WorldWideScience

Sample records for power transmission cables

  1. Energy losses of superconducting power transmission cables in the grid

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Okholm, Jan; Lomholt, Karin

    2001-01-01

    One of the obvious motives for development of superconducting power transmission cables is reduction of transmission losses. Loss components in superconducting cables as well as in conventional cables have been examined. These losses are used for calculating the total energy losses of conventional...... as well as superconducting cables when they are placed in the electric power transmission network. It is concluded that high load connections are necessary to obtain energy saving by the use of HTSC cables. For selected high load connections, an energy saving of 40% is expected. It is shown...

  2. Fault Management of a Cold Dielectric HTS Power Transmission Cable

    International Nuclear Information System (INIS)

    Maguire, J; Allais, A; Yuan, J; Schmidt, F; Hamber, F; Welsh, Tom

    2006-01-01

    High temperature superconductor (HTS) power transmission cables offer significant advantages in power density over conventional copper-based cables. As with conventional cables, HTS cables must be safe and reliable when abnormal conditions, such as local and through faults, occur in the power grid. Due to the unique characteristics of HTS power cables, the fault management of an HTS cable is different from that of a conventional cable. Issues, such as nitrogen bubble formation within lapped dielectric material, need to be addressed. This paper reviews the efforts that have been performed to study the fault conditions of a cold dielectric HTS power cable. As a result of the efforts, a fault management scheme has been developed, which provides both local and through faults system protection. Details of the fault management scheme with examples are presented

  3. High Voltage AC underground cable systems for power transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2016-01-01

    researching electrical engineering topics related to using underground cables for power transmission at EHV level and including the 420 kV level. The research topics were laid down by ET/AAU and Energinet.dk in the DANPAC (DANish Power systems with AC Cables) research project. The main topics are discussed...... on the basis of 39 references published by ET/AAU and Energinet.dk. Part I of the paper explains the events that lead to the research project, reactive power compensation, modelling for transient studies, including field measurements and improvements to the existing models, and temporary overvoltages due...... to resonances. Part II covers transient phenomena, harmonics in cables, system modelling for different phenomena, main and backup protections in cable-based networks, online fault detection and future trends....

  4. High Voltage AC underground cable systems for power transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2016-01-01

    researching electrical engineering topics related to using underground cables for power transmission at EHV level and including the 420 kV level. The research topics were laid down by ET/AAU and Energinet.dk in the DANPAC (DANish Power systems with Ac Cables) research project. The main topics are discussed...... on the basis of 39 references published by ET/AAU and Energinet.dk. Part I of the paper explains the events that lead to the research project, reactive power compensation, modelling for transient studies, including field measurements and improvements to the existing models, and temporary overvoltages due...... to resonances. Part II covers transient phenomena, harmonics in cables, system modelling for different phenomena, main and backup protections in cable-based networks, online fault detection and future trends....

  5. Aerodynamic instability of cables in transmission power lines; Inestabilidad aerodinamica en cables de lineas de transmision

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Lopez, Alberto; Vilar Rojas, Jorge Ivan; Munoz Black, Celso J. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    One of the aerodynamic instabilities of transmission power lines cables is galloping, which consists in the appearance of important cable vibrations, mainly when the wind hits orthogonally the power line. In some cases the maximum amplitude that occurs reaches several meters, even when the wind velocities in a region are well below the value used for the mechanical design of the power lines. In general terms, galloping is associated with particular climatic conditions such as low temperatures and high humidities. In these conditions a coating of ice that adheres to the cable is formed, changing its transverse cross section, propitiating the galloping, although some authors have reported galloping without ice. These climatic conditions are presented mainly in the Northern part of our country and in the high regions of the mountain zones; nevertheless, the galloping phenomenon has been reported in few cases by Comision Federal de Electricidad (CFE). The possible expansion of the power lines in these regions of the country leads to prevent the measures needed to diminish the appearance of this phenomenon. In this paper mention is made in particular of the solution adopted to the galloping problem that has appeared in the transmission power line of Salamayuca to Reforma, Ciudad Juarez, Chihuahua (CFE,1991). [Espanol] Una de las inestabilidades aerodinamicas que se presentan en los cables de lineas de transmision es el galopeo, el cual consiste en la aparicion de vibraciones importantes de los cables, sobre todo cuando el flujo del viento incide ortogonalmente a la linea. En algunos casos las amplitudes maximas que se presentan llegan a ser de varios metros, aun cuando las velocidades del viento en una region esten muy por debajo del valor empleado para el diseno mecanico de las lineas. Generalmente, el galopeo se asocia con condiciones climaticas particulares como son las bajas temperaturas y altas humedades. En estas condiciones se forma una cubierta de hielo que se

  6. Aerodynamic instability of cables in transmission power lines; Inestabilidad aerodinamica en cables de lineas de transmision

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Lopez, Alberto; Vilar Rojas, Jorge Ivan; Munoz Black, Celso J [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    One of the aerodynamic instabilities of transmission power lines cables is galloping, which consists in the appearance of important cable vibrations, mainly when the wind hits orthogonally the power line. In some cases the maximum amplitude that occurs reaches several meters, even when the wind velocities in a region are well below the value used for the mechanical design of the power lines. In general terms, galloping is associated with particular climatic conditions such as low temperatures and high humidities. In these conditions a coating of ice that adheres to the cable is formed, changing its transverse cross section, propitiating the galloping, although some authors have reported galloping without ice. These climatic conditions are presented mainly in the Northern part of our country and in the high regions of the mountain zones; nevertheless, the galloping phenomenon has been reported in few cases by Comision Federal de Electricidad (CFE). The possible expansion of the power lines in these regions of the country leads to prevent the measures needed to diminish the appearance of this phenomenon. In this paper mention is made in particular of the solution adopted to the galloping problem that has appeared in the transmission power line of Salamayuca to Reforma, Ciudad Juarez, Chihuahua (CFE,1991). [Espanol] Una de las inestabilidades aerodinamicas que se presentan en los cables de lineas de transmision es el galopeo, el cual consiste en la aparicion de vibraciones importantes de los cables, sobre todo cuando el flujo del viento incide ortogonalmente a la linea. En algunos casos las amplitudes maximas que se presentan llegan a ser de varios metros, aun cuando las velocidades del viento en una region esten muy por debajo del valor empleado para el diseno mecanico de las lineas. Generalmente, el galopeo se asocia con condiciones climaticas particulares como son las bajas temperaturas y altas humedades. En estas condiciones se forma una cubierta de hielo que se

  7. EHV/HV Underground Cable Systems for Power Transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth

    of the transmission system must be re‐thought in order to accommodate the transmission needs for the future. New lines have to be constructed. Transmission lines are usually laid out as overhead lines, which are large structures, i.e. a 400 kV power pylon is 50 meters high. According to public opinion, such power...

  8. Power transmission cable development for the Space Station Freedom electrical power system

    Science.gov (United States)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  9. Assessment of transient stability of cable based transmission grids with reactive power compensation

    DEFF Research Database (Denmark)

    Foo, Yii; Dall, Laurids; Silva, Filipe Miguel Faria da

    2017-01-01

    Underground transmission cables are gaining popularity due to its applications near cities and aesthetic purpose. For example in Denmark, the transmission power grid is changing significantly as many conventional overhead lines (OHL) are replaced by cables and more is expected over the coming years...... through a series of sensitivity analysis with respect to the cables compensation degree. A separate case of disconnecting the SRs of the faulted line is also carried out. The tendencies are initially observed and explained for smaller systems, Single-Machine Infinite Bus (SMIB) and 9-bus system...

  10. Cryogenic System for a High-Temperature Superconducting Power Transmission Cable

    International Nuclear Information System (INIS)

    Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

    1999-01-01

    High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed

  11. Transient analysis for alternating over-current characteristics of HTSC power transmission cable

    Science.gov (United States)

    Lim, S. H.; Hwang, S. D.

    2006-10-01

    In this paper, the transient analysis for the alternating over-current distribution in case that the over-current was applied for a high-TC superconducting (HTSC) power transmission cable was performed. The transient analysis for the alternating over-current characteristics of HTSC power transmission cable with multi-layer is required to estimate the redistribution of the over-current between its conducting layers and to protect the cable system from the over-current in case that the quench in one or two layers of the HTSC power cable happens. For its transient analysis, the resistance generation of the conducting layers for the alternating over-current was reflected on its equivalent circuit, based on the resistance equation obtained by applying discrete Fourier transform (DFT) for the voltage and the current waveforms of the HTSC tape, which comprises each layer of the HTSC power transmission cable. It was confirmed through the numerical analysis on its equivalent circuit that after the current redistribution from the outermost layer into the inner layers first happened, the fast current redistribution between the inner layers developed as the amplitude of the alternating over-current increased.

  12. Optical fiber cable for transmission of high power laser energy over great distances

    Science.gov (United States)

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Moxley, Joel F.; Koblick, Yeshaya

    2016-05-24

    There is provided a system and apparatus for the transmission of high power laser energy over great distances without substantial power loss and without the presence of stimulated Raman scattering. There is further provided systems and optical fiber cable configurations and optical fiber structures for the delivering high power laser energy over great distances to a tool or surface to perform an operation or work with the tool or upon the surface.

  13. AC losses in multilayer power transmission cables comprised of YBCO tapes

    International Nuclear Information System (INIS)

    Noji, H.

    2011-01-01

    I calculate AC properties in YBCO cable by an electric circuit model. The optimal helical pitches are determined by the calculation. The layer's current distribution is uniform on the optimal helical pitches. The calculation is useful as a first approximation of AC losses. AC losses in multilayer power transmission cables can be reduced by adjusting the helical winding pitch of each layer to make the layer's current distribution uniform. The optimum helical pitch can be estimated using an electric circuit (EC) model based on the expression that calculates the losses in the superconducting tapes composing the cable. It is known that the losses in a monolayer cable depend on the cable parameters (i.e., the gap between neighboring tapes, number of tapes N, diameter of the cable former and width of the tape). However, regarding Amemiya et al.'s measurement on the losses in monolayer cables, the numerical results of the losses calculated using the Norris formula for an isolated thin strip N times are close to the experimental results. Then, to determine the losses in a three-layer cable that Mukoyama et al. have reported, the losses are calculated by the EC model based on the Norris formula. The helical pitch of each layer is adjusted to make the layer's current distribution uniform in the cable reported by Mukoyama et al. The optimum helical pitches are calculated using the condition where the standard deviation of the layer currents is minimum, and the losses of the cable at the optimum helical pitches are calculated at 1 kA rms . By comparing the results of these calculations with the previously measured results, it was found that the mean error of the calculated values relative to the measured values is 23.7%, which indicates that the calculation using the EC model is useful as a first approximation.

  14. HTS Transmission Cable System for installation in the Long Island Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Frank [American Superconductor Corporation, Devens, MA (United States); Durand, Fabien [American Superconductor Corporation, Devens, MA (United States); Maguire, James [American Superconductor Corporation, Devens, MA (United States)

    2015-10-05

    Department of Energy (DOE) Award DE-FC26-07NT43240 was issued on October 1, 2007. Referred to as LIPA2, the principal objectives of the project were to develop key components required to deploy and demonstrate second-generation (2G) high temperature superconductor (HTS) cables in a 600 meter (2000 feet) underground segment of a 138kV three-phase transmission circuit of the Long Island Power Authority (LIPA) power grid. A previous effort under DOE Award DE-FC36-03GO13032 (referred to as LIPA1) resulted in installation (and subsequent successful operation) of first-generation (1G) HTS cables at the LIPA site. As with LIPA1, American Superconductor (AMSC) led the effort for LIPA2 and was responsible for overall management of the project and producing sufficient 2G wire to fabricate the required cable. Nexans' tasks included design/manufacture/installation of the cable, joint (splice), cable terminations and field repairable cryostat; while work by Air Liquide involved engineering and installation support for the refrigeration system modifications.

  15. Study of data transmission over drive motor power cables of a remotely operated robot using power line communication technology

    International Nuclear Information System (INIS)

    Balaji, Kanchi; Singh, Ashutosh Pratap; Rakesh, V.; Rajagopalan, C.; Murugan, S.

    2016-01-01

    In nuclear power plants (NPPs), robotic devices are widely used for carrying out in-service inspection (lSI) and repair tasks at elevated temperatures and radiation environments. These devices comprises servo motors that are powered and controlled by the motion control unit/electric drives. The control and inspection data are to be transmitted back from the inspection device to the control unit using separate industrial graded data transmission cables compatible for high temperature applications. This increases complexity of robot trailing cables and cost. Hence, it is proposed to use power cables that are used for powering the motor for sending information signals using power line communication (PLC) technology. The domestically used PLC modems adds noise to the information signal when coupled on to the motor feed cables during IGBT switching. Therefore, passive low pass filters are used at the motor drive end to reduce the impulsive noise. The aim of this study is to compare noise characteristics for different type of filter structures over pulse width modulation (PWM) network. We will highlight the choice of cut off frequency of filter based on frequency of information signal

  16. Development of a superconducting cable for transmission of high electric power

    International Nuclear Information System (INIS)

    Moisson, F.; Leroux, J.M.

    1971-01-01

    The opportunities opened by the use of cryoresistive and superconducting materials in underground transmission systems have led to a cryocable program. A first set of problems associated with the development of cryogenic cables deals with the cable system, i.e., design, safety, terminal equipment including leads, cryogenic equipment, refrigerators, and problems related to overload capability and reliability. A second set concerns the cable itself, i.e., scientific and technological problems associated with the conductor, the electrical insulation, and the thermal exchange between conductor and helium. Useful experience is gained on the design problems and on the technological problems involved in the construction of a cryoconducting cable. A 20-M aluminum cable cooled down to 25 0 K with pressurized helium flow was built and tested with 3500-A dc under 20 Kv; results are presented. On this model the following types of problems were solved. First, mechanical problems concerning cooling of the cable, thermal contraction of the pipes, electrical insulation and conductors, construction of an invariable cable constituted by elementary helically wound conductors were solved. Second, thermal problems of reduction of heat leaks, conception of thermal insulation, and segmentation of vacuum jackets were solved. Third, electrical problems of design of 300 0 to 25 0 K leads were solved; this problem of losses at both ends is, in proportion, more important for the short model than for long cable. Finally, refrigeration problems of helium and nitrogen flows, thermal shields and design of refrigerators (optimal capacity and spacing) were solved

  17. Electrical power cable engineering

    CERN Document Server

    Thue, William A

    2011-01-01

    Fully updated, Electrical Power Cable Engineering, Third Edition again concentrates on the remarkably complex design, application, and preparation methods required to terminate and splice cables. This latest addition to the CRC Press Power Engineering series covers cutting-edge methods for design, manufacture, installation, operation, and maintenance of reliable power cable systems. It is based largely on feedback from experienced university lecturers who have taught courses on these very concepts.The book emphasizes methods to optimize vital design and installation of power cables used in the

  18. Active photonic sensor communication cable for field application of optical data and power transmission

    Science.gov (United States)

    Suthau, Eike; Rieske, Ralf; Zerna, Thomas

    2014-10-01

    Omitting electrically conducting wires for sensor communication and power supply promises protection for sensor systems and monitored structures against lightning or high voltages, prevention of explosion hazards, and reduction of susceptibility to tampering. The ability to photonically power remote systems opens up the full range of electrical sensors. Power-over-fiber is an attractive option in electromagnetically sensitive environments, particularly for longterm, maintenance-free applications. It can deliver uninterrupted power sufficient for elaborate sensors, data processing or even actuators alongside continuous high speed data communication for remote sensor application. This paper proposes an active photonic sensor communication system, which combines the advantages of optical data links in terms of immunity to electromagnetic interference (EMI), high bandwidth, hardiness against tampering or eavesdropping, and low cable weight with the robustness one has come to expect from industrial or military electrical connectors. An application specific integrated circuit (ASIC) is presented that implements a closed-loop regulation of the sensor power supply to guarantee continuous, reliable data communications while maintaining a highly efficient, adaptive sensor supply scheme. It is demonstrated that the resulting novel photonic sensor communication cable can handle sensors and actuators differing orders of magnitude with respect to power consumption. The miniaturization of the electro-optical converters and driving electronics is as important to the presented development as the energy efficiency of the detached, optically powered sensor node. For this reason, a novel photonic packaging technology based on wafer-level assembly of the laser power converters by means of passive alignment will be disclosed in this paper.

  19. Elevator without traveling cable: Non-contact transmission of power and data; Haengekabelloser Aufzug: Beruehrungsfreie Informations- und Energieuebertragung

    Energy Technology Data Exchange (ETDEWEB)

    Thumm, G. [ThyssenKrupp Aufzuege, Stuttgart-Vaihingen (Germany); Jetter, M. [ThyssenKrupp Aufzugswerke, Neuhausen (Germany)

    2004-07-01

    For many years, traveling cables have been used to supply power to elevator cabs and transmit the required control signals. In difficult conditions, however, e.g. exposed outdoor elevators or installations in very tall structures, traveling cables can be problematic and frequently disrupt operations. In such cases, new technologies such as inductive energy transmission and radio transmission of safety-related signals allow the traveling cable to be dispensed with completely and guarantee safe and reliable elevator operation even in difficult conditions. (orig.) [German] Es ist eine seit vielen Jahren bewaehrte Technik, den Aufzugsfahrkorb ueber ein Haengekabel mit Energie zu versorgen und ueber dieses auch die notwendigen Steuerungssignale zu uebertragen. Es gibt aber Einsatzbereiche in schwierigen Umgebungsbedingungen, z.B. im Freien oder bei grossen Foerderhoehen, bei denen die Anwendung eines Haengekabels mit grossen Schwierigkeiten verbunden ist und im Betrieb oftmals zu Stoerungen fuehrt. Neue Technologien, wie die induktive Energieuebertragung und eine sicherheitsgerichtete Datenuebertragung per Funk, erlauben es nun in diesen Faellen, ganz auf das Haengekabel zu verzichten und den sicheren und zuverlaessigen Betrieb der Aufzugsanlagen auch in schwierigem Umfeld zu gewaehrleisten. (orig.)

