WorldWideScience

Sample records for powered ft-ir microspectroscopy

  1. Vibrational microspectroscopy of food. Raman vs. FT-IR

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Løkke, Mette Marie; Micklander, Elisabeth

    2003-01-01

    . The high spatial resolution makes it possible to study areas down to approximately 10x10 mum with FT-IR microspectroscopy and approximately 1 x 1 mum with Raman microspectroscopy. This presentation highlights the advantages and disadvantages of the two microspectroscopic techniques when applied...

  2. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  3. Using synchrotron-based FT-IR microspectroscopy to study erucamide migration in 50-micron-thick bilayer linear low-density polyethylene and polyolefin plastomer films.

    Science.gov (United States)

    Sankhe, Shilpa Y; Hirt, Douglas E

    2003-01-01

    The diffusion of additives in thick (approximately 500 microns) single layer and multilayer films has been characterized using FT-IR microspectroscopy. The objective of this research was to investigate additive migration and concentration profiles in coextruded multilayer films of industrially relevant thicknesses. In particular, the investigation focused on the migration of an erucamide slip agent in 50-micron-thick coextruded bilayer films of linear low-density polyethylene (LLDPE) and a polyolefin plastomer (POP). Erucamide concentration profiles were successfully mapped using synchrotron-based FT-IR microspectroscopy. The synchrotron radiation helped to achieve a higher spatial resolution for the thin films. Meticulous sample preparation was needed to map the thin film samples. Results with FT-IR microspectroscopy showed that the additive-concentration profiles were relatively uniform across the multilayer-film thickness irrespective of the intended initial additive distribution. For example, a bilayer planned for 1 wt % erucamide in an LLDPE layer and no erucamide in a POP layer showed significant additive migration into the POP layer at the extrusion rates used. FT-IR microspectroscopy results also showed that more erucamide migrated to the surface of a POP layer than an LLDPE layer. Attenuated total reflectance (ATR) FT-IR spectroscopy was used to confirm the time-dependent increase of erucamide surface concentration and that the increase was more pronounced at the surface of the POP layers.

  4. Fluorescence, aggregation properties and FT-IR microspectroscopy of elastin and collagen fibers.

    Science.gov (United States)

    Vidal, Benedicto de Campos

    2014-10-01

    Histological and histochemical observations support the hypothesis that collagen fibers can link to elastic fibers. However, the resulting organization of elastin and collagen type complexes and differences between these materials in terms of macromolecular orientation and frequencies of their chemical vibrational groups have not yet been solved. This study aimed to investigate the macromolecular organization of pure elastin, collagen type I and elastin-collagen complexes using polarized light DIC-microscopy. Additionally, differences and similarities between pure elastin and collagen bundles (CB) were investigated by Fourier transform-infrared (FT-IR) microspectroscopy. Although elastin exhibited a faint birefringence, the elastin-collagen complex aggregates formed in solution exhibited a deep birefringence and formation of an ordered-supramolecular complex typical of collagen chiral structure. The FT-IR study revealed elastin and CB peptide NH groups involved in different types of H-bonding. More energy is absorbed in the vibrational transitions corresponding to CH, CH2 and CH3 groups (probably associated with the hydrophobicity demonstrated by 8-anilino-1-naphtalene sulfonic acid sodium salt [ANS] fluorescence), and to νCN, δNH and ωCH2 groups of elastin compared to CB. It is assumed that the α-helix contribution to the pure elastin amide I profile is 46.8%, whereas that of the B-sheet is 20% and that unordered structures contribute to the remaining percentage. An FT-IR profile library reveals that the elastin signature within the 1360-1189cm(-1) spectral range resembles that of Conex-Toray aramid fibers. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    International Nuclear Information System (INIS)

    Reffner, J.A.; Martoglio, P.A.; Williams, G.P.

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization

  6. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    Energy Technology Data Exchange (ETDEWEB)

    Reffner, J.A.; Martoglio, P.A. [Spectra-Tech, Inc., Shelton, CT (United States); Williams, G.P. [Brookhaven National Lab., Upton, NY (United States)

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization.

  7. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    Science.gov (United States)

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  8. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  9. Single Cell Synchrotron FT-IR Microspectroscopy Reveals a Link between Neutral Lipid and Storage Carbohydrate Fluxes in S. cerevisiae

    Science.gov (United States)

    Jamme, Frédéric; Vindigni, Jean-David; Méchin, Valérie; Cherifi, Tamazight; Chardot, Thierry; Froissard, Marine

    2013-01-01

    In most organisms, storage lipids are packaged into specialized structures called lipid droplets. These contain a core of neutral lipids surrounded by a monolayer of phospholipids, and various proteins which vary depending on the species. Hydrophobic structural proteins stabilize the interface between the lipid core and aqueous cellular environment (perilipin family of proteins, apolipoproteins, oleosins). We developed a genetic approach using heterologous expression in Saccharomyces cerevisiae of the Arabidopsis thaliana lipid droplet oleosin and caleosin proteins AtOle1 and AtClo1. These transformed yeasts overaccumulate lipid droplets, leading to a specific increase in storage lipids. The phenotype of these cells was explored using synchrotron FT-IR microspectroscopy to investigate the dynamics of lipid storage and cellular carbon fluxes reflected as changes in spectral fingerprints. Multivariate statistical analysis of the data showed a clear effect on storage carbohydrates and more specifically, a decrease in glycogen in our modified strains. These observations were confirmed by biochemical quantification of the storage carbohydrates glycogen and trehalose. Our results demonstrate that neutral lipid and storage carbohydrate fluxes are tightly connected and co-regulated. PMID:24040242

  10. Single cell synchrotron FT-IR microspectroscopy reveals a link between neutral lipid and storage carbohydrate fluxes in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Frédéric Jamme

    Full Text Available In most organisms, storage lipids are packaged into specialized structures called lipid droplets. These contain a core of neutral lipids surrounded by a monolayer of phospholipids, and various proteins which vary depending on the species. Hydrophobic structural proteins stabilize the interface between the lipid core and aqueous cellular environment (perilipin family of proteins, apolipoproteins, oleosins. We developed a genetic approach using heterologous expression in Saccharomyces cerevisiae of the Arabidopsis thaliana lipid droplet oleosin and caleosin proteins AtOle1 and AtClo1. These transformed yeasts overaccumulate lipid droplets, leading to a specific increase in storage lipids. The phenotype of these cells was explored using synchrotron FT-IR microspectroscopy to investigate the dynamics of lipid storage and cellular carbon fluxes reflected as changes in spectral fingerprints. Multivariate statistical analysis of the data showed a clear effect on storage carbohydrates and more specifically, a decrease in glycogen in our modified strains. These observations were confirmed by biochemical quantification of the storage carbohydrates glycogen and trehalose. Our results demonstrate that neutral lipid and storage carbohydrate fluxes are tightly connected and co-regulated.

  11. Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles

    CERN Document Server

    Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

    2004-01-01

    Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

  12. FT-IR microspectroscopy characterization of supports for enzyme immobilization in biosensing applications

    Science.gov (United States)

    Portaccio, M.; Della Ventura, B.; Gabrovska, K.; Marinov, I.; Godjevargova, T.; Mita, D. G.; Lepore, M.

    2010-04-01

    The investigation of materials suitable for enzyme immobilization in biosensing applications has a widespread interest. There are many studies on physico-chemical properties of these materials at macroscopic level but few studies have been devoted to examine and correlate these properties at microscopic level. FT-IR spectroscopy with Micro-Attenuated Total Reflection (Micro-ATR) approach can be extremely useful for understanding a variety of aspects of materials which can be used for optimising immobilization procedures. Moreover, this experimental approach is particularly simple to use (no sample preparation is required) and minimally invasive. Using a Perkin Elmer Spectrum One FT-IR spectrometer equipped with a mercury-cadmium-telluride detector and a micro-ATR element we investigated different materials used for immobilization procedures with various enzymes widely used for biosensing in environmental and clinical applications. In particular, composite membranes constituted by a chemically modified poly-acrylonitrile (PAN) membrane plus layers of tethered chitosan of different molecular weight have been examined. Also silica gel matrices without and with glucose oxidase have been investigated. Spectra have been analysed and the contribution of principal functional groups has been evidenced.

  13. Simultaneous formation and detection of the reaction product of solid-state aspartame sweetener by FT-IR/DSC microscopic system.

    Science.gov (United States)

    Lin, S Y; Cheng, Y D

    2000-10-01

    The solid-state stability of aspartame hemihydrate (APM) sweetener during thermal treatment is important information for the food industry. The present study uses the novel technique of Fourier transform infrared microspectroscopy equipped with differential scanning calorimetry (FT-IR/DSC microscopic system) to accelerate and determine simultaneously the thermal-dependent impurity formation of solid-state APM. The results indicate a dramatic change in IR spectra from 50, 110 or 153 degrees C, which was respectively attributed to the onset temperature of water evaporation, dehydration and cyclization processes. It is suggested that the processes of dehydration and intramolecular cyclization occurred in the solid-state APM during the heating process. As an impurity, 3-carboxymethyl-6-benzyl-2,5-diketopiperazine (DKP) degraded from solid state APM via intramolecular cyclization and liberation of methanol. This was evidenced by this novel FT-IR/DSC microscopic system in a one-step procedure.

  14. In-situ chemical analyses of trans-polyisoprene by histochemical staining and Fourier transform infrared microspectroscopy in a rubber-producing plant, Eucommia ulmoides Oliver.

    Science.gov (United States)

    Bamba, Takeshi; Fukusaki, Ei-Ichiro; Nakazawa, Yoshihisa; Kobayashi, Akio

    2002-10-01

    The localization of polyisoprene in young stem tissues of Eucommia ulmoides Oliver was investigated by histochemical staining and Fourier transform infrared (FT-IR) microspectroscopy. The fibrous structures were stained with Oil Red O. FT-IR microspectroscopic analysis proved that the fibrous structures were trans-polyisoprene. Granular structures stained with the dye, and characteristic absorptions at 2,960 cm(-1) and 1,430 cm(-1) in FT-IR suggested that trans-polyisoprene accumulated in the vicinity of the cambium layer. We have thus successfully shown for the first time the localization of trans-polyisoprene in plant tissues, and our histological investigation allowed us to presume the main sites of biosynthesis and accumulation of trans-rubber. Furthermore, a new technical approach, the preparation of sections using an electronic freezing unit and the in situ analysis of polyisoprene using FT-IR microspectroscopy, is demonstrated to be a promising method for determining the accumulation of polyisoprene as well as other metabolites.

  15. An FT-Raman, FT-IR, and Quantum Chemical Investigation of Stanozolol and Oxandrolone

    Directory of Open Access Journals (Sweden)

    Tibebe Lemma

    2017-12-01

    Full Text Available We have studied the Fourier Transform Infrared (FT-IR and the Fourier transform Raman (FT-Raman spectra of stanozolol and oxandrolone, and we have performed quantum chemical calculations based on the density functional theory (DFT with a B3LYP/6-31G (d, p level of theory. The FT-IR and FT-Raman spectra were collected in a solid phase. The consistency between the calculated and experimental FT-IR and FT-Raman data indicates that the B3LYP/6-31G (d, p can generate reliable geometry and related properties of the title compounds. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compounds, which show agreement with the observed spectra.

  16. DFT, FT-IR, FT-Raman and vibrational studies of 3-methoxyphenyl boronic acid

    Science.gov (United States)

    Patil, N. R.; Hiremath, Sudhir M.; Hiremath, C. S.

    2018-05-01

    The aim of this work is to study the possible stable, geometrical molecular structure, experimental and theoretical FT-IR and FT-Raman spectroscopic methods of 3-Methoxyphenyl boronic acid (3MPBA). FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 40000-50 cm-1 respectively. The optimized geometric structure and vibrational wavenumbers of the title compound were searched by B3LYP hybrid density functional theory method with 6-311++G (d, p) basis set. The Selectedexperimentalbandswereassignedandcharacterizedonthebasisofthescaledtheoreticalwavenumbersby their potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. Finally, the predicted calculation results were applied to simulated FT-IR and FT-Raman spectra of the title compound, which show agreement with the observed spectra. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  17. Myowater dynamics and protein secondary structural changes as affected by heating rate in three pork qualities: a combined FT-IR microspectroscopic and 1H NMR relaxometry study.

    Science.gov (United States)

    Wu, Zhiyun; Bertram, Hanne Christine; Böcker, Ulrike; Ofstad, Ragni; Kohler, Achim

    2007-05-16

    The objective of this study was to investigate the influence of heating rate on myowater dynamics and protein secondary structures in three pork qualities by proton NMR T2 relaxation and Fourier transform infrared (FT-IR) microspectroscopy measurements. Two oven temperatures at 100 degrees C and 200 degrees C corresponding to slow and fast heating rates were applied on three pork qualities (DFD, PSE, and normal) to an internal center temperature of 65 degrees C. The fast heating induced a higher cooking loss, particularly for PSE meat. The water proton T21 distribution representing water entrapped within the myofibrillar network was influenced by heating rate and meat quality. Fast heating broadened the T21 distribution and decreased the relaxation times of the T21 peak position for three meat qualities. The changes in T21 relaxation times in meat can be interpreted in terms of chemical and diffusive exchange. FT-IR showed that fast heating caused a higher gain of random structures and aggregated beta-sheets at the expense of native alpha-helixes, and these changes dominate the fast-heating-induced broadening of T21 distribution and reduction in T21 times. Furthermore, of the three meat qualities, PSE meat had the broadest T21 distribution and the lowest T21 times for both heating rates, reflecting that the protein aggregation of PSE caused by heating is more extensive than those of DFD and normal, which is consistent with the IR data. The present study demonstrated that the changes in T2 relaxation times of water protons affected by heating rate and raw meat quality are well related to the protein secondary structural changes as probed by FT-IR microspectroscopy.

  18. Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Sagar Dhakal

    2016-05-01

    Full Text Available Turmeric powder (Curcuma longa L. is valued both for its medicinal properties and for its popular culinary use, such as being a component in curry powder. Due to its high demand in international trade, turmeric powder has been subject to economically driven, hazardous chemical adulteration. This study utilized Fourier Transform-Raman (FT-Raman and Fourier Transform-Infra Red (FT-IR spectroscopy as separate but complementary methods for detecting metanil yellow adulteration of turmeric powder. Sample mixtures of turmeric powder and metanil yellow were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1%, and 0.01% (w/w. FT-Raman and FT-IR spectra were acquired for these mixture samples as well as for pure samples of turmeric powder and metanil yellow. Spectral analysis showed that the FT-IR method in this study could detect the metanil yellow at the 5% concentration, while the FT-Raman method appeared to be more sensitive and could detect the metanil yellow at the 1% concentration. Relationships between metanil yellow spectral peak intensities and metanil yellow concentration were established using representative peaks at FT-Raman 1406 cm−1 and FT-IR 1140 cm−1 with correlation coefficients of 0.93 and 0.95, respectively.

  19. Detection of metanil yellow contamination in turmeric using FT-Raman and FT-IR spectroscopy

    Science.gov (United States)

    Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Kim, Moon; Schmidt, Walter; Chan, Dian

    2016-05-01

    Turmeric is well known for its medicinal value and is often used in Asian cuisine. Economically motivated contamination of turmeric by chemicals such as metanil yellow has been repeatedly reported. Although traditional technologies can detect such contaminants in food, high operational costs and operational complexities have limited their use to the laboratory. This study used Fourier Transform Raman Spectroscopy (FT-Raman) and Fourier Transform - Infrared Spectroscopy (FT-IR) to identify metanil yellow contamination in turmeric powder. Mixtures of metanil yellow in turmeric were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1% and 0.01% (w/w). The FT-Raman and FT-IR spectral signal of pure turmeric powder, pure metanil yellow powder and the 8 sample mixtures were obtained and analyzed independently to identify metanil yellow contamination in turmeric. The results show that FT-Raman spectroscopy and FT-IR spectroscopy can detect metanil yellow mixed with turmeric at concentrations as low as 1% and 5%, respectively, and may be useful for non-destructive detection of adulterated turmeric powder.

  20. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  1. Analysis of cosmetic residues on a single human hair by ATR FT-IR microspectroscopy.

    Science.gov (United States)

    Pienpinijtham, Prompong; Thammacharoen, Chuchaat; Naranitad, Suwimol; Ekgasit, Sanong

    2018-05-15

    In this work, ATR FT-IR spectra of single human hair and cosmetic residues on hair surface are successfully collected using a homemade dome-shaped Ge μIRE accessary installed on an infrared microscope. By collecting ATR spectra of hairs from the same person, the spectral patterns are identical and superimposed while different spectral features are observed from ATR spectra of hairs collected from different persons. The spectral differences depend on individual hair characteristics, chemical treatments, and cosmetics on hair surface. The "Contact-and-Collect" technique that transfers remarkable materials on the hair surface to the tip of the Ge μIRE enables an identification of cosmetics on a single hair. Moreover, the differences between un-split and split hairs are also studied in this report. These highly specific spectral features can be employed for unique identification or for differentiation of hairs based on the molecular structures of hairs and cosmetics on hairs. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Analysis of cosmetic residues on a single human hair by ATR FT-IR microspectroscopy

    Science.gov (United States)

    Pienpinijtham, Prompong; Thammacharoen, Chuchaat; Naranitad, Suwimol; Ekgasit, Sanong

    2018-05-01

    In this work, ATR FT-IR spectra of single human hair and cosmetic residues on hair surface are successfully collected using a homemade dome-shaped Ge μIRE accessary installed on an infrared microscope. By collecting ATR spectra of hairs from the same person, the spectral patterns are identical and superimposed while different spectral features are observed from ATR spectra of hairs collected from different persons. The spectral differences depend on individual hair characteristics, chemical treatments, and cosmetics on hair surface. The "Contact-and-Collect" technique that transfers remarkable materials on the hair surface to the tip of the Ge μIRE enables an identification of cosmetics on a single hair. Moreover, the differences between un-split and split hairs are also studied in this report. These highly specific spectral features can be employed for unique identification or for differentiation of hairs based on the molecular structures of hairs and cosmetics on hairs.

  3. Quantitative gas analysis with FT-IR

    DEFF Research Database (Denmark)

    Bak, J.; Larsen, A.

    1995-01-01

    Calibration spectra of CO in the 2.38-5100 ppm concentration range (22 spectra) have been measured with a spectral resolution of 4 cm(-1), in the mid-IR (2186-2001 cm(-1)) region, with a Fourier transform infrared (FT-IR) instrument. The multivariate calibration method partial least-squares (PLS1...

  4. Laser Spark Formamide Decomposition Studied by FT-IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Kubelík, Petr; Civiš, Svatopluk

    2011-01-01

    Roč. 115, č. 44 (2011), s. 12132-12141 ISSN 1089-5639 R&D Projects: GA AV ČR IAA400400705; GA AV ČR IAAX00100903; GA ČR GAP208/10/2302 Institutional research plan: CEZ:AV0Z40400503 Keywords : FT-IR spectroscopy * high-power laser * induced dielectric-breakdown Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  5. TG/FT-IR characterization of additives typically employed in EPDM formulations

    Directory of Open Access Journals (Sweden)

    Natália Beck Sanches

    2015-06-01

    Full Text Available AbstractThermogravimetric analysis coupled to Fourier transform infrared spectroscopy (TG/FT-IR is a very popular technique for rubbers characterization. It involves analyses of the base polymer and additives. Ethylene–propylene–diene (EPDM rubbers are frequently investigated by TG/FT-IR; however, the focus has been the degradation temperature range of the polymer. In this study, unvulcanized and vulcanized EPDM rubber and its additives were investigated by TG/FT-IR, without solvent extraction, and in a wide temperature range. Initially, the additives were individually characterized. TG/FT-IR identified the characteristic groups of all the additives analyzed and distinguished them from each other. Afterwards, unvulcanized and vulcanized EPDM rubbers were investigated without prior extraction.TG/FT-IR detected absorptions due to the additives tetramethylthiuram monosulfide and 2-mercaptobenzothiazole. Both of these sulfur-containing additives were present in the EPDM formulation at concentrations of 0.7 phr (0.63 wt %. The TG/FT-IR technique had some limitations, because not all the additives in EPDM rubber were detected. Paraffin oil, stearic acid and 2,2,4-trimethyl-1,2-dihydroquinoline functional groups were not observed in either the unvulcanized or vulcanized EPDM. Nevertheless, in addition to the ability of this method to detect sulfur-containing groups, the lack of a pre-extraction reduces the time and effort required for additive analysis in rubbers.

  6. Drift and transmission FT-IR spectroscopy of forest soils: an approach to determine decomposition processes of forest litter

    International Nuclear Information System (INIS)

    Haberhauer, G.; Gerzabek, M.H.

    1999-06-01

    A method is described to characterize organic soil layers using Fourier transformed infrared spectroscopy. The applicability of FT-IR, either dispersive or transmission, to investigate decomposition processes of spruce litter in soil originating from three different forest sites in two climatic regions was studied. Spectral information of transmission and diffuse reflection FT-IR spectra was analyzed and compared. For data evaluation Kubelka Munk (KM) transformation was applied to the DRIFT spectra. Sample preparation for DRIFT is simpler and less time consuming in comparison to transmission FT-IR, which uses KBr pellets. A variety of bands characteristics of molecular structures and functional groups has been identified for these complex samples. Analysis of both transmission FT-IR and DRIFT, showed that the intensity of distinct bands is a measure of the decomposition of forest litter. Interferences due to water adsorption spectra were reduced by DRIFT measurement in comparison to transmission FT-IR spectroscopy. However, data analysis revealed that intensity changes of several bands of DRIFT and transmission FT-IR were significantly correlated with soil horizons. The application of regression models enables identification and differentiation of organic forest soil horizons and allows to determine the decomposition status of soil organic matter in distinct layers. On the basis of the data presented in this study, it may be concluded that FT-IR spectroscopy is a powerful tool for the investigation of decomposition dynamics in forest soils. (author)

  7. Completely automated open-path FT-IR spectrometry.

    Science.gov (United States)

    Griffiths, Peter R; Shao, Limin; Leytem, April B

    2009-01-01

    Atmospheric analysis by open-path Fourier-transform infrared (OP/FT-IR) spectrometry has been possible for over two decades but has not been widely used because of the limitations of the software of commercial instruments. In this paper, we describe the current state-of-the-art of the hardware and software that constitutes a contemporary OP/FT-IR spectrometer. We then describe advances that have been made in our laboratory that have enabled many of the limitations of this type of instrument to be overcome. These include not having to acquire a single-beam background spectrum that compensates for absorption features in the spectra of atmospheric water vapor and carbon dioxide. Instead, an easily measured "short path-length" background spectrum is used for calculation of each absorbance spectrum that is measured over a long path-length. To accomplish this goal, the algorithm used to calculate the concentrations of trace atmospheric molecules was changed from classical least-squares regression (CLS) to partial least-squares regression (PLS). For calibration, OP/FT-IR spectra are measured in pristine air over a wide variety of path-lengths, temperatures, and humidities, ratioed against a short-path background, and converted to absorbance; the reference spectrum of each analyte is then multiplied by randomly selected coefficients and added to these background spectra. Automatic baseline correction for small molecules with resolved rotational fine structure, such as ammonia and methane, is effected using wavelet transforms. A novel method of correcting for the effect of the nonlinear response of mercury cadmium telluride detectors is also incorporated. Finally, target factor analysis may be used to detect the onset of a given pollutant when its concentration exceeds a certain threshold. In this way, the concentration of atmospheric species has been obtained from OP/FT-IR spectra measured at intervals of 1 min over a period of many hours with no operator intervention.

  8. FT-Raman and FT-IR studies of 1:2.5 piroxicam: β-cyclodextrin inclusion compound

    Science.gov (United States)

    Bertoluzza, A.; Rossi, M.; Taddei, P.; Redenti, E.; Zanol, M.; Ventura, P.

    1999-05-01

    The FT-Raman and FT-IR spectra of amorphous 1:2.5 piroxicam (P): β-cyclodextrin (βCD) inclusion compound (PβCD) are presented and discussed in comparison with the spectra of the three main modifications of piroxicam (α,β and monohydrate). In the 1700-1200 cm -1 FT-Raman spectrum of 1:2.5 PβCD inclusion compound the bands of βCD are weak and covered by those stronger of piroxicam, differently from the FT-IR spectrum where the bands of βCD are stronger, so covering a large part of the spectrum. Typical FT-Raman marker bands are assigned for the characterization of the three modifications of piroxicam. The FT-Raman spectrum of 1:2.5 PβCD inclusion compound predominantly shows the bands at about 1465 and 1400 cm -1 of the monohydrate, indicating that piroxicam assumes the zwitterionic structure stabilized by interaction with βCD via electrostatic and hydrogen bonds. The dipolar character of 1:2.5 PβCD inclusion compound improves the solubility and the dissolution rate of piroxicam and thus its rate of absorption.

  9. Applications of FT-IR spectrophotometry in cancer diagnostics.

    Science.gov (United States)

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2015-01-01

    This review provides a brief background to the application of infrared spectroscopy, including Fourier transform-infrared spectroscopy, in biological fluids. It is not meant to be complete or exhaustive but to provide the reader with sufficient background for selected applications in cancer diagnostics. Fourier transform-infrared spectroscopy (FT-IR) is a fast and nondestructive analytical method. The infrared spectrum of a mixture serves as the basis to quantitate its constituents, and a number of common clinical chemistry tests have proven to be feasible using this approach. This review focuses on biomedical FT-IR applications, published in the period 2009-2013, used for early detection of cancer through qualitative and quantitative analysis.

  10. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions.

    Science.gov (United States)

    Meng, Yingying; Yao, Changhong; Xue, Song; Yang, Haibo

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) was applied in algal strain screening and monitoring cell composition dynamics in a marine microalga Isochrysis zhangjiangensis during algal cultivation. The content of lipid, carbohydrate and protein of samples determined by traditional methods had validated the accuracy of FT-IR method. For algal screening, the band absorption ratios of lipid/amide I and carbo/amide I from FT-IR measurements allowed for the selection of Isochrysis sp. and Tetraselmis subcordiformis as the most potential lipid and carbohydrate producers, respectively. The cell composition dynamics of I. zhangjiangensis measured by FT-IR revealed the diversion of carbon allocation from protein to carbohydrate and neutral lipid when nitrogen-replete cells were subjected to nitrogen limitation. The carbo/amide I band absorption ratio had also been demonstrated to depict physiological status under nutrient stress in T. subcordiformis. FT-IR serves as a tool for the simultaneous measurement of lipid, carbohydrate, and protein content in cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Advanced sampling techniques for hand-held FT-IR instrumentation

    Science.gov (United States)

    Arnó, Josep; Frunzi, Michael; Weber, Chris; Levy, Dustin

    2013-05-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenging ConOps in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, extreme reliability, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the HazMatID™ Elite, a FT-IR instrument designed to balance the portability advantages of a handheld device with the performance challenges associated with miniaturization. In this paper, special focus will be given to the HazMatID Elite's sampling interfaces optimized to collect and interrogate different types of samples: accumulated material using the on-board ATR press, dispersed powders using the ClearSampler™ tool, and the touch-to-sample sensor for direct liquid sampling. The application of the novel sample swipe accessory (ClearSampler) to collect material from surfaces will be discussed in some detail. The accessory was tested and evaluated for the detection of explosive residues before and after detonation. Experimental results derived from these investigations will be described in an effort to outline the advantages of this technology over existing sampling methods.

  12. FT-IR spectroscopy: A powerful tool for studying the inter- and intraspecific biodiversity of cultivable non-Saccharomyces yeasts isolated from grape must.

    Science.gov (United States)

    Grangeteau, Cédric; Gerhards, Daniel; Terrat, Sebastien; Dequiedt, Samuel; Alexandre, Hervé; Guilloux-Benatier, Michèle; von Wallbrunn, Christian; Rousseaux, Sandrine

    2016-02-01

    The efficiency of the FT-IR technique for studying the inter- and intra biodiversity of cultivable non-Saccharomyces yeasts (NS) present in different must samples was examined. In first, the capacity of the technique FT-IR to study the global diversity of a given sample was compared to the pyrosequencing method, used as a reference technique. Seven different genera (Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Issatchenkia, Metschnikowia and Pichia) were identified by FT-IR and also by pyrosequencing. Thirty-eight other genera were identified by pyrosequencing, but together they represented less than 6% of the average total population of 6 musts. Among the species identified, some of them present organoleptic potentials in winemaking, particularly Starmerella bacillaris (synonym Candidazemplinina). So in a second time, we evaluated the capacity of the FT-IR technique to discriminate the isolates of this species because few techniques were able to study intraspecific NS yeast biodiversity. The results obtained were validated by using a classic method as ITS sequencing. Biodiversity at strain level was high: 19 different strains were identified from 58 isolates. So, FT-IR spectroscopy seems to be an accurate and reliable method for identifying major genera present in the musts. The two biggest advantages of the FT-IR are the capacity to characterize intraspecific biodiversity of non-Saccharomyces yeasts and the possibility to discriminate a lot of strains. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Characterization and identification of microorganisms by FT-IR microspectrometry

    Science.gov (United States)

    Ngo-Thi, N. A.; Kirschner, C.; Naumann, D.

    2003-12-01

    We report on a novel FT-IR approach for microbial characterization/identification based on a light microscope coupled to an infrared spectrometer which offers the possibility to acquire IR-spectra of microcolonies containing only few hundred cells. Microcolony samples suitable for FT-IR microspectroscopic measurements were obtained by a replica technique with a stamping device that transfers spatially accurate cells of microcolonies growing on solid culture plates to a special, IR-transparent or reflecting stamping plate. High quality spectra could be recorded either by applying the transmission/absorbance or the reflectance/absorbance mode of the infrared microscope. Signal to noise ratios higher than 1000 were obtained for microcolonies as small as 40 μm in diameter. Reproducibility levels were established that allowed species and strain identification. The differentiation and classification capacity of the FT-IR microscopic technique was tested for different selected microorganisms. Cluster and factor analysis methods were used to evaluate the complex spectral data. Excellent discrimination between bacteria and yeasts, and at the same time Gram-negative and Gram-positive bacterial strains was obtained. Twenty-two selected strains of different species within the genus Staphylococcus were repetitively measured and could be grouped into correct species cluster. Moreover, the results indicated that the method allows also identifications at the subspecies level. Additionally, the new approach allowed spectral mapping analysis of single colonies which provided spatially resolved characterization of growth heterogeneity within complex microbial populations such as colonies.

  14. FT-IR, FT-Raman and UV-visible spectra of potassium 3-furoyltrifluoroborate salt

    Science.gov (United States)

    Iramain, Maximiliano A.; Davies, Lilian; Brandán, Silvia Antonia

    2018-04-01

    The potassium 3-furoyltrifluoroborate salt has been experimentally characterized by means of FT-IR, FT-Raman and UV-Visible spectroscopies. Here, the predicted FT-IR, FT-Raman and UV-visible spectra by using theoretical B3LYP/6-31G* and 6-311++G** calculations show very good correlations with the corresponding experimental ones. The solvation energies were predicted by using both levels of calculations. The NBO analyses reveal the high stability of the salt by using the B3LYP/6-31G* level of theory while the AIM studies evidence the ionic characteristics of the salt in both media. The strong blue colour observed on the K atom by using the molecular electrostatic potential mapped suggests that this region act as typical electrophilic site. The gap values have revealed that the salt in gas phase is more reactive than in solution, as was reported in the literature while, the F13⋯H6 interaction together with the Ksbnd O bond observed by the studies of their charges could probably modulate the reactivities of this salt in aqueous solution. The force fields were computed with the SQMFF methodology and the Molvib program to perform the complete vibrational analysis. Then, the 39 vibration normal modes classified as 26 A'+ 13 A″ were completely assigned and their force constants are also reported.

  15. Imaging Local Chemical Microstructure of Germinated Wheat with Synchrotron Infrared Microspectroscopy

    International Nuclear Information System (INIS)

    Koc, H.; Wetzel, D.

    2008-01-01

    The spatial resolution enabled by in situ Fourier-transform infrared (FT-IR) microspectroscopy as predicted from our earlier report in Spectroscopy (1) is applied to localized chemical analysis in this vital biological process of seed germination. Germination includes several different biochemical and structural processes. Ultimately, the entire seed is consumed in sustaining the new life that results after sprouting and growth (2-4). Alpha amylase production is the standard evidence for detection of sprouted (germinated) wheat at harvest. Moist preharvest conditions can cause devastating losses and render the harvested wheat unfit for flour production. Dormancy of dry seeds following harvest retards sprouting under proper storage.

  16. High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

    Science.gov (United States)

    Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.

    2015-01-01

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759

  17. Characterization of Momordica charantia Ussing FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Attila Keseru

    2016-11-01

    In this paper, because earlier claim shows that the plant used as stomachic, carminative, tonic, antipyretic, antidiabetic, in rheumatoid arthritis and gout, the present investigation was carried to characterized a principal components of plant using FT-IR technique

  18. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    Science.gov (United States)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  19. Characterization of additives typically employed in EPDM formulations by using FT-IR of gaseous pyrolyzates

    Directory of Open Access Journals (Sweden)

    Natália Beck Sanches

    2014-06-01

    Full Text Available In this study, Fourier transform infrared spectroscopy (FT-IR was employed to investigate the gaseous pyrolysis products of ethylene - propylene - diene rubber (EPDM. The objective was to evaluate the potential of FT-IR analysis of gaseous pyrolyzates (PY-G/FT-IR for characterization of EPDM additives. Two EPDM formulations, containing additives typically employed in EPDM rubbers, were analyzed. Initially, gaseous pyrolysis products from paraffin oil, stearic acid, 2,2,4-trimethyl-1,2-dihydroquinoline, tetramethylthiuram monosulfide (TMTM, tetramethylthiuram disulfide (TMTD, and 2-mercaptobenzothiazole (MBT were characterized separately, and their main absorptions were identified. Subsequently, the gaseous pyrolysis products of raw, unvulcanized, and vulcanized EPDM formulations were analyzed. The similarities observed in the FT-IR spectra of unvulcanized and vulcanized EPDM show that the vulcanization process does not interfere with the pyrolysis products. The identification of the functional groups of the studied additives was possible in both unvulcanized and vulcanized EPDM samples, without solvent extraction. Results also demonstrate that the PY-G/FT-IR technique can identify additives containing sulfur in concentrations as low as 1.4 phr (1.26% in both unvulcanized and vulcanized EPDM. However, the method showed some limitation due to overlapping and to similarities of TMTM and TMTD PY-G/FT-IR spectra, which could not be distinguished from each other. The PY-G/FT-IR technique is a faster and cheaper alternative to the sophisticated techniques usually applied to detection of additives in rubbers.

  20. FT-IR spectroscopy of lipoproteins—A comparative study

    Science.gov (United States)

    Krilov, Dubravka; Balarin, Maja; Kosović, Marin; Gamulin, Ozren; Brnjas-Kraljević, Jasminka

    2009-08-01

    FT-IR spectra, in the frequency region 4000-600 cm -1, of four major lipoprotein classes: very low density lipoprotein (VLDL), low density lipoprotein (LDL) and two subclasses of high density lipoproteins (HDL 2 and HDL 3) were analyzed to obtain their detailed spectral characterization. Information about the protein domain of particle was obtained from the analysis of amide I band. The procedure of decomposition and curve fitting of this band confirms the data already known about the secondary structure of two different apolipoproteins: apo A-I in HDL 2 and HDL 3 and apo B-100 in LDL and VLDL. For information about the lipid composition and packing of the particular lipoprotein the well expressed lipid bands in the spectra were analyzed. Characterization of spectral details in the FT-IR spectrum of natural lipoprotein is necessary to study the influence of external compounds on its structure.

  1. Differentiation of Leishmania species by FT-IR spectroscopy

    Science.gov (United States)

    Aguiar, Josafá C.; Mittmann, Josane; Ferreira, Isabelle; Ferreira-Strixino, Juliana; Raniero, Leandro

    2015-05-01

    Leishmaniasis is a parasitic infectious disease caused by protozoa that belong to the genus Leishmania. It is transmitted by the bite of an infected female Sand fly. The disease is endemic in 88 countries Desjeux (2001) [1] (16 developed countries and 72 developing countries) on four continents. In Brazil, epidemiological data show the disease is present in all Brazilian regions, with the highest incidences in the North and Northeast. There are several methods used to diagnose leishmaniasis, but these procedures have many limitations, are time consuming, have low sensitivity, and are expensive. In this context, Fourier Transform Infrared Spectroscopy (FT-IR) analysis has the potential to provide rapid results and may be adapted for a clinical test with high sensitivity and specificity. In this work, FT-IR was used as a tool to investigate the promastigotes of Leishmaniaamazonensis, Leishmaniachagasi, and Leishmaniamajor species. The spectra were analyzed by cluster analysis and deconvolution procedure base on spectra second derivatives. Results: cluster analysis found four specific regions that are able to identify the Leishmania species. The dendrogram representation clearly indicates the heterogeneity among Leishmania species. The band deconvolution done by the curve fitting in these regions quantitatively differentiated the polysaccharides, amide III, phospholipids, proteins, and nucleic acids. L. chagasi and L. major showed a greater biochemistry similarity and have three bands that were not registered in L. amazonensis. The L. amazonensis presented three specific bands that were not recorded in the other two species. It is evident that the FT-IR method is an indispensable tool to discriminate these parasites. The high sensitivity and specificity of this technique opens up the possibilities for further studies about characterization of other microorganisms.

  2. Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy.

    Science.gov (United States)

    Yang, Haoqi; Jiang, Shaohua; Fang, Hong; Hu, Xiaowu; Duan, Gaigai; Hou, Haoqing

    2018-07-05

    Quantitative explanation on the improved mechanical properties of aligned electrospun polyimide (PI) nanofibers as the increased imidization temperatures is highly required. In this work, polarized FT-IR spectroscopy is applied to solve this problem. Based on the polarized FT-IR spectroscopy and the molecular model in the fibers, the length of the repeat unit of PI molecule, the angle between the fiber axis and the symmetric stretching direction of carbonyl group on the imide ring, and the angle between the PI molecular axis and fiber axis are all investigated. The Mark-Howink equation is used to calculate the number-average molar mass of PI molecules. The orientation states of PI molecules in the electrospun nanofibers are studied from the number-average molar mass of PI molecules and the average fiber diameter. Quantitative analysis of the orientation factor of PI molecules in the electrospun nanofibers is performed by polarized FT-IR spectroscopy. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Assessment of Azithromycin in Pharmaceutical Formulation by Fourier-transform Infrared (FT-IR Transmission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Mallah

    2011-12-01

    Full Text Available A simple, rapid and economical method for azithromycin quantification in solid tablet and capsule formulations has been developed by applying Fourier-transform Infrared (FT-IR transmission spectroscopy for regular quality monitoring. The newly developed method avoids the sample preparation, except grinding for pellet formation and does not involve consumption of any solvent as it absolutely eliminates the need of extraction. KBr pellets were employed for the appraisal of azithromycin while acquiring spectra of standards as well as samples on FT-IR. By selecting the FT-IR carbonyl band (C=O in the region 1,744–1,709 cm−1 the calibration model was developed based on simple Beer’s law. The excellent regression coefficient (R2 0.999 was accomplished for calibration set having standard error of calibration equal to 0.01 mg. The current work exposes that transmission FT-IR spectroscopy can definitely be applied to determine the exact amount of azithromycin to control the processing and quality of solid formulations with reduced cost and short analysis time.

  4. Attenuated total reflectance-FT-IR spectroscopy for gunshot residue analysis: potential for ammunition determination.

    Science.gov (United States)

    Bueno, Justin; Sikirzhytski, Vitali; Lednev, Igor K

    2013-08-06

    The ability to link a suspect to a particular shooting incident is a principal task for many forensic investigators. Here, we attempt to achieve this goal by analysis of gunshot residue (GSR) through the use of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR) combined with statistical analysis. The firearm discharge process is analogous to a complex chemical process. Therefore, the products of this process (GSR) will vary based upon numerous factors, including the specific combination of the firearm and ammunition which was discharged. Differentiation of FT-IR data, collected from GSR particles originating from three different firearm-ammunition combinations (0.38 in., 0.40 in., and 9 mm calibers), was achieved using projection to latent structures discriminant analysis (PLS-DA). The technique was cross (leave-one-out), both internally and externally, validated. External validation was achieved via assignment (caliber identification) of unknown FT-IR spectra from unknown GSR particles. The results demonstrate great potential for ATR-FT-IR spectroscopic analysis of GSR for forensic purposes.

  5. Application of FT-IR spectroscopy on breast cancer serum analysis

    Science.gov (United States)

    Elmi, Fatemeh; Movaghar, Afshin Fayyaz; Elmi, Maryam Mitra; Alinezhad, Heshmatollah; Nikbakhsh, Novin

    2017-12-01

    Breast cancer is regarded as the most malignant tumor among women throughout the world. Therefore, early detection and proper diagnostic methods have been known to help save women's lives. Fourier Transform Infrared (FT-IR) spectroscopy, coupled with PCA-LDA analysis, is a new technique to investigate the characteristics of serum in breast cancer. In this study, 43 breast cancer and 43 healthy serum samples were collected, and the FT-IR spectra were recorded for each one. Then, PCA analysis and linear discriminant analysis (LDA) were used to analyze the spectral data. The results showed that there were differences between the spectra of the two groups. Discriminating wavenumbers were associated with several spectral differences over the 950-1200 cm- 1(sugar), 1190-1350 cm- 1 (collagen), 1475-1710 cm- 1 (protein), 1710-1760 cm- 1 (ester), 2800-3000 cm- 1 (stretching motions of -CH2 & -CH3), and 3090-3700 cm- 1 (NH stretching) regions. PCA-LDA performance on serum IR could recognize changes between the control and the breast cancer cases. The diagnostic accuracy, sensitivity, and specificity of PCA-LDA analysis for 3000-3600 cm- 1 (NH stretching) were found to be 83%, 84%, 74% for the control and 80%, 76%, 72% for the breast cancer cases, respectively. The results showed that the major spectral differences between the two groups were related to the differences in protein conformation in serum samples. It can be concluded that FT-IR spectroscopy, together with multivariate data analysis, is able to discriminate between breast cancer and healthy serum samples.

  6. Characterisation of 1,3-diammonium propylselenate monohydrate by XRD, FT-IR, FT-Raman, DSC and DFT studies

    Science.gov (United States)

    Thirunarayanan, S.; Arjunan, V.; Marchewka, M. K.; Mohan, S.; Atalay, Yusuf

    2016-03-01

    The crystals of 1,3-diammonium propylselenate monohydrate (DAPS) were prepared and characterised X-ray diffraction (XRD), FT-IR, FT-Raman spectroscopy, and DFT/B3LYP methods. It comprises protonated propyl ammonium moieties (diammonium propyl cations), selenate anions and water molecule which are held together by a number of hydrogen bonds and form infinite chains. The XRD data confirm the transfer of two protons from selenic acid to 1,3-diaminopropane molecule. The DAPS complex is stabilised by the presence of O-H···O and N-H···O hydrogen bonds and the electrostatic interactions as well. The N···O and O···O bond distances are 2.82-2.91 and 2.77 Å, respectively. The FT-IR and FT-Raman spectra of 1,3-diammonium propyl selenate monohydrate are recorded and the complete vibrational assignments have been discussed. The geometry is optimised by B3LYP method using 6-311G, 6-311+G and 6-311+G* basis sets and the energy, structural parameters, vibrational frequencies, IR and Raman intensities are determined. Differential scanning colorimetry (DSC) data were also presented to analyse the possibility of the phase transition. Complete natural bonding orbital (NBO) analysis is carried out to analyse the intramolecular electronic interactions and their stabilisation energies. The electrostatic potential of the complex lies in the range +1.902e × 10-2 to -1.902e × 10-2. The limits of total electron density of the complex is +8.43e × 10-2 to -8.43e × 10-2.

  7. FT-IR imaging for quantitative determination of liver fat content in non-alcoholic fatty liver.

    Science.gov (United States)

    Kochan, K; Maslak, E; Chlopicki, S; Baranska, M

    2015-08-07

    In this work we apply FT-IR imaging of large areas of liver tissue cross-section samples (∼5 cm × 5 cm) for quantitative assessment of steatosis in murine model of Non-Alcoholic Fatty Liver (NAFLD). We quantified the area of liver tissue occupied by lipid droplets (LDs) by FT-IR imaging and Oil Red O (ORO) staining for comparison. Two alternative FT-IR based approaches are presented. The first, straightforward method, was based on average spectra from tissues and provided values of the fat content by using a PLS regression model and the reference method. The second one – the chemometric-based method – enabled us to determine the values of the fat content, independently of the reference method by means of k-means cluster (KMC) analysis. In summary, FT-IR images of large size liver sections may prove to be useful for quantifying liver steatosis without the need of tissue staining.

  8. Monitoring wine aging with Fourier transform infrared spectroscopy (FT-IR

    Directory of Open Access Journals (Sweden)

    Basalekou Marianthi

    2015-01-01

    Full Text Available Oak wood has commonly been used in wine aging but recently other wood types such as Acacia and Chestnut, have attracted the interest of the researchers due to their possible positive contribution to wine quality. However, only the use of oak and chestnut woods is approved by the International Enological Codex of the International Organisation of Vine and Wine. In this study Fourier Transform (FT-mid-infrared spectroscopy combined with Discriminant Analysis was used to differentiate wines aged in barrels made from French oak, American oak, Acacia and Chestnut and in tanks with oak chips, over a period of 12 months. Two red (Mandilaria, Kotsifali and two white (Vilana, Dafni native Greek grape varieties where used to produce four wines. The Fourier Transform Infrared (FT-IR spectra of the samples were recorded on a Zinc Selenide (ZnSe window after incubation at 40 °C for 30 min. A complete differentiation of the samples according to both the type of wood used and the contact time was achieved based on their FT-IR spectra.

  9. FT-IR spectrum of grape seed oil and quantum models of fatty acids triglycerides

    Science.gov (United States)

    Berezin, K. V.; Antonova, E. M.; Shagautdinova, I. T.; Chernavina, M. L.; Dvoretskiy, K. N.; Grechukhina, O. N.; Vasilyeva, L. M.; Rybakov, A. V.; Likhter, A. M.

    2018-04-01

    FT-IR spectra of grape seed oil and glycerol were registered in the 650-4000 cm-1 range. Molecular models of glycerol and some fatty acids that compose the oil under study - linoleic, oleic, palmitic and stearic acids - as well as their triglycerides were developed within B3LYP/6-31G(d) density functional model. A vibrating FT-IR spectrum of grape seed oil was modeled on the basis of calculated values of vibrating wave numbers and IR intensities of the fatty acids triglycerides and with regard to their percentage. Triglyceride spectral bands that were formed by glycerol linkage vibrations were revealed. It was identified that triglycerol linkage has a small impact on the structure of fatty acids and, consequently, on vibrating wave numbers. The conducted molecular modeling became a basis for theoretical interpretation on 10 experimentally observed absorption bands in FT-IR spectrum of grape seed oil.

  10. DNA Methylation Changes in Valproic Acid-Treated HeLa Cells as Assessed by Image Analysis, Immunofluorescence and Vibrational Microspectroscopy.

    Directory of Open Access Journals (Sweden)

    Giovana M B Veronezi

    Full Text Available Valproic acid (VPA, a well-known histone deacetylase inhibitor, has been reported to affect the DNA methylation status in addition to inducing histone hyperacetylation in several cell types. In HeLa cells, VPA promotes histone acetylation and chromatin remodeling. However, DNA demethylation was not checked in this cell model for standing effects longer than those provided by histone acetylation, which is a rapid and transient phenomenon. Demonstration of VPA-induced DNA demethylation in HeLa cells would contribute to understanding the effect of VPA on an aggressive tumor cell line. In the present work, DNA demethylation in VPA-treated HeLa cells was assessed by image analysis of chromatin texture, the abundance of 5-methylcytosine (5mC immunofluorescence signals and Fourier transform-infrared (FT-IR microspectroscopy centered on spectral regions related to the vibration of-CH3 groups. Image analysis indicated that increased chromatin unpacking promoted by a 4-h-treatment with 1.0 mM VPA persisted for 24 h in the absence of the drug, suggesting the occurrence of DNA demethylation that was confirmed by decreased 5mC immunofluorescence signals. FT-IR spectra of DNA samples from 1 mM or 20 mM VPA-treated cells subjected to a peak fitting analysis of the spectral window for-CH3 stretching vibrations showed decreased vibrations and energy of these groups as a function of the decreased abundance of 5mC induced by increased VPA concentrations. Only the 20 mM-VPA treatment caused an increase in the ratio of -CH3 bending vibrations evaluated at 1375 cm-1 in relation to in-plane vibrations of overall cytosines evaluated at 1492 cm-1. CH3 stretching vibrations showed to be more sensitive than-CH3 bending vibrations, as detected with FT-IR microspectroscopy, for studies aiming to associate vibrational spectroscopy and changes in DNA 5mC abundance.

  11. FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate

    Science.gov (United States)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-08-01

    Melaminium perchlorate monohydrate (MPM), an organic material has been synthesized by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MPM crystal belongs to triclinic system with space group P-1. FTIR and FT Raman spectra are recorded at room temperature. Functional group assignment has been made for the melaminium cations and perchlorate anions. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory (DFT) calculations using Firefly (PC GAMESS) version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with experimental values. The assignment of the bands has been made on the basis of the calculated PED. The Mulliken charges, HOMO-LUMO orbital energies are analyzed directly from Firefly program log files and graphically illustrated. HOMO-LUMO energy gap and other related molecular properties are also calculated. The theoretically constructed FT-IR and FT-Raman spectra of MPM coincide with the experimental one. The chemical structure of the compound has been established by 1H and 13C NMR spectra. No detectable signal was observed during powder test for second harmonic generation.

  12. Discrimination of edible oils and fats by combination of multivariate pattern recognition and FT-IR spectroscopy: A comparative study between different modeling methods

    Science.gov (United States)

    Javidnia, Katayoun; Parish, Maryam; Karimi, Sadegh; Hemmateenejad, Bahram

    2013-03-01

    By using FT-IR spectroscopy, many researchers from different disciplines enrich the experimental complexity of their research for obtaining more precise information. Moreover chemometrics techniques have boosted the use of IR instruments. In the present study we aimed to emphasize on the power of FT-IR spectroscopy for discrimination between different oil samples (especially fat from vegetable oils). Also our data were used to compare the performance of different classification methods. FT-IR transmittance spectra of oil samples (Corn, Colona, Sunflower, Soya, Olive, and Butter) were measured in the wave-number interval of 450-4000 cm-1. Classification analysis was performed utilizing PLS-DA, interval PLS-DA, extended canonical variate analysis (ECVA) and interval ECVA methods. The effect of data preprocessing by extended multiplicative signal correction was investigated. Whilst all employed method could distinguish butter from vegetable oils, iECVA resulted in the best performances for calibration and external test set with 100% sensitivity and specificity.

  13. Signal-to-noise ratio of FT-IR CO gas spectra

    DEFF Research Database (Denmark)

    Bak, J.; Clausen, Sønnik

    1999-01-01

    in emission and transmission spectrometry, an investigation of the SNR in CO gas spectra as a function of spectral resolution has been carried out. We present a method to (1) determine experimentally the SNR at constant throughput, (2) determine the SNR on the basis of measured noise levels and Hitran......The minimum amount of a gaseous compound which can be detected and quantified with Fourier transform infrared (FT-IR) spectrometers depends on the signal-to-noise ratio (SNR) of the measured gas spectra. In order to use low-resolution FT-IR spectrometers to measure combustion gases like CO and CO2...... simulated signals, and (3) determine the SNR of CO from high to low spectral resolutions related to the molecular linewidth and vibrational-rotational lines spacing. In addition, SNR values representing different spectral resolutions but scaled to equal measurement times were compared. It was found...

  14. Monitoring lipase-catalyzed interesterification for bulky fats modification with FT-IR/NIR spectroscopy

    DEFF Research Database (Denmark)

    Chang, Tinghong; Lai, Xuxin; Zhang, Hong

    2005-01-01

    This work demonstrates the application of FT-IR and FT-NIR spectroscopy to monitor the enzymatic interesterification process for bulky fat modification. The reaction was conducted between palm stearin and coconut oil (70/30, w/w) with the catalysis of Lipozyme TL IM at 70°C in a batch reactor...

  15. Collaborative Student Laboratory Exercise Using FT-IR Spectroscopy for the Kinetics Study of a Biotin Analogue

    Science.gov (United States)

    Leong, Jhaque; Ackroyd, Nathan C.; Ho, Karen

    2014-01-01

    The synthesis of N-methoxycarbonyl-2-imidazolidone, an analogue of biotin, was conducted by organic chemistry students and confirmed using FT-IR and H NMR. Spectroscopy students used FT-IR to measure the rate of hydrolysis of the product and determined the rate constant for the reaction using the integrated rate law. From the magnitude of the rate…

  16. Preliminary study of corrosion mechanisms of actinides alloys: calibration of FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Magnien, Veronique; Cadignan, Marx; Faivret, Olivier; Rosa, Gaelle

    2008-01-01

    In situ analyzes of gaseous atmospheres could be performed by FT-IR spectroscopy in order to study the corrosion reactions of actinides. Nevertheless experimental conditions and the nature of studied species have a strong effect on IR absorption laws. Thus a prior calibration of our set-up is required to obtain an accurate estimation of gas concentration. For this purpose, the behavior of several air pure gases has been investigated according to their concentration from IR spectra. Reproducible results revealed subsequent increases of the most significant peak areas with gas pressure and small deviations from Beer Lambert's law. This preliminary work allowed to determine precise absorption laws for each studied pure gas in our in situ experimental conditions. Besides our FT-IR set-up was well suitable to quantitative analysis of gaseous atmosphere during corrosion reactions. Finally the effect of foreign gas will be investigated through more complex air mixtures to obtain a complete calibration network. (authors)

  17. Prediction of the lifetime of nitrile-butadiene rubber by FT-IR.

    Science.gov (United States)

    Kawashima, Tetsuya; Ogawa, Toshio

    2005-12-01

    A quantitative measurement method with FT-IR was proposed for a thermal degradation analysis of nitrile-butadiene rubber (NBR). An NBR film was prepared as a model sample on a barium fluoride (BaF2) crystal plate, which was subjected to a heat treatment. The absorbances of various functional groups were measured directly by FT-IR after thermal degradation at high temperatures. By measuring the absorbances, it was possible to readily determine quantitatively each of the functional groups after the degradation of NBR. By assuming that the NBR lifetime was the point at which the absorbance of a carbon-carbon double bond reaches 45% of that prior to thermal treatment, a method for predicting the lifetime of NBR heated below 150 degrees C was proposed, by using an Arrhenius plot of the heating time versus heating temperature.

  18. Sugar and acid content of Citrus prediction modeling using FT-IR fingerprinting in combination with multivariate statistical analysis.

    Science.gov (United States)

    Song, Seung Yeob; Lee, Young Koung; Kim, In-Jung

    2016-01-01

    A high-throughput screening system for Citrus lines were established with higher sugar and acid contents using Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. FT-IR spectra confirmed typical spectral differences between the frequency regions of 950-1100 cm(-1), 1300-1500 cm(-1), and 1500-1700 cm(-1). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate five Citrus lines into three separate clusters corresponding to their taxonomic relationships. The quantitative predictive modeling of sugar and acid contents from Citrus fruits was established using partial least square regression algorithms from FT-IR spectra. The regression coefficients (R(2)) between predicted values and estimated sugar and acid content values were 0.99. These results demonstrate that by using FT-IR spectra and applying quantitative prediction modeling to Citrus sugar and acid contents, excellent Citrus lines can be early detected with greater accuracy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effect of microwave treatment on structure of binders based on sodium carboxymethyl starch: FT-IR, FT-Raman and XRD investigations.

    Science.gov (United States)

    Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-06-15

    The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking). Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Effect of microwave treatment on structure of binders based on sodium carboxymethyl starch: FT-IR, FT-Raman and XRD investigations

    Science.gov (United States)

    Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-06-01

    The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking).

  1. Application of FT-IR Classification Method in Silica-Plant Extracts Composites Quality Testing

    Science.gov (United States)

    Bicu, A.; Drumea, V.; Mihaiescu, D. E.; Purcareanu, B.; Florea, M. A.; Trică, B.; Vasilievici, G.; Draga, S.; Buse, E.; Olariu, L.

    2018-06-01

    Our present work is concerned with the validation and quality testing efforts of mesoporous silica - plant extracts composites, in order to sustain the standardization process of plant-based pharmaceutical products. The synthesis of the silica support were performed by using a TEOS based synthetic route and CTAB as a template, at room temperature and normal pressure. The silica support was analyzed by advanced characterization methods (SEM, TEM, BET, DLS and FT-IR), and loaded with Calendula officinalis and Salvia officinalis standardized extracts. Further desorption studies were performed in order to prove the sustained release properties of the final materials. Intermediate and final product identification was performed by a FT-IR classification method, using the MID-range of the IR spectra, and statistical representative samples from repetitive synthetic stages. The obtained results recommend this analytical method as a fast and cost effective alternative to the classic identification methods.

  2. Study of the Pyrrol/Diphenylamine Copolymer by FT-IR spectroscopy and conductivity

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Perez

    2004-01-01

    Full Text Available The main goal of this study was to analyze the physical properties of the copolymer formed by the electrochemical deposition of the polydiphenylamine (PDPA on polypyrrole (Ppy and Ppy on PDPA, in different conditions, through the characterization of the materials formed by the resonant Raman, FT-IR and conductivity techniques. The interactions among the species which are present in the new copolymer structure and the changes in electronic conductivity, were verified. The copolymer was also synthesized electrochemically in the presence of iodide species and the material was characterized by FT-IR spectroscopy and conductivity. The role of the dopant was studied in the process of charge transfer between the copolymer-dopant, acting in the stabilization of the species in the polymer backbone and the increase of the electronic conductivity.

  3. The characterization of natural gemstones using non-invasive FT-IR spectroscopy: New data on tourmalines.

    Science.gov (United States)

    Mercurio, Mariano; Rossi, Manuela; Izzo, Francesco; Cappelletti, Piergiulio; Germinario, Chiara; Grifa, Celestino; Petrelli, Maurizio; Vergara, Alessandro; Langella, Alessio

    2018-02-01

    Fourteen samples of tourmaline from the Real Museo Mineralogico of Federico II University (Naples) have been characterized through multi-methodological investigations (EMPA-WDS, SEM-EDS, LA-ICP-MS, and FT-IR spectroscopy). The samples show different size, morphology and color, and are often associated with other minerals. Data on major and minor elements allowed to identify and classify tourmalines as follows: elbaites, tsilaisite, schorl, dravites, uvites and rossmanite. Non-invasive, non-destructive FT-IR and in-situ analyses were carried out on the same samples to validate this chemically-based identification and classification. The results of this research show that a complete characterization of this mineral species, usually time-consuming and expensive, can be successfully achieved through non-destructive FT-IR technique, thus representing a reliable tool for a fast classification extremely useful to plan further analytical strategies, as well as to support gemological appraisals. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Experimental (FT-IR, FT-Raman, 1H, 13C NMR) and theoretical study of alkali metal 2-aminobenzoates

    Science.gov (United States)

    Samsonowicz, M.; Świsłocka, R.; Regulska, E.; Lewandowski, W.

    2008-09-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-aminobenzoic acid was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-aminobenzoic acid and its alkali metal salts were recorded. The assignment of vibrational spectra was done on the basis of literature data, theoretical calculations and our previous experience. Characteristic shifts of bands and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons ( 1H NMR) and carbons ( 13C NMR) in the series of studied alkali metal 2-aminobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G ∗∗ basis set. Geometric aromaticity indices, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR and Raman spectra were obtained. The calculated parameters were compared to experimental characteristic of studied compounds.

  5. Forensic Drug Identification, Confirmation, and Quantification Using Fully Integrated Gas Chromatography with Fourier Transform Infrared and Mass Spectrometric Detection (GC-FT-IR-MS).

    Science.gov (United States)

    Lanzarotta, Adam; Lorenz, Lisa; Voelker, Sarah; Falconer, Travis M; Batson, JaCinta S

    2018-05-01

    This manuscript is a continuation of a recent study that described the use of fully integrated gas chromatography with direct deposition Fourier transform infrared detection and mass spectrometric detection (GC-FT-IR-MS) to identify and confirm the presence of sibutramine and AB-FUBINACA. The purpose of the current study was to employ the GC-FT-IR portion of the same instrument to quantify these compounds, thereby demonstrating the ability to identify, confirm, and quantify drug substances using a single GC-FT-IR-MS unit. The performance of the instrument was evaluated by comparing quantitative analytical figures of merit to those measured using an established, widely employed method for quantifying drug substances, high performance liquid chromatography with ultraviolet detection (HPLC-UV). The results demonstrated that GC-FT-IR was outperformed by HPLC-UV with regard to sensitivity, precision, and linear dynamic range (LDR). However, sibutramine and AB-FUBINACA concentrations measured using GC-FT-IR were not significantly different at the 95% confidence interval compared to those measured using HPLC-UV, which demonstrates promise for using GC-FT-IR as a semi-quantitative tool at the very least. The most significant advantage of GC-FT-IR compared to HPLC-UV is selectivity; a higher level of confidence regarding the identity of the analyte being quantified is achieved using GC-FT-IR. Additional advantages of using a single GC-FT-IR-MS instrument for identification, confirmation, and quantification are efficiency, increased sample throughput, decreased consumption of laboratory resources (solvents, chemicals, consumables, etc.), and thus cost.

  6. Antioxidant activity and FT-IR analysis of Datura innoxia and Datura ...

    African Journals Online (AJOL)

    Materials and Methods: Determination of total phenolic content and total flavonoid content and antioxidant activity in terms of total antioxidant assay, ABTS assay, DPPH assay and in-vitro lipid peroxidation inhibiting activity were determined along with the FT-IR (Fourier transform infrared spectroscopy) analysis of the ...

  7. [Application of FT-IR pattern recognition method for the quality control of pharmaceutical ingredients].

    Science.gov (United States)

    Horgos, József; Kóger, Péter; Zelkó, Romána

    2009-01-01

    Nowadays infrared spectroscopy and chemometrics have proven their effectiveness for both qualitative and quantitative analyses in different fields like agriculture, food, chemical and oil industry. Furier Transformation Infrared Spectroscopy (FT-IR) combined with Attenuated Total Reflectance (ATR) plate is a fast identification instrument. It is suitable for analysis of solid and liquid phase, too. Associated with chemometrics, it would be a powerful tool for the pharmaceutical wholesalers to detect the insufficient quality of pharmaceutical ingredients. In the present study beside the review of the infra red technology, pharmaceutical ingredients were examined with the help of our spectra library.

  8. Energy profile, spectroscopic (FT-IR, FT-Raman and FT-NMR) and DFT studies of 4-bromoisophthalic acid

    Science.gov (United States)

    Arjunan, V.; Thirunarayanan, S.; Mohan, S.

    2018-04-01

    The stable conformer of 4-bromoisophthalic acid (BIPA) has been identified by potential energy profile analysis. All the structural parameters of 4-bromoisophthalic acid are determined by B3LYP method with 6-311++G**, 6-31G** and cc-pVTZ basis sets. The fundamental vibrations are analysed with the use of FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra. The harmonic vibrational frequencies are theoretically calculated and compared with experimental FTIR and FT-Raman frequencies. The 1H and 13C NMR spectra have been analysed and compared with theoretical 1H and 13C NMR chemical shifts calculated by gauge independent atomic orbital (GIAO) method. The electronic properties, such as HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energies are determined by B3LYP/cc-pVTZ method. The electron density distribution and site of chemical reactivity of BIPA molecule have been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP). Stability of the molecules arising from hyperconjugative interactions, charge delocalizations have been analysed by using natural bond orbital (NBO) analysis. The thermodynamic properties and atomic natural charges of the compound are analysed and the reactive sites of the molecule are identified. The global and local reactivity descriptors are evaluated to analyse the chemical reactivity and site selectivity of molecule through Fukui functions.

  9. Pressure-modulation dynamic attenuated-total-reflectance (ATR) FT-IR spectroscopy

    Science.gov (United States)

    Marcott, C.; Story, G. M.; Noda, I.; Bibby, A.; Manning, C. J.

