigate of heat transfer for graphene/water nanofluid in micro heat exchanger (United States)

    Abd Elhafez, S. E.; Abo-Zahhad, E. M.; El-Shazly, A. H.; El-Kady, M. F.


    In this investigation, the heat transfer characteristics of graphene nano platelets (GNPs)/water nanofluid were studied in a micro heat exchanger (MHE). The micro heat exchanger performance was also examined. The test setup was worked out in the laminar regime with Reynold numbers varying between 100 and 400GNPs/water nanofluid was prepared three different concentrations (0.025 wt. %, 0.05 wt. % and 0.1 wt. %) using ultrasonic wave. The influence of mass flow rate, inlet temperatures and weight fraction on the overall heat transfer coefficient (U) and logarithmic mean temperature (LMTD) were examined. The results showed considerable enhancement on the overall heat transfer coefficient of graphene/water nanofluid and the MHE effectiveness. A maximum enhancement on overall heat transfer coefficient was reached to 150% at Re=100 by 0.1wt% nanofluid. The effectiveness of micro heat exchanger was enhanced by increase weight fraction of graphene nanoparticle. Moreover, the experimental results showed that 0.1 wt. % GNPs/water nanofluid, flowing through MHE, has had high pressure drop, and pumping power, when it has been compared with 0.5 wt. % and 0.025 wt.%.

  9. How Will Sea Ice Loss Affect the Greenland Ice Sheet? On the Puzzling Features of Greenland Ice-Core Isotopic Composition (United States)

    Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.


    The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates

  10. Electron Density Dropout Near Enceladus in the Context of Water-Vapor and Water-Ice (United States)

    Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Johnson, R. E.; Kaiser, M. L.; Wahlund, J.-E.; Waite, J. H., Jr.


    On 12 March 2008, the Cassini spacecraft made a close encounter with the Saturnian moon Enceladus, passing within 52 km of the moon. The spacecraft trajectory was intentionally-oriented in a southerly direction to create a close alignment with the intense water-dominated plumes emitted from the south polar region. During the passage, the Cassini Radio and Plasma Wave System (RPWS) detected two distinct radio signatures: 1) Impulses associated with small water-ice dust grain impacts and 2) an upper hybrid (UH) resonance emission that both intensified and displayed a sharp frequency decrease in the near-vicinity of the moon. The frequency decrease of the UH emission is associated with an unexpectedly sharp decrease in electron density from approximately 90 el/cubic cm to below 20 el/cubic cm that occurs on a time scale of a minute near the closest encounter with the moon. In this work, we consider a number of scenarios to explain this sharp electron dropout, but surmise that electron absorption by ice grains is the most likely process.

  11. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters. (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei


    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from

  12. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei


    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from PMID:26624613

  13. Atypical water lattices and their possible relevance to the amorphous ices: A density functional study (United States)

    Anick, David J.


    Of the fifteen known crystalline forms of ice, eleven consist of a single topologically connected hydrogen bond network with four H-bonds at every O. The other four, Ices VI-VIII and XV, consist of two topologically connected networks, each with four H-bonds at every O. The networks interpenetrate but do not share H-bonds. This article presents two new periodic water lattice families whose topological connectivity is "atypical": they consist of many two-dimensional layers that share no H-bonds. Layers are held together only by dispersion forces. Within each layer there are still four H-bonds at each O. Called "Hexagonal Bilayer Water" (HBW) and "Pleated Sheet Water" (PSW), they have computed densities of about 1.1 g/mL and 1.3 g/mL respectively, and nearest neighbor O-coordination is 4.5 to 5.5 and 6 to 8 respectively. Using density functional theory (BLYP-D/TZVP), various proton ordered forms of HBW and PSW are optimized and categorized. There are simple pathways connecting Ice-Ih to HBW and HBW to PSW. Their computed properties suggest similarities to the high density and very high density amorphous ices (HDA and VHDA) respectively. It is unknown whether HDA, VHDA, and Low Density Amorphous Ice (LDA) are fully disordered glasses down to the molecular level, or whether there is some short-range local order. Based on estimated radial distribution functions (RDFs), one proton ordered form of HBW matches HDA best. The idea is explored that HDA could contain islands with this underlying structure, and likewise, that VHDA could contain regions of PSW. A "microlattice model version 1" (MLM1) is presented as a device to compare key experimental data on the amorphous ices with these atypical structures and with a microlattice form of Ice-XI for LDA. Resemblances are found with the amorphs' RDFs, densities, Raman spectra, and transition behaviors. There is not enough information in the static models to assign either a microlattice structure or a partial microlattice