  20. Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications

    Science.gov (United States)

    Thomes, W. J., Jr.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2010-01-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  1. Fiber optic cables for transmission of high-power laser pulses in spaceflight applications

    Science.gov (United States)

    Thomes, W. J.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2017-11-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  2. Model for electromagnetic field analysis of superconducting power transmission cable comprising spiraled coated conductors

    International Nuclear Information System (INIS)

    Takeuchi, Katsutoku; Amemiya, Naoyuki; Nakamura, Taketsune; Maruyama, Osamu; Ohkuma, Takeshi

    2011-01-01

    Since the superconductor layers of YBCO-coated conductors are very thin, the ac loss of coated conductors is dominated by the magnetic flux density normal to the conductor face. In cables, most of the normal magnetic flux component is generated near gaps between coated conductors. Although the effects of gaps are significant, there are few reports on the electromagnetic field analysis of cables with spiral structures carried out while taking the gap effect into consideration. In a finitely long cable with a spiral structure, the electromagnetic field is naturally periodic along the cable axis. In a two-layer cable, the simplest period along the cable axis is the least common multiple of the spiral pitches in the inner and outer layers. However, we verified that there is a shorter period, and the same electromagnetic field distribution appears in all conductors of the same layer. Using these periodicities, we developed a three-dimensional model for the analysis of two-layer cables with a spiral structure. Current distributions of cables were analyzed using this model, and ac losses were calculated. In addition, these results were compared with ac losses calculated by two-dimensional analysis performed on the cross section of a cable. It was verified that the ac loss in a cable is correctly calculated by the 2D model when the spiral pitch is long enough. However, in the case of a tightly twisted cable, the ac losses calculated by the 2D model include some errors caused by an approximation in which the spiral structure is ignored.

  3. Semiannual report for the period April 1 to September 30, 1978 of work on: (1) superconducting power transmission system development; (2) cable insulation development. Power Transmission Project technical note No. 83

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-07

    Progress in the development, fabrication and testing of superconductors for HVAC power transmission systems is reported. Information is included on the materials evaluation of superconducting alloys, production of tapes from these alloys, principally Nb/sub 3/Sn cable insulation requirements and development, and the cryogenic equipment used in this research program. (LCL)

  4. Photonic-powered cable assembly

    Science.gov (United States)

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  5. Power cables now and in the future

    Energy Technology Data Exchange (ETDEWEB)

    Wanser, G

    1976-01-01

    A survey is presented of the problems to be faced with the underground supply of electric power to large, urban areas and of the contributions that improvements in power cable technology will make to solving these problems. It is concluded that the increase in population densities and the rising demand for energy on the part of individual consumers bring up problems for electricity supply and thus have a direct influence on development trends in cable engineering. During the last few years the increasing capacities required in power transmission have led to the use of higher voltages and to the application of special methods of cooling for the oil-filled cable. When the technical and economic possibilities with present-day cable techniques have been exhausted, we must anticipate the introduction of new types of cable, i.e., gas-insulated cables and superconducting cables. The problems involved in power distribution are being solved successfully by resorting to larger conductor cross-sectional areas and by raising the voltage levels. The advantages of plastic cables are also being utilized on a wide scale. The requirement that there be freedom from partial discharges in plastic cables operating at medium and higher voltages is becoming increasingly more widely adopted as a new quality criterion in cable engineering. New materials from the polymer range are permitting the introduction of fittings which are easier to install and which reduce costs. Cable engineering has already, to a considerable extent, adapted itself to face future problems. Even so, there are still a large number of problems in cable engineering requiring research, development and operation.

  6. Superconducting power cables in Denmark - a case study

    DEFF Research Database (Denmark)

    Østergaard, Jacob

    1997-01-01

    A case study of a 450 MVA, 132 kV high temperature superconducting (HTS) power transmission cable has been carried out. In the study, a superconducting cable system is compared to a conventional cable system which is under construction for an actual transmission line in the Danish grid. The study...... that HTS cables will be less expensive for high power ratings, have lower losses for lines with a high load, and have a reduced reactive power production. The use of superconducting cables in Denmark accommodate plans by the Danish utility to make a substantial conversion of overhead lines to underground...

  7. Electromagnetic transients in power cables

    CERN Document Server

    da Silva, Filipe Faria

    2013-01-01

    From the more basic concepts to the most advanced ones where long and laborious simulation models are required, Electromagnetic Transients in Power Cables provides a thorough insight into the study of electromagnetic transients and underground power cables. Explanations and demonstrations of different electromagnetic transient phenomena are provided, from simple lumped-parameter circuits to complex cable-based high voltage networks, as well as instructions on how to model the cables.Supported throughout by illustrations, circuit diagrams and simulation results, each chapter contains exercises,

  8. Semiannual report for the period October 1, 1979-March 31, 1980 of work on: (1) superconducting power transmission system development; (2) cable insulation development. Power Transmission Project Technical Note No. 106

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-07

    Progress is reported in a program whose objective is to develop an underground superconducting power transmission system which is economical and technically attractive to the utility industry. The system would be capable of carrying very large blocks of electric power, and would supplant overhead lines in urban and suburban areas and regions of natural beauty. The program consisted initially of work in the laboratory to develop suitable materials, cryostats, and cable concepts. The materials work covers the development and testing of suitable superconductors and dielectric insulation. The laboratory work has now been extended to an outside test facility which represents an intermediate step between the laboratory scale and a full-scale system. The facility will allow cables several hundred feet long to be tested under realistic conditions. In addition, the refrigerator has been designed for optimum service for utility applications.

  9. New quality assessment procedure for exchange area cable transmission parameters

    Science.gov (United States)

    Link, P. A.

    To best represent the customers' needs, a method of evaluating the transmission quality of exchange area cable must have representative requirements, a statistically powerful method of evaluating the conformance of cables to the requirements and a means of combining the results in a fashion that reflects the end use of the product. The method described herein utilizes a requirement structure containing nominal and maximum requirements to define a desirable distribution for each parameter.

  10. Power applications for superconducting cables in Denmark

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Østergaard, Jacob; Olsen, S. Krüger

    1999-01-01

    In Denmark a growing concern for environmental protection has lead to wishes that the open country is kept free of overhead lines as far as possible. New lines under 100 kV and existing 60/50 kV lines should be established as underground cables. Superconducting cables represent an interesting...... in cases such as transmission of energy into cities and through areas of special interest. The planned large groups of windmills in Denmark generating up to 2000 MVA or more both on dry land and off-shore will be an obvious case for the application of superconducting AC or DC cables. These opportunities...... can be combined with other new technologies such as HVDC light transmission using isolated gate bipolar transistors (IGBTs). The network needed in a system with a substantial wind power generation has to be very strong in order to handle energy fluctuations. Such a network will be possible...

  11. Optimization of force-cooled power transmission cables by means of 3D FEM simulations; Optimierung zwangsgekuehlter Energiekabel durch dreidimensionale FEM-Simulationen

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongping

    2009-10-26

    Lateral forced cooling can significantly increase the temporary overload capacity of a cable system, but the design of such systems requires a time-dependent 3D analysis of the nonlinear thermal behavior as the cooling water along the cable is heated up, resulting in position-dependent and time-dependent heat uptake. For this, a new calculation method was developed on the basis of an available 3D FEM software. The new method enables 3D simulation of force-cooled cables in consideration of the potential partial dryout of soil and of thermal stabilizations. The new method was first applied to a 110 kV wind power transmission cable for different configurations and grid conditions. It was found that with lateral forced cooling, the 110 kV will have a temporal 50 percent overload capacity. Further, the thermal characteristics and limiting capacity of a force-cooled 380 kV cable system were investigated. According to the results so far, laterally cooled cable systems open up new operating options, with advantages in terms of availability, economic efficiency, and flexibility. (orig.) [German] Eine laterale Zwangskuehlung kann die temporaere Ueberlastbarkeit einer Kabelanlage signifikant erhoehen. Der Entwurf solcher zwangsgekuehlter Kabelanlagen erfordert jedoch eine zeitabhaengige, dreidimensionale Analyse des nichtlinearen thermischen Verhaltens, da sich das Kuehlwasser entlang der Trasse erwaermt und sich so eine orts- und zeitabhaengige Waermeaufnahme ergibt. Zu diesem Zweck wurde auf der Basis eines vorhandenen zweidimensionalen FEM-Programms ein neues Berechnungsverfahren entwickelt, das die dreidimensionale Simulation zwangsgekuehlter Kabelanlagen unter Beruecksichtigung einer moeglicherweise auftretenden partiellen Bodenaustrocknung und von thermischen Stabilisierungen erlaubt. Mit Hilfe dieses Berechnungsverfahrens wurde zuerst eine 110-kV-Kabelanlage zur Windenergieuebertragung bei unterschiedlichen Anordnungen und unterschiedlichen Netzsituationen untersucht

  12. Frequency Dependent Losses in Transmission Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdóttir, Unnur Stella

    2011-01-01

    , such as thermal conditions in and around the cable, as well as the heat generated in conductors, screens, armours etc., taking into account proximity and skin effects. The work performed and presented in this paper is concerned with an improved determination of the losses generated in the conductor, by means...... of better calculation of the AC resistance of transmission cable conductors, in particular regarding higher frequencies. In this way, also losses under harmonics can be covered. Furthermore, the model is suitable for modelling of transient attenuation in high voltage cables. The AC resistance is calculated...... based on the current density distribution in different conductor designs by means of the Finite Element Method (FEM). The obtained results and methods are compared to available standards (IEC publication 60287-1-1)....

  13. Environmental assessment of submarine power cables

    Energy Technology Data Exchange (ETDEWEB)

    Isus, Daniel; Martinez, Juan D. [Grupo General Cable Sistemas, S.A., 08560-Manlleu, Barcelona (Spain); Arteche, Amaya; Del Rio, Carmen; Madina, Virginia [Tecnalia Research and Innovation, 20009 San Sebastian (Spain)

    2011-03-15

    -impregnated external sheath is not enough as isolation material to avoid the chemicals of galvanized impact on the sea environment. However the HDPE jacket avoids the pollution of sea by the other inside heavy metals like iron and copper. The DOC results showed growing trends in all cases, although the growing rate in broken cable was higher than rate of undamaged cable. As the tar-impregnated external sheath liberates organic compounds to the sea, the organic matter migrated from the inside of cables cannot be determined. On the other hand, for damaged jacket single-core cables the concentration of corroded copper and/or aluminium increased in the seawater leachant solution. In the case of the aluminium plus copper sheath, the only detected metal was aluminium, while the copper is practically non-corroded. This can be attributed to the galvanic effect when coupled with aluminium. Tests on bioluminescent bacteria and inhibition effects on Daphnia magna indicated a non- toxic effect of all studied undersea power cables (according to pertinent directives). The results provided by the LCA study indicated a low potential impact during the undersea operation of the submarine cable, even for severely damaged cables. The major environmental impact of submarine three-core cables during their use in seabed was associated to the damage category of Ecosystem Quality due mainly to the organic matter and heavy metals emissions (zinc and copper). The impacts due to the electric power transmission were not significant considering the total impact in both studied cases. Also, the effect of the oceanic land use was negligible. (authors)

  14. Environmental assessment of submarine power cables

    International Nuclear Information System (INIS)

    Isus, Daniel; Martinez, Juan D.; Arteche, Amaya; Del Rio, Carmen; Madina, Virginia

    2011-03-01

    -impregnated external sheath is not enough as isolation material to avoid the chemicals of galvanized impact on the sea environment. However the HDPE jacket avoids the pollution of sea by the other inside heavy metals like iron and copper. The DOC results showed growing trends in all cases, although the growing rate in broken cable was higher than rate of undamaged cable. As the tar-impregnated external sheath liberates organic compounds to the sea, the organic matter migrated from the inside of cables cannot be determined. On the other hand, for damaged jacket single-core cables the concentration of corroded copper and/or aluminium increased in the seawater leachant solution. In the case of the aluminium plus copper sheath, the only detected metal was aluminium, while the copper is practically non-corroded. This can be attributed to the galvanic effect when coupled with aluminium. Tests on bioluminescent bacteria and inhibition effects on Daphnia magna indicated a non- toxic effect of all studied undersea power cables (according to pertinent directives). The results provided by the LCA study indicated a low potential impact during the undersea operation of the submarine cable, even for severely damaged cables. The major environmental impact of submarine three-core cables during their use in seabed was associated to the damage category of Ecosystem Quality due mainly to the organic matter and heavy metals emissions (zinc and copper). The impacts due to the electric power transmission were not significant considering the total impact in both studied cases. Also, the effect of the oceanic land use was negligible. (authors)

  15. Electrothermal Coordination in Cable Based Transmission Grids

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Gudmundsdottir, Unnur Stella

    2013-01-01

    behavior of the components. The dynamic temperature calculations of power cables are suggested to be based on thermoelectric equivalents (TEEs). It is shown that the thermal behavior can be built into widely used load flow software, creating a strong ETC tool. ETC is, through two case scenarios, proven...... to be beneficial for both operator and system planner. It is shown how the thermal behavior can be monitored in real-time during normal dynamic load and during emergencies. In that way, ETC enables cables to be loaded above their normal rating, while maintaining high reliability of the system, which potentially...

  16. Optical fibre-lightning arrester cable appliances. Its repercussion in concrete unconventional power transmission lines projects; Aplicacao de cabo para-raios composto com fibra optica. Sua repercursao em projetos de LT`s concreto nao convencionais

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Ramon Sade [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)

    1993-12-31

    With the adoption of lightning rod cables made of Optical Fibre, (in systems over Europe, Japan and North America), these became very popular in Countries capable of installing the system. The Brazilian electrical party was then challenged by a new technological experience: the lightning rod cable for lines of transmission has specific characteristics. The particularity of the electrical system in Brazil in relation to the diversity of the parameters involved, and the necessity to clarifying the concepts, take us to new strategies in planning and measuring our Power Transmission Lines 4 refs., 1 tab.

  17. High Voltage Power Transmission for Wind Energy

    Science.gov (United States)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  18. Potential Impact of Submarine Power Cables on Crab Harvest

    Science.gov (United States)

    Bull, A. S.; Nishimoto, M.

    2016-02-01

    Offshore renewable energy installations convert wave or wind energy to electricity and transfer the power to shore through transmission cables laid on or buried beneath the seafloor. West coast commercial fishermen, who harvest the highly prized Dungeness crab (Metacarcinus magister) and the rock crab (Cancer spp.), are concerned that the interface of crabs and electromagnetic fields (EMF) from these cables will present an electrified fence on the seafloor that their target resource will not cross. Combined with the assistance of professional fishermen, submarine transmission cables that electrify island communities and offshore oil platforms in the eastern Pacific provide an opportunity to test the harvest of crab species across power transmission cables. In situ field techniques give commercial crab species a choice to decide if they will cross fully energized, EMF emitting, power transmission cables, in response to baited traps. Each independent trial is either one of two possible responses: the crab crosses the cable to enter a trap (1) or the crab does not cross the cable to enter a trap (0). Conditions vary among sample units by the following categorical, fixed factors (i.e., covariates) of cable structure (buried or unburied); direction of cable from crab position (west or east, north or south); time and season. A generalized linear model is fit to the data to determine whether any of these factors affect the probability of crabs crossing an energized cable to enter baited traps. Additionally, the experimental design, aside from the number of runs (set of sample trials) and the dates of the runs, is the same in the Santa Barbara Channel for rock crab and Puget Sound for Dungeness crab, and allows us to compare the capture rates of the two species in the two areas. We present preliminary results from field testing in 2015.

  19. Economy of electric power transmission

    International Nuclear Information System (INIS)

    Manzoni, G.; Delfanti, M.

    2008-01-01

    An analysis is presented of the impact of H V and Ehv transmission costs on the final value of the kWh supplied, with reference both to transmission systems of the European type and to long distance point-to-point transmission links. The analysis is extended to A C transmission by underground cables and to Hvdc submarine and aerial links. In the European power system, the impact of transmission costs results to be usually modest, but it may become important in the case of network congestions [it

  20. Distance Protection of Cross-Bonded Transmission Cable-Systems

    DEFF Research Database (Denmark)

    Bak, Claus Leth; F. Jensen, Christian

    2014-01-01

    In this paper the problems of protecting a cross-bonded cable system using distance protection are analysed. The combination of the desire to expand the high voltage transmission grid and the public's opinion towards new installations of overhead lines (OHL), more and more transmission cable syst...

  1. High power cable with internal water cooling 400 kV

    Science.gov (United States)

    Rasquin, W.; Harjes, B.

    1982-08-01

    Due to the concentration of electricity production in large power plants, the need of higher power transmissions, and the protection of environment, developement of a 400 kV water cooled cable in the power range of 1 to 5 GVA was undertaken. The fabrication and testing of equipment, engineering of cable components, fabrication of a test cable, development of cable terminal laboratory, testing of test cable, field testing of test cable, fabrication of industrial cable laboratory, testing of industrial cable, field testing of industrial cable, and system analysis for optimization were prepared. The field testing was impossible to realize. However, it is proved that a cable consisting of an internal stainless steel water cooled tube, covered by stranded copper profiles, insulated with heavy high quality paper, and protected by an aluminum cover can be produced, withstand tests accordingly to IEC/VDE recommendations, and is able to fulfill all exploitation conditions.