    1998-06-01

    A single-reflectance attenuated-total-reflectance (ATR) accessory with a diamond internal-reflection element was modified by the addition of a piezoelectric transducer. Initial dynamic pressure-modulation experiments have been performed in the sample compartment of a step-scanning FT-IR spectrometer. A sinusoidal pressure modulation applied to samples of isotactic polypropylene and linear low density polyethylene resulted in dynamic responses which appear to be similar to those observed in previous dynamic 2D IR experiments. Preliminary pressure-modulation dynamic ATR results are also reported for a styrene-butadiene-styrene triblock copolymer. The new method has the advantages that a much wider variety of sample types and geometries can be studied and less sample preparation is required. Dynamic 2D IR experiments carried out by ATR no longer require thin films of large area and sufficient strength to withstand the dynamic strain applied by a rheometer. The ability to obtain dynamic IR spectroscopic information from a wider variety of sample types and thicknesses would greatly expand the amount of useful information that could be extracted from normally complicated, highly overlapped IR spectra.

  10. Vibrational spectra (FT-IR, FT-Raman), frontier molecular orbital, first hyperpolarizability, NBO analysis and thermodynamics properties of Piroxicam by HF and DFT methods

    Science.gov (United States)

    Suresh, S.; Gunasekaran, S.; Srinivasan, S.

    2015-03-01

    The solid phase FT-IR and FT-Raman spectra of 4-Hydroxy-2-methyl-N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (Piroxicam) have been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of piroxicam in the ground state have been calculated by Hartree-Fock (HF) and density functional theory (DFT) methods using 6-311++G(d,p) basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental obtained by FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) are also performed. The linear polarizability (α) and the first order hyper polarizability (β) values of the title compound have been computed. The molecular stability arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  11. FT-IR spectroscopic studies of protein secondary structures for breast cancer diagnosis

    International Nuclear Information System (INIS)

    Karamancheva, I; Simonova, D.; Milev, A.

    2013-01-01

    Full text: Roughly 14 million new cancer cases and 8 million cancer deaths have occurred worldwide in 2012. At least 30 % of all cancer cases and 40 % of the cancer deaths should be avoided by improving the early detection. Fourier transform infrared (FT-IR) spectroscopy has shown many advantages as a tool for the detection of cancer over the traditional methods such as histopathological analysis, X-ray transmission, ultrasonic and computer tomography techniques. With the aim to establish the FT-IR spectroscopy as an alternative method for the diagnosis of human cancers, we have made several studies to examine in details the spectroscopic properties of normal and carcinomatous tissues. Human breast tissues were obtained immediately after surgical breast resection with the informed patient's consent. In our studies we made extensive use of Fourier self-deconvolution, second-order derivatization, difference spectra, curve-fitting procedures and quantitative determinations according to Beer's law. Cancer is a multi-step process. Characteristic differences in both the frequencies and the intensity ratios of several bands have been revealed. Considerable differences have been found in the spectral patterns. The most important and informative region in the mid-IR for determination of protein secondary structure is the amide I and amide II region. The bands between 1730 and 1600 cm -1 are highly sensitive to conformational changes. Considerable changes were observed in the A1735/A1652 absorbance ratio, which provides a measure for the content of a- helix and P-sheet domains. Our investigations have shown that the major biomarker peaks are in the amide I and amide II regions. In the so called 'fingerprint region' many molecular constituents such as lipids, phospholipids, proteins, DNA and RNA, carbohydrates and metabolites may overlap and the quantitative interpretation is impossible. The spectrum may therefore reflect only the average biochemical composition.; key words

  12. Avaliação do uso de técnicas PIR-G/FT-IR para caracterização de elastômeros Evaluation of PIR-G/FT-IR techniques for characterization of elastomers

    Directory of Open Access Journals (Sweden)

    Natália B. Sanches

    2006-01-01

    Full Text Available A técnica de pirólise gasosa, em bico de Bunsen, para análise por espectroscopia no infravermelho com transformada de Fourier (PIR-G/FT-IR foi aplicada a diferentes borrachas, incluindo algumas misturas. Foi observado que é possível diferenciar os tipos de elastômeros por meio de análise de produtos gasosos de pirólise, inclusive aqueles que apresentam espectros IR de pirolisados líquidos similares, como é o caso de CIIR e BIIR, NR/SBR e EPDM/SBR, SBR/BR e SBR.Pyrolysis and infrared spectroscopy (PIR-G/FT-IR were used for investigating gaseous products of rubber. The results show that this method was suitable to identify different elastomers and elastomer blends, including rubbers that present similar IR spectra of pyrolysed liquid products such as CIIR and BIIR, NR/SBR and EPDM/SBR, SBR/BR and SBR.

  13. Rapid identification of Chinese Sauce liquor from different fermentation positions with FT-IR spectroscopy

    Science.gov (United States)

    Li, Changwen; Wei, Jiping; Zhou, Qun; Sun, Suqin

    2008-07-01

    FT-IR and two-dimensional correlation spectroscopy (2D-IR) technology were applied to discriminate Chinese Sauce liquor from different fermentation positions (top, middle and bottom of fermentation cellar) for the first time. The liquors at top, middle and bottom of fermentation cellar, possessed the characteristic peaks at 1731 cm -1, 1733 cm -1 and 1602 cm -1, respectively. In the 2D correlation infrared spectra, the differences were amplified. A strong auto-peak at 1725 cm -1 showed in the 2D spectra of the Top Liquor, which indicated that the liquor might contain some ester compounds. Different from Top Liquor, three auto-peaks at 1695, 1590 and 1480 cm -1 were identified in 2D spectra of Middle Liquor, which were the characteristic absorption of acid, lactate. In 2D spectra of Bottom Liquor, two auto-peaks at 1570 and 1485 cm -1 indicated that lactate was the major component. As a result, FT-IR and 2D-IR correlation spectra technology provided a rapid and effective method for the quality analysis of the Sauce liquor.

  14. Fourier Transform Infrared (FT-IR) and Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) Imaging of Cerebral Ischemia: Combined Analysis of Rat Brain Thin Cuts Toward Improved Tissue Classification.

    Science.gov (United States)

    Balbekova, Anna; Lohninger, Hans; van Tilborg, Geralda A F; Dijkhuizen, Rick M; Bonta, Maximilian; Limbeck, Andreas; Lendl, Bernhard; Al-Saad, Khalid A; Ali, Mohamed; Celikic, Minja; Ofner, Johannes

    2018-02-01

    Microspectroscopic techniques are widely used to complement histological studies. Due to recent developments in the field of chemical imaging, combined chemical analysis has become attractive. This technique facilitates a deepened analysis compared to single techniques or side-by-side analysis. In this study, rat brains harvested one week after induction of photothrombotic stroke were investigated. Adjacent thin cuts from rats' brains were imaged using Fourier transform infrared (FT-IR) microspectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). The acquired hyperspectral data cubes were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms. The RDF algorithm demonstrated the best results for classification. Improved classification was observed in the case of fused data in comparison to individual data sets (either FT-IR or LA-ICP-MS). Variable importance analysis demonstrated that both molecular and elemental content contribute to the improved RDF classification. Univariate spectral analysis identified biochemical properties of the assigned tissue types. Classification of multisensor hyperspectral data sets using an RDF algorithm allows access to a novel and in-depth understanding of biochemical processes and solid chemical allocation of different brain regions.

  15. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    Science.gov (United States)

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other

  16. FT-IR and X-ray spectroscopic investigations of Na-diclofenac-cyclodextrins interactions

    Science.gov (United States)

    Bratu, I.; Astilean, S.; Ionesc, Corina; Indrea, E.; Huvenne, J. P.; Legrand, P.

    1998-01-01

    The association of DCF-Na (the salt of the 2-[(2,6-dichlorophenyl)amino]-phenyl-acetic acid) with β-CD (cyclodextrin) in some therapeutic formulas can contribute to the optimisation of the physico-chemical and pharmaceutical properties of the parent drug. The understanding of the interaction between DCF with β-CD represents the objective of this study. FT-IR spectroscopy is one of the methods which clarify the nature of these interactions in complexes of such type. Therefore the changes in FT-IR spectra of binary dispersed systems DCF/ β-CD in physical mixture and coprecipitate from methanol (molar ratios: 1/1, 1/2, 2/3, 3/4, 7/4) were analysed. The analysis of the broadening of the X-ray powder diffraction line has been applied to investigate the average effective crystallite size, the mean square of the microstrain caused by distortions within β-CD crystallite and the fault probability in the binary dispersed DCF/ β-CD coprecipitate system.

  17. 3D FT-IR imaging spectroscopy of phase-separation in a poly(3-hydroxybutyrate)/poly(L-lactic acid) blend

    Science.gov (United States)

    Miriam Unger; Julia Sedlmair; Heinz W. Siesler; Carol Hirschmugl; Barbara Illman

    2014-01-01

    In the present study, 3D FT-IR spectroscopic imaging measurements were applied to study the phase separation of a poly(3-hydroxybutyrate) (PHB)/poly(L-lactic acid) (PLA) (50:50 wt.%) polymer blend film. While in 2D projection imaging the z-dependent information is overlapped, thereby complicating the analysis, FT-IR spectro-micro-tomography,...

  18. Theory of infrared microspectroscopy for intact fibers.

    Science.gov (United States)

    Davis, Brynmor J; Carney, P Scott; Bhargava, Rohit

    2011-01-15

    Infrared microspectroscopy is widely used for the chemical analysis of small samples. In particular, spectral properties of small cylindrical samples are important in forensic analysis, understanding relationships between microstructure and mechanical properties in fibers or fiber composites, and development of cosmetics and drugs for hair. The diameters of the constituent cylinders are typically of the order of the central wavelength of light used to probe the sample. Hence, structure and material spectral response are coupled and recorded spectra are usually distorted to the extent of becoming useless for molecular identification. In this paper, we apply rigorous optical theory to predict the spectral distortions observed in IR microspectroscopic data of fibers. The theory is used, first, to compute the changes that are observed for cylinders of various dimensions under different instrument configurations when compared to the bulk spectrum from the same material. We provide a method to recover intrinsic material spectral response from fibers by correcting for distortion introduced by the cylindrical structure. The theory reported here should enable the routine use of IR microspectroscopy and imaging for the molecular analysis of cylindrical domains in complex materials.

  19. Effect of Water on HEMA Conversion by FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    TS. Jafarzadeh Kashi

    2007-09-01

    Full Text Available Objective: The use of HEMA as a biocompatible material in dentin bonding systems and its potential for clinical applications has been well established. Excess water can affect conversion of bonding resins. The aim of this study was to survey the effect of water on the degree of conversion of HEMA by Fourier Transform Infra-red Spectroscopy (FT-IR.Materials and Methods: In this experimental study, distilled water was added in amounts of 0, 0.05, 0.1, 0.2, and 0.4 ml to 1 ml of curable HEMA solution. Six repetitions per wa-ter ratio were made and investigated. Each sample was polymerized for 60 seconds. De-gree of conversion was obtained from the absorbance IR-Spectrum of the materials before and after polymerization by FT-IR spectroscopy. One way ANOVA and Tukey-HSD were carried out to compare and detect any differences among groups.Results: Statistical analysis indicates highly significant difference between pairs of groups at level (P<0.001. The results showed a trend of decreasing in HEMA conversion with increasing water. Degree of conversion changes significantly within the 0.05 ml to 0.2 ml water range. However, degree of conversion did not change after reaching 0.02 ml and before 0.05.Conclusion: Degree of conversion of HEMA decreased by increasing water. The most dramatic effect of water on the polymerization process occurs within a range which exists under clinical conditions. The reason that the degree of conversion did not show signifi-cant result before 0.05 ml may be related to the hydrophilic nature of HEMA.

  20. Application of Fourier-transform infrared (FT-IR) spectroscopy for simple and easy determination of chylomicron-triglyceride and very low density lipoprotein-triglyceride.

    Science.gov (United States)

    Sato, Kenichi; Seimiya, Masanori; Kodera, Yoshio; Kitamura, Akihide; Nomura, Fumio

    2010-02-01

    Fourier-transform infrared (FT-IR) spectroscopy is a simple and reagent-free physicochemical analysis method, and is a potential alternative to more time-consuming and labor-intensive procedures. In this study, we aimed to use FT-IR spectroscopy to determine serum concentrations of chylomicron-triglyceride (TG) and very low density lipoprotein (VLDL)-TG. We analyzed a chylomicron fraction and VLDL fraction, which had been obtained by ultracentrifugation, to search for wavelengths to designate to each fraction. Then, partial least square (PLS) calibrations were developed using a training set of samples, for which TG concentrations had been determined by conventional procedures. Validation was conducted with another set of samples using the PLS model to predict serum TG concentrations on the basis of the samples' IR spectra. We analyzed a total of 150 samples. Serum concentrations of chylomicron-TG and VLDL-TG estimated by FT-IR spectroscopy agreed well with those obtained by the reference method (r=0.97 for both lipoprotein fractions). FT-IR spectrometric analysis required 15mul of serum and was completed within 1min. Serum chylomicron-TG and VLDL-TG concentrations can be determined with FT-IR spectroscopy. This rapid and simple test may have a great impact on the management of patients with dyslipidemia. Copyright 2009. Published by Elsevier B.V.

  1. Caracterização por FT-IR da superfície de borracha EPDM tratada via plasma por micro-ondas FT-IR characterization of EPDM rubber surface treated by microwave plasma

    Directory of Open Access Journals (Sweden)

    Renata P. dos Santos

    2012-01-01

    Full Text Available A superfície de uma borracha de etileno-propileno-dieno (EPDM vulcanizada foi modificada via plasma por microondas, com gases Ar, Ar/O2, N2/O2 e N2/H2, tendo como objetivo melhorar as propriedades adesivas da superfície. A técnica FT-IR/UATR foi escolhida para caracterizar as superfícies após tratamento, pois apresentou menor interferência dos ingredientes da formulação da EPDM, dentre as técnicas analisadas (ATR/KRS-5 e Ge. Grupos oxigenados foram inseridos na superfície da amostra tratada, mesmo quando não foi utilizado o oxigênio, pois estes grupos foram formados quando a superfície ativada foi exposta à atmosfera. Já em tratamentos contendo N2, grupos oxigenados e possíveis grupos nitrogenados foram identificados por FT-IR. Redução nos valores do ângulo de contato, aumento no trabalho de adesão e aumento no ensaio de resistência ao descascamento (EPDM × Poliuretano foram observados após tratamento com Ar e N2/H2, resultando em melhora nas propriedades adesivas da superfície tratada.The surface of a vulcanized ethylene propylene diene monomer (EPDM rubber was modified by microwave plasma in Ar, Ar/O2, N2/O2 and N2/H2 in order to improve the adhesion properties. Surface modification was characterized by FT-IR/UATR, because this technique showed smaller interference of ingredients of EPDM formulation in comparison with other techniques used (ATR KRS-5 and Ge. Oxygenated groups were introduced in the EPDM surface after treatment, even in treatments without oxygen. Theses groups were formed when the activated surface was exposed to the atmosphere. In treatments with nitrogen, oxygenated and possible nitrogenated groups were identified by FT-IR. Reduction in the contact angle, increase in the work of adhesion and increase in the peel strength (EPDM × Polyurethane were observed after treatment with Ar and N2/H2, resulting in improved adhesion properties of the modified surface.

  2. Detection of creatinine enriched on a surface imprinted polystyrene film using FT-ATR-IR.

    Science.gov (United States)

    Sreenivasan, K

    2006-01-01

    The surface of polystyrene (PS) was chemically modified by coating a thin layer of polyaniline (PANI) by oxidizing aniline using ammonium persulfate. Affinity sites for creatinine, a clinically relevant molecule, were created in the coated layer by adding creatinine as print molecules during the oxidation. The imprinted layer adsorbed creatinine was compared to non-imprinted surface reflecting the creation of creatinine-specific sites on the surface. The equilibrium was attained rapidly, indicating that a material of this kind is suitable for sensing applications. The adsorbed creatinine on the surface was detected using the technique of Fourier transform attenuated total internal reflection infra red spectroscopy (FT-ATR-IR). The results show that molecularly imprinted surface can enrich molecules of interest and the enriched molecules can be detected using FT-IR.

  3. Coupling FT Raman and FT SERS microscopy with TLC plates for in situ identification of chemical compounds

    Science.gov (United States)

    Caudin, J. P.; Beljebbar, A.; Sockalingum, G. D.; Angiboust, J. F.; Manfait, M.

    1995-11-01

    Direct analysis of sub-femtogram quantities of chemical compounds on thin layer chromatography plates has been made possible by associating Fourier transform Raman microspectroscopy with SERS spectroscopy. The interfacing elements of the FT Raman microscope system are discussed and optimised such that a lateral resolution on the micron scale is achieved in the sample plane. Micro-FT SERS results obtained from a model biological molecule indicate preservation of molecular conformation upon adsorption at the SERS active surface. With NIR radiation it is thus possible to analyse plates with or without fluorescence indicators.

  4. FT-IR spectroscopic analyses of 2-(2-furanylmethylene) propanedinitrile

    Science.gov (United States)

    Soliman, H. S.; Eid, Kh. M.; Ali, H. A. M.; El-Mansy, M. A. M.; Atef, S. M.

    2013-03-01

    In the present work, a computational study for the optimized molecular structural parameters, thermo-chemical parameters, total dipole moment, HOMO-LUMO energy gap and a combined experimental and computational study for FT-IR spectra for 2-(2-furanylmethylene) propanedinitrile have been investigated using B3LYP utilizing 6-31G and 6-311G basis set. Our calculated results showed that the investigated compound possesses a dipole moment of 7.5 D and HOMO-LUMO energy gap of 3.92 eV using B3LYP/6-311G which indicates that our investigated compound is highly applicable for photovoltaic solar cell applications.

  5. FT-IR, FT-Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2-amino-5-bromobenzoic acid.

    Science.gov (United States)

    Karabacak, Mehmet; Cinar, Mehmet

    2012-02-01

    In this work, the molecular conformation, vibrational and electronic transition analysis of 2-amino-5-bromobenzoic acid (2A5BrBA) were presented for the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. FT-IR and FT-Raman spectra were recorded in the regions of 400-4000 cm(-1) and 50-4000 cm(-1), respectively. There are four conformers, C1, C2, C3 and C4 for this molecule. The geometrical parameters, energies and wavenumbers have been obtained for all four conformers. The computational results diagnose the most stable conformer of 2A5BrBA as the C1 form. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Raman activities calculated by DFT method have been converted to the corresponding Raman intensities using Raman scattering theory. The UV spectra of investigated compound were recorded in the region of 200-400 nm for ethanol and water solutions. The electronic properties were evaluated with help of time-dependent DFT (TD-DFT) theoretically and results were compared with experimental observations. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. The observed and the calculated geometric parameters, vibrational wavenumbers and electronic transitions were compared with observed data and found to be in good agreement. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Development of a method for determination of fatty acid using FT-IR spectroscopy

    Directory of Open Access Journals (Sweden)

    Dimas Augusto Morozin Zaia

    2011-05-01

    Full Text Available In the present paper a new methodology has been developed for determination of fatty acids in biological systems using FT-IR spectroscopy. For this method is not necessary chromophore reagent or pre sample preparation. Palmitic acid was chosen as standard, because it is found in several biological systems. The FT-IR spectrum of palmitic acid showed two absorption bands in the region of 2852 and 2920 cm-1 attributed to CH stretching. The results for these bands showed that the Beer-Lambert Law was followed in wide range of concentration of palmitic acid (14 to 257 mmol L-1. Potassium ferricyanide (K3[Fe(CN6] was used as internal standard. Several interferents were tested and only cholesterol, ferric chloride (higher concentration, mixture of amino acids for the band at 2919 cm-1 (higher concentration and triglyceride could be interferent if they appear in high concentration. Thus, this new methodology has advantage to be not expensive and simple.

  7. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    Science.gov (United States)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  8. FT-IR, FT-Raman, and DFT computational studies of melaminium nitrate molecular-ionic crystal

    Science.gov (United States)

    Tanak, Hasan; Marchewka, Mariusz K.

    2013-02-01

    The experimental and theoretical vibrational spectra of melaminium nitrate were studied. The Raman and infrared (FT-IR) spectra of the melaminium nitrate and its deuterated analogue were recorded in the solid phase. Molecular geometry and vibrational frequency values of melaminium nitrate in the electronic ground state were calculated using the density functional method (B3LYP) with the 6-31++G(d,p) basis set. The calculated results show that the optimized geometry can well reproduce the crystal structure, and the theoretical vibrational frequency values show good agreement with experimental values. The NBO analysis reveals that the N-H···O and N-H···N intermolecular interactions significantly influence crystal packing in this molecule.

  9. Spectroscopic investigations (FT-IR & FT-Raman) and molecular docking analysis of 6-[1-methyl-4-nitro-1H-imidazol-5-yl) sulfonyl]-7H-purine

    Science.gov (United States)

    Prasath, M.; Govindammal, M.; Sathya, B.

    2017-10-01

    The Azathioprine is used as anticancer agent. Azathioprine is chemically called 6-[1-methyl-4-nitro-1H-imidazol-5-yl) sulfonyl]-7H-purine (6M4N5P). The vibrational analysis of the 6M4N5P compound was carried out by using FT-IR and FT-Raman spectroscopic techniques and compared with aspects. The optimized geometry, frequency and intensity of the vibrational bands of 6M4N5P were obtained from the HF and DFT methods with 6-31G (d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The calculated Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energies show that charge transfer occur within the molecule. MEP (Molecular Electrostatic Potential) is very useful in the investigation of the charge distributions and molecular structure. The molecule orbital contributions were determined by using the total density of states (TDOS). A molecular docking analysis has been carried out to understand the conformational change and electrostatic properties of 6M4N5P in the active site of Rac1-Receptor.

  10. Study of micro-phase separation of two polystyrene-based copolymer mixture using the combination of PALS and FT-IR

    International Nuclear Information System (INIS)

    Jiang, Z.Y.; Jiang, X.Q.; Yang, Y.X.; Huang, Y.J.; Huang, H.B.; Hsia, Y.F.

    2005-01-01

    Positron annihilation lifetime (PAL) spectroscopy, Fourier transform infrared (FT-IR) and differential scanning calorimetry (DSC) have been applied to study the micro-phase separation in the blends of poly(styrene-co-methylmethacrylate) (SMMA) copolymer and poly(styrene-co-maleic anhydride) (SMA) copolymer. The DSC results indicate that the SMA/SMMA blends are miscible and weak intermolecular interactions exist between SMA and SMMA. The strength of intermolecular interactions to some degree exhibits somewhat non-monotonic variation with increasing of SMA component in the blends. The results of PAL measurement present the blend containing 20 wt% SMA is phase-separated in molecular level, which is interpreted by the results of FT-IR analysis. It was concluded that it is helpful to study the miscibility of polymer blends in molecular level by means of PAL method, accompanied with the requisite measurement of DSC and FT-IR

  11. Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development.

    Science.gov (United States)

    Szymanska-Chargot, M; Chylinska, M; Kruk, B; Zdunek, A

    2015-01-22

    The aim of this work was to quantitatively and qualitatively determine the composition of the cell wall material from apples during development by means of Fourier transform infrared (FT-IR) spectroscopy. The FT-IR region of 1500-800 cm(-1), containing characteristic bands for galacturonic acid, hemicellulose and cellulose, was examined using principal component analysis (PCA), k-means clustering and partial least squares (PLS). The samples were differentiated by development stage and cultivar using PCA and k-means clustering. PLS calibration models for galacturonic acid, hemicellulose and cellulose content from FT-IR spectra were developed and validated with the reference data. PLS models were tested using the root-mean-square errors of cross-validation for contents of galacturonic acid, hemicellulose and cellulose which was 8.30 mg/g, 4.08% and 1.74%, respectively. It was proven that FT-IR spectroscopy combined with chemometric methods has potential for fast and reliable determination of the main constituents of fruit cell walls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. FT-IR study of gamma-radiation induced degradation of polyvinyl alcohol (PVA) and PVA/humic acids blends

    International Nuclear Information System (INIS)

    Ilcin, M.; Hola, O.; Bakajova, B.; Kucerik, J.

    2010-01-01

    Samples of pure polyvinyl alcohol (PVA) and PVA doped with humic acids were exposed to gamma radiation. Gamma rays induced the degradation of the pure polymer. Degradation changes were observed using ATR FT-IR equipment. Dehydration, double bond creation, and their subsequent oxidation (surrounding atmosphere was air) were found out. Also, other degradation reactions (e.g. chain scission, cyclization) occur simultaneously. Formation of C=C and C=O bonds is apparent from FT-IR spectra. In contrast the presence of humic acids in the PVA sample showed stabilizing effect on PVA structure within the concentration range 0.5-10%. (author)

  13. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review.

    Science.gov (United States)

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2017-05-04

    Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.

  14. FT-IR emissivity measurements of Nb melt using an electrostatic levitation furnace

    International Nuclear Information System (INIS)

    Sakata, K.; Watanabe, Y.; Okada, J.T.; Kumar, M.V.; Paradis, P.-F.; Ishikawa, T.

    2015-01-01

    Highlights: • Since molten Nb has a high melting point, its thermal properties were measured using FT-IR combined with an electrostatic levitator. • The measured ε_T of molten Nb at the melting temperature in this study was 0.29, and the C_p was calculated as 41.9 J ⋅ mol"−"1 ⋅ K"−"1. - Abstract: Total hemispherical emissivity (ε_T) and constant pressure heat capacity (C_p) of molten Nb, which has a high melting point, was measured using FT-IR combined with an electrostatic levitator. In order to heat the sample to temperatures higher than 2000 °C and avoid chemical reactions between the sample and a crucible, a containerless method was needed. By applying these methods, the measured ε_T of molten Nb at the melting temperature was 0.29, and the C_p was calculated as 41.9 J ⋅ mol"−"1 ⋅ K"−"1. Both data showed good agreement with the literature values. In addition, the result was compared with the Drude model and the difference of emissivity between Zr and Nb was discussed.

  15. The application of FT-IR spectrum method in photocuring process for polyester acrylate

    International Nuclear Information System (INIS)

    Cao Jin; Lu Xianliang; Zhang Zhenli

    1995-01-01

    This paper describes that the UV curing process of polyester acrylate can be monitored by measuring the degree of double bonds conversion with FT-IR spectroscopy. The various factors effect the UV curing rate. The relation between the curing rate and the concentration of photoinitiator, crosslinking agent, UV light intensity was discussed. (author)

  16. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    Science.gov (United States)

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms

    Science.gov (United States)

    Jung, Melissa R.; Horgen, F. David; Orski, Sara V.; Rodriguez, Viviana; Beers, Kathryn L.; Balazs, George H.; Jones, T. Todd; Work, Thierry M.; Brignac, Kayla C.; Royer, Sarah-Jeanne; Hyrenbach, David K.; Jensen, Brenda A.; Lynch, Jennifer M.

    2018-01-01

    Polymer identification of plastic marine debris can help identify its sources, degradation, and fate. We optimized and validated a fast, simple, and accessible technique, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), to identify polymers contained in plastic ingested by sea turtles. Spectra of consumer good items with known resin identification codes #1–6 and several #7 plastics were compared to standard and raw manufactured polymers. High temperature size exclusion chromatography measurements confirmed ATR FT-IR could differentiate these polymers. High-density (HDPE) and low-density polyethylene (LDPE) discrimination is challenging but a clear step-by-step guide is provided that identified 78% of ingested PE samples. The optimal cleaning methods consisted of wiping ingested pieces with water or cutting. Of 828 ingested plastics pieces from 50 Pacific sea turtles, 96% were identified by ATR FT-IR as HDPE, LDPE, unknown PE, polypropylene (PP), PE and PP mixtures, polystyrene, polyvinyl chloride, and nylon.

  18. Application of fourier-transform infrared (ft-ir) spectroscopy for determination of total phenolics of freeze dried lemon juices

    International Nuclear Information System (INIS)

    Sherazi, S.T.H.; Bhutto, A.A.; Mehesar, S.A.

    2017-01-01

    A cost effective and environmentally safe analytical method for rapid assessment of total phenolic content (TPC) in freeze dried lemon juice samples was developed using transmission Fourier-transform infrared spectroscopy (FT-IR) in conjunction with chemometric techniques. Two types of calibrations i.e. simple Beer's law and partial least square (PLS) were applied to investigate most accurate calibration model based on region from1420 to 1330 cm-1. The better analytical performance was obtained by PLS technique coefficient of determination (R2), root mean square error of calibration (RMSEC) with the value of 0.999 and 0.00864, respectively. The results of TPC in freeze dried lemon juice samples obtained by transmission FT-IR were compared with TPC observed by Folin-Ciocalteu (FC) assay and found to be comparable. Outcomes of the present study indicate that transmission FT-IR spectroscopic approach could be used as an alternative approach in place of Folin-Ciocalteu (FC) assay which is expensive and time-consuming conventional chemical methods for determination of the total phenolic content of lemon fruits. (author)

  19. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy—Effects of Therapeutic Alginate Implant in Rat Models

    Science.gov (United States)

    Uckermann, Ortrud; Sitoci-Ficici, Kerim H.; Later, Robert; Beiermeister, Rudolf; Doberenz, Falko; Gelinsky, Michael; Leipnitz, Elke; Schackert, Gabriele; Koch, Edmund; Sablinskas, Valdas; Steiner, Gerald; Kirsch, Matthias

    2015-01-01

    Spinal cord injury (SCI) induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR) spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28). Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies. PMID:26559822

  20. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models.

    Directory of Open Access Journals (Sweden)

    Sandra Tamosaityte

    Full Text Available Spinal cord injury (SCI induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28. Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies.

  1. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Visible) and quantum chemical studies of molecular geometry, Frontier molecular orbital, NLO, NBO and thermodynamic properties of salicylic acid.

    Science.gov (United States)

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2014-11-11

    The solid phase FT-IR and FT-Raman spectra of 2-hydroxybenzoic acid (salicylic acid) have been recorded in the region 4000-400 and 4000-100 cm(-1) respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method at 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimentally obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method is employed to predict its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) are also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Published by Elsevier B.V.

  2. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    Science.gov (United States)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  3. Evaluation of Fungal Deterioration in Liquidambar orientalis Mill. heartwood by FT-IR and light microscopy.

    Science.gov (United States)

    Nural Yilgor; Dilek Dogu; Roderquita Moore; Evren Terzi; S. Nami Kartal

    2013-01-01

    The chemical and morphological changes in heartwood specimens of Liquidambar orientalis Mill. caused by the white-rot fungus Trametes versicolor and the brown-rot fungi Tyromyces palustris and Gloeophyllum trabeum were studied by wet chemistry, FT-IR, GC-MS analyses, and photo-...

  4. A novel FT-IR spectroscopic method based on lipid characteristics for qualitative and quantitative analysis of animal-derived feedstuff adulterated with ruminant ingredients.

    Science.gov (United States)

    Gao, Fei; Zhou, Simiao; Han, Lujia; Yang, Zengling; Liu, Xian

    2017-12-15

    The objective of this study was to explore the ability of Fourier transform infrared (FT-IR) spectroscopy to authenticate adulterated animal-derived feedstuff. A total of 18 raw meat and bone meals (MBMs), including 9 non-ruminant MBMs and 9 ruminant MBMs, were mixed to obtain 81 binary mixtures with specific proportions (1-35%). Lipid spectral characteristics were analyzed by FT-IR spectroscopy combined with chemometrics. Changes in FT-IR spectra were observed as adulterant concentration was varied. The results illustrate ruminant adulteration can be successfully distinguished based on lipid characteristics. PLS model was established to quantify ruminant adulteration, which was shown to be valid (R 2 P >0.90). Furthermore, the ratios of CC/CO and CC/CH(CH 2 ), as well as the number of CH(CH 2 ) in the fatty acids of adulterated lipids, were calculated, which showed that differences in the trans fatty acid content and the degree of unsaturation were the main contributors to determination of adulteration based on FT-IR spectroscopy. Copyright © 2017. Published by Elsevier Ltd.

  5. Acid-base properties, FT-IR, FT-Raman spectroscopy and computational study of 1-(pyrid-4-yl)piperazine.

    Science.gov (United States)

    Mary, Y Sheena; Panicker, C Yohannan; Varghese, Hema Tresa; Van Alsenoy, Christian; Procházková, Markéta; Sevčík, Richard; Pazdera, Pavel

    2014-01-01

    We report the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy for 1-(pyrid-4-yl)piperazine (PyPi). Single crystals of PyPi suitable for X-ray structural analysis were obtained. The acid-base properties are also reported. PyPi supported on a weak acid cation-exchanger in the single protonated form and this system can be used efficiently as the solid supported analogue of 4-N,N-dimethyl-aminopyridine. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule and with the molecular electrostatic potential map was applied for the reactivity assessment of PyPi molecule toward proton, electrophiles and nucleopholes as well. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The calculated first hyperpolarizability of PyPi is 17.46 times that of urea. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Fourier Transform Infrared Spectroscopy (FT-IR) and Simple Algorithm Analysis for Rapid and Non-Destructive Assessment of Developmental Cotton Fibers.

    Science.gov (United States)

    Liu, Yongliang; Kim, Hee-Jin

    2017-06-22

    With cotton fiber growth or maturation, cellulose content in cotton fibers markedly increases. Traditional chemical methods have been developed to determine cellulose content, but it is time-consuming and labor-intensive, mostly owing to the slow hydrolysis process of fiber cellulose components. As one approach, the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy technique has also been utilized to monitor cotton cellulose formation, by implementing various spectral interpretation strategies of both multivariate principal component analysis (PCA) and 1-, 2- or 3-band/-variable intensity or intensity ratios. The main objective of this study was to compare the correlations between cellulose content determined by chemical analysis and ATR FT-IR spectral indices acquired by the reported procedures, among developmental Texas Marker-1 (TM-1) and immature fiber ( im ) mutant cotton fibers. It was observed that the R value, CI IR , and the integrated intensity of the 895 cm -1 band exhibited strong and linear relationships with cellulose content. The results have demonstrated the suitability and utility of ATR FT-IR spectroscopy, combined with a simple algorithm analysis, in assessing cotton fiber cellulose content, maturity, and crystallinity in a manner which is rapid, routine, and non-destructive.

  7. Analysis of thin-film polymers using attenuated total internal reflection-Raman microspectroscopy.

    Science.gov (United States)

    Tran, Willie; Tisinger, Louis G; Lavalle, Luis E; Sommer, André J

    2015-01-01

    Two methods commonly employed for molecular surface analysis and thin-film analysis of microscopic areas are attenuated total reflection infrared (ATR-IR) microspectroscopy and confocal Raman microspectroscopy. In the former method, the depth of the evanescent probe beam can be controlled by the wavelength of light, the angle of incidence, or the refractive index of the internal reflection element. Because the penetration depth is proportional to the wavelength of light, one could interrogate a smaller film thickness by moving from the mid-infrared region to the visible region employing Raman spectroscopy. The investigation of ATR Raman microspectroscopy, a largely unexplored technique available to Raman microspectroscopy, was carried out. A Renishaw inVia Raman microscope was externally modified and used in conjunction with a solid immersion lens (SIL) to perform ATR Raman experiments. Thin-film polymer samples were analyzed to explore the theoretical sampling depth for experiments conducted without the SIL, with the SIL, and with the SIL using evanescent excitation. The feasibility of micro-ATR Raman was examined by collecting ATR spectra from films whose thickness measured from 200 to 60 nm. Films of these thicknesses were present on a much thicker substrate, and features from the underlying substrate did not become visible until the thin film reached a thickness of 68 nm.

  8. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test

    Directory of Open Access Journals (Sweden)

    Tahereh-Sadat Jafarzadeh

    2015-12-01

    Full Text Available Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm. Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan was performed at the top and bottom (depth=2 mm surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

  9. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test.

    Science.gov (United States)

    Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman

    2015-01-01

    Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

  10. Evaluation of a setting reaction pathway in the novel composite TiHA-CSD bone cement by FT-Raman and FT-IR spectroscopy

    Science.gov (United States)

    Paluszkiewicz, Czesława; Czechowska, Joanna; Ślósarczyk, Anna; Paszkiewicz, Zofia

    2013-02-01

    The aim of this study was to determine a setting reaction pathway in a novel, surgically handy implant material, based on calcium sulfate hemihydrate (CSH) and titanium doped hydroxyapatite (TiHA). The previous studies confirmed superior biological properties of TiHA in comparison to the undoped hydroxyapatite (HA) what makes it highly attractive for future medical applications. In this study the three types of titanium modified HA powders: untreated, calcined at 800 °C, sintered at 1250 °C and CSH were used to produce bone cements. The Fourier Transform-InfraRed (FT-IR) spectroscopy and Raman spectroscopy were applied to evaluate processes taking place during the setting of the studied materials. Our results undoubtedly confirmed that the reaction pathways and the phase compositions differed significantly for set cements and were dependent on the initial heat treatment of TiHA powder. Final materials were multiphase composites consisting of calcium sulfate dihydrate, bassanite, tricalcium phosphate, hydroxyapatite and calcium titanate (perovskite). The FT-IR and Scanning Electron Microscopy (SEM) measurements performed after the incubation of the cement samples in the simulated body fluid (SBF), indicate on high bioactive potential of the obtained bone cements.

  11. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy.

    Science.gov (United States)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm(-1). For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Honey bee odorant-binding protein 14: effects on thermal stability upon odorant binding revealed by FT-IR spectroscopy and CD measurements.

    Science.gov (United States)

    Schwaighofer, Andreas; Kotlowski, Caroline; Araman, Can; Chu, Nam; Mastrogiacomo, Rosa; Becker, Christian; Pelosi, Paolo; Knoll, Wolfgang; Larisika, Melanie; Nowak, Christoph

    2014-03-01

    In the present work, we study the effect of odorant binding on the thermal stability of honey bee (Apis mellifera L.) odorant-binding protein 14. Thermal denaturation of the protein in the absence and presence of different odorant molecules was monitored by Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). FT-IR spectra show characteristic bands for intermolecular aggregation through the formation of intermolecular β-sheets during the heating process. Transition temperatures in the FT-IR spectra were evaluated using moving-window 2D correlation maps and confirmed by CD measurements. The obtained results reveal an increase of the denaturation temperature of the protein when bound to an odorant molecule. We could also discriminate between high- and low-affinity odorants by determining transition temperatures, as demonstrated independently by the two applied methodologies. The increased thermal stability in the presence of ligands is attributed to a stabilizing effect of non-covalent interactions between odorant-binding protein 14 and the odorant molecule.

  13. Characterization of Paracoccidioides brasiliensis by FT-IR spectroscopy and nanotechnology

    Science.gov (United States)

    Ferreira, Isabelle; Ferreira-Strixino, Juliana; Castilho, Maiara L.; Campos, Claudia B. L.; Tellez, Claudio; Raniero, Leandro

    2016-01-01

    Paracoccidioides brasiliensis, the etiological agent of paracoccidioidomycosis, is a dimorphic fungus existing as mycelia in the environment (or at 25 °C in vitro) and as yeast cells in the human host (or at 37 °C in vitro). Because mycological examination of lesions in patients frequently is unable to show the presence of the fungus and serological tests can misdiagnose the disease with other mycosis, the development of new approach's for molecular identification of P. brasiliensis spurges is needed. This study describes the use of a gold nanoprobe of a known gene sequence of P. brasiliensis as a molecular tool to identify P. brasiliensis by regular polymerase chain reaction (PCR) associated with a colorimetric methods. This approach is suitable for testing in remote areas because it does not require any further step than gene amplification, being safer and cheaper than electrophoresis methods. The proposed test showed a color change of the PCR reaction mixture from red to blue in negative samples, whereas the solution remains red in positive samples. We also performed a Fourier Transform Infrared (FT-IR) Spectroscopy analysis to characterize and compare the chemical composition between yeast and mycelia forms, which revealed biochemical differences between these two forms. The analysis of the spectra showed that differences were distributed in chemical bonds of proteins, lipids and carbohydrates. The most prominent difference between both forms was vibration modes related to 1,3-β-glucan usually found in mycelia and 1,3-α-glucan found in yeasts and also chitin forms. In this work, we introduce FT-IR as a new method suitable to reveal overall differences that biochemically distinguish each form of P. brasiliensis that could be additionally used to discriminate biochemical differences among a single form under distinct environmental conditions.

  14. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR.

    Science.gov (United States)

    Özsin, Gamzenur; Pütün, Ayşe Eren

    2017-06-01

    The objective of this study was to identify the pyrolysis of different bio-waste produced by food processing industry in a comprehensible manner. For this purpose, pyrolysis behaviors of chestnut shells (CNS), cherry stones (CS) and grape seeds (GS) were investigated by thermogravimetric analysis (TGA) combined with a Fourier-transform infrared (FT-IR) spectrometer and a mass spectrometer (MS). In order to make available theoretical groundwork for biomass pyrolysis, activation energies were calculated with the help of four different model-free kinetic methods. The results are attributed to the complex reaction schemes which imply parallel, competitive and complex reactions during pyrolysis. During pyrolysis, the evolution of volatiles was also characterized by FT-IR and MS. The main evolved gases were determined as H 2 O, CO 2 and hydrocarbons such as CH 4 and temperature dependent profiles of the species were obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hydrogenated fullerenes in space: FT-IR spectra analysis

    Energy Technology Data Exchange (ETDEWEB)

    El-Barbary, A. A. [Physics Department, Faculty of Education, Ain-Shams University, Cairo, Egypt Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia)

    2016-06-10

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C{sub 20} and C{sub 60} fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H{sub 2} molecule at peak around 4440 cm{sup −1}. However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  16. Hydrogenated fullerenes in space: FT-IR spectra analysis

    International Nuclear Information System (INIS)

    El-Barbary, A. A.

    2016-01-01

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C 20 and C 60 fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H 2 molecule at peak around 4440 cm −1 . However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  17. Spectroscopic investigation (FT-IR, FT-Raman), HOMO-LUMO, NBO, and molecular docking analysis of N-ethyl-N-nitrosourea, a potential anticancer agent

    Science.gov (United States)

    Singh, Priyanka; Islam, S. S.; Ahmad, Hilal; Prabaharan, A.

    2018-02-01

    Nitrosourea plays an important role in the treatment of cancer. N-ethyl-N-nitrosourea, also known as ENU, (chemical formula C3H7N3O2), is a highly potent mutagen. The chemical is an alkylating agent and acts by transferring the ethyl group of ENU to nucleobases (usually thymine) in nucleic acids. The molecular structure of N-ethyl-N-nitrosourea has been elucidated using experimental (FT-IR and FT-Raman) and theoretical (DFT) techniques. APT charges, Mulliken atomic charges, Natural bond orbital, Electrostatic potential, HOMO-LUMO and AIM analysis were performed to identify the reactive sites and charge transfer interactions. Furthermore, to evaluate the anticancer activity of ENU molecular docking studies were carried out against 2JIU protein.

  18. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    Science.gov (United States)

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  19. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    Science.gov (United States)

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  20. Effects of Low Carbohydrate High Protein (LCHP) diet on atherosclerotic plaque phenotype in ApoE/LDLR-/- mice: FT-IR and Raman imaging.

    Science.gov (United States)

    Wrobel, T P; Marzec, K M; Chlopicki, S; Maślak, E; Jasztal, A; Franczyk-Żarów, M; Czyżyńska-Cichoń, I; Moszkowski, T; Kostogrys, R B; Baranska, M

    2015-09-22

    Low Carbohydrate High Protein (LCHP) diet displays pro-atherogenic effects, however, the exact mechanisms involved are still unclear. Here, with the use of vibrational imaging, such as Fourier transform infrared (FT-IR) and Raman (RS) spectroscopies, we characterize biochemical content of plaques in Brachiocephalic Arteries (BCA) from ApoE/LDLR(-/-) mice fed LCHP diet as compared to control, recomended by American Institute of Nutrition, AIN diet. FT-IR images were taken from 6-10 sections of BCA from each mice and were complemented with RS measurements with higher spatial resolution of chosen areas of plaque sections. In aortic plaques from LCHP fed ApoE/LDLR(-/-) mice, the content of cholesterol and cholesterol esters was increased, while that of proteins was decreased as evidenced by global FT-IR analysis. High resolution imaging by RS identified necrotic core/foam cells, lipids (including cholesterol crystals), calcium mineralization and fibrous cap. The decreased relative thickness of the outer fibrous cap and the presence of buried caps were prominent features of the plaques in ApoE/LDLR(-/-) mice fed LCHP diet. In conclusion, FT-IR and Raman-based imaging provided a complementary insight into the biochemical composition of the plaque suggesting that LCHP diet increased plaque cholesterol and cholesterol esters contents of atherosclerotic plaque, supporting the cholesterol-driven pathogenesis of LCHP-induced atherogenesis.

  1. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.

    Science.gov (United States)

    Turunen, Mikael J; Saarakkala, Simo; Rieppo, Lassi; Helminen, Heikki J; Jurvelin, Jukka S; Isaksson, Hanna

    2011-06-01

    The molecular composition of the organic and inorganic matrices of bone undergoes alterations during maturation. The aim of this study was to compare Fourier transform infrared (FT-IR) and near-infrared (NIR) Raman microspectroscopy techniques for characterization of the composition of growing and developing bone from young to skeletally mature rabbits. Moreover, the specificity and differences of the techniques for determining bone composition were clarified. The humeri of female New Zealand White rabbits, with age range from young to skeletally mature animals (four age groups, n = 7 per group), were studied. Spectral peak areas, intensities, and ratios related to organic and inorganic matrices of bone were analyzed and compared between the age groups and between FT-IR and Raman microspectroscopic techniques. Specifically, the degree of mineralization, type-B carbonate substitution, crystallinity of hydroxyapatite (HA), mineral content, and collagen maturity were examined. Significant changes during maturation were observed in various compositional parameters with one or both techniques. Overall, the compositional parameters calculated from the Raman spectra correlated with analogous parameters calculated from the IR spectra. Collagen cross-linking (XLR), as determined through peak fitting and directly from the IR spectra, were highly correlated. The mineral/matrix ratio in the Raman spectra was evaluated with multiple different peaks representing the organic matrix. The results showed high correlation with each other. After comparison with the bone mineral density (BMD) values from micro-computed tomography (micro-CT) imaging measurements and crystal size from XRD measurements, it is suggested that Raman microspectroscopy is more sensitive than FT-IR microspectroscopy for the inorganic matrix of the bone. In the literature, similar spectroscopic parameters obtained with FT-IR and NIR Raman microspectroscopic techniques are often compared. According to the present

  2. Analysis of clay smoking pipes from archeological sites in the region of the Guanabara Bay (Rio de Janeiro, Brazil) by FT-IR

    Science.gov (United States)

    Freitas, Renato P.; Ribeiro, Iohanna M.; Calza, Cristiane; Oliveira, Ana L.; Silva, Mariane L.; Felix, Valter S.; Ferreira, Douglas S.; Coelho, Felipe A.; Gaspar, Maria D.; Pimenta, André R.; Medeiros, Elanio A.; Lopes, Ricardo T.

    2016-06-01

    In this study, twenty samples of clay smoking pipes excavated in an 18 km2 area between the Macacu and Caceribu rivers, in the municipality of Itaboraí, Rio de Janeiro, Brazil were analyzed by FT-IR technique. The samples, excavated in different archeological sites of the region, are dated between the seventeenth and the nineteenth centuries and are part of the material culture left by Africans and African descendants that lived in the complex. FT-IR analyses and complementary SEM-EDS studies showed that the clay paste used in the manufacture of smoking pipes, mostly handcrafted, is composed of quartz, feldspar, phyllosilicates and iron oxides. Multivariate statistical tests (PCA) were applied to FT-IR data to assess the interactions between the archeological sites. The results indicated that one archeological site - Macacu IV - is greatly related to the other sites. The results obtained have helped archeologists and anthropologists in better understanding the manufacturing process employed in ancient ceramic artifacts produced during the period of colonial Brazil.

  3. Geographic identification of Boletus mushrooms by data fusion of FT-IR and UV spectroscopies combined with multivariate statistical analysis

    Science.gov (United States)

    Yao, Sen; Li, Tao; Li, JieQing; Liu, HongGao; Wang, YuanZhong

    2018-06-01

    Boletus griseus and Boletus edulis are two well-known wild-grown edible mushrooms which have high nutrition, delicious flavor and high economic value distributing in Yunnan Province. In this study, a rapid method using Fourier transform infrared (FT-IR) and ultraviolet (UV) spectroscopies coupled with data fusion was established for the discrimination of Boletus mushrooms from seven different geographical origins with pattern recognition method. Initially, the spectra of 332 mushroom samples obtained from the two spectroscopic techniques were analyzed individually and then the classification performance based on data fusion strategy was investigated. Meanwhile, the latent variables (LVs) of FT-IR and UV spectra were extracted by partial least square discriminant analysis (PLS-DA) and two datasets were concatenated into a new matrix for data fusion. Then, the fusion matrix was further analyzed by support vector machine (SVM). Compared with single spectroscopic technique, data fusion strategy can improve the classification performance effectively. In particular, the accuracy of correct classification of SVM model in training and test sets were 99.10% and 100.00%, respectively. The results demonstrated that data fusion of FT-IR and UV spectra can provide higher synergic effect for the discrimination of different geographical origins of Boletus mushrooms, which may be benefit for further authentication and quality assessment of edible mushrooms.

  4. Application of Fourier transform infrared (FT-IR) spectroscopy to the study of the modification of epoxidized sunflower oil by acrylation.

    Science.gov (United States)

    Irinislimane, Ratiba; Belhaneche-Bensemra, Naima

    2012-12-01

    Commercial sunflower oil was epoxidized at the laboratory-scale. The epoxidized sunflower oil (ESFO) was modified following the acrylation reaction. Modification was carried out simultaneously using acrylic acid (AA) and triethylamine (TEA). To optimize the reaction conditions, the effects of four temperatures (40, 60, 80, and 100 °C), the ESFO:AA (100:100) ratio, and 0.2% TEA were investigated. The rate of conversion was analyzed with both FT-IR and titration of the oxirane ring. After that, the temperature with the highest conversion was selected and used throughout for all modification reactions. Then, four ratios (100:100, 100:90, 100:80, and 100:75) of ESFO:AA were analyzed at four different concentrations of TEA (0.2, 0.3, 0.4, and 0.5%) to determine the best estimate for both the ESFO:AA ratio and the catalyst concentration. Conversion rate was analyzed using FT-IR spectroscopy by measuring the concentrations of ester, carbonyl, and alcohol groups. Moreover, oxirane-ring concentration was estimated using the titration method (with gentian violet as indicator) and FT-IR spectroscopy (epoxy ring absorptions at 1270 cm(-1) and 877 cm(-1)). Based on conversion yield, the optimum ESFO:AA ratio corresponds to 100:80; the best temperature reaction was at 60 °C, and the best TEA concentration was 0.2%. The critical amounts of reactants needed to reach maximum conversion were established. The final acid value of the acrylated ESFO after washing (pH = 7) was 2.1 mg potassium hydroxide (KOH)·g(-1). All results show that FT-IR spectroscopy is a simple, low-cost, rapid method for investigating the kinetics of a reaction.

  5. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers

    Science.gov (United States)

    Fan, Wendy

    2011-01-01

    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  6. Quantum-chemical, NMR, FT IR, and ESI MS studies of complexes of colchicine with Zn(II).

    Science.gov (United States)

    Jankowski, Wojciech; Kurek, Joanna; Barczyński, Piotr; Hoffmann, Marcin

    2017-04-01

    Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, 1 H and 13 C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their 1 H, 13 C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).

  7. FT-Raman, FT-IR spectra and total energy distribution of 3-pentyl-2,6-diphenylpiperidin-4-one: DFT method.

    Science.gov (United States)

    Subashchandrabose, S; Saleem, H; Erdogdu, Y; Rajarajan, G; Thanikachalam, V

    2011-11-01

    FT-Raman and FT-IR spectra were recorded for 3-pentyl-2,6-diphenylpiperidin-4-one (PDPO) sample in solid state. The equilibrium geometries, harmonic vibrational frequencies, infrared and the Raman scattering intensities were computed using DFT/6-31G(d,p) level. Results obtained at this level of theory were used for a detailed interpretation of the infrared and Raman spectra, based on the total energy distribution (TED) of the normal modes. Molecular parameters such as bond lengths, bond angles and dihedral angles were calculated and compared with X-ray diffraction data. This comparison was good agreement. The intra-molecular charge transfer was calculated by means of natural bond orbital analysis (NBO). Hyperconjugative interaction energy was more during the π-π* transition. Energy gap of the molecule was found using HOMO and LUMO calculation, hence the less band gap, which seems to be more stable. Atomic charges of the carbon, nitrogen and oxygen were calculated using same level of calculation. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Técnicas FT-IR (PAS, UATR e Objetiva ATR Aplicadas à Caracterização de EPDM Modificada com Plasma

    Directory of Open Access Journals (Sweden)

    Renata Patrícia dos Santos

    2014-06-01

    Full Text Available Técnicas FT-IR (UATR, PAS e MIC, com objetiva ATR foram escolhidas para a caracterização da superfície da borracha de EPDM vulcanizada, após tratamento em plasma de Ar/O2 e N2/H2/Ar gerado em micro-ondas. Após tratamento, grupos oxigenados foram detectados por UATR e MIC/FT-IR, com objetiva ATR para as duas misturas gasosas, e possíveis grupos nitrogenados foram inseridos na superfície das amostras tratadas com plasma de N2/H2/Ar. A análise MIC/FT-IR sugeriu a formação de grupos em uma camada mais externa, para as amostras tratadas com plasma de N2/H2/Ar, sendo possível observar a redução na intensidade das bandas da absorção do CH2 e CH3, o que pode estar relacionado ao fato de o nitrogênio ser um gás menos permeável que o oxigênio. Diferentes velocidades, 0,05 cm.s-1 e 0,2 cm.s-1, foram utilizadas na análise PAS para avaliar a superfície após tratamento, e apenas para a velocidade 0,05 cm.s-1 com plasma de Ar/O2 alterações espectroscópicas foram detectadas. A redução na medida de ângulo de contato e o aumento na resistência ao descascamento da colagem indicaram melhoras nas propriedades adesivas da superfície. Falhas de adesão foram observadas entre a interface do filme de adesivo de PU e da borracha de EPDM, e confirmados por UATR/FT-IR.

  9. A Controlled-Environment Chamber for Atmospheric Chemistry Studies Using FT-IR Spectroscopy

    Science.gov (United States)

    1990-06-01

    necessary and identify by block number) FELD GROUP SUB-GROUP i >Chamber, controlled environment; long-path cell ; 07 04 FT-IR; Hydrazine decay...modification doubles the useable path length of the original multipass cell described by White (Reference 8). The pattern of images formed on the nesting...system is shown in Figure 13. 24 z C C02, Ibm, El4 944 C3 ta) caC E-4- 252 14 $4 41) 41) 0. 0 04 04 4 41) ~0 to 0.0 V-4 (A q14 0~ 1% 4-r4 $4 0 u P416 4 4

  10. Matrix isolation FT-IR spectroscopy and molecular orbital study of sarcosine methyl ester

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, R.

    2004-01-01

    N-methylglycine methyl ester (sarcosine-Me) has been studied by matrix isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the DFT/B3LYP and MP2 levels of theory with the 6-311++G(d,p) and 6-31++G(d,p) basis set, respectively. Twelve different conformers were located in the potential energy surface of the studied compound, with the ASC conformer being the ground conformational state. This form is analogous to the dimethylglycine methyl ester most stable conformer and...

  11. Study of the deuterated albumin by FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Stoenescu, Daniela; Sahini, V.E.

    2000-01-01

    The albumin is a protein from the soluble or corpuscular protein class, which exists in cells, in dissolved state or in form of a hydrated gel. Proteins are essential constituents beside water, inorganic salts, lipids, carbon hydrates, vitamins, enzymes. The albumin is also a protein soluble in water and in diluted electrolyte solutions (acids, bases and salts). The investigation of the vibration isotopic effect has a great importance both for the diatomic molecules and for the polyatomic molecules. This paper is the first from a series of works which are intended to study the physico-chemical properties of the deuterated albumin and of the albumin solutions in heavy water by an isotopic exchange method. To put in evidence H-D exchange, the FT-IR spectroscopy is used when the deuterated albumin has different layer thickness. It is also of interest to elucidate the isotopic exchange between the hydrogen and oxygen atoms in bovine serum albumin macromolecules. (authors)

  12. Attenuated total internal reflection infrared microspectroscopic imaging using a large-radius germanium internal reflection element and a linear array detector.

    Science.gov (United States)

    Patterson, Brian M; Havrilla, George J

    2006-11-01

    The number of techniques and instruments available for Fourier transform infrared (FT-IR) microspectroscopic imaging has grown significantly over the past few years. Attenuated total internal reflectance (ATR) FT-IR microspectroscopy reduces sample preparation time and has simplified the analysis of many difficult samples. FT-IR imaging has become a powerful analytical tool using either a focal plane array or a linear array detector, especially when coupled with a chemometric analysis package. The field of view of the ATR-IR microspectroscopic imaging area can be greatly increased from 300 x 300 microm to 2500 x 2500 microm using a larger internal reflection element of 12.5 mm radius instead of the typical 1.5 mm radius. This gives an area increase of 70x before aberrant effects become too great. Parameters evaluated include the change in penetration depth as a function of beam displacement, measurements of the active area, magnification factor, and change in spatial resolution over the imaging area. Drawbacks such as large file size will also be discussed. This technique has been successfully applied to the FT-IR imaging of polydimethylsiloxane foam cross-sections, latent human fingerprints, and a model inorganic mixture, which demonstrates the usefulness of the method for pharmaceuticals.

  13. FT-IR spectroscopic imaging of reactions in multiphase flow in microfluidic channels.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2012-05-01

    Rapid, in situ, and label-free chemical analysis in microfluidic devices is highly desirable. FT-IR spectroscopic imaging has previously been shown to be a powerful tool to visualize the distribution of different chemicals in flows in a microfluidic device at near video rate imaging speed without tracers or dyes. This paper demonstrates the possibility of using this imaging technology to capture the chemical information of all reactants and products at different points in time and space in a two-phase system. Differences in the rates of chemical reactions in laminar flow and segmented flow systems are also compared. Neutralization of benzoic acid in decanol with disodium phosphate in water has been used as the model reaction. Quantitative information, such as concentration profiles of reactant and products, can be extracted from the imaging data. The same feed flow rate was used in both the laminar flow and segmented flow systems. The laminar flow pattern was achieved using a plain wide T-junction, whereas the segmented flow was achieved by introducing a narrowed section and a nozzle at the T-junction. The results show that the reaction rate is limited by diffusion and is much slower with the laminar flow pattern, whereas the reaction is completed more quickly in the segmented flow due to better mixing.

  14. The spectroscopic (FT-IR, FT-Raman, UV and NMR) first order hyperpolarizability and HOMO-LUMO analysis of dansyl chloride

    Science.gov (United States)

    Karabacak, M.; Cinar, M.; Kurt, M.; Poiyamozhi, A.; Sundaraganesan, N.

    2014-01-01

    The solid phase FT-IR and FT-Raman spectra of dansyl chloride (DC) have been recorded in the regions 400-4000 and 50-4000 cm-1, respectively. The spectra have been interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule has been optimized and the structural characteristics have been determined by density functional theory (B3LYP) method with 6-311++G(d,p) as basis set. The vibrational frequencies were calculated for most stable conformer and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra have also been predicted from the calculated intensities. 1H and 13C NMR spectra were recorded and 1H and 13C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-Visible spectrum of the compound was recorded in the region 200-600 nm and the electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. Nonlinear optical and thermodynamic properties were interpreted. All the calculated results were compared with the available experimental data of the title molecule.

  15. Microspectroscopy

    International Nuclear Information System (INIS)

    Hirschfeld, T.

    1982-01-01

    The boom in electron and ion microbeam methods, with its overwhelming proliferation of new methods (and acronyms) and eager exploitation of every available technological advance, has tended to obscure the very wide usage of the corresponding optical methods. These outgrowths of the enormous field of visual optical microscopy are, however, quite alive and kicking, and their unique capabilities are becoming more appreciated as more and more advanced optical technology is being applied to the field. This review of optical microprobe techniques includes uv-VIS absorption techniques, fluorescence microspectroscopy, Raman measurements, and other microprobes such as the infrared ones, scatter, and the various partially optical methods. Also discussed are technological advances that may impact these fields. The natural place of microspectroscopy is shown to be as a higher discrimination, lower resolution companion of electron and ion beam microprobes

  16. Investigation of UV curing reaction of dicyclopentadienyl acrylate by FT-IR

    International Nuclear Information System (INIS)

    Lu Qiting; Hou Yibin

    1999-01-01

    Dicyclopentadienyl acrylate (DCPA) is characterized by low odor, low volatility, high flash point, low toxicity and low shrinkage on cure. Another advantage of DCPA is its insensitiveness to the inhibiting effect of oxygen. DCPA have wide industrial applications. It was used for the preparation of adhesives, UV-curable coatings and polymer concreted). The advantages of DCPA result from its particular structure. There are two unsaturated bonds, one acrylic double bond and one cyclic double bond, in each DCPA molecule. But, few reports on reaction behavior of the two type double bonds were issued up to date. In this paper, reaction behavior of the acrylic and the cyclic double bond of DCPA during and after LTV-curing were investigated by Fourier Transform-Infrared(FT-IR)

  17. A new Density Functional Theory (DFT) based method for supporting the assignment of vibrational signatures of mannan and cellulose—Analysis of palm kernel cake hydrolysis by ATR-FT-IR spectroscopy as a case study

    DEFF Research Database (Denmark)

    Barsberg, Søren Talbro; Sanadi, Anand Ramesh; Jørgensen, Henning

    2011-01-01

    Attenuated Total Reflectance (ATR) FT-IR spectroscopy gives in situ information on molecular concentration, organization and interactions in plant cell walls. We demonstrate its potential for further developments by a case study which combines ATR-FT-IR spectroscopy with a recently published DFT...... a decreasing degree of polymerization to be a plausible cause, although others may interfere. Keywords: Cellulose; Mannan; FT-IR; DFT; Molecular modelling; Palm kernel...

  18. Caracterização de um pré-impregnado aeronáutico por FT-IR e análise térmica Characterization of pre-impregnated of epoxy resin/carbon fiber

    Directory of Open Access Journals (Sweden)

    Vanesa C. G. M. Ferrari

    2012-01-01

    Full Text Available Este trabalho consiste na caracterização de um pré-impregnado ("prepreg" de resina epoxídica/fibra de carbono, usando-se espectroscopia no infravermelho com transformada de Fourier (FT-IR, análise termogravimétrica (TG, calorimetria exploratória diferencial (DSC e análise térmica dinâmico-mecânica (DMTA. A análise por FT-IR foi realizada nos modos de transmissão (pastilha de KBr, pirólise em bico de Bunsen e controlada e detecção fotoacústica (PAS. Os espectros de FT-IR de transmissão revelaram a presença de resina epoxídica, grupos ciano, amínicos e bisfenol A, que possibilitaram identificar o provável agente de cura:a cianoguanidina (ou dicianodiamida do sistema epoxídico. Os espectros de FT-IR/PAS permitiram acompanhar as alterações espectrométricas causadas pela cura. A análise térmica auxiliou na observação e compreensão dos eventos durante o processo de cura, etapas de gelificação e vitrificação, e da influência destas nas temperaturas de transição vítrea (Tg do material curado e na escolha do intervalo de temperatura de cura, que é um dos parâmetros mais importantes do processo produtivo.This work explores the characterization of pre-impregnated ("prepreg" materials made with an epoxy resin/carbon fiber, using FT-IR spectroscopy, thermogravimetry (TG, differential scanning calorimetry (DSC and dynamic mechanical thermal analysis (DMTA. FT-IR spectroscopy was used in the transmission mode (KBr pellets, pyrolysis without control and controlled pyrolysis and photoacoustic detection (FT-IR/PAS. The transmission FT-IR spectra revealed the presence of epoxy resin, cyano groups, amine and bisphenol A, which allowed us to identify the probable agent of cure: cyanoguanidine (or DCD. With FT-IR/PAS it was possible to monitor spectrometric changes caused by curing. The thermal analysis assisted in observing and understanding events during the curing process, including the gelation and vitrification steps. It

  19. Differentiation between probiotic and wild-type Bacillus cereus isolates by antibiotic susceptibility test and Fourier transform infrared spectroscopy (FT-IR).