  14. Ice storage facilities are worthwhile for the operation of power plants. Load management with jet pumps; Eisspeicher zahlen sich fuer Kraftwerksbetrieb aus. Lastmanagement mit Strahlpumpen

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, Richard


    The significantly better alternative to hot water tanks in thermal power plants are ice storage tanks and steam jet refrigeration plants. These facilities form ice, supply district heating and produce heat from the environment. Furthermore, these facilities produce additional peak load electricity nearly daily, so that several large power plants become dispensable. How this is possible in a simple and low-cost manner, is described in the contribution under consideration.

  15. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 1. Model description and behavior (United States)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.


    Antarctic ice shelves interact closely with the ocean cavities beneath them, with ice shelf geometry influencing ocean cavity circulation, and heat from the ocean driving changes in the ice shelves, as well as the grounded ice streams that feed them. We present a new coupled model of an ice stream-ice shelf-ocean system that is used to study this interaction. The model is capable of representing a moving grounding line and dynamically responding ocean circulation within the ice shelf cavity. Idealized experiments designed to investigate the response of the coupled system to instantaneous increases in ocean temperature show ice-ocean system responses on multiple timescales. Melt rates and ice shelf basal slopes near the grounding line adjust in 1-2 years, and downstream advection of the resulting ice shelf thinning takes place on decadal timescales. Retreat of the grounding line and adjustment of grounded ice takes place on a much longer timescale, and the system takes several centuries to reach a new steady state. During this slow retreat, and in the absence of either an upward-or downward-sloping bed or long-term trends in ocean heat content, the ice shelf and melt rates maintain a characteristic pattern relative to the grounding line.

  16. FY 1989 Report on heat pump/storage markets in Australia and New Zealand by the survey team; 1989 nendo Australia New Zealand heat pump chikunetsu shijo chosadan hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    Inspections/surveys are conducted on the markets of heat pumps and heat storage systems in Australia and New Zealand, spread of these systems, R and D situations, energy-related problems and policies, and so on. In Australia, heat pumps are mainly used for air conditioning. Several heat pump units are in service in NSW, including the one in Grosvnor Place Building, which is combined with an ice heat storage system. It seems that no waste heat is utilized. Use of heat pumps in this country is possible, in particular for industrial purposes. Use of fluorochlorohydrocarbons is restricted in Australia, in spite of their small quantities actually used, which is accepted as a political consideration. No system of discounted late-nigh rate is adopted in this country, but heat storage is planned as a measure to level power consumption, because the power rate is increased when the consumption exceeds the contracted level. Water is replaced by ice as the heat storage medium. (NEDO)

  17. Spatial patterning and persistence of meltwater on ice shelves and the implications for ice shelf collapse (United States)

    Robel, A.; MacAyeal, D. R.; Tsai, V. C.; Shean, D. E.


    Observations indicate that for at least the last few decades, there has been extensive surface melting over ice shelves in Antarctica. Meltwater either collects in ponds or flows over the surface in streams that discharge to the ocean. The spatial organization and persistence of this meltwater can have a significant influence on the thermomechanical ice shelf state through albedo, turbulent heat exchange, refreezing and hydrofracture. However, as more meltwater forms on Antarctic ice shelves, there is no general theory that predicts the spatial pattern of meltwater ponded on the ice shelf surface and the volume of meltwater runoff to the ocean. Here, we show how dynamical systems tools, such as cellular automata, can be used to calculate the expected distribution of meltwater on ice shelf surfaces. These tools can also be used to explore how ice shelf surface morphology is modified by meltwater albedo and turbulent heating feedbacks. We apply these numerical approaches to new high-resolution digital elevation models for ice shelves in West Antarctica. Additionally, we survey the prospects of developing general rules of meltwater patterning by applying scaling approaches from percolation theory. We conclude by discussing the types of ice shelves that are more likely to cause ice shelf collapse through surface melt-induced hydrofracture or thermomechanical weakening.