  2. The US market for high-temperature superconducting wire in transmission cable applications

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, D

    1996-04-01

    Telephone interviews were conducted with 23 utility engineers concerning the future prospects for high-temperature superconducting (HTS) transmission cables. All have direct responsibility for transmission in their utility, most of them in a management capacity. The engineers represented their utilities as members of the Electric Power Research Institute`s Underground Transmission Task Force (which has since been disbanded). In that capacity, they followed the superconducting transmission cable program and are aware of the cryogenic implications. Nineteen of the 23 engineers stated the market for underground transmission would grow during the next decade. Twelve of those specified an annual growth rate; the average of these responses was 5.6%. Adjusting that figure downward to incorporate the remaining responses, this study assumes an average growth rate of 3.4%. Factors driving the growth rate include the difficulty in securing rights-of-way for overhead lines, new construction techniques that reduce the costs of underground transmission, deregulation, and the possibility that public utility commissions will allow utilities to include overhead costs in their rate base. Utilities have few plans to replace existing cable as preventive maintenance, even though much of the existing cable has exceeded its 40-year lifetime. Ten of the respondents said the availability of a superconducting cable with the same life-cycle costs as a conventional cable and twice the ampacity would induce them to consider retrofits. The respondents said a cable with those characteristics would capture 73% of their cable retrofits.

  3. Nuclear power plant cable materials :

    Energy Technology Data Exchange (ETDEWEB)

    Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on

  4. Sound cable crossing brings inexpensive electric power to Long Island

    International Nuclear Information System (INIS)

    Grzan, J.; Goyette, R.

    1992-01-01

    This paper reports that while many electric-utility customers in New York State benefit from inexpensive hydroelectric power from Canada and upstate New York, lack of sufficient transmission connections have prevented this electricity from reaching Long Island. However, a newly constructed underground/underwater link capable of carrying 700-MW now transmits low-cost electricity to the island, saving money for customers. The self-contained fluid-filled cable used for the underwater portion of the project is the largest underwater cable in the world. The use of high-pressure, fluid-filled pipe-type cable on the land portion represents the largest application of paper-polypropylene-paper (PPP) insulated cable in the United States. State-of-the-art technologies were implemented in the use of temperature monitoring and leak detection systems, SF 6 gas-insulated substation, and underwater cable laying and embedment techniques

  5. Development of a single-phase 30 m HTS power cable

    Science.gov (United States)

    Cho, Jeonwook; Bae, Joon-Han; Kim, Hae-Jong; Sim, Ki-Deok; Kim, Seokho; Jang, Hyun-Man; Lee, Chang-Young; Kim, Dong-Wook

    2006-05-01

    HTS power transmission cables appear to be the replacement and retrofitting of underground cables in urban areas and HTS power transmission cable offers a number of technical and economic merits compared to the normal conductor cable system. A 30 m long, single-phase 22.9 kV class HTS power transmission cable system has been developed by Korea Electrotechnology Research Institute (KERI), LS Cable Ltd., and Korea Institute of Machinery and Materials (KIMM), which is one of the 21st century frontier project in Korea since 2001. The HTS power cable has been developed, cooled down and tested to obtain realistic thermal and electrical data on HTS power cable system. The evaluation results clarified such good performance of HTS cable that DC critical current of the HTS cable was 3.6 kA and AC loss was 0.98 W/m at 1260 Arms and shield current was 1000 Arms. These results proved the basic properties for 22.9 kV HTS power cable. As a next step, we have been developing a 30 m, three-phase 22.9 kV, 50 MV A HTS power cable system and long term evaluation is in progress now.

  6. Noise propagation issues in Belle II pixel detector power cable

    Science.gov (United States)

    Iglesias, M.; Arteche, F.; Echeverria, I.; Pradas, A.; Rivetta, C.; Moser, H.-G.; Kiesling, C.; Rummel, S.; Arcega, F. J.

    2018-04-01

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This paper presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impact on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.

  7. Power plant cable condition monitoring and testing at Georgia Power

    International Nuclear Information System (INIS)

    Champion, T.C.

    1988-01-01

    Georgia Power's Research Center has been heavily involved in the evaluation of electrical insulating materials and cables since its inception more than 17 years ago. For the past ten years that expertise has been applied to cables used in generation plants. This paper discusses the results of two test programs. The first is a quality control inspection on 169 samples of new power generation cables. The second is a material degradation evaluation on four short cable samples removed from a coal fired plant during an equipment upgrade. The new material evaluation was performed to identify the cause of a high failure rate upon initial hi-pot testing of newly installed cables. The material degradation evaluation was performed to evaluate the need for replacement of existing cables during an equipment upgrade. Results of the evaluations have led to development of a detailed proposal for a program to evaluate cable degradation and remaining life for cables used in power generation facilities

  8. Real Time Load Optimisation of Cable Based Transmission Grids

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdottir, Unnur Stella

    2011-01-01

    Energinet.dk has launched an investigation of dynamic current ratings of cable based transmission grids, where both internal and external parameters are variables. The first topic was to investigate state of the art within calculating the current carrying capacity (ampacity or loadability......) of cables embedded in larger cable systems. Some recently published research has been concerned with dynamic loadability, but such researches are based on many assumptions. It is shown in the paper, that only limited research has been concerned with larger cable grids, and no remarkable work could been...

  9. Analysis of High Frequency Resonance in DFIG-based Offshore Wind Farm via Long Transmission Cable

    DEFF Research Database (Denmark)

    Song, Yipeng; Ebrahimzadeh, Esmaeil; Blaabjerg, Frede

    2018-01-01

    During the past two decades, the Doubly Fed Induction Generator (DFIG) based wind farm has been under rapid growth, and the increasing wind power penetration has been seen. Practically, these wind farms are connected to the three-phase AC grid through long transmission cable which can be modelled...... as several II units. The impedance of this cable cannot be neglected and requires careful investigation due to its long distance. As a result, the impedance interaction between the DFIG based wind farm and the long cable is inevitable, and may produce High Frequency Resonance (HFR) in the wind farm....... This paper discusses the HFR of the large scale DFIG based wind farm connected to the long cable. Several influencing factors, including 1) the length of the cable, 2) the output active power and 3) the rotor speed, are investigated. Simulation validations using MATLAB / Simulink have been conducted...

  10. Low Friction Cryostat for HTS Power Cable of Dutch Project

    NARCIS (Netherlands)

    Chevtchenko, O.; Zuijderduin, R.; Smit, J.; Willen, D.; Lentge, H.; Thidemann, C.; Traeholt, C.

    2012-01-01

    Particulars of 6 km long HTS AC power cable for Amsterdam project are: a cable has to fit in an annulus of 160 mm, with only two cooling stations at the cable ends [1]. Application of existing solutions for HTS cables would result in excessively high coolant pressure drop in the cable, possibly

  11. Electromagnetic Transients in Power Cables

    DEFF Research Database (Denmark)

    Silva, Filipe Faria Da; Bak, Claus Leth

    . The chapter ends by proposing a systematic method that can be used when doing the insulation co-ordination study for a line, as well as the modelling requirements, both modelling depth and modelling detail of the equipment, for the study of the different types of transients followed by a step-by-step generic...... typically used for the screens of cables (both-ends bonding and cross-boding) and also presents methods that can be used to estimate the maximum current of a cable for different types of soils, i.e. thermal calculations. The end of the chapter introduces the shunt reactor, which is an important element...... detail of the equipment, for the study of the different types of transients followed by a step-by-step generic example....

  12. The Development and Demonstration of a 360m/10 kA HTS DC Power Cable

    Science.gov (United States)

    Xiao, Liye

    With the quick development of renewable energy, it is expected that the electric power from renewable energy would be the dominant one for the future power grid. Due to the specialty of the renewable energy, the HVDC power transmission would be very useful for the transmission of electric power from renewable energy. DC power cable made of High Tc Superconductor (HTS) would be a possible alternative for the construction of HVDC power transmission system. In this chapter, we report the development and demonstration of a 360 m/10 kA HTS DC power cable and the test results.

  13. Precise timing signal transmission by a new optical fiber cable

    International Nuclear Information System (INIS)

    Tanaka, Shigeru; Murakami, Yasunori; Sato, Yoshihiro; Urakawa, Junji.

    1990-05-01

    For the precise timing signal transmission, a new optical fiber cable system was developed and installed between the 2.5GeV LINAC gun room and the TRISTAN control room. This fiber cable showed the reduced thermal transmission delay change less than 10psec/km in the temperature range from -20 to 30degC (average 0.04ppm/degC), which is 100 times smaller than that of any other existing coaxial cables and conventional optical fiber cables. The developed optical to electrical (O/E) and electrical to optical (E/O) converters also achieved the timing accuracy within 11psec over the temperature range from 10 to 35degC. The installed cable system in KEK eliminated the necessity of adjusting the phase drift of the TRISTAN Accumulation Ring (AR) RF signal (508MHz), which was required with the former coaxial cable due to the temperature change in a year. Measured full width of jitter over the installed 1600m fiber link was 18.8psec. (author)

  14. Development of innovative superconducting DC power cable

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Teruo; Kiuchi, Masaru [Dept. of Computer Science and Electronics Kyushu Institute of Technology, Iizuka (Japan)

    2017-09-15

    It is required to reduce the cost of superconducting cable to realize a superconducting DC power network that covers a wide area in order to utilize renewable energy. In this paper a new concept of innovative cable is introduced that can enhance the current-carrying capacity even though the same superconducting tape is used. Such a cable can be realized by designing an optimal winding structure in such a way that the angle between the tape and magnetic field becomes small. This idea was confirmed by preliminary experiments for a single layer model cable made of Bi-2223 tapes and REBCO coated conductors. Experiments of three and four layer cables of practical sizes were also done and it was found that the current-carrying capacity increased as theoretically predicted. If the critical current properties of commercial superconducting tapes are further improved in a parallel magnetic field, the enhancement will become pronounced and this technology will surely contribute to realization of superconducting DC power network.

  15. High temperature superconductors as a technological discontinuity in the power cable industry

    International Nuclear Information System (INIS)

    Beales, T.P.; McCormack, J.S.

    1994-01-01

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibres. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables

  16. High temperature superconductors as a technological discontinuity in the power cable industry

    Energy Technology Data Exchange (ETDEWEB)

    Beales, T.P.; McCormack, J.S. [BICC Cables Ltd., Hebburn (United Kingdom)

    1994-12-31

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibres. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables.

  17. Leaky coaxial cable signal transmission for remote facilities

    Science.gov (United States)

    Smith, S. F.; Crutcher, R. I.

    To develop reliable communications methods to meet the rigorous requirements for nuclear hot cells and similar environments, including control of cranes, transporters, and advanced servomanipulators, the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has conducted extensive tests of numerous technologies to determine their applicability to remote operations. To alleviate the need for large bundles of cables that must accommodate crane/transporter motion relative to the boundaries of the cell, several transmission techniques are available, including slotted-line radio-frequency couplers, infrared beams, fiber-optic cables, free-space microwave, and inductively coupled leaky coaxial cable. This paper discusses the general characteristics, mode of operation, and proposed implementation of leaky coaxial cable technology in a waste-handling facility scheduled to be built in the near future at ORNL. In addition, specific system hardware based around the use of leaky coaxial cable is described in detail. Finally, data from a series of radiation exposure tests conducted by the CFRP on several samples of the basic leaky coaxial cable and associated connectors are presented.

  18. Technical Challenges and Potential Solutions for Cross-Country Multi-Terminal Superconducting DC Power Cables

    Science.gov (United States)

    Al-Taie, A.; Graber, L.; Pamidi, S. V.

    2017-12-01

    Opportunities for applications of high temperature superconducting (HTS) DC power cables for long distance power transmission in increasing the reliability of the electric power grid and to enable easier integration of distributed renewable sources into the grid are discussed. The gaps in the technology developments both in the superconducting cable designs and cryogenic systems as well as power electronic devices are identified. Various technology components in multi-terminal high voltage DC power transmission networks and the available options are discussed. The potential of ongoing efforts in the development of superconducting DC transmission systems is discussed.

  19. Modelling of long High Voltage AC Cables in the Transmission System

    DEFF Research Database (Denmark)

    Gudmundsdottir, Unnur Stella

    : conductor-insulation (with or without SC layers)-conductor-insulation(-conductor-insulation), whereas a transmission line single core XLPE cable will normally have the configuration: conductor-SC layerinsulation-SC layer-conductor-SC layer-conductor-insulation. Furthermore the existing cable models use......, EMTDC/PSCAD is provided. A typical HV AC underground power cable is formed by 4 main layers, namely; Conductor-Insulation-Screen-Insulation. In addition to these main layers, the cable also has semiconductive screens, swelling tapes and metal foil. For high frequency modelling in EMT-based software......-SC layer-solid hollow conductor) is implemented in the model. These improvements result in a more correct series impedance and hence a more correct damping of the simulations. Even though the series impedance is more correct, it does still not include the proximity effect and high frequency oscillations...

  20. Fiber optic sensors for monitoring sodium circuits and power grid cables

    Energy Technology Data Exchange (ETDEWEB)

    Kasinathan, M.; Sosamma, S.; Pandian, C.; Vijayakumar, V.; Chandramouli, S.; Nashine, B. K.; Rao, C. B.; Murali, N.; Rajan, K. K.; Jayakumar, T. [IGCAR, Kalpakkam (India)

    2011-07-01

    At Kalpakkam, India, a programme on development of Raman Distributed Temperature sensor (RDTS) for Fast Breeder Reactors (FBR) application is undertaken. Leak detection in sodium circuits of FBR is critical for the safety and performance of the reactors. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. A second application demonstrates the suitability of using RDTS to monitor this transmission cable for any defect. (authors)

  1. Mounting power cables on SOLEIL

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The power couplers are mounted on the SOLEIL cryomodule in a clean room. The cryomodule will allow superconducting technology to be used at SOLEIL, the French national synchrotron facility. This work is carried out as part of a collaboration between CERN and CEA Saclay, the French National Atomic Energy Commission.

  2. Ship nuclear power device of cable aging management

    International Nuclear Information System (INIS)

    Wei Hua; Chen Miao; Chen Tao

    2012-01-01

    Cable for marine nuclear power plant continuous delivery of electrical energy. Cable is mostly in the high temperature and strong radiation and harsh working environment, and can not be replaced in the lifetime This should be the cable aging management methods through research, maintenance and repair program to provide a scientific basis. Cable aging management approach for a number of different levels of cable management at different levels, relying on computers and other modern tools, the use of information management database software maintenance of the cable through the science of aging control. Cable Aging Management including the scope of cable aging management, classification management basis and used for different levels of management supervision and implementation of means testing approach. Application of the ship that has the operational management science, both planned maintenance to improve the science, but also improves the efficiency of aging management. This management method can be extended to nuclear power plants of cable aging management. (authors)

  3. Space power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kuribayashi, Shizuma [Mitsubishi Heavy Industries, Ltd., Tokyo, (Japan)

    1989-10-05

    There being a conception to utilize solar energy by use of a space power station (SPS), a method to bring that universal grace to mankind is wireless energy transmission. The wireless energy transmission is regarded to be microwave transmission or laser beam transmission. The microwave transmission is to transmit 2.45GHz band microwave from the SPS to a receiving station on the ground to meet power demand on earth. The microwave, as small in attenuation in atmosphere and resistant against rain and cloud, is made candidate and, however, problematic in influence on organism, necessary large area of receiving antenna and many other points to be studied. While the laser transmission, as more convergent of beam than the microwave transmission, is advantageous with enabling the receiving area to be small and, however, disadvantageous with being not resistant against dust, rain and cloud, if used for the energy transmission between the space and earth. 2 refs., 2 figs.

  4. Development of polymer packaging for power cable

    Directory of Open Access Journals (Sweden)

    S. Sremac

    2014-10-01

    Full Text Available This paper discusses the issues of product design and the procedure of developing polymer packaging as one of the most important engineering tasks. For the purpose of packing power cables a polymer packaging has been designed in the form of drum. Packaging and many other consumer products are largely produced using polymeric materials due to many positive features. High Density Polyethylene is the type of polyethylene proposed for packaging purposes due to its low degree of branching and strong intermolecular forces. Transport and storage processes were automated based on the radio-frequency identification technology. The proposed system is flexible in terms of its possibility of accepting and processing different types of cables and other products.

  5. Power laws from linear neuronal cable theory

    DEFF Research Database (Denmark)

    Pettersen, Klas H; Lindén, Henrik Anders; Tetzlaff, Tom

    2014-01-01

    suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general...... are homogeneously distributed across the neural membranes and themselves exhibit pink ([Formula: see text]) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion...

  6. Behaviour at thermal ageing of power cable components through penetrations

    International Nuclear Information System (INIS)

    Puiu, D.; Gyongyosi, T.; Dinu, E.

    2009-01-01

    The materials for electric insulation and exterior jackets of the power cables are formulated organic compounds. The environmental service conditions will induce chemical and/or physical processes at molecular level of the material; these processes are the ageing mechanisms. The power cables passing through penetrations lead to an increase of the rate of thermal ageing mechanisms, resulting in irreversible degradation of mechanical and electric properties of the organic compounds and of the functional properties of the cable. The paper presents the results of the laboratory tests when the real environmental service conditions for penetration are simulated, the comparison with the results of the thermal computation of the power cables heating and the evaluation of the influence of temperature increase of the power cable components on the cable lifetime. For the particular case of a power cable with PVC insulation, we estimated a lifetime decrease about seven years as referred to lifetime of about 30 years for operation in air. (authors)

  7. Superconducting power transmission: the perils and promise

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, E B

    1976-06-01

    The development of bulk electricity transmission systems must be considered in the light of changing growth rates, increasing resistances to ehv overhead transmission and the tendency to concentrate generation in fewer sites. Helium-cooled or superconducting cables possess technical characteristics which will make them suitable as utility network components for power transmission over distances of ten to several hundred miles. These properties are illustrated by considering two applications in existing electrical networks. The first is a 43 mile system to transmit 4800 MVA and the second is a potential application under study in Pennsylvania to transmit 10,000 MVA over a distance of 350 miles or so. Helium-cooled versions of these transmission systems were designed to permit technical and economic evaluations. The major groups and institutions throughout the world engaged in the development of helium-cooled cables are listed and aspects of the technical approaches are briefly described.