    Science.gov (United States)

    Mietke, Henriette; Beer, W; Schleif, Julia; Schabert, G; Reissbrodt, R

    2010-05-30

    Animal feed often contains probiotic Bacillus strains used as feed additives. Spores of the non-pathogenic B. cereus var. toyoi (product name Toyocerin) are used. Distinguishing between toxic wild-type Bacillus cereus strains and this probiotic strain is essential for evaluating the quality and risk of feed. Bacillus cereus CIP 5832 (product name Paciflor was used as probiotic strain until 2001. The properties of the two probiotic strains are quite similar. Differentiating between probiotic strains and wild-type B. cereus strains is not easy. ss-lactam antibiotics such as penicillin and cefamandole exhibit an inhibition zone in the agar diffusion test of probiotic B. cereus strains which are not seen for wild-type strains. Therefore, performing the agar diffusion test first may make sense before FT-IR testing. When randomly checking these strains by Fourier transform infrared spectroscopy (FT-IR), the probiotic B. cereus strains were separated from wild-type B. cereus/B. thuringiensis/B. mycoides/B. weihenstephanensis strains by means of hierarchical cluster analysis. The discriminatory information was contained in the spectral windows 3000-2800 cm(-1) ("fatty acid region"), 1200-900 cm(-1) ("carbohydrate region") and 900-700 cm(-1) ("fingerprint region"). It is concluded that FT-IR spectroscopy can be used for the rapid quality control and risk analysis of animal feed containing probiotic B. cereus strains. (c) 2010 Elsevier B.V. All rights reserved.

  20. Differentiation of Candida albicans, Candida glabrata, and Candida krusei by FT-IR and chemometrics by CHROMagar™ Candida.

    Science.gov (United States)

    Wohlmeister, Denise; Vianna, Débora Renz Barreto; Helfer, Virginia Etges; Calil, Luciane Noal; Buffon, Andréia; Fuentefria, Alexandre Meneghello; Corbellini, Valeriano Antonio; Pilger, Diogo André

    2017-10-01

    Pathogenic Candida species are detected in clinical infections. CHROMagar™ is a phenotypical method used to identify Candida species, although it has limitations, which indicates the need for more sensitive and specific techniques. Infrared Spectroscopy (FT-IR) is an analytical vibrational technique used to identify patterns of metabolic fingerprint of biological matrixes, particularly whole microbial cell systems as Candida sp. in association of classificatory chemometrics algorithms. On the other hand, Soft Independent Modeling by Class Analogy (SIMCA) is one of the typical algorithms still little employed in microbiological classification. This study demonstrates the applicability of the FT-IR-technique by specular reflectance associated with SIMCA to discriminate Candida species isolated from vaginal discharges and grown on CHROMagar™. The differences in spectra of C. albicans, C. glabrata and C. krusei were suitable for use in the discrimination of these species, which was observed by PCA. Then, a SIMCA model was constructed with standard samples of three species and using the spectral region of 1792-1561cm -1 . All samples (n=48) were properly classified based on the chromogenic method using CHROMagar™ Candida. In total, 93.4% (n=45) of the samples were correctly and unambiguously classified (Class I). Two samples of C. albicans were classified correctly, though these could have been C. glabrata (Class II). Also, one C. glabrata sample could have been classified as C. krusei (Class II). Concerning these three samples, one triplicate of each was included in Class II and two in Class I. Therefore, FT-IR associated with SIMCA can be used to identify samples of C. albicans, C. glabrata, and C. krusei grown in CHROMagar™ Candida aiming to improve clinical applications of this technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Some critical aspects of FT-IR, TGA, powder XRD, EDAX and SEM studies of calcium oxalate urinary calculi.

    Science.gov (United States)

    Joshi, Vimal S; Vasant, Sonal R; Bhatt, J G; Joshi, Mihir J

    2014-06-01

    Urinary calculi constitute one of the oldest afflictions of humans as well as animals, which are occurring globally. The calculi vary in shape, size and composition, which influence their clinical course. They are usually of the mixed-type with varying percentages of the ingredients. In medical management of urinary calculi, either the nature of calculi is to be known or the exact composition of calculi is required. In the present study, two selected calculi were recovered after surgery from two different patients for detailed examination and investigated by using Fourier-Transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), powder X-ray diffraction (XRD), scanning electron microscopy and energy dispersive analysis of X-rays (EDAX) techniques. The study demonstrated that the nature of urinary calculi and presence of major phase in mixed calculi could be identified by FT-IR, TGA and powder XRD, however, the exact content of various elements could be found by EDAX only.

  2. FT-IR and thermoluminescence investigation of P2O5-BaO-K2O glass system

    Science.gov (United States)

    Ivascu, C.; Timar-Gabor, A.; Cozar, O.

    2013-11-01

    The 0.5P2O5ṡxBaOṡ(0.5-x)K2O glass system (0≤x≤0.5mol%) is investigated by FT-IR and thermoluminescence as a possible dosimetic material. FT-IR spectra show structural network modifications with the composition variations of the studied glasses. The predominant absorption bands are characterized by two broad peaks near 500 cm-1, two weak peaks around 740 cm-1 and three peaks in the 900-1270 cm-1 region. The shift in the position of the band assigned to asymmetric stretching of PO2- group, υas(PO2-) modes from ˜1100 cm-1 to 1085 cm-1 and the decrease in its relative intensity with the increasing of K2O content shows a network modifier role of this oxide.. Luminescence investigations show that by adding modifier oxides in the phosphate glass a dose dependent TL signals result upon irradiation. Thus P2O5-BaO-K2O glass system is a possible candidate material for dosimetry in the dose 0 - 50 Gy range.

  3. Effects of curing conditions on the structure of sodium carboxymethyl starch/mineral matrix system: FT-IR investigation.

    Science.gov (United States)

    Kaczmarska, Karolina; Grabowska, Beata; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-04-24

    Strength properties of the microwave cured molding sands containing binders in a form of the aqueous solution of sodium carboxymethyl starch (CMS-Na) are higher than the same molding composition cured by conventional heating. Finding the reason of this effect was the main purpose in this study. Structural changes caused by both physical curing methods of molding sands systems containing mineral matrix (silica sand) and polymer water-soluble binder (CMS-Na) were compared. It was shown, by means of the FT-IR spectroscopic studies, that the activation of the polar groups in the polymer macromolecules structure as well as silanol groups on the mineral matrix surfaces was occurred in the microwave radiation. Binding process in microwave-cured samples was an effect of formation the hydrogen bonds network between hydroxyl and/or carbonyl groups present in polymer and silanol groups present in mineral matrix. FT-IR studies of structural changes in conventional and microwave cured samples confirm that participation of hydrogen bonds is greater after microwave curing than conventional heating. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy

    DEFF Research Database (Denmark)

    Barsberg, Søren Talbro; Lee, Y.-I.; Rasmussen, Hanne Nina

    2018-01-01

    Cite this article: Barsberg ST, Lee Y-I, Rasmussen HN. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy. Seed Science Research https:// doi.org/10.1017/S0960258517000344......Cite this article: Barsberg ST, Lee Y-I, Rasmussen HN. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy. Seed Science Research https:// doi.org/10.1017/S0960258517000344...

  5. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.

    Science.gov (United States)

    Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don

    2012-08-01

    Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.

  6. Comparative FT-Raman, FT-IR and colour shifts spectroscopic evaluation of gamma irradiated experimental models of oil paintings

    International Nuclear Information System (INIS)

    Manca, M.M.; Virgolici, M.; Cutrubinis, M.; Moise, I.V.; Ponta, C.C.; Negut, C.D.; Stanculescu, I.R.; Bucharest University

    2011-01-01

    Complete text of publication follows. The present study follows the changes of gamma irradiated historic pigments and experimental models of oil paintings with non-destructive and non-contact spectroscopic analytical techniques which are the only ones accepted by the conservators/restorers community. Molecular structure characterization was performed by FT-IR / Raman spectroscopy using a Bruker Vertex 70 class equipped with two mobile probes: a MIR fibre module for MIR probes (with LN2 cooled detector) and a Raman RAM II module (LN2 Ge detector) with a RAMPROBE fibre. Colour was measured by a portable reflectance spectrophotometer (Miniscan XE Plus, HunterLab) in diffuse/8 deg geometry with a beam diameter of 4 mm and specular component included. Correlations between colour shifts and changes in molecular structure induced by gamma irradiation were further investigated.

  7. Intramolecular hydrogen bonding in N-salicylideneaniline: FT-IR spectrum and quantum chemical calculations

    Science.gov (United States)

    Moosavi-Tekyeh, Zainab; Dastani, Najmeh

    2015-12-01

    FT-IR and FT-Raman spectra of N-salicylideneaniline (SAn) and its deuterated analogue (D-SAn) are recorded, and the theoretical calculations are performed on their molecular structures and vibrational frequencies. The same calculations are performed for SAn in different solutions using the polarizable conductor continuum model (CPCM) method. Comparisons between the spectra obtained and the corresponding theoretical calculations are used to assign the vibrational frequencies for these compounds. The spectral behavior of SAn upon deuteration is also used to distinguish the positions of OH vibrational frequencies. The hydrogen bond strength of SAn is investigated by applying the atoms-in-molecules (AIM) theory, natural bond orbital (NBO) analysis, and geometry calculations. The harmonic vibrational frequencies of SAn are calculated at B3LYP and X3LYP levels of theory using 6-31G*, 6-311G**, and 6-311++G** basis sets. The AIM results support a medium hydrogen bonding in SAn. The observed νOH/νOD and γOH/γOD for SAn appear at 2940/2122 and 830/589 cm-1, respectively.

  8. Quantification of plaque area and characterization of plaque biochemical composition with atherosclerosis progression in ApoE/LDLR(-/-) mice by FT-IR imaging.

    Science.gov (United States)

    Wrobel, Tomasz P; Mateuszuk, Lukasz; Kostogrys, Renata B; Chlopicki, Stefan; Baranska, Malgorzata

    2013-11-07

    In this work the quantitative determination of atherosclerotic lesion area (ApoE/LDLR(-/-) mice) by FT-IR imaging is presented and validated by comparison with atherosclerotic lesion area determination by classic Oil Red O staining. Cluster analysis of FT-IR-based measurements in the 2800-3025 cm(-1) range allowed for quantitative analysis of the atherosclerosis plaque area, the results of which were highly correlated with those of Oil Red O histological staining (R(2) = 0.935). Moreover, a specific class obtained from a second cluster analysis of the aortic cross-section samples at different stages of disease progression (3, 4 and 6 months old) seemed to represent the macrophages (CD68) area within the atherosclerotic plaque.

  9. Technical Capability Upgrades to the NASA Langley Research Center 8 ft. by 15 ft. Thermal Vacuum Chamber

    Science.gov (United States)

    Thornblom, Mark N.; Beverly, Joshua; O'Connell, Joseph J.; Duncan, Dwight L.

    2016-01-01

    The 8 ft. by 15 ft. thermal vacuum chamber (TVAC), housed in Building 1250 at the NASA Langley Research Center (LaRC), and managed by the Systems Integration and Test Branch within the Engineering Directorate, has undergone several significant modifications to increase testing capability, safety, and quality of measurements of articles under environmental test. Significant modifications include: a new nitrogen distribution manifold for supplying the shroud and other cold surfaces to liquid nitrogen temperatures; a new power supply and distribution system for accurately controlling a quartz IR lamp suite; a suite of contamination monitoring sensors for outgassing measurements and species identification; a new test article support system; signal and power feed-throughs; elimination of unnecessary penetrations; and a new data acquisition and control commanding system including safety interlocks. This paper will provide a general overview of the LaRC 8 ft. by 15 ft. TVAC chamber, an overview of the new technical capabilities, and will illustrate each upgrade in detail, in terms of mechanical design and predicted performance. Additionally, an overview of the scope of tests currently being performed in the chamber will be documented, and sensor plots from tests will be provided to show chamber temperature and pressure performance with actual flight hardware under test.

  10. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.

    Science.gov (United States)

    Weinstock, B André; Guiney, Linda M; Loose, Christopher

    2012-11-01

    We have developed a rapid, nondestructive analytical method that estimates the thickness of a surface polymer layer with high precision but unknown accuracy using a single attenuated total reflection Fourier transform infrared (ATR FT-IR) measurement. Because the method is rapid, nondestructive, and requires no sample preparation, it is ideal as a process analytical technique. Prior to implementation, the ATR FT-IR spectrum of the substrate layer pure component and the ATR FT-IR and real refractive index spectra of the surface layer pure component must be known. From these three input spectra a synthetic mid-infrared spectral matrix of surface layers 0 nm to 10,000 nm thick on substrate is created de novo. A minimum statistical distance match between a process sample's ATR FT-IR spectrum and the synthetic spectral matrix provides the thickness of that sample. We show that this method can be used to successfully estimate the thickness of polysulfobetaine surface modification, a hydrated polymeric surface layer covalently bonded onto a polyetherurethane substrate. A database of 1850 sample spectra was examined. Spectrochemical matrix-effect unknowns, such as the nonuniform and molecularly novel polysulfobetaine-polyetherurethane interface, were found to be minimal. A partial least squares regression analysis of the database spectra versus their thicknesses as calculated by the method described yielded an estimate of precision of ±52 nm.

  11. Spectroelectrochemical study of polyphenylene by in situ external reflection FT-IR spectroscopy. Pt. 2

    International Nuclear Information System (INIS)

    Kvarnstroem, C.; Ivaska, A.

    1994-01-01

    In situ external reflection FT-IR measurements are performed during cyclic voltammetric scans on electrochemically polymerized polyphenylene films. The films are polymerized either in 0.1 or 0.8 M biphenyl in 0.1 M TBABF 4 in acetonitrile. Changes in the IR spectrum of films of different thicknesses are studied when the films are potentially cycled from the neutral to the oxidized states of the polymer. No differences between films made in high or low dimer concentration can be observed in the spectra. The potential-dependent insertion and expulsion of solvent, residual water, anions and cations in and out of the film have different behaviour in films of different thicknesses. Changes in the structure of the segments in the film, from the benzenoid form into the quinoid form, can be followed. Differences between the first and subsequent cyclic potential scans are observed. (orig.)

  12. Quantum computational studies, spectroscopic (FT-IR, FT-Raman and UV-Vis) profiling, natural hybrid orbital and molecular docking analysis on 2,4 Dibromoaniline

    Science.gov (United States)

    Abraham, Christina Susan; Prasana, Johanan Christian; Muthu, S.; Rizwana B, Fathima; Raja, M.

    2018-05-01

    The research exploration will comprise of investigating the molecular structure, vibrational assignments, bonding and anti-bonding nature, nonlinear optical, electronic and thermodynamic nature of the molecule. The research is conducted at two levels: First level employs the spectroscopic techniques - FT-IR, FT-Raman and UV-Vis characterizing techniques; at second level the data attained experimentally is analyzed through theoretical methods using and Density Function Theories which involves the basic principle of solving the Schrodinger equation for many body systems. A comparison is drawn between the two levels and discussed. The probability of the title molecule being bio-active theoretically proved by the electrophilicity index leads to further property analyzes of the molecule. The target molecule is found to fit well with Centromere associated protein inhibitor using molecular docking techniques. Higher basis set 6-311++G(d,p) is used to attain results more concurrent to the experimental data. The results of the organic amine 2, 4 Dibromoaniline is analyzed and discussed.

  13. FT-IR X-ray diffraction and porosimetry studies of archaeologic artifacts recently excavated from Rajakkamangalam in Tamilnadu

    International Nuclear Information System (INIS)

    Babu Suresh; Velraj, Gothandapani

    2011-01-01

    In the present study, fragmented pottery sample were collected from the recently excavated archaeologic site named Rajakkamangalam, India. The samples were collected at different depths. The samples were subjected to FT-IR, X-ray diffraction and also porosimetry study was done, The spectroscopic method Fourier Transform Infrared Spectroscopy (FT-IR) has been employed to find the mineralogical composition of the potteries. And the complementary technique to find the clay minerals present using XRD. The major primary minerals present in the samples are Kaolinite and the secondary mineral present is quartz and the accessory minerals present in the sample are hematite and magnetite. In addition to the used mineral the orthoclase and orthopyroxene are present in the sample of interest. The firing temperature of the samples at the time of manufacturing is also estimated from apparent porosity of the samples. The percentage of the potteries lies in the range of porosity is 17-42 percentages. The results obtained from Porosimetry techniques on pottery shreds provide information of the firing temperature might have been fired below 1000 deg C at the time of manufacturing the potteries. (author)

  14. Spectroscopic [FT-IR and FT-Raman] and molecular modeling (MM) study of benzene sulfonamide molecule using quantum chemical calculations

    Science.gov (United States)

    Vinod, K. S.; Periandy, S.; Govindarajan, M.

    2016-07-01

    The spectroscopic and molecular modeling (MM) study includes, FT-IR, FT-Raman and 13C NMR and 1H NMR spectra of the Benzene sulfonamide were recorded for the analysis. The observed experimental and theoretical frequencies (IR and Raman) were assigned according to their distinctive region. The present study of this title molecule have been carried out by hybrid computational calculations of HF and DFT (B3LYP) methods with 6-311+G(d,p) and 6-311++G(d,p) basis sets and the corresponding results are tabulated. The structural modifications of the compound due to the substitutions of NH2 and SO2 were investigated. The minimum energy conformers of the compound were studied using conformational analysis. The alternations of the vibrational pattern of the base structure related to the substitutions were analyzed. The thermodynamic parameters (such as zero-point vibrational energy, thermal energy, specific heat capacity, rotational constants, entropy, and dipole moment) of Benzene sulfonamide have been calculated. The donor acceptor interactions of the compound and the corresponding UV transitions are found out using NBO analysis. The NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts related to TMS were compared. A quantum computational study on the electronic and optical properties absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by HF and DFT methods. The energy gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand group. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase and

  15. Curcumin-β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application.

    Science.gov (United States)

    Mangolim, Camila Sampaio; Moriwaki, Cristiane; Nogueira, Ana Claudia; Sato, Francielle; Baesso, Mauro Luciano; Neto, Antônio Medina; Matioli, Graciette

    2014-06-15

    Curcumin was complexed with β-CD using co-precipitation, freeze-drying and solvent evaporation methods. Co-precipitation enabled complex formation, as indicated by the FT-IR and FT-Raman techniques via the shifts in the peaks that were assigned to the aromatic rings of curcumin. In addition, photoacoustic spectroscopy and X-ray diffraction, with the disappearance of the band related to aromatic rings, by Gaussian fitting, and modifications in the spectral lines, respectively, also suggested complex formation. The possible complexation had an efficiency of 74% and increased the solubility of the pure colourant 31-fold. Curcumin-β-CD complex exhibited a sunlight stability 18% higher than the pure colourant. This material was stable to pH variations and storage at -15 and 4°C. With an isothermal heating at 100 and 150°C for 2h, the material exhibited a colour retention of approximately 99%. The application of curcumin-β-CD complex in vanilla ice creams intensified the colour of the products and produced a great sensorial acceptance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Determination of alkaloids in capsules, milk and ethanolic extracts of poppy (Papaver somniferum L.) by ATR-FT-IR and FT-Raman spectroscopy.

    Science.gov (United States)

    Schulz, Hartwig; Baranska, Malgorzata; Quilitzsch, Rolf; Schütze, Wolfgang

    2004-10-01

    Fourier transform (FT) infrared spectroscopy using a diamond composite ATR crystal and NIR-FT-Raman spectroscopy techniques were applied for the simultaneous identification and quantification of the most important alkaloids in poppy capsules. Most of the characteristic Raman signals of the alkaloids can be identified in poppy milk isolated from unripe capsules. But also poppy extracts present specific bands relating clearly to the alkaloid fraction. Raman spectra obtained by excitation with a Nd:YAG laser at 1064 nm show no disturbing fluorescence effects; therefore the plant tissue can be recorded without any special preparation. The used diamond ATR technique allows to measure very small sample amounts (5-10 microL or 2-5 mg) without the necessity to perform time-consuming pre-treatments. When applying cluster analysis a reliable discrimination of "low-alkaloid" and "high-alkaloid" poppy single-plants can be easily achieved. The examples presented in this study provide clear evidence of the benefits of Raman and ATR-IR spectroscopy in efficient quality control, forensic analysis and high-throughput evaluation of poppy breeding material.

  17. Infrared microspectroscopy of live cells in microfluidic devices (MD-IRMS): toward a powerful label-free cell-based assay.

    Science.gov (United States)

    Vaccari, L; Birarda, G; Businaro, L; Pacor, S; Grenci, G

    2012-06-05

    Until nowadays most infrared microspectroscopy (IRMS) experiments on biological specimens (i.e., tissues or cells) have been routinely carried out on fixed or dried samples in order to circumvent water absorption problems. In this paper, we demonstrate the possibility to widen the range of in-vitro IRMS experiments to vibrational analysis of live cellular samples, thanks to the development of novel biocompatible IR-visible transparent microfluidic devices (MD). In order to highlight the biological relevance of IRMS in MD (MD-IRMS), we performed a systematic exploration of the biochemical alterations induced by different fixation protocols, ethanol 70% and formaldehyde solution 4%, as well as air-drying on U937 leukemic monocytes by comparing their IR vibrational features with the live U937 counterpart. Both fixation and air-drying procedures affected lipid composition and order as well as protein structure at a different extent while they both induced structural alterations in nucleic acids. Therefore, only IRMS of live cells can provide reliable information on both DNA and RNA structure and on their cellular dynamic. In summary, we show that MD-IRMS of live cells is feasible, reliable, and biologically relevant to be recognized as a label-free cell-based assay.

  18. Experimental and theoretical studies of (FT-IR, FT-Raman, UV-Visible and DFT) 4-(6-methoxynaphthalen-2-yl) butan-2-one.

    Science.gov (United States)

    Govindasamy, P; Gunasekaran, S

    2015-01-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 4000-50 cm(-1) and 4000-450 cm(-1) respectively for 4-(6-methoxynaphthalen-2-yl) butan-2-one (abbreviated as 4MNBO) molecule. Theoretical calculations were performed by density functional theory (DFT/B3LYP) method using 6-311G(d,p) and 6-311++G(d,p) basis sets. The difference between the observed and calculated wavenumber value of most of the fundamentals were very small. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The UV-Vis spectrum was recorded in the methanol solution. The energy, wavelength and oscillator's strength were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Thermodynamic properties of 4MNBO at different temperature have been calculated. The molecular electrostatic potential surface (MESP) and Frontier molecular orbital's (FMO's) analysis were investigated using theoretical calculations. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. FT-IR spectroscopic analysis for studying Clostridium cell response to conversion of enzymatically hydrolyzed hay

    Science.gov (United States)

    Grube, Mara; Gavare, Marita; Nescerecka, Alina; Tihomirova, Kristina; Mezule, Linda; Juhna, Talis

    2013-07-01

    Grass hay is one of assailable cellulose containing non-food agricultural wastes that can be used as a carbohydrate source by microorganisms producing biofuels. In this study three Clostridium strains Clostridium acetobutylicum, Clostridium beijerinckii and Clostridium tetanomorphum, capable of producing acetone, butanol and ethanol (ABE) were adapted to convert enzymatically hydrolyzed hay used as a growth media additive. The results of growth curves, substrate degradation kinetics and FT-IR analyses of bacterial biomass macromolecular composition showed diverse strain-specific cell response to the growth medium composition.

  20. 3-Iodobenzaldehyde: XRD, FT-IR, Raman and DFT studies.

    Science.gov (United States)

    Kumar, Chandraju Sadolalu Chidan; Parlak, Cemal; Tursun, Mahir; Fun, Hoong-Kun; Rhyman, Lydia; Ramasami, Ponnadurai; Alswaidan, Ibrahim A; Keşan, Gürkan; Chandraju, Siddegowda; Quah, Ching Kheng

    2015-06-15

    The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. FT-mid-IR spectroscopic investigation of fiber maturity and crystallinity at single boll level and a comparison with XRD approach

    Science.gov (United States)

    In previous study, we have reported the development of simple algorithms for determining fiber maturity and crystallinity from Fourier transform (FT) -mid-infrared (IR) measurement. Due to its micro-sampling feature, we were able to assess the fiber maturity and crystallinity at different portions o...

  2. Complementary online aerosol mass spectrometry and offline FT-IR spectroscopy measurements: Prospects and challenges for the analysis of anthropogenic aerosol particle emissions

    Science.gov (United States)

    Faber, Peter; Drewnick, Frank; Bierl, Reinhard; Borrmann, Stephan

    2017-10-01

    The aerosol mass spectrometer (AMS) is well established in investigating highly time-resolved dynamics of submicron aerosol chemical composition including organic aerosol (OA). However, interpretation of mass spectra on molecular level is limited due to strong fragmentation of organic substances and potential reactions inside the AMS ion chamber. Results from complementary filter-based FT-IR absorption measurements were used to explain features in high-resolution AMS mass spectra of different types of OA (e.g. cooking OA, cigarette smoking OA, wood burning OA). Using this approach some AMS fragment ions were validated in this study as appropriate and rather specific markers for a certain class of organic compounds for all particle types under investigation. These markers can therefore be used to get deeper insights in the chemical composition of OA based on AMS mass spectra in upcoming studies. However, the specificity of other fragment ions such as C2H4O2+ (m/z 60.02114) remains ambiguous. In such cases, complementary FT-IR measurements allow the interpretation of highly time-resolved AMS mass spectra at the level of molecular functional groups. Furthermore, this study discusses the challenges in reducing inorganic interferences (e.g. from water and ammonium salts) in FT-IR spectra of atmospheric aerosols to decrease spectral uncertainties for better comparisons and, thus, to get more robust results.

  3. Structural investigations on some cadmium-borotellurate glasses using ultrasonic, FT-IR and X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gaafar, M.S., E-mail: m.gaafar@mu.edu.sa [Physics Department, College of Sciences, Majmaah University (Saudi Arabia); Ultrasonic Laboratory, National Institute for Standards, Tersa Str., P.O. Box 136, El-Haram, El-Giza 12211 (Egypt); Shaarany, I. [Physics Department, College of Sciences, Majmaah University (Saudi Arabia); Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Alharbi, T. [Physics Department, College of Sciences, Majmaah University (Saudi Arabia)

    2014-12-15

    Highlights: • 50B{sub 2}O{sub 3}–(50 – x)TeO{sub 2}–xCdO glass system has been prepared by melt quenching technique. • Both sound velocities decrease with increase in x. • Studies on the structure of these glasses, have revealed that Cd{sup 2+} ions are incorporated in the form of CdO{sub 6}. - Abstract: Glasses in the system 50B{sub 2}O{sub 3}–(50 − x)TeO{sub 2}–xCdO with different CdO contents (0, 10, 20, 30, 40 and 50 mol%), have been prepared by melt quenching technique. Elastic properties, X-ray and FT-IR spectroscopic studies have been employed to study the role of CdO on the structure of the investigated glass system. Elastic properties and Debye temperature have been investigated using sound wave velocity measurements at 4 MHz at room temperature. The results showed that the density increase and the molar volume decrease while both sound velocities decrease with increase in x. Elastic properties, FT-IR and X-ray diffraction studies on the network structure of these glass structures, have revealed that Cd{sup 2+} ions are incorporated in the form of CdO{sub 6}, decreasing the molar volume and compensate for the decrease in the average coordination number of tellurium atoms which was the reason for the increase in elastic moduli.

  4. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.

    Science.gov (United States)

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J

    2018-02-01

    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted

  5. Matrix-isolation and solid state low temperature FT-IR study of 2,3-butanedione (diacetyl)

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, R.

    2003-01-01

    2,3-Butanedione (diacetyl) was studied by matrix-isolation and low temperature solid state FT-IR spectroscopy, supported by molecular orbital calculations undertaken at the DFT(B3LYP) and MP2 levels of theory with the 6-311++G(d,p) basis set. Both in the crystalline phase and in the matrices, the compound exists in the C2h symmetry trans conformation (O=C-C=O dihedral angle of 180°). This form corresponds to the single conformational state predicted by the theoretical calculations for the com...

  6. ATR FT-IR spectroscopy on Vmh2 hydrophobin self-assembled layers for Teflon membrane bio-functionalization

    International Nuclear Information System (INIS)

    Portaccio, M.; Gravagnuolo, A.M.; Longobardi, S.; Giardina, P.; Rea, I.; De Stefano, L.; Cammarota, M.; Lepore, M.

    2015-01-01

    Graphical abstract: - Highlights: • Hydrophobin self-assembled layers on Teflon in different preparation conditions were investigated. • ATR collection data geometry allowed samples examination without any particular preparation. • Amide content, lipid/amide and carbohydrate/amide ratios of the protein layer were estimated. • Secondary structure of protein was determined for the examined samples. • FT-IR demonstrated to be of extreme relevance in monitoring hydrophobin self-assembled layers preparation. - Abstract: Surface functionalization by layers of hydrophobins, amphiphilic proteins produced by fungi offers a promising and green strategy for fabrication of biomedical and bioanalytical devices. The layering process of the Vmh2 hydrophobin from Pleurotus ostreatus on Teflon membrane has been investigated by Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy. In particular, protein layers obtained with hydrophobin purified with two different procedures and in various coating conditions have been examined. The layers have been characterized by quantifying the amide I and amide II band area together with the lipid/amide ratio and carbohydrate/amide ratio. This characterization can be very useful in evaluating the best purification strategy and coating conditions. Moreover the analysis of the secondary structure of the layered protein using the deconvolution procedure of amide I band indicate the prevalent contribution from β-sheet state. The results inferred by infrared spectroscopy have been also confirmed by scanning electron microscopy imaging

  7. ATR FT-IR spectroscopy on Vmh2 hydrophobin self-assembled layers for Teflon membrane bio-functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Portaccio, M., E-mail: marianna.portaccio@unina2.it [Dipartimento di Medicina Sperimentale – Seconda Università di Napoli, Via S.M. di Costantinopoli, 16-80134 Napoli (Italy); Gravagnuolo, A.M., E-mail: alfredomaria.gravagnuolo@unina.it [Dipartimento di Scienze Chimiche, Università “Federico II”, Via Cintia, 21- 80126 Napoli (Italy); Longobardi, S., E-mail: sara.longobardi@unina.it [Dipartimento di Scienze Chimiche, Università “Federico II”, Via Cintia, 21- 80126 Napoli (Italy); Giardina, P., E-mail: paola.giardina@unina.it [Dipartimento di Scienze Chimiche, Università “Federico II”, Via Cintia, 21- 80126 Napoli (Italy); Rea, I., E-mail: ilaria.rea@na.imm.cnr.it [Institute for Microelectronics and Microsystems, CNR, Via P. Castellino, 111-80131 Napoli (Italy); De Stefano, L., E-mail: luca.destefano@na.imm.cnr.it [Institute for Microelectronics and Microsystems, CNR, Via P. Castellino, 111-80131 Napoli (Italy); Cammarota, M., E-mail: marcella.cammarota@unina2.it [Dipartimento di Medicina Sperimentale – Seconda Università di Napoli, Via S.M. di Costantinopoli, 16-80134 Napoli (Italy); Lepore, M., E-mail: maria.lepore@unina2.it [Dipartimento di Medicina Sperimentale – Seconda Università di Napoli, Via S.M. di Costantinopoli, 16-80134 Napoli (Italy)

    2015-10-01

    Graphical abstract: - Highlights: • Hydrophobin self-assembled layers on Teflon in different preparation conditions were investigated. • ATR collection data geometry allowed samples examination without any particular preparation. • Amide content, lipid/amide and carbohydrate/amide ratios of the protein layer were estimated. • Secondary structure of protein was determined for the examined samples. • FT-IR demonstrated to be of extreme relevance in monitoring hydrophobin self-assembled layers preparation. - Abstract: Surface functionalization by layers of hydrophobins, amphiphilic proteins produced by fungi offers a promising and green strategy for fabrication of biomedical and bioanalytical devices. The layering process of the Vmh2 hydrophobin from Pleurotus ostreatus on Teflon membrane has been investigated by Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy. In particular, protein layers obtained with hydrophobin purified with two different procedures and in various coating conditions have been examined. The layers have been characterized by quantifying the amide I and amide II band area together with the lipid/amide ratio and carbohydrate/amide ratio. This characterization can be very useful in evaluating the best purification strategy and coating conditions. Moreover the analysis of the secondary structure of the layered protein using the deconvolution procedure of amide I band indicate the prevalent contribution from β-sheet state. The results inferred by infrared spectroscopy have been also confirmed by scanning electron microscopy imaging.

  8. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 1-hydroxy-4,5,8-tris(4-methoxyphenyl) anthraquinone

    Science.gov (United States)

    Renjith, R.; Sheena Mary, Y.; Tresa Varghese, Hema; Yohannan Panicker, C.; Thiemann, Thies; Shereef, Anas; Al-Saadi, Abdulaziz A.

    2015-12-01

    FT-IR and FT-Raman spectra of 1-hydroxy-4,5,8-tris(4-methoxyphenyl)anthraquinone were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations were used to assign the vibrational bands obtained experimentally. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. From the MEP plot it is clear that the negative electrostatic potential regions are mainly localized over carbonyl group. There is some evidence of a region of negative electrostatic potential due to π-electron density of the benzo groups. Molecular docking study shows that methoxy groups attached to the phenyl rings and hydroxyl group are crucial for binding and the title compound might exhibit inhibitory activity against PI3K and may act as an anti-neoplastic agent.

  9. Typing some of lactic acid bacteria in Syria using PCR and FT-IR techniques

    International Nuclear Information System (INIS)

    Al-Mariri, A.; Sharabi, N. D.

    2010-01-01

    Lactic Acid Bacteria (LAB) are considered to be the most useful microorganisms. They are beneficial in flavoring foods, inhibiting pathogenic as well as spoilage bacteria in food products. The isolates of LAB were obtained from traditional Syrian dairy products (white cheese and curdled yogurt) obtained from different regions in Syria. The isolates were subjected to phenotypic characterization analyses. The PCR technique of bacterial DNA was evaluated as an advanced tool for the identification of LAB. It was found that strains: E. faecium, E. faecalis and S. thermophilus dominate in white cheese and in yogurt. Our results demonstrated that we could identify LAB using Fourier transform infrared spectroscopy (FT-IR) patterns. (author)

  10. Typing some of lactic acid bacteria in Syria using PCR and FT-IR techniques

    International Nuclear Information System (INIS)

    Al-Mariri, A.; Sharabi, N. D.

    2008-11-01

    Lactic Acid Bacteria (LAB) are considered to be the most useful microorganisms. They are beneficial in flavoring foods, inhibiting pathogenic as well as spoilage bacteria in food products. The isolates of LAB were obtained from traditional Syrian dairy products (white cheese and curdled yogurt) obtained from different regions in Syria. The isolates were subjected to phenotypic characterization analyses. The PCR technique of bacterial DNA was evaluated as an advanced tool for the identification of LAB. It was found that strains: E. faecium, E. faecalis and S. thermophilus dominate in white cheese and in yogurt. Our results demonstrated that we could identify LAB using Fourier transform infrared spectroscopy (FT-IR) patterns. (Authors)

  11. Typing some of lactic acid bacteria in Syria using PCR and FT-IR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mariri, A; Sharabi, N D [Atomic Energy Commission, Damascus (Syrian Arab Republic), Dept. of Molecular Biology and Biotechnology

    2008-11-15

    Lactic Acid Bacteria (LAB) are considered to be the most useful microorganisms. They are beneficial in flavoring foods, inhibiting pathogenic as well as spoilage bacteria in food products. The isolates of LAB were obtained from traditional Syrian dairy products (white cheese and curdled yogurt) obtained from different regions in Syria. The isolates were subjected to phenotypic characterization analyses. The PCR technique of bacterial DNA was evaluated as an advanced tool for the identification of LAB. It was found that strains: E. faecium, E. faecalis and S. thermophilus dominate in white cheese and in yogurt. Our results demonstrated that we could identify LAB using Fourier transform infrared spectroscopy (FT-IR) patterns. (Authors)

  12. Infrared spectroscopy and microscopy in cancer research and diagnosis

    Science.gov (United States)

    Bellisola, Giuseppe; Sorio, Claudio

    2012-01-01

    Since the middle of 20th century infrared (IR) spectroscopy coupled to microscopy (IR microspectroscopy) has been recognized as a non destructive, label free, highly sensitive and specific analytical method with many potential useful applications in different fields of biomedical research and in particular cancer research and diagnosis. Although many technological improvements have been made to facilitate biomedical applications of this powerful analytical technique, it has not yet properly come into the scientific background of many potential end users. Therefore, to achieve those fundamental objectives an interdisciplinary approach is needed with basic scientists, spectroscopists, biologists and clinicians who must effectively communicate and understand each other's requirements and challenges. In this review we aim at illustrating some principles of Fourier transform (FT) Infrared (IR) vibrational spectroscopy and microscopy (microFT-IR) as a useful method to interrogate molecules in specimen by mid-IR radiation. Penetrating into basics of molecular vibrations might help us to understand whether, when and how complementary information obtained by microFT-IR could become useful in our research and/or diagnostic activities. MicroFT-IR techniques allowing to acquire information about the molecular composition and structure of a sample within a micrometric scale in a matter of seconds will be illustrated as well as some limitations will be discussed. How biochemical, structural, and dynamical information about the systems can be obtained by bench top microFT-IR instrumentation will be also presented together with some methods to treat and interpret IR spectral data and applicative examples. The mid-IR absorbance spectrum is one of the most information-rich and concise way to represent the whole “… omics” of a cell and, as such, fits all the characteristics for the development of a clinically useful biomarker. PMID:22206042

  13. Spectroscopic [FT-IR and FT-Raman] and theoretical [UV-Visible and NMR] analysis on α-Methylstyrene by DFT calculations

    Science.gov (United States)

    Karthikeyan, N.; Joseph Prince, J.; Ramalingam, S.; Periandy, S.

    2015-05-01

    In the present research work, the FT-IR, FT-Raman and 13C and 1H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, 13C NMR and 1H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed.

  14. Matrix-isolation FT-IR spectra and theoretical study of dimethyl sulfate

    Science.gov (United States)

    Borba, Ana; Gómez-Zavaglia, Andrea; Simões, Pedro N. N. L.; Fausto, Rui

    2005-05-01

    The preferred conformations of dimethyl sulfate and their vibrational spectra were studied by matrix-isolation FT-IR spectroscopy and theoretical methods (DFT and MP2, with basis sets of different sizes, including the quadruple-zeta, aug-cc-pVQZ basis). Conformer GG (of C 2 symmetry and exhibiting O sbnd S sbnd O sbnd C dihedral angles of 74.3°) was found to be the most stable conformer in both the gaseous phase and isolated in argon. Upon annealing of the matrix, the less stable observed conformer (GT; with C 1 symmetry) quickly converts to the GG conformer, with the resulting species being embedded in a matrix-cage which corresponds to the most stable matrix-site for GG form. The highest energy TT conformer, which was assumed to be the most stable conformer in previous studies, is predicted by the calculations to have a relative energy of ca. 10 kJ mol -1 and was not observed in the spectra of the matrix-isolated compound.

  15. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.

    Science.gov (United States)

    Taylor, Erik A; Lloyd, Ashley A; Salazar-Lara, Carolina; Donnelly, Eve

    2017-10-01

    Raman and Fourier transform infrared (FT-IR) spectroscopic imaging techniques can be used to characterize bone composition. In this study, our objective was to validate the Raman mineral:matrix ratios (ν 1 PO 4 :amide III, ν 1 PO 4 :amide I, ν 1 PO 4 :Proline + hydroxyproline, ν 1 PO 4 :Phenylalanine, ν 1 PO 4 :δ CH 2 peak area ratios) by correlating them to ash fraction and the IR mineral:matrix ratio (ν 3 PO 4 :amide I peak area ratio) in chemical standards and native bone tissue. Chemical standards consisting of varying ratios of synthetic hydroxyapatite (HA) and collagen, as well as bone tissue from humans, sheep, and mice, were characterized with confocal Raman spectroscopy and FT-IR spectroscopy and gravimetric analysis. Raman and IR mineral:matrix ratio values from chemical standards increased reciprocally with ash fraction (Raman ν 1 PO 4 /Amide III: P Raman ν 1 PO 4 /Amide I: P Raman ν 1 PO 4 /Proline + Hydroxyproline: P Raman ν 1 PO 4 /Phenylalanine: P Raman ν 1 PO 4 /δ CH 2 : P Raman and IR mineral:matrix ratio values were strongly correlated ( P Raman mineral:matrix bone composition parameter correlates strongly to ash fraction and to its IR counterpart. Finally, the mineral:matrix ratio values of the native bone tissue are similar to those of both chemical standards and theoretical values, confirming the biological relevance of the chemical standards and the characterization techniques.

  16. Conformational study of sarcosine as probed by matrix-isolation FT-IR spectroscopy and molecular orbital calculations

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, R.

    2003-01-01

    Sarcosine (N-methylglycine) has been studied by matrix-isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the DFT/B3LYP and MP2 levels of theory with the 6-311++G(d, p) and 6-31++G(d, p) basis set, respectively. Eleven different conformers were located in the potential energy surface (PES) of sarcosine, with the ASC conformer being the ground conformational state. This form is analogous to the glycine most stable conformer and is characterized by a NH...O= intramole...

  17. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    International Nuclear Information System (INIS)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G.; Boffo, Elisangela F.; Figueira, Glyn M.

    2012-01-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, 1 H HR-MAS NMR and 1 H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  18. FT-Raman and FT-Infrared investigations of archaeological artefacts from Foeni Neolithic site (Banat, Romania

    Directory of Open Access Journals (Sweden)

    Simona Cîntă Pînzaru

    2008-08-01

    Full Text Available An impressive collection of chert artefacts from the Foeni Neolithic archaeological site (Timiş County, Banat region, Romania is hosted by the Banat Museum in Timişoara. A representative set of seven specimens was non-destructively investigated using FT-Raman and ATR-FT-IR spectroscopy. The research was carried out for checking if these readily-available, non-destructive, fast, and cheap methods, which do not require preliminary sample preparation could provide significant information for characterizing the mineral composition of chert artefacts. Based on vibrational data, it was confirmed that the raw material was represented by microcrystalline quartz and moganite, with local concentrations of accessory minerals (calcite, dolomite, and clay minerals. In spite of their wide macroscopic heterogeneity (colour, transparency, based on single point FT-Raman measurements the chert artefacts could not be assigned to distinctive groups of raw silica materials, in order to provide specific arguments for provenance studies. However, the presence of specific accessory minerals (dolomite, illite pointed to distinctive genetic conditions in the case of one lithic material. Sets of measurements (mapping are required for statistically characterizing each artefact specimen. IR data were less significant, due to the rough surface texture of the specimens in contact with the ZnSe crystal of the ATR-FT-IR module. However, illite was identified based solely on its contribution to the IR spectrum. This pioneering study on chert artefacts from Romania based on optical spectroscopic methods shows that there are good premises for a systematic investigation of highly-valuable museum collections, in particular in terms of chert geology.

  19. Classification and structural analysis of live and dead salmonella cells using fourier transform infrared (FT-IR) spectroscopy and principle component analysis (PCA)

    Science.gov (United States)

    Fourier Transform Infrared Spectroscopy (FT-IR) was used to detect Salmonella typhimurium and Salmonella enteritidis foodborne bacteria and distinguish between live and dead cells of both serotypes. Bacteria were loaded individually on the ZnSe Attenuated Total Reflection (ATR) crystal surface and s...

  20. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    Science.gov (United States)

    Szymańska-Chargot, Monika; Cybulska, Justyna; Zdunek, Artur

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XCRAMAN%) varied from −25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose Iβ. However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm−1. Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX) has the most similar structure to those observed in natural primary cell walls. PMID:22163913

  1. Spectroscopic [FT-IR and FT-Raman] and theoretical [UV-Visible and NMR] analysis on α-Methylstyrene by DFT calculations.

    Science.gov (United States)

    Karthikeyan, N; Joseph Prince, J; Ramalingam, S; Periandy, S

    2015-05-15

    In the present research work, the FT-IR, FT-Raman and (13)C and (1)H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, (13)C NMR and (1)H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  2. Analysis of pure and malachite green doped polysulfone sample using FT-IR technique

    Science.gov (United States)

    Nayak, Rashmi J.; Khare, P. K.; Nayak, J. G.

    2018-05-01

    The sample of pure and malachite green doped Polysulfone in the form of foil was prepared by isothermal immersion technique. For the preparation of pure sample 4 gm of Polysulfone was dissolved in 50 ml of Dimethyl farmamide (DMF) solvent, while for the preparation of doped sample 10 mg, 50 mg and 100 mg Malachite Green was mixed with 4 gm of Polysulfone respectively. For the study of structural characterization of these pure and doped sample, Fourier Transform Infra-Red Spectroscopy (FT-IR) technique was used. This study shows that the intensity of transmittance decreases as the ratio of doping increases in pure polysulfone. The reduction in intensity of transmittance is clearly apparent in the present case more over the bands were broader which indicates towards charge transfer interaction between the donar and acceptor molecule.

  3. Differentiation of Body Fluid Stains on Fabrics Using External Reflection Fourier Transform Infrared Spectroscopy (FT-IR) and Chemometrics.

    Science.gov (United States)

    Zapata, Félix; de la Ossa, Ma Ángeles Fernández; García-Ruiz, Carmen

    2016-04-01

    Body fluids are evidence of great forensic interest due to the DNA extracted from them, which allows genetic identification of people. This study focuses on the discrimination among semen, vaginal fluid, and urine stains (main fluids in sexual crimes) placed on different colored cotton fabrics by external reflection Fourier transform infrared spectroscopy (FT-IR) combined with chemometrics. Semen-vaginal fluid mixtures and potential false positive substances commonly found in daily life such as soaps, milk, juices, and lotions were also studied. Results demonstrated that the IR spectral signature obtained for each body fluid allowed its identification and the correct classification of unknown stains by means of principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). Interestingly, results proved that these IR spectra did not show any bands due to the color of the fabric and no substance of those present in daily life which were analyzed, provided a false positive. © The Author(s) 2016.

  4. Molecular vibrational investigation [FT-IR, FT-Raman, UV-Visible and NMR] on Bis(thiourea) Nickel chloride using HF and DFT calculations

    Science.gov (United States)

    Anand, S.; Sundararajan, R. S.; Ramachandraraja, C.; Ramalingam, S.; Durga, R.

    2015-03-01

    In the present research work, the FT-IR, FT-Raman spectra of the Bis(thiourea) Nickel chloride (BTNC) were recorded and analyzed. The observed fundamental frequencies in finger print and functional group regions were assigned according to their uniqueness region. The computational calculations were carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The present organo-metallic compound was made up of covalent and coordination covalent bonds. The modified vibrational pattern of the complex molecule associated with ligand group was analyzed. Furthermore, the 13C NMR and 1H NMR spectral data were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP/6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A investigation on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed.

  5. Theoretical (in B3LYP/6-3111++G** level), spectroscopic (FT-IR, FT-Raman) and thermogravimetric studies of gentisic acid and sodium, copper(II) and cadmium(II) gentisates.

    Science.gov (United States)

    Regulska, E; Kalinowska, M; Wojtulewski, S; Korczak, A; Sienkiewicz-Gromiuk, J; Rzączyńska, Z; Swisłocka, R; Lewandowski, W

    2014-11-11

    The DFT calculations (B3LYP method with 6-311++G(d,p) mixed with LanL2DZ for transition metals basis sets) for different conformers of 2,5-dihydroxybenzoic acid (gentisic acid), sodium 2,5-dihydroxybenzoate (gentisate) and copper(II) and cadmium(II) gentisates were done. The proposed hydrated structures of transition metal complexes were based on the results of experimental findings. The theoretical geometrical parameters and atomic charge distribution were discussed. Moreover Na, Cu(II) and Cd(II) gentisates were synthesized and the composition of obtained compounds was revealed by means of elemental and thermogravimetric analyses. The FT-IR and FT-Raman spectra of gentisic acid and gentisates were registered and the effect of metals on the electronic charge distribution of ligand was discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. FT-Raman, FT-IR and UV-visible spectral investigations and ab initio computations of anti-epileptic drug: Vigabatrin

    Science.gov (United States)

    Edwin, Bismi; Joe, I. Hubert

    2013-10-01

    Vibrational analysis of anti-epileptic drug vigabatrin, a structural GABA analog was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were studied using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bond orbital analysis and optimized molecular structure show clear evidence for the effect of electron charge transfer on the activity of the molecule. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Good consistency is found between the calculated results and experimental data for the electronic absorption as well as IR and Raman spectra. The blue-shifting of the Csbnd C stretching wavenumber reveals that the vinyl group is actively involved in the conjugation path. The NBO analysis confirms the occurrence of intramolecular hyperconjugative interactions resulting in ICT causing stabilization of the system.

  7. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2012-07-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  8. Authenticity study of Phyllanthus species by NMR and FT-IR Techniques coupled with chemometric methods

    Directory of Open Access Journals (Sweden)

    Maiara S. Santos

    2012-01-01

    Full Text Available The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as "quebra-pedras" in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, ¹H HR-MAS NMR and ¹H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques.

  9. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2012-07-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  10. The first synchrotron infrared beamlines at the Advanced Light Source: Microspectroscopy and fast timing

    International Nuclear Information System (INIS)

    Martin, M.C.; McKinney, W.R.

    1998-05-01

    A set of new infrared (IR) beamlines on the 1.4 bending magnet port at the Advanced Light Source, LBNL, are described. Using a synchrotron as an IR source provides considerable brightness advantages, which manifests itself most beneficially when performing spectroscopy on a microscopic length scale. Beamline (BL) 1.4.3 is a dedicated microspectroscopy beamline, where the much smaller focused spot size using the synchrotron source is utilized. This enables an entirely new set of experiments to be performed where spectroscopy on a truly microscopic scale is now possible. BL 1.4.2 consists of a vacuum FTIR bench with a wide spectral range and step-scan capabilities. The fast timing is demonstrated by observing the synchrotron electron storage pattern at the ALS

  11. Vibrational investigation on FT-IR and FT-Raman spectra, IR intensity, Raman activity, peak resemblance, ideal estimation, standard deviation of computed frequencies analyses and electronic structure on 3-methyl-1,2-butadiene using HF and DFT (LSDA/B3LYP/B3PW91) calculations.

    Science.gov (United States)

    Ramalingam, S; Jayaprakash, A; Mohan, S; Karabacak, M

    2011-11-01

    FT-IR and FT-Raman (4000-100 cm(-1)) spectral measurements of 3-methyl-1,2-butadiene (3M12B) have been attempted in the present work. Ab-initio HF and DFT (LSDA/B3LYP/B3PW91) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, IR intensities and Raman activities. Complete vibrational assignments on the observed spectra are made with vibrational frequencies obtained by HF and DFT (LSDA/B3LYP/B3PW91) at 6-31G(d,p) and 6-311G(d,p) basis sets. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The potential energy distribution (PED) corresponding to each of the observed frequencies are calculated which confirms the reliability and precision of the assignment and analysis of the vibrational fundamentals modes. The oscillation of vibrational frequencies of butadiene due to the couple of methyl group is also discussed. A study on the electronic properties such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures reveal the correlations between standard heat capacities (C) standard entropies (S), and standard enthalpy changes (H). Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  12. Imaging of lipids in atherosclerotic lesion in aorta from ApoE/LDLR-/- mice by FT-IR spectroscopy and Hierarchical Cluster Analysis.

    Science.gov (United States)

    P Wrobel, Tomasz; Mateuszuk, Lukasz; Chlopicki, Stefan; Malek, Kamilla; Baranska, Malgorzata

    2011-12-21

    Spectroscopy-based approaches can provide an insight into the biochemical composition of a tissue sample. In the present work Fourier transform infrared (FT-IR) spectroscopy was used to develop a reliable methodology to study the content of free fatty acids, triglycerides, cholesteryl esters as well as cholesterol in aorta from mice with atherosclerosis (ApoE/LDLR(-/-) mice). In particular, distribution and concentration of palmitic, oleic and linoleic acid derivatives were analyzed. Spectral analysis of pure compounds allowed for clear discrimination between free fatty acids and other similar moieties based on the carbonyl band position (1699-1710 cm(-1) range). In order to distinguish cholesteryl esters from triglycerides a ratio of carbonyl band to signal at 1010 cm(-1) was used. Imaging of lipids in atherosclerotic aortic lesions in ApoE/LDLR(-/-) mice was followed by Hierarchical Cluster Analysis (HCA). The aorta from C57Bl/6J control mice (fed with chow diet) was used for comparison. The measurements were completed with an FT-IR spectrometer equipped with a 128 × 128 FPA detector. In cross-section of aorta from ApoE/LDLR(-/-) mice a region of atherosclerotic plaque was clearly identified by HCA, which was later divided into 2 sub-regions, one characterized by the higher content of cholesterol, while the other by higher contents of cholesteryl esters. HCA of tissues deposited on normal microscopic glass, hence limited to the 2200-3800 cm(-1) spectral range, also identified a region of atherosclerotic plaque. Importantly, this region correlates with the area stained by standard histological staining for atherosclerotic plaque (Oil Red O). In conclusion, the use of FT-IR and HCA may provide a novel tool for qualitative and quantitative analysis of contents and distribution of lipids in atherosclerotic plaque.

  13. FT-IR, NMR spectroscopic and quantum mechanical investigations of two ferrocene derivatives

    Directory of Open Access Journals (Sweden)

    Ö. Alver

    2017-07-01

    Full Text Available New ferrocene derivatives as N-(3-piperidin-1-ylpropylferrocenamide (Fc-3ppa and N-(pyridine-3-ylmethylferrocenamide (Fc-3pica and structural investigations were carried out with 1H, 13C, DEPT 45 or 135, HETCOR, COSY NMR and FT-IR spectroscopic techniques. Characterization of Fc-3ppa (FeC19H26N2O and Fc-3pica (FeC17H16N2O was also supported by density functional theory (DFT used by B3LYP functional and 6-31G(d or 6-311++G(d,p basis sets. From the combination of all the results, it can be clearly seen that syntheses of Fc-3ppa and Fc-3pica have been successfully achieved. Theoretical values are successfully compared against experimental data and B3LYP method is able to provide satisfactory results for predicting NMR properties and vibrational frequencies of the synthesized ferrocene based systems.

  14. Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging.

    Science.gov (United States)

    Tagg, Alexander S; Sapp, Melanie; Harrison, Jesse P; Ojeda, Jesús J

    2015-06-16

    Microplastics (microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.

  15. A Raman scattering and FT-IR spectroscopic study on the effect of the solar radiation in Antarctica on bovine cornea

    Science.gov (United States)

    Yamamoto, Tatsuyuki; Murakami, Naoki; Yoshikiyo, Keisuke; Takahashi, Tetsuya; Yamamoto, Naoyuki

    2010-01-01

    The Raman scattering and FT-IR spectra of the corneas, transported to the Syowa station in Antarctica and exposed to the solar radiation of the mid-summer for four weeks, were studied to reveal that type IV collagen involved in corneas were fragmented. The amide I and III Raman bands were observed at 1660 and 1245 cm -1, respectively, and the amide I and II infrared bands were observed at 1655 and 1545 cm -1, respectively, for original corneas before exposure. The background of Raman signals prominently increased and the ratio of amide II infrared band versus amide I decreased by the solar radiation in Antarctica. The control experiment using an artificial UV lamp was also performed in laboratory. The decline rate of the amide II/amide I was utilized for estimating the degree of fragmentation of collagen, to reveal that the addition of vitamin C suppressed the reaction while the addition of sugars promoted it. The effect of the solar radiation in Antarctica on the corneas was estimated as the same as the artificial UV lamp of four weeks (Raman) or one week (FT-IR) exposure.

  16. Molecular vibrational investigation [FT-IR, FT-Raman, UV-Visible and NMR] on Bis(thiourea) Nickel chloride using HF and DFT calculations.

    Science.gov (United States)

    Anand, S; Sundararajan, R S; Ramachandraraja, C; Ramalingam, S; Durga, R

    2015-03-05

    In the present research work, the FT-IR, FT-Raman spectra of the Bis(thiourea) Nickel chloride (BTNC) were recorded and analyzed. The observed fundamental frequencies in finger print and functional group regions were assigned according to their uniqueness region. The computational calculations were carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The present organo-metallic compound was made up of covalent and coordination covalent bonds. The modified vibrational pattern of the complex molecule associated with ligand group was analyzed. Furthermore, the (13)C NMR and (1)H NMR spectral data were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP/6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A investigation on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  17. Characterization of Meldrum's acid derivative 5-(5-Ethyl-1,3,4-thiadiazol-2-ylamino)methylene-2,2-dimethyl-1,3-dioxane-4,6-dione by Raman and FT-IR spectroscopy and DFT calculations

    Science.gov (United States)

    de Toledo, T. A.; da Silva, L. E.; Teixeira, A. M. R.; Freire, P. T. C.; Pizani, P. S.

    2015-07-01

    In this study, the structural and vibrational properties of Meldrum's acid derivative 5-(5-Ethyl-1,3,4-thiadiazol-2-ylamino)methylene-2,2-dimethyl-1,3-dioxane-4,6-dione, C11H13N3O4S were studied combining experimental techniques such as Raman and FT-IR spectroscopy and density functional theory (DFT) calculations. The Raman and FT-IR spectra were recorded at room conditions in the regions from 80 to 3400 cm-1 and 400 to 4000 cm-1, respectively. Vibrational wavenumbers were predicted using DFT calculations with the hybrid functional B3LYP and basis set 6-31G(d,p). A comparison between experimental and theoretical data is provided for the Raman and FT-IR spectra. The descriptions of the normal modes were carried by means of potential energy distribution (PED).

  18. FT-Raman, FT-IR and UV-visible spectral investigations and ab initio computations of anti-epileptic drug: vigabatrin.

    Science.gov (United States)

    Edwin, Bismi; Joe, I Hubert

    2013-10-01

    Vibrational analysis of anti-epileptic drug vigabatrin, a structural GABA analog was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were studied using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bond orbital analysis and optimized molecular structure show clear evidence for the effect of electron charge transfer on the activity of the molecule. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Good consistency is found between the calculated results and experimental data for the electronic absorption as well as IR and Raman spectra. The blue-shifting of the C-C stretching wavenumber reveals that the vinyl group is actively involved in the conjugation path. The NBO analysis confirms the occurrence of intramolecular hyperconjugative interactions resulting in ICT causing stabilization of the system. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Aeroderivative Pratt & Whitney FT8-3 gas turbine – an interesting solution for power generation

    Directory of Open Access Journals (Sweden)

    Sorinel-Gicu TALIF

    2011-03-01

    Full Text Available The intermediate load electric power stations become more and more interesting for theelectric power market in Romania. In this context, the Combined Cycle Power Plants came as a veryattractive solution. This paper presents the results of a study regarding the use of the aeroderivativePratt & Whitney FT8-3 gas turbine, available in Romania, for the electric power generation in aCombined Cycle Power Plant. It is also analyzed the Combined Heat in Power generation with FT8-3gas turbine when saturated steam or hot water are required.

  20. Spectroscopic (FT-IR, FT-Raman, 1H- and 13C-NMR, Theoretical and Microbiological Study of trans o-Coumaric Acid and Alkali Metal o-Coumarates

    Directory of Open Access Journals (Sweden)

    Małgorzata Kowczyk-Sadowy

    2015-02-01

    Full Text Available This work is a continuation of research on a correlation between the molecular structure and electronic charge distribution of phenolic compounds and their biological activity. The influence of lithium, sodium, potassium, rubidium and cesium cations on the electronic system of trans o-coumaric (2-hydroxy-cinnamic acid was studied. We investigated the relationship between the molecular structure of the tested compounds and their antimicrobial activity. Complementary molecular spectroscopic techniques such as infrared (FT-IR, Raman (FT-Raman, ultraviolet-visible (UV-VIS and nuclear magnetic resonance (1H- and 13C-NMR were applied. Structures of the molecules were optimized and their structural characteristics were calculated by the density functional theory (DFT using the B3LYP method with 6-311++G** as a basis set. Geometric and magnetic aromaticity indices, atomic charges, dipole moments and energies were also calculated. Theoretical parameters were compared to the experimental characteristics of investigated compounds. Correlations between certain vibrational bands and some metal parameters, such as electronegativity, ionization energy, atomic and ionic radius, were found. The microbial activity of studied compounds was tested against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris and Candida albicans.

  1. Identification of urushi coated films taken from ancient Buddha images by using PIXE, FT-IR, and organic elemental analysis

    International Nuclear Information System (INIS)

    Kagemori, N.; Umemura, K.; Yoshimura, T.; Inoue, M.; Kawai, S.; Yano, K.; Sera, K.; Futatsugawa, S.; Nakamura, Y.

    1999-01-01

    Six types of samples including urushi, urushi tree and black coating films taken from ancient Buddha images were examined by analyses of PIXE, organic element and FT-IR to identify with urushi or another material. Based on the results of three analytical experiments above mentioned, the coating materials aging over hundreds of years were identified with weathered urushi films mixed with other material. Further investigation may reveal the urushi coating techniques used in the past. (author)

  2. Application of linear discriminant analysis and Attenuated Total Reflectance Fourier Transform Infrared microspectroscopy for diagnosis of colon cancer.

    Science.gov (United States)

    Khanmohammadi, Mohammadreza; Bagheri Garmarudi, Amir; Samani, Simin; Ghasemi, Keyvan; Ashuri, Ahmad

    2011-06-01

    Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) microspectroscopy was applied for detection of colon cancer according to the spectral features of colon tissues. Supervised classification models can be trained to identify the tissue type based on the spectroscopic fingerprint. A total of 78 colon tissues were used in spectroscopy studies. Major spectral differences were observed in 1,740-900 cm(-1) spectral region. Several chemometric methods such as analysis of variance (ANOVA), cluster analysis (CA) and linear discriminate analysis (LDA) were applied for classification of IR spectra. Utilizing the chemometric techniques, clear and reproducible differences were observed between the spectra of normal and cancer cases, suggesting that infrared microspectroscopy in conjunction with spectral data processing would be useful for diagnostic classification. Using LDA technique, the spectra were classified into cancer and normal tissue classes with an accuracy of 95.8%. The sensitivity and specificity was 100 and 93.1%, respectively.

  3. Comparison of Fiber Optic and Conduit Attenuated Total Reflection (ATR) Fourier Transform Infrared (FT-IR) Setup for In-Line Fermentation Monitoring.

    Science.gov (United States)

    Koch, Cosima; Posch, Andreas E; Herwig, Christoph; Lendl, Bernhard

    2016-12-01

    The performance of a fiber optic and an optical conduit in-line attenuated total reflection mid-infrared (IR) probe during in situ monitoring of Penicillium chrysogenum fermentation were compared. The fiber optic probe was connected to a sealed, portable, Fourier transform infrared (FT-IR) process spectrometer via a plug-and-play interface. The optical conduit, on the other hand, was connected to a FT-IR process spectrometer via a knuckled probe with mirrors that had to be adjusted prior to each fermentation, which were purged with dry air. Penicillin V (PenV) and its precursor phenoxyacetic acid (POX) concentrations were determined by online high-performance liquid chromatography and the obtained concentrations were used as reference to build partial least squares regression models. Cross-validated root-mean-square errors of prediction were found to be 0.2 g L -1 (POX) and 0.19 g L -1 (PenV) for the fiber optic setup and 0.17 g L -1 (both POX and PenV) for the conduit setup. Higher noise-levels and spectrum-to-spectrum variations of the fiber optic setup lead to higher noise of estimated (i.e., unknown) POX and PenV concentrations than was found for the conduit setup. It seems that trade-off has to be made between ease of handling (fiber optic setup) and measurement accuracy (optical conduit setup) when choosing one of these systems for bioprocess monitoring. © The Author(s) 2016.

  4. Preparation and characterizations of SnO2 nanopowder and spectroscopic (FT-IR, FT-Raman, UV-Visible and NMR) analysis using HF and DFT calculations.