  18. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon


    The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...... loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......, calculations show that the yearly thermal performance of solar domestic hot water systems is strongly reduced if the hot water tank has a thermal bridge located at the top of the tank....

  19. The Regional Water Cycle and Water Ice Clouds in the Tharsis - Valles Marineris System (United States)

    Leung, C. W. S.; Rafkin, S. C.


    The regional atmospheric circulation on Mars is highly influenced by local topographic gradients. Terrain-following air parcels forced along the slopes of the major Tharsis volcanoes and the steep canyon walls of Valles Marineris significantly impact the local water vapor concentration and the associated conditions for cloud formation. Using a non-hydrostatic mesoscale atmospheric model with aerosol & cloud microphysics, we investigate the meteorological conditions for water ice cloud formation in the coupled Tharsis - Valles Marineris system near the aphelion season. The usage of a limited area regional model ensures that topographic slopes are well resolved compared to the typical resolutions of a global-coverage general circulation model. The effects of shadowing and slope angle geometries on the energy budget is also taken into account. Diurnal slope winds in complex terrains are typically characterized by the reversal of wind direction twice per sol: upslope during the day, and downslope at night. However, our simulation results of the regional circulation and diurnal water cycle indicate substantial asymmetries in the day-night circulation. The convergence of moist air masses enters Valles Marineris via easterly flows, whereas dry air sweep across the plateau of the canyon system from the south towards the north. We emphasize the non-uniform vertical distribution of water vapor in our model results. Water vapor mixing ratios in the lower planetary boundary layer may be factors greater than the mixing ratio aloft. Water ice clouds are important contributors to the climatic forcing on Mars, and their effects on the mesoscale circulations in the Tharsis - Valles Marineris region significantly contribute to the regional perturbations in the large-scale global atmospheric circulation.

  20. Factors Affecting the Changes of Ice Crystal Form in Ice Cream (United States)

    Wang, Xin; Watanabe, Manabu; Suzuki, Toru

    In this study, the shape of ice crystals in ice cream was quantitatively evaluated by introducing fractal analysis. A small droplet of commercial ice cream mix was quickly cooled to about -30°C on the cold stage of microscope. Subsequently, it was heated to -5°C or -10°C and then held for various holding time. Based on the captured images at each holding time, the cross-sectional area and the length of circumference for each ice crystal were measured to calculate fractal dimension using image analysis software. The results showed that the ice crystals were categorized into two groups, e.g. simple-shape and complicated-shape, according to their fractal dimensions. The fractal dimension of ice crystals became lower with increasing holding time and holding temperature. It was also indicated that the growing rate of complicated-shape ice crystals was relatively higher because of aggregation.

  1. Petroleum activity in ice covered waters - development and operation phase. Focus of eventual consequential explanation

    International Nuclear Information System (INIS)

    Thomassen, J.; Andresen, K.H.; Moe, K.A.


    This report from a seminar relates to the petroleum activities in the Barentshavet north. The focal point was to put on petroleum activities in ice covered waters covering the drilling and operation phase, to identify discharges from various technical solutions, and to classify possible research requirements when mapping the impacts of such components. In addition to this approach, the seminar also focused on other factors regarding drilling and production activities in ice covered waters. 3 refs., 13 figs., 25 tabs

  2. Sea-ice transport driving Southern Ocean salinity and its recent trends. (United States)

    Haumann, F Alexander; Gruber, Nicolas; Münnich, Matthias; Frenger, Ivy; Kern, Stefan


    Recent salinity changes in the Southern Ocean are among the most prominent signals of climate change in the global ocean, yet their underlying causes have not been firmly established. Here we propose that trends in the northward transport of Antarctic sea ice are a major contributor to these changes. Using satellite observations supplemented by sea-ice reconstructions, we estimate that wind-driven northward freshwater transport by sea ice increased by 20 ± 10 per cent between 1982 and 2008. The strongest and most robust increase occurred in the Pacific sector, coinciding with the largest observed salinity changes. We estimate that the additional freshwater for the entire northern sea-ice edge entails a freshening rate of -0.02 ± 0.01 grams per kilogram per decade in the surface and intermediate waters of the open ocean, similar to the observed freshening. The enhanced rejection of salt near the coast of Antarctica associated with stronger sea-ice export counteracts the freshening of both continental shelf and newly formed bottom waters due to increases in glacial meltwater. Although the data sources underlying our results have substantial uncertainties, regional analyses and independent data from an atmospheric reanalysis support our conclusions. Our finding that northward sea-ice freshwater transport is also a key determinant of the mean salinity distribution in the Southern Ocean further underpins the importance of the sea-ice-induced freshwater flux. Through its influence on the density structure of the ocean, this process has critical consequences for the global climate by affecting the exchange of heat, carbon and nutrients between the deep ocean and surface waters.