  8. Electromagnetic field analyses of two-layer power transmission cables consisting of coated conductors with magnetic and non-magnetic substrates and AC losses in their superconductor layers

    International Nuclear Information System (INIS)

    Nakahata, Masaaki; Amemiya, Naoyuki

    2008-01-01

    Two-dimensional electromagnetic field analyses were undertaken using two representative cross sections of two-layer cables consisting of coated conductors with magnetic and non-magnetic substrates. The following two arrangements were used for the coated conductors between the inner and outer layers: (1) tape-on-tape and (2) alternate. The calculated magnetic flux profile around each coated conductor was visualized. In the case of the non-magnetic substrate, the magnetic field to which coated conductors in the outer layer are exposed contains more perpendicular component to the conductor wide face (perpendicular field component) when compared to that in the inner layer. On the other hand, for the tape-on-tape arrangement of coated conductors with a magnetic substrate, the reverse is true. In the case of the alternate arrangement of the coated conductor with a magnetic substrate, the magnetic field to which the coated conductors in the inner and outer layers are exposed experiences a small perpendicular field component. When using a non-magnetic substrate, the AC loss in the superconductor layer of the coated conductors in the two-layer cables is dominated by that in the outer layer, whereas the reverse is true in the case of a magnetic substrate. When comparing the AC losses in superconductor layers of coated conductors with non-magnetic and magnetic substrates in two-layer cables, the latter is larger than the former, but the influence of the magnetism of substrates on AC losses in superconductor layers is not remarkable

  9. Electric Power Transmission Lines

    Data.gov (United States)

    Department of Homeland Security — Transmission Lines are the system of structures, wires, insulators and associated hardware that carry electric energy from one point to another in an electric power...

  10. Radiation effects on power cables for nuclear power plants

    International Nuclear Information System (INIS)

    Arora, R.; Munshi, P.; Badshah, M.G.Q.

    1988-01-01

    A large number of power and control cables, insulated with organic/polymeric materials, are installed quite near the reactor in nuclear power plants. The reliability of electrical equipment, receiving power through these cables, is critically important for the design and safety of the power stations. The radiation intensity inside the containment varies significantly from one location to another. The extent of material degradation is associated with the local radiation intensity. The cables used in the nuclear environment require several unique properties, the most obvious of these being radiation resistance, fire resistance, and the ability to withstand the loss-of-coolant accident in a nuclear power plant as specified in Institute of Electrical and Electronics Engineers (IEEE) Standard 383. In this study, four specific electrical power cable samples insulated with polyethylene, polyvinyl chloride, ethylene propylene rubber, and silicone rubber were chosen to investigate the effect of radiation in reactor environments on the electrical properties of the samples. Voltage breakdown tests and dielectric loss factor (tan δ) and conductor resistance measurements were carried out on each sample before and after irradiating them to near lifetime doses at ambient temperatures in atmospheric conditions

  11. Design of power cable grounding wire anti-theft monitoring system

    Science.gov (United States)

    An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang

    2018-01-01

    In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.

  12. Assessing potential impacts of energized submarine power cables on crab harvests

    Science.gov (United States)

    Love, Milton S.; Nishimoto, Mary M.; Clark, Scott; McCrea, Merit; Bull, Ann Scarborough

    2017-12-01

    Offshore renewable energy facilities transmit electricity to shore through submarine power cables. Electromagnetic field emissions (EMFs) are generated from the transmission of electricity through these cables, such as the AC inter-array (between unit) and AC export (to shore) cables often used in offshore energy production. The EMF has both an electric component and a magnetic component. While sheathing can block the direct electric field, the magnetic field is not blocked. A concern raised by fishermen on the Pacific Coast of North America is that commercially important Dungeness crab (Metacarcinus magister Dana, 1852)) might not cross over an energized submarine power cable to enter a baited crab trap, thus potentially reducing their catch. The presence of operating energized cables off southern California and in Puget Sound (cables that are comparable to those within the arrays of existing offshore wind energy devices) allowed us to conduct experiments on how energized power cables might affect the harvesting of both M. magister and another commercially important crab species, Cancer productus Randall, 1839. In this study we tested the questions: 1) Is the catchability of crabs reduced if these animals must traverse an energized power cable to enter a trap and 2) if crabs preferentially do not cross an energized cable, is it the cable structure or the EMF emitted from that cable that deters crabs from crossing? In field experiments off southern California and in Puget Sound, crabs were given a choice of walking over an energized power cable to a baited trap or walking directly away from that cable to a second baited trap. Based on our research we found no evidence that the EMF emitted by energized submarine power cables influenced the catchability of these two species of commercially important crabs. In addition, there was no difference in the crabs' responses to lightly buried versus unburied cables. We did observe that, regardless of the position of the cable

  13. Costly cables; Lange Leitung

    Energy Technology Data Exchange (ETDEWEB)

    Hautmann, Daniel

    2012-08-15

    Connection of offshore wind turbines to the onshore power supply grid requires costly cables for HV DC power transmission. The technology is mature enough to enable low-loss power transmission, but construction times may last several years.

  14. Comparison of advanced high power underground cable designs

    International Nuclear Information System (INIS)

    Erb, J.; Heinz, W.; Hofmann, A.; Koefler, H.J.; Komarek, P.; Maurer, W.; Nahar, A.

    1975-09-01

    In this paper, advanced high power underground cable designs are compared in the light of available literature, of reports and information supplied by participating industries (AEG, BICC, CGE, Pirelli, Siemens), spontaneous contributions by EdF, France, BBC and Felten and Guilleaume Kabelwerke A.G., Germany, and Hitachi, Furukawa, Fujikura and Sumitomo, Japan, and earlier studies carried out at German public research centres. The study covers cables with forced cooling by oil or water, SF 6 -cables, polyethylene cables, cryoresistive and superconducting cables. (orig.) [de

  15. AC HTS Transmission Cable for Integration into the Future EHV Grid of the Netherlands

    Science.gov (United States)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future grid must be capable to transmit all the connected power. Power generation will be more decentralized like for instance wind parks connected to the grid. Furthermore, future large scale production units are expected to be installed near coastal regions. This creates some potential grid issues, such as: large power amounts to be transmitted to consumers from west to east and grid stability. High temperature superconductors (HTS) can help solving these grid problems. Advantages to integrate HTS components at Extra High Voltage (EHV) and High Voltage (HV) levels are numerous: more power with less losses and less emissions, intrinsic fault current limiting capability, better control of power flow, reduced footprint, etc. Today's main obstacle is the relatively high price of HTS. Nevertheless, as the price goes down, initial market penetration for several HTS components is expected by year 2015 (e.g.: cables, fault current limiters). In this paper we present a design of intrinsically compensated EHV HTS cable for future grid integration. Discussed are the parameters of such cable providing an optimal power transmission in the future network.

  16. Advanced superconducting power cable for MV urban power supply

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Frank [Nexans Deutschland GmbH, Hannover (Germany); Merschel, Frank [RWE Deutschland AG, Essen (Germany); Noe, Mathias [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-07-01

    In recent years the technology of superconducting power cable systems has progressed such that the technical hurdles preparing for commercial applications have been mastered. Several field tests of large scale prototypes for the applications of superconducting cables as well as superconducting fault current limiters have been successfully accomplished and the technology of such systems is ready for commercialization. The presentation will give a detailed overview of the German AmpaCity project. An overview will be given on the development, manufacturing and installation of the 10 kV, 40 MVA HTS system consisting of a fault current limiter and of a 1 km cable in the city of Essen. Since it is the first time that a one kilometer HTS cable system is installed together with an HTS fault current limiter in a real grid application between two substations within a city center area, AmpaCity serves as a lighthouse project. In addition it is worldwide the longest installed HTS cable system so far. It is expected that relatively large technical advances will be made in the future of the comparatively new HTS technology, which in turn will bring associated cost reductions. For this reason, the AmpaCity pilot project in the downtown area of Essen in Germany will be an important step on the way to achieving more widespread application of HTS technology.

  17. Advanced nuclear power plant design with minimized use of cables

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The objective of this report is to present a nuclear power plant design with a minimum utilization of cables. The report describes the types of software and hardware that will be needed to minimize hard-wired control and instrumentation circuits and to reduce the quantity of low voltage power cables while maintaining a high availability and reliability of the plant control systems

  18. Temperature rise of cyclicly loaded power cables

    Energy Technology Data Exchange (ETDEWEB)

    Brakelmann, H

    1984-09-01

    A calculation method for the current ratings of cyclicly loaded power cables is introduced, taking into account optional shapes of the load cycle as well as the drying-out of the soil. The method is based on the Fourier-analysis of the loss cycle, representing an extension of the calculation method of VDE 0298. It is shown, that the ''VDE-method'' gives good results for the thermal resistances, if an ''utility load cycle'' in accordance with VDE 0298 is supposed. Only for cycles deviating essentially from the utility load cycle, the thermal resistances calculated by the ''VDE-method'' may be too great. In these cases the represented method is advantageous and can be processed by the aid of microcomputers.

  19. Wireless transmission of power

    International Nuclear Information System (INIS)

    Grotz, T.

    1991-01-01

    This paper reports that it has been proven by researchers that electrical energy can be propagated around the world between the surface of the Earth and the ionosphere at extremely low frequencies in what is known as the Schumann Cavity. Experiments to data have shown that electromagnetic waves with frequencies in the range of 8 Hz, the fundamental Schumann Resonance frequency, propagate with litter attenuation around the planet within the Schumann Cavity. It is the intent of this research to determine if the Schumann Cavity can be resonated, if the power that is delivered to the cavity propagated with very low losses, and if power can be extracted at other locations within the cavity. Experimental data collected and calculations made in recent years support the hypothesis that wireless power transmission is a viable and practical alternative to the present systems of power transmission

  20. Development of halogen-free cables for nuclear power plants

    International Nuclear Information System (INIS)

    Yamamoto, Mitsuo; Ito, Kazumi; Yaji, Takeo; Yoshida, Shin; Sakurai, Takako; Matsushita, Shigetoshi.

    1990-01-01

    On the occasion where serious fire accidents were experienced in the past, the need for making flame-retardant wire and cable incombustible took place and has since been generalizing. Various sorts of flame-retardant cables have already been developed and been actually used. From the viewpoint of avoiding the interference with the evacuation and fire-fighting activity in case of fire or the secondary accidents such as corrosion of the distributing panel, etc., the demand for non-halogen flame-retardant cable has rapidly been increasing in recent years in some fields of general industries, because this specific cable would generate the least amount of toxic smoke or corrosive gas even when it should burn. Similar demand has been increasing also for the cable used for nuclear power plants. In this field, earnest desire has been made for the development of non-halogen flame-retardant cable having specific environmental resistance specially required at nuclear power plants in addition to the properties and capacities required in general industries. The authors have continued examinations on the anti-environmental properties of the materials for cable such as long heat resistance, radiation resistance, steam resistance and succeeded in completing various sorts of non-halogen flame-retardant cable for nuclear power plants. In this report, we will introduce various features of the cable we have developed this time as well as the long-term reliability of non-halogen flame-retardant materials. (author)

  1. Cables for nuclear power generating stations, (6)

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi; Asakawa, Naoki; Yamamoto, Tomotaka; Watanabe, Mikio; Shingo, Yoshioki.

    1981-01-01

    New inorganic material insulated flexible triaxial cables have been developed for the purpose of applying around the primary circuit of fast breeder reactor (FBR). These cables were tested at high temperature and high #betta#-ray radiation environment, and they showed good electrical properties. Other noted results were that they showed good fire proof and flame resistant properties. (author)

  2. Prevention of cable fires in nuclear power plants

    International Nuclear Information System (INIS)

    Murota, George; Yajima, Kazuo

    1979-01-01

    Nuclear power generation is indispensable to secure required electric power, therefore double or triple safety measures are necessary to prevent serious accidents absolutely. As for the countermeasures to cable fires, interest grew rapidly with the fire in Browns Ferry Power Station in USA in 1975 as the turning point, because multi-strand grouped cables caused to promote the spread of fire. In Japan, also the fire prevention measures for wires and cables were more strengthened, and the measures for preventing the spread of cable fires with the agent preventing the spread of fires have occupied the important position. When multi-strand cables are ignited by some cause, the fire spreads with very large combustion force along wirings to other rooms and installations, and electric systems are broken down. The harmful corrosive gas generated from the burning coating materials of cables diffuses very quickly. In nuclear power stations, the cables which are very hard to burn are adopted, fire prevention sections are established positively, the fire-resisting capability of fire prevention barriers is reviewed, and fire-resisting and smoke-preventing treatments are applied to the parts where cables penetrate walls, floors or ceilings. The paint and the sealing material which prevent the spread of fires are introduced. (Kako, I.)

  3. Medium and high voltage power cables market in Europe

    International Nuclear Information System (INIS)

    Kupiec, M.

    1992-06-01

    This note gives an overview of the European market for medium and high voltage power cables. In this text, emphasis is placed on suppliers and important European clients; there is also a brief review of the different techniques for cable laying and utilization in Europe. This not has mainly been drafted from informations supplied by EUROPACABLE

  4. Total Magnetic Field Signatures over Submarine HVDC Power Cables

    Science.gov (United States)

    Johnson, R. M.; Tchernychev, M.; Johnston, J. M.; Tryggestad, J.

    2013-12-01

    Mikhail Tchernychev, Geometrics, Inc. Ross Johnson, Geometrics, Inc. Jeff Johnston, Geometrics, Inc. High Voltage Direct Current (HVDC) technology is widely used to transmit electrical power over considerable distances using submarine cables. The most commonly known examples are the HVDC cable between Italy and Greece (160 km), Victoria-Tasmania (300 km), New Jersey - Long Island (82 km) and the Transbay cable (Pittsburg, California - San-Francisco). These cables are inspected periodically and their location and burial depth verified. This inspection applies to live and idle cables; in particular a survey company could be required to locate pieces of a dead cable for subsequent removal from the sea floor. Most HVDC cables produce a constant magnetic field; therefore one of the possible survey tools would be Marine Total Field Magnetometer. We present mathematical expressions of the expected magnetic fields and compare them with fields observed during actual surveys. We also compare these anomalies fields with magnetic fields produced by other long objects, such as submarine pipelines The data processing techniques are discussed. There include the use of Analytic Signal and direct modeling of Total Magnetic Field. The Analytic Signal analysis can be adapted using ground truth where available, but the total field allows better discrimination of the cable parameters, in particular to distinguish between live and idle cable. Use of a Transverse Gradiometer (TVG) allows for easy discrimination between cable and pipe line objects. Considerable magnetic gradient is present in the case of a pipeline whereas there is less gradient for the DC power cable. Thus the TVG is used to validate assumptions made during the data interpretation process. Data obtained during the TVG surveys suggest that the magnetic field of a live HVDC cable is described by an expression for two infinite long wires carrying current in opposite directions.

  5. Application of Superconducting Power Cables to DC Electric Railway Systems

    Science.gov (United States)

    Ohsaki, Hiroyuki; Lv, Zhen; Sekino, Masaki; Tomita, Masaru

    For novel design and efficient operation of next-generation DC electric railway systems, especially for their substantial energy saving, we have studied the feasibility of applying superconducting power cables to them. In this paper it is assumed that a superconducting power cable is applied to connect substations supplying electric power to trains. An analysis model line was described by an electric circuit, which was analyzed with MATLAB-Simulink. From the calculated voltages and currents of the circuit, the regenerative brake and the energy losses were estimated. In addition, assuming the heat loads of superconducting power cables and the cryogenic efficiency, the energy saving of the total system was evaluated. The results show that the introduction of superconducting power cables could achieve the improved use of regenerative brake, the loss reduction, the decreased number of substations, the reduced maintenance, etc.

  6. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    Science.gov (United States)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  7. Cable fire risk of a nuclear power plant

    International Nuclear Information System (INIS)

    Aulamo, H.

    1998-02-01

    The aim of the study is to carry out a comprehensive review of cable fire risk issues of nuclear power plants (NPP) taking into account latest fire and risk assessment research results. A special emphasis is put on considering the fire risk analysis of cable rooms in the framework of TVO Olkiluoto NPP probabilistic safety assessment. The assumptions made in the analysis are assessed. The literature study section considers significant fire events at nuclear power plants, the most severe of which have nearly led to a reactor core damage (Browns Ferry, Greifswald, Armenia, Belojarsk, Narora). Cable fire research results are also examined

  8. Impedance calculations for power cables to primary coolant pump motors

    International Nuclear Information System (INIS)

    Hegerhorst, K.B.

    1977-01-01

    The LOFT primary system motor generator sets are located in Room B-239 and are connected to the primary coolant pumps by means of a power cable. The calculated average impedance of this cable is 0.005323 ohms per unit resistance and 0.006025 ohms per unit reactance based on 369.6 kVA and 480 volts. The report was written to show the development of power cable parameters that are to be used in the SICLOPS (Simulation of LOFT Reactor Coolant Loop Pumping System) digital computer program as written in LTR 1142-16 and also used in the pump coastdowns for the FSAR Analysis

  9. Cable fire risk of a nuclear power plant; Ydinvoimalaitoksen kaapelipaloriski

    Energy Technology Data Exchange (ETDEWEB)

    Aulamo, H.