    Science.gov (United States)

    Ayeshamariam, A; Ramalingam, S; Bououdina, M; Jayachandran, M

    2014-01-24

    In this work, pure and singe phase SnO2 Nano powder is successfully prepared by simple sol-gel combustion route. The photo luminescence and XRD measurements are made and compared the geometrical parameters with calculated values. The FT-IR and FT-Raman spectra are recorded and the fundamental frequencies are assigned. The optimized parameters and the frequencies are calculated using HF and DFT (LSDA, B3LYP and B3PW91) theory in bulk phase of SnO2 and are compared with its Nano phase. The vibrational frequency pattern in nano phase gets realigned and the frequencies are shifted up to higher region of spectra when compared with bulk phase. The NMR and UV-Visible spectra are simulated and analyzed. Transmittance studies showed that the HOMO-LUMO band gap (Kubo gap) is reduced from 3.47 eV to 3.04 eV while it is heated up to 800°C. The Photoluminescence spectra of SnO2 powder showed a peak shift towards lower energy side with the change of Kubo gap from 3.73 eV to 3.229 eV for as-prepared and heated up to 800°C. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  5. FT-IR reflection spectra of single crystals: resolving phonons of different symmetry without using polarised radiation

    Directory of Open Access Journals (Sweden)

    METODIJA NAJDOSKI

    2000-07-01

    Full Text Available Fourier-transform infrared (FT-IR reflection spectra, asquired at nearnormal incidence, were recorded from single crystals belonging to six crystal systems: CsCr(SO42.12H2O (alum, cubic, K2CuCl2·2H2O (Mitscherlichite, tetragonal, CaCO3 (calcite, hexagonal, KHSO4 (mercallite, orthorhombic, CaSO4·2H2O (gypsum, monoclinic and CuSO4·5H2O (chalcantite, triclinic. The acquired IR reflection spectra were further transformed into absorption spectra, employing the Kramers-Kronig transformation. Except for the cubic alums, the spectra strongly depend on the crystal face from which they were recorded; this is a consequence of anisotropy. Phonons of a given symmetry (E-species, in tetragonal/hexagonal and B-species, in monoclinic crystals may be resolved without using a polariser. The spectrum may be simplified in the case of an orthorhombic crystal, as well. The longitudinal-optical (LO and transversal-optical (TO mode frequencies were calculated in the case of optically isotropic and the simplified spectra of optically uniaxial crystals.

  6. FT-midIR determination of fatty acid profiles, including trans fatty acids, in bakery products after focused microwave-assisted Soxhlet extraction.

    Science.gov (United States)

    Ruiz-Jiménez, J; Priego-Capote, F; Luque de Castro, M D

    2006-08-01

    A study of the feasibility of Fourier transform medium infrared spectroscopy (FT-midIR) for analytical determination of fatty acid profiles, including trans fatty acids, is presented. The training and validation sets-75% (102 samples) and 25% (36 samples) of the samples once the spectral outliers have been removed-to develop FT-midIR general equations, were built with samples from 140 commercial and home-made bakery products. The concentration of the analytes in the samples used for this study is within the typical range found in these kinds of products. Both sets were independent; thus, the validation set was only used for testing the equations. The criterion used for the selection of the validation set was samples with the highest number of neighbours and the most separation between them (H/=0.90, SEP=1-1.5 SEL and R (2)=0.70-0.89, SEP=2-3 SEL, respectively. The results obtained with the proposed method were compared with those provided by the conventional method based on GC-MS. At 95% significance level, the differences between the values obtained for the different fatty acids were within the experimental error.

  7. IR-360 nuclear power plant safety functions and component classification

    International Nuclear Information System (INIS)

    Yousefpour, F.; Shokri, F.; Soltani, H.

    2010-01-01

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  8. IR-360 nuclear power plant safety functions and component classification

    Energy Technology Data Exchange (ETDEWEB)

    Yousefpour, F., E-mail: fyousefpour@snira.co [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of); Shokri, F.; Soltani, H. [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of)

    2010-10-15

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  9. Observations of surface-mediated reduction of Pu(VI) to Pu(IV) on hematite nanoparticles by ATR FT-IR

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Hilary P. [Florida International Univ., Applied Research Center, Miami, FL (United States); Powell, Brian A. [Clemson Univ., Dept. of Enviromental Engineering and Earth Sciences, Anderson, SC (United States)

    2015-07-01

    Previous studies have shown that mineral surfaces may facilitate the reduction of plutonium though the mechanisms of the reduction are still unknown. The objective of this study is to use batch sorption and attenuated total reflectance Fourier transform infrared spectroscopy experiments to observe the surface-mediated reduction of plutonium on hematite nanoparticles. These techniques allow for in situ measurement of reduction of plutonium with time and may lead to a better understanding of the mechanisms of surface mediated reduction of plutonium. For the first time, ATR FT-IR peaks for Pu(VI) sorbed to hematite are measured at ∝ 916 cm{sup -1}, respectively. The decrease in peak intensity with time provides a real-time, direct measurement of Pu(VI) reduction on the hematite surface. In this work pseudo first order rate constants estimated at the high loadings (22 mg{sub Pu}/g{sub hematite}, 1.34 x 10{sup -6} M{sub Pu}/m{sup 2}) for ATR FT-IR are approximately 10 x slower than at trace concentrations based on previous work. It is proposed that the reduced rate constant at higher Pu loadings occurs after the reduction capacity due to trace Fe(II) has been exhausted and is dependent on the oxidation of water and possibly electron shuttling based on the semiconducting nature of hematite. Therefore, the reduction rate at higher loadings is possibly due to the thermodynamic favorability of Pu(IV)-hydroxide complexes.

  10. FT-IR, FT-Raman, UV-visible, and NMR spectroscopy and vibrational properties of the labdane-type diterpene 13-epi-sclareol.

    Science.gov (United States)

    Chain, Fernando E; Leyton, Patricio; Paipa, Carolina; Fortuna, Mario; Brandán, Silvia A

    2015-03-05

    In this work, FT-IR, FT-Raman, UV-Visible and NMR spectroscopies and density functional theory (DFT) calculations were employed to study the structural and vibrational properties of the labdane-type diterpene 13-epi-sclareol using the hybrid B3LYP method together with the 6-31G(∗) basis set. Three stable structures with minimum energy found on the potential energy curves (PES) were optimized, and the corresponding molecular electrostatic potentials, atomic charges, bond orders, stabilization energies and topological properties were computed at the same approximation level. The complete assignment of the bands observed in the vibrational spectrum of 13-epi-sclareol was performed taking into account the internal symmetry coordinates for the three structures using the scaled quantum mechanical force field (SQMFF) methodology at the same level of theory. In addition, the force constants were calculated and compared with those reported in the literature for similar compounds. The predicted vibrational spectrum and the calculated (1)H NMR and (13)C NMR chemical shifts are in good agreement with the corresponding experimental results. The theoretical UV-Vis spectra for the most stable structure of 13-epi-sclareol demonstrate a better correlation with the corresponding experimental spectrum. The study of the three conformers by means of the theory of atoms in molecules (AIM) revealed different H bond interactions and a strong dependence of the interactions on the distance between the involved atoms. Furthermore, the natural bond orbital (NBO) calculations showed the characteristics of the electronic delocalization for the two six-membered rings with chair conformations. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. One-step simultaneous differential scanning calorimetry-FTIR microspectroscopy to quickly detect continuous pathways in the solid-state glucose/asparagine Maillard reaction.

    Science.gov (United States)

    Hwang, Deng-Fwu; Hsieh, Tzu-Feng; Lin, Shan-Yang

    2013-01-01

    The stepwise reaction pathway of the solid-state Maillard reaction between glucose (Glc) and asparagine (Asn) was investigated using simultaneous differential scanning calorimetry (DSC)-FTIR microspectroscopy. The color change and FTIR spectra of Glc-Asn physical mixtures (molar ratio = 1:1) preheated to different temperatures followed by cooling were also examined. The successive reaction products such as Schiff base intermediate, Amadori product, and decarboxylated Amadori product in the solid-state Glc-Asn Maillard reaction were first simultaneously evidenced by this unique DSC-FTIR microspectroscopy. The color changed from white to yellow-brown to dark brown, and appearance of new IR peaks confirmed the formation of Maillard reaction products. The present study clearly indicates that this unique DSC-FTIR technique not only accelerates but also detects precursors and products of the Maillard reaction in real time.

  12. Caracterização por FT-IR da superfície de borracha EPDM tratada via plasma por micro-ondas

    Directory of Open Access Journals (Sweden)

    Renata P. dos Santos

    2012-01-01

    Full Text Available A superfície de uma borracha de etileno-propileno-dieno (EPDM vulcanizada foi modificada via plasma por microondas, com gases Ar, Ar/O2, N2/O2 e N2/H2, tendo como objetivo melhorar as propriedades adesivas da superfície. A técnica FT-IR/UATR foi escolhida para caracterizar as superfícies após tratamento, pois apresentou menor interferência dos ingredientes da formulação da EPDM, dentre as técnicas analisadas (ATR/KRS-5 e Ge. Grupos oxigenados foram inseridos na superfície da amostra tratada, mesmo quando não foi utilizado o oxigênio, pois estes grupos foram formados quando a superfície ativada foi exposta à atmosfera. Já em tratamentos contendo N2, grupos oxigenados e possíveis grupos nitrogenados foram identificados por FT-IR. Redução nos valores do ângulo de contato, aumento no trabalho de adesão e aumento no ensaio de resistência ao descascamento (EPDM × Poliuretano foram observados após tratamento com Ar e N2/H2, resultando em melhora nas propriedades adesivas da superfície tratada.

  13. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), NLO, NBO, HOMO-LUMO, Fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide

    Science.gov (United States)

    Raja, M.; Raj Muhamed, R.; Muthu, S.; Suresh, M.

    2017-08-01

    The title compound, (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide (15BHS) was synthesized and characterized by FT-IR, FT-Raman, UV, 1HNMR and 13CNMR spectral analysis. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated by using density functional theory(DFT) B3LYP method with 6-311++G(d,p) basis set. The detailed interpretation of the vibrational spectra has been carried out by VEDA program. The calculated HOMO and LUMO energies show that charge transfer within the molecule. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The first order hyperpolarizability, Molecular electrostatic potential (MEP) and Fukui functions were also performed. To study the biological activity of the investigation molecule, molecular docking was done to identify the hydrogen bond lengths and binding energy with different antifungal proteins. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the 15BHS at different temperatures have been calculated.

  14. An improved synthesis, spectroscopic (FT-IR, NMR) study and DFT computational analysis (IR, NMR, UV-Vis, MEP diagrams, NBO, NLO, FMO) of the 1,5-methanoazocino[4,3-b]indole core structure

    Science.gov (United States)

    Uludağ, Nesimi; Serdaroğlu, Goncagül

    2018-03-01

    This study examines the synthesis of azocino[4,3-b]indole structure, which constitutes the tetracyclic framework of uleine, dasycarpidoneand tubifolidineas well as ABDE substructure of the strychnosalkaloid family. It has been synthesized by Fischer indolization of 2 and through the cylization of 4 by 2,3-dichlor-5-6-dicyanobenzoquinone (DDQ). 1H and 1C NMR chemical shifts have been predicted with GIAO approach and the calculated chemical shifts show very good agreement with observed shifts. FT-IR spectroscopy is important for the analysis of functional groups of synthesized compounds and we also supported FT-IR vibrational analysis with computational IR analysis. The vibrational spectral analysis was performed at B3LYP level of the theory in both the gas and the water phases and it was compared with the observed IR values for the important functional groups. The DFT calculations have been conducted to determine the most stable structure of the 1,2,3,4,5,6,7-Hexahydro-1,5-methanoazocino [4,3-b] indole (5). The Frontier Molecular Orbital Analysis, quantum chemical parameters, physicochemical properties have been predicted by using the same theory of level in both gas phase and the water phase, at 631 + g** and 6311++g** basis sets. TD- DFT calculations have been performed to predict the UV- Vis spectral analysis for this synthesized molecule. The Natural Bond Orbital (NBO) analysis have been performed at B3LYP level of theory to elucidate the intra-molecular interactions such as electron delocalization and conjugative interactions. NLO calculations were conducted to obtain the electric dipole moment and polarizability of the title compound.

  15. Ab initio and DFT study of hydrogen bond interactions between ascorbic acid and dimethylsulfoxide based on FT-IR and FT-Raman spectra

    Science.gov (United States)

    Niazazari, Naser; Zatikyan, Ashkhen L.; Markarian, Shiraz A.

    2013-06-01

    The hydrogen bonding of 1:1 complexes formed between L-ascorbic acid (LAA) and dimethylsulfoxide (DMSO) has been studied by means of ab initio and density functional theory (DFT) calculations. Solutions of L-ascorbic acid (AA) in dimethylsulfoxide (DMSO) have been studied by means of both FT-IR (4000-220 cm-1) and FT-Raman spectroscopy. Ab initio Hartree-Fock (HF) and DFT methods have been used to determine the structure and energies of stable conformers of various types of L-AA/DMSO complexes in gas phase and solution. The basis sets 6-31++G∗∗ and 6-311+G∗ were used to describe the structure, energy, charges and vibrational frequencies of interacting complexes in the gas phase. The optimized geometric parameters and interaction energies for various complexes at different theories have been estimated. Binding energies have been corrected for basis set superposition error (BSSE) and harmonic vibrational frequencies of the structures have been calculated to obtain the stable forms of the complexes. The self-consistent reaction field (SCRF) has been used to calculate the effect of DMSO as the solvent on the geometry, energy and charges of complexes. The solvent effect has been studied using the Onsager models. It is shown that the polarity of the solvent plays an important role on the structures and relative stabilities of different complexes. The results obtained show that there is a satisfactory correlation between experimental and theoretical predictions.

  16. FT-IR studies on interactions among components in hexanoyl chitosan-based polymer electrolytes

    Science.gov (United States)

    Winie, Tan; Arof, A. K.

    2006-03-01

    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF 3SO 3)-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF 3SO 3 interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR) 2, C dbnd O sbnd NHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF 3SO 3 has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li + ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.

  17. Modeling Microalgal Biosediment Formation Based on Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Monitoring.

    Science.gov (United States)

    Ogburn, Zachary L; Vogt, Frank

    2018-03-01

    With increasing amounts of anthropogenic pollutants being released into ecosystems, it becomes ever more important to understand their fate and interactions with living organisms. Microalgae play an important ecological role as they are ubiquitous in marine environments and sequester inorganic pollutants which they transform into organic biomass. Of particular interest in this study is their role as a sink for atmospheric CO 2 , a greenhouse gas, and nitrate, one cause of harmful algal blooms. Novel chemometric hard-modeling methodologies have been developed for interpreting phytoplankton's chemical and physiological adaptations to changes in their growing environment. These methodologies will facilitate investigations of environmental impacts of anthropogenic pollutants on chemical and physiological properties of marine microalgae (here: Nannochloropsis oculata). It has been demonstrated that attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can gain insights into both and this study only focuses on the latter. From time-series of spectra, the rate of microalgal biomass settling on top of a horizontal ATR element is derived which reflects several of phytoplankton's physiological parameters such as growth rate, cell concentrations, cell size, and buoyancy. In order to assess environmental impacts on such parameters, microalgae cultures were grown under 25 different chemical scenarios covering 200-600 ppm atmospheric CO 2 and 0.35-0.75 mM dissolved NO 3 - . After recording time-series of ATR FT-IR spectra, a multivariate curve resolution-alternating least squares (MCR-ALS) algorithm extracted spectroscopic and time profiles from each data set. From the time profiles, it was found that in the considered concentration ranges only NO 3 - has an impact on the cells' physiological properties. In particular, the cultures' growth rate has been influenced by the ambient chemical conditions. Thus, the presented spectroscopic

  18. Spectroscopic (FT-IR, FT-Raman, and UV-visible) and quantum chemical studies on molecular geometry, Frontier molecular orbitals, NBO, NLO and thermodynamic properties of 1-acetylindole.

    Science.gov (United States)

    Shukla, Vikas K; Al-Abdullah, Ebtehal S; El-Emam, Ali A; Sachan, Alok K; Pathak, Shilendra K; Kumar, Amarendra; Prasad, Onkar; Bishnoi, Abha; Sinha, Leena

    2014-12-10

    Quantum chemical calculations of ground state energy, geometrical structure and vibrational wavenumbers of 1-acetylindole were carried out using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. The FT-IR and FT-Raman spectra were recorded in the condensed state. The fundamental vibrational wavenumbers were calculated and a good correlation between experimental and scaled calculated wavenumbers has been accomplished. Electric dipole moment, polarizability and first static hyperpolarizability values of 1-acetylindole have been calculated at the same level of theory and basis set. The results show that the 1-acetylindole molecule possesses nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-Visible spectrum of the molecule was recorded in the region 200-500nm and the electronic properties like HOMO and LUMO energies and composition were obtained using TD-DFT method. The calculated energies and oscillator strengths are in good correspondence with the experimental data. The thermodynamic properties of the compound under investigation were calculated at different temperatures. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao

    2006-11-01

    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  20. Rapid authentication and identification of different types of A. roxburghii by Tri-step FT-IR spectroscopy

    Science.gov (United States)

    Chen, Ying; Huang, Jinfang; Yeap, Zhao Qin; Zhang, Xue; Wu, Shuisheng; Ng, Chiew Hoong; Yam, Mun Fei

    2018-06-01

    Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae) is a precious traditional Chinese medicinal herb and has been perennially used to treat various illness. However, there were unethical sellers who adulterated wild A. roxburghii with tissue cultured and cultivated ones. Therefore, there is an urgent need for an effective authentication method to differentiate between these different types of A. roxburghii. In this research, the infrared spectroscopic tri-step identification approach including Fourier transform infrared spectroscopy (FT-IR), Second derivative infrared spectra (SD-IR) and two-dimensional correlation infrared spectra (2D-IR) was used to develop a simple and rapid method to discriminate between wild, cultivated and tissue cultivated A. roxburghii plant. Through this study, all three types of A. roxburghii plant were successfully identified and discriminated through the infrared spectroscopic tri-step identification method. Besides that, all the samples of wild, cultivated and tissue cultivated A. roxburghii plant were analysed with the Soft Independent Modelling of Class Analogy (SIMCA) pattern recognition technique to test and verify the experimental results. The results showed that the three types of A. roxburghii can be discriminated clearly as the recognition rate was 100% for all three types and the rejection rate was more than 60%. 70% of the validated samples were also identified correctly by the SIMCA model. The SIMCA model was also validated by comparing 70 standard herbs to the model. As a result, it was demonstrated that the macroscopic IR fingerprint method and the classification analysis could discriminate not only between the A. roxburghi samples and the standard herbs, it could also distinguish between the three different types of A. roxburghi plant in a direct, rapid and holistic manner.

  1. Infrared microspectroscopy: a multiple-screening platform for investigating single-cell biochemical perturbations upon prion infection.

    Science.gov (United States)

    Didonna, Alessandro; Vaccari, Lisa; Bek, Alpan; Legname, Giuseppe

    2011-03-16

    Prion diseases are a group of fatal neurodegenerative disorders characterized by the accumulation of prions in the central nervous system. The pathogenic prion (PrP(Sc)) possesses the capability to convert the host-encoded cellular isoform of the prion protein, PrP(C), into nascent PrP(Sc). The present work aims at providing novel insight into cellular response upon prion infection evidenced by synchrotron radiation infrared microspectroscopy (SR-IRMS). This non-invasive, label-free analytical technique was employed to investigate the biochemical perturbations undergone by prion infected mouse hypothalamic GT1-1 cells at the cellular and subcellular level. A decrement in total cellular protein content upon prion infection was identified by infrared (IR) whole-cell spectra and validated by bicinchoninic acid assay and single-cell volume analysis by atomic force microscopy (AFM). Hierarchical cluster analysis (HCA) of IR data discriminated between infected and uninfected cells and allowed to deduce an increment of lysosomal bodies within the cytoplasm of infected GT1-1 cells, a hypothesis further confirmed by SR-IRMS at subcellular spatial resolution and fluorescent microscopy. The purpose of this work, therefore, consists of proposing IRMS as a powerful multiscreening platform, drawing on the synergy with conventional biological assays and microscopy techniques in order to increase the accuracy of investigations performed at the single-cell level.

  2. Infrared Microspectroscopy: A Multiple-Screening Platform for Investigating Single-Cell Biochemical Perturbations upon Prion Infection

    Science.gov (United States)

    2011-01-01

    Prion diseases are a group of fatal neurodegenerative disorders characterized by the accumulation of prions in the central nervous system. The pathogenic prion (PrPSc) possesses the capability to convert the host-encoded cellular isoform of the prion protein, PrPC, into nascent PrPSc. The present work aims at providing novel insight into cellular response upon prion infection evidenced by synchrotron radiation infrared microspectroscopy (SR-IRMS). This non-invasive, label-free analytical technique was employed to investigate the biochemical perturbations undergone by prion infected mouse hypothalamic GT1-1 cells at the cellular and subcellular level. A decrement in total cellular protein content upon prion infection was identified by infrared (IR) whole-cell spectra and validated by bicinchoninic acid assay and single-cell volume analysis by atomic force microscopy (AFM). Hierarchical cluster analysis (HCA) of IR data discriminated between infected and uninfected cells and allowed to deduce an increment of lysosomal bodies within the cytoplasm of infected GT1-1 cells, a hypothesis further confirmed by SR-IRMS at subcellular spatial resolution and fluorescent microscopy. The purpose of this work, therefore, consists of proposing IRMS as a powerful multiscreening platform, drawing on the synergy with conventional biological assays and microscopy techniques in order to increase the accuracy of investigations performed at the single-cell level. PMID:22778865

  3. Similarity maps and hierarchical clustering for annotating FT-IR spectral images.

    Science.gov (United States)

    Zhong, Qiaoyong; Yang, Chen; Großerüschkamp, Frederik; Kallenbach-Thieltges, Angela; Serocka, Peter; Gerwert, Klaus; Mosig, Axel

    2013-11-20

    Unsupervised segmentation of multi-spectral images plays an important role in annotating infrared microscopic images and is an essential step in label-free spectral histopathology. In this context, diverse clustering approaches have been utilized and evaluated in order to achieve segmentations of Fourier Transform Infrared (FT-IR) microscopic images that agree with histopathological characterization. We introduce so-called interactive similarity maps as an alternative annotation strategy for annotating infrared microscopic images. We demonstrate that segmentations obtained from interactive similarity maps lead to similarly accurate segmentations as segmentations obtained from conventionally used hierarchical clustering approaches. In order to perform this comparison on quantitative grounds, we provide a scheme that allows to identify non-horizontal cuts in dendrograms. This yields a validation scheme for hierarchical clustering approaches commonly used in infrared microscopy. We demonstrate that interactive similarity maps may identify more accurate segmentations than hierarchical clustering based approaches, and thus are a viable and due to their interactive nature attractive alternative to hierarchical clustering. Our validation scheme furthermore shows that performance of hierarchical two-means is comparable to the traditionally used Ward's clustering. As the former is much more efficient in time and memory, our results suggest another less resource demanding alternative for annotating large spectral images.

  4. Characterization of prepared In2O3 thin films: The FT-IR, FT-Raman, UV-Visible investigation and optical analysis.

    Science.gov (United States)

    Panneerdoss, I Joseph; Jeyakumar, S Johnson; Ramalingam, S; Jothibas, M

    2015-08-05

    In this original work, the Indium oxide (In2O3) thin film is deposited cleanly on microscope glass substrate at different temperatures by spray pyrolysis technique. The physical properties of the films are characterized by XRD, SEM, AFM and AFM measurements. The spectroscopic investigation has been carried out on the results of FT-IR, FT-Raman and UV-Visible. XRD analysis exposed that the structural transformation of films from stoichiometric to non-stoichiometric orientation of the plane vice versa and also found that, the film is polycrystalline in nature having cubic crystal structure with a preferred grain orientation along (222) plane. SEM and AFM studies revealed that, the film with 0.1M at 500°C has spherical grains with uniform dimension. The complete vibrational analysis has been carried out and the optimized parameters are calculated using HF and DFT (CAM-B3LYP, B3LYP and B3PW91) methods with 3-21G(d,p) basis set. Furthermore, NMR chemical shifts are calculated by using the gauge independent atomic orbital (GIAO) technique. The molecular electronic properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, molecular electrostatic potential energy (MEP) analysis and Polarizability first order hyperpolarizability calculations are performed by time dependent DFT (TD-DFT) approach. The energy excitation on electronic structure is investigated and the assignment of the absorption bands in the electronic spectra of steady compound is discussed. The calculated HOMO and LUMO energies showed the enhancement of energy gap by the addition of substitutions with the base molecule. The thermodynamic properties (heat capacity, entropy, and enthalpy) at different temperatures are calculated and interpreted in gas phase. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  5. The use of UV, FT-IR and Raman spectra for the identification of the newest penem analogs: solutions based on mathematic procedure and the density functional theory.

    Science.gov (United States)

    Cielecka-Piontek, J; Lewandowska, K; Barszcz, B; Paczkowska, M

    2013-02-15

    The application of ultraviolet, FT-IR and Raman spectra was proposed for identification studies of the newest penem analogs (doripenem, biapenem and faropenem). An identification of the newest penem analogs based on their separation from related substances was achieved after the application of first derivative of direct spectra in ultraviolet which permitted elimination of overlapping effects. A combination of experimental and theoretical studies was performed for analyzing the structure and vibrational spectra (FT-IR and Raman spectra) of doripenem, biapenem and faropenem. The calculations were conducted using the density functional theory with the B3LYP hybrid functional and 6-31G(d,p) basis set. The confirmation of the applicability of the DFT methodology for interpretation of vibrational IR and Raman spectra of the newest penem analogs contributed to determination of changes of vibrations in the area of the most labile bonds. By employing the theoretical approach it was possible to eliminate necessity of using reference standards which - considering the instability of penem analogs - require that correction coefficients are factored in. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. FT-Raman and FT-Infrared investigations of archaeological artefacts from Foeni Neolithic site (Banat, Romania)

    OpenAIRE

    Simona Cîntă Pînzaru; Dana Pop; Loredana Nemeth

    2008-01-01

    An impressive collection of chert artefacts from the Foeni Neolithic archaeological site (Timiş County, Banat region, Romania) is hosted by the Banat Museum in Timişoara. A representative set of seven specimens was non-destructively investigated using FT-Raman and ATR-FT-IR spectroscopy. The research was carried out for checking if these readily-available, non-destructive, fast, and cheap methods, which do not require preliminary sample preparation could provide significant information for ch...

  7. Quantum mechanical, spectroscopic studies (FT-IR, FT-Raman, NMR, UV) and normal coordinates analysis on 3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide

    Science.gov (United States)

    Muthu, S.; Uma Maheswari, J.; Sundius, Tom

    2013-05-01

    Famotidine (3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide) is a histamine H2-receptor antagonist that inhibits stomach acid production, and it is commonly used in the treatment of peptic ulcer disease (PUD) and gastroesophageal reflux disease (GERD/GORD). Quantum chemical calculations of the equilibrium geometry of famotidine in the ground state were carried out using density functional theory (DFT/B3LYP) with the 6-311G(d,p) basis set. In addition, harmonic vibrational frequencies, infrared intensities and Raman activities were calculated at the same level of theory. A detailed interpretation of the infrared and Raman spectrum of the drug is also reported. Theoretical simulations of the FT-IR, and FT-Raman spectra of the title compound have been calculated. Good correlations between the experimental 1H and 13C NMR chemical shifts and calculated GIAO shielding tensors were found. The results of the energy and oscillator strength calculations by time-dependent density functional theory (TD-DFT) supplement the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis were presented. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizabilities of the studied molecule indicate that the compound is a good candidate for nonlinear optical materials.

  8. FT-IR, FT-Raman, NMR studies and ab initio-HF, DFT-B3LYP vibrational analysis of 4-chloro-2-fluoroaniline.

    Science.gov (United States)

    Arivazhagan, M; Anitha Rexalin, D

    2012-10-01

    The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 4-chloro-2-fluoroaniline (CFA) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies have been investigated with the help of ab initio and density functional theory (DFT) methods. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the Gauge including atomic orbital (GIAO) method. The first order hyperpolarizability (β(0)) of this novel molecular system and related properties (β, α(0) and Δα) of CFA are calculated using B3LYP/6-311++G(d,p) and HF/6-311++G(d,p) methods on the finite-field approach. The calculated results also show that the CFA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The result confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. The HOMO-LUMO energies UV-vis spectral analysis and MEP are performed by B3LYP/6-311++G(d,p) approach. A detailed interpretation of the infrared and Raman spectra of CFA is also reported based on total energy distribution (TED). The difference between the observed and scaled wave number values of the most of the fundamentals is very small. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Synthesis of 2,4-disubstituted thiazole combinatorial unit on solid-phase: microwave assisted conversion of alcohol to amine monitored by FT-IR

    International Nuclear Information System (INIS)

    Antonow, Dyeison; Eifler-Lima, Vera Lucia; Mahler, S. Graciela; Serra, Gloria L.; Manta, Eduardo

    2005-01-01

    Microwave-assisted solid-phase synthesis of the 2,4-disubstituted thiazole 3 on Merrifield Resin is described. The hydroxyl moiety was converted to amine in five steps - including coupling and cleavage - within a total reaction time of 2 hours and 26% overall yield. The entire solid-phase synthesis was efficiently monitored by FT-IR/KBr pellets and allows potential use in combinatorial chemistry. (author)

  10. Quantum mechanical and spectroscopic (FT-IR, FT-Raman) study, NBO analysis, HOMO-LUMO, first order hyperpolarizability and molecular docking study of methyl[(3R)-3-(2-methylphenoxy)-3-phenylpropyl]amine by density functional method

    Science.gov (United States)

    Kuruvilla, Tintu K.; Prasana, Johanan Christian; Muthu, S.; George, Jacob; Mathew, Sheril Ann

    2018-01-01

    Quantum chemical techniques such as density functional theory (DFT) have become a powerful tool in the investigation of the molecular structure and vibrational spectrum and are finding increasing use in application related to biological systems. The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) techniques are employed to characterize the title compound. The vibrational frequencies were obtained by DFT/B3LYP calculations with 6-31G(d,p) and 6-311 ++G(d,p) as basis sets. The geometry of the title compound was optimized. The vibrational assignments and the calculation of Potential Energy Distribution (PED) were carried out using the Vibrational Energy Distribution Analysis (VEDA) software. Molecular electrostatic potential was calculated for the title compound to predict the reactive sites for electrophilic and nucleophilic attack. In addition, the first-order hyperpolarizability, HOMO and LUMO energies, Fukui function and NBO were computed. The thermodynamic properties of the title compound were calculated at different temperatures, revealing the correlations between heat capacity (C), entropy (S) and enthalpy changes (H) with temperatures. Molecular docking studies were also conducted as part of this study. The paper further explains the experimental results which are in line with the theoretical calculations and provide optimistic evidence through molecular docking that the title compound can act as a good antidepressant. It also provides sufficient justification for the title compound to be selected as a good candidate for further studies related to NLO properties.

  11. THE SULFONATION STUDY OF REACTION MECHANISM ON PAPAVERINE ALKALOID BY GC-MS AND FT-IR

    Directory of Open Access Journals (Sweden)

    I Made Sudarma

    2010-06-01

    Full Text Available The aim of this research was to prove theoretical mechanism reaction on the sulfonation of papaverine alkaloid and the result could be used as a reference on the transformation of these alkaloid to the other derivatives. Theoriticaly sulfonation of papaverine (1 by HO-SO2Cl could produced papaverine sulfonyl chloride (1a. The formation of this product was analyzed by analytical thin layer chromatography GC-MS, and FT-IR. These analysis showed the formation of product (1a more favorable than the other. Tlc showed product (1a less polar than papaverine, and supported by GC-MS and infrared which showed molecular ion at m/z 412 due to the presence of -SO2Cl and vibration at 1153,4 dan 1265,2 Cm-1 due to absorption of sulfonyl group.   Keywords: reaction mechanism, sulfonation, papaverine alkaloid.

  12. Characterization of Lubricants on Ball Bearings by FT-IR Using an Integrating Sphere

    Science.gov (United States)

    Street, K. W.; Pepper, S. V.; Wright, A. A.; Grady, B.

    2007-01-01

    Fourier Transform-Infrared reflectance microspectroscopy has been used extensively for the examination of coatings on nonplanar surfaces such as ball bearings. While this technique offers considerable advantages, practical application has many drawbacks, some of which are easily overcome by the use of integrating sphere technology. This paper describes the use of an integrating sphere for the quantification of thin layers of lubricant on the surface of ball bearings and the parameters which require optimization in order to obtain reliable data. Several applications of the technique are discussed including determination of lubricant load on 12.7 mm steel ball bearings and the examination of degraded lubricant on post mortem specimens.

  13. Spectroelectrochemical study of polyphenylene by in situ external reflection FT-IR spectroscopy. Pt. 1

    International Nuclear Information System (INIS)

    Kvarnstroem, C.; Ivaska, A.

    1994-01-01

    In situ spectroelectrochemical measurements with external reflection FT-IR are performed at different stages of polymerization of 0.05, 0.1 and 0.8 M biphenyl in 0.1 M TBABF 4 in acetonitrile. The biphenyl concentration is not found to have any effect on the structure of the polymer formed. Formation of oligomers and the ratio of ortho/para-substituted polymer chains during film growth are studied. The first coupling of dimers to oligomers is found to take place in the vicinity of the electrode surface and at a later stage of polymerization the oligomers start to form polymer film on the electrode. A mixed para and ortho coupling resulting in crosslinking between chains is observed already at the early stage of polymerization. However, when a lower current density is used a more ordered polymer structure is obtained. A breakdown of the polymer film due to overoxidation can be seen when the potential is increased to 2.0 V. (orig.)

  14. In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Cestelli Guidi, M.; Mirri, C.; Marcelli, A. [Laboratori Nazionali di Frascati - INFN, Frascati, Rome (Italy); Fratini, E.; Amendola, R. [ENEA, UT BIORAD-RAB, Rome (Italy); Licursi, V.; Negri, R. [Universita La Sapienza, Dip. Biologia e Biotecnologie ' ' Charles Darwin' ' , Rome (Italy)

    2012-09-15

    This paper discusses gene expression changes in the skin of mice treated by monoenergetic 14 MeV neutron irradiation and the possibility of monitoring the resultant lipid depletion (cross-validated by functional genomic analysis) as a marker of radiation exposure by high-resolution FT-IR (Fourier transform infrared) imaging spectroscopy. The irradiation was performed at the ENEA Frascati Neutron Generator (FNG), which is specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 x 10{sup 11} 14-MeV neutrons per second via the D-T nuclear reaction. The functional genomic approach was applied to four animals for each experimental condition (unirradiated, 0.2 Gy irradiation, or 1 Gy irradiation) 6 hours or 24 hours after exposure. Coregulation of a subclass of keratin and keratin-associated protein genes that are physically clustered in the mouse genome and functionally related to skin and hair follicle proliferation and differentiation was observed. Most of these genes are transiently upregulated at 6 h after the delivery of the lower dose delivered, and drastically downregulated at 24 h after the delivery of the dose of 1 Gy. In contrast, the gene coding for the leptin protein was consistently upregulated upon irradiation with both doses. Leptin is a key protein that regulates lipid accumulation in tissues, and its absence provokes obesity. The tissue analysis was performed by monitoring the accumulation and the distribution of skin lipids using FT-IR imaging spectroscopy. The overall picture indicates the differential modulation of key genes during epidermis homeostasis that leads to the activation of a self-renewal process at low doses of irradiation. (orig.)

  15. In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study.

    Science.gov (United States)

    Cestelli Guidi, M; Mirri, C; Fratini, E; Licursi, V; Negri, R; Marcelli, A; Amendola, R

    2012-09-01

    This paper discusses gene expression changes in the skin of mice treated by monoenergetic 14 MeV neutron irradiation and the possibility of monitoring the resultant lipid depletion (cross-validated by functional genomic analysis) as a marker of radiation exposure by high-resolution FT-IR (Fourier transform infrared) imaging spectroscopy. The irradiation was performed at the ENEA Frascati Neutron Generator (FNG), which is specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 × 10(11) 14-MeV neutrons per second via the D-T nuclear reaction. The functional genomic approach was applied to four animals for each experimental condition (unirradiated, 0.2 Gy irradiation, or 1 Gy irradiation) 6 hours or 24 hours after exposure. Coregulation of a subclass of keratin and keratin-associated protein genes that are physically clustered in the mouse genome and functionally related to skin and hair follicle proliferation and differentiation was observed. Most of these genes are transiently upregulated at 6 h after the delivery of the lower dose delivered, and drastically downregulated at 24 h after the delivery of the dose of 1 Gy. In contrast, the gene coding for the leptin protein was consistently upregulated upon irradiation with both doses. Leptin is a key protein that regulates lipid accumulation in tissues, and its absence provokes obesity. The tissue analysis was performed by monitoring the accumulation and the distribution of skin lipids using FT-IR imaging spectroscopy. The overall picture indicates the differential modulation of key genes during epidermis homeostasis that leads to the activation of a self-renewal process at low doses of irradiation.

  16. The use of combined synchrotron radiation micro FT-IR and XRD for the characterization of Romanesque wall paintings

    International Nuclear Information System (INIS)

    Salvado, N.; Buti, S.; Pantos, E.; Bahrami, F.; Labrador, A.; Pradell, T.

    2008-01-01

    The high analytical sensitivity and high spatial resolution of synchrotron radiation-based techniques, in particular SR-XRD and SR-FT-IR, allows the identification of complex micrometric mixtures of compounds that constitute the different layers of ancient paintings. The reliability of the measurements even with an extremely small amount of sampled material is very high, and this is particularly important when analyzing art works. Furthermore, the micro size (10 x 10μm for FT-IR and 30 to 50 μm squared spot size for XRD) of the beam enables one to obtain detailed compositional profiles from the different chromatic and preparation layers. The sensitivity of the techniques is high enough for the determination of minor and trace compounds, such as reaction and weathering compounds. We report here the identification of pigments in the Romanesque wall paintings found in situ in the church of Saint Eulalia of Unha place in the Aran valley (central Pyrenees). During the first centuries of the second millennium numerous religious buildings were built in Western Europe in the Romanesque style. In particular, a great number of churches were built in the Pyrenees, most of which were decorated with wall paintings. Although only a few of these paintings have survived, they represent one of the most important collections of Romanesque art, both for their quantity and quality. A full identification of the pigments, binder, supports, and reaction and weathering compounds has been obtained. The results obtained, in particular aerinite as a pigment, indicate a clear connection between the paintings found in this Occitanian church and the Catalan Romanesque paintings from the south bound of the Pyrenees. (orig.)

  17. The use of combined synchrotron radiation micro FT-IR and XRD for the characterization of Romanesque wall paintings

    Energy Technology Data Exchange (ETDEWEB)

    Salvado, N.; Buti, S. [Universitat Politecnica de Catalunya, Dpt. d' Enginyeria Quimica, EPSEVG, Vilanova i la Geltru, Barcelona (Spain); Pantos, E.; Bahrami, F. [CCLRC, Daresbury Laboratory, Warrington (United Kingdom); Labrador, A. [LLS, BM16-ESRF, BP 220, Grenoble Cedex (France); Pradell, T. [Universitat Politecnica de Catalunya, Dpt. Fisica i Enginyeria Nuclear, ESAB, Castelldefels, Barcelona (Spain)

    2008-01-15

    The high analytical sensitivity and high spatial resolution of synchrotron radiation-based techniques, in particular SR-XRD and SR-FT-IR, allows the identification of complex micrometric mixtures of compounds that constitute the different layers of ancient paintings. The reliability of the measurements even with an extremely small amount of sampled material is very high, and this is particularly important when analyzing art works. Furthermore, the micro size (10 x 10{mu}m for FT-IR and 30 to 50 {mu}m squared spot size for XRD) of the beam enables one to obtain detailed compositional profiles from the different chromatic and preparation layers. The sensitivity of the techniques is high enough for the determination of minor and trace compounds, such as reaction and weathering compounds. We report here the identification of pigments in the Romanesque wall paintings found in situ in the church of Saint Eulalia of Unha place in the Aran valley (central Pyrenees). During the first centuries of the second millennium numerous religious buildings were built in Western Europe in the Romanesque style. In particular, a great number of churches were built in the Pyrenees, most of which were decorated with wall paintings. Although only a few of these paintings have survived, they represent one of the most important collections of Romanesque art, both for their quantity and quality. A full identification of the pigments, binder, supports, and reaction and weathering compounds has been obtained. The results obtained, in particular aerinite as a pigment, indicate a clear connection between the paintings found in this Occitanian church and the Catalan Romanesque paintings from the south bound of the Pyrenees. (orig.)

  18. The spectroscopic (FT-IR, FT-Raman, dispersive Raman and NMR) study of ethyl-6-chloronicotinate molecule by combined density functional theory.

    Science.gov (United States)

    Karabacak, Mehmet; Calisir, Zuhre; Kurt, Mustafa; Kose, Etem; Atac, Ahmet

    2016-01-15

    In this study, ethyl-6-chloronicotinate (E-6-ClN) molecule is recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1) (FT-IR, FT-Raman and dispersive Raman, respectively) in the solid phase. ((1))H and ((13))C nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The structural and spectroscopic data of the molecule are obtained for two possible isomers (S1 and S2) from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule is fully optimized, vibrational spectra are calculated and fundamental vibrations are assigned on the basis of the potential energy distribution (PED) of the vibrational modes. ((1))H and ((13))C NMR chemical shifts are calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, HOMO and LUMO energies, are performed by time-dependent density functional theory (TD-DFT). Total and partial density of state and overlap population density of state diagrams analysis are presented for E-6-ClN molecule. Furthermore, frontier molecular orbitals (FMO), molecular electrostatic potential, and thermodynamic features are performed. In addition to these, reduced density gradient of the molecule is performed and discussed. As a conclusion, the calculated results are compared with the experimental spectra of the title compound. The results of the calculations are applied to simulate the vibrational spectra of the molecule, which show excellent agreement with the observed ones. The theoretical and tentative results will give us a detailed description of the structural and physicochemical properties of the molecule. Natural bond orbital analysis is done to have more information stability of the molecule arising from charge delocalization, and to reveal the information regarding charge transfer within the molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Investigation of the Cross-Section Stratifications of Icons Using Micro-Raman and Micro-Fourier Transform Infrared (FT-IR) Spectroscopy.

    Science.gov (United States)

    Lazidou, Dimitra; Lampakis, Dimitrios; Karapanagiotis, Ioannis; Panayiotou, Costas

    2018-01-01

    The cross-section stratifications of samples, which were removed from six icons, are studied using optical microscopy, micro-Raman spectroscopy, and micro-Fourier transform infrared (FT-IR) spectroscopy. The icons, dated from the 14th to 19th centuries, are prominent examples of Byzantine painting art and are attributed to different artistic workshops of ​​northern Greece. The following materials are identified in the cross-sections of the icon samples using micro-Raman spectroscopy: anhydrite; calcite; carbon black; chrome yellow; cinnabar; gypsum; lead white; minium; orpiment; Prussian blue; red ochre; yellow ochre; and a paint of organic origin which can be either indigo ( Indigofera tinctoria L. and others) or woad ( Isatis tinctoria L.). The same samples are investigated using micro-FT-IR which leads to the following identifications: calcite; calcium oxalates; chrome yellow; gypsum; kaolinite; lead carboxylates; lead sulfate (or quartz); lead white; oil; protein; Prussian blue; saponified oil; shellac; silica; and tree resin. The study of the cross-sections of the icon samples reveals the combinations of the aforementioned inorganic and organic materials. Although the icons span over a long period of six centuries, the same stratification comprising gypsum ground layer, paint layers prepared by modified "egg tempera" techniques (proteinaceous materials mixed with oil and resins), and varnish layer is revealed in the investigated samples. Moreover, the presence of three layers of varnishes, one at the top and other two as intermediate layers, in the cross-section analysis of a sample from Virgin and Child provide evidence of later interventions.

  20. Matrix isolation FT-IR spectroscopy and molecular orbital study of sarcosine methyl ester

    Science.gov (United States)

    Gómez-Zavaglia, A.; Fausto, R.

    2004-02-01

    N-methylglycine methyl ester (sarcosine-Me) has been studied by matrix isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the DFT/B3LYP and MP2 levels of theory with the 6-311++G(d,p) and 6-31++G(d,p) basis set, respectively. Twelve different conformers were located in the potential energy surface of the studied compound, with the ASC conformer being the ground conformational state. This form is analogous to the dimethylglycine methyl ester most stable conformer and is characterized by a NH⋯O intramolecular hydrogen bond; in this form, the ester group assumes the cis configuration and the OC-C-N and Lp-N-C-C (where Lp is the nitrogen lone electron pair) dihedral angles are ca. -17.8 and 171.3°, respectively. The second most stable conformer ( GSC) differs from the ASC conformer essentially in the conformation assumed by the methylamino group, which in this case is gauche ( Lp-N-C-C dihedral angle equal to 79.4°). On the other hand, the third most stable conformer ( AAC) differs from the most stable form in the conformation of the OC-C-N axis (151.4°). These three forms were predicted to differ in energy by less than ca. 5 kJ mol -1 and represent ≈95% of the total conformational population at room temperature. FT-IR spectra were obtained for sarcosine-Me isolated in argon matrices (T=9 K) revealing the presence in the matrices of the three lowest energy conformers predicted by the calculations. The matrices were prepared by deposition of the vapour of the compound using two different nozzle temperatures, 25 and 60 °C. The relative populations of the three conformers trapped in the matrices were found to be consistent with occurrence of conformational cooling during matrix deposition and with a stabilization of the most polar GSC and AAC conformers in the matrices compared to the gas phase. Indeed, like it was previously observed for the methyl ester of dimethylglycine [Phys. Chem. Chem. Phys. 5 (2003) 52] the different

  1. Cholesterol esters are detected by Raman microspectroscopy in HeLa cells

    NARCIS (Netherlands)

    van Manen, H.J.; Otto, Cornelis

    2009-01-01

    The detection of trans-unsaturated lipids in single HeLa cells by Raman microspectroscopy was recently reported in this journal by Onogi et al. Based on our previously published Raman microspectroscopy data of individual macrophage foam cells, a detailed comparison between our spectra and spectrum

  2. Optical Determination of Lead Chrome Green in Green Tea by Fourier Transform Infrared (FT-IR Transmission Spectroscopy.

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    Full Text Available The potential of Fourier transform infrared (FT-IR transmission spectroscopy for determination of lead chrome green in green tea was investigated based on chemometric methods. Firstly, the qualitative analysis of lead chrome green in tea was performed based on partial least squares discriminant analysis (PLS-DA, and the correct rate of classification was 100%. And then, a hybrid method of interval partial least squares (iPLS regression and successive projections algorithm (SPA was proposed to select characteristic wavenumbers for the quantitative analysis of lead chrome green in green tea, and 19 wavenumbers were obtained finally. Among these wavenumbers, 1384 (C = C, 1456, 1438, 1419(C = N, and 1506 (CNH cm-1 were the characteristic wavenumbers of lead chrome green. Then, these 19 wavenumbers were used to build determination models. The best model was achieved by least squares support vector machine (LS-SVMalgorithm with high coefficient of determination and low root-mean square error of prediction set (R2p = 0.864 and RMSEP = 0.291. All these results indicated the feasibility of IR spectra for detecting lead chrome green in green tea.

  3. Infrared micro-spectroscopy of human tissue: principles and future promises.

    Science.gov (United States)

    Diem, Max; Ergin, Ayşegül; Remiszewski, Stan; Mu, Xinying; Akalin, Ali; Raz, Dan

    2016-06-23

    This article summarizes the methods employed, and the progress achieved over the past two decades in applying vibrational (Raman and IR) micro-spectroscopy to problems of medical diagnostics and cellular biology. During this time, several research groups have verified the enormous information contained in vibrational spectra; in fact, information on protein, lipid and metabolic composition of cells and tissues can be deduced by decoding the observed vibrational spectra. This decoding process is aided by the availability of computer workstations and advanced algorithms for data analysis. Furthermore, commercial instrumentation for the fast collection of both Raman and infrared micro-spectral data has enabled the collection of images of cells and tissues based solely on vibrational spectroscopic data. The progress in the field has been manifested by a steady increase in the number and quality of publications submitted by established and new research groups in vibrational spectroscopy in the biological and biomedical arenas.

  4. A new tridentate Schiff base Cu(II) complex: synthesis, experimental and theoretical studies on its crystal structure, FT-IR and UV-Visible spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran; Setoodeh, Nasim; Rudbari, Hadi Amiri; Bruno, Giuseppe

    2013-06-01

    A new Cu(II) complex [Cu(L)(NCS)] has been synthesized, using 1-(N-salicylideneimino)-2-(N,N-methyl)-aminoethane as tridentate ONN donor Schiff base ligand (HL). The dark green crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FT-IR) and UV-Visible spectra. Electronic structure calculations at the B3LYP and MP2 levels of theory are performed to optimize the molecular geometry and to calculate the UV-Visible and FT-IR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TD-DFT) method is used to calculate the electronic transitions of the complex. A scaling factor of 1.015 is obtained for vibrational frequencies computed at the B3LYP level using basis sets 6-311G(d,p). It is found that solvent has a profound effect on the electronic absorption spectrum. The UV-Visible spectrum of the complex recorded in DMSO and DMF solution can be correctly predicted by a model in which DMSO and DMF molecules are coordinated to the central Cu atom via their oxygen atoms. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Molecular structure, electronic properties, NLO, NBO analysis and spectroscopic characterization of Gabapentin with experimental (FT-IR and FT-Raman) techniques and quantum chemical calculations

    Science.gov (United States)

    Sinha, Leena; Karabacak, Mehmet; Narayan, V.; Cinar, Mehmet; Prasad, Onkar

    2013-05-01

    Gabapentin (GP), structurally related to the neurotransmitter GABA (gamma-aminobutyric acid), mimics the activity of GABA and is also widely used in neurology for the treatment of peripheral neuropathic pain. It exists in zwitterionic form in solid state. The present communication deals with the quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of GP using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. In view of the fact that amino acids exist as zwitterions as well as in the neutral form depending on the environment (solvent, pH, etc.), molecular properties of both the zwitterionic and neutral form of GP have been analyzed. The fundamental vibrational wavenumbers as well as their intensities were calculated and compared with experimental FT-IR and FT-Raman spectra. The fundamental assignments were done on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The electric dipole moment, polarizability and the first hyperpolarizability values of the GP have been calculated at the same level of theory and basis set. The nonlinear optical (NLO) behavior of zwitterionic and neutral form has been compared. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital analysis. Ultraviolet-visible (UV-Vis) spectrum of the title molecule has also been calculated using TD-DFT method. The thermodynamic properties of both the zwitterionic and neutral form of GP at different temperatures have been calculated.

  6. Power-Law Template for IR Point Source Clustering

    Science.gov (United States)

    Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; hide

    2011-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  7. On the Traceability of Commercial Saffron Samples Using 1H-NMR and FT-IR Metabolomics

    Directory of Open Access Journals (Sweden)

    Roberto Consonni

    2016-02-01

    Full Text Available In previous works on authentic samples of saffron of known history (harvest and processing year, storage conditions, and length of time some biomarkers were proposed using both FT-IR and NMR metabolomics regarding the shelf life of the product. This work addresses the difficulties to trace back the “age” of commercial saffron samples of unknown history, sets a limit value above which these products can be considered substandard, and offers a useful tool to combat saffron mislabeling and fraud with low-quality saffron material. Investigations of authentic and commercial saffron samples of different origin and harvest year, which had been stored under controlled conditions for different lengths of time, allowed a clear-cut clustering of samples in two groups according to the storage period irrespectively of the provenience. In this respect, the four-year cut off point proposed in our previous work assisted to trace back the “age” of unknown samples and to check for possible mislabeling practices.

  8. Microspectroscopy At Beamline 73 MAX-lab

    International Nuclear Information System (INIS)

    Engdahl, Anders

    2010-01-01

    Presentation of some projects at the infrared microspectroscopy experimental station at beamline 73 MAX-lab. Among the subjects are found identification of organic residues in fossil material and examination of the chemistry in an old oak wood wreck.

  9. A Simple Approach to Distinguish Classic and Formaldehyde-Free Tannin Based Rigid Foams by ATR FT-IR

    Directory of Open Access Journals (Sweden)

    Gianluca Tondi

    2015-01-01

    Full Text Available Tannin based rigid foams (TBRFs have been produced with formaldehyde since 1994. Only recently several methods have been developed in order to produce these foams without using formaldehyde. TBRFs with and without formaldehyde are visually indistinguishable; therefore a method for determining the differences between these foams had to be found. The attenuated total reflectance infrared spectroscopy (ATR FT-IR investigation of the TBRFs presented in this paper allowed discrimination between the formaldehyde-containing (classic and formaldehyde-free TBRFs. The spectra of the formaldehyde-free TBRFs, indeed, present decreased band intensity related to the C–O stretching vibration of (i the methylol groups and (ii the furanic rings. This evidence served to prove the chemical difference between the two TBRFs and explained the slightly higher mechanical properties measured for the classic TBRFs.

  10. FTIR, FT-Raman, FT-NMR, UV-visible and quantum chemical investigations of 2-amino-4-methylbenzothiazole.

    Science.gov (United States)

    Arjunan, V; Sakiladevi, S; Rani, T; Mythili, C V; Mohan, S

    2012-03-01

    The FT-IR (4000-400 cm(-1)) and FT-Raman (4000-100 cm(-1)) spectral measurements and complete assignments of the observed spectra of 2-amino-4-methylbenzothiazole (2A4MBT) have been proposed. Ab initio and DFT calculations have been performed and the structural parameters of the compound were determined from the optimised geometry with 6-31G(d,p), 6-311++G(d,p) and cc-pVDZ basis sets and giving energies, harmonic vibrational frequencies, depolarisation ratios, IR intensities and Raman activities. (1)H and (13)C NMR spectra were recorded and (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO, LUMO and band gap energies were measured by time-dependent DFT (TD-DFT) approach. The geometric parameters, energies, harmonic vibrational frequencies, IR intensities, Raman activities chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule. The influences of methyl and amino groups on the skeletal modes and on the proton chemical shifts have been investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Multivariate analysis of attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic data to confirm phase partitioning in methacrylate-based dentin adhesive.

    Science.gov (United States)

    Ye, Qiang; Parthasarathy, Ranganathan; Abedin, Farhana; Laurence, Jennifer S; Misra, Anil; Spencer, Paulette

    2013-12-01

    Water is ubiquitous in the mouths of healthy individuals and is a major interfering factor in the development of a durable seal between the tooth and composite restoration. Water leads to the formation of a variety of defects in dentin adhesives; these defects undermine the tooth-composite bond. Our group recently analyzed phase partitioning of dentin adhesives using high-performance liquid chromatography (HPLC). The concentration measurements provided by HPLC offered a more thorough representation of current adhesive performance and elucidated directions to be taken for further improvement. The sample preparation and instrument analysis using HPLC are, however, time-consuming and labor-intensive. The objective of this work was to develop a methodology for rapid, reliable, and accurate quantitative analysis of near-equilibrium phase partitioning in adhesives exposed to conditions simulating the wet oral environment. Analysis by Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate statistical methods, including partial least squares (PLS) regression and principal component regression (PCR), were used for multivariate calibration to quantify the compositions in separated phases. Excellent predictions were achieved when either the hydrophobic-rich phase or the hydrophilic-rich phase mixtures were analyzed. These results indicate that FT-IR spectroscopy has excellent potential as a rapid method of detection and quantification of dentin adhesives that experience phase separation under conditions that simulate the wet oral environment.

  12. Lead (II) biosorption equilibrium and characterization through FT-IR and SEM-EDAX crosslinked pectin from orange peels

    International Nuclear Information System (INIS)

    Garcia Villegas, Victor R.; Ale Borja, Neptali; Guzman Lezama, Enrique G.; Maldonado Garcia, Holger J.; Yipmantin Ojeda, Andrea G.

    2013-01-01

    Pectic material extracted from orange peels was previously cross-linked to diminish hydration and swelling capacity when pectin is found in aqueous solution medium. Degree of metoxilation (DM), galacturonic acid anhydrous (% AGA) and pKa determination allowed characterizing biosorbent. Maximum sorption capacity was obtained at pH between 4.5 and 5.5. For data processing and statistical treatment informatics Orign 6.0 version program was used. Data from biosorption equilibrium had a better fit on Langmuir sorption equation model, obtaining q max = 186 mg/g as a maximum adsorption capacity. Fourier transform infrared spectroscopy analysis (FT-IR) allowed recognizing characteristic functional groups presents as well as biomass modifications. Biosorbent surface morphologic was studied by scanning electron microscope (SEM) and elemental composition biomass before biosorption process was obtained through Energy-dispersive X-ray spectroscopy (EDAX). (author)

  13. DETERMINATION OF CRYSTALLINITY INDEX OF CARBOHYDRATE COMPONENTS IN HEMP (CANNABIS SATIVA L. WOODY CORE BY MEANS OF FT-IR SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Esat Gümüşkaya

    2005-04-01

    Full Text Available In this study; it was investigated chemical compositions of hemp woody core and changes in crystallinity index of its carbohydrate components by using FT-IR spectroscopy was investigated. It was determined that carbohyrate components ratio in hemp woody core were similar to that in hard wood, but lignin content in hemp woody core was higher than in hard wood. Crystallinity index of carbohydrate components in hemp woody core increased by removing amorphous components. It was designated that monoclinic structure in hemp woody core and its carbohydrate components was dominant, but triclinic ratio increased by treated chemical isolation of carbohydrate from hemp woody core.

  14. Relation with HOMA-IR and thyroid hormones in obese Turkish women with metabolic syndrome.

    Science.gov (United States)

    Topsakal, S; Yerlikaya, E; Akin, F; Kaptanoglu, B; Erürker, T

    2012-03-01

    The aim of this study was to investigate the relationship between insulin resistance and thyroid function in obese pre- and postmenopausal women with or without metabolic syndrome (MetS). 141 obese women were divided into two groups, HOMA-IRHOMA-IR>2.7, to evaluate relation with HOMA-IR and fatness, hormone and blood parameters. They were then divided into four groups as pre- and postmenopausal with or without MetS. Various fatness, hormone and blood parameters were examined. Statistically significant difference was found in weight, body mass index (BMI), waist circumference, fat%, fasting insulin, TSH, FT3, FT4, FSH, Anti-microsomal antibody (ANTIM) and triglycerides levels in HOMA-IRHOMA-IR>2.7 obese Turkish women. This study showed that age, weight, BMI, waist circumference, fat%, fasting insulin, FT3, ANTIM, FSH, LH, total cholesterol, triglycerides, HDL, HOMA-IR, systolic and diastolic blood pressure levels were related in preand post menopausal status in obese women with or without MetS. Obesity may influence the levels of thyroid hormones and increases the risk of MetS in women. Postmenopausal status with MetS is associated with an increased TSH, FT3 and FT4 levels and HOMA-IR in obese women. Strong relation was observed with MetS and TSH and FT3 levels.

  15. The use of IAEA-IRS information in Russia's nuclear power industry

    International Nuclear Information System (INIS)

    1996-01-01

    The use of IAEA-IRS information in Russia's nuclear power industry is described, including the following issues: organizational aspects; organization of the information process; assessment of information uses; examples of using IAEA-IRS information. Figs

  16. Matrix-isolation FT-IR and DFT theoretical studies of the intramolecular hydrogen bonding in Mannich bases

    International Nuclear Information System (INIS)

    Pajak, J.; Rospenk, M.; Maes, G.; Sobczyk, L.

    2006-01-01

    FT-IR Ar-matrix isolated spectra were studied for dichloro- (Cl 2 -MB) and tetrachloroderivatives (Cl 4 -MB) of the ortho Mannich base. The spectra were analyzed based on the DFT calculated frequencies and intensities and compared with those recorded in CCl 4 solution in the region of the ν(OH) and ν(OD) vibrations. The matrix-isolated spectra are characterized by narrower ν(OH) and ν(OD) bands with much better resolved fine structure than in solution. The fine structure originates from the anharmonic coupling with the low frequency modes as well as from Fermi resonance. The ν(OD) band shapes can be reproduced exclusively by assuming the Fermi resonance with overtones and summation of the frequencies of modes into which the bridge atoms are involved. The frequency isotopic ratio (ISR) is for both compounds 1.33 while the half-width ratios are equal to 1.82 and 1.94, for Cl 2 -MB and Cl 4 -MB, respectively

  17. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Gengji

    2017-11-15

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  18. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    International Nuclear Information System (INIS)

    Zhou, Gengji

    2017-11-01

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  19. Activation and thermodynamic parameter study of the heteronuclear C=O···H-N hydrogen bonding of diphenylurethane isomeric structures by FT-IR spectroscopy using the regularized inversion of an eigenvalue problem.

    Science.gov (United States)

    Spegazzini, Nicolas; Siesler, Heinz W; Ozaki, Yukihiro

    2012-08-02

    The doublet of the ν(C=O) carbonyl band in isomeric urethane systems has been extensively discussed in qualitative terms on the basis of FT-IR spectroscopy of the macromolecular structures. Recently, a reaction extent model was proposed as an inverse kinetic problem for the synthesis of diphenylurethane for which hydrogen-bonded and non-hydrogen-bonded C=O functionalities were identified. In this article, the heteronuclear C=O···H-N hydrogen bonding in the isomeric structure of diphenylurethane synthesized from phenylisocyanate and phenol was investigated via FT-IR spectroscopy, using a methodology of regularization for the inverse reaction extent model through an eigenvalue problem. The kinetic and thermodynamic parameters of this system were derived directly from the spectroscopic data. The activation and thermodynamic parameters of the isomeric structures of diphenylurethane linked through a hydrogen bonding equilibrium were studied. The study determined the enthalpy (ΔH = 15.25 kJ/mol), entropy (TΔS = 14.61 kJ/mol), and free energy (ΔG = 0.6 kJ/mol) of heteronuclear C=O···H-N hydrogen bonding by FT-IR spectroscopy through direct calculation from the differences in the kinetic parameters (δΔ(‡)H, -TδΔ(‡)S, and δΔ(‡)G) at equilibrium in the chemical reaction system. The parameters obtained in this study may contribute toward a better understanding of the properties of, and interactions in, supramolecular systems, such as the switching behavior of hydrogen bonding.

  20. Identification of Quercus agrifolia (coast live oak resistant to the invasive pathogen Phytophthora ramorum in native stands using Fourier-transform infrared (FT-IR spectroscopy

    Directory of Open Access Journals (Sweden)

    Anna Olivia Conrad

    2014-10-01

    Full Text Available Over the last two decades coast live oak (CLO dominance in many California coastal ecosystems has been threatened by the alien invasive pathogen Phytophthora ramorum, the causal agent of sudden oak death. In spite of high infection and mortality rates in some areas, the presence of apparently resistant trees has been observed, including trees that become infected but recover over time. However, identifying resistant trees based on recovery alone can take many years. The objective of this study was to determine if Fourier-transform infrared (FT-IR spectroscopy, a chemical fingerprinting technique, can be used to identify CLO resistant to P. ramorum prior to infection. Soft independent modeling of class analogy identified spectral regions that differed between resistant and susceptible trees. Regions most useful for discrimination were associated with carbonyl group vibrations. Additionally, concentrations of two putative phenolic biomarkers of resistance were predicted using partial least squares regression; > 99% of the variation was explained by this analysis. This study demonstrates that chemical fingerprinting can be used to identify resistance in a natural population of forest trees prior to infection with a pathogen. FT-IR spectroscopy may be a useful approach for managing forests impacted by sudden oak death, as well as in other situations where emerging or existing forest pests and diseases are of concern.

  1. On the Use of Fourier Transform Infrared (FT-IR) Spectroscopy and Synthetic Calibration Spectra to Quantify Gas Concentrations in a Fischer-Tropsch Catalyst System

    Science.gov (United States)

    Ferguson, Frank T.; Johnson, Natasha M.; Nuth, Joseph A., III

    2015-01-01

    One possible origin of prebiotic organic material is that these compounds were formed via Fischer-Tropsch-type (FTT) reactions of carbon monoxide and hydrogen on silicate and oxide grains in the warm, inner-solar nebula. To investigate this possibility, an experimental system has been built in which the catalytic efficiency of different grain-analog materials can be tested. During such runs, the gas phase above these grain analogs is sampled using Fourier transform infrared (FT-IR) spectroscopy. To provide quantitative estimates of the concentration of these gases, a technique in which high-resolution spectra of the gases are calculated using the high-resolution transmission molecular absorption (HITRAN) database is used. Next, these spectra are processed via a method that mimics the processes giving rise to the instrumental line shape of the FT-IR spectrometer, including apodization, self-apodization, and broadening due to the finite resolution. The result is a very close match between the measured and computed spectra. This technique was tested using four major gases found in the FTT reactions: carbon monoxide, methane, carbon dioxide, and water. For the ranges typical of the FTT reactions, the carbon monoxide results were found to be accurate to within 5% and the remaining gases accurate to within 10%. These spectra can then be used to generate synthetic calibration data, allowing the rapid computation of the gas concentrations in the FTT experiments.