  3. The economics of supplying the supplementary heat in a closed loop water source heat pump system

    International Nuclear Information System (INIS)

    Johnson, R.P.; Bartkus, V.E.; Singh, J.B.


    The paper describes the details of a research and demonstration project that will be completed in August 1992 at a healthcare facility in northeastern Pennsylvania. The purpose of the project is to compare the economics of several methods of supplying the supplementary heating in a facility served by a closed loop water source heat pump system. The systems being tested include a storage hot water tank with electric resistance heaters and three air source heat pumps that have the ability to supply the same heat during on-peak hours as well as off-peak hours. The paper compares the projected operating costs of the following: (1) Gas boiler supplying the supplementary heat. (2) Stored hot water supplying the supplementary heat which is generated and stored during off-peak hours using resistance heat on PP ampersand L's offpeak rate. (3) Stored hot water supplying the supplementary heat generated during off-peak hours using the air source heat pumps on PP ampersand L's off-peak rate. (4) Hot water generated by the air source heat pumps supplying the supplementary loop heating on PP ampersand L's general service and time-of-day electric rates. It is generally known in the HVAC industry that a closed loop water source heat pump system can provide one of the most efficient means of space conditioning to a building with high internal gains by transferring the excess heat available in one part of the building to another part of the building where it may be needed for heating. The following flow diagram depicts the relationship of the air source heat pumps with the storage tanks and the building closed water loop

  4. The scientific base of heating water by microwave

    Energy Technology Data Exchange (ETDEWEB)

    Akdoğan, Ender, E-mail: [Department of Physics Engineering, Ankara University, Dögol St. Tandoğan Ankara 06560 Türkiye (Turkey); Çiftçi, Muharrem, E-mail: [Author" 1 Department of Physics, Ankara University, Dögol St. Tandoğan Ankara 06560 Türkiye (Turkey)


    This article is based on the master thesis [4] related to our invention which was published in World Intellectual Property Organization (WO/2011/048506) as a microwave water heater. In the project, a prototype was produced to use microwave in industrial heating. In order to produce the prototype, the most appropriate material kind for microwave-water experiments was determined by a new energy loss rate calculation technique. This new energy loss calculation is a determinative factor for material permeability at microwave frequency band (1-100 GHz). This experimental series aim to investigate the rationality of using microwave in heating industry. Theoretically, heating water by microwave (with steady frequency 2.45 GHz) is analyzed from sub-molecular to Classical Mechanic results of heating. In the study, we examined Quantum Mechanical base of heating water by microwave experiments. As a result, we derived a Semi-Quantum Mechanical equation for microwave-water interactions and thus, Wien displacement law can be derived to verify experimental observations by this equation.

  5. Optimization of Boiler Heat Load in Water-Heating Boiler-House

    Directory of Open Access Journals (Sweden)

    B. A. Bayrashevsky


    Full Text Available An analytical method for optimization of water-heating boiler loads has been developed on the basis of approximated semi-empirical dependences pertaining to changes of boiler gross efficiency due to its load. A complex (∂tух/∂ξΔξ is determined on the basis of a systematic analysis (monitoring of experimental data and the Y. P. Pecker’s formula for calculation of balance losses q2. This complex makes it possible to set a corresponding correction to a standard value of the boiler gross efficiency due to contamination of heating surfaces.Software means for optimization of water-heating boilers has been developed and it is recommended to be applied under operational conditions.

  6. Coupled ice sheet - climate simulations of the last glacial inception and last glacial maximum with a model of intermediate complexity that includes a dynamical downscaling of heat and moisture (United States)

    Quiquet, Aurélien; Roche, Didier M.


    Comprehensive fully coupled ice sheet - climate models allowing for multi-millenia transient simulations are becoming available. They represent powerful tools to investigate ice sheet - climate interactions during the repeated retreats and advances of continental ice sheets