    1998-02-01

    The aim of the study is to carry out a comprehensive review of cable fire risk issues of nuclear power plants (NPP) taking into account latest fire and risk assessment research results. A special emphasis is put on considering the fire risk analysis of cable rooms in the framework of TVO Olkiluoto NPP probabilistic safety assessment. The assumptions made in the analysis are assessed. The literature study section considers significant fire events at nuclear power plants, the most severe of which have nearly led to a reactor core damage (Browns Ferry, Greifswald, Armenia, Belojarsk, Narora). Cable fire research results are also examined. 62 refs.

  10. Bulk Electrical Cable Non-Destructive Examination Methods for Nuclear Power Plant Cable Aging Management Programs

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Samuel W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hartman, Trenton S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-01

    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of nondestructive test methods focusing particularly on bulk electrical test methods that provide key indicators of cable aging and damage. The work includes a review of relevant literature as well as hands-on experimental verification of inspection capabilities. As nuclear power plants consider applying for second, or subsequent, license renewal to extend their operating period from 60 years to 80 years, it is important to understand how the materials installed in plant systems and components will age during that time and develop aging management programs to assure continued safe operation under normal and design basis events (DBE). Normal component and system tests typically confirm the cables can perform their normal operational function. The focus of the cable test program, however, is directed toward the more demanding challenge of assuring the cable function under accident or DBE. The industry has adopted 50% elongation at break (EAB) relative to the un-aged cable condition as the acceptability standard. All tests are benchmarked against the cable EAB test. EAB, however, is a destructive test so the test programs must apply an array of other nondestructive examination (NDE) tests to assure or infer the overall set of cable’s system integrity. Assessment of cable integrity is further complicated in many cases by vendor’s use of dissimilar material for jacket and insulation. Frequently the jacket will degrade more rapidly than the underlying insulation. Although this can serve as an early alert to cable damage, direct test of the cable insulation without violating the protective jacket becomes problematic. This report addresses the range of bulk electrical NDE cable tests that are or could be practically implemented in a field-test situation with a particular focus on frequency domain reflectometry (FDR). The FDR test method offers numerous advantages

  11. State of the art in power cable design, failure mechanisms and testing

    International Nuclear Information System (INIS)

    Orton, H.

    2005-01-01

    This presentation describes state of the art in power cable design, failure mechanisms and testing. It gives a history of cable usage and design of cables, describes different cable types, assessment of the condition of cables, aging and failures, testing and diagnostics

  12. Trend analysis of cables failure events at nuclear power plants

    International Nuclear Information System (INIS)

    Fushimi, Yasuyuki

    2007-01-01

    In this study, 152 failure events related with cables at overseas nuclear power plants are selected from Nuclear Information Database, which is owned by The Institute of Nuclear Safety System, and these events are analyzed in view of occurrence, causal factor, and so on. And 15 failure events related with cables at domestic nuclear power plants are selected from Nuclear Information Archives, which is owned by JANTI, and these events are analyzed by the same manner. As a result of comparing both trends, it is revealed following; 1) A cable insulator failure rate is lower at domestic nuclear power plants than at foreign ones. It is thought that a deterioration diagnosis is performed broadly in Japan. 2) Many buried cables failure events have been occupied a significant portion of cables failure events during work activity at overseas plants, however none has been occurred at domestic plants. It is thought that sufficient survey is conducted before excavating activity in Japan. 3) A domestic age related cables failure rate in service is lower than the overseas one and domestic improper maintenance rate is higher than the overseas one. Maintenance worker' a skill improvement is expected in order to reduce improper maintenance. (author)

  13. Long-term test of the 22.9kV HTS power cable system in LS Cable Ltd

    International Nuclear Information System (INIS)

    Jang, Hyun Man; Lee, Chang Young; Kim, Choon Dong; Kim, Do Hyung; Park, In Son; Ji, Bong Ki; Kim, Dong Wook; Cho, Jeonwook

    2006-01-01

    Since 2001, LS cable Ltd. has been developing the design, manufacturing and evaluation technologies for high temperature superconducting (HTS) power cable system as a member of DAPAS (Dream for Advanced Power system by Applied Superconductivity technology) program in Korea. The 30 m HTS cable system that is rated at 22.9 kV and 1.2 kA giving a rated capacity of 50 MVA had been developed and tested. The cable was designed as a cold dielectric type employing Bi-2223 HTS tapes and polypropylene (PP) laminated paper as the conductor and electrical insulation, respectively. The cable is cooled with sub-cooled liquid nitrogen at temperature from 75 to 77 K. The manufacturing and the installation of the cable system were completed in 2004. Long-term performance test of the cable system has been conducted for six months to verify its electric and mechanical properties in 2005

  14. Laplace Synthesis Validation through Measurements on Underground Transmission Cables

    OpenAIRE

    Uribe-Campos Felipe Alejandro

    2014-01-01

    Underground cable electrical parameters ZY as well as their modal propagation characteristics are highly frequency dependent which in certain cases turns its analysis difficult. To perform electromagnetic transient studies of cables the calculation of electrical parameters is essential to obtain the waves propagation solution through the multiconductor system. At the same time this requires to solve the inverse Laplace transform on a numerical form. Although the analytic Laplace transform has...

  15. DC Cable for Railway

    Science.gov (United States)

    Tomita, Masaru

    The development of a superconducting cable for railways has commenced, assuming that a DC transmission cable will be used for electric trains. The cable has been fabricated based on the results of current testing of a superconducting wire, and various evaluation tests have been performed to determine the characteristics of the cable. A superconducting transmission cable having zero electrical resistance and suitable for railway use is expected to enhance regeneration efficiency, reduce power losses, achieve load leveling and integration of sub-stations, and reduce rail potential.

  16. Online Location of Faults on AC Cables in Underground Transmission Systems

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær

    under fault conditions well, but the accuracy of the calculated impedance is low for fault location purposes. The neural networks can therefore not be trained and no impedance-based fault location method can be used for crossbonded cables or hybrid lines. The use of travelling wave-based methods...... connection to verify the proposed method. Faults, at reduced a voltage are artificially applied in the cable system and the transient response is measured at two terminals at the cable’s ends. The measurements are time-synchronised and it is found that a very accurate estimation of the fault location can......A transmission grid is normally laid out as an almost pure overhead line (OHL) network. The introduction of transmission voltage level XLPE cables and the increasing interest in the environmental impact of OHL has resulted in an increasing interest in the use of underground cables on transmission...

  17. Development of non-halogen cables for nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Yagyu, Hideki; Yamamoto, Yasuaki; Onishi, Takao (Hitachi Cable, Ltd., Tokyo (Japan))

    1983-12-01

    The non-halogen fire-resistant cables for nuclear power stations which never generate halogen gas, have been developed. The cables comprise the insulator of EP rubber and the sheath of polyolefine containing non-halogen inorganic fire-retardant. The results of the environmental test and fire-resistance test are described. In the environmental test, the cables were subjected to the heating, gamma-irradiation and steam exposure successively, according to IEEE specification 323,383, and subsequently the change in the appearance, tensile strength and electrical performance of the cables was measured. In the fire-resistance test, the vertical tray fire test according to the IEEE specification 383 was adopted, and other tests including the vertical fire test on insulator cores, oxygen index, the generation of corrosive gas, copper mirror corrosion test, gas toxicity test and optical smoke density test were carried out. It became clear that the cables did not generate halogen gas on burning, and brought about reduced toxicity, corrosion and smoke, and that the safety against fire is greatly improved by using the cables.

  18. Development of non-halogen cables for nuclear power stations

    International Nuclear Information System (INIS)

    Yagyu, Hideki; Yamamoto, Yasuaki; Onishi, Takao

    1983-01-01

    The non-halogen fire-resistant cables for nuclear power stations which never generate halogen gas, have been developed. The cables comprise the insulator of EP rubber and the sheath of polyolefine containing non-halogen inorganic fire-retardant. The results of the environmental test and fire-resistance test are described. In the environmental test, the cables were subjected to the heating, gamma-irradiation and steam exposure successively, according to IEEE specification 323,383, and subsequently the change in the appearance, tensile strength and electrical performance of the cables was measured. In the fire-resistance test, the vertical tray fire test according to the IEEE specification 383 was adopted, and other tests including the vertical fire test on insulator cores, oxygen index, the generation of corrosive gas, copper mirror corrosion test, gas toxicity test and optical smoke density test were carried out. It became clear that the cables did not generate halogen gas on burning, and brought about reduced toxicity, corrosion and smoke, and that the safety against fire is greatly improved by using the cables. (Yoshitake, I.)

  19. Laplace Synthesis Validation through Measurements on Underground Transmission Cables

    Directory of Open Access Journals (Sweden)

    Uribe-Campos Felipe Alejandro

    2014-10-01

    Full Text Available Underground cable electrical parameters ZY as well as their modal propagation characteristics are highly frequency dependent which in certain cases turns its analysis difficult. To perform electromagnetic transient studies of cables the calculation of electrical parameters is essential to obtain the waves propagation solution through the multiconductor system. At the same time this requires to solve the inverse Laplace transform on a numerical form. Although the analytic Laplace transform has an indisputable accuracy, the application of its numerical version up-to-date has not been completely accepted. A complete methodology is developed in this work to guide analyst engineers or graduate students in the calculation of electromagnetic transients of underground cable systems. Finally, to help the validation of the numerical inverse Laplace transform a scaled prototype experiment is performed in the laboratory in which a transient step-response at the remote end of an energized conductor is measured.

  20. Workshop on power plant cable condition monitoring: Proceedings

    International Nuclear Information System (INIS)

    Del Valle, L.

    1988-07-01

    A three-day workshop on cable condition monitoring was held in San Francisco on Fegruary 16--18, 1988. The workshop was cosponsored by the Nuclear Power, Electrical Systems, and Coal Combustion Systems Divisions of the Electric Power Research Institute. The primary objective of the workshop was to identify the state-of-the-art for cable condition monitoring. Twenty-five technical papers as well as EPRI research programs were presented at the technical sessions. Four working group sessions and one general session were held on each of two days. Each group session provided a forum for participants to exchange ideas and to discuss in more depth research for cable condition monitoring, existing and innovative testing technology, and utility and NRC needs for testing. Recommendations from the working groups were summarized and presented at the end of the workshop

  1. Superconducting coaxial cable as a large capacity transmission medium for communication

    International Nuclear Information System (INIS)

    Mikoshiba, K.; Simohori, Y.; Ohmori, N.; Sone, F.

    1974-01-01

    In order to survey the feasibility of the superconducting communication system, the electrical performance of superconducting coaxial cable has been investigated experimentally. The results are as follows. The transmission loss can be described as a function of the frequency, a(f) = a 1 f 2 + a 2 f. Dielectric loss is dominant up to a few gigahertz. Improvement of the impedance irregularities due to dimensional imperfections along the cable smoothens the transmission loss versus frequency characteristics. The temperature dependence of the transmission loss agrees well with an approximate expression deduced using the Pippard temperature function. (author)

  2. External electromagnetic transient sources: analysis of its effect in underground power cables; Fuentes transitorias electromagneticas externas: analisis de su efecto en los cables de potencia subterraneos

    Energy Technology Data Exchange (ETDEWEB)

    Escamilla Paz, Antonio

    2009-07-01

    In most of the electrical power systems that operate at present, the subterranean cables are only a complement. The cost of these cables is generally higher than the one of the aerial power lines, thus its use is restricted only to those areas where the construction of the aerial power lines is not feasible. It is estimated that for voltages lower than 110 kV this cost is up to seven times greater than the one of an aerial power line and for voltages higher than 380 kV it can be up to twenty times greater. Nevertheless, important reasons exist to construct a subterranean cable system such as: a) the fast growth of the urban centers and the industrial zones, which brings about restrictions of the rights of way for the construction of aerial power lines, b) the crossing of large water bodies, c) the congestion of aerial power lines near the generating substations or power plants, d) the crossing of air lines and e) the laws and the regulations, to mention some of them. The importance of the underground transmission systems of high and extra high voltage will be increased in the medium and the long term, therefore, it is considered that the effects of the external phenomena in these systems, like the inductions produced by the electromagnetic transient sources, will be more severe. In this research work the atmospheric discharges are defined as the external electromagnetic transient sources. The large dimension cables such as the power cables, behave as large collectors of the interferences produced by the atmospheric discharges, which can bring about damages in the components of a system. In order to avoid the damages and to increase the reliability of the subterranean cable systems it is necessary to use protective devices and appropriate insulation levels, mainly. If the phenomenon and the behavior of the system are properly represented, it is possible to more accurately determine the characteristics that the equipment must have to resist the over voltages and the

  3. Losses and Inductive Parameters in Subsea Power Cables

    OpenAIRE

    Stølan, Ronny

    2009-01-01

    Four samples of galvanized steel armour for sub sea power cables are tested with an electric steel tester. The samples exhibit different remanence magnetization and permeability. The effects of permeability on loss in sub sea cables is found to be insignificant. Slight increase of conductor inductance due to increase in permeability of armour wires is observed. Mutual cancellation of inductance between circuits that are twisted opposite to each other, or with respect to one circuit, is confir...

  4. Improved Method for PD-Quantification in Power Cables

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Villefrance, Rasmus; Henriksen, Mogens

    1999-01-01

    n this paper, a method is described for improved quantification of partial discharges(PD) in power cables. The method is suitable for PD-detection and location systems in the MHz-range, where pulse attenuation and distortion along the cable cannot be neglected. The system transfer function...... was calculated and measured in order to form basis for magnitude calculation after each measurements. --- Limitations and capabilities of the method will be discussed and related to relevant field applications of high frequent PD-measurements. --- Methods for increased signal/noise ratio are easily implemented...

  5. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    Science.gov (United States)

    Minati, Kurt F.; Morgan, Gerry H.; McNerney, Andrew J.; Schauer, Felix

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  6. Partial discharge testing of in-situ power cable accessories

    Energy Technology Data Exchange (ETDEWEB)

    Orban, H. E.

    2002-07-01

    An overview of commercially available diagnostic methods for in-situ power cable accessories is given and relevant field experiences with these diagnostics are described. The discussion includes both PILC and polymeric insulated cables. Two major types of degradation are most frequently involved in cable systems. One is an overall condition caused by chemical aging and /or water treeing. Diagnostics for this type of aging include dissipation factor (loss angle), harmonic analysis, return voltage, isothermal relaxation current, dielectric response, or dc leakage current. The second type of degradation is discrete or incremental; condition assessment utilizes dissipation factor measurements or partial discharge (PD) level measurements. The focus in this paper is on PD diagnostics, especially off-line methods such as the 60 Hz test, the combined AC and VLF diagnostic, and the oscillating wave test system test. Among on-line diagnostics, ultrasonic detection of partial discharge and measurement of partial discharge by installing direct, capacitive or inductive couplers near cable accessories, are described. Overall, partial discharge detection and location in cable accessories is considered inadequate, since interpretation of results is difficult due to the number of variables involved. 28 refs., 1 tab.

  7. Power and Submarine Cable Systems for the KM3NeT kilometre cube Neutrino Telescope

    CERN Document Server

    Sedita, M; Hallewell, G

    2009-01-01

    The KM3NeT EU-funded consortium, pursuing a cubic kilometre scale neutrino telescope in the Mediterranean Sea, is developing technical solutions for the construction of this challenging project, to be realized several kilometres below the sea level. In this framework a proposed DC/DC power system has been designed, maximizing reliability and minimizing difficulties and expensive underwater activities. The power conversion, delivery, transmission and distribution network will be described with particular attention to: the main electro-optical cable, on shore and deep sea power conversion, the subsea distribution network and connection systems, together with installation and maintenance issues.

  8. Electrical Structure of Future Off-shore Wind Power Plant with a High Voltage Direct Current Power Transmission

    DEFF Research Database (Denmark)

    Sharma, Ranjan

    The increasing demand of electric power and the growing consciousness towards the changing climate has led to a rapid development of renewable energy in the recent years. Among all, wind energy has been the fastest growing energy source in the last decade. But the growing size of wind power plants......, better wind conditions at off-shore and the general demand to put them out of sight have all contributed to the installation of large wind power plants in off-shore condition. However, moving wind power plants far out in the off-shore comes with many associated problems. One of the main challenges...... is the transmission of power over long distance. Historically, the power transmission from off-shore wind power plants has been done via HVAC submarine cables. This provides a simple solution, but AC cables cannot be arbitrarily long. It is shown in the report that major issues with HVAC cable transmission system...

  9. Transmission rights and market power

    International Nuclear Information System (INIS)

    Bushnell, J.

    1999-01-01

    Most of the concerns about physical transmission rights relate to the ability to implicitly or explicitly remove that transmission capacity from the market-place. Under a very strict form of physical right, owners could simply choose not to sell it if they don't want to use it. Modifications that require the release of spare capacity back into an open market could potentially alleviate this problem but there is concern that such releases would not occur far enough in advance to be of much use to schedulers. Similarly, the transmission capacity that is made available for use by non-rights holders can also be manipulated by the owners of transmission rights. The alternative form, financial transmission rights, provide to their owners congestion payments, but physical control of transmission paths. In electricity markets such as California's, even financial transmission rights could potentially be utilized to effectively withhold transmission capacity from the marketplace. However, methods for withholding transmission capacity are somewhat more convoluted, and probably more difficult, for owners of financial rights than for owners of physical rights. In this article, the author discusses some of the potential concerns over transmission rights and their use for the exercise of various forms of market power

  10. Fire protection of nuclear power plant cable ducts

    International Nuclear Information System (INIS)

    Kandrac, J.; Lukac, L.