  2. Automated Fast Screening Method for Cocaine Identification in Seized Drug Samples Using a Portable Fourier Transform Infrared (FT-IR) Instrument.

    Science.gov (United States)

    Mainali, Dipak; Seelenbinder, John

    2016-05-01

    Quick and presumptive identification of seized drug samples without destroying evidence is necessary for law enforcement officials to control the trafficking and abuse of drugs. This work reports an automated screening method to detect the presence of cocaine in seized samples using portable Fourier transform infrared (FT-IR) spectrometers. The method is based on the identification of well-defined characteristic vibrational frequencies related to the functional group of the cocaine molecule and is fully automated through the use of an expert system. Traditionally, analysts look for key functional group bands in the infrared spectra and characterization of the molecules present is dependent on user interpretation. This implies the need for user expertise, especially in samples that likely are mixtures. As such, this approach is biased and also not suitable for non-experts. The method proposed in this work uses the well-established "center of gravity" peak picking mathematical algorithm and combines it with the conditional reporting feature in MicroLab software to provide an automated method that can be successfully employed by users with varied experience levels. The method reports the confidence level of cocaine present only when a certain number of cocaine related peaks are identified by the automated method. Unlike library search and chemometric methods that are dependent on the library database or the training set samples used to build the calibration model, the proposed method is relatively independent of adulterants and diluents present in the seized mixture. This automated method in combination with a portable FT-IR spectrometer provides law enforcement officials, criminal investigators, or forensic experts a quick field-based prescreening capability for the presence of cocaine in seized drug samples. © The Author(s) 2016.

  3. Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Volkmer, Andreas

    2005-01-01

    For noninvasive characterization of chemical species or biological components within a complex heterogeneous system, their intrinsic molecular vibrational properties can be used in contrast mechanisms in optical microscopy. A series of recent advances have made coherent anti-Stokes Raman scattering (CARS) microscopy a powerful technique that allows vibrational imaging with high sensitivity, high spectral resolution and three-dimensional sectioning capability. In this review, we discuss theoretical and experimental aspects of CARS microscopy in a collinear excitation beam geometry. Particular attention is given to the underlying physical principles behind the new features of CARS signal generation under tight focusing conditions. We provide a brief overview of the instrumentation of CARS microscopy and its experimental characterization by means of imaging of model systems and live unstained cells. CARS microscopy offers the possibility of spatially resolved vibrational spectroscopy, providing chemical and physical structure information of molecular specimens on the sub-micrometre length scale. We review multiplex CARS microspectroscopy allowing fast acquisition of frequency-resolved CARS spectra, time-resolved CARS microspectroscopy recording ultrafast Raman free induction decays and CARS correlation spectroscopy probing dynamical processes with chemical selectivity. (topical review)

  4. Constraining f(T) teleparallel gravity by big bang nucleosynthesis. f(T) cosmology and BBN

    Energy Technology Data Exchange (ETDEWEB)

    Capozziello, S. [Universita di Napoli ' ' Federico II' ' , Complesso Universitario di Monte Sant' Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Napoli (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Lambiase, G. [University of Salerno, Dipartimento di Fisica E.R. Cainaiello, Fisciano (Italy); INFN, Gruppo Collegato di Salerno, Sezione di Napoli, Fisciano (Italy); Saridakis, E.N. [National Technical University of Athens, Department of Physics, Athens (Greece); Baylor University, CASPER, Physics Department, Waco, TX (United States)

    2017-09-15

    We use Big Bang Nucleosynthesis (BBN) observational data on the primordial abundance of light elements to constrain f(T) gravity. The three most studied viable f(T) models, namely the power law, the exponential and the square-root exponential are considered, and the BBN bounds are adopted in order to extract constraints on their free parameters. For the power-law model, we find that the constraints are in agreement with those obtained using late-time cosmological data. For the exponential and the square-root exponential models, we show that for reliable regions of parameters space they always satisfy the BBN bounds. We conclude that viable f(T) models can successfully satisfy the BBN constraints. (orig.)

  5. Constraining f(T) teleparallel gravity by big bang nucleosynthesis. f(T) cosmology and BBN

    International Nuclear Information System (INIS)

    Capozziello, S.; Lambiase, G.; Saridakis, E.N.

    2017-01-01

    We use Big Bang Nucleosynthesis (BBN) observational data on the primordial abundance of light elements to constrain f(T) gravity. The three most studied viable f(T) models, namely the power law, the exponential and the square-root exponential are considered, and the BBN bounds are adopted in order to extract constraints on their free parameters. For the power-law model, we find that the constraints are in agreement with those obtained using late-time cosmological data. For the exponential and the square-root exponential models, we show that for reliable regions of parameters space they always satisfy the BBN bounds. We conclude that viable f(T) models can successfully satisfy the BBN constraints. (orig.)

  6. Biochemical profiling of rat embryonic stem cells grown on electrospun polyester fibers using synchrotron infrared microspectroscopy.

    Science.gov (United States)

    Doncel-Pérez, Ernesto; Ellis, Gary; Sandt, Christophe; Shuttleworth, Peter S; Bastida, Agatha; Revuelta, Julia; García-Junceda, Eduardo; Fernández-Mayoralas, Alfonso; Garrido, Leoncio

    2018-06-01

    Therapeutic options for spinal cord injuries are severely limited; current treatments only offer symptomatic relief and rehabilitation focused on educating the individual on how to adapt to their new situation to make best possible use of their remaining function. Thus, new approaches are needed, and interest in the development of effective strategies to promote the repair of neural tracts in the central nervous system inspired us to prepare functional and highly anisotropic polymer scaffolds. In this work, an initial assessment of the behavior of rat neural progenitor cells (NPCs) seeded on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber scaffolds using synchrotron-based infrared microspectroscopy (SIRMS) is described. Combined with a modified touch imprint cytology sample preparation method, this application of SIRMS enabled the biochemical profiles of NPCs on the coated polymer fibers to be determined. The results showed that changes in the lipid and amide I-II spectral regions are modulated by the type and coating of the substrate used and the culture time. SIRMS studies can provide valuable insight into the early-stage response of NPCs to the morphology and surface chemistry of a biomaterial, and could therefore be a useful tool in the preparation and optimization of cellular scaffolds. Graphical abstract Synchrotron IR microspectroscopy can provide insight into the response of neural progenitor cells to synthetic scaffolds.

  7. Laser wakefield acceleration with high-power, few-cycle mid-IR lasers

    OpenAIRE

    Papp, Daniel; Wood, Jonathan C.; Gruson, Vincent; Bionta, Mina; Gruse, Jan-Niclas; Cormier, Eric; Najmudin, Zulfikar; Légaré, François; Kamperidis, Christos

    2018-01-01

    The study of laser wakefield electron acceleration (LWFA) using mid-IR laser drivers is a promising path for future laser driven electronaccelerators, when compared to traditional near-IR laser drivers uperating at 0.8-1 {\\mu}m central wavelength ({\\lambda}laser), as the necessary vector potential a_0 for electron injection can be achieved with smaller laser powers due to the linear dependence on {\\lambda}laser. In this work, we perform 2D PIC simulations on LWFA using few-cycle high power (5...

  8. Spitzer mid-IR spectroscopy of powerful 2Jy and 3CRR radio galaxies. II. AGN power indicators and unification

    Energy Technology Data Exchange (ETDEWEB)

    Dicken, D. [CEA-Saclay, F-91191 Gif-sur-Yvette (France); Tadhunter, C. [University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Morganti, R. [ASTRON, P.O. Box 2, 7990 AA Dwingeloo (Netherlands); Axon, D.; Robinson, A.; Magagnoli, M. [Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States); Kharb, P. [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560034 (India); Ramos Almeida, C. [Instituto de Astrofisica de Canarias (IAC), C/V ia Lactea, s/n, E-38205 La Laguna, Tenerife (Spain); Mingo, B. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Hardcastle, M. [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Nesvadba, N. P. H.; Singh, V. [Institut d' Astrophysique Spatiale, CNRS, Université Paris Sud, F-91405 Orsay (France); Kouwenhoven, M. B. N. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Haidian Qu, Beijing 100871 (China); Rose, M.; Spoon, H. [224 Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Inskip, K. J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Holt, J., E-mail: daniel.dicken@cea.fr [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2014-06-20

    It remains uncertain which continuum and emission line diagnostics best indicate the bolometric powers of active galactic nuclei (AGNs), especially given the attenuation caused by the circumnuclear material and the possible contamination by components related to star formation. Here we use mid-IR spectra along with multiwavelength data to investigate the merit of various diagnostics of AGN radiative power, including the mid-IR [Ne III] λ25.89 μm and [O IV] λ25.89 μm fine-structure lines, the optical [O III] λ5007 forbidden line, and mid-IR 24 μm, 5 GHz radio, and X-ray continuum emission, for complete samples of 46 2Jy radio galaxies (0.05 < z < 0.7) and 17 3CRR FRII radio galaxies (z < 0.1). We find that the mid-IR [O IV] line is the most reliable indicator of AGN power for powerful radio-loud AGNs. By assuming that the [O IV] is emitted isotropically, and comparing the [O III] and 24 μm luminosities of the broad- and narrow-line AGNs in our samples at fixed [O IV] luminosity, we show that the [O III] and 24 μm emission are both mildly attenuated in the narrow-line compared to the broad-line objects by a factor of ≈2. However, despite this attenuation, the [O III] and 24 μm luminosities are better AGN power indicators for our sample than either the 5 GHz radio or the X-ray continuum luminosities. We also detect the mid-IR 9.7 μm silicate feature in the spectra of many objects but not ubiquitously: at least 40% of the sample shows no clear evidence for these features. We conclude that, for the majority of powerful radio galaxies, the mid-IR lines are powered by AGN photoionization.

  9. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) for Rapid Determination of Microbial Cell Lipid Content: Correlation with Gas Chromatography-Mass Spectrometry (GC-MS).

    Science.gov (United States)

    Millan-Oropeza, Aaron; Rebois, Rolando; David, Michelle; Moussa, Fathi; Dazzi, Alexandre; Bleton, Jean; Virolle, Marie-Joelle; Deniset-Besseau, Ariane

    2017-10-01

    There is a growing interest worldwide for the production of renewable oil without mobilizing agriculture lands; fast and reliable methods are needed to identify highly oleaginous microorganisms of potential industrial interest. The aim of this study was to demonstrate the relevance of attenuated total reflection (ATR) spectroscopy to achieve this goal. To do so, the total lipid content of lyophilized samples of five Streptomyces strains with varying lipid content was assessed with two classical quantitative but time-consuming methods, gas chromatography-mass spectrometry (GC-MS) and ATR Fourier transform infrared (ATR FT-IR) spectroscopy in transmission mode with KBr pellets and the fast ATR method, often questioned for its lack of reliability. A linear correlation between these three methods was demonstrated allowing the establishment of equations to convert ATR values expressed as CO/amide I ratio, into micrograms of lipid per milligram of biomass. The ATR method proved to be as reliable and quantitative as the classical GC-MS and FT-IR in transmission mode methods but faster and more reproducible than the latter since it involves far less manipulation for sample preparation than the two others. Attenuated total reflection could be regarded as an efficient fast screening method to identify natural or genetically modified oleaginous microorganisms by the scientific community working in the field of bio-lipids.

  10. Raman Microspectroscopy of the Yeast Vacuoles

    Czech Academy of Sciences Publication Activity Database

    Bednárová, Lucie; Palacký, J.; Bauerová, Václava; Hrušková-Heidingsfeldová, Olga; Pichová, Iva; Mojzeš, P.

    2012-01-01

    Roč. 27, 5-6 (2012), s. 503-507 ISSN 0712-4813 R&D Projects: GA ČR GAP208/10/0376; GA ČR GA310/09/1945 Institutional research plan: CEZ:AV0Z40550506 Keywords : Raman microspectroscopy * living cell * yeast * vacuole * chemical composition * polyphospate * Candida albicans Subject RIV: CE - Biochemistry Impact factor: 0.530, year: 2012

  11. Effect of alkali metal ions on the pyrrole and pyridine π-electron systems in pyrrole-2-carboxylate and pyridine-2-carboxylate molecules: FT-IR, FT-Raman, NMR and theoretical studies

    Science.gov (United States)

    Świderski, G.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Lewandowski, W.

    2011-05-01

    The FT-IR, FT-Raman and 1H and 13C NMR spectra of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium, rubidium and caesium pyrrole-2-carboxylates were recorded, assigned and compared in the Li → Na → K → Rb → Cs salt series. The effect of alkali metal ions on the electronic system of ligands was discussed. The obtained results were compared with previously reported ones for pyridine-2-carboxylic acid and alkali metal pyridine-2-carboxylates. Calculations for pyrrole-2-carboxylic acid and Li, Na, K pyrrole-2-carboxylates in B3LYP/6-311++G ** level and Møller-Plesset method in MP2/6-311++G ** level were made. Bond lengths, angles and dipole moments as well as aromaticity indices (HOMA, EN, GEO, I 6) for the optimized structures of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium pyrrole-2-carboxylates were also calculated. The degree of perturbation of the aromatic system of ligand under the influence of metals in the Li → Cs series was investigated with the use of statistical methods (linear correlation), calculated aromaticity indices and Mulliken, NBO and ChelpG population analysis method. Additionally, the Bader theory (AIM) was applied to setting the characteristic of the bond critical points what confirmed the influence of alkali metals on the pyrrole ring.

  12. DSC, FT-IR, NIR, NIR-PCA and NIR-ANOVA for determination of chemical stability of diuretic drugs: impact of excipients

    Directory of Open Access Journals (Sweden)

    Gumieniczek Anna

    2018-03-01

    Full Text Available It is well known that drugs can directly react with excipients. In addition, excipients can be a source of impurities that either directly react with drugs or catalyze their degradation. Thus, binary mixtures of three diuretics, torasemide, furosemide and amiloride with different excipients, i.e. citric acid anhydrous, povidone K25 (PVP, magnesium stearate (Mg stearate, lactose, D-mannitol, glycine, calcium hydrogen phosphate anhydrous (CaHPO4 and starch, were examined to detect interactions. High temperature and humidity or UV/VIS irradiation were applied as stressing conditions. Differential scanning calorimetry (DSC, FT-IR and NIR were used to adequately collect information. In addition, chemometric assessments of NIR signals with principal component analysis (PCA and ANOVA were applied.

  13. FT-IR, RAMAN AND DFT STUDIES ON THE VIBRATIONAL ...

    African Journals Online (AJOL)

    Department of Physics, Science Faculty, Anadolu University, Eskişehir, Turkey ... IR spectrum was recorded using Bruker Optics IFS66v/s FTIR spectrometer at a ... spectrum was obtained using a Bruker Senterra Dispersive Raman microscope.

  14. Synthesis, X-ray diffraction method, spectroscopic characterization (FT-IR, 1H and 13C NMR), antimicrobial activity, Hirshfeld surface analysis and DFT computations of novel sulfonamide derivatives

    Science.gov (United States)

    Demircioğlu, Zeynep; Özdemir, Fethi Ahmet; Dayan, Osman; Şerbetçi, Zafer; Özdemir, Namık

    2018-06-01

    Synthesized compounds of N-(2-aminophenyl)benzenesulfonamide 1 and (Z)-N-(2-((2-nitrobenzylidene)amino)phenyl)benzenesulfonamide 2 were characterized by antimicrobial activity, FT-IR, 1H and 13C NMR. Two new Schiff base ligands containing aromatic sulfonamide fragment of (Z)-N-(2-((3-nitrobenzylidene)amino)phenyl)benzenesulfonamide 3 and (Z)-N-(2-((4-nitrobenzylidene)amino)phenyl)benzenesulfonamide 4 were synthesized and investigated by spectroscopic techniques including 1H and 13C NMR, FT-IR, single crystal X-ray diffraction, Hirshfeld surface, theoretical method analyses and by antimicrobial activity. The molecular geometry obtained from the X-ray structure determination was optimized Density Functional Theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set in ground state. From the optimized geometry of the molecules of 3 and 4, the geometric parameters, vibrational wavenumbers and chemical shifts were computed. The optimized geometry results, which were well represented the X-ray data, were shown that the chosen of DFT/B3LYP 6-311G++(d,p) was a successful choice. After a successful optimization, frontier molecular orbitals, chemical activity, non-linear optical properties (NLO), molecular electrostatic mep (MEP), Mulliken population method, natural population analysis (NPA) and natural bond orbital analysis (NBO), which cannot be obtained experimentally, were calculated and investigated.

  15. Combining TXRF, FT-IR and GC-MS information for identification of inorganic and organic components in black pigments of rock art from Alero Hornillos 2 (Jujuy, Argentina).

    Science.gov (United States)

    Vázquez, Cristina; Maier, Marta S; Parera, Sara D; Yacobaccio, Hugo; Solá, Patricia

    2008-06-01

    Archaeological samples are complex in composition since they generally comprise a mixture of materials submitted to deterioration factors largely dependent on the environmental conditions. Therefore, the integration of analytical tools such as TXRF, FT-IR and GC-MS can maximize the amount of information provided by the sample. Recently, two black rock art samples of camelid figures at Alero Hornillos 2, an archaeological site located near the town of Susques (Jujuy Province, Argentina), were investigated. TXRF, selected for inorganic information, showed the presence of manganese and iron among other elements, consistent with an iron and manganese oxide as the black pigment. Aiming at the detection of any residual organic compounds, the samples were extracted with a chloroform-methanol mixture and the extracts were analyzed by FT-IR, showing the presence of bands attributable to lipids. Analysis by GC-MS of the carboxylic acid methyl esters prepared from the sample extracts, indicated that the main organic constituents were saturated (C(16:0) and C(18:0)) fatty acids in relative abundance characteristic of degraded animal fat. The presence of minor C(15:0) and C(17:0) fatty acids and branched-chain iso-C(16:0) pointed to a ruminant animal source.

  16. CHARACTERIZATION OF THE NEW NSLS INFARED MICROSPECTROSCOPY BEAMLINE U10B.

    Energy Technology Data Exchange (ETDEWEB)

    CARR,G.L.

    1999-07-19

    The first of several new infrared beamlines, built on a modified bending magnet port of the NSLS VUV ring, is now operational for mid-infrared microspectroscopy. The port simultaneously delivers 40 mrad by 40 mrad to two separate beamlines and spectrometer endstations designated U10A and U10B. The latter is equipped with a scanning infrared microspectrometer. The combination of this instrument and high brightness synchrotron radiation makes diffraction-limited microspectroscopy practical. This paper describes the beamline's performance and presents quantitative information on the diffraction-limited resolution.

  17. Characterization of the new NSLS infrared microspectroscopy beamline U10B

    Energy Technology Data Exchange (ETDEWEB)

    Carr, G.L.

    1999-07-19

    The first of several new infrared beamlines, built on a modified bending magnet port of the NSLS VUV ring, is now operational for mid-infrared microspectroscopy. The port simultaneously delivers 40 mrad by 40 mrad to two separate beamlines and spectrometer endstations designated U10A and U10B. The latter is equipped with a scanning infrared microspectrometer. The combination of this instrument and high brightness synchrotron radiation makes diffraction-limited microspectroscopy practical. This paper describes the beamline's performance and presents quantitative information on the diffraction-limited resolution.

  18. Synchrotron radiation infrared microspectroscopy to assess the activity of vancomycin against endocarditis vegetation bacteria.

    Science.gov (United States)

    Batard, Eric; Jamme, Frédéric; Montassier, Emmanuel; Bertrand, Dominique; Caillon, Jocelyne; Potel, Gilles; Dumas, Paul

    2011-06-01

    Infrared microspectroscopy was used to show that vancomycin alters infrared spectra of endocarditis vegetation bacteria, and that vancomycin effects on bacterial biochemical contents are unevenly distributed between peripheral and central areas of bacterial masses. Infrared microspectroscopy is useful to study the activity of antibacterial agents against bacteria in tissues. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Synthesis, electronic structure investigation of 3-pentyl-2,6-di(furan-2-yl)piperidin-4-one by FT-IR, FT-Raman and UV-Visible spectral studies and ab initio/DFT calculations.

    Science.gov (United States)

    Arockia Doss, M; Savithiri, S; Rajarajan, G; Thanikachalam, V; Anbuselvan, C

    2015-12-05

    FT-IR and FT-Raman spectra of 3-pentyl-2,6-di(furan-2-yl) piperidin-4-one (3-PFPO) were recorded in the solid phase. The structural and spectroscopic analyses of 3-PFPO were made by using B3LYP/HF level with 6-311++G(d, p) basis set. The fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Comparison of the observed fundamental vibrational frequencies of 3-PFPO with calculated results by HF and DFT methods indicates that B3LYP is superior to HF method for molecular vibrational problems. The electronic properties such as excitation energies, oscillator strength, wavelengths and HOMO-LUMO energies were obtained by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E((2))) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen, oxygen and hydrogen were calculated using B3LYP/6-311++G(d, p) level theory. Moreover, thermodynamic properties (heat capacities, entropy and enthalpy) of the title compound at different temperatures were calculated in gas phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2013-01-15

    Transmission mode is one of the most common sampling methods for FT-IR spectroscopic imaging because the spectra obtained generally have a reasonable signal-to-noise ratio. However, dispersion and refraction of infrared light occurs when samples are sandwiched between infrared windows or placed underneath a layer of liquid. Dispersion and refraction cause infrared light to focus with different focal lengths depending on the wavelength (wavenumber) of the light. As a result, images obtained are in focus only at a particular wavenumber while they are defocused at other wavenumber values. In this work, a solution to correct this spread of focus by means of adding a lens on top of the infrared transparent window, such that a pseudo hemisphere is formed, has been investigated. Through this lens (or pseudo hemisphere), refraction of light is removed and the light across the spectral range has the same focal depth. Furthermore, the lens acts as a solid immersion objective and an increase of both magnification and spatial resolution (by 1.4 times) is demonstrated. The spatial resolution was investigated using an USAF resolution target, showing that the Rayleigh criterion can be achieved, as well as a sample with a sharp polymer interface to indicate the spatial resolution that can be expected in real samples. The reported approach was used to obtain chemical images of cross sections of cancer tissue and hair samples sandwiched between infrared windows showing the versatility and applicability of the method. In addition to the improved spatial resolution, the results reported herein also demonstrate that the lens can reduce the effect of scattering near the edges of tissue samples. The advantages of the presented approach, obtaining FT-IR spectroscopic images in transmission mode with the same focus across all wavenumber values and simultaneous improvement in spatial resolution, will have wide implications ranging from studies of live cells to sorption of drugs into tissues.

  1. Evaluation of Salmon Adhesion on PET-Metal Interface by ATR, FT-IR, and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    E. Zumelzu

    2015-01-01

    Full Text Available The material employed in this study is an ecoefficient, environmentally friendly, chromium (VI-free (noncarcinogenic metal polymer. The originality of the research lies in the study of the effect of new production procedures of salmon on metal packaging with multilayer polyethylene terephthalate (PET polymer coatings. Our hypothesis states that the adhesion of postmortem salmon muscles to the PET polymer coating produces surface and structural changes that affect the functionality and limit the useful life of metal containers, compromising therefore their recycling capacity as ecomaterials. This work is focused on studying the effects of the biochemical changes of postmortem salmon on the PET coating and how muscle degradation favors adhesion to the container. The experimental design considered a series of laboratory tests of containers simulating the conditions of canned salmon, chemical and physical tests of food-contact canning to evaluate the adhesion, and characterization of changes in the multilayer PET polymer by electron microscopy, ATR, FT-IR, and Raman spectroscopy analyses. The analyses determined the effect of heat treatment of containers on the loss of freshness of canned fish and the increased adhesion to the container wall, and the limited capability of the urea treatment to remove salmon muscle from the container for recycling purposes.

  2. Matrix-isolation and solid state low temperature FT-IR study of 2,3-butanedione (diacetyl)

    Science.gov (United States)

    Gómez-Zavaglia, A.; Fausto, R.

    2003-12-01

    2,3-Butanedione (diacetyl) was studied by matrix-isolation and low temperature solid state FT-IR spectroscopy, supported by molecular orbital calculations undertaken at the DFT(B3LYP) and MP2 levels of theory with the 6-311++G(d,p) basis set. Both in the crystalline phase and in the matrices, the compound exists in the C 2h symmetry trans conformation (OC-CO dihedral angle of 180°). This form corresponds to the single conformational state predicted by the theoretical calculations for the compound in vacuum. However, in the low temperature amorphous state, obtained by fast deposition of the vapour of the compound onto a suitable cold (9 K) substrate, as well as in the liquid and gaseous phases, spectroscopic features are observed that can only be explained by assuming that conformations without an inversion centre ( C 2 symmetry) do also contribute to the spectra. These results are in agreement with the experimental evidence that diacetyl has a permanent dipole moment (ca.1 Debye) in the vapour phase at room temperature and are here explained taking into consideration the influence of the low frequency large amplitude torsional vibration around the central C-C bond on the molecular properties.

  3. Real time observation of proteolysis with Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy: Watching a protease eat a protein

    Science.gov (United States)

    Güler, Günnur; Džafić, Enela; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2011-06-01

    Fourier transform infrared (FT-IR)- and UV-circular dichroism (UV-CD) spectroscopy have been used to study real-time proteolytic digestion of β-lactoglobulin (β-LG) and β-casein (β-CN) by trypsin at various substrate/enzyme ratios in D 2O-buffer at 37 °C. Both techniques confirm that protein substrate looses its secondary structure upon conversion to the peptide fragments. This perturbation alters the backbone of the protein chain resulting in conformational changes and degrading of the intact protein. Precisely, the most significant spectral changes which arise from digestion take place in the amide I and amide II regions. The FT-IR spectra for the degraded β-LG show a decrease around 1634 cm -1, suggesting a decrease of β-sheet structure in the course of hydrolysis. Similarly, the intensity around the 1654 cm -1 band decreases for β-CN digested by trypsin, indicating a reduction in the α-helical part. On the other hand, the intensity around ˜1594 cm -1 and ˜1406 cm -1 increases upon enzymatic breakdown of both substrates, suggesting an increase in the antisymmetric and symmetric stretching modes of free carboxylates, respectively, as released digestion products. Observation of further H/D exchange in the course of digestion manifests the structural opening of the buried groups and accessibility to the core of the substrate. On the basis of the UV-CD spectra recorded for β-LG and β-CN digested by trypsin, the unordered structure increases concomitant with a decrease in the remaining structure, thus, revealing breakdown of the intact protein into smaller fragments. This model study in a closed reaction system may serve as a basis for the much more complex digestion processes in an open reaction system such as the stomach.

  4. Application of PCA and SIMCA statistical analysis of FT-IR spectra for the classification and identification of different slag types with environmental origin.

    Science.gov (United States)

    Stumpe, B; Engel, T; Steinweg, B; Marschner, B

    2012-04-03

    In the past, different slag materials were often used for landscaping and construction purposes or simply dumped. Nowadays German environmental laws strictly control the use of slags, but there is still a remaining part of 35% which is uncontrolled dumped in landfills. Since some slags have high heavy metal contents and different slag types have typical chemical and physical properties that will influence the risk potential and other characteristics of the deposits, an identification of the slag types is needed. We developed a FT-IR-based statistical method to identify different slags classes. Slags samples were collected at different sites throughout various cities within the industrial Ruhr area. Then, spectra of 35 samples from four different slags classes, ladle furnace (LF), blast furnace (BF), oxygen furnace steel (OF), and zinc furnace slags (ZF), were determined in the mid-infrared region (4000-400 cm(-1)). The spectra data sets were subject to statistical classification methods for the separation of separate spectral data of different slag classes. Principal component analysis (PCA) models for each slag class were developed and further used for soft independent modeling of class analogy (SIMCA). Precise classification of slag samples into four different slag classes were achieved using two different SIMCA models stepwise. At first, SIMCA 1 was used for classification of ZF as well as OF slags over the total spectral range. If no correct classification was found, then the spectrum was analyzed with SIMCA 2 at reduced wavenumbers for the classification of LF as well as BF spectra. As a result, we provide a time- and cost-efficient method based on FT-IR spectroscopy for processing and identifying large numbers of environmental slag samples.

  5. Determinação quantitativa da concentração de silicone em antiespumantes por espectroscopia FT-IR / ATR e calibração multivariada Quantitative determination of silicone in antifoaming products by FT-IR / ATR spectroscopy and multivariate calibration

    Directory of Open Access Journals (Sweden)

    Marcelo H. F. Garcia

    2004-12-01

    Full Text Available Neste trabalho apresentamos uma alternativa para a dosagem do teor de silicone (polidimetilsiloxano em antiespumantes por meio da técnica de espectroscopia no infravermelho com transformada de Fourier (FT-IR, com a utilização do acessório de reflectância total atenuada (ATR. Os espectros foram registrados na faixa espectral de 2500 a 780 cm-1, com resolução de 4 cm-1 e 128 varreduras. A calibração de um modelo linear por meio da utilização do método de mínimos quadrados parciais (PLS aplicado aos espectros foi capaz de determinar satisfatoriamente a concentração de silicone nas amostras. Este método é de extrema importância para indústrias produtoras de antiespumantes siliconados, uma vez que o desempenho de tais produtos geralmente é avaliado em função da viscosidade dos mesmos. Muitas vezes no processo de fabricação de tais produtos ocorre uma homogeneização incompleta do silicone no solvente, o que leva a resultados de viscosidade que não são representativos das amostras analisadas. A determinação da concentração do teor de silicone é uma importante ferramenta para o Controle Estatístico de Processo (CEP, pois evita o desperdício de matérias-primas empregadas na fabricação dos antiespumantes.This work presents an alternative method to determine the concentration of silicone (polydimethylsiloxane in antifoaming products using Fourier Transformed Infrared Spectroscopy (FT-IR with the attenuated total reflectance (ATR accessory. The spectra were recorded in the range from 2500 to 780 cm-1, with a resolution of 4 cm-1 and 128 scans. With calibration of a linear model using PLS regression method applied to spectral data we were able to determine the silicone concentration in the samples. This method may be useful for antifoaming producers since the performance of such products generally is evaluated as a function of their viscosity. Moreover, during manufacturing an incomplete homogenization of silicone in the

  6. Synthesis, geometry optimization, spectroscopic investigations (UV/Vis, excited states, FT-IR) and application of new azomethine dyes

    Science.gov (United States)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Kumar, Rakesh; Dikusar, Evgenij; Yahyaei, Hooriye; Khaleghian, Mehrnoosh

    2017-11-01

    In the present work, the quantum theoretical calculations of the molecular structures of the four new synthesized azomethine dyes such as: (E)-N-(4-butoxybenzylidene)-4-((E)-phenyldiazenyl)aniline (PAZB-6), (E)-N-(4-(benzyloxy)benzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-7), 4-((E)-4-((E)-phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-8), (E)-N-(4-methoxybenzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-9) have been predicted using Density Functional Theory in the solvent Dimethylformamide. The geometries of the azomethine dyes were optimized by PBE1PBE/6-31+G* level of theory. The electronic spectra of the title compounds in the solvent DMF was carried out by TDPBE1PBE/6-31+G* method. FT-IR spectra of the title compounds are recorded and discussed. Frontier molecular orbitals, molecular electrostatic potential, electronic properties, natural charges and Natural Bond Orbital (NBO) analysis of the mentioned compounds were investigated and discussed by theoretical calculations. The azomethine dyes were synthesized after quantum chemical modeling for optical applications. A new study of anisotropy of thermal and electrical conductivity of the colored stretched PVA-films have been undertaken.

  7. Midinfrared FT-IR as a Tool for Monitoring Herbaceous Biomass Composition and Its Conversion to Furfural

    Directory of Open Access Journals (Sweden)

    Anna Maria Raspolli Galletti

    2015-01-01

    Full Text Available A semiquantitative analysis by means of midinfrared FT-IR spectroscopy was tuned for the simultaneous determination of cellulose, hemicellulose, and lignin in industrial crops such as giant reed (Arundo donax L. and switchgrass (Panicum virgatum L.. Ternary mixtures of pure cellulose, hemicellulose, and lignin were prepared and a direct correlation area/concentration was achieved for cellulose and lignin, whereas indirect correlations were found for hemicellulose quantification. Good correspondences between the values derived from our model and those reported in the literature or obtained according to the official Van Soest method were ascertained. Average contents of 40–45% of cellulose, 20–25% of hemicellulose, and 20–25% of lignin were obtained for different samples of giant reed species. In the case of switchgrass, a content of 36% of cellulose, 28% of hemicellulose, and 26% of lignin was achieved. This analysis was also carried out on giant reed and switchgrass residues after a mild hydrolysis step carried out with dilute hydrochloric acid for the production of furfural with good yield. Reasonable compositional data were obtained, thus allowing an indirect monitoring which helps the optimization of the hydrothermal pretreatment for furfural production from hemicellulose fractions.

  8. Low temperature FT-IR and molecular orbital study of N,N-dimethylglycine methyl ester: Proof for different ground conformational states in gas phase and in condensed media

    OpenAIRE

    Gómez-Zavaglia, A.; Fausto, R.

    2002-01-01

    N,N-dimethylglycine methyl ester (DMG-Me) was studied by FT-IR spectroscopy under several experimental conditions, including low temperature solid state and isolated in low temperature inert gas matrices, and by molecular orbital calculations. In agreement with the theoretical predictions, the experimental data show that in the gaseous phase the most stable conformer (ASC) has the ester group in cis configuration and the N–C–CO and Lp–N–C–C (Lp=lone electron pair) dihedral angles equal to 0° ...

  9. FT-IR spectroelectrochemical study of the reduction of 1,4-dinitrobenzene on Au electrode: Hydrogen bonding and protonation in proton donor mixed media

    International Nuclear Information System (INIS)

    Tian Dexiang; Jin Baokang

    2011-01-01

    Highlights: → 1,4-Dinitrobenzene electrochemical reduction on the Au electrode is explored. → Radical anion (PNB· - ) is found both in aprotic media and in proton donors mixed media. → The H-bonding forming between PNB· - , PNB 2- and proton donors in low donors concentration. → The protonation of PNB 2- occurs in high concentration proton donor mixed media. - Abstract: The electrochemical behavior of 1,4-dinitrobenzene (1,4-PNB) on the Au electrode was investigated by cyclic voltammetry (CV), in situ FT-IR spectroelectrochemistry, cyclic voltabsorptometry (CVA) and derivative cyclic voltabsorptometry (DCVA) techniques. In aprotic media, 1,4-dinitrobenzene is reversibly reduced in two-step one-electron transfer. A series of IR absorption bands at 1056, 1210, 1341, 1356, 1464 and 1549 cm -1 , tracing to PNB; PNB· - and PNB 2- are observed. In the presence of proton donors mixed media, with increasing concentrations of proton donors, hydrogen-bonding and protonation process are found successively. The values of combining proton donors with per PNB 2- to form hydrogen-bonding are estimated by using electrochemical parameters. The result of forming aromatic nitroso compound is supported by tracing the change of IR absorption bands at 1149 and 1587 cm -1 at high concentration of proton donors. Based on CVA and DCVA techniques, it is clearly distinguished that the mechanisms of electrochemical reduction of PNB are elaborated in different systems.

  10. Forensic Hair Differentiation Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy.

    Science.gov (United States)

    Manheim, Jeremy; Doty, Kyle C; McLaughlin, Gregory; Lednev, Igor K

    2016-07-01

    Hair and fibers are common forms of trace evidence found at crime scenes. The current methodology of microscopic examination of potential hair evidence is absent of statistical measures of performance, and examiner results for identification can be subjective. Here, attenuated total reflection (ATR) Fourier transform-infrared (FT-IR) spectroscopy was used to analyze synthetic fibers and natural hairs of human, cat, and dog origin. Chemometric analysis was used to differentiate hair spectra from the three different species, and to predict unknown hairs to their proper species class, with a high degree of certainty. A species-specific partial least squares discriminant analysis (PLSDA) model was constructed to discriminate human hair from cat and dog hairs. This model was successful in distinguishing between the three classes and, more importantly, all human samples were correctly predicted as human. An external validation resulted in zero false positive and false negative assignments for the human class. From a forensic perspective, this technique would be complementary to microscopic hair examination, and in no way replace it. As such, this methodology is able to provide a statistical measure of confidence to the identification of a sample of human, cat, and dog hair, which was called for in the 2009 National Academy of Sciences report. More importantly, this approach is non-destructive, rapid, can provide reliable results, and requires no sample preparation, making it of ample importance to the field of forensic science. © The Author(s) 2016.

  11. Spectroscopic studies (FT-IR, FT-Raman, UV-Visible), normal co-ordinate analysis, first-order hyperpolarizability and HOMO, LUMO studies of 3,4-dichlorobenzophenone by using Density Functional Methods.

    Science.gov (United States)

    Venkata Prasad, K; Samatha, K; Jagadeeswara Rao, D; Santhamma, C; Muthu, S; Mark Heron, B

    2015-01-01

    The vibrational frequencies of 3,4-dichlorobenzophenone (DCLBP) were obtained from the FT-IR and Raman spectral data, and evaluated based on the Density Functional Theory using the standard method B3LYP with 6-311+G(d,p) as the basis set. On the basis of potential energy distribution together with the normal-co-ordinate analysis and following the scaled quantum mechanical force methodology, the assignments for the various frequencies were described. The values of the electric dipole moment (μ) and the first-order hyperpolarizability (β) of the molecule were computed. The UV-absorption spectrum was also recorded to study the electronic transitions. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The NBO analysis, to study the intramolecular hyperconjugative interactions, was carried out. Mulliken's net charges were evaluated. The MEP and thermodynamic properties were also calculated. The electron density-based local reactivity descriptor, such as Fukui functions, was calculated to explain the chemical selectivity or reactivity site in 3,4-dichlorobenzophenone. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Conversion of Natural Aldehydes from Eucalyptus citriodora, Cymbopogon citratus, and Lippia multiflora into Oximes: GC-MS and FT-IR Analysis †

    Directory of Open Access Journals (Sweden)

    Igor W. Ouédraogo

    2009-08-01

    Full Text Available Three carbonyl-containing extracts of essential oils from Eucalyptus citriodora (Myrtaceae, Cymbopogon citratus (Gramineae and Lippia multiflora (Verbenaceae were used for the preparation of oximes. The reaction mixtures were analyzed by GC-MS and different compounds were identified on the basis of their retention times and mass spectra. We observed quantitative conversion of aldehydes to their corresponding oximes with a purity of 95 to 99%. E and Z stereoisomers of the oximes were obtained and separated by GC-MS. During GC analysis, the high temperature in the injector was shown to cause partial dehydratation of oximes and the resulting nitriles were readily identified. Based on FT-IR spectroscopy, that revealed the high stability and low volatility of these compounds, the so-obtained oximes could be useful for future biological studies.

  13. Cellular injury evidenced by impedance technology and infrared microspectroscopy

    Science.gov (United States)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2015-03-01

    Fourier Transform Infrared (FTIR) spectroscopy is finding increasing biological application, for example in the analysis of diseased tissues and cells, cell cycle studies and investigating the mechanisms of action of anticancer drugs. Cancer treatment studies routinely define the types of cell-drug responses as either total cell destruction by the drug (all cells die), moderate damage (cell deterioration where some cells survive) or reversible cell cycle arrest (cytostasis). In this study the loss of viability and related chemical stress experienced by cells treated with the medicinal plant, Plectranthus ciliatus, was investigated using real time cell electronic sensing (RT-CES) technology and FTIR microspectroscopy. The use of plants as medicines is well established and ethnobotany has proven that crude extracts can serve as treatments against various ailments. The aim of this study was to determine whether FTIR microspectroscopy would successfully distinguish between different types of cellular injury induced by a potentially anticancerous plant extract. Cervical adenocarcinoma (HeLa) cells were treated with a crude extract of Pciliatus and cells monitored using RT-CES to characterize the type of cellular responses induced. Cell populations were then investigated using FTIR microspectroscopy and statistically analysed using One-way Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The plant extract and a cancer drug control (actinomycin D) induced concentration dependent cellular responses ranging from nontoxic, cytostatic or cytotoxic. Thirteen spectral peaks (915 cm-1, 933 cm-1, 989 cm-1, 1192 cm-1, 1369 cm-1, 1437 cm-1, 1450 cm-1, 1546 cm-1, 1634 cm-1, 1679 cm-1 1772 cm-1, 2874 cm-1 and 2962 cm-1) associated with cytotoxicity were significantly (p value < 0.05, one way ANOVA, Tukey test, Bonferroni) altered, while two of the bands were also indicative of early stress related responses. In PCA, poor separation between nontoxic and cytostatic

  14. Attenuated total reflection design for in situ FT-IR spectroelectrochemical studies

    International Nuclear Information System (INIS)

    Visser, Hendrik; Curtright, Aimee E.; McCusker, James K.; Sauer, Kenneth

    2000-01-01

    A versatile spectroelectrochemical apparatus is introduced to study the changes in IR spectra of organic and inorganic compounds upon oxidation or reduction. The design is based on an attenuated total reflection (ATR) device, which permits the study of a wide spectral range of 16,700 cm-1 (600 nm) - 250 cm-1 with a small opaque region of 2250 - 1900 cm-1. In addition, an IR data collection protocol is introduced to deal with electrochemically non-reversible background signals. This method is tested with ferrocene in acetonitrile, producing results that agree with those in the literature

  15. Advantages of TOF-SIMS analysis of hydroxyapatite and fluorapatite in comparison with XRD, HR-TEM and FT-IR.

    Science.gov (United States)

    Okazaki, Masayuki; Hirata, Isao; Matsumoto, Takuya; Takahashi, Junzo

    2005-12-01

    The chemical analysis of hydroxyapatite and fluorapatite was carried out using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Hydroxyapatite and fluorapatite were synthesized at 80 +/- 1 degrees C and pH 7.4 +/- 0.2. Fluorapatite was better crystallized, with its (300) reflection shifted to a slightly higher angle. High-resolution transmission electron microscopy clearly revealed a typical, regular hexagonal cross section perpendicular to the c-axis for fluorapatite and a flattened hexagonal cross section for hydroxyapatite. FT-IR spectra of fluorapatite confirmed the absence of OH absorption peak--which was seen in hydroxyapatite at about 3570 cm(-1). TOF-SIMS mass spectra showed a peak at 40 amu due to calcium. In addition, a peak at 19 amu due to fluorine could be clearly seen, although the intensities of PO, PO2, and PO3 were very low. It was confirmed that TOF-SIMS clearly showed the differences between positive and negative mass spectra of hydroxyapatite and fluorapatite, especially for F-. We concluded that TOF-SIMS exhibited distinct advantages compared with other methods of analysis.

  16. Total sulfur determination in residues of crude oil distillation using FT-IR/ATR and variable selection methods

    Science.gov (United States)

    Müller, Aline Lima Hermes; Picoloto, Rochele Sogari; Mello, Paola de Azevedo; Ferrão, Marco Flores; dos Santos, Maria de Fátima Pereira; Guimarães, Regina Célia Lourenço; Müller, Edson Irineu; Flores, Erico Marlon Moraes

    2012-04-01

    Total sulfur concentration was determined in atmospheric residue (AR) and vacuum residue (VR) samples obtained from petroleum distillation process by Fourier transform infrared spectroscopy with attenuated total reflectance (FT-IR/ATR) in association with chemometric methods. Calibration and prediction set consisted of 40 and 20 samples, respectively. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). Different treatments and pre-processing steps were also evaluated for the development of models. The pre-treatment based on multiplicative scatter correction (MSC) and the mean centered data were selected for models construction. The use of siPLS as variable selection method provided a model with root mean square error of prediction (RMSEP) values significantly better than those obtained by PLS model using all variables. The best model was obtained using siPLS algorithm with spectra divided in 20 intervals and combinations of 3 intervals (911-824, 823-736 and 737-650 cm-1). This model produced a RMSECV of 400 mg kg-1 S and RMSEP of 420 mg kg-1 S, showing a correlation coefficient of 0.990.

  17. Pressure effects on the structure, kinetic, and thermodynamic properties of heat-induced aggregation of protein studied by FT-IR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Y [Applied Chemistry Department, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Okuno, A [Research Department 3, Central Research, Bridgestone Co. Kodaira, Tokyo 187-8531 (Japan); Kato, M, E-mail: taniguti@sk.ritsumei.ac.j [Pharmaceutical Sciences Department, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2010-03-01

    Pressure can retrain the heat-induced aggregation and dissociate the heat-induced aggregates. We observed the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by FT-IR spectroscopy. The results suggest the {alpha}-helical structure collapses at the beginning of heat-induced aggregation through the swollen structure, and then the rearrangement of structure to the intermolecular {beta}-sheet takes place through partially unfolded structure. We determined the activation volume for the heat-induced aggregation ({Delta}V'' = +93 ml/mol) and the partial molar volume difference between native state and heat-induced aggregates ({Delta}V=+32 ml/mol). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular {beta}-sheet is unfavorable under high pressure.

  18. Carotenoid levels in human lymphocytes, measured by Raman microspectroscopy

    NARCIS (Netherlands)

    Ramanauskaite, R B; SegersNolten, IGMJ; DeGrauw, K J; Sijtsema, N M; VanderMaas, L; Greve, J; Otto, C; Figdor, C G

    1997-01-01

    Carotenoid levels in lymphocytes obtained from peripheral blood of healthy people have been investigated by Raman microspectroscopy. We observed that carotenoids are concentrated in so-called ''Gall bodies''. The level of carotenoids in living human lymphocytes was found to be age-dependent and to

  19. Effect of the nickel precursor on the impregnation and drying of γ-Al2O3 catalyst bodies: a UV-vis and IR micro-spectroscopic study

    NARCIS (Netherlands)

    Espinosa Alonso, L.; de Jong, K.P.; Weckhuysen, B.M.

    2008-01-01

    The elemental preparation steps of impregnation and drying of Ni/g-Al2O3 catalyst bodies have been studied by combining UV-vis and IR microspectroscopy. The influence of the number of chelating ligands in [Ni(en)x(H2O)6-2x]2+ precursor complexes (with en ) ethylenediamine and x ) 0-3) has been

  20. Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR insights, electronic profiling and DFT computations on ({(E-[3-(1H-imidazol-1-yl-1-phenylpropylidene] amino}oxy(4-nitrophenylmethanone, an imidazole-bearing anti-Candida agent

    Directory of Open Access Journals (Sweden)

    Al-Wahaibi Lamya H.

    2018-02-01

    Full Text Available The anti-Candida agent, ({(E-[3-(1H-imidazol-1-yl-1-phenylpropylidene]amnio}oxy(4-nitropheny methanone (IPAONM, was subjected to comprehensive spectroscopic (FT-IR, FT-Raman, UV–Vis 1H and 13C NMR characterization as well as Hartree Fock and density functional theory computation studies. The selected optimized geometric bond lengths and bond angles of the IPAONM molecule were compared with the experimental values. The calculated wavenumbers have been scaled and compared with the experimental spectra. Mulliken charges and natural bond orbital analysis of the title molecule were calculated and interpreted. The energy and oscillator strengths of the IPAONM molecule were calculated by time-dependent density functional theory (TD-DFT. In addition, frontier molecular orbitals and molecular electrostatic potential diagram of the title compound were computed and analyzed. A study on the electronic properties, such as HOMO, HOMO-1, LUMO and LUMO+1 energies was carried out using TD-DFT approach. The 1H and 13C NMR chemical shift values of the title compound were calculated by the gauge independent atomic orbital method and compared with the experimental results.

  1. 2DCOS and PCMW2D analysis of FT-IR/ATR spectra measured at variable temperatures on-line to a polyurethane polymerization

    Science.gov (United States)

    Schuchardt, Patrick; Unger, Miriam; Siesler, Heinz W.

    2018-01-01

    In the present communication the potential of 2DCOS analysis and the spin-off technique perturbation-correlation moving window 2D (PCMW2D) analysis is illustrated with reference to spectroscopic changes observed in a data set recorded by in-line fiber-coupled FT-IR spectroscopy in the attenuated total reflection (ATR) mode during a polyurethane solution polymerization at different temperatures. In view of the chemical functionalities involved, hydrogen bonding plays an important role in this polymerization reaction. Based on the 2DCOS and PCMW2D analysis, the sequence of hydrogen bonding changes accompanying the progress of polymerization and precipitation of solid polymer can be determined. Complementary to the kinetic data derived from the original variable-temperature spectra in a previous publication the results provide a more detailed picture of the investigated solution polymerization.

  2. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Liu, Hong-xia; Sun, Su-qin; Lv, Guang-hua; Chan, Kelvin K. C.

    2006-05-01

    In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.

  3. Archaeometric investigation of red-figured pottery fragments from Gioiosa Guardia (Messina, Sicily) by INAA, FT-IR and TOF-ND techniques

    International Nuclear Information System (INIS)

    Barilaro, D.; Crupi, V.; Interdonato, S.

    2008-01-01

    The present work is addressed to the study of some precious ancient pottery fragments, coming from the archaeological site of Gioiosa Guardia, in the Tirrenean Coast of Sicily. On the basis of historical and aesthetic considerations, the findings are dated back to 6.-5. Century b.C. and show a surface entirely decorated by red-figured technique, typical of Attic production. Many doubts arise about the real provenance of the artefacts. On one side, they could come directly from Greece, as attested by trading patterns between Greece and Southern Italy, on the other side, they could be produced in Sicily under the Greek artistic influence. In order to obtain a detailed characterization of the samples, a microdistruttive investigation was performed by Instrumental Neutron Activation Analysis (INAA), Fourier transform infrared absorption (FT-IR) and a non-invasive analysis by time-of-flight neutron diffraction (TOF-ND). Starting from the identification of the mineralogical and geochemical composition, a correct classification of the shards can be achieved.

  4. Identification of monoclinic calcium pyrophosphate dihydrate and hydroxyapatite in human sclera using Raman microspectroscopy

    DEFF Research Database (Denmark)

    Chen, Ko-Hua; Li, Mei-Jane; Cheng, Wen-Ting

    2009-01-01

    Raman microspectroscopy was first used to determine the composition of a calcified plaque located at the pterygium-excision site of a 51-year-old female patient's left nasal sclera after surgery. It was unexpectedly found that the Raman spectrum of the calcified sample at 1149, 1108, 1049, 756, 5...... to the characteristic peak at 958/cm of hydroxyapatite (HA). This is the first study to report the spectral biodiagnosis of both monoclinic CPPD and HA co-deposited in the calcified plaque of a patient with sclera dystrophic calcification using Raman microspectroscopy....

  5. Volatility-dependent 2D IR correlation analysis of traditional Chinese medicine ‘Red Flower Oil’ preparation from different manufacturers

    Science.gov (United States)

    Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Tao, Jia-Xun; Noda, Isao

    2008-06-01

    As a traditional Chinese medicine (TCM), 'Red Flower Oil' preparation is widely used as a household remedy in China and Southeast Asia. Usually, the preparation is a mixture of several plant essential oils with different volatile features, such as wintergreen oil, turpentine oil and clove oil. The proportions of these plant essential oils in 'Red Flower Oil' vary from different manufacturers. Thus, it is important to develop a simple and rapid evaluation method for quality assurance of the preparations. Fourier transform infrared (FT-IR) was applied and two-dimensional correlation infrared spectroscopy (2D IR) based on the volatile characteristic of samples was used to enhance the resolution of FT-IR spectra. 2D IR technique could, not only easily provide the composition and their volatile sequences in 'Red flower Oil' preparations, but also rapidly discriminate the subtle differences in products from different manufacturers. Therefore, FT-IR combined with volatility-dependent 2D IR correlation analysis provides a very fast and effective method for the quality control of essential oil mixtures in TCM.

  6. Detection of tautomer proportions of dimedone in solution: a new approach based on theoretical and FT-IR viewpoint

    Science.gov (United States)

    Karabulut, Sedat; Namli, Hilmi; Leszczynski, Jerzy

    2013-08-01

    Molecular structures of stable tautomers of dimedone [5,5-dimethyl-cyclohexane-1,3-dione ( 1) and 3-hydroxy-5,5-dimethylcyclohex-2-enone ( 2)] were optimized and vibrational frequencies were calculated in five different organic solvents (dimethylsulfoxide, methanol, acetonitrile, dichloromethane and chloroform). Geometry optimizations and harmonic vibrational frequency calculations were performed at DFT 6-31+G(d,p), DFT 6-311++G(2d,2p), MP2 6-311++G (2d,2p) and MP2 aug-cc-pVDZ levels for both stable forms of dimedone. Experimental FT-IR spectra of dimedone have also been recorded in the same solvents. A new approach was developed in order to determine tautomers' ratio using both experimental and theoretical data in Lambert-Beer equation. Obtained results were compared with experimental results published in literature. It has been concluded that while DFT 6-31+G(d,p) method provides accurate enol ratio in DMSO, MeOH, and DCM, in order to obtain accurate results for the other solvents the MP2 aug-cc-pVDZ level calculations should be used for CH3CN and CHCl3 solutions.

  7. Cold atmospheric-pressure plasma and bacteria: understanding the mode of action using vibrational microspectroscopy

    International Nuclear Information System (INIS)

    Kartaschew, Konstantin; Mischo, Meike; Bründermann, Erik; Havenith, Martina; Baldus, Sabrina; Awakowicz, Peter

    2016-01-01

    Cold atmospheric-pressure plasma show promising antimicrobial effects, however the detailed biochemical mechanism of the bacterial inactivation is still unknown. We investigated, for the first time, plasma-treated Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacteria with Raman and infrared microspectroscopy. A dielectric barrier discharge was used as a plasma source. We were able to detect several plasma-induced chemical modifications, which suggest a pronounced oxidative effect on the cell envelope, cellular proteins and nucleotides as well as a generation of organic nitrates in the treated bacteria. Vibrational microspectroscopy is used as a comprehensive and a powerful tool for the analysis of plasma interactions with whole organisms such as bacteria. Analysis of reaction kinetics of chemical modifications allow a time-dependent insight into the plasma-mediated impact. Investigating possible synergistic effects between the plasma-produced components, our observations strongly indicate that the detected plasma-mediated chemical alterations can be mainly explained by the particle effect of the generated reactive species. By changing the polarity of the applied voltage pulse, and hence the propagation mechanisms of streamers, no significant effect on the spectral results could be detected. This method allows the analysis of the individual impact of each plasma constituent for particular chemical modifications. Our approach shows great potential to contribute to a better understanding of plasma-cell interactions. (paper)

  8. Vibrational spectroscopic (FT-IR, FT-Raman) and quantum mechanical study of 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno[3,2-f] [1,2,4]triazolo[4,3-a][1,4] diazepine

    Science.gov (United States)

    Kuruvilla, Tintu K.; Prasana, Johanan Christian; Muthu, S.; George, Jacob

    2018-04-01

    The spectroscopic properties of 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno [3,2-f] [1,2,4] triazolo [4,3-a] [1,4] diazepine were investigated in the present study using FT-IR and FT-Raman techniques. The results obtained were compared with quantum mechanical methods, as it serves as an important tool in interpreting and predicting vibrational spectra. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and Raman scattering were calculated using density functional theory B3LYP method with 6-311++g (d,p) basis set. All the experimental results were in line with the theoretical data. The molecular electrostatic potential (MEP) and HOMO LUMO energies of the title compound were accounted. The results indicated that the title compound has a lower softness value (0.27) and high electrophilicity index (4.98) hence describing its biological activity. Further, natural bond orbital was also analyzed as part of the work. Fukui functions were calculated in order to explain the chemical selectivity or the reactivity site in 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno [3,2-f] [1,2,4] triazolo [4,3-a] [1,4] diazepine. The thermodynamic properties of the title compound were closely examined at different temperatures. It revealed the correlations between heat capacity (C), entropy (S) and enthalpy changes (H) with temperatures. The paper further explains that the title compound can act as good antidepressant through molecular docking studies.

  9. Raman microspectroscopy of algal lipid bodies: beta-carotene quantification

    Czech Academy of Sciences Publication Activity Database

    Pilát, Zdeněk; Bernatová, Silvie; Ježek, Jan; Šerý, Mojmír; Samek, Ota; Zemánek, Pavel; Nedbal, Ladislav; Trtílek, M.

    2012-01-01

    Roč. 24, č. 3 (2012), s. 541-546 ISSN 0921-8971 R&D Projects: GA MPO FR-TI1/433; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 ; RVO:67179843 Keywords : Raman microspectroscopy * Microalgae * Trachydiscus minutus * Biotechnology * Carotenoids Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.326, year: 2012

  10. Quantum mechanical study of the structure and spectroscopic (FT-IR, FT-Raman, 13C, 1H and UV), first order hyperpolarizabilities, NBO and TD-DFT analysis of the 4-methyl-2-cyanobiphenyl.

    Science.gov (United States)

    Sebastian, S; Sundaraganesan, N; Karthikeiyan, B; Srinivasan, V

    2011-02-01

    The Fourier transform infrared (FT-IR) and FT-Raman of 4-methyl-2-cyanobiphenyl (4M2CBP) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies have been investigated with the help of density functional theory (DFT) method. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge including atomic orbital (GIAO) method. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of 4M2CBP are calculated using HF/6-311G(d,p) method on the finite-field approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies (E2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. A Rapid Method of Crude Oil Analysis Using FT-IR Spectroscopy

    African Journals Online (AJOL)

    HP USER

    Nigerian Journal of Basic and Applied Science (June,2016), 24(1): 47-55 ... ABSTRACT: This study determines the viability of the use of Fourier Transform ... IR spectra of Crude oil sample containing a mixture of both degraded (sample 151).

  12. The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue.

    Science.gov (United States)

    Caine, Sally; Heraud, Philip; Tobin, Mark J; McNaughton, Donald; Bernard, Claude C A

    2012-02-15

    In the last two decades the field of infrared spectroscopy has seen enormous advances in both instrumentation and the development of bioinformatic methods for spectral analysis, allowing the examination of a large variety of healthy and diseased samples, including biological fluids, isolated cells, whole tissues, and tissue sections. The non-destructive nature of the technique, together with the ability to directly probe biochemical changes without the addition of stains or contrast agents, enables a range of complementary analyses. This review focuses on the application of Fourier transform infrared (FTIR) microspectroscopy to analyse central nervous system tissues, with the aim of understanding the biochemical and structural changes associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, transmissible spongiform encephalopathies, multiple sclerosis, as well as brain tumours. Modern biospectroscopic methods that combine FTIR microspectroscopy with bioinformatic analysis constitute a powerful new methodology that can discriminate pathology from normal healthy tissue in a rapid, unbiased fashion, with high sensitivity and specificity. Notably, the ability to detect protein secondary structural changes associated with Alzheimer's plaques, neurons in Parkinson's disease, and in some spectra from meningioma, as well as in the animal models of Alzheimer's disease, transmissible spongiform encephalopathies, and multiple sclerosis, illustrates the power of this technology. The capacity to offer insight into the biochemical and structural changes underpinning aetio-pathogenesis of diseases in tissues provides both a platform to investigate early pathologies occurring in a variety of experimentally induced and naturally occurring central nervous system diseases, and the potential to evaluate new therapeutic approaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Sandia SWiFT Wind Turbine Manual.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jonathan; LeBlanc, Bruce Philip; Berg, Jonathan Charles; Bryant, Joshua; Johnson, Wesley D.; Paquette, Joshua

    2016-01-01

    The Scaled Wind Farm Technology (SWiFT) facility, operated by Sandia National Laboratories for the U.S. Department of Energy's Wind and Water Power Program, is a wind energy research site with multiple wind turbines scaled for the experimental study of wake dynamics, advanced rotor development, turbine control, and advanced sensing for production-scale wind farms. The SWiFT site currently includes three variable-speed, pitch-regulated, three-bladed wind turbines. The six volumes of this manual provide a detailed description of the SWiFT wind turbines, including their operation and user interfaces, electrical and mechanical systems, assembly and commissioning procedures, and safety systems. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE programmatic authority. 111 UNCLASSIFIED UNLIMITED RELEASE Sandia SWiFT Wind Turbine Manual (SAND2016-0746 ) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Site Supervisor Dave Mitchell (6121) Date Note: Document revision logs are found after the title page of each volume of this manual. iv

  14. Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, UV-Visible) study, potential energy surface scan, Fukui function analysis and HOMO-LUMO analysis of 3-tert-butyl-4-methoxyphenol by DFT methods.

    Science.gov (United States)

    Saravanan, S; Balachandran, V

    2014-09-15

    This study represents an integral approach towards understanding the electronic and structural aspects of 3-tert-butyl-4-methoxyphenol (TBMP). Fourier-transform Infrared (FT-IR) and Fourier-transform Raman (FT-Raman) spectra of TBMP was recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) methods using 6-311++G (d,p) basis set. The most stable conformer of TBMP was identified from the computational results. The assignments of vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of TBMP have been discussed. The stability and charge delocalization of the molecule was studied by Natural Bond Orbital (NBO) analysis. UV-Visible spectrum and effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach with B3LYP/6-311++G (d,p) level of theory. The molecule orbital contributions are studied by density of energy states (DOSs). The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MEP). Mulliken analysis of atomic charges is also calculated. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacities, standard entropy and standard enthalpy changes with temperatures. Global hardness, global softness, global electrophilicity and ionization potential of the title compound are determined. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Ft-Ir Spectroscopic Analysis of Potsherds Excavated from the First Settlement Layer of Kuriki Mound, Turkey

    Science.gov (United States)

    Bayazit, Murat; Isik, Iskender; Cereci, Sedat; Issi, Ali; Genc, Elif

    The region covering Southeastern Anatolia takes place in upper Mesopotamia, so it has numerous cultural heritages due to its witness to various social movements of different civilizations in ancient times. Kuruki Mound is located on the junction point of Tigris River and Batman Creek, near Oymatas village which is almost 15 km to Batman, Turkey. The mound is dated back to Late Chalcolithic. Archaeological excavations are carried out on two hills named as “Kuriki Mound-1” and “Kuriki Mound-2” in which 4-layer and 2-layer settlements have been revealed, respectively. This region will be left under the water by the reservoir lake of Ilısu Dam when its construction is completed. Thus, characterization of ancient materials such as potsherds, metals and skeleton ruins should be rapidly done. In this study, 12 potsherds excavated from Layer-1 (the first settlement layer after the surface) in Kuriki Mound-2 were investigated by FT-IR spectrometry. Energy dispersive X-ray fluorescence (EDXRF) and X-ray diffraction (XRD) analyses were used as complementary techniques in order to expose chemical and mineralogical/phase contents, respectively. Obtained results showed that the potteries have been produced with calcareous clays and they include moderate amounts of MgO, K2O, Na2O and Fe2O3 in this context. Additionally, high temperature phases have also been detected with XRD analyses in some samples.

  16. Vibrational frequency analysis, FT-IR, DFT and M06-2X studies on tert-Butyl N-(thiophen-2yl)carbamate

    Science.gov (United States)

    Sert, Yusuf; Singer, L. M.; Findlater, M.; Doğan, Hatice; Çırak, Ç.

    2014-07-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized tert-Butyl N-(thiophen-2yl)carbamate have been investigated. The experimental FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with the 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The vibrational frequencies have been assigned using potential energy distribution (PED) analysis by using VEDA 4 software. The computational optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with related literature results. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and are depicted.

  17. Synthesis, molecular structure, FT-IR and XRD investigations of 2-(4-chlorophenyl)-2-oxoethyl 2-chlorobenzoate: a comparative DFT study.

    Science.gov (United States)

    Chidan Kumar, C S; Fun, Hoong Kun; Tursun, Mahir; Ooi, Chin Wei; Chandraju, Siddegowda; Quah, Ching Kheng; Parlak, Cemal

    2014-04-24

    2-(4-Chlorophenyl)-2-oxoethyl 2-chlorobenzoate has been synthesized, its structural and vibrational properties have been reported using FT-IR and single-crystal X-ray diffraction (XRD) studies. The conformational analysis, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of the synthesized compound (C15H10Cl2O3) have been examined by means of Becke-3-Lee-Yang-Parr (B3LYP) density functional theory (DFT) method together with 6-31++G(d,p) basis set. Furthermore, reliable conformational investigation and vibrational assignments have been made by the potential energy surface (PES) and potential energy distribution (PED) analyses, respectively. Calculations are performed with two possible conformations. The title compound crystallizes in orthorhombic space group Pbca with the unit cell dimensions a=12.312(5) Å, b=8.103(3) Å, c=27.565(11) Å, V=2750.0(19) Å(3). B3LYP method provides satisfactory evidence for the prediction of vibrational wavenumbers and structural parameters. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Characterization of soil organic matter by FT-IR spectroscopy and its relationship with chlorpyrifos sorption.