    1987-01-01

    Fire protection of cable ducts in the Bohunice and Dukovany V-2 nuclear power plants is of a fourtier type. The first level consists in preventive measures incorporated in the power plant design and layout. The second level consists in early detection and a quick repressive action provided by an electric fire alarm system and a stationary spray system, respectively. Fire partitions and glands represent the third level while special spray, paint and lining materials represent the fourth level of the protection. Briefly discussed are the results of an analysis of the stationary spray system and the effects reducing the efficiency of a fire-fighting action using this system. The analysis showed the need of putting off cable duct fires using mobile facilities in case the stationary spray system cannot cope any longer. (Z.M.). 3 figs., 2 refs

  11. Alternating current loss calculation in a high-TC superconducting transmission cable considering the magnetic field distribution

    International Nuclear Information System (INIS)

    Noji, H; Haji, K; Hamada, T

    2003-01-01

    We have calculated the alternating current (ac) losses of a 114 MVA high-T C superconducting (HTS) transmission cable using an electric-circuit (EC) model. The HTS cable is fabricated by Tokyo Electric Power Company and Sumitomo Electric Industries, Ltd. The EC model is comprised of a resistive part and an inductive part. The resistive part is obtained by the approximated Norris equation for a HTS tape. The Norris equation indicates hysteresis losses due to self-fields. The inductive part has two components, i.e. inductances related to axial fields and those related to circumferential fields. The layer currents and applied fields of each layer were calculated by the EC model. By using both values, the ac losses of the one-phase HTS cable were obtained by calculation considering the self-field, the axial field and the circumferential field of the HTS tape. The measured ac loss transporting 1 kA rms is 0.7 W m -1 ph -1 , which is equal to the calculation. The distribution of each layer loss resembles in shape the distribution of the circumferential field in each layer, which indicates that the circumferential fields strongly influence the ac losses of the HTS cable

  12. Study for wireless power transmission of nuclear robot system

    International Nuclear Information System (INIS)

    Kim, Jongseog

    2013-01-01

    Gasoline engine or electric motor is generally used for driving power of working. Gasoline tank is uncomfortable to carry. Battery capacity does not sustain long time working. Frequent moving back of robot to power charger or refueling tank is inconvenient. Long power cable connection occur winding problem if there are complex structures in walking way. We need some solution for continuous supply of robot energy at the free moving condition of robot. 'Wireless power transmission' is one of the solutions. Some experiment result to transmit wireless power to moving robot is described herein. To find possible wireless power transmission method for nuclear robot, wireless power transmission tests were performed. As result of these tests, it was confirmed that wireless power transmission by using dipole and mat type magnetic induction were possible. As result of flying robot experiment, it was realized that development of light weight core for receiver and wave reflection device for high directional transmitter are necessary for practical use of the dipole type wireless power transmission. Small size core and high directional transmitter will be next target. Mat type wireless power transmission is regarded as useful for robot power charging station in the inside containment

  13. Study for wireless power transmission of nuclear robot system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongseog [Central Research Institute of Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-05-15

    Gasoline engine or electric motor is generally used for driving power of working. Gasoline tank is uncomfortable to carry. Battery capacity does not sustain long time working. Frequent moving back of robot to power charger or refueling tank is inconvenient. Long power cable connection occur winding problem if there are complex structures in walking way. We need some solution for continuous supply of robot energy at the free moving condition of robot. 'Wireless power transmission' is one of the solutions. Some experiment result to transmit wireless power to moving robot is described herein. To find possible wireless power transmission method for nuclear robot, wireless power transmission tests were performed. As result of these tests, it was confirmed that wireless power transmission by using dipole and mat type magnetic induction were possible. As result of flying robot experiment, it was realized that development of light weight core for receiver and wave reflection device for high directional transmitter are necessary for practical use of the dipole type wireless power transmission. Small size core and high directional transmitter will be next target. Mat type wireless power transmission is regarded as useful for robot power charging station in the inside containment.

  14. HVDC power transmission technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hauth, R.L.; Tatro, P.J.; Railing, B.D. [New England Power Service Co., Westborough, MA (United States); Johnson, B.K.; Stewart, J.R. [Power Technologies, Inc., Schenectady, NY (United States); Fink, J.L.

    1997-04-01

    The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

  15. Modelling of Dynamic Transmission Cable Temperature Considering Soil-Specific Heat, Thermal Resistivity, and Precipitation

    DEFF Research Database (Denmark)

    Olsen, Rasmus; Anders, George J.; Holboell, Joachim

    2013-01-01

    This paper presents an algorithm for the estimation of the time-dependent temperature evolution of power cables, when real-time temperature measurements of the cable surface or a point within its vicinity are available. The thermal resistivity and specific heat of the cable surroundings are varied...... as functions of the moisture content which is known to vary with time. Furthermore, issues related to the cooling effect during rainy weather are considered. The algorithm is based on the lumped parameters model and takes as input distributed temperature sensing measurements as well as the current and ambient...... temperature. The concept is verified by studying a laboratory setup of a 245 kV cable system....

  16. Transmission lines with lightning arresters cables energized by optical fibers; Linhas de transmissao com cabos para-raios energizados com fibra optica

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Fumitaka; Cicarelli, Liliane Dias [Alcoa Aluminio S.A. (Brazil); D`Ajuz, Ary [ELETRONORTE, Belem, PA (Brazil); Martinez, Manuel L.B. [Escola Federal de Engenharia de Itajuba, MG (Brazil); Masuda, Mario [Tecname Engenharia (Brazil)

    1995-12-31

    Recently, the implementation of optical systems has been possible through the utilization of the existent transmission lines structure by the sharing between electric power and telecommunications enterprises, using Op-GW cables instead of conventional lightning-arresters cables. In order to make such optical sharing feasible, the enterprise ALCOA Aluminio S.A is developing the energized lightning-arrester system with optical fiber in it. This work presents such system and show its great advantages specially when implemented in low population density regions in order to supply electric power demand at lower costs 6 refs., 5 figs.

  17. Flux-transfer losses in helically wound superconducting power cables

    International Nuclear Information System (INIS)

    Clem, John R; Malozemoff, A P

    2013-01-01

    Minimization of ac losses is essential for economic operation of high-temperature superconductor (HTS) ac power cables. A favorable configuration for the phase conductor of such cables has two counter-wound layers of HTS tape-shaped wires lying next to each other and helically wound around a flexible cylindrical former. However, if magnetic materials such as magnetic substrates of the tapes lie between the two layers, or if the winding pitch angles are not opposite and essentially equal in magnitude to each other, current distributes unequally between the two layers. Then, if at some point in the ac cycle the current of either of the two layers exceeds its critical current, a large ac loss arises from the transfer of flux between the two layers. A detailed review of the formalism, and its application to the case of paramagnetic substrates including the calculation of this flux-transfer loss, is presented. (paper)

  18. Optimizing wind farm cable routing considering power losses

    DEFF Research Database (Denmark)

    Fischetti, Martina; Pisinger, David

    2017-01-01

    that must be spent immediately in cable and installation costs, and the future reduced revenues due to power losses. The latter goal has not been addressed in previous work. We present a Mixed-Integer Linear Programming approach to optimize the routing using both exact and math-heuristic methods....... In the power losses computation, wind scenarios are handled eciently as part of the preprocessing, resulting in a MIP model of only slightly larger size. A library of real-life instances is introduced and made publicly available for benchmarking. Computational results on this testbed show the viability of our...

  19. The performance of transmission lines and cables subjected to electromagnetic radiation from a nuclear explosion (NEMP)

    International Nuclear Information System (INIS)

    Aguet, M.; Ianovici, M.; Lin, C.C.; Fornerod, F.

    1980-01-01

    The use of armoured cables for telecommunication and data transmission systems is practically essential to avoid electromagnetic interference. The authors have made a mathematical study of the probable effect of a high altitude nuclear explosion. Using a simplified model, the voltages and currents induced into single and multiple-sheathed, overhead and buried cables subjected to an intense magnetic pulse (50kV/m) from high altitude, are determined by computer. It is found that, contrary to expectations the current intensity in the second case is seven times greater than for the overhead conductor. (F.N.S.)

  20. The degradation diagnosis of low voltage cables used at nuclear power plants

    International Nuclear Information System (INIS)

    Yamamoto, Toshio; Ashida, Tetsuya; Ikeda, Takeshi; Yasuhara, Takeshi; Takechi, Kei; Araki, Shogo

    2001-01-01

    Low voltage cables which have been used for the supply of electric power and the propagation of control signals in nuclear power plants must be sound for safe and stable operation. The long use of nuclear power plants has been reviewed, and the degradation diagnosis to estimate the soundness of low voltage cables has been emphasized. Mitsubishi Cable Industries has established a degradation diagnosis method of cables which convert the velocity of ultrasonic wave in the surface layer of the cable insulation or jacket into breaking elongation, and has developed a degradation diagnosis equipment of low voltage cables used at nuclear power plants in cooperation with Mitsubishi Heavy Industries. This equipment can be moved by an ultrasonic probe by sequential control and measure the ultrasonic velocity automatically. It is capable of a fast an sensitive diagnosis of the cables. We report the outline of this degradation diagnosis equipment and an example of the adaptability estimation at an actual nuclear power plant. (author)

  1. Power Cable Fault Recognition Based on an Annealed Chaotic Competitive Learning Network

    Directory of Open Access Journals (Sweden)

    Xuebin Qin

    2014-09-01

    Full Text Available In electric power systems, power cable operation under normal conditions is very important. Various cable faults will happen in practical applications. Recognizing the cable faults correctly and in a timely manner is crucial. In this paper we propose a method that an annealed chaotic competitive learning network recognizes power cable types. The result shows a good performance using the support vector machine (SVM and improved Particle Swarm Optimization (IPSO-SVM method. The experimental result shows that the fault recognition accuracy reached was 96.2%, using 54 data samples. The network training time is about 0.032 second. The method can achieve cable fault classification effectively.

  2. Numerical analysis of the stability of HTS power cable under fault current considering the gaps in the cable

    International Nuclear Information System (INIS)

    Fang, J.; Li, H.F.; Zhu, J.H.; Zhou, Z.N.; Li, Y.X.; Shen, Z.; Dong, D.L.; Yu, T.; Li, Z.M.; Qiu, M.

    2013-01-01

    Highlights: •The equivalent circuit equations and the heat balance equations were established. •The current distributions of the HTS cable under fault current were obtained. •The temperature curves of conductor layers under fault current were obtained. •The effect of the gap liquid nitrogen on the thermal characteristics was studied. -- Abstract: During the operation of a high temperature superconducting power cable in a real grid, the power cable can be impacted inevitably by large fault current. The study on current distribution and thermal characteristics in the cable under fault current is the foundation to analyze its stability. To analyze the operation situation of 110 kV/3 kA class superconducting cable under the fault current of 25 kA rms for 3 s, the equivalent circuit equations and heat balance equations were established. The current distribution curves and the temperature distribution curves were obtained. The liquid nitrogen which exists in the gaps of HTS cable was taken into consideration, the influence of gap liquid nitrogen on the thermal characteristics was investigated. The analysis results can be used to estimate the security and stability of the superconducting cable

  3. Numerical analysis of the stability of HTS power cable under fault current considering the gaps in the cable

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J., E-mail: fangseer@sina.com [School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044 (China); Li, H.F. [School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhu, J.H.; Zhou, Z.N. [China Electric Power Research Institute, Beijing 100192 (China); Li, Y.X.; Shen, Z.; Dong, D.L.; Yu, T. [School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044 (China); Li, Z.M.; Qiu, M. [China Electric Power Research Institute, Beijing 100192 (China)

    2013-11-15

    Highlights: •The equivalent circuit equations and the heat balance equations were established. •The current distributions of the HTS cable under fault current were obtained. •The temperature curves of conductor layers under fault current were obtained. •The effect of the gap liquid nitrogen on the thermal characteristics was studied. -- Abstract: During the operation of a high temperature superconducting power cable in a real grid, the power cable can be impacted inevitably by large fault current. The study on current distribution and thermal characteristics in the cable under fault current is the foundation to analyze its stability. To analyze the operation situation of 110 kV/3 kA class superconducting cable under the fault current of 25 kA{sub rms} for 3 s, the equivalent circuit equations and heat balance equations were established. The current distribution curves and the temperature distribution curves were obtained. The liquid nitrogen which exists in the gaps of HTS cable was taken into consideration, the influence of gap liquid nitrogen on the thermal characteristics was investigated. The analysis results can be used to estimate the security and stability of the superconducting cable.

  4. A method to improve data transmission efficiency of non-cabled seismographs

    Science.gov (United States)

    Zheng, F.; Lin, J.; Huaizhu, Z.; Yang, H.

    2012-12-01

    The non-cable self-locating seismograph developed by College of Instrumentation and Electrical Engineering, Jilin University integrates in-built battery, storage, WIFI, GPS and precision data acquisition. It is suitable for complex terrains which are typically not well addressed by cabled telemetric seismic instruments, such as mountains, swamps, and rivers. Moreover, it provides strong support for core functions such as long-term observation, wired and wireless data transmission, self-positioning and precision clock synchronization. The non-cable seismograph supports time window and continuous data acquisition. When the sampling time is long and sampling rate is high, a huge amount of original seismic data will be stored in the non-cable seismograph. As a result, it usually takes a long time—sometimes too long to be acceptable—to recover data in quasi real-time using wireless technology in resource exploration, especially in complex terrains. Furthermore, a large part of the recovered data is useless noise and only a small percentage is useful. For example, during the exploration experiment of a Chinese mine on July 12 and 14, 2012, we used 20 non-cable seismographs, each of them has 4 tracts. With a total of 80 tracts, 36GB data is collected over two data collecting sessions. 80 shot points were laid, each point lasting 4 seconds. As such the volume of valid data was about 100MB. That means only 0.3% of the total data was valid. At a wired data recovery rate of 200Mbps, 0.4 hours was needed to transmit all data completely. It takes even longer if one wish to review data on the spot by relying on a wireless data transmission rate of 10Mbps.A storage-type non-cable seismograph can store the collected data into several data files, and if one knows the source trigger time and vibration duration, it would be faster to collect data, thus improving data transmission efficiency. To this end, a triggering station is developed. It is one type of non-cable seismograph

  5. LVDS tester: a systematic test of cable signal transmission at the ALICE experiment

    CERN Document Server

    Barnby, L; Bombara, M; Evans, D; Jones, G T; Jones, P G; Jovanović, P; Jusko, A; Kour, R; Králik, I; Krivda, M; Lazzeroni, C; Lietava, R; Matthews, Z L; Navin, S; Palaha, A; Petrov, P; Platt, R; Šándor, L; Scott, P; Urbán, J; Villalobos Baillie, O; Tapia Takaki, J D

    2010-01-01

    In the ALICE experiment, the Low-Voltage Differential Signalling (LVDS) format is used for the transmission of trigger inputs from the detectors to the Central Trigger Processor (CTP), the L0 trigger outputs from Local Trigger Units (LTU) boards back to the detectors and the BUSY inputs from the sub-detectors to the CTP. ALICE has designed a set-up, called the LVDS transmission tester, that aims to measure various transmission quality parameters and the bit-error rate (BER) for long period runs in an automatic way. In this paper, this method is described and the conclusions from these tests for the ALICE LVDS cables are discussed

  6. LVDS tester: a systematic test of cable signal transmission at the ALICE experiment

    International Nuclear Information System (INIS)

    Barnby, L; Bhasin, A; Evans, D; Jones, G T; Jones, P G; Jovanovic, P; Jusko, A; Kour, R; Krivda, M; Lazzeroni, C; Lietava, R; Matthews, Z L; Navin, S; Palaha, A; Petrov, P; Platt, R; Scott, P; Bombara, M; Kralik, I; Sandor, L

    2010-01-01

    In the ALICE experiment, the Low-Voltage Differential Signalling (LVDS) format is used for the transmission of trigger inputs from the detectors to the Central Trigger Processor (CTP), the L0 trigger outputs from Local Trigger Units (LTU) boards back to the detectors and the BUSY inputs from the sub-detectors to the CTP. ALICE has designed a set-up, called the LVDS transmission tester, that aims to measure various transmission quality parameters and the bit-error rate (BER) for long period runs in an automatic way. In this paper, this method is described and the conclusions from these tests for the ALICE LVDS cables are discussed.

  7. Market Power of Local Cable Television Franchises: Evidence from the Effects of Deregulation

    OpenAIRE

    Adam B. Jaffe; David M. Kanter

    1990-01-01

    The 1989 Cable Act eliminated most price regulation of cable television operators, including the right of municipalities to enforce price terms in franchise agreements. Deregulation was justified, at least partially, by the contention that competition from other entertainment media eliminated any market power of cable franchises. We examine the value at sale of existing cable systems before and after deregulation. Assuming that this value represents the expected present value of future profit...

  8. Power Transmission from Large Offshore Wind Farms

    DEFF Research Database (Denmark)

    Pedersen, Jørgen Kaas

    1999-01-01

    The major part of the coming wind farms in Denmark will be placed offshore. If the location is near a grid with a high short circuit level the power can be transmitted as AC.If the wind farm is far away from the grid and the grid perhaps has a low short circuit level, the best solution...... for transmitting the power can be by DC. At the moment it is possible to build self-commutating DC/AC-inverters up to about 150 kV. This paper will show a concept to a solution for a wind farm and a transmission system based on synchronous generators or a powerformer® with a rated voltage of 50 kV. The AC power...... will be rectified and boosted to a fixed DC voltage (e.g. 100 kV). The speed of the generator will be variable, depending of the wind but also controlled with the duty-cycle of the booster. In that way all wind turbines can be connected to the same DC bus and the cable to the inverter station connected to the AC...