    Science.gov (United States)

    Parolo, María Eugenia; Savini, Mónica Claudia; Loewy, Ruth Miriam

    2017-07-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (K OC ) assuming that the main factor that influences the amount sorbed is the organic carbon content (OC) of the soil. However, K OC can vary across a range of soils. The influence of certain soil characteristics on the chlorpyrifos K OC values variation for 12 representative soils of the Northpatagonian Argentinian region with different physicochemical properties was investigated for this study. The chlorpyrifos sorption coefficients normalized by the OC content were experimentally obtained using the batch equilibrium method; the K OC values ranged between 9000-20,000 L kg -1 . The soil characteristics assessed were pH, clay content and spectral data indicative of soil organic matter (SOM) quality measured by FT-IR on the whole soil. The bands considered in the spectroscopic analyses were those corresponding to the aliphatic components, 2947-2858 cm -1 (band A) and the hydrophilic components, 1647-1633 cm -1 (band B). A significant relationship was found (R 2  = 0.66) between chlorpyrifos sorption (K OC ) and the variables pH and A/B height band ratio. The correlation between the values predicted by the derived model and the experimental data was significant (r = 0.89 p chlorpyrifos sorption coefficient through the use of a simple, rapid, and environmentally-friendly measurement. K OC analysis in relation to soil properties represents a valuable contribution to the understanding of the attenuation phenomena of the organic contaminants off-site migration in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Teaching Experience: How to Make and Use PowerPoint-Based Interactive Simulations for Undergraduate IR Teaching

    Science.gov (United States)

    Meibauer, Gustav; Aagaard Nøhr, Andreas

    2018-01-01

    This article is about designing and implementing PowerPoint-based interactive simulations for use in International Relations (IR) introductory undergraduate classes based on core pedagogical literature, models of human skill acquisition, and previous research on simulations in IR teaching. We argue that simulations can be usefully employed at the…

  20. Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells.

    Science.gov (United States)

    Okuno, Masanari; Hamaguchi, Hiro-o

    2010-12-15

    We have developed a multifocus confocal Raman microspectroscopic system for the fast multimode vibrational imaging of living cells. It consists of an inverted microscope equipped with a microlens array, a pinhole array, a fiber bundle, and a multichannel Raman spectrometer. Forty-eight Raman spectra from 48 foci under the microscope are simultaneously obtained by using multifocus excitation and image-compression techniques. The multifocus confocal configuration suppresses the background generated from the cover glass and the cell culturing medium so that high-contrast images are obtainable with a short accumulation time. The system enables us to obtain multimode (10 different vibrational modes) vibrational images of living cells in tens of seconds with only 1 mW laser power at one focal point. This image acquisition time is more than 10 times faster than that in conventional single-focus Raman microspectroscopy.

  1. Application of fiber-optic attenuated total reflection-FT-IR methods for in situ characterization of protein delivery systems in real time.

    Science.gov (United States)

    McFearin, Cathryn L; Sankaranarayanan, Jagadis; Almutairi, Adah

    2011-05-15

    A fiber-optic coupled attenuated total reflection (ATR)-FT-IR spectroscopy technique was applied to the study of two different therapeutic delivery systems, acid degradable hydrogels and nanoparticles. Real time exponential release of a model protein, human serum albumin (HSA), was observed from two different polymeric hydrogels formulated with a pH sensitive cross-linker. Spectroscopic examination of nanoparticles formulated with an acid degradable polymer shell and encapsulated HSA exhibited vibrational signatures characteristic of both particle and payload when exposed to lowered pH conditions, demonstrating the ability of this methodology to simultaneously measure phenomena arising from a system with a mixture of components. In addition, thorough characterization of these pH sensitive delivery vehicles without encapsulated protein was also accomplished in order to separate the effects of the payload during degradation. When in situ, real time detection in combination with the ability to specifically identify different components in a mixture without involved sample preparation and minimal sample disturbance is provided, the versatility and suitability of this type of experiment for research in the pharmaceutical field is demonstrated.

  2. Raman micro-spectroscopy analysis of different sperm regions: a species comparison.

    Science.gov (United States)

    Amaral, S; Da Costa, R; Wübbeling, F; Redmann, K; Schlatt, S

    2018-04-01

    Is Raman micro-spectroscopy a valid approach to assess the biochemical hallmarks of sperm regions (head, midpiece and tail) in four different species? Non-invasive Raman micro-spectroscopy provides spectral patterns enabling the biochemical characterization of the three sperm regions in the four species, revealing however high similarities for each region among species. Raman micro-spectroscopy has been described as an innovative method to assess sperm features having the potential to be used as a non-invasive selection tool. However, except for nuclear DNA, the identification and assignment of spectral bands in Raman-profiles to the different sperm regions is scarce and controversial. Raman spectra from head, midpiece and tail of four different species were obtained. Sperm samples were collected and smeared on microscope slides. Air dried samples were subjected to Raman analysis using previously standardized procedures. Sperm samples from (i) two donors attending the infertility clinic at the Centre of Reproductive Medicine and Andrology; (ii) two C57BL/6 -TgN (ACTbEGFP) 1Osb adult mice; (iii) two adult Cynomolgus monkeys (Macaca fascicularis) and (iv) two sea urchins (Arbacia punctulata) were used to characterize and compare their spectral profiles. Differences and similarities were confirmed by principal component analysis (PCA). Several novel region-specific peaks were identified. The three regions could be differentiated by distinctive Raman patterns irrespective of the species. However, regardless of the specie, their main spectral pattern remains mostly unchanged. These results were corroborated by the PCA analysis and suggest that the basic constituents of spermatozoa are biochemically similar among species. Further research should be performed in live sperm to validate the detected spectral bands and their use as markers of distinctive regions. Raman peaks that have never been described in the sperm cell were detected. Particularly important are those that

  3. Quantum chemical modeling of new derivatives of (E,E)-azomethines: Synthesis, spectroscopic (FT-IR, UV/Vis, polarization) and thermophysical investigations

    Science.gov (United States)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Anatol'evich, Dikusar Evgenij; Yahyaei, Hooriye

    2017-06-01

    In the present work, the molecular structures of three new azomethine dyes: N-benzylidene-4-((E)-phenyldiazenyl)aniline (PAZB-1), 2-methoxy-4-(((4-((E)- phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-2) and 2-methoxy-5-((E)-((4-((E)- phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-8) have been predicted and investigated using Density Functional Theory (DFT) in dimethylformamide (DMF). The geometries of the azomethine dyes were optimized by PBE0/6-31 + G* level of theory. The electronic spectra of these azomethine dyes in a DMF solution was carried out by TDPBE0/6-31 + G* method. After quantum-chemical calculations three new azomethine dyes for optoelectronic applications were synthesized. FT-IR spectra of the title compounds are recorded and discussed. The computed absorption spectral data of the azomethine dyes are in good agreement with the experimental data, thus allowing an assignment of the UV/Vis spectra. On the basis of polyvinyl alcohol (PVA) and the new synthesized azomethine dyes polarizing films for Visible region of spectrum were developed. The main optical parameters of polarizing PVA-films (Transmittance, Polarization Efficiency and Dichroic Ratio) have been measured and discussed. Anisotropy of thermal conductivity of the PVA-films has been studied.

  4. A classification model for non-alcoholic steatohepatitis (NASH) using confocal Raman micro-spectroscopy

    Science.gov (United States)

    Yan, Jie; Yu, Yang; Kang, Jeon Woong; Tam, Zhi Yang; Xu, Shuoyu; Fong, Eliza Li Shan; Singh, Surya Pratap; Song, Ziwei; Tucker Kellogg, Lisa; So, Peter; Yu, Hanry

    2017-07-01

    We combined Raman micro-spectroscopy and machine learning techniques to develop a classification model based on a well-established non-alcoholic steatohepatitis (NASH) mouse model, using spectrum pre-processing, biochemical component analysis (BCA) and logistic regression.

  5. FT-IR spectra of the anti-HIV nucleoside analogue d4T (Stavudine). Solid state simulation by DFT methods and scaling by different procedures

    Science.gov (United States)

    Alcolea Palafox, M.; Kattan, D.; Afseth, N. K.

    2018-04-01

    A theoretical and experimental vibrational study of the anti-HIV d4T (stavudine or Zerit) nucleoside analogue was carried out. The predicted spectra in the three most stable conformers in the biological active anti-form of the isolated state were compared. Comparison of the conformers with those of the natural nucleoside thymidine was carried out. The calculated spectra were scaled by using different scaling procedures and three DFT methods. The TLSE procedure leads to the lowest error and is thus recommended for scaling. With the population of these conformers the IR gas-phase spectra were predicted. The crystal unit cell of the different polymorphism forms of d4T were simulated through dimer forms by using DFT methods. The scaled spectra of these dimer forms were compared. The FT-IR spectrum was recorded in the solid state in the 400-4000 cm-1 range. The respective vibrational bands were analyzed and assigned to different normal modes of vibration by comparison with the scaled vibrational values of the different dimer forms. Through this comparison, the polymorphous form of the solid state sample was identified. The study indicates that d4T exist only in the ketonic form in the solid state. The results obtained were in agreement with those determined in related anti-HIV nucleoside analogues.

  6. Ferutinin as a Ca(2+) complexone: lipid bilayers, conductometry, FT-IR, NMR studies and DFT-B3LYP calculations.

    Science.gov (United States)

    Dubis, A; Zamaraeva, M V; Siergiejczyk, L; Charishnikova, O; Shlyonsky, V

    2015-10-07

    Calcium ionophoretic properties of ferutinin were re-evaluated in solvent-containing bilayer lipid membranes. The slopes of conductance-concentration curves suggest that in the presence of a solvent in the membrane the majority of complexes appear to consist of a single terpenoid molecule bound to one Ca ion. By contrast, the stoichiometry of ferutinin-Ca(2+) complexes in acetone determined using the conductometric method was 2 : 1. While the cation-cation selectivity of ferutinin did not change, the cation-anion selectivity slightly decreased in solvent containing membranes. FT-IR and NMR data together with DFT calculations at the B3LYP/6-31G(d) level of theory indicate that in the absence of Ca ions ferutinin molecules are hydrogen-bonded at the phenol hydroxyl groups. The variations of absorption assigned to -OH and -C-O stretching mode suggest that ferutinin interacts strongly with Ca ions via the hydroxyl group of ferutinol and carboxyl oxygen of the complex ether bond. The coordination through the carbonyl group of ferutinin was demonstrated by theoretical calculations. Taken together, ferutinin molecules form H-bonded dimers, while complexation of Ca(2+) by ferutinin ruptures this hydrogen bond due to spatial re-orientation of the ferutinin molecules from parallel to antiparallel alignment.

  7. A simplification of the deuterium oxide dilution technique using FT-IR analysis of plasma, for estimating piglet milk intake

    International Nuclear Information System (INIS)

    Glencross, B.D.; Tuckey, R.C.; Hartmann, P.E.; Mullan, B.P.

    1997-01-01

    Previous studies estimating milk intake using deuterium oxide (D 2 O) as a tracer have required sublimation of the sample fluid (usually plasma) to remove solids and retrieve total water. This procedure has been simplified by directly measuring the D 2 O content of plasma with a Fourier transform-infrared (FT-IR) spectrometer, removing the requirement for sample sublimation. Comparisons of samples that were split and then analysed as water of sublimation and as total plasma were performed. It was found that the direct analysis of the plasma could be achieved without a loss in fidelity of the results (sublimated v. plasma, r 2 = 0.976; n = 26). Linearity of assay standards was very high (r 2 > 0.997). The modified technique was used to determine the milk intake by piglets from litters of 7 sows during established lactation (Days 10-15). Water turnover (WTO) was shown to be the primary point by which differences in the piglet milk intakes were influenced. Differences in the milk composition had minimal effect on the milk intake determinations. Milk intake by each piglet was shown to be strongly correlated to piglet growth (r 2 = 0.59, P 2 = 0.84, P < 0.01). Copyright (1997) CSIRO Australia

  8. Elastic properties and structural studies on some zinc-borate glasses derived from ultrasonic, FT-IR and X-ray techniques

    International Nuclear Information System (INIS)

    Gaafar, M.S.; El-Aal, N.S. Abd; Gerges, O.W.; El-Amir, G.

    2009-01-01

    Glasses in the system (1 - x) [29Na 2 O- 4Al 2 O 3 - 67B 2 O 3 ]- xZnO (0 ≤ x ≤ 35 mol%), have been prepared by the melt quenching technique. Elastic properties, X-ray and FT-IR spectroscopic studies have been employed to study the role of ZnO on the structure of the investigated glass system. Elastic properties and Debye temperature have been investigated using sound wave velocity measurements at 4 MHz at room temperature. The results showed that the density increases and the molar volume decreases while both sound velocities and the determined glass transition temperatures decrease with increase in x. X-ray and infrared spectra of the glasses reveal that the borate network consists of diborate units and is affected by the increase in the concentration of ZnO content. These results are interpreted in terms of the decrease in the N 4 values (fraction of tetrahedral coordinated boron atoms), and substitution of longer bond lengths of Zn-O in place of shorter B-O bond. The results indicate that Zinc ions have been substituted for boron ions as tetrahedral network former ions. The elastic moduli are observed to increase with the increase of ZnO content.

  9. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation

    Science.gov (United States)

    Allen, Christian Harry; Kumar, Achint; Qutob, Sami; Nyiri, Balazs; Chauhan, Vinita; Murugkar, Sangeeta

    2018-01-01

    Recent findings in populations exposed to ionizing radiation (IR) indicate dose-related lens opacification occurs at much lower doses (micro-spectroscopy was used to investigate the effects of varying doses of radiation, ranging from 0.01 Gy to 5 Gy, on human lens epithelial (HLE) cells which were chemically fixed 24 h post-irradiation. Raman spectra were acquired from the nucleus and cytoplasm of the HLE cells. Spectra were collected from points in a 3  ×  3 grid pattern and then averaged. The raw spectra were preprocessed and principal component analysis followed by linear discriminant analysis was used to discriminate between dose and control for 0.25, 0.5, 2, and 5 Gy. Using leave-one-out cross-validation accuracies of greater than 74% were attained for each dose/control combination. The ultra-low doses 0.01 and 0.05 Gy were included in an analysis of band intensities for Raman bands found to be significant in the linear discrimination, and an induced repair model survival curve was fit to a band-difference-ratio plot of this data, suggesting HLE cells undergo a nonlinear response to low-doses of IR. A survival curve was also fit to clonogenic assay data done on the irradiated HLE cells, showing a similar nonlinear response.

  10. Analysis of 19th century ceramic fragments excavated from Pirenópolis (Goiás, Brazil) using FT-IR, Raman, XRF and SEM

    Science.gov (United States)

    Freitas, Renato P.; Coelho, Filipe A.; Felix, Valter S.; Pereira, Marcelo O.; de Souza, Marcos André Torres; Anjos, Marcelino J.

    2018-03-01

    This study used Raman, FT-IR and XRF spectroscopy and SEM to analyze ceramic fragments dating from the 19th century, excavated from an old farm in the municipality of Pirenópolis, Goiás, Brazil. The results show that the samples were produced in an open oven at a firing temperature below 500 °C, using raw materials including kaolinite, hematite, magnetite, quartz, microcline, albite, anhydrite, calcite, illite, orthoclase and MnO2. Although the analyses showed similarities in the manufacturing process and the presence of many minerals was common in all samples, multivariate statistical methods (PCA) allowed a more detailed assessment of similarities and differences in the mineral composition of the samples. The results of the PCA showed that the samples excavated in one of the slave quarters (senzalas) group with those excavated at the farmhouse, where the landowner lived, which indicates a paternalistic attitude towards captives, including the sharing of ceramic materials of everyday use.

  11. Fourier transform infrared microspectroscopy for the analysis of the biochemical composition of C. elegans worms.

    Science.gov (United States)

    Sheng, Ming; Gorzsás, András; Tuck, Simon

    2016-01-01

    Changes in intermediary metabolism have profound effects on many aspects of C. elegans biology including growth, development and behavior. However, many traditional biochemical techniques for analyzing chemical composition require relatively large amounts of starting material precluding the analysis of mutants that cannot be grown in large amounts as homozygotes. Here we describe a technique for detecting changes in the chemical compositions of C. elegans worms by Fourier transform infrared microspectroscopy. We demonstrate that the technique can be used to detect changes in the relative levels of carbohydrates, proteins and lipids in one and the same worm. We suggest that Fourier transform infrared microspectroscopy represents a useful addition to the arsenal of techniques for metabolic studies of C. elegans worms.

  12. Microspectroscopy of spectral biomarkers associated with human corneal stem cells

    OpenAIRE

    Nakamura, Takahiro; Kelly, Jemma G.; Trevisan, J?lio; Cooper, Leanne J.; Bentley, Adam J.; Carmichael, Paul L.; Scott, Andrew D.; Cotte, Marine; Susini, Jean; Martin-Hirsch, Pierre L.; Kinoshita, Shigeru; Fullwood, Nigel J.; Martin, Francis L.

    2010-01-01

    Purpose Synchrotron-based radiation (SRS) Fourier-transform infrared (FTIR) microspectroscopy potentially provides novel biomarkers of the cell differentiation process. Because such imaging gives a ?biochemical-cell fingerprint? through a cell-sized aperture, we set out to determine whether distinguishing chemical entities associated with putative stem cells (SCs), transit-amplifying (TA) cells, or terminally-differentiated (TD) cells could be identified in human corneal epithelium. Methods D...

  13. Physicochemical characterization by AFM, FT-IR and DSC and biological assays of a promising antileishmania delivery system loaded with a natural Brazilian product.

    Science.gov (United States)

    Marquele-Oliveira, Franciane; Torres, Elina Cassia; Barud, Hernane da Silva; Zoccal, Karina Furlani; Faccioli, Lúcia Helena; Hori, Juliana I; Berretta, Andresa Aparecida

    2016-05-10

    The control and treatment of Leishmaniasis, a neglected and infectious disease affecting approximately 12 million people worldwide, are challenging. Leishmania parasites multiply intracellularly within macrophages located in deep skin and in visceral tissues, and the currently employed treatments for this disease are subject to significant drawbacks, such as resistance and toxicity. Thus, the search for new Leishmaniasis treatments is compulsory, and Ocotea duckei Vattimo, a plant-derived product from the biodiverse Brazilian flora, may be a promising new treatment for this disease. In this regard, the aim of this work was to develop and characterize a delivery system based on solid lipid nanoparticles (SLN) that contain the liposoluble lignan fraction (LF) of Ocotea duckei Vattimo, which targets the Leishmania phagolysosome of infected macrophages. LF-loaded SLNs were obtained via the hot microemulsion method, and their physical and chemical properties were comprehensively assessed using PCS, AFM, SEM, FT-IR, DSC, HPLC, kinetic drug release studies, and biological assays. The size of the developed delivery system was 218.85±14.2 nm, its zeta potential was -30 mV and its entrapment efficiency (EE%) was high (the EEs% of YAN [yangambin] and EPI-YAN [epi-yangambin] markers were 94.21±0.40% and 94.20±0.00%, respectively). Microscopy, FT-IR and DSC assays confirmed that the delivery system was nanosized and indicated a core-shell encapsulation model, which corroborated the measured kinetics of drug release. The total in vitro release rates of YAN and EPI-YAN in buffer (with sink conditions attained) were 29.6±8.3% and 34.3±8.9%, respectively, via diffusion through the cellulose acetate membrane of the SLN over a period of 4 h. After 24 h, the release rates of both markers reached approximately 45%, suggesting a sustained pattern of release. Mathematical modeling indicated that both markers, YAN and EPI-YAN, followed matrix diffusion-based release kinetics (Higuchi

  14. Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal.

    Science.gov (United States)

    Memon, Jamil R; Memon, Saima Q; Bhanger, M I; Memon, G Zuhra; El-Turki, A; Allen, Geoffrey C

    2008-10-15

    This study describes the use of banana peel, a commonly produced fruit waste, for the removal of Cd(II) from environmental and industrial wastewater. The banana peel was characterized by FT-IR and scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) analysis. The parameters pH, contact time, initial metal ion concentration and temperature were investigated and found to be rapid ( approximately 97% within 10 min). The Langmuir adsorption isotherm was used to describe partitioning behavior for the system at room temperature. The value of Q(L) was found to be (35.52 mg g(-1)) higher than the previously reported materials. The binding of metal ions was found to be pH-dependent with the optimal sorption occurring at pH 8. The retained species were eluted with 5 mL of 5 x 10(-3)M HNO(3) with the detection limit of 1.7 x 10(-3)mg L(-1). Kinetics of sorption followed the pseudo-first-order rate equation with the rate constant k, equal to 0.13+/-0.01 min(-1). Thermodynamic parameters such as Gibbs free energy at 303K (-7.41+/-0.13 kJ mol(-1)) and enthalpy (40.56+/-2.34 kJ mol(-1)) indicated the spontaneous and endothermic nature of the sorption process. The developed method was utilized for the removal of Cd(II) ions from environmental and industrial wastewater samples using flame atomic absorption spectrophotometer (FAAS).

  15. Speciation of organic matter in sandy soil size fractions as revealed by analytical pyrolysis (Py-GC/MS) and FT-IR spectroscopy

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Jordán, Antonio; Zavala, Lorena M.; de la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    This research deals with the assessment of organic matter structural differences in soil physical fractions before and after lipid extractions. Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: 0.05-0.25 mm) were studied from each soil. . In addition, the two fractions from each soil were exhaustively Soxhlet extracted with a Dichlorometane-Methanol (3:1) mixture to obtain the lipid-free fractions (LF) from each size fraction (LFC and LFF). The composition of the organic matter at a molecular level in the different soil fractions was approached by analytical pyrolysis (Py-GC/MS) and FT-IR spectroscopy. These techniques are complementary and have been found suitable for the structural characterization of complex organic matrices (Moldoveanu, 1998; Piccolo and Stevenson, 1982); whereas Py-GC/MS provides detailed structural information of individual compounds present and a finger-printing of soil organic matter, FT-IR is informative about major functional groups present. The advantages of these techniques are well known: no need for pretreatment are fast to perform, highly reproducible and only small amount of samples are needed. Soil size fractions show contrasting differences in organic matter content (C 4-7 % and F > 40 %) and conspicuous differences were found in the pyrolysis products released by the fractions studied. The main families of pyrolysis compounds have well defined macromolecular precursors, such as lignin, polypeptides, polysaccharides and lipids (González-Vila et al., 2001). The C fractions yield higher relative abundance of lignin and polysaccharide derived pyrolysis compounds. Regarding the differences in the soil organic matter as affected by the different vegetation covers

  16. Study on condition monitoring techniques for low voltage electrical cables in nuclear power plants

    International Nuclear Information System (INIS)

    Hirao, Hideo; Sakai, Takeshi; Kajimura, Yuusaku

    2017-01-01

    Low voltage electrical cables installed in nuclear power plants are required to maintain its function in a design basis accident environment and they are qualified to that environment. The cables degrade also in normal operating conditions due to ageing and they must maintain integrity until the end of their qualified life. Demands for the condition monitoring technique for low voltage electrical cables have therefore been increasing as nuclear power plants operate longer. A single perfect method for this purpose is not available yet, but the possibility to use two different types of methods which can complement with each other has been examined. The combination of Fourier Transform Infrared Spectroscopy (FT-IR) and Indenter Modulus (IM) method was found highly effective. FT-IR is a method that determines chemical properties (changes in molecular bindings) of cables by using infrared rays, while IM is a method that determines mechanical properties (changes in hardness) of cables by indenters. Both methods are non-destructive and can be applied in-situ to the same material. Reliability of the evaluation can be assured by applying two different types of measurement principles that complement with each other. In this study, various cable samples with different kinds of insulation material (cross-linked polyethylene, ethylene propylene rubber, silicone rubber etc.) were aged with a special accelerated ageing technique which applies simultaneous thermal and radiation ageing to simulate ageing phenomena in a more realistic manner, and the degree of ageing was evaluated with FT-IR and IM. The evaluation result shows good correlation with ageing time and other ageing properties for most material types and the effectiveness of these methods were demonstrated. (author)

  17. Biosorption of malachite green onto Haematococcus pluvialis observed through synchrotron-FTIR microspectroscopy.

    Science.gov (United States)

    Liu, J H; Zhang, L; Zha, D C; Chen, L Q; Chen, X X; Qi, Z M

    2018-06-28

    Microalgae have emerged as promising biosorbents for the treatment of malachite green in wastewater. However, the underlying mechanism for the biosorption of malachite green onto microalgae is still unclear and needs further intensive study. In this work, synchrotron Fourier-transform infrared (synchrotron-FTIR) microspectroscoy in combination with biochemical assay is employed to evaluate malachite green removal efficiency (95.2%, 75.6% and 66.5%) by three stages of Haematococcus pluvialis. Meanwhile, the various vital changes of algal cells including lipids, proteins, polysaccharides and carotenoids, is distinguished and quantified in situ. This study illustrates that synchrotron-FTIR microspectroscopy is an effective and powerful tool to scrutinize the mechanism for the interactions between the malachite green dye and microalgal cells and it even provides an effective and none-invasive new approach to screen potentially proper biosorbents for the removal of dyes from wastewater. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. IAEA/NEA incident reporting system (IRS). Reporting guidelines. Feedback from safety related operating experience for nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    The Incident Reporting System (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Cooperation and Development (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants (NPPs) which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance which occur at these plants. The purpose of these guidelines, which supersede the previous IAEA Safety Series No. 93 (Part II) and the NEA IRS guidelines, is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating nuclear power plants. These guidelines have been jointly developed and approved by the NEA/IAEA

  19. Identification of monoclinic calcium pyrophosphate dihydrate and hydroxyapatite in human sclera using Raman microspectroscopy.

    Science.gov (United States)

    Chen, Ko-Hua; Li, Mei-Jane; Cheng, Wen-Ting; Balic-Zunic, Tonci; Lin, Shan-Yang

    2009-02-01

    Raman microspectroscopy was first used to determine the composition of a calcified plaque located at the pterygium-excision site of a 51-year-old female patient's left nasal sclera after surgery. It was unexpectedly found that the Raman spectrum of the calcified sample at 1149, 1108, 1049, 756, 517, 376 and 352/cm was similar to the Raman spectrum of monoclinic form of calcium pyrophosphate dihydrate (CPPD) crystal, but differed from the Raman spectrum of triclinic form of CPPD. An additional peak at 958/cm was also observed in the Raman spectrum of the calcified plaque, which was identical to the characteristic peak at 958/cm of hydroxyapatite (HA). This is the first study to report the spectral biodiagnosis of both monoclinic CPPD and HA co-deposited in the calcified plaque of a patient with sclera dystrophic calcification using Raman microspectroscopy.

  20. Aplicação de FT-MIR e FT-NIR ao estudo de reação de cura de sistemas epoxídicos FT-IR MIR and FT-NIR applied to the study of reaction of epoxy systems

    Directory of Open Access Journals (Sweden)

    Benedita M. V. Romão

    2004-09-01

    Full Text Available A reação de cura entre amostras de resina epoxídica (EP e compostos à base de mercaptana (SH, amino-fenol e amina modificada foi estudada nas regiões espectrais do infravermelho médio (MIR e próximo (NIR. Observou-se, basicamente, que a espectroscopia FT-NIR evidencia melhor as alterações espectrométricas ocorridas durante as reações estudadas, permitindo detectar, inclusive, o agente de cura em menor proporção no sistema epoxídico.The cure reaction of epoxy resin (EP and curing agents based on polymercaptans (SH, amine-phenol and modified amine was studied in the MIR and NIR spectral regions. It was observed that the FT-NIR shows better the spectrometric changes of the reactions studied, which makes it possible to detect the curing agent in lower contents in epoxide systems.

  1. Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A; Treiman, Marek; Brazhe, Alexey R

    2012-01-01

    This paper presents a nonivasive approach to study redox state of reduced cytochromes [Formula: see text], [Formula: see text] and [Formula: see text] of complexes II and III in mitochondria of live cardiomyocytes by means of Raman microspectroscopy. For the first time with the proposed approach ...

  2. Application of FT-IR Absorption Spectroscopy to Characterize Waste and Bio-Fuels for Pyrolysis and Gasification

    Czech Academy of Sciences Publication Activity Database

    Kalisz, S.; Svoboda, Karel; Robak, Z.; Baxter, D.; Andersen, L. K.

    2008-01-01

    Roč. 8, - (2008), s. 51-52 ISSN 1733-4381 Institutional research plan: CEZ:AV0Z40720504 Keywords : ft-Iir spectroscopy * bio-fuels * gasification Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  3. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis

    Science.gov (United States)

    Tonannavar, J.; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B.; Patil, Nikhil A.; Mulimani, B. G.

    2016-02-01

    We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400 cm- 1) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH.

  4. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis.

    Science.gov (United States)

    Tonannavar, J; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B; Patil, Nikhil A; Mulimani, B G

    2016-02-05

    We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400c m(-1)) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Infrared microspectroscopy with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Carr, G.L.; Williams, G.P. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

    1997-09-01

    Infrared microspectroscopy with a high brightness synchrotron source can achieve a spatial resolution approaching the diffraction limit. However, in order to realize this intrinsic source brightness at the specimen location, some care must be taken in designing the optical system. Also, when operating in diffraction limited conditions, the effective spatial resolution is no longer controlled by the apertures typically used for a conventional (geometrically defined) measurement. Instead, the spatial resolution depends on the wavelength of light and the effective apertures of the microscope`s Schwarzchild objectives. The authors have modeled the optical system from the synchrotron source up to the sample location and determined the diffraction-limited spatial distribution of light. Effects due to the dependence of the synchrotron source`s numerical aperture on wavelength, as well as the difference between transmission and reflection measurement modes, are also addressed. Lastly, they examine the benefits (when using a high brightness source) of an extrinsic germanium photoconductive detector with cone optics as a replacement for the standard MCT detector.

  6. Technical Capability Upgrades to the NASA Langley Research Center 6 ft. by 6 ft. Thermal Vacuum Chamber

    Science.gov (United States)

    Thornblom, Mark N.; Beverly, Joshua; O'Connell, Joseph J.; Mau, Johnny C.; Duncan, Dwight L.

    2014-01-01

    The 6 ft. by 6 ft. thermal vacuum chamber (TVAC), housed in Building 1250 at the NASA Langley Research Center (LaRC), and managed by the Systems Integration and Test Branch within the Engineering Directorate, has undergone several significant modifications to increase testing capability, safety, and quality of measurements of articles under environmental test. Significant modifications include: a new nitrogen thermal conditioning unit for controlling shroud temperatures from -150degC to +150degC; two horizontal auxiliary cold plates for independent temperature control from -150degC to +200degC; a suite of contamination monitoring sensors for outgassing measurements and species identification; signal and power feed-throughs; new pressure gauges; and a new data acquisition and control commanding system including safety interlocks. This presentation will provide a general overview of the LaRC 6 ft. by 6 ft. TVAC chamber, an overview of the new technical capabilities, and illustrate each upgrade in detail, in terms of mechanical design and predicted performance. Additionally, an overview of the scope of tests currently being performed in the chamber will be documented, and sensor plots from tests will be provided to show chamber temperature and pressure performance with actual flight hardware under test.

  7. Rapid and simple determination of polyphyllin I, II, VI, and VII in different harvest times of cultivated Paris polyphylla Smith var. yunnanensis (Franch.) Hand.-Mazz by UPLC-MS/MS and FT-IR.

    Science.gov (United States)

    Wu, Zhe; Zhang, Ji; Xu, Furong; Wang, Yuanzhong; Zhang, Jinyu

    2017-01-01

    Paris Polyphylla Smith var. yunnanensis (Franch.) Hand.-Mazz ("Dian Chonglou" in Chinese) is a famous herbal medicine in China, which is usually well known for activities of anti-cancer, hemolysis, and cytotoxicity. In this study, Fourier transform infrared (FT-IR) spectroscopy coupled with principal component analysis (PCA) and partial least-squares regression (PLSR) was applied to discriminate samples of P. polyphylla var. yunnanensis harvested in different years and determine the content of polyphyllin I, II, VI, and VII in P. polyphylla var. yunnanensis. Meanwhile, ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to study the dynamic changes of P. polyphylla var. yunnanensis harvested in different years (4, 5, 7, 8, 9, 12, and 13 years old). According to the UPLC-MS/MS result, the optimum harvest time of P. polyphylla var. yunnanensis is 8 years, due to the highest yield of four active components. By the PCA model, P. polyphylla var. yunnanensis could be exactly discriminated, except that two 8-year-old samples were misclassified as 9-year-old samples. For the prediction of polyphyllin I, II, VI, and VII, the quantitative results are satisfactory, with a high value for the determination coefficient (R 2 ) and low values for the root-mean-square error of estimation (RMSEE), root-mean-square error of cross-validation (RMSECV), and root-mean-square error of prediction (RMSEP). In conclusion, FT-IR combined with chemometrics is a promising method to accurately discriminate samples of P. polyphylla var. yunnanensis harvested in different years and determine the content of polyphyllin I, II, VI, and VII in P. polyphylla var. yunnanensis.

  8. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy

    Science.gov (United States)

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin

    2014-07-01

    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  9. ac impedance, DSC and FT-IR investigations on (x)PVAc-(1 - x)PVdF blends with LiClO4

    International Nuclear Information System (INIS)

    Baskaran, R.; Selvasekarapandian, S.; Kuwata, N.; Kawamura, J.; Hattori, T.

    2006-01-01

    The blended polymer electrolytes comprising poly(vinyl acetate) (PVAc)-poly(vinylidene fluoride) (PVdF) have been prepared for different blend composition with constant lithium perchlorate (LiClO 4 ) ratio by solution casting technique. The formation of the blend polymer electrolyte complex has been confirmed by FT-IR spectroscopy analysis. DSC analysis has been performed in order to observe the change in transition temperature that is caused by the blending of polymers and addition of LiClO 4 . The ac impedance and dielectric spectroscopy studies are carried out on the blended matrix to identify the optimized blend composition, which is having high ionic conductivity. The temperature dependence of conductivity of the polymer electrolytes is found to follow VTF type equation. The high ionic conductivity of 6.4 x 10 -4 S cm -1 at 343 K has been observed for blended polymer electrolyte having blend ratio 75:25 (PVAc:PVdF). The ionic transference number of mobile ions has been estimated by Wagner's polarization method and the value is reported to be t ion is 0.95-0.98 for all the blended samples. The modulus spectra reveal the non-Debye nature and distribution of relaxation times of the samples. The dielectric spectra show the low frequency dispersion, which implies the space charge effects arising from the electrodes

  10. Classification of edible oils and modeling of their physico-chemical properties by chemometric methods using mid-IR spectroscopy

    Science.gov (United States)

    Luna, Aderval S.; da Silva, Arnaldo P.; Ferré, Joan; Boqué, Ricard

    This research work describes two studies for the classification and characterization of edible oils and its quality parameters through Fourier transform mid infrared spectroscopy (FT-mid-IR) together with chemometric methods. The discrimination of canola, sunflower, corn and soybean oils was investigated using SVM-DA, SIMCA and PLS-DA. Using FT-mid-IR, DPLS was able to classify 100% of the samples from the validation set, but SIMCA and SVM-DA were not. The quality parameters: refraction index and relative density of edible oils were obtained from reference methods. Prediction models for FT-mid-IR spectra were calculated for these quality parameters using partial least squares (PLS) and support vector machines (SVM). Several preprocessing alternatives (first derivative, multiplicative scatter correction, mean centering, and standard normal variate) were investigated. The best result for the refraction index was achieved with SVM as well as for the relative density except when the preprocessing combination of mean centering and first derivative was used. For both of quality parameters, the best results obtained for the figures of merit expressed by the root mean square error of cross validation (RMSECV) and prediction (RMSEP) were equal to 0.0001.

  11. Carotenoids located in human lymphocyte subpopulations and Natural Killer cells by Raman microspectroscopy

    NARCIS (Netherlands)

    Puppels, G.J.; Puppels, G.J.; Garritsen, H.S.P.; Garritsen, H.S.P.; Kummer, J.A.; Greve, Jan

    1993-01-01

    The presence and subcellular location of carotenoids in human lymphocyte sub-populations (CD4+, CD8+, T-cell receptor-γδ+, and CD19+ ) and natural killer cells (CD16+ ) were studied by means of Raman microspectroscopy. In CD4+ lymphocytes a high concentration (10-3M) of carotenoids was found in the

  12. Combustion/absorption process for the separation of {sup 14}C and {sup 3}H in radwastes released from nuclear power plants and their analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Young Gun, E-mail: ygko@kaeri.re.kr; Kim, Chang-Jong; Cho, Young Hyun; Chung, Kun Ho; Kang, Mun Ja

    2017-06-05

    Highlights: • {sup 14}CO{sub 2} and THO were produced by the combustion of radwaste samples. • The radioactivity of {sup 14}CO{sub 2} and THO absorbed sorbents were measured by LSC. • The CO{sub 2} absorption in the {sup 14}C sorbent was analyzed using by FT-IR and a rheometer. • The temperature and viscosity of the CO{sub 2} absorbed {sup 14}C sorbent was investigated. - Abstract: Radioactivities of {sup 3}H and {sup 14}C in spent radioactive ion exchange resins and spent radioactive lubricant oils released from nuclear power plants, has been determined using a combustion and sorption method (combustion method). The liquid scintillation counting (LSC) spectra showed that the interference of other radionuclides has not significantly affected the determination of radioactivities of {sup 3}H and {sup 14}C in the radwaste samples. The chemical structure of {sup 14}CO{sub 2}, which originated from the combustion of radwastes, trapped {sup 14}C sorbent has been investigated using Fourier transform infrared spectroscopy (FT-IR). FT-IR study showed interesting results that peaks for uncoupled CO{sub 2} and carbonic amide appeared at FT-IR spectra of CO{sub 2} high-absorbed {sup 14}C sorbents, while the peak for carbamate was only observed at the spectra of CO{sub 2} low-absorbed sorbents. During the CO{sub 2} sorption in {sup 14}C sorbent, temperature and viscosity of the sorbent increased owing to decrease of enthalpy and increase of apparent molecular weight of the sorbent caused by the bonding formation between sorbent molecules.

  13. Aleurone Cell Walls of Wheat Grain: High Spatial Resolution Investigation Using Synchrotron Infrared Microspectroscopy

    International Nuclear Information System (INIS)

    Jamme, F.; Robert, R.; Bouchet, B.; Saulnier, L.; Dumas, P.; Guillon, F.

    2008-01-01

    Infrared microspectroscopy and immunolabeling techniques were employed in order to obtain deeper insight into the biochemical nature of aleurone cell walls of wheat grain. The use of a synchrotron source, thanks to its intrinsic brightness, has provided unprecedented information at the level of a few micrometers and has allowed the discrimination of various polysaccharides in cell walls. The high spectral quality obtained in the small analyzed domain has been beneficial in estimating the relative proportions of Β-glucan and arabinoxylan, through the use of principal component analysis (PCA). The highest amount of Β-glucan is found in periclinal cell walls close to the starchy endosperm. The junction regions between aleurone cells are enriched in arabinoxylan. At the early stage of wheat grain development (271 degrees D), the chemical composition along the cell walls is more heterogeneous than at the mature stage. Both synchrotron infrared microspectroscopy and immunolabeling experiments made it possible to reveal the spatial heterogeneity of the various chemical compositions of aleurone cell walls.

  14. Structural, spectroscopic (FT-IR, NMR, UV-visible), nonlinear optical (NLO), cytotoxic and molecular docking studies of 4-nitro-isonitrosoacetophenone (ninapH) by DFT method

    Science.gov (United States)

    Kucuk, Ilhan; Kaya, Yunus; Kaya, A. Asli

    2017-07-01

    (4-Nitro-phenyl)-oxo-acetaldehyde oxime (ninapH) is a type of oxime, which has a oxime and α-carbonyl groups. This molecule has been synthesized from literature procedure. The structural properties and conformational behaviors were examined using the density functional theory (DFT) with the B3LYP method combined with the 6-311++G(d,p) basis set. As a result of the conformational studies, the most stable conformer was determined, and then this molecule was optimized with the same basis set. Comprehensive theoretical and experimental structural studies on the molecule have been carried out by FT-IR, NMR and UV-vis spectrometry. The calculated HOMO and LUMO energies show that charge transfer within the molecule. The first order hyperpolarizability and molecular electrostatic potential (MEP) were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the ninapH have been calculated at different temperatures, 100-1000 K. In addition, the molecular docking studies have been performed with DNA and protein structures (downloaded from Protein Data Bank).

  15. Conformational, IR spectroscopic and electronic properties of conium alkaloids and their adducts with C60 fullerene

    Science.gov (United States)

    Zabolotnyi, M. A.; Prylutskyy, Yu I.; Poluyan, N. A.; Evstigneev, M. P.; Dovbeshko, G. I.

    2016-08-01

    Conformational, IR spectroscopic and electronic properties of the components of Conium alkaloids (Conium maculatum) in aqueous environment were determined by model calculations and experiment. With the help of FT-IR spectroscopy the possibility of formation of an adduct between γ-coniceine alkaloid and C60 fullerene was demonstrated, which is important for further application of conium analogues in biomedical purposes.

  16. Energy balance in the ohmically heated FT

    International Nuclear Information System (INIS)

    Bartiromo, R.; Brusati, M.; Cilloco, F.

    1981-01-01

    A typical discharge in the FT Tokamak at 60 kG has been studied in detail in order to derive the power balance between the ohmic input and the plasma losses. Impurity and radiation losses together with ion and electron energy balance are discussed. A power transport term for electrons is derived which is ascribed to anomalous thermal conduction. This resulting thermal transport is compared with those derived from different proposed scalings

  17. Experimental (FT-IR, FT-Raman, 1H NMR) and theoretical study of magnesium, calcium, strontium, and barium picolinates.

    Science.gov (United States)

    Swiderski, G; Kalinowska, M; Wojtulewski, S; Lewandowski, W

    2006-05-01

    The experimental IR, Raman, and 1H NMR spectra of picolinic acid, as well as magnesium, calcium, strontium, and barium picolinates were registered, assigned and studied. Characteristic changes in the spectra of metal picolinates in comparison with the spectrum of ligand were observed, which lead to the conclusion that perturbation of the aromatic system of picolinates increases along with the series Mg-->Ca-->Sr-->Ba. Theoretical structures of beryllium and magnesium picolinates, as well as theoretical IR spectrum of magnesium picolinate were calculated in B3PW91/6-311++G(d, p) level. On the basis of calculated bond lengths in pyridine ring geometric, aromaticity indexes HOMA were calculated. The idea of these indexes is based on the fact that the essential factor in aromatic stabilization is the pi delocalization manifested in: planar geometry, equalization of the bond lengths and angles, and symmetry. The decidedly lower value of HOMA for magnesium picolinate (i.e. 0.545; 0.539) than that for beryllium picolinate (i.e. 0.998; 0.998) indicate higher aromatic properties of Be picolinate than of Mg picolinate. The comparison of theoretical and literature experimental structures of magnesium picolinate was done. The experimental structure contains two water molecules, so the calculations for hydrated magnesium picolinate were carried on, and the influence of coordinated water molecule on the structure of picolinates was discussed. The HOMAs for hydrated experimental and calculated Mg picolinate amount to 0.870; 0.743, and 0.900; 0.890, respectively, whereas for anhydrous structure, it is as described above, i.e. 0.545; 0.539. Thus, the calculations clearly showed that water molecules coordinated to the central atom weakens the effect of metal on the electronic system of ligand.

  18. Chapter 1.1 Crystallinity of Nanocellulose Materials by Near-IR FT-Raman Spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph

    2013-01-01

    Considering that crystallinity is one of the important properties that influence the end use of cellulose nanomaterials, it is important that the former be measured accurately. Recently, a new method based on near-IR FTRaman spectroscopy was proposed to determine cellulose I crystallinity. It was reported that in the Raman spectrum of cellulose materials, the...

  19. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    Science.gov (United States)

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Nondestructive analysis of urinary calculi using micro computed tomography

    Directory of Open Access Journals (Sweden)

    Lingeman James E

    2004-12-01

    Full Text Available Abstract Background Micro computed tomography (micro CT has been shown to provide exceptionally high quality imaging of the fine structural detail within urinary calculi. We tested the idea that micro CT might also be used to identify the mineral composition of urinary stones non-destructively. Methods Micro CT x-ray attenuation values were measured for mineral that was positively identified by infrared microspectroscopy (FT-IR. To do this, human urinary stones were sectioned with a diamond wire saw. The cut surface was explored by FT-IR and regions of pure mineral were evaluated by micro CT to correlate x-ray attenuation values with mineral content. Additionally, intact stones were imaged with micro CT to visualize internal morphology and map the distribution of specific mineral components in 3-D. Results Micro CT images taken just beneath the cut surface of urinary stones showed excellent resolution of structural detail that could be correlated with structure visible in the optical image mode of FT-IR. Regions of pure mineral were not difficult to find by FT-IR for most stones and such regions could be localized on micro CT images of the cut surface. This was not true, however, for two brushite stones tested; in these, brushite was closely intermixed with calcium oxalate. Micro CT x-ray attenuation values were collected for six minerals that could be found in regions that appeared to be pure, including uric acid (3515 – 4995 micro CT attenuation units, AU, struvite (7242 – 7969 AU, cystine (8619 – 9921 AU, calcium oxalate dihydrate (13815 – 15797 AU, calcium oxalate monohydrate (16297 – 18449 AU, and hydroxyapatite (21144 – 23121 AU. These AU values did not overlap. Analysis of intact stones showed excellent resolution of structural detail and could discriminate multiple mineral types within heterogeneous stones. Conclusions Micro CT gives excellent structural detail of urinary stones, and these results demonstrate the feasibility

  1. Development of microfluidic devices for biomedical applications of synchrotron radiation infrared microspectroscopy

    OpenAIRE

    Birarda, Giovanni

    2011-01-01

    2009/2010 ABSTRACT DEVELOPMENT OF MICROFLUIDIC DEVICES FOR BIOMEDICAL APPLICATIONS OF SYNCHROTRON RADIATION INFRARED MICROSPECTROSCOPY by Birarda Giovanni The detection and measurement of biological processes in a complex living system is a discipline at the edge of Physics, Biology, and Engineering, with major scientific challenges, new technological applications and a great potential impact on dissection of phenomena occurring at tissue, cell, and sub cellular level. The ...

  2. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, Kazuo; Nagano, Tetsushi; Nakayama, Shinichi; Muraoka, Susumu

    1992-02-01

    As a part of evaluation of the long-term durability for the overpack containers for high-level radioactive waste, we have conducted corrosion tests for carbon steel in wet bentonite, a candidate buffer material. The corrosion rates were evaluated by weight difference of carbon steel and corrosion products were analyzed by Fourier transform infrared spectroscopy (FT-IR) and colorimetry. At 40degC, the corrosion rate of carbon steel in wet bentonite was smaller than that in pure water. At 95degC, however, the corrosion rate in wet bentonite was much higher than that in pure water. This high corrosion rate in wet bentonite at 95degC was considered to result from evaporation of moisture in bentonite in contact with the metal. This evaporation led to dryness and then to shrinkage of the bentonite, which generated ununiform contact of the metal with bentonite. Probably, this ununiform contact promoted the local corrosion. The locally corroded parts of specimen in wet bentonite at 95degC were analyzed by Fourier transform infrared microspectroscopy (micro-FT-IR), and lepidocrocite γ-FeO(OH) was found as well as goethite α-FeO(OH). In wet bentonite at 95degC, hematite α-Fe 2 O 3 was identified by means of colorimetry. (author)

  3. ON-POWER DETECTION OF PIPE WALL-THINNED DEFECTS USING IR THERMOGRAPHY IN NPPS

    Directory of Open Access Journals (Sweden)

    JU HYUN KIM

    2014-04-01

    Full Text Available Wall-thinned defects caused by accelerated corrosion due to fluid flow in the inner pipe appear in many structures of the secondary systems in nuclear power plants (NPPs and are a major factor in degrading the integrity of pipes. Wall-thinned defects need to be managed not only when the NPP is under maintenance but also when the NPP is in normal operation. To this end, a test technique was developed in this study to detect such wall-thinned defects based on the temperature difference on the surface of a hot pipe using infrared (IR thermography and a cooling device. Finite element analysis (FEA was conducted to examine the tendency and experimental conditions for the cooling experiment. Based on the FEA results, the equipment was configured before the cooling experiment was conducted. The IR camera was then used to detect defects in the inner pipe of the pipe specimen that had artificially induced defects. The IR thermography developed in this study is expected to help resolve the issues related to the limitations of non-destructive inspection techniques that are currently conducted for NPP secondary systems and is expected to be very useful on the NPPs site.

  4. Copper Enhanced Monooxygenase Activity and FT-IR Spectroscopic Characterisation of Biotransformation Products in Trichloroethylene Degrading Bacterium: Stenotrophomonas maltophilia PM102

    Directory of Open Access Journals (Sweden)

    Piyali Mukherjee

    2013-01-01

    Full Text Available Stenotrophomonas maltophilia PM102 (NCBI GenBank Acc. no. JQ797560 is capable of growth on trichloroethylene as the sole carbon source. In this paper, we report the purification and characterisation of oxygenase present in the PM102 isolate. Enzyme activity was found to be induced 10.3-fold in presence of 0.7 mM copper with a further increment to 14.96-fold in presence of 0.05 mM NADH. Optimum temperature for oxygenase activity was recorded at 36∘C. The reported enzyme was found to have enhanced activity at pH 5 and pH 8, indicating presence of two isoforms. Maximum activity was seen on incubation with benzene compared to other substrates like TCE, chloroform, toluene, hexane, and petroleum benzene. Km and Vmax for benzene were 3.8 mM and 340 U/mg/min and those for TCE were 2.1 mM and 170 U/mg/min. The crude enzyme was partially purified by ammonium sulphate precipitation followed by dialysis. Zymogram analysis revealed two isoforms in the 70% purified enzyme fraction. The activity stain was more prominent when the native gel was incubated in benzene as substrate in comparison to TCE. Crude enzyme and purified enzyme fractions were assayed for TCE degradation by the Fujiwara test. TCE biotransformation products were analysed by FT-IR spectroscopy.

  5. Tianeptine, olanzapine and fluoxetine show similar restoring effects on stress induced molecular changes in mice brain: An FT-IR study

    Science.gov (United States)

    Türker-Kaya, Sevgi; Mutlu, Oğuz; Çelikyurt, İpek K.; Akar, Furuzan; Ulak, Güner

    2016-05-01

    Chronic stress which can cause a variety of disorders and illness ranging from metabolic and cardiovascular to mental leads to alterations in content, structure and dynamics of biomolecules in brain. The determination of stress-induced changes along with the effects of antidepressant treatment on these parameters might bring about more effective therapeutic strategies. In the present study, we investigated unpredictable chronic mild stress (UCMS)-induced changes in biomolecules in mouse brain and the restoring effects of tianeptine (TIA), olanzapine (OLZ) and fluoxetine (FLX) on these variations, by Fourier transform infrared (FT-IR) spectroscopy. The results revealed that chronic stress causes different membrane packing and an increase in lipid peroxidation, membrane fluidity. A significant increment for lipid/protein, Cdbnd O/lipid, CH3/lipid, CH2/lipid, PO-2/lipid, COO-/lipid and RNA/protein ratios but a significant decrease for lipid/protein ratios were also obtained. Additionally, altered protein secondary structure components were estimated, such as increment in random coils and beta structures. The administration of TIA, OLZ and FLX drugs restored these stress-induced variations except for alterations in protein structure and RNA/protein ratio. This may suggest that these drugs have similar restoring effects on the consequences of stress activity in brain, in spite of the differences in their action mechanisms. All findings might have importance in understanding molecular mechanisms underlying chronic stress and contribute to studies aimed for drug development.

  6. Synchrotron FT-IR analyses of microstructured biomineral domains: Hints to the biomineralization processes in freshwater cultured pearls.

    Science.gov (United States)

    Soldati, A. L.; Vicente-Vilas, V.; Gasharova, B.; Jacob, D. E.

    2009-04-01

    Recent investigations in freshwater cultured pearls (bio-carbonate) by micro-Raman spectroscopy (Wehrmeister et al., 2008; Soldati et al., 2008), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) imaging (Jacob et al., 2008) show that the pearl biomineralisation starts with a self assembling process in which an existing gel matrix of amorphous calcium carbonate (ACC) and organic substances reorganizes and conglomerates in small domains; these conglomerates then form prisms and mature nacreous tablets of aragonite or vaterite. Raman spectroscopy shows that the calcium carbonate polymorphs have decreasing luminescence in the order ACC>Vaterite>Aragonite, coinciding with decreasing quantities of S and P (related to the organic matrix) measured by Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and Electron Probe Micro Analyzer (EPMA). Although little is known about the process of transformation of the ACC gel into vaterite and aragonite, it is speculated that this probably involves dehydration and change of the accompanying organic matrix. This is also supported by our laboratory FT-IR analysis. However, due to the small size of the areas of ACC (about 10 ?m) and the biogenic crystals an in-situ high spatially resolved IR-method is needed to record how the water content and organic matrix change in the biomineralisation sequence, to understand which processes take place in the self-organization. The beamline IR-1 at the ANKA synchrotron source (Karlsruhe, Germany) was used for this experiment. Freshwater cultured pearls from China cultured in Hyriopsis cumingii mussels by tissue nucleation methods (so-called beadless pearls) as well as by bead implantation methods (aragonite nucleus) were studied. The pearls were cut in half with a diamond-plated saw and polished with diamond paste on a copper plate. Micro-Raman spectroscopy maps (Department of Geosciences, at the Johannes Gutenberg-University, Mainz) were generated

  7. Reconstructions of f(T) gravity from entropy-corrected holographic and new agegraphic dark energy models in power-law and logarithmic versions

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Pameli; Debnath, Ujjal [Indian Institute of Engineering Science and Technology, Department of Mathematics, Howrah (India)

    2016-09-15

    Here, we peruse cosmological usage of the most promising candidates of dark energy in the framework of f(T) gravity theory where T represents the torsion scalar teleparallel gravity. We reconstruct the different f(T) modified gravity models in the spatially flat Friedmann-Robertson-Walker universe according to entropy-corrected versions of the holographic and new agegraphic dark energy models in power-law and logarithmic corrections, which describe an accelerated expansion history of the universe. We conclude that the equation of state parameter of the entropy-corrected models can transit from the quintessence state to the phantom regime as indicated by recent observations or can lie entirely in the phantom region. Also, using these models, we investigate the different areas of the stability with the help of the squared speed of sound. (orig.)

  8. Study of Barley Grain Molecular Structure for Ruminants Using DRIFT, FTIR-ATR and Synchrotron Radiation Infrared Microspectroscopy (SR-IMS): A Review

    International Nuclear Information System (INIS)

    Yu Peiqiang

    2012-01-01

    Barley inherent structures are highly associated with nutrient utilization and availability in both humans and animals. Barley has different degradation kinetics compared with other cereal grains. It has a relatively higher degradation rate and extent, which often cause digestive disorder in the rumen. Therefore understanding barley inherent structure at cellular and molecular levels and processing-induced structure changes is important, because we can manipulate barley inherent structures and digestive behaviors. Several molecular spectroscopy techniques can be used to detect barley inherent structures at cellular and molecular levels. This article reviews several applications of the IR molecular spectral bioanalytical techniques - DRIFT, FT/IR-ATR and SR-IMS for barley chemistry, molecular structure and molecular nutrition research

  9. Identification of Contaminated Cells with Viruses, Bacteria, or Fungi by Fourier Transform Infrared Microspectroscopy

    Directory of Open Access Journals (Sweden)

    V. Erukhimovitch

    2013-01-01

    Full Text Available Fourier transform infrared microspectroscopy (FTIR-M can detect small molecular changes in cells and therefore was previously applied for the identification of different biological samples. In the present study, FTIR spectroscopy was used for the identification and discrimination of Vero cells infected with herpes viruses or contaminated with bacteria or fungi in cell culture. Vero cells in culture were infected herpes simplex virus type 1 (HSV-1 or contaminated with E. coli bacteria or Candida albicans fungi and analyzed by FTIR microscopy at 24 h postinfection/contamination. Specific different spectral changes were observed according to the infecting or contaminating agent. For instance, both pure fungi and cell culture contaminated with this fungi showed specific peaks at 1030 cm−1 and at 1373 cm−1 regions, while pure E. coli and cell culture contaminated with this bacteria showed a specific and unique peak at 1657 cm−1. These results support the potential of developing FTIR microspectroscopy as a simple, reagent free method for identification and discrimination between different tissue infection or contamination with various pathogens.

  10. Histochemistry and infrared microspectroscopy of lignified tissue in young stems of Struthanthus vulgaris Mart.

    Directory of Open Access Journals (Sweden)

    Gisely de Lima Oliveira

    Full Text Available In this study, we aimed to determine lignified tissue in young stems of Struthanthus vulgaris Mart. by infrared microspectroscopy and histochemical methods as well as by fluorescence microscopy. Struthanthus vulgaris Mart. is a mistletoe species that belongs to the Loranthaceae family. A brief anatomical description was also carried out. The first procedure for analysis was to elaborate anatomical cross sections (20-30 µm from young stems before and after treatment with NaOH 1%. This procedure was applied to release possible low molecular mass phenolic compounds. Safranin-astra blue was used to distinguish anatomical tissues while Wiesner test enabled verification of lignified pericyclic fibers. Infrared microspectroscopy analysis confirmed the presence of lignin in this region according to the following spectral signals: 1600 (shoulder, 1511, 1453, 1338 and 1244 cm-1. Analyses of the cross section of young stems under fluorescence microscopy before and after treatment with NaOH 1% allowed us to confirm the presence of low mass phenolic compounds in the region of pericyclic fibers.

  11. Following lipids in the food chain: determination of the iodine value using Raman micro-spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Samek, Ota; Zemánek, Pavel; Bernatová, Silvie; Pilát, Zdeněk; Telle, H.H.

    2012-01-01

    Roč. 24, č. 3 (2012), s. 18-21 ISSN 0966-0941 R&D Projects: GA ČR GAP205/11/1687; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Raman micro-spectroscopy * Raman laser excitation * lipids Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  12. Development of alkali halide-optics for high power-IR laser

    International Nuclear Information System (INIS)

    Pohl, L.

    1989-01-01

    In this work 'Development of Alkali Halide-Optics for High Power-IR Laser' we investigated the purification of sodiumchloride-, potassiumchloride- and potassiumbromide-raw materials. We succeeded to reduce the content of impurities like Cu, Pb, V, Cr, Mn, Fe, Co and Ni in these raw materials to the lower of ppb's by a Complex-Adsorption-Method (CAM). Crystals were grown from purified substances by 'Kyropoulos' method'. Windows were cur thereof, polished and measured by FTIR-spectroscopy. Analytical data showed, that the resulting crystals were of lower quality than the raw materials. Because of this fact crystal-growing-conditions have to undergo a special improvement. Alkali halide windows from other sources on the market had been tested. (orig.) [de

  13. Joint IAEA/NEA IRS guidelines

    International Nuclear Information System (INIS)

    1997-01-01

    The Incident Reporting System (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants (NPPs) which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance which occur at these plants. The purpose of these guidelines, which supersede the previous IAEA Safety Series No. 93 (Part II) and the NEA IRS guidelines, is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating nuclear power plants

  14. QM/MM methodology, docking and spectroscopic (FT-IR/FT-Raman, NMR, UV) and Fukui function analysis on adrenergic agonist

    Science.gov (United States)

    Uma Maheswari, J.; Muthu, S.; Sundius, Tom

    2015-02-01

    The Fourier transform infrared, FT-Raman, UV and NMR spectra of Ternelin have been recorded and analyzed. Harmonic vibrational frequencies have been investigated with the help of HF with 6-31G (d,p) and B3LYP with 6-31G (d,p) and LANL2DZ basis sets. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO method. The polarizability (α) and the first hyperpolarizability (β) values of the investigated molecule have been computed using DFT quantum mechanical calculations. Stability of the molecule arising from hyper conjugative interactions, and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in Ternelin. Finally the calculated results were compared to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. Molecular docking studies have been carried out in the active site of Ternelin and reactivity with ONIOM was also investigated.

  15. FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular conformational analysis of 2,5-di-tert-butyl-hydroquinone

    Science.gov (United States)

    Subramanian, N.; Sundaraganesan, N.; Dereli, Ö.; Türkkan, E.

    2011-12-01

    The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wavenumbers were calculated by the B3LYP/6-31G(d,p) method. The infrared and Raman spectra of DTBHQ were recorded in the region 400-4000 cm -1 and 50-3500 cm -1, respectively. In addition, the IR spectra in CCl 4 at various concentrations of DTBHQ are also recorded. The computed vibrational wavenumbers were compared with the IR and Raman experimental data. Computational calculations at B3LYP level with two different basis sets 6-31G(d,p) and 6-311++G(d,p) are also employed in the study of the possible conformer of DTBHQ. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA 4 program. The general agreement between the observed and calculated frequencies was established.

  16. (2E)-1-(5-Chlorothiophen-2-yl)-3-{4-[(E)-2-phenylethenyl]phenyl}prop-2-en-1-one: Synthesis, XRD, FT-IR, Raman and DFT studies.

    Science.gov (United States)

    Parlak, Cemal; Ramasami, Ponnadurai; Kumar, Chandraju Sadolalu Chidan; Tursun, Mahir; Quah, Ching Kheng; Rhyman, Lydia; Bilge, Metin; Fun, Hoong-Kun; Chandraju, Siddegowda

    2015-01-01

    A novel (2E)-1-(5-chlorothiophen-2-yl)-3-{4-[(E)-2-phenylethenyl]phenyl}prop-2-en-1-one [C21H15ClOS] compound has been synthesized and its structure has been characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of the compound have been examined by means of HF, MP2, BP86, BLYP, BMK, B3LYP, B3PW91, B3P86 and M06-2X functionals. Reliable vibrational assignments and molecular orbitals have been investigated by the potential energy distribution and natural bonding orbital analyses, respectively. The compound crystallizes in the triclinic space group P-1 with the cis-trans-trans form. There is a good agreement between the experimentally determined structural parameters and vibrational frequencies of the compound and those predicted theoretically using the density functional theory with the BLYP and BP86 functionals. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The effect of optical substrates on micro-FTIR analysis of single mammalian cells.

    Science.gov (United States)

    Wehbe, Katia; Filik, Jacob; Frogley, Mark D; Cinque, Gianfelice

    2013-02-01

    The study of individual cells with infrared (IR) microspectroscopy often requires living cells to be cultured directly onto a suitable substrate. The surface effect of the specific substrates on the cell growth-viability and associated biochemistry-as well as on the IR analysis-spectral interference and optical artifacts-is all too often ignored. Using the IR beamline, MIRIAM (Diamond Light Source, UK), we show the importance of the substrate used for IR absorption spectroscopy by analyzing two different cell lines cultured on a range of seven optical substrates in both transmission and reflection modes. First, cell viability measurements are made to determine the preferable substrates for normal cell growth. Successively, synchrotron radiation IR microspectroscopy is performed on the two cell lines to determine any genuine biochemically induced changes or optical effect in the spectra due to the different substrates. Multivariate analysis of spectral data is applied on each cell line to visualize the spectral changes. The results confirm the advantage of transmission measurements over reflection due to the absence of a strong optical standing wave artifact which amplifies the absorbance spectrum in the high wavenumber regions with respect to low wavenumbers in the mid-IR range. The transmission spectra reveal interference from a more subtle but significant optical artifact related to the reflection losses of the different substrate materials. This means that, for comparative studies of cell biochemistry by IR microspectroscopy, it is crucial that all samples are measured on the same substrate type.

  18. Structure and acidity of individual Fluid Catalytic Cracking catalyst particles studied by synchrotron-based infrared micro-spectroscopy

    NARCIS (Netherlands)

    Buurmans, I.L.C.; Soulimani, F.; Ruiz Martinez, J.; van der Bij, H.E.; Weckhuysen, B.M.

    2013-01-01

    A synchrotron-based infrared micro-spectroscopy study has been conducted to investigate the structure as well as the Brønsted and Lewis acidity of Fluid Catalytic Cracking (FCC) catalyst particles at the individual particle level. Both fresh and laboratory-deactivated catalyst particles have been

  19. Pea border cell maturation and release involve complex cell wall structural dynamics

    DEFF Research Database (Denmark)

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases though, plant cells are programmed to detach and root cap-derived border cells are examples of this....... Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we...... undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immuno-carbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy (FT-IR), quantitative RT-PCR of cell wall biosynthetic genes, analysis...

  20. Characterization of Archaeological Sediments Using Fourier Transform Infrared (FT-IR) and Portable X-ray Fluorescence (pXRF): An Application to Formative Period Pyro-Industrial Sites in Pacific Coastal Southern Chiapas, Mexico.

    Science.gov (United States)

    Neff, Hector; Bigney, Scott J; Sakai, Sachiko; Burger, Paul R; Garfin, Timothy; George, Richard G; Culleton, Brendan J; Kennett, Douglas J

    2016-01-01

    Archaeological sediments from mounds within the mangrove zone of far-southern Pacific coastal Chiapas, Mexico, are characterized in order to test the hypothesis that specialized pyro-technological activities of the region's prehistoric inhabitants (salt and ceramic production) created the accumulations visible today. Fourier transform infrared spectroscopy (FT-IR) is used to characterize sediment mineralogy, while portable X-ray fluorescence (pXRF) is used to determine elemental concentrations. Elemental characterization of natural sediments by both instrumental neutron activation analysis (INAA) and pXRF also contribute to understanding of processes that created the archaeological deposits. Radiocarbon dates combined with typological analysis of ceramics indicate that pyro-industrial activity in the mangrove zone peaked during the Late Formative and Terminal Formative periods, when population and monumental activity on the coastal plain and piedmont were also at their peaks. © The Author(s) 2015.

  1. Isolation and structural characterization of a novel sibutramine analogue, chlorosipentramine, in a slimming dietary supplement, by using HPLC-PDA, LC-Q-TOF/MS, FT-IR, and NMR.

    Science.gov (United States)

    Yun, Jisuk; Shin, Kye Jung; Choi, Jangduck; Jo, Cheon-Ho

    2018-05-01

    A novel sibutramine analogue was detected in a slimming formula by high performance liquid chromatography with a photo diode detector array (HPLC-PDA). The unknown compound exhibited an ultraviolet (UV) spectrum that was similar to that of chlorosibutramine, despite having a different HPLC retention time. Further analysis of the slimming formula by LC-quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) showed that the unknown compound had the formula C 18 H 27 Cl 2 N. To elucidate the structure of this new sibutramine analogue, the target compound in the slimming formula was isolated on a preparative-LC system equipped with a PDA. After analysis by fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy, the unknown compound was identified as a sibutramine analogue in which the iso-butyl group on the side chain is replaced with an iso-pentyl group. This new sibutramine analogue was identified to be 1-(1-(3,4-dichlorophenyl)cyclobutyl)-N,N,4-trimethylpentan-1-amine and has been named as chlorosipentramine. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The X-Ray Microscopy And Micro-Spectroscopy Facility At The ESRF

    International Nuclear Information System (INIS)

    Susini, J.; Somogyi, A.; Barrett, R.; Salome, M.; Bohic, S.; Fayard, B.; Eichert, D.; Dhez, O.; Bleuet, P.; Martinez-Criado, G.; Tucoulou, R.

    2004-01-01

    Among the 40 beamlines in operation at the European Synchrotron Radiation Facility, three beamlines are fully dedicated to X-ray microscopy and micro-spectroscopy techniques in the multi-keV range. Offering a unique combination of non destructive analytical techniques which aim to satisfy the growing demand from experimental research fields such as medicine, geology, archaeology, earth, planetary and environmental sciences. Following a brief discussion on the strengths and weaknesses of X-ray microscopy and spectro-microscopy techniques in the 1-20keV range, characteristics of the beamlines are briefly described. Examples of applications are given in the reference list

  3. Aplicação de análise multivariada aos dados de espectroscopia no infravermelho obtidos na polimerização in situ de adesivo à base de cianoacrilato Multivariate analyses on FT-IR data of polymerization in situ of cyanoacrylate adhesive

    Directory of Open Access Journals (Sweden)

    Francisco A. A. Miranda

    1998-06-01

    Full Text Available A polimerização de adesivo à base de cianoacrilato foi acompanhada por FT-IR durante 30 minutos. A aplicação das técnicas de estatística multivariada (análise de agrupamento hierárquico e a análise dos componentes principais aos espectros de infravermelho, permitiram uma melhor identificação das diferenças espectrais entre monômero e polímero e possibilitou, também, inferir que a quantidade de monômero e do mero no polímero se eqüivalem com seis minutos de polimerização. A técnica de infravermelho mostrou-se uma ferramenta adequada para o acompanhamento da cinética de reação de adesivo à base de cianoacrilato, que torna-se ainda mais eficiente quando associada às técnicas de estatística multivariada.The polymerization of a cyanoacrylate adhesive was accompanied by FT-IR during 30 minutes. The application of multivariate statistics techniques (Hierarchical Clusters Analyses and Principal Components on infrared spectra allowed a better identification of spectral differences between monomer and polymer and also permitted to infer that the quantity of monomer and of mer of the polymer are equal in six minutes polymerization (half-life. The infrared technique appeared as an apropriate tool for observing the kinetics of cyanoacrylate adhesive reaction, which becomes even more efficient when associated to multivariate statistics techniques.

  4. FT-IR-cPAS—New Photoacoustic Measurement Technique for Analysis of Hot Gases: A Case Study on VOCs

    Science.gov (United States)

    Hirschmann, Christian Bernd; Koivikko, Niina Susanna; Raittila, Jussi; Tenhunen, Jussi; Ojala, Satu; Rahkamaa-Tolonen, Katariina; Marbach, Ralf; Hirschmann, Sarah; Keiski, Riitta Liisa

    2011-01-01

    This article describes a new photoacoustic FT-IR system capable of operating at elevated temperatures. The key hardware component is an optical-readout cantilever microphone that can work up to 200 °C. All parts in contact with the sample gas were put into a heated oven, incl. the photoacoustic cell. The sensitivity of the built photoacoustic system was tested by measuring 18 different VOCs. At 100 ppm gas concentration, the univariate signal to noise ratios (1σ, measurement time 25.5 min, at highest peak, optical resolution 8 cm−1) of the spectra varied from minimally 19 for o-xylene up to 329 for butyl acetate. The sensitivity can be improved by multivariate analyses over broad wavelength ranges, which effectively co-adds the univariate sensitivities achievable at individual wavelengths. The multivariate limit of detection (3σ, 8.5 min, full useful wavelength range), i.e., the best possible inverse analytical sensitivity achievable at optimum calibration, was calculated using the SBC method and varied from 2.60 ppm for dichloromethane to 0.33 ppm for butyl acetate. Depending on the shape of the spectra, which often only contain a few sharp peaks, the multivariate analysis improved the analytical sensitivity by 2.2 to 9.2 times compared to the univariate case. Selectivity and multi component ability were tested by a SBC calibration including 5 VOCs and water. The average cross selectivities turned out to be less than 2% and the resulting inverse analytical sensitivities of the 5 interfering VOCs was increased by maximum factor of 2.2 compared to the single component sensitivities. Water subtraction using SBC gave the true analyte concentration with a variation coefficient of 3%, although the sample spectra (methyl ethyl ketone, 200 ppm) contained water from 1,400 to 100k ppm and for subtraction only one water spectra (10k ppm) was used. The developed device shows significant improvement to the current state-of-the-art measurement methods used in industrial

  5. Evaluation of an industrial gas-fired IR dryer; Utvaerdering av en industriell gaseldad IR-straalare

    Energy Technology Data Exchange (ETDEWEB)

    Stenstroem, S; Hermodsson, S

    1994-11-01

    The IR dryer is used in a paper making machine to dry the paper web after it has been coated with a surface layer. In part 1 of the project a mathematical model have been developed, capable of calculating the radiation intensity and other energy flows in the dryer. In part 2 of the project, measurements have been made on the IR radiator mounted in the paper making machine. The calculation model shows the efficiency of the radiator to 39% at full power and 35% at half power. The direct measurements were made at half power and gave an efficiency of 31% for new radiators and 28% for old ones. The conclusion is that the calculation model values corresponds very well compared with direct measurements.

  6. Rapid discrimination of sea buckthorn berries from different H. rhamnoides subspecies by multi-step IR spectroscopy coupled with multivariate data analysis

    Science.gov (United States)

    Liu, Yue; Zhang, Ying; Zhang, Jing; Fan, Gang; Tu, Ya; Sun, Suqin; Shen, Xudong; Li, Qingzhu; Zhang, Yi

    2018-03-01

    As an important ethnic medicine, sea buckthorn was widely used to prevent and treat various diseases due to its nutritional and medicinal properties. According to the Chinese Pharmacopoeia, sea buckthorn was originated from H. rhamnoides, which includes five subspecies distributed in China. Confusion and misidentification usually occurred due to their similar morphology, especially in dried and powdered forms. Additionally, these five subspecies have vital differences in quality and physiological efficacy. This paper focused on the quick classification and identification method of sea buckthorn berry powders from five H. rhamnoides subspecies using multi-step IR spectroscopy coupled with multivariate data analysis. The holistic chemical compositions revealed by the FT-IR spectra demonstrated that flavonoids, fatty acids and sugars were the main chemical components. Further, the differences in FT-IR spectra regarding their peaks, positions and intensities were used to identify H. rhamnoides subspecies samples. The discrimination was achieved using principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA). The results showed that the combination of multi-step IR spectroscopy and chemometric analysis offered a simple, fast and reliable method for the classification and identification of the sea buckthorn berry powders from different H. rhamnoides subspecies.

  7. FT-IR and Raman vibrational analysis, B3LYP and M06-2X simulations of 4-bromomethyl-6-tert-butyl-2H-chromen-2-one

    Science.gov (United States)

    Sert, Yusuf; Puttaraju, K. B.; Keskinoğlu, Sema; Shivashankar, K.; Ucun, Fatih

    2015-01-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized bacteriostatic and anti-tumor molecule namely, 4-bromomethyl-6-tert-butyl-2H-chromen-2-one have been investigated. The experimental FT-IR (4000-400 cm-1) and Raman spectra (4000-100 cm-1) of the compound in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d, p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  8. Using ATR-FT/IR to detect carbohydrate-related molecular structure features of carinata meal and their in situ residues of ruminal fermentation in comparison with canola meal

    Science.gov (United States)

    Xin, Hangshu; Yu, Peiqiang

    2013-10-01

    There is no information on the co-products from carinata bio-fuel and bio-oil processing (carinata meal) in molecular structural profiles mainly related to carbohydrate biopolymers in relation to ruminant nutrition. Molecular analyses with Fourier transform infrared spectroscopy (FT/IR) technique with attenuated total reflectance (ATR) and chemometrics enable to detect structural features on a molecular basis. The objectives of this study were to: (1) determine carbohydrate conformation spectral features in original carinata meal, co-products from bio-fuel/bio-oil processing; and (2) investigate differences in carbohydrate molecular composition and functional group spectral intensities after in situ ruminal fermentation at 0, 12, 24 and 48 h compared to canola meal as a reference. The molecular spectroscopic parameters of carbohydrate profiles detected were structural carbohydrates (STCHO, mainly associated with hemi-cellulosic and cellulosic compounds; region and baseline ca. 1483-1184 cm-1), cellulosic compounds (CELC, region and baseline ca. 1304-1184 cm-1), total carbohydrates (CHO, region and baseline ca. 1193-889 cm-1) as well as the spectral ratios calculated based on respective spectral intensity data. The results showed that the spectral profiles of carinata meal were significantly different from that of canola meal in CHO 2nd peak area (center at ca. 1091 cm-1, region: 1102-1083 cm-1) and functional group peak intensity ratios such as STCHO 1st peak (ca. 1415 cm-1) to 2nd peak (ca. 1374 cm-1) height ratio, CHO 1st peak (ca. 1149 cm-1) to 3rd peak (ca. 1032 cm-1) height ratio, CELC to total CHO area ratio and STCHO to CELC area ratio, indicating that carinata meal may not in full accord with canola meal in carbohydrate utilization and availability in ruminants. Carbohydrate conformation and spectral features were changed by significant interaction of meal type and incubation time and almost all the spectral parameters were significantly decreased (P

  9. Analysis of {sup 14}CO{sub 2} trapped {sup 14}C Sorbent, and {sup 14}C and {sup 3}H Radioactivity Determination in Resins and Oils from Nuclear Power Plants Using a Combustion Method

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Young Gun; Kim, Chang Jong; Choi, Geun Sik; Chung, Kun Ho; Kang, Mun Ja [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Tritium ({sup 3}H, T) generated in the heavy water and C fourteen ({sup 14}C) originated from the graphite moderator or structural materials of the nuclear power plant can cause acute and/or chronic harmful effects by inhalation and ingestion of these radionuclides owing to their binding affinity toward biomolecules and gas phase. {sup 3}H and {sup 14}C radioactivity in ion exchange resins and oils from nuclear power plants were determined by an oxidation (combustion) method. The 0.1 M HNO{sub 3} solution and the {sup 14}C sorbent trapped the {sub 3}H and {sup 14}C respectively in the gas from the combustion of samples. All samples were burned without ash in the combustion system. The reaction of CO{sub 2} and {sup 14}C sorbent was investigated by FT-IR analysis. The study demonstrated the different reaction mechanism according to the CO{sub 2} concentration. In the FT-IR study, it is clearly confirmed that CO{sub 2} from the burned 1 g of sample can be trapped in the {sup 14}C sorbent completely. During the reaction of CO{sub 2} and {sup 14}C sorbent, the temperature and the viscosity of {sup 14}C sorbent increased due to the decrease of enthalpy change and the bonding between each molecules of the sorbent. We expect that our FT-IR study could motivate the development of {sup 14}C sorbent and confirm the {sup 14}C trapping performance of the {sup 14}C sorbent.

  10. FT-IR spectroscopic and thermodynamic study on the adsorption of carbon dioxide and dinitrogen in the alkaline zeolite K-L

    International Nuclear Information System (INIS)

    Arean, C.O.; Bibiloni, G.F.; Delgado, M.R.

    2012-01-01

    Highlights: ► Variable temperature IR spectroscopy is used to study adsorption of CO 2 and N 2 in the alkaline zeolite K-L. ► By simultaneously recording IR absorbance, temperature and equilibrium pressure, standard adsorption enthalpy and entropy for each gas was determined. ► The results are discussed in the broader context of gas separation using zeolites; focusing on carbon dioxide capture. - Abstract: The thermodynamics of carbon dioxide and dinitrogen adsorption on the zeolite K-L was investigated by means of variable temperature IR spectroscopy, a technique that affords determination of standard adsorption enthalpy (ΔH°) and entropy (ΔS°) from analysis of IR spectra recorded over a temperature range while simultaneously measuring equilibrium pressure inside a closed IR cell. ΔH° resulted to be −42.5 and −20.6 kJ mol −1 for CO 2 and N 2 , respectively. Corresponding values of ΔS° were found to be −182 and −151 J mol −1 K −1 . The obtained adsorption enthalpy values are discussed in the context of carbon dioxide capture and sequestration.

  11. Seguimiento por espectroscopia infrarroja (FT-IR de la copolimerización de TEOS (tetraetilortosilicato y PDMS (polidimetilsiloxano en presencia de tbt (tetrabutiltitanio

    Directory of Open Access Journals (Sweden)

    Téllez, L.

    2004-10-01

    Full Text Available Hybrid materials have been prepared in this work through the reactions of Si and Ti alkoxides (TEOS and TBT, respectively and polydimethil siloxane (PDMS. These reactions have been studied by means of FT-IR spectroscopy during the whole reaction time. The hydrolysis of TEOS molecule has been followed by the 880 cm-1 band, and the self-condensation reactions through the 1180 and 1150 cm-1 bands. Polycondesation reaction between Si-OH groups and PDMS molecules has been followed by the 850 cm-1 band. On the other hand, the hydrolysis reaction of TBT and the self-condensation of Ti-OH groups have been followed by the 1130 and 770-510 cm-1 bands, respectively. Finally the condensation reaction between Si-OH and Ti-OH groups have been studied by the 936 cm-1 band. Results have shown that hydrolysis and condensation reactions are depending on TBT concentration. The formation of Si-O-Si cross-linked structures increases with the TBT concentrations in the reaction. The selfcondensation reaction of Si-OH grups or Ti-OH grous is very reapid forming Si-O-Si and Ti-O-Ti bonds, respectively. However, the Si-O-Ti bonds which are formed during the first moments of reaction are also rapidly broken due to H2O molecules or the reaction medium. The evolution of PDMS linear and cyclic molecules is also studied.

    Se han preparado materiales híbridos por medio de reacciones de hidrólisis y condensación de alcóxidos de Si y Ti (TEOS y TBT, respectivamente y de reacciones de copolimerización de éstos con polidimetilsiloxano (PDMS. Se han estudiado las citadas reacciones mediante espectroscopia FT-IR, desde el mismo comienzo hasta la obtención del material final. La hidrólisis del TEOS así como la autocondensación del os grupos Si-OH generados tanto para formar cadenas entrecruzadas como lineales se han seguido mediante las bandas situadas a 880, 1180 y 1150 cm-1, respectivamente. La policondensación de dichos grupos con PDMS se ha seguido por la banda a

  12. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as a Forensic Method to Determine the Composition of Inks Used to Print the United States One-cent Blue Benjamin Franklin Postage Stamps of the 19th Century.

    Science.gov (United States)

    Brittain, Harry G

    2016-01-01

    Through the combined use of infrared (IR) absorption spectroscopy and attenuated total reflectance (ATR) sampling, the composition of inks used to print the many different types of one-cent Benjamin Franklin stamps of the 19th century has been established. This information permits a historical evaluation of the formulations used at various times, and also facilitates the differentiation of the various stamps from each other. In two instances, the ink composition permits the unambiguous identification of stamps whose appearance is identical, and which (until now) have only been differentiated through estimates of the degree of hardness or softness of the stamp paper, or through the presence or absence of a watermark in the paper. In these instances, the use of ATR Fourier transform infrared spectroscopy (FT-IR) spectroscopy effectively renders irrelevant two 100-year-old practices of stamp identification. Furthermore, since the use of ATR sampling makes it possible to obtain the spectrum of a stamp still attached to its cover, it is no longer necessary to identify these blue Franklin stamps using their cancellation dates. © The Author(s) 2015.

  13. [Application of FTIR micro-spectroscopy in the tribology].

    Science.gov (United States)

    Hu, Zhi-meng

    2002-10-01

    The wave number of characteristic absorption peak nu asC-O-C of the polyester formed on the frictional process were determined by Fourier Transform Infrared (FTIR) Micro-spectroscopy, and the wave number displacement of characteristic absorption peak nu asC-O-C was analyzed based on the conversion mass of polyester formed. The internal relations between anti-wear order rule of hydroxyl fatty acids and vibration absorption peak nu asC-O-C of polyester formed by hydroxyl fatty acids was deduced according to these results, and the anti-wear order of hydroxyl fatty acids was reasonably explained, that is 13, 14-di-hydroxydocosanoic acid > 13 (14)-monohydroxydocosanoic acid = 9,10-dihydroxyoctadecanoic acid > 9,10,12-trihydroxyoctadecanoic acid > 9(10)-monohydroxyoctadecanoic acid. A net polyester film is formed by 13, 14-dihydroxydocosanoic acid and a linear polyester film is formed by 9, (10)-monohydroxyoctadecanoic acid and 13(14)-monohydroxydocosanoic acid.

  14. Analysis of effect of cable degradation on SPND IR calculation

    International Nuclear Information System (INIS)

    Tamboli, P.K.; Sharma, A.; Prasad, A.D.; Singh, Nita; Antony, J.; Kelkar, M.G.; Kaurav, Reetesh; Pramanik, M.

    2013-01-01

    Neutron flux is the most vital parameter in the nuclear reactor safety against Neutronic over power. The modern days Indian PHWRs with large core size are loosely coupled reactors and hence In-core Self Power Neutron Detectors (SPNDs) are most suitable for monitoring local neutron power for generating Regional Overpower Trip. However the SPNDs and its Mineral Insulation Cable are prone to IR loss due to use of ceramic insulation which are highly hygroscopic. The present paper covers the online analysis of IR f degraded cable as per the surveillance requirement of monitoring the IR to assess the healthiness of SPNDs which are part of SSC/SSE for Reactor Protection Systems. The paper also proposes an alternative method for monitoring IR for startup//low power range when SPND signals are yet to pick up and Reactor Control and Protection are based on out of core Ionization Chambers. (author)

  15. Electronic [UV-Visible] and vibrational [FT-IR, FT-Raman] investigation and NMR-mass spectroscopic analysis of terephthalic acid using quantum Gaussian calculations

    Science.gov (United States)

    Karthikeyan, N.; Joseph Prince, J.; Ramalingam, S.; Periandy, S.

    2015-03-01

    In this research work, the vibrational IR, polarization Raman, NMR and mass spectra of terephthalic acid (TA) were recorded. The observed fundamental peaks (IR, Raman) were assigned according to their distinctiveness region. The hybrid computational calculations were carried out for calculating geometrical and vibrational parameters by DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The molecular mass spectral data related to base molecule and substitutional group of the compound was analyzed. The modification of the chemical property by the reaction mechanism of the injection of dicarboxylic group in the base molecule was investigated. The 13C and 1H NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method and the absolute chemical shifts related to TMS were compared with experimental spectra. The study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by hybrid Gaussian calculation methods. The orbital energies of different levels of HOMO and LUMO were calculated and the molecular orbital lobe overlapping showed the inter charge transformation between the base molecule and ligand group. From the frontier molecular orbitals (FMO), the possibility of electrophilic and nucleophilic hit also analyzed. The NLO activity of the title compound related to Polarizability and hyperpolarizability were also discussed. The present molecule was fragmented with respect to atomic mass and the mass variation depends on the substitutions have also been studied.

  16. Highly Stable, All-fiber, High Power ZBLAN Supercontinuum Source Reaching 4.75 µm used for Nanosecond mid-IR Spectroscopy

    DEFF Research Database (Denmark)

    Moselund, Peter M.; Petersen, Christian; Leick, Lasse

    2013-01-01

    We demonstrate compact all-fiber mid-IR supercontinuum generation up to 4.75 μm with 1.2 W output power during hundreds of hours. This source is applied to upconversion spectroscopy using the energy corresponding to a single pulse....

  17. Experimental and theoretical studies on IR, Raman, and UV-Vis spectra of quinoline-7-carboxaldehyde.

    Science.gov (United States)

    Kumru, M; Küçük, V; Kocademir, M; Alfanda, H M; Altun, A; Sarı, L

    2015-01-05

    Spectroscopic properties of quinoline-7-carboxaldehyde (Q7C) have been studied in detail both experimentally and theoretically. The FT-IR (4000-50 cm(-1)), FT-Raman (4000-50 cm(-1)), dispersive-Raman (3500-50 cm(-1)), and UV-Vis (200-400 nm) spectra of Q7C were recorded at room temperature (25 °C). Geometry parameters, potential energy surface about CCH(O) bond, harmonic vibrational frequencies, IR and Raman intensities, UV-Vis spectrum, and thermodynamic characteristics (at 298.15K) of Q7C were computed at Hartree-Fock (HF) and density functional B3LYP levels employing the 6-311++G(d,p) basis set. Frontier molecular orbitals, molecular electrostatic potential, and Mulliken charge analyses of Q7C have also been performed. Q7C has two stable conformers that are energetically very close to each other with slight preference to the conformer that has oxygen atom of the aldehyde away from the nitrogen atom of the quinoline. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Biological activities of Allium sativum and Zingiber officinale extracts on clinically important bacterial pathogens, their phytochemical and FT-IR spectroscopic analysis.

    Science.gov (United States)

    Awan, Uzma Azeem; Ali, Shaukat; Shahnawaz, Amna Mir; Shafique, Irsa; Zafar, Atiya; Khan, Muhammad Abdul Rauf; Ghous, Tahseen; Saleem, Azhar; Andleeb, Saiqa

    2017-05-01

    The spread of bacterial infectious diseases is a major public threat. Herbs and spices have offered an excellent, important and useful source of antimicrobial agents against many pathological infections. In the current study, the antimicrobial potency of fresh, naturally and commercial dried Allium sativum and Zingiber officinale extracts had been investigated against seven local clinical bacterial isolates such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus pyogenes, Staphylococcus epidermidis, and Serratia marcesnces by the agar disc diffusion method. All tested pathogens except P. aeruginosa and E. coli were most susceptible to ethanolic and methanolic extracts of A. sativum. Similarly, chloroform and diethyl ether extracts of Z. officinale showed a greater zone of inhibition of tested pathogens except for P. aeruginosa and E. coli. We found that all extracts of A. sativum and Z. officinale have a strong antibacterial effect compared to recommended standard antibiotics through activity index. All results were evaluated statistically and a significant difference was recorded at Psativum and Z. officinale proposed the presence of various phytochemicals such as tannins, phenols, alkaloids, steroids and saponins. Retention factor of diverse phytochemicals provides a valuable clue regarding their polarity and the selection of solvents for separation of phytochemicals. Significant inhibition of S. aureus was also observed through TLC-Bioautography. FT-IR Spectrometry was also performed to characterize both natural and commercial extracts of A. sativum and Z. officinale to evaluate bioactive compounds. These findings provide new insights to use A. sativum and Z. officinale as potential plant sources for controlling pathogenic bacteria and potentially considered as cost-effective in the management of diseases and to the threat of drug resistance phenomenon.

  19. Comprehensive GC–FID, GC–MS and FT-IR spectroscopic analysis of the volatile aroma constituents of Artemisia indica and Artemisia vestita essential oils

    Directory of Open Access Journals (Sweden)

    Manzoor A. Rather

    2017-05-01

    Full Text Available In the current study, the leaf volatile constituents of the essential oils of Artemisia indica Willd. and Artemisia vestita Wall were studied using a combination of capillary GC–FID, GC–MS and FT-IR (Fourier-Transform Infra-Red analytical techniques. The analysis led to the identification of 42 compounds in the essential oil of A. indica, representing 96.6% of the essential oil and the major components were found to be artemisia ketone (42.1%, germacrene D (8.6%, borneol (6.1% and cis-chrysanthenyl acetate (4.8%. The essential oil was dominated by the presence of oxygenated monoterpenes constituting 65.2% of the total oil composition followed by sesquiterpene hydrocarbons and monoterpene hydrocarbons constituting 15.7% and 10.7%, respectively of the total oil composition. The essential oil composition of A. vestita was found to contain a total of 18 components representing 94.2% of the total oil composition. The principal components were found to be 1,8-cineole (46.8%, (E-citral (13.7%, limonene (9.8%, α-phellandrene (6.4%, camphor (5.0%, (Z and (E-thujones (3.0% each. Oxygenated monoterpenes were the dominant group of terpenes in the essential oil constituting 73.1% of the total oil composition followed by monoterpene hydrocarbons (17.3%. The results of the current study reveal remarkable differences in the essential oil compositions of these two Artemisia species already reported in the literature from other parts of the globe.

  20. Synthesis, molecular structure, FT-IR, Raman, XRD and theoretical investigations of (2E)-1-(5-chlorothiophen-2-yl)-3-(naphthalen-2-yl)prop-2-en-1-one.

    Science.gov (United States)

    Chidan Kumar, Chandraju Sadolalu; Fun, Hoong Kun; Parlak, Cemal; Rhyman, Lydia; Ramasami, Ponnadurai; Tursun, Mahir; Chandraju, Siddegowda; Quah, Ching Kheng

    2014-11-11

    A novel (2E)-1-(5-chlorothiophen-2-yl)-3-(naphthalen-2-yl)prop-2-en-1-one [C17H11ClOS] compound has been synthesized and its structure has been characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The isomers, optimized geometrical parameters, normal mode frequencies and corresponding vibrational assignments of the compound have been examined by means of the density functional theory method, employing, the Becke-3-Lee-Yang-Parr functional and the 6-311+G(3df,p) basis set. Reliable vibrational assignments and molecular orbitals have been investigated by the potential energy distribution and natural bonding orbital analyses, respectively. The compound crystallizes in the monoclinic space group P2₁/c with the unit cell parameters a=5.7827(8)Å, b=14.590(2)Å, c=16.138(2)Å and β=89.987 (°). The CC bond of the central enone group adopts an E configuration. There is a good agreement between the theoretically predicted structural parameters and vibrational frequencies and those obtained experimentally. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. SWiFT Software Quality Assurance Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This document describes the software development practice areas and processes which contribute to the ability of SWiFT software developers to provide quality software. These processes are designed to satisfy the requirements set forth by the Sandia Software Quality Assurance Program (SSQAP). APPROVALS SWiFT Software Quality Assurance Plan (SAND2016-0765) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Controls Engineer Jonathan Berg (6121) Date CHANGE HISTORY Issue Date Originator(s) Description A 2016/01/27 Jon Berg (06121) Initial release of the SWiFT Software Quality Assurance Plan

  2. The evaluation of free thyroid hormones (FT4 and FT3) in the routine diagnosis of thyroid function

    International Nuclear Information System (INIS)

    Passath, A.; Leb, G.; Goebel, R.

    1985-01-01

    The validity of the free thyroid hormone parameters (FT 4 and FT 3 ) was verified in a random sample of 154 ambulatory patients with thyroid conditions. The ''euthyroid range'' of FT 4 was between 15.67 and 30.66 pmol/l; median 21.98 pmol/l. The distribution of the FT 4 readings peaked on the left and sloped to the right (log normal). In our laboratory, the ''euthyroid reference range'' of FT 4 is between 10-28 pmol/l. The ''euthyroid range'' of FT 3 extended from 4.6 to 9.7 pmol/l; median 6.63 pmol/l. The distribution of the readings was likewise log normal. The values of FT 4 and FT 3 are not significantly influenced by TBG concentration anomalies in otherwise healthy thyroid patients. For purposes of discrimination between euthyroidism and hyperthyroidism, FT 3 (95%) and FT 4 (90%) are better suited than the corresponding quotients for the free hormone fraction or the total hormone concentrations. On the other hand, the free hormone parameters are less suitable for the diagnosis of hypothyroidism. These results were deduced theoretically from mathematical function analyses between the TBG-independent free hormone parameters and the TBG-dependent hormone concentrations. (orig.) [de

  3. Study on Senna alata and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Adiana, M. A.; Mazura, M. P.

    2011-04-01

    Senna alata L. commonly known as candle bush belongs to the family of Fabaceae and the plant has been reported to possess anti-inflammatory, analgesic, laxative and antiplatelet-aggregating activity. In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional infrared correlation spectroscopy (2D-IR) to study the main constituents of S. alata and its different extracts (extracted by hexane, dichloromethane, ethyl acetate and methanol in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can identify the main chemical constituents in medicinal materials and their extracts, but also compare the components differences among similar samples. In a conclusion, FT-IR spectroscopy combined with 2D correlation analysis provides a powerful method for the quality control of traditional medicines.

  4. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis

    Directory of Open Access Journals (Sweden)

    Sara Mattana

    2017-11-01

    Full Text Available Amyloidopathy is one of the most prominent hallmarks of Alzheimer’s disease (AD, the leading cause of dementia worldwide, and is characterized by the accumulation of amyloid plaques in the brain parenchyma. The plaques consist of abnormal deposits mainly composed of an aggregation-prone protein fragment, β-amyloid 1-40/1-42, into the extracellular matrix. Brillouin microspectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons, giving access to the viscoelasticity of a sample on a subcellular scale. Here, we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stiffness of individual amyloid plaques in the hippocampal part of the brain of a β-amyloid overexpressing transgenic mouse. Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of β-pleated sheet conformation (β-amyloid protein surrounded by a softer ring-shaped region richer in lipids and other protein conformations. These preliminary results give a new insight into the plaque biophysics and biomechanics, and a valuable contrast mechanism for the study and diagnosis of amyloidopathy.

  5. Forankring af kvarterløft

    DEFF Research Database (Denmark)

    Mazanti, B.

    Kvarterløft er et offentligt initiativ, der har til formål at forbedre sociale, bygningsmæssige og andre forhold i en afgrænset bydel. Kvarterløft er per definition tidsbegrænset til fem eller syv år. Mens et kvarterløft står på, er der ofte en mængde og mangfoldighed af aktiviteter og projekter....

  6. Copper(II) complex with 6-methylpyridine-2-carboxyclic acid: Experimental and computational study on the XRD, FT-IR and UV-Vis spectra, refractive index, band gap and NLO parameters.

    Science.gov (United States)

    Altürk, Sümeyye; Avcı, Davut; Başoğlu, Adil; Tamer, Ömer; Atalay, Yusuf; Dege, Necmi

    2018-02-05

    Crystal structure of the synthesized copper(II) complex with 6-methylpyridine-2-carboxylic acid, [Cu(6-Mepic) 2 ·H 2 O]·H 2 O, was determined by XRD, FT-IR and UV-Vis spectroscopic techniques. Furthermore, the geometry optimization, harmonic vibration frequencies for the Cu(II) complex were carried out by using Density Functional Theory calculations with HSEh1PBE/6-311G(d,p)/LanL2DZ level. Electronic absorption wavelengths were obtained by using TD-DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ level with CPCM model and major contributions were determined via Swizard/Chemissian program. Additionally, the refractive index, linear optical (LO) and non-nonlinear optical (NLO) parameters of the Cu(II) complex were calculated at HSEh1PBE/6-311G(d,p) level. The experimental and computed small energy gap shows the charge transfer in the Cu(II) complex. Finally, the hyperconjugative interactions and intramolecular charge transfer (ICT) were studied by performing of natural bond orbital (NBO) analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Electronic [UV-Visible] and vibrational [FT-IR, FT-Raman] investigation and NMR-mass spectroscopic analysis of terephthalic acid using quantum Gaussian calculations.

    Science.gov (United States)

    Karthikeyan, N; Prince, J Joseph; Ramalingam, S; Periandy, S

    2015-03-15

    In this research work, the vibrational IR, polarization Raman, NMR and mass spectra of terephthalic acid (TA) were recorded. The observed fundamental peaks (IR, Raman) were assigned according to their distinctiveness region. The hybrid computational calculations were carried out for calculating geometrical and vibrational parameters by DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The molecular mass spectral data related to base molecule and substitutional group of the compound was analyzed. The modification of the chemical property by the reaction mechanism of the injection of dicarboxylic group in the base molecule was investigated. The (13)C and (1)H NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method and the absolute chemical shifts related to TMS were compared with experimental spectra. The study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by hybrid Gaussian calculation methods. The orbital energies of different levels of HOMO and LUMO were calculated and the molecular orbital lobe overlapping showed the inter charge transformation between the base molecule and ligand group. From the frontier molecular orbitals (FMO), the possibility of electrophilic and nucleophilic hit also analyzed. The NLO activity of the title compound related to Polarizability and hyperpolarizability were also discussed. The present molecule was fragmented with respect to atomic mass and the mass variation depends on the substitutions have also been studied. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  8. Determination of phosphate phases in sewage sludge ash-based fertilizers by Raman microspectroscopy.

    Science.gov (United States)

    Vogel, Christian; Adam, Christian; McNaughton, Don

    2013-09-01

    The chemical form of phosphate phases in sewage sludge ash (SSA)-based fertilizers was determined by Raman microspectroscopy. Raman mapping with a lateral resolution of 5 × 5 μm(2) easily detected different compounds present in the fertilizers with the help of recorded reference spectra of pure substances. Quartz and aluminosilicates showed Raman bands in the range of 450-520 cm(-1). Phosphates with apatite structure and magnesium triphosphate were determined at around 960 and 980 cm(-1), respectively. Furthermore, calcium/magnesium pyrophosphates were detected in some samples.

  9. The reliability of Raman micro-spectroscopy in measuring the density of CO2 mantle fluids

    Science.gov (United States)

    Remigi, S.; Frezzotti, M. L.; Ferrando, S.; Villa, I. M.; Maffeis, A.

    2017-12-01

    Recent evaluations of carbon fluxes into and out the Earth's interior recognize that a significant part of the total outgassing of deep Earth carbon occurs in tectonically active areas (Kelemen and Manning, 2015). Potential tracers of carbon fluxes at mantle depths include CO2 fluid inclusions in peridotites. Raman micro-spectroscopy allows calculating the density of CO2 fluids based on the distance of the CO2 Fermi doublet, Δ, in cm-1 (Rosso and Bodnar, 1995). The aim of this work is to check the reliability of Raman densimeter equations (cf. Lamadrid et al., 2016) for high-density CO2 fluids originating at mantle depths. Forty pure CO2 inclusions in peridotites (El Hierro, Canary Islands) of known density (microthermometry) have been analyzed by Raman micro-spectroscopy. In order to evaluate the influence of contaminants on the reliability of equations, 22 CO2-rich inclusions containing subordinate amounts of N2, CO, SO2 have also been studied. Raman spectrometer analytical conditions are: 532 nm laser, 80 mW emission power, T 18°C, 1800 and 600 grating, 1 accumulation x 80 sec. Daily calibration included diamond and atmosphere N2. Results suggest that the "Raman densimeter" represents an accurate method to calculate the density of CO2 mantle fluids. Equations, however, must be applied only to pure CO2 fluids, since contaminants, even in trace amounts (0.39 mol%), affect the Δ resulting in density overestimation. Present study further highlights how analytical conditions and data processing, such as spectral resolution (i.e., grating), calibration linearity, and statistical treatment of spectra, influence the accuracy and the precision of Δ measurements. As a consequence, specific analytical protocols for single Raman spectrometers should be set up in order to get reliable CO2 density data. Kelemen, Peter B., & Craig E. Manning. PNAS, 112.30 (2015): E3997-E4006.Lamadrid, H. M., Moore, L. R., Moncada, D., Rimstidt, J. D., Burruss, R. C., & Bodnar, R. J. Chem

  10. Thermodynamics and cosmological reconstruction in f(T , B) gravity

    Science.gov (United States)

    Bahamonde, Sebastian; Zubair, M.; Abbas, G.

    2018-03-01

    Recently, it was formulated a teleparallel theory called f(T , B) gravity which connects both f(T) and f(R) under suitable limits. In this theory, the function in the action is assumed to depend on the torsion scalar T and also on a boundary term related with the divergence of torsion, B = 2∇μTμ. In this work, we study different features of a flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology in this theory. First, we show that the FLRW equations can be transformed to the form of Clausius relation TˆhSeff = - dE + WdV, where Tˆh is the horizon temperature and Seff is the entropy which contains contributions both from horizon entropy and an additional entropy term introduced due to the non-equilibrium. We also formulate the constraint for the validity of the generalised second law of thermodynamics (GSLT). Additionally, using a cosmological reconstruction technique, we show that both f(T , B) and - T + F(B) gravity can mimic power-law, de-Sitter and ΛCDM models. Finally, we formulate the perturbed evolution equations and analyse the stability of some important cosmological solutions.

  11. Effect of hypoproteinemia (HP) upon FT4 and FT3 by kinetic radioligandassay (RLA)

    International Nuclear Information System (INIS)

    Bottger, I.G.; Schneck, H.J.

    1985-01-01

    HP, especially hypoalbuminemia (HA), has been associated with false low FT4 by RLA, predominantly of the analogue tracer type. Based upon previous more favourable findings in severe nonthyroidal illness (NTI), this study was designed to study this problem in more detail. Two groups of patients with severe NTI (polytrauma) were selected on the basis of their total serum protein (TSP) concentration and studied during intensive-care. Group I: N = 25, TSP 5.9 g/dl (6.0 - 7.7), A/G: 1.5, sera: N = 76. I and II: low-dose heparin (i.v. 5000 U/24 h), non-detectable in the periphery. The RLA kits used were: FT4/T4 and FT3/T3 (kinetic two-tube), and TBG, Corning Medical, rT3, Serono, TSH, Henning-Berlin, TSP/electrophoresis standard technique. The findings indicate: 1. Typical findings for follow-up of severe NTI; 2. No detection of a significant effect of HP/HA upon these RLAs for FT4 and FT3; and 3. The inter-group differences are most likely due to more severe NT1 in I (R/sub x/, A/G, rT3)

  12. Darkfield microspectroscopy of nanostructures on silver tip-enhanced Raman scattering probes

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Tamitake, E-mail: tamitake-itou@aist.go.jp [Nano-Bioanalysis Team, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395 (Japan); Yamamoto, Yuko S., E-mail: yamayulab@gmail.com [Research Fellow of the Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-8472 (Japan); Department of Chemistry, School of Science and Technology, Kagawa University, Takamatsu, Kagawa 761-0396 (Japan); Suzuki, Toshiaki [UNISOKU Co. Ltd., 2-4-3 Kasugano, Hirakata, Osaka 573-0131 (Japan); Kitahama, Yasutaka; Ozaki, Yukihiro [Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337 (Japan)

    2016-01-11

    We report an evaluation method employing darkfield microspectroscopy for silver probes used in tip-enhanced Raman scattering (TERS). By adjusting the darkfield illumination, the diffracted light from the probe outlines disappears and the diffracted light from the surface nanostructures and tips of the probes appears as colorful spots. Scanning electron microscopy reveals that the spectral variations in these spots reflect the shapes of the surface nanostructures. The tip curvatures correlate to the spectral maxima of their spots. Temporal color changes in the spots indicate the deterioration due to the oxidation of the silver surfaces. These results show that the proposed method is useful for in situ evaluation of plasmonic properties of TERS probes.

  13. Measurement of serum FT3 and FT4 in patients with chronic renal failure and its clinical significance

    International Nuclear Information System (INIS)

    Tan Qingling; Zhang Hui

    2003-01-01

    Objective: To investigate the changes of thyroid hormones in patients with chronic renal failure (CRF) and it's clinical significance. Methods: FT 3 , FT 4 and TSH levels were measured with radioimmunoassay for 42 CRF patients (42 CRF patients were subdivided into uremia and azotemia) and 18 cases of renal disease patients with a normal renal function. Results: Levels of FT 3 , FT 4 and TSH in uremia group and azotemia group were significantly lower than that of normal renal function group (P 3 , FT 4 and TSH in uremia group were remarkably lower than azotemia group (P 3 , FT 4 in patients with CRF can reflect the severity of renal function damage, and can also be an important prognosis index

  14. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification

    Science.gov (United States)

    Vianello, A.; Boldrin, A.; Guerriero, P.; Moschino, V.; Rella, R.; Sturaro, A.; Da Ros, L.

    2013-09-01

    In order to improve knowledge of the identification, distribution and abundances of microplastic particles of 1 mm or less (S-MPPs) in the coastal area of the Mediterranean region, a preliminary monitoring survey was carried out in a transitional environment along the north-eastern Italian coasts, the Lagoon of Venice. S-MPPs were evaluated in sediments collected from 10 sites chosen in shallow areas variously affected by natural conditions and anthropogenic influences (i.e., landward stations influenced by freshwater inputs, seaward areas near sea inlets, and sites influenced by the presence of aquaculture farms, industry and city centers). S-MPPs, extracted from bulk sediments by density separation, were counted and identified by Fourier-Transform Infrared Micro-spectroscopyFT-IR). The μFT-IR process included automatic surface chemical mapping and references to an infrared library database to identify the compositional spectra of particles. S-MPPs were recovered from all samples - a fact which emphasizes their extensive distribution throughout the Lagoon. Total abundances varied from 2175 to 672 S-MPPs kg-1 d.w., higher concentrations generally being observed in landward sites. Of the ten polymer types identified, the most abundant, accounting for more than 82% of total S-MPPs, were polyethylene and polypropylene. The most frequent size (93% of observed microplastics) was in the range 30-500 μm. Total S-MPP values were significantly correlated with the finer sediment fraction and with the metal pollution index.

  15. Clinical significance of changes of serum FT3, FT4 and SIL-2R levels after treatment in patients with hyperthyroidism

    International Nuclear Information System (INIS)

    Ye Qing

    2008-01-01

    Objective: To explore the clinical significance of changes of serum FT 3 , FT 4 , SIL-2R levels after treatment in patients with hyperthyroidism. Methods: Serum FT 3 , FT 4 , TSH (with RIA) and SIL-2R (with ELISA) levels were measured in 55 patients with hyperthyroidism both before and after treatment as well as in 35 controls. Results: Before treatment, in the patients the serum FT 3 , FT 4 , SIL-2R levels were significantly higher than those in the controls (P 3 , FT 4 , SIL-2 levels were not significantly different from those in controls (P>0.05). Conclusion: Detection of serum FT 3 , FT 4 , SIL-2R levels is valuable for treatment outcome prediction in patients with hyperthyroidism. (authors)

  16. Structural, Spectroscopic (FT-IR, Raman and NMR, Non-linear Optical (NLO, HOMO-LUMO and Theoretical (DFT/CAM-B3LYP Analyses of N-Benzyloxycarbonyloxy-5-Norbornene-2,3-Dicarboximide Molecule

    Directory of Open Access Journals (Sweden)

    Nuri ÖZTÜRK

    2018-02-01

    Full Text Available The experimental spectroscopic investigation of N-benzyloxycarbonyloxy-5-norbornene-2,3-dicarboximide (C17H15NO5 molecule has been done using 1H and 13C NMR chemical shifts, FT-IR and Raman spectroscopies. Conformational forms have been determined depending on orientation of N-benzyloxycarbonyloxy and 5-norbornene-2,3-dicarboximide (NDI groups of the title compound. The structural geometric optimizations, vibrational wavenumbers, NMR chemical shifts (in vacuum and chloroform and HOMO-LUMO analyses for all conformers of the title molecule have been done with DFT/CAM-B3LYP method at the 6-311++G(d,p basis set. Additionally, based on the calculated HOMO and LUMO energy values, some molecular properties such as ionization potential (I, electron affinity (A, electronegativity (χ, chemical hardness (h, chemical softness (z, chemical potential (μ and electrophilicity index (w parameters are determined for all conformers. The non-linear optical (NLO properties have been studied for the title molecule. We can say that the experimental spectral data are in accordance with calculated values.

  17. Identification of pulmonary edema in forensic autopsy cases of fatal anaphylactic shock using Fourier transform infrared microspectroscopy.

    Science.gov (United States)

    Lin, Hancheng; Luo, Yiwen; Wang, Lei; Deng, Kaifei; Sun, Qiran; Fang, Ruoxi; Wei, Xin; Zha, Shuai; Wang, Zhenyuan; Huang, Ping

    2018-03-01

    Anaphylaxis is a rapid allergic reaction that may cause sudden death. Currently, postmortem diagnosis of anaphylactic shock is sometimes difficult and often achieved through exclusion. The aim of our study was to investigate whether Fourier transform infrared (FTIR) microspectroscopy combined with pattern recognition methods would be complementary to traditional methods and provide a more accurate postmortem diagnosis of fatal anaphylactic shock. First, the results of spectral peak area analysis showed that the pulmonary edema fluid of the fatal anaphylactic shock group was richer in protein components than the control group, which included mechanical asphyxia, brain injury, and acute cardiac death. Subsequently, principle component analysis (PCA) was performed and showed that the anaphylactic shock group contained more turn and α-helix protein structures as well as less tyrosine-rich proteins than the control group. Ultimately, a partial least-square discriminant analysis (PLS-DA) model combined with a variables selection method called the genetic algorithm (GA) was built and demonstrated good separation between these two groups. This pilot study demonstrates that FTIR microspectroscopy has the potential to be an effective aid for postmortem diagnosis of fatal anaphylactic shock.

  18. Using zone plates for X-ray microimaging and microspectroscopy in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Kemner, K.M.; Yun, W.; Cai, Z. (and others)

    1999-01-01

    Understanding the transport and ultimate fate of environmental contaminants is of fundamental importance for developing effective remediation strategies and determining the risk associated with the contaminants. Focusing X-rays by using recently developed zone plates allows determination of the spatial distribution and chemical speciation of contaminants at the micron and submicron length scales. This ability is essential for studying the microscopic physical, geological, chemical, and biological interfaces that play a crucial role in determining contaminant fate and mobility. The following is an overview of some current problems in environmental science that are being addressed with synchrotron-based X-ray microimaging and microspectroscopy. (au) 7 refs.

  19. Using zone plates for X-ray microimaging and microspectroscopy in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Kemner, K.M.; Yun, W.; Cai, Z. [and others

    1999-11-01

    Understanding the transport and ultimate fate of environmental contaminants is of fundamental importance for developing effective remediation strategies and determining the risk associated with the contaminants. Focusing X-rays by using recently developed zone plates allows determination of the spatial distribution and chemical speciation of contaminants at the micron and submicron length scales. This ability is essential for studying the microscopic physical, geological, chemical, and biological interfaces that play a crucial role in determining contaminant fate and mobility. The following is an overview of some current problems in environmental science that are being addressed with synchrotron-based X-ray microimaging and microspectroscopy. (au) 7 refs.

  20. Determination of phosphorus fertilizer soil reactions by Raman and synchrotron infrared microspectroscopy.

    Science.gov (United States)

    Vogel, Christian; Adam, Christian; Sekine, Ryo; Schiller, Tara; Lipiec, Ewelina; McNaughton, Don

    2013-10-01

    The reaction mechanisms of phosphate-bearing mineral phases from sewage sludge ash-based fertilizers in soil were determined by Raman and synchrotron infrared microspectroscopy. Different reaction mechanisms in wet soil were found for calcium and magnesium (pyro-) phosphates. Calcium orthophosphates were converted over time to hydroxyapatite. Conversely, different magnesium phosphates were transformed to trimagnesium phosphate. Since the magnesium phosphates are unable to form an apatite structure, the plant-available phosphorus remains in the soil, leading to better growth results observed in agricultural pot experiments. The pyrophosphates also reacted very differently. Calcium pyrophosphate is unreactive in soil. In contrast, magnesium pyrophosphate quickly formed plant-available dimagnesium phosphate.

  1. Minerals from Macedonia. XII. The dependence of quartz and opal color on trace element composition - AAS, FT IR and micro-Raman spectroscopy study

    International Nuclear Information System (INIS)

    Makreski, Petre; Jovanovski, Gligor; Stafilov, Trajce; Boev, Blazho

    2004-01-01

    The dependence of the color of quartz and opal natural minerals, collected from different localities in the Republic of Macedonia (Alinci, Belutche, Budinarci, Mariovo, Sasa, Sazhdevo, Chanishte, Cheshinovo, Zletovo) on their element composition is studied using Fourier transform infrared spectroscopy (FT IR), micro-Raman spectroscopy and atomic absorption spectrometry (AAS). In order to determine the content of different trace elements (Al, Cd, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb and Zn), 15 quartz and 2 opal mineral samples, using flame atomic absorption spectrometry (FAAS) and Zeeman electrothermal atomic absorption spectrometry (ETAAS) are studied. To avoid matrix interferences, the method for elimination of silicium is proposed. Optimal instrumental parameters for ETAAS determination (temperature and time for drying, pyrolysis and atomizing) are established by extensive testing for each investigated element. It is found that the milky white color of quartz minerals is due to the presence of traces of Ca, the appearance of black color is the result of the existence of Pb, Mn and Al impurities, and the occurrence of Fe and Cr introduce appearance of red and green color, respectively. Preliminary identification of the minerals is based on the comparison of our results, obtained by using the infrared and Raman vibrational spectroscopy, with the corresponding literature data for the analogous mineral species originating all over the world. An overview of the basic morphological and physico-chemical characteristics of the quartz and opal minerals and the geology of the localities is given. The colored pictures of the studied quartz and opal minerals are presented as well. (Author)

  2. Determination of Lubricants on Ball Bearings by FT-IR using an Integrating Sphere

    Science.gov (United States)

    Street, K. W.; Pepper, S. V.; Wright, A.

    2003-01-01

    The lifetime determination of space lubricants is done at our facility by accelerated testing. Several micrograms of lubricant are deposited on the surface of a ball by syringing tens of micro liters of dilute lubricant solution. The solvent evaporates and the mass of lubricant is determined by twenty weighings near the balance reliability limit. This process is timely but does not produce a good correlation between the mass of lubricant and the volume of solution applied, as would be expected. The amount of lubricant deposited on a ball can be determined directly by Fourier Transform - Infrared Spectroscopy using an integrating sphere. In this paper, we discuss reasons for choosing this methodology, optimization of quantification conditions and potential applications for the technique. The volume of lubricant solution applied to the ball gives better correlation to the IR intensity than does the weight.

  3. GC-MS and FI-IR analysis of the bio-oil with addition of ethyl acetate during storage

    Directory of Open Access Journals (Sweden)

    Le eZhang

    2014-01-01

    Full Text Available Different mass fractions (0%, 3%, 6%, 9%, 12%, and 15% of ethyl acetate were added to bio-oil for improving its storage stability during storage at 40℃ for 35d. For different bio-oils during storage, physical properties were characterized and chemical components were determined by GC-MS and FT-IR. The results of properties characterization showed that, addition of ethyl acetate could instantly lower bio-oil viscosity, water content, and dramatically decrease the rate of aging. pH value of bio-oil can be instantly improved by adding ethyl acetate. GC-MS results revealed that addition of various content of ethyl acetate into bio-oil and its storage at 40℃ for 35d could both lead to disappearance of previous compounds and generation of new compounds. FT-IR results showed that addition of various content of ethyl acetate into bio-oils and its storage at 40℃ for 35d could slightly change the wavenumbers of substantial functional groups in bio-oils.

  4. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas.

    Science.gov (United States)

    Li, Chaoqiong; Luo, Li; Fu, Qiantang; Niu, Longjian; Xu, Zeng-Fu

    2014-05-08

    Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) -like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha.

  5. Synchrotron-based FTIR microspectroscopy for the mapping of photo-oxidation and additives in acrylonitrile-butadiene-styrene model samples and historical objects.

    Science.gov (United States)

    Saviello, Daniela; Pouyet, Emeline; Toniolo, Lucia; Cotte, Marine; Nevin, Austin

    2014-09-16

    Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-μFTIR) was used to map photo-oxidative degradation of acrylonitrile-butadiene-styrene (ABS) and to investigate the presence and the migration of additives in historical samples from important Italian design objects. High resolution (3×3 μm(2)) molecular maps were obtained by FTIR microspectroscopy in transmission mode, using a new method for the preparation of polymer thin sections. The depth of photo-oxidation in samples was evaluated and accompanied by the formation of ketones, aldehydes, esters, and unsaturated carbonyl compounds. This study demonstrates selective surface oxidation and a probable passivation of material against further degradation. In polymer fragments from design objects made of ABS from the 1960s, UV-stabilizers were detected and mapped, and microscopic inclusions of proteinaceous material were identified and mapped for the first time. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Non-isothermal dehydration kinetic study of aspartame hemihydrate using DSC, TGA and DSC-FTIR microspectroscopy

    Directory of Open Access Journals (Sweden)

    Wei-hsien Hsieh

    2018-05-01

    Full Text Available Three thermal analytical techniques such as differential scanning calorimetry (DSC, thermal gravimetric analysis (TGA using five heating rates, and DSC-Fourier Transform Infrared (DSC-FTIR microspectroscopy using one heating rate, were used to determine the thermal characteristics and the dehydration process of aspartame (APM hemihydrate in the solid state. The intramolecular cyclization process of APM anhydrate was also examined. One exothermic and four endothermic peaks were observed in the DSC thermogram of APM hemihydrate, in which the exothermic peak was due to the crystallization of some amorphous APM caused by dehydration process from hemihydrate to anhydride. While four endothermic peaks were corresponded to the evaporation of absorbed water, the dehydration of hemihydrate, the diketopiperazines (DKP formation via intramolecular cyclization, and the melting of DKP, respectively. The weight loss measured in TGA curve of APM hemihydrate was associated with these endothermic peaks in the DSC thermogram. According to the Flynn–Wall–Ozawa (FWO model, the activation energy of dehydration process within 100–150 °C was about 218 ± 11 kJ/mol determined by TGA technique. Both the dehydration and DKP formation processes for solid-state APM hemihydrate were markedly evidenced from the thermal-responsive changes in several specific FTIR bands by a single-step DSC-FTIR microspectroscopy. Keywords: Aspartame (APM hemihydrate, DSC/TGA, DSC-FTIR, Dehydration, Activation energy, DKP formation

  7. Synthesis, single crystal X-ray, spectroscopic (FT-IR, UV-vis, fluorescence, 1H &13C NMR), computational (DFT/B3LYP) studies of some imidazole based picrates

    Science.gov (United States)

    Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Selvanayagam, S.; Sridhar, B.

    2018-04-01

    2,4,5-triphenyl-1H-imidazol-3-ium picrate (1), 2-(4-fluorophenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (2), 2-(4-methylphenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (3) were synthesised. These compounds 1-3 were characterized by elemental, FT-IR, 1H NMR and 13C NMR analyses. The structure of compound 3 was further confirmed by single crystal X-ray diffraction. The studies reveal that the molecule is associated with weak Nsbnd H⋯O and Csbnd H⋯N and van der Waals interactions which are responsible for the formation and strengthening of supramolecular assembly. The nature of the interactions and their importance are explored using the Hirshfeld surface method. The physicochemical properties of the compounds 1-3 were evaluated by UV-vis spectroscopy, fluorescence spectroscopy, and thermogravimetric analysis. According to thermal data the salts possess excellent thermal stabilities with decomposition temperatures ranging from 220 to 280 °C. Second-harmonic generation (SHG) results exposed that the picrates 1-3 were about 1.13-1.50 times greater than potassium dihydrogen phosphate (KDP). Here we also used Density functional theory (DFT) calculations in order to investigate the opto-electronic properties. The obtained theoretical results validate with available experimental data.

  8. Application of experimental design in examination of the dissolution rate of carbamazepine from formulations: Characterization of the optimal formulation by DSC, TGA, FT-IR and PXRD analysis

    Directory of Open Access Journals (Sweden)

    Krstić Marko

    2015-01-01

    Full Text Available Poor solubility is one of the key reasons for the poor bioavailability of these drugs. This paper displays a formulation of a solid surfactant system with carbamazepine, in order to increase its dissolution rate. Solid state surfactant systems are formed by application of fractal experimental design. Poloxamer 237 and Poloxamer 338 were used as surfactants and Brij® 35 was used as the co-surfactant. The ratios of the excipients and carbamazepine were varied and their effects on the dissolution rate of carbamazepine were examined. Moreover, the effects of the addition of natural (diatomite and a synthetic adsorbent carrier (Neusiline UFL2 on the dissolution rate of carbamazepine were also tested. The prepared surfactant systems were characterized and the influence of the excipients on possible changes of the polymorphous form of carbamazepine examined by application of analytical techniques (DSC, TGA, FT-IR, PXRD. It was determined that an appropriate selection of the excipient type and ratio could provide a significant increase in the carbamazepine dissolution rate. By application of analytical techniques, it was found that that the employed excipients induce a transition of carbamazepine into the amorphous form and that the selected sample was stable for three months, when kept under ambient conditions. [Projekat Ministarstva nauke Republike Srbije, br. TR34007

  9. Potential Applications of Scanning Probe Microscopy in Forensic Science

    International Nuclear Information System (INIS)

    Watson, G S; Watson, J A

    2007-01-01

    The forensic community utilises a myriad of techniques to investigate a wide range of materials, from paint flakes to DNA. The various microscopic techniques have provided some of the greatest contributions, e.g., FT-IR (Fourier-transform infrared) microspectroscopy utilised in copy toner discrimination, multi-layer automobile paint fragment examination, etc, SEM-EDA (scanning electron microscopy with energy dispersive analysis) used to investigate glass fragments, fibers, and explosives, and SEM in microsampling for elemental analysis, just to name a few. This study demonstrates the ability of the Scanning Probe Microscope (SPM) to analyse human fingerprints on surfaces utilising a step-and-scan feature, enabling analysis of a larger field-of-view. We also extend a line crossings study by incorporating height analysis and surface roughness measurements. The study demonstrates the potential for SPM techniques to be utilised for forensic analysis which could complement the more traditional methodologies used in such investigations

  10. Potential Applications of Scanning Probe Microscopy in Forensic Science

    Energy Technology Data Exchange (ETDEWEB)

    Watson, G S [Nanoscale Science and Technology Centre, School of Science, Griffith University, Kessels Rd, Nathan, QLD, 4111 (Australia); Watson, J A [Nanoscale Science and Technology Centre, School of Science, Griffith University, Kessels Rd, Nathan, QLD, 4111 (Australia)

    2007-04-15

    The forensic community utilises a myriad of techniques to investigate a wide range of materials, from paint flakes to DNA. The various microscopic techniques have provided some of the greatest contributions, e.g., FT-IR (Fourier-transform infrared) microspectroscopy utilised in copy toner discrimination, multi-layer automobile paint fragment examination, etc, SEM-EDA (scanning electron microscopy with energy dispersive analysis) used to investigate glass fragments, fibers, and explosives, and SEM in microsampling for elemental analysis, just to name a few. This study demonstrates the ability of the Scanning Probe Microscope (SPM) to analyse human fingerprints on surfaces utilising a step-and-scan feature, enabling analysis of a larger field-of-view. We also extend a line crossings study by incorporating height analysis and surface roughness measurements. The study demonstrates the potential for SPM techniques to be utilised for forensic analysis which could complement the more traditional methodologies used in such investigations.

  11. Rapid examination of the kinetic process of intramolecular lactamization of gabapentin using DSC-FTIR

    International Nuclear Information System (INIS)

    Hsu, C.-H.; Lin, S.-Y.

    2009-01-01

    The thermal stability and thermodynamics of gabapentin (GBP) in the solid state were investigated by DSC and TG techniques, and FTIR microspectroscopy. The detailed intramolecular lactamization process of GBP to form gabapentin-lactam (GBP-L) was also determined by thermal FTIR microspectroscopy. GBP exhibited a DSC endothermic peak at 169 deg. C. The weight loss in TG curve of GBP suggested that the evaporation process of water liberated via intramolecular lactamization was simultaneously combined with the evaporation process of GBP-L having a DSC endothermic peak at 91 deg. C. A thermal FTIR microspectroscopy clearly evidenced the IR spectra at 3350 cm -1 for water liberated and at 1701 cm -1 for lactam structure formed due to the lactam formation of GBP. This study indicates that the activation energy for combined processes of intramolecular lactamization of GBP and evaporation of GBP-L was about 114.3 ± 23.3 kJ/mol, but for the evaporation of GBP-L alone was 76.2 ± 1.5 kJ/mol. A powerful simultaneous DSC-FTIR combined technique was easily used to quickly examine the detailed kinetic processes of intramolecular cyclization of GPB and evaporation of GBP-L in the solid state

  12. Ten-watt level picosecond parametric mid-IR source broadly tunable in wavelength

    Science.gov (United States)

    Vyvlečka, Michal; Novák, Ondřej; Roškot, Lukáscaron; Smrž, Martin; Mužík, Jiří; Endo, Akira; Mocek, Tomáš

    2018-02-01

    Mid-IR wavelength range (between 2 and 8 μm) offers perspective applications, such as minimally-invasive neurosurgery, gas sensing, or plastic and polymer processing. Maturity of high average power near-IR lasers is beneficial for powerful mid-IR generation by optical parametric conversion. We utilize in-house developed Yb:YAG thin-disk laser of 100 W average power at 77 kHz repetition rate, wavelength of 1030 nm, and about 2 ps pulse width for pumping of a ten-watt level picosecond mid-IR source. Seed beam is obtained by optical parametric generation in a double-pass 10 mm long PPLN crystal pumped by a part of the fundamental near-IR beam. Tunability of the signal wavelength between 1.46 μm and 1.95 μm was achieved with power of several tens of miliwatts. Main part of the fundamental beam pumps an optical parametric amplification stage, which includes a walk-off compensating pair of 10 mm long KTP crystals. We already demonstrated the OPA output signal and idler beam tunability between 1.70-1.95 μm and 2.18-2.62 μm, respectively. The signal and idler beams were amplified up to 8.5 W and 5 W, respectively, at 42 W pump without evidence of strong saturation. Thus, increase in signal and idler output power is expected for pump power increase.