  9. Transient analysis of an HTS DC power cable with an HVDC system

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-11-01

    The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  10. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Taniguchi, Haruto; Ueda, Kiyotaka

    1980-01-01

    HVDC transmission directly from a nuclear power plant is expected as one of the bulk power transmission systems from distant power generating area. Successively from the analysis of HVDC transmission from BWR-type nuclear power plant, this report discusses dynamic response characteristics of HVDC transmission (double poles, two circuits) from PWR type nuclear power plant due to dc-line faults (DC-1LG, 2LG) and ac-line faults (3LG) near inverter station. (author)

  11. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Science.gov (United States)

    2012-04-23

    ... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...

  12. Transient analysis of an HTS DC power cable with an HVDC system

    International Nuclear Information System (INIS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-01-01

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system

  13. Transient analysis of an HTS DC power cable with an HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@cwnu.ac.kr [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yang, Byeongmo [Korea Electric Power Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejon 305-760 (Korea, Republic of)

    2013-11-15

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  14. Optimizing wind farm cable routing considering power losses

    DEFF Research Database (Denmark)

    Fischetti, Martina; Pisinger, David

    2017-01-01

    Wind energy is the fastest growing source of renewable energy, but as wind farms are getting larger and more remotely located, installation and infrastructure costs are rising. It is estimated that the expenses for electrical infrastructure account for 15-30% of the overall initial costs, hence...... that must be spent immediately in cable and installation costs, and the future reduced revenues due to power losses. The latter goal has not been addressed in previous work. We present a Mixed-Integer Linear Programming approach to optimize the routing using both exact and math-heuristic methods....... In the power losses computation, wind scenarios are handled eciently as part of the preprocessing, resulting in a MIP model of only slightly larger size. A library of real-life instances is introduced and made publicly available for benchmarking. Computational results on this testbed show the viability of our...

  15. Optimizing wind farm cable routing considering power losses

    DEFF Research Database (Denmark)

    Fischetti, Martina; Pisinger, David

    Wind energy is the fastest growing source of renewable energy, but as wind farms are getting larger and more remotely located, installation and infrastructure costs are rising. It is estimated that the expenses for electrical infrastructure account for 15-30% of the overall initial costs, hence...... that must be spent immediately in cable and installation costs, and the future reduced revenues due to power losses. The latter goal has not been addressed in previous work. We present a Mixed-Integer Linear Programming approach to optimize the routing using both exact and math-heuristic methods....... In the power losses computation, wind scenarios are handled eciently as part of the preprocessing, resulting in a MIP model of only slightly larger size. A library of real-life instances is introduced and made publicly available for benchmarking. Computational results on this testbed show the viability of our...

  16. Superscreened co-axial cables for the nuclear power industry

    International Nuclear Information System (INIS)

    1977-05-01

    This specification covers the requirements of superscreened cables. Part 1 covers general requirements and test methods. Part 2 covers data sheets setting out the electrical and mechanical requirements for each type of cable, together with engineering information. (U.K.)

  17. Harmonizing power cables and power lines. Harmonisierung der Starkstromkabel und -leitungen

    Energy Technology Data Exchange (ETDEWEB)

    Heinhold, L [Siemens A.G., Erlangen (Germany, F.R.); Retzlaff, E; Warner, A [Verband Deutscher Elektrotechniker (VDE) e.V., Frankfurt am Main (Germany, F.R.)

    1976-01-01

    The article gives a summarizing view of the present level of harmonization in the field of power cables and lines. Special attention is paid to problems referring to using harmonized designs for flexible lines and using lines for solid layout with PVC and rubber insulation in the German standards DIN 57281/VDE 0281 and DIN 57282/VDE 0282 and problems of taking the types used until today out of use. A general view of the power lines fully harmonized is given and a harmonization-labelling (common labelling) for cables and lines is described.

  18. Assessment of NDE for key indicators of aging cables in nuclear power plants - Interim status

    Science.gov (United States)

    Glass, S. W.; Ramuhalli, P.; Fifield, L. S.; Prowant, M. S.; Dib, G.; Tedeschi, J. R.; Suter, J. D.; Jones, A. M.; Good, M. S.; Pardini, A. F.; Hartman, T. S.

    2016-02-01

    Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. System tests verify cable function under normal loads; however, the concern is over cable performance under exceptional loads associated with design-basis events (DBEs). The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program to justify cable performance under normal operation as well as accident conditions. Currently the gold standard for determining cable insulation degradation is the elongation-at-break (EAB). This, however, is an ex-situ measurement and requires removal of a sample for laboratory investigation. A reliable nondestructive examination (NDE) in-situ approach is desirable to objectively determine the suitability of the cable for service. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none of these tests are suitable for all cable configurations nor does any single test confirm all features of interest. Nevertheless, the complete collection of test possibilities offers a powerful range of tools to assure the integrity of critical cables. Licensees and regulators have settled on a practical program to justify continued operation based on condition monitoring of a lead sample set of cables where test data is tracked in a database and the required test data are continually adjusted based on plant and fleet-wide experience. As part of the Light Water Reactor Sustainability program sponsored

  19. HVDC transmission from isorated nuclear power plant

    International Nuclear Information System (INIS)

    Takenaka, Kiyoshi; Takasaki, Masahiro; Ichikawa, Tatemi; Hayashi, Toshiyuki

    1985-01-01

    HVDC transmission directly from nuclear power plant is considered as one of the patterns of long distance and large capacity transmission system. This reports considers two route HVDC transmission from PWR type nuclear power plant, and analyzes dynamic response characteristics due to bus fault, main protection failure and etc. using the AC-DC Power System Simulator. (author)

  20. The development of a subsea power transmission system for deep water boosting applications

    Energy Technology Data Exchange (ETDEWEB)

    Godinho, C.A.F. [Pirelli Cabos S.A. (Brazil); Campagnac, L.A. [Siemens S.A. (Brazil); Nicholson, A. [Tronic Electronics Services Ltd. (WEC); Magalhaes, W.M. de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    1996-12-31

    This paper presents the development of a sub sea power transmission in medium voltage and variable frequency, as a key system for application of Boosting technology and for electrical submersible Pumping in deep water wells. This work focuses on the design and manufacture of sub sea power cables and transformers for 1,000 m water depth. 8 refs., 6 figs.

  1. High power cable with internal water cooling 400 kV

    Energy Technology Data Exchange (ETDEWEB)

    Rasquin, W; Harjes, B

    1982-08-01

    The project was planned for a duration of 4 years. Afterwards it has been extended over 6 years and finally stopped after 3 1/2 years. Therefore, of course results of field tests with an internally cooled 400 kV cable are not available. Nevertheless, this conductor cooled high power cable has been developed to such an extend, that this manufactured cable could withstand type tests according to IEC/VDE recommendations. Even by missing field tests it is obvious that a high power cable for 400 kV is available.

  2. Wildlife and electric power transmission

    Science.gov (United States)

    Ellis, D.H.; Goodwin, J.G.; Hunt, J.R.; Fletcher, John L.; Busnel, R.G.

    1978-01-01

    Hundreds of thousands of miles of transmission lines have been introduced into our natural environment. These lines and their corridors can be damaging or beneficial to wildlife communities depending on how they are designed, where they are placed, and when they are constructed and maintained. With the current trend toward UHV systems, new problems (associated with additional increments in audible noise, electric and magnetic force fields, etc.) must be addressed. We recommend the following areas for careful study: (1) the response of wilderness species to transmission lines and line construction and maintenance activities (2) the magnitude of bird collision and electrocution mortality, (3) the response of power corridor and power tower in habiting wildlife to laboratory and field doses of electro-chemical oxidants, corona noise, electric and magnetic fields, etc., (4) the productivity of tower inhabiting birds compared with nearby non-tower nesters, and (5) the influence of powerline corridors on mammalian and avian migration patterns. It is our hope that the questions identified in this study will help stimulate further research so that we can maximize wildlife benefits and minimize wildlife detriments.

  3. Design of Power Cable UAV Intelligent Patrol System Based on Adaptive Kalman Filter Fuzzy PID Control

    Directory of Open Access Journals (Sweden)

    Chen Siyu

    2017-01-01

    Full Text Available Patrol UAV has poor aerial posture stability and is largely affected by anthropic factors, which lead to some shortages such as low power cable tracking precision, captured image loss and inconvenient temperature measurement, etc. In order to solve these disadvantages, this article puts forward a power cable intelligent patrol system. The core innovation of the system is a 360° platform. This collects the position information of power cables by using far infrared sensors and carries out real-time all-direction adjustment of UAV lifting platform through the adaptive Kalman filter fuzzy PID control algorithm, so that the precise tracking of power cables is achieved. An intelligent patrol system is established to detect the faults more accurately, so that a high intelligence degree of power cable patrol system is realized.

  4. Characteristics of SUS-MI cables and it's application to wiring in nuclear power facilities

    International Nuclear Information System (INIS)

    Okuno, Michio; Sato, Toshio; Handa, Katsue; Ohya, Shingo; Ioroi, Masaya

    1984-01-01

    SUS-MI cables are the inorganic insulation cables using austenitic stainless steel SUS 321 as the sheath, oxygen-free copper as the conductor and high purity magnesium oxide as the insulatingmaterial. Because of the excellent characteristics of the composing materials, the properties withstanding radiation, fire and heat, and sodium of the cables are superior. In the nuclear power facilities being developed such as fast breeder reactors and nuclear fusion reactors, there is the environment the cables with organic materials as the components cannot meet. As the cables to be applied to such places, the SUS-MI cables are most suitable. In this report, the electric properties and the mechanical strength of the cables and the examples of practical use are described. The highest temperature of using the SUS-MI cables is 800 deg C. The form and the composing materials of the SUS-MI cables, the characteristics and the cable laying are reported. Ceramic connectors and heat-resistant wall penetration parts were developed. The characteristics of the cables for the preheaters of fast breeder reactors are compared. (Kako, I.)

  5. Test results for cables used in nuclear power plants by a new environmental testing method

    Energy Technology Data Exchange (ETDEWEB)

    Handa, Katsue; Fujimura, Shun-ichi; Hayashi, Toshiyasu; Takano, Keiji; Oya, Shingo

    1982-12-01

    In the nuclear power plants using PWRs or BWRs in Japan, environmental tests are provided, in which simulated LOCA conditions are considered so as to conform with Japanese conditions, and many cables which passed these tests are presently employed. Lately, the new environmental testing, in which a credible accident called MSLB (main steam line breakage) is taken into account, is investigated in PWR nuclear power plants, besides LOCA. This paper reports on the results of evaluating some PWR cables for this new environmental testing conditions. The several cables tested were selected out of PH cables (fire-retardant, ethylene propylene rubber insulated, chlorosulfonated polyethylene sheathed cables) as the cables for safety protecting circuits and to be used in containment vessels where the cables are to be exposed to severe environmental test conditions of 2 x 10/sup 8/ Rad ..gamma..-irradiation and simulated LOCA. All these cables have been accepted after the vertical tray burning test provided in the IEEE Standard 383. The new testing was carried out by sequentially applying thermal deterioration, ..gamma..-irradiation, and the exposure to steam (twice 300 s exposures to 190 deg C superheated steam). After completing each step, tensile strength, elongation, insulation resistance and breakdown voltage were measured, respectively. Every cable tested showed satisfactory breakdown voltage after the exposure to steam, thus it was decided to be acceptable. In future, it is required to investigate the influence of the rate of temperature rise on the cable to be tested in MSLB simulation.

  6. Test results for cables used in nuclear power plants by a new environmental testing method

    International Nuclear Information System (INIS)

    Handa, Katsue; Fujimura, Shun-ichi; Hayashi, Toshiyasu; Takano, Keiji; Oya, Shingo

    1982-01-01

    In the nuclear power plants using PWRs or BWRs in Japan, environmental tests are provided, in which simulated LOCA conditions are considered so as to conform with Japanese conditions, and many cables which passed these tests are presently employed. Lately, the new environmental testing, in which a credible accident called MSLB (main steam line breakage) is taken into account, is investigated in PWR nuclear power plants, besides LOCA. This paper reports on the results of evaluating some PWR cables for this new environmental testing conditions. The several cables tested were selected out of PH cables (fire-retardant, ethylene propylene rubber insulated, chlorosulfonated polyethylene sheathed cables) as the cables for safety protecting circuits and to be used in containment vessels where the cables are to be exposed to severe environmental test conditions of 2 x 10 8 Rad γ-irradiation and simulated LOCA. All these cables have been accepted after the vertical tray burning test provided in the IEEE Standard 383. The new testing was carried out by sequentially applying thermal deterioration, γ-irradiation, and the exposure to steam (twice 300 s exposures to 190 deg C superheated steam). After completing each step, tensile strength, elongation, insulation resistance and breakdown voltage were measured, respectively. Every cable tested showed satisfactory breakdown voltage after the exposure to steam, thus it was decided to be acceptable. In future, it is required to investigate the influence of the rate of temperature rise on the cable to be tested in MSLB simulation. (Wakatsuki, Y.)

  7. Interim report on assessment of cable aging for nuclear power plants

    International Nuclear Information System (INIS)

    2006-12-01

    Research on assessment of cable aging for nuclear power plants (NPPs) started in 2002 in order to obtain data of safety-related cables affected by thermal aging, simultaneous thermal and radiation aging, and Loss-of-Coolant Accident (LOCA) equivalent test, which could contribute to draft guideline on comprehensive assessment of cable aging for NPPs while taking into consideration the latest knowledge. For the cable aging test, cross-linked polyethylene, flame-retardant cross-linked polyethylene, ethylene propylene rubber, flame-retardant ethylene propylene rubber, silicone rubber and special heat-resistant polyvinyl chloride insulators were selected from the safety-related cables used in the nuclear power plants. Furthermore, 2 to 3 kinds of cables with insulators of different manufacturers were added making a total of 14 kinds of cable specimens for the test. Aging period was selected as a basic parameter while three temperature conditions for thermal aging specimen and combined nine conditions of three temperatures with three dose rates for simultaneous aging specimens. Degradation of cable aging was characterized by elongation at break of tensile test. LOCA test for 9 kinds of cables was also conducted using the simultaneous aging specimens. Furthermore, the investigation of applicability of non-destructive degradation diagnostic technologies for aged cables was conducted to confirm the validity of cable aging evaluation at actual operating plants. Interim report was issued in 2006 and based on cable aging test until 21,000 hrs maximum; 1) a significant difference might be observed at times in the aging progress depending on the insulator manufacturer even if the insulator type was identical, 2) activation energy values calculated from the thermal aging test data were smaller than those currently used and principles of calculation and application of the activation energy were developed for evaluation and 3) superposition of time dependent data was applicable to

  8. University's role in research on superconducting power transmission

    International Nuclear Information System (INIS)

    Forsyth, E.B.

    1974-01-01

    Power transmission by superconducting cables appears to have enormous potential for the utility industry. It has still to be demonstrated that it will become a viable and economically competitive technology, however, development aimed at this goal by major research establishments has already exposed numerous research problems suitable for investigation by well qualified university departments without requiring large expenditures for equipment. What is missing in an organizational structure to relate work to the primary goals, monitor progress and influence the funding decisions of the major agencies. This does not seem difficult to set up, but continued success will require a long-term commitment from the participants

  9. Reliability of transmission networks : Impact of EHV underground cables & interaction of offshore-onshore networks

    NARCIS (Netherlands)

    Tuinema, B.W.

    2017-01-01

    For the future, several developments of the power system are expected. The transition towards a more sustainable energy supply puts new requirements on the design and operation of power systems, and the transmission network in particular. Offshore, a transmission grid will be implemented to collect

  10. Development of a PLC modem for data transmission over a PWM power supply

    Science.gov (United States)

    Batard, Christophe; Ginot, Nicolas; Mannah, Marc Anthony; Millet, Christophe; Poitiers, Frédéric

    2014-04-01

    In variable-speed electrical drive and online conditioning monitoring, a feedback loop is required in order to transmit the sensor information from the motor to the controller close to the inverter. Additional cabling is used for signalling. This extra cabling has a significant cost and data transmission may not be reliable. Thus, the use of power line communication (PLC) technology to transmit data in motor drive application is quite interesting. The use of a PLC modem dedicated to the home network in a three-phase inverter-fed motor power cable does not work. Therefore, specific coupling interfaces are developed to transmit data through a pulse-width modulated power supply. Laboratory tests have shown that the couplers are operating properly. They ensure reliable data transmission in a motor drive application.

  11. New trends in design and fabrication of signal and power cables to increase nuclear safety

    International Nuclear Information System (INIS)

    Salmen, Florin; Florescu, Gheorghe; Ionescu, Aurel

    2007-01-01

    Based on NPP operating experiences in the past, it was found that the inadequate management of aging degradation caused shortening of the lifetime of equipment, which in turn, hindered plant life extension. Aging degradation of plant structures and components should be properly managed to ensure the designated safety function of plant systems during design life and extended life. From a safety perspective, aging management means maintaining the aging degradation level in major equipment and structures below the allowable limit and holding the capacity to sustain abnormal operating condition. Cable aging was not considered as a significant factor in relation to the nuclear power plant maintenance due to its long life which is almost the same as the plant design life. Attempts to extend the lifetime of NPP has become one of the major concern in the nuclear industry world wide. Consequently, life evaluation and lifetime management of cables to survive over 40 years has become major topic of discussion. In connection to this, accelerated aging must be studied in detail in order to simulate the natural aging in NPP. Test results for evaluating aging degradation after accelerated aging of polyethylene jacket will be described herein.There are hundred types of cables in NPPs. These cables can be classified as medium/low voltage cable, low power cable, instrument and control cable, panel connect line cable, special cable, security line cable, phone line cable and ground cable. Insulation and jacket material in electrical cables are fabricated of polymer materials combined with a number of additives and filler to provide the required mechanical, electrical and fire retardant proprieties. The most commonly used insulation materials are XLPE/EPR/EPDM and PVC. PVC has been widely used as an insulation material, particularly in old plants, but it is less used in modern plants. Neoprene/CSPE/PVC are commonly used material for nuclear cable jacket. The old types of cables

  12. Calculation of temperature rise for cable conductor of DCS cabinet power based on theory of numerical thermal transfer

    International Nuclear Information System (INIS)

    Tian Yong; Zhang Longqiang; Yang Zhen; Yu Bin

    2014-01-01

    In order to ensure a long-term reliable operation of the DCS cabinet's 220 V AC power cable, it was needed to confirm whether the conductor temperature rise of power cable meet the requirement of the cable specification. Based on the actual data in site and the theory of numerical heat transfer, conservative model was established, and the conductor temperature was calculated. The calculation results show that the cable arrangement on the cable tray will not lead to the conductor temperature rise of power cable over than the required temperature in technical specification. (authors)

  13. Life-assessment technique for nuclear power plant cables

    International Nuclear Information System (INIS)

    Bartonicek, B.; Hnat, V.; Placek, V.