  13. Raman microspectroscopy of nanodiamond-induced structural changes in albumin.

    Science.gov (United States)

    Svetlakova, Anastasiya S; Brandt, Nikolay N; Priezzhev, Alexander V; Chikishev, Andrey Yu

    2015-04-01

    Nanodiamonds (NDs) are promising agents for theranostic applications due to reported low toxicity and high biocompatibility, which is still being extensively tested on cellular, tissue, and organism levels. It is presumed that for experimental and future clinical applications, NDs will be administered into the organism via the blood circulation system. In this regard, the interaction of NDs with blood components needs to be thoroughly studied. We studied the interaction of carboxylated NDs (cNDs) with albumin, one of the major proteins of blood plasma. After 2-h long in vitro incubation in an aqueous solution of the protein, 100-nm cNDs were dried and the dry samples were studied with the aid of Raman microspectroscopy. The spectroscopic data indicate significant conformational changes that can be due to cND–protein interaction. A possible decrease in the functional activity of albumin related to the conformational changes must be taken into account in the in vivo applications.

  14. Raman microspectroscopy of nanodiamond-induced structural changes in albumin

    Science.gov (United States)

    Svetlakova, Anastasiya S.; Brandt, Nikolay N.; Priezzhev, Alexander V.; Chikishev, Andrey Yu.

    2015-04-01

    Nanodiamonds (NDs) are promising agents for theranostic applications due to reported low toxicity and high biocompatibility, which is still being extensively tested on cellular, tissue, and organism levels. It is presumed that for experimental and future clinical applications, NDs will be administered into the organism via the blood circulation system. In this regard, the interaction of NDs with blood components needs to be thoroughly studied. We studied the interaction of carboxylated NDs (cNDs) with albumin, one of the major proteins of blood plasma. After 2-h long in vitro incubation in an aqueous solution of the protein, 100-nm cNDs were dried and the dry samples were studied with the aid of Raman microspectroscopy. The spectroscopic data indicate significant conformational changes that can be due to cND-protein interaction. A possible decrease in the functional activity of albumin related to the conformational changes must be taken into account in the in vivo applications.

  15. Thermal-to-visible transducer (TVT) for thermal-IR imaging

    Science.gov (United States)

    Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven

    2008-04-01

    We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.

  16. Space Power Facility (SPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Power Facility (SPF) houses the world's largest space environment simulation chamber, measuring 100 ft. in diameter by 122 ft. high. In this chamber, large...

  17. Experimental FT-IR, Laser-Raman and DFT spectroscopic analysis of a potential chemotherapeutic agent 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile.

    Science.gov (United States)

    Sert, Yusuf; Al-Turkistani, Abdulghafoor A; Al-Deeb, Omar A; El-Emam, Ali A; Ucun, Fatih; Çırak, Çağrı

    2014-01-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09 W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. [Effect of selenium on serum TGAb, TMAb, FT3, FT4 and TSH of rats with excessive intake of iodine].

    Science.gov (United States)

    Chi, Haiyan; Zhou, Yuping; Li, Li

    2012-07-01

    To investigate the effect of selenium on the TGAb, TMAb, FT3, FT4 and TSH level of rats with excessive intake of iodine. Wistar rats were divided into three groups by random:normal control, high iodine group and high iodine plus selenium group. Rats in the high iodine plus selenium group were lavaged with sodium selenite for 10 weeks. The levels of serum TGAb, TMAb, FT3, FT4 and TSH were tested at different time of the experiment. There were no significant change on levels of FT3, FT4 and TSH (P > 0.05). The levels of TGAb and TMAb in the high iodine group were increased slowly (P iodine plus selenium group. Excessive intake of iodine might induce goiter, and selenium might have antagonistic effect on it.

  19. Design and implementation of a rapid-mixer flow cell for time-resolved infrared microspectroscopy

    International Nuclear Information System (INIS)

    Marinkovic, Nebojsa S.; Adzic, Aleksandar R.; Sullivan, Michael; Kovacs, Kevin; Miller, Lisa M.; Rousseau, Denis L.; Yeh, Syun-Ru; Chance, Mark R.

    2000-01-01

    A rapid mixer for the analysis of reactions in the millisecond and submillisecond time domains by Fourier-transform infrared microspectroscopy has been constructed. The cell was tested by examination of cytochrome-c folding kinetics. The device allows collection of full infrared spectral data on millisecond and faster time scales subsequent to chemical jump reaction initiation. The data quality is sufficiently good such that spectral fitting techniques could be applied to analysis of the data. Thus, this method provides an advantage over kinetic measurements at single wavelengths using infrared laser or diode sources, particularly where band overlap exists

  20. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.|info:eu-repo/dai/nl/304824283; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region

  1. Quark stars in f(T, T)-gravity

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Mark; Said, Jackson Levi [University of Malta, Department of Physics, Msida (Malta); University of Malta, Institute of Space Sciences and Astronomy, Msida (Malta)

    2017-02-15

    We derive a working model for the Tolman-Oppenheimer-Volkoff equation for quark star systems within the modified f(T, T)-gravity class of models. We consider f(T, T)-gravity for a static spherically symmetric space-time. In this instance the metric is built from a more fundamental tetrad vierbein from which the metric tensor can be derived. We impose a linear f(T) parameter, namely taking f = αT(r) + βT(r) + φ and investigate the behaviour of a linear energy-momentum tensor trace, T. We also outline the restrictions which modified f(T, T)-gravity imposes upon the coupling parameters. Finally we incorporate the MIT bag model in order to derive the mass-radius and mass-central density relations of the quark star within f(T, T)-gravity. (orig.)

  2. Raman microspectroscopy as a diagnostic tool for the non-invasive analysis of fibrillin-1 deficiency in the skin and in the in vitro skin models.

    Science.gov (United States)

    Brauchle, Eva; Bauer, Hannah; Fernes, Patrick; Zuk, Alexandra; Schenke-Layland, Katja; Sengle, Gerhard

    2017-04-01

    Fibrillin microfibrils and elastic fibers are critical determinants of elastic tissues where they define as tissue-specific architectures vital mechanical properties such as pliability and elastic recoil. Fibrillin microfibrils also facilitate elastic fiber formation and support the association of epithelial cells with the interstitial matrix. Mutations in fibrillin-1 (FBN1) are causative for the Marfan syndrome, a congenital multisystem disorder characterized by progressive deterioration of the fibrillin microfibril/ elastic fiber architecture in the cardiovascular, musculoskeletal, ocular, and dermal system. In this study, we utilized Raman microspectroscopy in combination with principal component analysis (PCA) to analyze the molecular consequences of fibrillin-1 deficiency in skin of a mouse model (GT8) of Marfan syndrome. In addition, full-thickness skin models incorporating murine wild-type and Fbn1 GT8/GT8 fibroblasts as well as human HaCaT keratinocytes were generated and analyzed. Skin models containing GT8 fibroblasts showed an altered epidermal morphology when compared to wild-type models indicating a new role for fibrillin-1 in dermal-epidermal crosstalk. Obtained Raman spectra together with PCA allowed to discriminate between healthy and deficient microfibrillar networks in murine dermis and skin models. Interestingly, results obtained from GT8 dermis and skin models showed similar alterations in molecular signatures triggered by fibrillin-1 deficiency such as amide III vibrations and decreased levels of glycan vibrations. Overall, this study indicates that Raman microspectroscopy has the potential to analyze subtle changes in fibrillin-1 microfibrils and elastic fiber networks. Therefore Raman microspectroscopy may be utilized as a non-invasive and sensitive diagnostic tool to identify connective tissue disorders and monitor their disease progression. Mutations in building blocks of the fibrillin microfibril/ elastic fiber network manifest in disease

  3. Quantitative Raman microspectroscopy for water permeability parameters at a droplet interface bilayer.

    Science.gov (United States)

    Braziel, S; Sullivan, K; Lee, S

    2018-01-29

    Using confocal Raman microspectroscopy, we derive parameters for bilayer water transport across an isolated nanoliter aqueous droplet pair. For a bilayer formed with two osmotically imbalanced and adherent nanoliter aqueous droplets in a surrounding oil solvent, a droplet interface bilayer (DIB), the water permeability coefficient across the lipid bilayer was determined from monitoring the Raman scattering from the C[triple bond, length as m-dash]N stretching mode of K 3 Fe(CN) 6 as a measure of water uptake into the swelling droplet of a DIB pair. We also derive passive diffusional permeability coefficient for D 2 O transport across a droplet bilayer using O-D Raman signal. This method provides a significant methodological advance in determining water permeability coefficients in a convenient and reliable way.

  4. Following Drug Uptake and Reactions inside Escherichia coli Cells by Raman Microspectroscopy

    Science.gov (United States)

    2015-01-01

    Raman microspectroscopy combined with Raman difference spectroscopy reveals the details of chemical reactions within bacterial cells. The method provides direct quantitative data on penetration of druglike molecules into Escherichia coli cells in situ along with the details of drug–target reactions. With this label-free technique, clavulanic acid and tazobactam can be observed as they penetrate into E. coli cells and subsequently inhibit β-lactamase enzymes produced within these cells. When E. coli cells contain a β-lactamase that forms a stable complex with an inhibitor, the Raman signature of the known enamine acyl–enzyme complex is detected. From Raman intensities it is facile to measure semiquantitatively the number of clavulanic acid molecules taken up by the lactamase-free cells during growth. PMID:24901294

  5. McVittie solution in f(T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Cecilia; Jose Guzman, Maria [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Ferraro, Rafael [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2017-12-15

    We show that McVittie geometry, which describes a black hole embedded in a FLRW universe, not only solves the Einstein equations but also remains as a non-deformable solution of f(T) gravity. This search for GR solutions that survive in f(T) gravity is facilitated by a null tetrad approach. We also show that flat FLRW geometry is a consistent solution of f(T) dynamical equations not only for T = -6H{sup 2} but also for T = 0, which could be a manifestation of the additional degrees of freedom involved in f(T) theories. (orig.)

  6. McVittie solution in f(T) gravity

    International Nuclear Information System (INIS)

    Bejarano, Cecilia; Jose Guzman, Maria; Ferraro, Rafael

    2017-01-01

    We show that McVittie geometry, which describes a black hole embedded in a FLRW universe, not only solves the Einstein equations but also remains as a non-deformable solution of f(T) gravity. This search for GR solutions that survive in f(T) gravity is facilitated by a null tetrad approach. We also show that flat FLRW geometry is a consistent solution of f(T) dynamical equations not only for T = -6H 2 but also for T = 0, which could be a manifestation of the additional degrees of freedom involved in f(T) theories. (orig.)

  7. New observational constraints on f(T) cosmology from radio quasars

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Jing-Zhao; Cao, Shuo; Zhu, Zong-Hong [Beijing Normal University, Department of Astronomy, Beijing (China); Biesiada, Marek; Zheng, Xiaogang [Beijing Normal University, Department of Astronomy, Beijing (China); University of Silesia, Department of Astrophysics and Cosmology, Institute of Physics, Katowice (Poland)

    2017-08-15

    Using a new recently compiled milliarcsecond compact radio data set of 120 intermediate-luminosity quasars in the redshift range 0.46 < z < 2.76, whose statistical linear sizes show negligible dependence on redshifts and intrinsic luminosity and thus represent standard rulers in cosmology, we constrain three viable and most popular f(T) gravity models, where T is the torsion scalar in teleparallel gravity. Our analysis reveals that constraining power of the quasars data (N = 120) is comparable to the Union2.1 SN Ia data (N = 580) for all three f(T) models. Together with other standard ruler probes such as cosmic microwave background and baryon acoustic oscillation distance measurements, the present value of the matter density parameter Ω{sub m} obtained by quasars is much larger than that derived from other observations. For one of the models considered (f{sub 1}CDM) a small but noticeable deviation from ΛCDM cosmology is present, while in the framework of f{sub 3}CDM the effective equation of state may cross the phantom divide line at lower redshifts. These results indicate that intermediate-luminosity quasars could provide an effective observational probe comparable to SN Ia at much higher redshifts, and f(T) gravity is a reasonable candidate for the modified gravity theory. (orig.)

  8. Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide.

    Science.gov (United States)

    Arjunan, V; Rani, T; Mythili, C V; Mohan, S

    2011-08-01

    A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Utility Assessment Report for SPIDERS Phase 2: Ft. Carson (Rev 1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Jonathan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tuffner, Francis K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hadley, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schneider, Kevin P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-01

    This document contains the Utility Assessment Report (UAR) for the Phase 2 operational Demonstration (OD) of the Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability Technology Demonstration (JCTD). The UAR for Phase 2 shows that the SPIDERS system was able to meet the requirements of the Implementation Directive at Ft. Carson.

  10. Determination of serum free thyroxine concentration (FT4) by means of fT4-fraction and total thyroxine concentration

    International Nuclear Information System (INIS)

    Passath, A.; Leb, G.

    1985-01-01

    A new equilibrium assay for the determination of serum free thyroxine was evaluated in 514 patients. The assay comprises a two-vial-procedure to measure total thyroxine and free thyroxine fraction by use of monoclonal antibodies. Free thyroxine concentrations are calculated from fT 4 -fraction and total thyroxine concentration readings. In euthyroidism the average free thyroxine fraction (%fT 4 ) was 0.011%, in hyperthyroidism this fraction was elevated, in hypothyroidism it was below normal. In patients with TBG anomalies, TBG values were inversely correlated with fT 4 fraction readings. The 'euthyroid reference range' of FT 4 (SPAC ET) was between 0.70 to 1.78ng/dl. This euthyroid range of FT 4 was determined from TT 4 concentrations measured by T 4 -RIA (SPAC T 4 MONO) which were 30% above TT 4 values measured by conventional T 4 -RIA (SPAC T 4 POLY; polyclonal antibodies). However, a different euthyroid range of FT 4 between 0.55 to 1.30 ng/dl was observed as well as by other investigators when conventional T 4 -RIA measurements were used for calculation of FT 4 values. Our results indicate that calculated FT 4 concentration values are highly dependent on the methods used for determination of total thyroxine concentrations. Precision and reproducability of this two vial equilibrium assay did not meet the requirements mandatory for the application as a clinical routine diagnostic procedure, and its general use for this purpose can as yet not be recommended. (Author)

  11. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo

    Directory of Open Access Journals (Sweden)

    Ladislav Nedbal

    2010-09-01

    Full Text Available Algae are becoming a strategic source of fuels, food, feedstocks, and biologically active compounds. This potential has stimulated the development of innovative analytical methods focused on these microorganisms. Algal lipids are among the most promising potential products for fuels as well as for nutrition. The crucial parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids quantified by the iodine value. Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. The Raman spectra were collected from three selected algal species immobilized in an agarose gel. Prior to immobilization, the algae were cultivated in the stationary phase inducing an overproduction of lipids. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm−1 (cis C=C stretching mode and 1,445 cm−1 (CH2 scissoring mode as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids. These spectral features were first quantified for pure fatty acids of known iodine value. The resultant calibration curve was then used to calculate the effective iodine value of storage lipids in the living algal cells from their Raman spectra. We demonstrated that the iodine value differs significantly for the three studied algal species. Our spectroscopic estimations of the iodine value were validated using GC-MS measurements and an excellent agreement was found for the Trachydiscus minutus species. A good agreement was also found with the earlier published data on Botryococcus braunii. Thus, we propose that Raman microspectroscopy can become technique of choice in the rapidly expanding field of algal biotechnology.

  12. IRS Guidelines: Joint IAEA/NEA International Reporting System for Operating Experience

    International Nuclear Information System (INIS)

    2010-01-01

    The International Reporting System for Operating Experience (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the OECD Nuclear Energy Agency (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants which are operated worldwide. This objective can be achieved by providing timely and detailed information on lessons learned from operating and construction experience at the international level. This information could be related to issues and events that are related to safety. The purpose of these guidelines is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the effectiveness of the system expected by all Member States operating nuclear power plants. As this system is owned by the Member States, the IRS Guidelines have been developed and approved by the IRS National Co-ordinators with the assistance of both Secretariats (IAEA/NEA).

  13. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  14. FT-IR study and solvent-implicit and explicit effect on stepwise tautomerism of Guanylurea: M06-2X as a case of study

    Science.gov (United States)

    Karimzadeh, Morteza; Manouchehri, Neda; Saberi, Dariush; Niknam, Khodabakhsh

    2018-06-01

    All 66 conformers of guanylurea were optimized and frequency calculations were performed at M06-2X/6-311++G(d,p) level of theory. Theses conformers were categorized into five tautomers, and the most stable conformer of each tautomer were found. Geometrical parameters indicated that these tautomers have almost planar structure. Complete stepwise tautomerism were studied through both intramolecular proton transfer routs and internal rotations. Results indicated that the proton transfer routs involving four-membered heterocyclic structures were rate-determining steps. Also, intramolecular proton movement having six-membered transition state structures had very low energy barrier comparable to the transition states of internal rotation routs. Differentiation of studied tautomers could easily be done through their FT-IR spectra in the range of 3200 to 3900 cm-1 by comparing absorption bands and intensity of peaks. Solvent-implicit effects on the stability of tautomers were also studied through re-optimization and frequency calculation in four solvents. Water, DMSO, acetone and toluene had stabilization effect on all considered tautomers, but the order of stabilization effect was as follows: water > DMSO > acetone > toluene. Finally, solvent-explicit, base-explicit and acid-explicit effect were also studied by taking place of studied tautomer nearside of acid, base or solvent and optimization of them. Frequency calculation for proton movement by contribution of explicit effect showed that formic acid had a very strong effect on proton transfer from tautomer A1 to tautomer D8 by lowering the energy barrier from 42.57 to 0.8 kcal/mol. In addition, ammonia-explicit effect was found to lower the barrier from 42.57 to 22.46 kcal/mol, but this effect is lower than that of water and methanol-explicit effect.

  15. FT-IR study and solvent-implicit and explicit effect on stepwise tautomerism of Guanylurea: M06-2X as a case of study.

    Science.gov (United States)

    Karimzadeh, Morteza; Manouchehri, Neda; Saberi, Dariush; Niknam, Khodabakhsh

    2018-06-15

    All 66 conformers of guanylurea were optimized and frequency calculations were performed at M06-2X/6-311++G(d,p) level of theory. Theses conformers were categorized into five tautomers, and the most stable conformer of each tautomer were found. Geometrical parameters indicated that these tautomers have almost planar structure. Complete stepwise tautomerism were studied through both intramolecular proton transfer routs and internal rotations. Results indicated that the proton transfer routs involving four-membered heterocyclic structures were rate-determining steps. Also, intramolecular proton movement having six-membered transition state structures had very low energy barrier comparable to the transition states of internal rotation routs. Differentiation of studied tautomers could easily be done through their FT-IR spectra in the range of 3200 to 3900cm -1 by comparing absorption bands and intensity of peaks. Solvent-implicit effects on the stability of tautomers were also studied through re-optimization and frequency calculation in four solvents. Water, DMSO, acetone and toluene had stabilization effect on all considered tautomers, but the order of stabilization effect was as follows: water>DMSO>acetone>toluene. Finally, solvent-explicit, base-explicit and acid-explicit effect were also studied by taking place of studied tautomer nearside of acid, base or solvent and optimization of them. Frequency calculation for proton movement by contribution of explicit effect showed that formic acid had a very strong effect on proton transfer from tautomer A1 to tautomer D8 by lowering the energy barrier from 42.57 to 0.8kcal/mol. In addition, ammonia-explicit effect was found to lower the barrier from 42.57 to 22.46kcal/mol, but this effect is lower than that of water and methanol-explicit effect. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Biological infrared microspectroscopy at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Miller, Lisa M.; Carr, G. Lawrence; Williams, Gwyn P.; Sullivan, Michael; Chance, Mark R.

    2000-01-01

    Beamline U2B at the National Synchrotron Light Source has been designed and built as an infrared beamline dedicated to the study of biomedical problems. In 1997, the horizontal and vertical acceptances of Beamline U2B were increased in order to increase the overall flux of the beamline. A wedged, CVD diamond window separates the UHV vacuum of the VUV ring from the rough vacuum of the beamline. The endstation consists of a Nicolet Magna 860 step-scan FTIR and a NicPlan infrared microscope. The spectrometer is equipped with beamsplitter/detector combinations that permit data collection in the mid-and far-infrared regions. We have also made provisions for mounting an external detector (e.g. bolometer) for far infrared microspectroscopy. Thus far, Beamline U2B has been used to (1) perform chemical imaging of bone tissue and brain cells to address issues related to bone disease and epilepsy, respectively, and (2) examine time-resolved protein structure in the sub-millisecond folding of cytochrome c

  17. Confocal Raman Microspectroscopy: The Measurement of VX Depth Profiles in Hairless Guinea Pig Skin and the Evaluation of RSDL

    Science.gov (United States)

    2015-02-01

    USAMRICD-TR-15-01 Confocal Raman Microspectroscopy: The Measurement of VX Depth Profiles in Hairless Guinea Pig Skin and the Evaluation...5a. CONTRACT NUMBER guinea pig skin and the evaluation of RSDL 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Braue, EH...upper skin layers of hairless guinea pigs and to determine the ability of Reactive Skin Decontamination Lotion (RSDL) to remove or degrade VX from

  18. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule.

    Science.gov (United States)

    Muthu, S; Elamurugu Porchelvi, E

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ(*) and π(*) antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed. Copyright © 2013 Elsevier B

  19. CCD and IR array controllers

    Science.gov (United States)

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  20. Changes of serum FT3, FT4, sTSH, TRAb, TGA and TMA concentrations in Graves' patients treated with 131I and clinical significances

    International Nuclear Information System (INIS)

    Sun Wenwei; Wei Liqin; Zhao Jie; Ma Qingjie; Sun Hui

    2006-01-01

    Objective: To study the clinical significances of serum FT 3 , FT 4 , sTSH, TRAb, TGA and TMA concentration changes in Graves' patients before and after, 131 I treatment. Methods: The serum FT 3 , FT 4 , sTSH; TRAb, TGA and TMA concentrations before treatment, 3, 6, 12 and 18 months after therapy in 172 Graves' patients and 43 normal controls were obtained by time-resolved fluoroimmunoassay technique. Results: FT 3 and FT 4 concentrations showed an obvious decrease 3 months after treatment, while sTSH and TRAb had remarkable high values, as TGA and TMA demonstrated a trend to increase. FT 3 , FT 4 and sTSH concentrations were close to control group 6 months after treatment, TRAb had a decline trend. All the six indexes approached to normal 18 months after treatment. Conclusion: It is of great of significance for the Graves' patients to accept the developmental observation of serum FT 3 , FT 4 , and sTSH, TRAb, TGA and TMA concentrations before and after 131 I therapy, which provides a great of positive information for therapy guiding, observation and prognosis. (authors)

  1. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  2. Design of geometry, synthesis, spectroscopic (FT-IR, UV/Vis, excited state, polarization) and anisotropy (thermal conductivity and electrical) properties of new synthesized derivatives of (E,E)-azomethines in colored stretched poly (vinyl alcohol) matrix

    Science.gov (United States)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Dikusar, Evgenij; Yahyaei, Hooriye; Kumar, Rakesh; Khaleghian, Mehrnoosh

    2018-04-01

    In the present work, the molecular structures of two new azomethine dyes: have been predicted and investigated using Density Functional Theory (DFT) in dimethylformamide (DMF). The geometries of the azomethine dyes were optimized by B3LYP/6-31+G* level of theory. The electronic spectra of these azomethine dyes in a DMF solvent was carried out by using TD-B3LYP/6-31+G* method. After quantum-chemical calculations two new azomethine dyes for optoelectronic applications were synthesized. FT-IR spectra of the title compounds are recorded and discussed. The computed absorption spectral data of the azomethine dyes are in good agreement with the experimental data, thus allowing an assignment of the UV/Vis spectra. On the basis of polyvinyl alcohol (PVA) and the new synthesized azomethine dyes polarizing films for visible region of spectrum were developed. The main optical parameters of the polarizing PVA-films (Transmittance, Polarization Efficiency and Dichroic Ratio) have been measured and discussed. Anisotropy of thermal and electrical conductivity of the PVA-films have been studied and explained.

  3. Fusion technology (FT)

    International Nuclear Information System (INIS)

    1978-01-01

    The annual report of tha fusion technology (FT) working group discusses the projects carried out by the participating institutes in the fields of 1) fuel injection and plasma heating, 2) magnetic field technology, and 3) systems investigations. (HK) [de

  4. Violation of causality in f(T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Otalora, G. [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Reboucas, M.J. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil)

    2017-11-15

    In the standard formulation, the f(T) field equations are not invariant under local Lorentz transformations, and thus the theory does not inherit the causal structure of special relativity. Actually, even locally violation of causality can occur in this formulation of f(T) gravity. A locally Lorentz covariant f(T) gravity theory has been devised recently, and this local causality problem seems to have been overcome. The non-locality question, however, is left open. If gravitation is to be described by this covariant f(T) gravity theory there are a number of issues that ought to be examined in its context, including the question as to whether its field equations allow homogeneous Goedel-type solutions, which necessarily leads to violation of causality on non-local scale. Here, to look into the potentialities and difficulties of the covariant f(T) theories, we examine whether they admit Goedel-type solutions. We take a combination of a perfect fluid with electromagnetic plus a scalar field as source, and determine a general Goedel-type solution, which contains special solutions in which the essential parameter of Goedel-type geometries, m{sup 2}, defines any class of homogeneous Goedel-type geometries. We show that solutions of the trigonometric and linear classes (m{sup 2} < 0 and m = 0) are permitted only for the combined matter sources with an electromagnetic field matter component. We extended to the context of covariant f(T) gravity a theorem which ensures that any perfect-fluid homogeneous Goedel-type solution defines the same set of Goedel tetrads h{sub A}{sup μ} up to a Lorentz transformation. We also showed that the single massless scalar field generates Goedel-type solution with no closed time-like curves. Even though the covariant f(T) gravity restores Lorentz covariance of the field equations and the local validity of the causality principle, the bare existence of the Goedel-type solutions makes apparent that the covariant formulation of f(T) gravity

  5. Infrared Spectroscopy as a Chemical Fingerprinting Tool

    Science.gov (United States)

    Huff, Timothy L.

    2003-01-01

    Infrared (IR) spectroscopy is a powerful analytical tool in the chemical fingerprinting of materials. Any sample material that will interact with infrared light produces a spectrum and, although normally associated with organic materials, inorganic compounds may also be infrared active. The technique is rapid, reproducible and usually non-invasive to the sample. That it is non-invasive allows for additional characterization of the original material using other analytical techniques including thermal analysis and RAMAN spectroscopic techniques. With the appropriate accessories, the technique can be used to examine samples in liquid, solid or gas phase. Both aqueous and non-aqueous free-flowing solutions can be analyzed, as can viscous liquids such as heavy oils and greases. Solid samples of varying sizes and shapes may also be examined and with the addition of microscopic IR (microspectroscopy) capabilities, minute materials such as single fibers and threads may be analyzed. With the addition of appropriate software, microspectroscopy can be used for automated discrete point or compositional surface area mapping, with the latter providing a means to record changes in the chemical composition of a material surface over a defined area. Due to the ability to characterize gaseous samples, IR spectroscopy can also be coupled with thermal processes such as thermogravimetric (TG) analyses to provide both thermal and chemical data in a single run. In this configuration, solids (or liquids) heated in a TG analyzer undergo decomposition, with the evolving gases directed into the IR spectrometer. Thus, information is provided on the thermal properties of a material and the order in which its chemical constituents are broken down during incremental heating. Specific examples of these varied applications will be cited, with data interpretation and method limitations further discussed.

  6. An IR and XPS spectroscopy assessment of the physico-chemical surface properties of alumina–YAG nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Spina, Giulia; Bonelli, Barbara, E-mail: barbara.bonelli@polito.it; Palmero, Paola, E-mail: paola.palmero@polito.it; Montanaro, Laura

    2013-12-16

    Well-dispersed nano-crystalline transition alumina suspensions were mixed with yttrium chloride aqueous solutions, with the aim of producing by spray-drying Al{sub 2}O{sub 3}–Y{sub 3}Al{sub 5}O{sub 12} (YAG) composite powders of increasing YAG vol.%. Two samples were prepared, with different Y content, corresponding to 5 and 20 YAG vol.%, respectively. Both samples were then treated at either 600 or 1150 °C. The obtained powders were characterized by X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infra Red (FT-IR) spectroscopy and compared to three reference samples: commercial nano-crystalline transition alumina, YAG and Y{sub 2}O{sub 3}. YAG powders were obtained by co-precipitation route whereas Y{sub 2}O{sub 3} powders were yielded by spray-drying of a yttrium chloride aqueous solution. Modification of physico-chemical properties of the surface of alumina nanoparticles were assessed by combining XPS and FT-IR spectroscopies. On the basis of the results obtained, a possible model is proposed for the structure of the obtained composites, in which Y basically reacts with more acidic hydroxyls of alumina, by forming Y-rich surface grains, the extension of which depends on the thermal treatment. - Highlights: • Al{sub 2}O{sub 3}–Y{sub 3}Al{sub 5}O{sub 12} (YAG) composite nanopowders were prepared by spray drying. • Combined XPS and IR spectroscopy: effective tools to study surface modifications. • Y reacts with more acidic hydroxyls at alumina surface. • Y-rich surface grains form: their extension depends on the thermal treatment.

  7. A ZnGeP{sub 2} Optical Parametric Oscillator with Mid-IR Output Power 3 W Pumped by a Tm, Ho:GdVO{sub 4} Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bao-Quan, Yao; Guo-Li, Zhu; You-Lun, Ju; Yue-Zhu, Wang [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150080 (China)

    2009-02-15

    We report an efficient mid-infrared optical parametric oscillator (OPO) pumped by a pulsed Tm,Ho-codoped GdVO4 laser. The 10-W Tm,Ho:GdVO4 laser pumped by a 801 nm diode produces 20ns pulses with a repetition rate of 10kHz at wavelength of 2.048 {mu}m. The ZnGeP{sub 2} (ZGP) OPO produces 15-ns pulses in the spectral regions 3.65-3.8 {mu}m and 4.45-4.65 {mu}m simultaneously. More than 3 W of mid-IR output power can be generated with a total OPO slope efficiency greater than 58% corresponding to incident 2 {mu}m pump power. The diode laser pump to mid-IR optical conversion efficiency is about 12%.

  8. Phase portraits of general f(T) cosmology

    Science.gov (United States)

    Awad, A.; El Hanafy, W.; Nashed, G. G. L.; Saridakis, Emmanuel N.

    2018-02-01

    We use dynamical system methods to explore the general behaviour of f(T) cosmology. In contrast to the standard applications of dynamical analysis, we present a way to transform the equations into a one-dimensional autonomous system, taking advantage of the crucial property that the torsion scalar in flat FRW geometry is just a function of the Hubble function, thus the field equations include only up to first derivatives of it, and therefore in a general f(T) cosmological scenario every quantity is expressed only in terms of the Hubble function. The great advantage is that for one-dimensional systems it is easy to construct the phase space portraits, and thus extract information and explore in detail the features and possible behaviours of f(T) cosmology. We utilize the phase space portraits and we show that f(T) cosmology can describe the universe evolution in agreement with observations, namely starting from a Big Bang singularity, evolving into the subsequent thermal history and the matter domination, entering into a late-time accelerated expansion, and resulting to the de Sitter phase in the far future. Nevertheless, f(T) cosmology can present a rich class of more exotic behaviours, such as the cosmological bounce and turnaround, the phantom-divide crossing, the Big Brake and the Big Crunch, and it may exhibit various singularities, including the non-harmful ones of type II and type IV. We study the phase space of three specific viable f(T) models offering a complete picture. Moreover, we present a new model of f(T) gravity that can lead to a universe in agreement with observations, free of perturbative instabilities, and applying the Om(z) diagnostic test we confirm that it is in agreement with the combination of SNIa, BAO and CMB data at 1σ confidence level.

  9. FT-IR and XRD analysis of coal from Makum coalfield of Assam

    Indian Academy of Sciences (India)

    iliary fuels, such as natural gas or imported coals to satisfy the coal quality requirement for ther- mal power generation, particularly from the emis- sion point of view. Since mineral matter affects almost all aspects of coal utilization, the accep- tance of coal for industrial application depends critically on both organic and ...

  10. Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai

    OpenAIRE

    Mockevičius, Arminas

    2014-01-01

    Viešosios teisės magistro studijų programos studento Armino Mockevičiaus buvo parašytas magistro baigiamasis darbas „Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai“. Šis darbas parašytas Vilniuje, 2014 metais, Mykolo Romerio universiteto Teisės fakulteto Konstitucinės ir administracinės teisės institute, vadovaujant dr. Gintautui Vilkeliui, apimtis 98 p. Darbo tikslas yra atskleisti alkoholio ir tabako pasiūlos ir paklau...

  11. The porosity, adicity, and reactivity of dealuminated zeolite ZSM-5 at the single partical level: The influence of the zeolite architecture

    NARCIS (Netherlands)

    Aramburo, L.R.; Karwacki, L.; Cubillas, P.; Asahina, S.; de Winter, D.A.M.; Drury, M.R.; Buurmans, I.L.C.; Stavitski, I.; Mores, D.; Daturi, M.; Bazin, P.; Dumas, P.; Thibault-Starzyk, F.; Post, J.A.; Anderson, M.W.; Terasaki, O.; Weckhuysen, B.M.

    2011-01-01

    A combination of atomic force microscopy (AFM), high-resolution scanning electron microscopy (HR-SEM), focused-ion-beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS), confocal fluorescence microscopy (CFM), and UV/Vis and synchrotronbased IR microspectroscopy was

  12. LTPS-TFT Pixel Circuit Compensating for TFT Threshold Voltage Shift and IR-Drop on the Power Line for AMOLED Displays

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2012-01-01

    Full Text Available We propose a new pixel design for the active matrix organic light-emitting diode (AMOLED using low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs. The proposed pixel is composed of four switching TFTs, one driving TFT (DTFT, and one capacitor. The simulation results are performed by AIM-SPICE software. The error rate of OLED output current with (threshold voltage variation (0.3 V and power line drop by 1 V are improved to about 1.67% and 15%, respectively. Thus, the proposed pixel circuit can successfully overcome drawbacks suffered from DTFT threshold voltage deviation and IR-drop on power line.

  13. Vibrational spectroscopy (FT-IR and Laser-Raman) investigation, and computational (M06-2X and B3LYP) analysis on the structure of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone.

    Science.gov (United States)

    Sert, Yusuf; Miroslaw, Barbara; Çırak, Çağrı; Doğan, Hatice; Szulczyk, Daniel; Struga, Marta

    2014-07-15

    In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Identification of Pulmonary Edema in Forensic Autopsy Cases of Sudden Cardiac Death Using Fourier Transform Infrared Microspectroscopy: A Pilot Study.

    Science.gov (United States)

    Lin, Hancheng; Luo, Yiwen; Sun, Qiran; Zhang, Ji; Tuo, Ya; Zhang, Zhong; Wang, Lei; Deng, Kaifei; Chen, Yijiu; Huang, Ping; Wang, Zhenyuan

    2018-02-20

    Many studies have proven the usefulness of biofluid-based infrared spectroscopy in the clinical domain for diagnosis and monitoring the progression of diseases. Here we present a state-of-the-art study in the forensic field that employed Fourier transform infrared microspectroscopy for postmortem diagnosis of sudden cardiac death (SCD) by in situ biochemical investigation of alveolar edema fluid in lung tissue sections. The results of amide-related spectral absorbance analysis demonstrated that the pulmonary edema fluid of the SCD group was richer in protein components than that of the neurologic catastrophe (NC) and lethal multiple injuries (LMI) groups. The complementary results of unsupervised principle component analysis (PCA) and genetic algorithm-guided partial least-squares discriminant analysis (GA-PLS-DA) further indicated different global spectral band patterns of pulmonary edema fluids between these three groups. Ultimately, a random forest (RF) classification model for postmortem diagnosis of SCD was built and achieved good sensitivity and specificity scores of 97.3% and 95.5%, respectively. Classification predictions of unknown pulmonary edema fluid collected from 16 cases were also performed by the model, resulting in 100% correct discrimination. This pilot study demonstrates that FTIR microspectroscopy in combination with chemometrics has the potential to be an effective aid for postmortem diagnosis of SCD.

  15. Significance of changes of serum FT3, FT4, s-TSH, TGA, TPO-Ab levels in patients with non-Graves' hyperthyroidism and Graves' disease

    International Nuclear Information System (INIS)

    Zhang Lindi; Xu Changde; Xu Huogen; Wang Wei; Zhang Jie; Nie Shufen; Gu Zhenqi; Zeng Jihua

    2006-01-01

    Objective: To investigate the clinical significance of the changes of thyroid-related hormones (FT 3 , FT 4 , s-TSH, TGA, TPO-Ab) levels in patients with Graves' and non-Graves' hyperthyroidism. Methods: Serum FT 3 , FT 4 , TGA, TPO-Ab (with RIA) and s-TSH (with IRMA) were determined in 43 patients with non-Graves' hyperthyroidism, 29 patients with Graves' disease and 40 controls. Results: In both groups of hyperthyroid patients, the serum levels of FT 3 (15.01 ± 11.01 pg/ml in the non - Graves' group and 15.23 ± 9.57pg/ml in the Graves' group), FT 4 (38.30 ± 19.82, 38.87 ± 17.39pg/ml), TGA(33.89 ± 22. 43%, 49.72 ± 20.55% ) and TPO-Ab (1319.24 ± 1037.78, 2023.24 ± 621.00IU/ml) were significantly higher than those (FT 3 , 6.76 ± 2.01pg/ml, FT 4 16.16 ± 2.58pg/ml, TGA 6.76 ± 2.01%, TPO-Ab 0.01 ± 0.01IU/ml) in the controls (all P 3 , FT 4 and s-TSH levels in both groups were not significantly different from each other. Conclusion: In this study, serum TGA and TPO -Ab levels were lower in patients with non-Graves' hyperthyroidism than those in patients with Graves' disease. (authors)

  16. Rita Historical Page - Office of Satellite and Product Operations

    Science.gov (United States)

    Advisory Archive. Floater Imagery September 24/0015Z to 24/1345Z: Image: AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Image (w/ Latitude & Longitude): AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Loop: AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Gulf Of Mexico Imagery September

  17. Wilma Historical Page - Office of Satellite and Product Operations

    Science.gov (United States)

    Report and Advisory Archive. Floater Imagery October 24/0715Z to 24/1415Z: Image: AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Image (w/ Latitude & Longitude): AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Loop: AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Gulf Of Mexico Imagery

  18. Katrina Historical Page - Office of Satellite and Product Operations

    Science.gov (United States)

    . Floater Imagery August 28/1745Z to 29/0245Z: Image: AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Image (w/ Latitude & Longitude): AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Loop: AVN | BD : AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Image (w/ Latitude & Longitude): AVN | BD

  19. No further gravitational wave modes in F(T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bamba, Kazuharu, E-mail: bamba@kmi.nagoya-u.ac.jp [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Capozziello, Salvatore, E-mail: capozziello@na.infn.it [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Dipartimento di Fisica, Università di Napoli “Federico II” (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli (Italy); De Laurentis, Mariafelicia, E-mail: felicia@na.infn.it [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Dipartimento di Fisica, Università di Napoli “Federico II” (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli (Italy); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Sáez-Gómez, Diego, E-mail: diego.saezgomez@uct.ac.za [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Astrophysics, Cosmology and Gravity Centre (ACGC) and Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, 644 Posta Kutxatila, 48080 Bilbao (Spain)

    2013-11-25

    We explore the possibility of further gravitational wave modes in F(T) gravity, where T is the torsion scalar in teleparallelism. It is explicitly demonstrated that gravitational wave modes in F(T) gravity are equivalent to those in General Relativity. This result is achieved by calculating the Minkowskian limit for a class of analytic function of F(T). This consequence is also confirmed by the preservative analysis around the flat background in the weak field limit with the scalar–tensor representation of F(T) gravity.

  20. No further gravitational wave modes in F(T) gravity

    International Nuclear Information System (INIS)

    Bamba, Kazuharu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Nojiri, Shin'ichi; Sáez-Gómez, Diego

    2013-01-01

    We explore the possibility of further gravitational wave modes in F(T) gravity, where T is the torsion scalar in teleparallelism. It is explicitly demonstrated that gravitational wave modes in F(T) gravity are equivalent to those in General Relativity. This result is achieved by calculating the Minkowskian limit for a class of analytic function of F(T). This consequence is also confirmed by the preservative analysis around the flat background in the weak field limit with the scalar–tensor representation of F(T) gravity

  1. Cosmography in f(T) gravity

    International Nuclear Information System (INIS)

    Capozziello, S.; Cardone, V. F.; Farajollahi, H.; Ravanpak, A.

    2011-01-01

    Based only on the assumption that the Universe is homogenous and isotropic on large scales, cosmography is an ideal tool to investigate the cosmic expansion history in an almost model-independent way. Fitting the data on the luminosity distance and baryon acoustic oscillations allows to determine the confidence ranges for the cosmographic parameters hence giving some quantitative constraints that at whatever theory has to fulfill. As an application, we consider here the case of teleparallel gravity also referred to as f(T) gravity. To this end, we first work out analytical expressions to express the present day values of f(T) derivatives as a function of the cosmographic parameters, which hold under quite general and physically motivated conditions. We then use the constraints coming from cosmography to find out the confidence ranges for f(T) derivatives up to the fifth order and show how these can be used to check the viability of given teleparallel gravity models without the need to explicitly solve the second order dynamic equations.

  2. Use of polarized spectroscopy as a tool for examining the microstructure of cellulosic textile fibers.

    Science.gov (United States)

    Garside, Paul; Wyeth, Paul

    2007-05-01

    Textile artifacts form a vital part of our cultural heritage. In order to determine appropriate methods of conservation, storage, and display, it is important to understand the current physical state of an artifact, as effected by the microstructure of the component fibers. The semi-crystalline nature of the constituent polymer aggregates, the degree of crystallinity, and the crystallite orientation have a significant influence on mechanical properties. The value of polarized Fourier transform infrared (FT-IR) spectroscopy in probing these aspects of cellulosic fibers has been assessed. A variety of representative fibers (both natural plant fibers and regenerated materials) were examined by polarized attenuated total reflection spectroscopy (Pol-ATR) and polarized infrared microspectroscopy (Pol-microIR); the former is a surface sampling technique and the latter is a transmission technique. The introduction of a polarizer into the system allows the alignment as well as the nature of bonds to be determined, and thus the presence and extent of crystallinity or long range ordering can be investigated. Using the data from the Pol-ATR experiments, it was found to be possible to derive the principle alignment of the cellulose polymer with respect to the fiber axis, along with an indication of the total cellulose crystallinity of the material, as measured by a crystallinity parameter, Chi. The Pol-microIR spectra, on the other hand, yielded more limited information, particularly when considering plant fibers with more complex microstructures.

  3. Study of energetic-particle-irradiation induced biological effect on Rhizopus oryzae through synchrotron-FTIR micro-spectroscopy

    Science.gov (United States)

    Liu, Jinghua; Qi, Zeming; Huang, Qing; Wei, Xiaoli; Ke, Zhigang; Fang, Yusheng; Tian, Yangchao; Yu, Zengliang

    2013-01-01

    Energetic particles exist ubiquitously and cause varied biological effects such as DNA strand breaks, lipid peroxidation, protein modification, cell apoptosis or death. An emerging biotechnology based on ion-beam technique has been developed to serve as an effective tool for mutation breeding of crops and microbes. In order to improve the effectiveness of ion-beam biotechnology for mutation breeding, it is indispensible to gain a better understanding of the mechanism of the interactions between the energetic ions and biological systems which is still elusive. A new trend is to conduct more comprehensive research which is based on micro-scaled observation of the changes of the cellular structures and compositions under the interactions. For this purpose, advanced synchrotron FTIR (s-FTIR) microscopy was employed to monitor the cellular changes of single fungal hyphae under irradiation of α-particles from 241Am. Intracellular contents of ROS, MDA, GSSG/GSH and activities of CAT and SOD were measured via biochemical assay. Ion-irradiation on Rhizopus oryzae causes localized vacuolation, autolysis of cell wall and membrane, lipid peroxidation, DNA damage and conformational changes of proteins, which have been clearly revealed by the s-FTIR microspectroscopy. The different changes of cell viability, SOD and CAT activities can be explained by the ROS-involved chemical reactions. Evidently, the elevated level of ROS in hyphal cells upon irradiation plays the key role in the caused biological effect. This study demonstrates that s-FTIR microspectroscopy is an effective tool to study the damage of fungal hyphae caused by ionizing radiation and it facilitates the exploit of the mechanism for the interactions between the energetic ions and biological systems.

  4. Encapsulated thermopile detector array for IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2010-01-01

    The miniaturized IR spectrometer discussed in this paper is comprised of: slit, planar imaging diffraction grating and Thermo-Electric (TE) detector array, which is fabricated using CMOS compatible MEMS technology. The resolving power is maximized by spacing the TE elements at an as narrow as

  5. Techno-economic assessment of FT unit for synthetic diesel production in existing stand-alone biomass gasification plant using process simulation tool

    DEFF Research Database (Denmark)

    Hunpinyo, Piyapong; Narataruksa, Phavanee; Tungkamani, Sabaithip

    2014-01-01

    For alternative thermo-chemical conversion process route via gasification, biomass can be gasified to produce syngas (mainly CO and H2). On more applications of utilization, syngas can be used to synthesize fuels through the catalytic process option for producing synthetic liquid fuels...... such as Fischer-Tropsch (FT) diesel. The embedding of the FT plant into the stand-alone based on power mode plants for production of a synthetic fuel is a promising practice, which requires an extensive adaptation of conventional techniques to the special chemical needs found in a gasified biomass. Because...... there are currently no plans to engage the FT process in Thailand, the authors have targeted that this work focus on improving the FT configurations in existing biomass gasification facilities (10 MWth). A process simulation model for calculating extended unit operations in a demonstrative context is designed...

  6. Characterization of FLOWERING LOCUS T1 (FT1 gene in Brachypodium and wheat.

    Directory of Open Access Journals (Sweden)

    Bo Lv

    Full Text Available The phase transition from vegetative to reproductive growth is a critical event in the life cycle of flowering plants. FLOWERING LOCUS T (FT plays a central role in the regulation of this transition by integrating signals from multiple flowering pathways in the leaves and transmitting them to the shoot apical meristem. In this study, we characterized FT homologs in the temperate grasses Brachypodium distachyon and polyploid wheat using transgenic and mutant approaches. Downregulation of FT1 by RNAi was associated with a significant downregulation of the FT-like genes FT2 and FT4 in Brachypodium and FT2 and FT5 in wheat. In a transgenic wheat line carrying a highly-expressed FT1 allele, FT2 and FT3 were upregulated under both long and short days. Overexpression of FT1 caused extremely early flowering during shoot regeneration in both Brachypodium and hexaploid wheat, and resulted in insufficient vegetative tissue to support the production of viable seeds. Downregulation of FT1 transcripts by RNA interference (RNAi resulted in non-flowering Brachypodium plants and late flowering plants (2-4 weeks delay in wheat. A similar delay in heading time was observed in tetraploid wheat plants carrying mutations for both FT-A1 and FT-B1. Plants homozygous only for mutations in FT-B1 flowered later than plants homozygous only for mutations in FT-A1, which corresponded with higher transcript levels of FT-B1 relative to FT-A1 in the early stages of development. Taken together, our data indicate that FT1 plays a critical role in the regulation of flowering in Brachypodium and wheat, and that this role is associated with the simultaneous regulation of other FT-like genes. The differential effects of mutations in FT-A1 and FT-B1 on wheat heading time suggest that different allelic combinations of FT1 homoeologs could be used to adjust wheat heading time to improve adaptation to changing environments.

  7. IR Spectroscopy of Ethylene Glycol Solutions of Dimethylsulfoxide

    Science.gov (United States)

    Kononova, E. G.; Rodnikova, M. N.; Solonina, I. A.; Sirotkin, D. A.

    2018-07-01

    Features of ethylene glycol (EG) solutions of dimethylsulfoxide (DMSO) with low and moderate concentrations (from 2 to 50 mol % of DMSO) are studied by IR spectroscopy on a Bruker Tensor 37 FT-IR spectrometer in the wavenumber range of 400 to 4000 cm-1. The main monitored bands are the S=O stretching vibration band of DMSO (1057 cm-1) and the C-O (1086 and 1041 cm-1) and O-H (3350 cm-1) stretching vibration bands of EG. The obtained data show complex DMSO · 2EG to be present in all solutions with the studied concentrations due to formation of H-bonds between the S=O group of DMSO and the OH group of EG. In the concentration range of 6 to 25 mol % DMSO, the OH stretching vibration of EG is found to be broadened (by up to 70 cm-1), suggesting the strengthening of hydrogen bonds in the spatial network of the system due to the solvophobic effect of DMSO molecules and the formation of DMSO · 2EG. Starting from 25 mol % DMSO, narrowing of the OH stretching vibration is noted, and the bands of free DMSO appear along with the DMSO · 2EG complex, suggesting microseparation in the investigated system. At 50 mol % DMSO, the amounts of free and bound species in the system became comparable.

  8. FTIR, FT-Raman, FT-NMR and quantum chemical investigations of 3-acetylcoumarin

    Science.gov (United States)

    Arjunan, V.; Sakiladevi, S.; Marchewka, M. K.; Mohan, S.

    2013-05-01

    3-Acetylcoumarin (3AC) was synthesised by a Knoevenagel reaction. Conformational analysis using the B3LYP method was also carried out to determine the most stable conformation of the compound. FTIR and FT-Raman spectra of 3AC have been recorded in the range 4000-400 and 4000-100 cm-1, respectively. 1H and 13C NMR spectra have also been recorded. The complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the experimental FTIR and FT-Raman data and quantum mechanical studies. The experimental vibrational frequencies were compared with the wavenumbers obtained theoretically from the DFT-B3LYP/B3PW91 gradient calculations employing the standard 6-31G**, high level 6-311++G** and cc-pVTZ basis sets for optimised geometry of the compound. The frontier molecular orbital energies of the compound are determined by DFT method.

  9. AXION DECAY AND ANISOTROPY OF NEAR-IR EXTRAGALACTIC BACKGROUND LIGHT

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yan; Chen, Xuelei [National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Cooray, Asantha; Mitchell-Wynne, Ketron [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Zemcov, Michael [Center for Detectors, School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623 (United States); Smidt, Joseph [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-07-10

    The extragalactic background light (EBL) is composed of the cumulative radiation from all galaxies and active galactic nuclei over cosmic history. In addition to point sources, the EBL also contains information from diffuse sources of radiation. The angular power spectra of the near-infrared intensities could contain additional signals, and a complete understanding of the nature of the infrared (IR) background is still lacking in the literature. Here we explore the constraints that can be placed on particle decays, especially candidate dark matter (DM) models involving axions that trace DM halos of galaxies. Axions with a mass around a few electronvolts will decay via two photons with wavelengths in the near-IR band and will leave a signature in the IR background intensity power spectrum. Using recent power spectra measurements from the Hubble Space Telescope and the Cosmic Infrared Background Experiment, we find that the 0.6–1.6 μ m power spectra can be explained by axions with masses around 4 eV. The total axion abundance Ω{sub a} ≃ 0.05, and it is comparable to the baryon density of the universe. The suggested mean axion mass and abundance are not ruled out by existing cosmological observations. Interestingly, the axion model with a mass distribution is preferred by the data, which cannot be explained by the standard quantum chromodynamics theory and needs further discussion.

  10. A review of the FT distillate pathway in GHGenius

    International Nuclear Information System (INIS)

    2006-01-01

    Fischer-Tropsch (FT) distillates products are now used throughout the world as a commercial fuel. However, lifecycle greenhouse gas (GHG) emissions from FT distillates fuels are higher than diesel fuel produced from crude oil. This paper provided details of a lifecycle analysis of FT distillates pathways created for GHGenius, a model used to analyze emissions from a variety of combustion sources. The study examined values reported in tests conducted by major oil and gas operators and described the conversion technologies typically used at FT distillates production facilities. Summaries of reports on FT distillates emissions were also provided. Three primary factors were identified that contributed to different results reported for FT distillates emissions: (1) the efficiency of the conversion process; (2) the allocation procedure used in the conventional oil refinery for the emissions of individual products; and (3) the emissions associated with natural gas production. The GHGenius model was used to quantify the impact of the 3 main factors. An alternative system expansion methodology was used to compare crude oil diesel pathways with a high efficiency, low gas leak scenario in order to achieve high values reported by some oil and gas operators. 5 refs., 5 tabs., 5 figs

  11. Temperature-induced phase separation and hydration in aqueous polymer solutions studied by NMR and IR spectroscopy: comparison of poly(N-vinylcaprolactam) and acrylamide-based polymers

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří; Dybal, Jiří

    2014-01-01

    Roč. 336, č. 1 (2014), s. 39-46 ISSN 1022-1360. [International IUPAC Conference on Polymer-Solvent Complexes and Intercalates /9./ - POLYSOLVAT-9. Kiev, 11.09.2012-14.09.2012] R&D Projects: GA ČR GA202/09/1281 Institutional support: RVO:61389013 Keywords : aqueous polymer solutions * FT-IR * NMR Subject RIV: CD - Macromolecular Chemistry

  12. Ngc7538 Irs1 - A Highly Collimated Ionized Wind Source Powered By Accretion

    Science.gov (United States)

    Sandell, Goran H. L.; Wright, M.; Goss, W.; Corder, S.

    2009-01-01

    Recent images show that NGC7538 IRS1 is not a conventional Ultracompact or Hypercompact HII region, but is completely wind-excited (other broad recombination line hypercompact HII regions may be similar to IRS1). NGC 7538 IRS1 is a well studied young high-mass star (L 2 10^5 L_Sun).VLA images at 6 and 2 cm (Cambell 1984; ApJ, 282, L27) showed a compact bipolar core (lobe separation 0.2") with more extended faint lobes. Recombination line observations (Gaume et al. 1995, ApJ, 438, 776) show extremely wide line profiles indicating substantial mass motion of the ionized gas. We re-analyzed high angular resolution VLA archive data from 6 cm to 7 mm, and measured the flux from the compact core and the extended (1.5 - 2") bipolar lobes. We find that the compact core has a spectral index, alpha 0.6, which could be explained by an optically thick hypercompact core with a density gradient. However, the size of the core shrinks with increasing frequency; from 0.24" at 6 cm to 0.1" at 7 mm, consistent with that expected for a collimated jet (Reynolds 1986, ApJ, 304, 713). If we do a crude size correction so that we compare emission from the optically thick inner part of the jet for a set of 2 cm and 7 mm observations we get alpha 1.6, i.e. close to the optically thick value. BIMA and CARMA continuum observations at 3 mm show some dust excess, while. HCO+ J=1-0 observations combined with FCRAO single dish data show a clear inverse P Cygni profile towards IRS1. These observations confirm that IRS1 is heavily accreting with an accretion rate 2 10^-4 M_Sun/year, sufficient to quench the formation of an HII region.

  13. Similarity Analysis of Cable Insulations by Chemical Test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seog [Central Research Institute of Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-10-15

    As result of this experiment, it was found that FT-IR test for material composition, TGA test for aging trend are applicable for similarity analysis of cable materials. OIT is recommended as option if TGA doesn't show good trend. Qualification of new insulation by EQ report of old insulation should be based on higher activation energy of new insulation than that of old one in the consideration of conservatism. In old nuclear power plant, it is easy to find black cable which has no marking of cable information such as manufacturer, material name and voltage. If a type test is required for qualification of these cables, how could I select representative cable? How could I determine the similarity of these cables? If manufacturer has qualified a cable for nuclear power plant more than a decade ago and composition of cable material is changed with similar one, is it acceptable to use the old EQ report for recently manufactured cable? It is well known to use FT-IR method to determine the similarity of cable materials. Infrared ray is easy tool to compare compositions of each material. But, it is not proper to compare aging trend of these materials. Study for similarity analysis of cable insulation by chemical test is described herein. To study a similarity evaluation method for polymer materials, FT-IR, TGA and OIT tests were performed for two cable insulation(old and new) which were supplied from same manufacturer. FT-IR shows good result to compare material compositions while TGA and OIT show good result to compare aging character of materials.

  14. Similarity Analysis of Cable Insulations by Chemical Test

    International Nuclear Information System (INIS)

    Kim, Jong Seog

    2013-01-01

    As result of this experiment, it was found that FT-IR test for material composition, TGA test for aging trend are applicable for similarity analysis of cable materials. OIT is recommended as option if TGA doesn't show good trend. Qualification of new insulation by EQ report of old insulation should be based on higher activation energy of new insulation than that of old one in the consideration of conservatism. In old nuclear power plant, it is easy to find black cable which has no marking of cable information such as manufacturer, material name and voltage. If a type test is required for qualification of these cables, how could I select representative cable? How could I determine the similarity of these cables? If manufacturer has qualified a cable for nuclear power plant more than a decade ago and composition of cable material is changed with similar one, is it acceptable to use the old EQ report for recently manufactured cable? It is well known to use FT-IR method to determine the similarity of cable materials. Infrared ray is easy tool to compare compositions of each material. But, it is not proper to compare aging trend of these materials. Study for similarity analysis of cable insulation by chemical test is described herein. To study a similarity evaluation method for polymer materials, FT-IR, TGA and OIT tests were performed for two cable insulation(old and new) which were supplied from same manufacturer. FT-IR shows good result to compare material compositions while TGA and OIT show good result to compare aging character of materials

  15. Functional correlates of TSH, fT3 and fT4 in Alzheimer disease: a F-18 FDG PET/CT study.

    Science.gov (United States)

    Chiaravalloti, Agostino; Ursini, Francesco; Fiorentini, Alessandro; Barbagallo, Gaetano; Martorana, Alessandro; Koch, Giacomo; Tavolozza, Mario; Schillaci, Orazio

    2017-07-24

    The present study was aimed to investigate the relationships between thyroid stimulating hormone (TSH), freeT3 (fT3) and freeT4 (fT4) and brain glucose consumption as detectable by means of 2-deoxy-2-(F-18) fluoro-D-glucose (F-18 FDG) Positron Emission Tomography/Computed Tomography (PET/CT) in a selected population with Alzheimer disease (AD). We evaluated 87 subjects (37 males and 50 females, mean age 70 (±6) years old) with AD. All of them were subjected to TSH, fT3 and fT4 assay and to cerebrospinal fluid amyloid (Aβ1-42) and tau [phosphorylated-tau (p-tau) and total-tau (t-tau)] assay prior PET/CT examination. Values for TSH, fT3 and fT4 were in the normal range. The relationships were evaluated by means of statistical parametric mapping (SPM8) using age, sex, MMSE, scholarship and CSF values of amyloid and tau as covariates. We found a significant positive correlation between TSH values and cortical glucose consumption in a wide portion of the anterior cingulate cortex bilaterally (BA32) and left frontal lobe (BA25) (p FWE-corr <0.001; p FDRcorr <0.000; cluster extent 66950). No significant relationships were found between cortical F-18 FDG uptake and T3 and T4 serum levels. The results of our study suggest that a cortical dysfunction in anterior cingulate and frontal lobes may affect serum values of TSH in AD patients.

  16. FT-IR, FT-Raman spectra and ab initio HF and DFT calculations of 7-chloro-5-(2-chlorophenyl)-3-hydroxy-2,3-dihydro-1H-1,4-benzodiazepin-2-one.

    Science.gov (United States)

    Muthu, S; Prasath, M; Paulraj, E Isac; Balaji, R Arun

    2014-01-01

    The Fourier Transform infrared and Fourier Transform Raman spectra of 7-chloro-5 (2-chlorophenyl)-3-hydroxy-2,3-dihydro-1H-1,4-benzodiazepin-2-one (7C3D4B) were recorded in the regions 4000-400 and 4000-100 cm(-1), respectively. The appropriate theoretical spectrograms for the IR and Raman spectra of the title molecule were also constructed. The calculated results show that the predicted geometry can well reproduce the structural parameters. Predicted vibrational frequencies have been assigned and compared with experimental IR spectra and they supported each other. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond-like weak interaction has been analyzed using natural bond orbital (NBO) analysis by using B3LYP/6-31G(d,p) method. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second-order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The first order hyperpolarizability (βtotal) of this molecular system and related properties (β, μ, and Δα) are calculated using HF/6-31G(d,p) and B3LYP/6-31G(d,p) methods based on the finite-field approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. FTIR, FT-Raman, FT-NMR and quantum chemical investigations of 3-acetylcoumarin.

    Science.gov (United States)

    Arjunan, V; Sakiladevi, S; Marchewka, M K; Mohan, S

    2013-05-15

    3-Acetylcoumarin (3AC) was synthesised by a Knoevenagel reaction. Conformational analysis using the B3LYP method was also carried out to determine the most stable conformation of the compound. FTIR and FT-Raman spectra of 3AC have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively. (1)H and (13)C NMR spectra have also been recorded. The complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the experimental FTIR and FT-Raman data and quantum mechanical studies. The experimental vibrational frequencies were compared with the wavenumbers obtained theoretically from the DFT-B3LYP/B3PW91 gradient calculations employing the standard 6-31G(**), high level 6-311++G(**) and cc-pVTZ basis sets for optimised geometry of the compound. The frontier molecular orbital energies of the compound are determined by DFT method. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Identification of herbarium whole-leaf samples of Epilobium species by ATR-IR spectroscopy.

    Science.gov (United States)

    Strgulc Krajsek, Simona; Buh, Primoz; Zega, Anamarija; Kreft, Samo

    2008-02-01

    A simple, high-accuracy FT-IR method based on attenuated total reflection (ATR) was developed for the rapid determination of leaf samples of Epilobium species. The method is superior to other analytical techniques, since there is no need of laborious sample preparation such as grinding or extraction and solvent removal. A total of 70 herbarium specimens, belonging to all 13 Epilobium and to 2 Chamerion species growing in Slovenia, were analyzed. With the 100 most-informative wavenumbers in the range 700-1800 cm(-1), we obtained over 90% accuracy of species identification, with discriminant multivariate statistical analysis on the measurements made on whole dried leaves.

  19. The influence of high fat diets with different ketogenic ratios on the hippocampal accumulation of creatine - FTIR microspectroscopy study

    Science.gov (United States)

    Skoczen, A.; Setkowicz, Z.; Janeczko, K.; Sandt, Ch.; Borondics, F.; Chwiej, J.

    2017-09-01

    The main purpose of this study was the determination and comparison of anomalies in creatine (Cr) accumulation occurring within CA3 and DG areas of hippocampal formation as a result of two high-fat, carbohydrate-restricted ketogenic diets (KD) with different ketogenic ratio (KR). To reach this goal, Fourier transformed infrared microspectroscopy with synchrotron radiation source (SRFTIR microspectroscopy) was applied for chemical mapping of creatine absorption bands, occurring around 1304, 1398 and 2800 cm- 1. The samples were taken from three groups of experimental animals: control group (N) fed with standard laboratory diet, KD1 and KD2 groups fed with high-fat diets with KR 5:1 and 9:1 respectively. Additionally, the possible influence on the phosphocreatine (PhCr, the high energetic form of creatine) content was evaluated by comparative analysis of chemical maps obtained for creatine and for compounds containing phosphate groups which manifest in the spectra at the wavenumbers of around 1240 and 1080 cm- 1. Our results showed that KD2 strongly modifies the frequency of Cr inclusions in both analyzed hippocampal areas. Statistical analysis, performed with Mann-Whitney U test revealed increased accumulation of Cr within CA3 and DG areas of KD2 fed rats compared to both normal rats and KD1 experimental group. Moreover, KD2 diet may modify the frequency of PhCr deposits as well as the PhCr to Cr ratio.

  20. DFT study of structure, IR and Raman spectra of the fluorescent "Janus" dendron built from cyclotriphosphazene core

    Science.gov (United States)

    Furer, V. L.; Vandyukova, I. I.; Vandyukov, A. E.; Fuchs, S.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2011-11-01

    The FTIR and FT-Raman spectra of the zero generation dendron, possessing five fluorescent dansyl terminal groups, cyclotriphosphazene core, and one carbamate function G0v were studied. The structural optimization and normal mode analysis were performed for G0v dendron on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that dendron molecule G0v has a concave lens structure with slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G0v dendron were interpreted by means of potential energy distributions. Relying on DFT calculations a complete vibrational assignment is proposed. The frequency of ν(N-H) band in the IR spectrum reveal the presence of H-bonds in the G0v dendron.