    1998-01-01

    The condition of polymer-based cable material can be best characterized by measuring elongation at break of its insulating materials. However, it is not often possible to take sufficiently large samples for measurement with the tensile testing machine. The problem has been conveniently solved by utilizing differential scanning calorimetry technique. From the tested cable, several microsamples are taken and the oxidation induction time (OIT) is determined. For each cable which is subject to the assessment of the lifetime, the correlation of OIT with elongation at break and the correlation of elongation at break with the cable service time has to be performed. A reliable assessment of the cable lifetime depends on accuracy of these correlations. Consequently, synergistic effects well known at this time - dose rate effects and effects resulting from the different sequence of applying radiation and elevated temperature must be taken into account

  14. Frequency domain reflectometry modeling for nondestructive evaluation of nuclear power plant cables

    Science.gov (United States)

    Glass, S. W.; Fifield, L. S.; Jones, A. M.; Hartman, T. S.

    2018-04-01

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to

  15. Frequency Domain Reflectometry NDE for Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Samuel W.; Jones, Anthony M.; Fifield, Leonard S.; Hartman, Trenton S.

    2017-02-16

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to

  16. Development of halogen-free flame-retardant cable for nuclear power plant. 2

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo; Kimura, Hitoshi; Ishii, Nobuhisa

    1997-01-01

    Halogen-free flame-retardant cables were developed for PWR nuclear power stations. It was confirmed that the developed cables possess flame retardant property, corrosion resistance, low toxicity and low smoke generation, and withstand the normal operation in the environment in PWR containment vessels for 60 years and loss of coolant accident. In the advancement of LWR technology, it is important to improve the reliability of machinery and equipment, to extend the period of continuous operation, to optimize the operation cycle and to improve the maintenance of plants. By improving halogen-free flame-retardant material and applying it to the cables for nuclear power stations, it can contribute to the above purposes. The required characteristics of these cables are explained, and the targets of development are power cables, control cables, instrumentation cables and insulated wires which do not contain halogen. The basic material is polyolefin, in which flame retardant magnesium hydroxide and the agent for improving radiation resistance are mixed. The corrosive property and toxicity of gases, smoke generation and the prevention of spread of flame when the cables burn and the durability in environment were evaluated. (K.I.)

  17. Low Friction Cryostat for HTS Power Cable of Dutch Project

    DEFF Research Database (Denmark)

    Chevtchenko, Oleg; Zuijderduin, Roy; Smit, Johan

    2012-01-01

    affecting public acceptance of the project. In order to solve this problem, a model cryostat was developed consisting of alternating rigid and flexible sections and hydraulic tests were conducted using sub-cooled liquid nitrogen. In the 47 m-long cryostat, containing a full-size HTS cable model, measured....... A flexible dummy HTS cable was inserted into this cryostat and sub-cooled liquid nitrogen was circulated in the annulus between the dummy cable surface and the inner cryostat surface. In the paper details are presented of the cryostat, of the measurement setup, of the experiment and of the results....

  18. Development of Halogen-free flame-retardant cable for nuclear power plant

    International Nuclear Information System (INIS)

    Ishii, Nobuhisa; Morii, Akira; Fujimura, Shunichi

    1992-01-01

    Conventional flame-retardant cables release a large volume of corrosive and toxic gases as well as smoke while combusted. Cables covered with halogen-free flame-retardant material, containing no halogen in it, have been developed to reduce generation of such gases and smoke, and have already been used in telecommunication service, subway and shipboard applications. However, for cables for nuclear power plant, covering materials should also have radiation resistance and other properties, including long-term physical stability. We have developed halogen-free flame-retardant cables for BWR nuclear power plant with sufficient flame retardancy radiation resistance and environmental resistance including steam-exposure resistance all of which are in accordance with Japanese specifications for BWR nuclear cables and have such characteristics as low corrosiveness, low toxicity and low smoke emission. (author)

  19. Development of halogen-free flame-retardant cable for nuclear power plant

    International Nuclear Information System (INIS)

    Ishii, Nobuhisa; Morii, Akira; Fujimura, Shunichi

    1991-01-01

    Conventional flame-retardant cables release a large amount of corrosive and toxic gases and also smoke during combustion on fire. Cables covered with halogen-free flame-retardant material, containing no halogen in it, have been developed to reduce generation of such gases and smoke, and already used in telecommunication plant, subway and shipboard applications. In the case of nuclear power plant application, cable covering materials should also have radiation resistance and other properties including long-term physical stability. We have developed halogen-free flame-retardant cables for nuclear power plant with sufficient flame retardancy, radiation resistance, and environmental resistance including steam-exposure resistance, all of which are in accordance with Japanese specifications for nuclear cables, and with characteristics as low corrosiveness, low toxicity, and low smoke evolution. (author)

  20. Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants – Interim Study FY13

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.; Ramuhalli, Pradeep; Pardini, Allan F.; Tedeschi, Jonathan R.; Jones, Anthony M.

    2013-09-27

    The most important criterion for cable performance is its ability to withstand a design-basis accident. With nearly 1000 km of power, control, instrumentation, and other cables typically found in an NPP, it would be a significant undertaking to inspect all of the cables. Degradation of the cable jacket, electrical insulation, and other cable components is a key issue that is likely to affect the ability of the currently installed cables to operate safely and reliably for another 20 to 40 years beyond the initial operating life. The development of one or more nondestructive evaluation (NDE) techniques and supporting models that could assist in determining the remaining life expectancy of cables or their current degradation state would be of significant interest. The ability to nondestructively determine material and electrical properties of cable jackets and insulation without disturbing the cables or connections has been deemed essential. Currently, the only technique accepted by industry to measure cable elasticity (the gold standard for determining cable insulation degradation) is the indentation measurement. All other NDE techniques are used to find flaws in the cable and do not provide information to determine the current health or life expectancy. There is no single NDE technique that can satisfy all of the requirements needed for making a life-expectancy determination, but a wide range of methods have been evaluated for use in NPPs as part of a continuous evaluation program. The commonly used methods are indentation and visual inspection, but these are only suitable for easily accessible cables. Several NDE methodologies using electrical techniques are in use today for flaw detection but there are none that can predict the life of a cable. There are, however, several physical and chemical ptoperty changes in cable insulation as a result of thermal and radiation damage. In principle, these properties may be targets for advanced NDE methods to provide early

  1. Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants - Interim Study FY13

    International Nuclear Information System (INIS)

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.; Ramuhalli, Pradeep; Pardini, Allan F.; Tedeschi, Jonathan R.; Jones, Anthony M.

    2013-01-01

    The most important criterion for cable performance is its ability to withstand a design-basis accident. With nearly 1000 km of power, control, instrumentation, and other cables typically found in an NPP, it would be a significant undertaking to inspect all of the cables. Degradation of the cable jacket, electrical insulation, and other cable components is a key issue that is likely to affect the ability of the currently installed cables to operate safely and reliably for another 20 to 40 years beyond the initial operating life. The development of one or more nondestructive evaluation (NDE) techniques and supporting models that could assist in determining the remaining life expectancy of cables or their current degradation state would be of significant interest. The ability to nondestructively determine material and electrical properties of cable jackets and insulation without disturbing the cables or connections has been deemed essential. Currently, the only technique accepted by industry to measure cable elasticity (the gold standard for determining cable insulation degradation) is the indentation measurement. All other NDE techniques are used to find flaws in the cable and do not provide information to determine the current health or life expectancy. There is no single NDE technique that can satisfy all of the requirements needed for making a life-expectancy determination, but a wide range of methods have been evaluated for use in NPPs as part of a continuous evaluation program. The commonly used methods are indentation and visual inspection, but these are only suitable for easily accessible cables. Several NDE methodologies using electrical techniques are in use today for flaw detection but there are none that can predict the life of a cable. There are, however, several physical and chemical ptoperty changes in cable insulation as a result of thermal and radiation damage. In principle, these properties may be targets for advanced NDE methods to provide early

  2. Response of Nuclear Power Plant Instrumentation Cables Exposed to Fire Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report presents the results of instrumentation cable tests sponsored by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research and performed at Sandia National Laboratories (SNL). The goal of the tests was to assess thermal and electrical response behavior under fire-exposure conditions for instrumentation cables and circuits. The test objective was to assess how severe radiant heating conditions surrounding an instrumentation cable affect current or voltage signals in an instrumentation circuit. A total of thirty-nine small-scale tests were conducted. Ten different instrumentation cables were tested, ranging from one conductor to eight-twisted pairs. Because the focus of the tests was thermoset (TS) cables, only two of the ten cables had thermoplastic (TP) insulation and jacket material and the remaining eight cables were one of three different TS insulation and jacket material. Two instrumentation cables from previous cable fire testing were included, one TS and one TP. Three test circuits were used to simulate instrumentation circuits present in nuclear power plants: a 4–20 mA current loop, a 10–50 mA current loop and a 1–5 VDC voltage loop. A regression analysis was conducted to determine key variables affecting signal leakage time.

  3. Characteristic Analysis of DC Electric Railway Systems with Superconducting Power Cables Connecting Power Substations

    Science.gov (United States)

    Ohsaki, H.; Matsushita, N.; Koseki, T.; Tomita, M.

    2014-05-01

    The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.

  4. Characteristic analysis of DC electric railway systems with superconducting power cables connecting power substations

    International Nuclear Information System (INIS)

    Ohsaki, H; Matsushita, N; Koseki, T; Tomita, M

    2014-01-01

    The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.

  5. Evaluation of radiation degradation of cable in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. Y.; Im, D. S.; Lim, I. S.; Lee, C.; Lee, K. Y.; Park, K. S. [Radiation Research Center for Innovative Technology, Seoul (Korea, Republic of)

    2007-11-15

    This project is aimed at lifetime prediction, evaluation of the cable integrity and contribution to the continuous operation in Gori no.1 by using calculating the activation energy before and after irradiation.

  6. Feasibility study of wireless power transmission systems

    Science.gov (United States)

    Robinson, W. J., Jr.

    1968-01-01

    Wireless microwave or laser energy transfers power from a manned earth-orbiting central station to unmanned astronomical substations. More efficient systems are required for the microwave power transmission.

  7. Hermetic cable penetrations for containments of nuclear power reactors meet high safety standards

    International Nuclear Information System (INIS)

    Kusserow, J.; Gurr, W.; Pflug, H.

    1985-05-01

    Different types of cable penetrations for containments of nuclear power reactors have been developed and fabricated in the GDR. The technical parameters achieved are in accordance with the radiation protection requirements

  8. Computer aided design and management of cables in a nuclear power plant

    International Nuclear Information System (INIS)

    Pralus, B.

    1978-01-01

    Specific problems encountered at both design offices and on-site on management of cables for large nuclear power plants are analyzed. These problems, for a large pert planning, come from safety regulations and quality assurance requirements as well. Emphasis is put on the effect of the QA exigences applicable to the organization and execution of cabling management for nuclear power plants. (J.E. de C.)

  9. Analysis of electrical tree propagation in XLPE power cable insulation

    International Nuclear Information System (INIS)

    Bao Minghui; Yin Xiaogen; He Junjia

    2011-01-01

    Electrical treeing is one of the major breakdown mechanisms for solid dielectrics subjected to high electrical stress. In this paper, the characteristics of electrical tree growth in XLPE samples have been investigated. XLPE samples are obtained from a commercial XLPE power cable, in which electrical trees have been grown from pin to plane in the frequency range of 4000-10,000 Hz, voltage range of 4-10 kV, and the distances between electrodes of 1 and 2 mm. Images of trees and their growing processes were taken by a CCD camera. The fractal dimensions of electric trees were obtained by using a simple box-counting technique. The results show that the tree growth rate and fractal dimension was bigger when the frequency or voltage was higher, or the distance between electrodes was smaller. Contrary to our expectation, it has been found that when the distance between electrodes changed from 1 to 2 mm, the required voltage of the similar electrical trees decreased only 1or 2 kV. In order to evaluate the difficulties of electrical tree propagation in different conditions, a simple energy threshold analysis method has been proposed. The threshold energy, which presents the minimum energy that a charge carrier in the well at the top of the tree should have to make the tree grow, has been computed considering the length of electrical tree, the fractal dimension, and the growth time. The computed results indicate that when one of the three parameters of voltage, frequency, and local electric field increase, the trends of energy threshold can be split into 3 regions.

  10. Fretting Wear Behaviors of Aluminum Cable Steel Reinforced (ACSR Conductors in High-Voltage Transmission Line

    Directory of Open Access Journals (Sweden)

    Xingchi Ma

    2017-09-01

    Full Text Available This work reports the fretting wear behavior of aluminum cable steel reinforced (ACSR conductors for use in high-voltage transmission line. Fretting wear tests of Al wires were conducted on a servo-controlled fatigue testing machine with self-made assistant apparatus, and their fretting process characteristics, friction force, wear damage, and wear surface morphology were detailed analyzed. The results show that the running regime of Al wires changes from a gross slip regime to a mixed regime more quickly as increasing contact load. With increasing amplitudes, gross slip regimes are more dominant under contact loads of lower than 30 N. The maximum friction force is relatively smaller in the NaCl solution than in a dry friction environment. The primary wear mechanisms in dry friction environments are abrasive wear and adhesive wear whereas abrasive wear and fatigue damage are dominant in NaCl solution.

  11. Measurement of the temperature distribution inside the power cable using distributed temperature system

    Science.gov (United States)

    Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-01-01

    Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.

  12. Study on AC loss measurements of HTS power cable for standardizing

    Science.gov (United States)

    Mukoyama, Shinichi; Amemiya, Naoyuki; Watanabe, Kazuo; Iijima, Yasuhiro; Mido, Nobuhiro; Masuda, Takao; Morimura, Toshiya; Oya, Masayoshi; Nakano, Tetsutaro; Yamamoto, Kiyoshi

    2017-09-01

    High-temperature superconducting power cables (HTS cables) have been developed for more than 20 years. In addition of the cable developments, the test methods of the HTS cables have been discussed and proposed in many laboratories and companies. Recently the test methods of the HTS cables is required to standardize and to common in the world. CIGRE made the working group (B1-31) for the discussion of the test methods of the HTS cables as a power cable, and published the recommendation of the test method. Additionally, IEC TC20 submitted the New Work Item Proposal (NP) based on the recommendation of CIGRE this year, IEC TC20 and IEC TC90 started the standardization work on Testing of HTS AC cables. However, the individual test method that used to measure a performance of HTS cables hasn’t been established as world’s common methods. The AC loss is one of the most important properties to disseminate low loss and economical efficient HTS cables in the world. We regard to establish the method of the AC loss measurements in rational and in high accuracy. Japan is at a leading position in the AC loss study, because Japanese researchers have studied on the AC loss technically and scientifically, and also developed the effective technologies for the AC loss reduction. The JP domestic commission of TC90 made a working team to discussion the methods of the AC loss measurements for aiming an international standard finally. This paper reports about the AC loss measurement of two type of the HTS conductors, such as a HTS conductor without a HTS shield and a HTS conductor with a HTS shield. The AC loss measurement method is suggested by the electrical method..

  13. Fundamental study of bulk power HVDC transmission

    International Nuclear Information System (INIS)

    1981-01-01

    Study on the HVDC power transmission have been conducted since 1956. Shinshinano-Frequency Changer had been operated at first on 1977, as our home product, and Hokkaido-Honshu DC transmission also realized at 1979. Research and Development of the bulk power HVDC have been promoted by the UHV transmission special committee in our Institute from 1980. This paper is a comprehensive report published in the parts of operating control, insulation of DC line and countermeasure of fault current, and interferences in order to contribute for planning, design and operating of the UHV DC transmission in future. (author)

  14. In search of extendable conditions for cable environmental qualification in nuclear power plants

    International Nuclear Information System (INIS)

    Alshaketheep, Tariq; Sekimura, Naoto; Itoi, Tatsuya; Murakami, Kenta

    2016-01-01

    The environmental qualification (EQ) for cable insulators in nuclear power plants (NPPs) has been developed on the basis of the design basis accident (DBA) to prevent reactor core damage. However, the latest safety principles require extending the design concept to prepare the utilized equipment for scenarios after core damage. Thus, we propose a modification to the EQ for cables connecting utilized equipment at design extension conditions. This paper surveys all electrical components for accident management in boiling water reactor-4 (BWR-4), and identifies their connecting cables' functional category as low-voltage power, instrumentation, and control cables. The EQ temperature profile of these cables during the incident phase was addressed for extension. This required postulating maximum temperature environments according to accident scenarios, knowledge of cable integrity degradation, and their current evaluation by the EQ. To evaluate whether these environments are suitable stressors, heat testing was conducted on flame-retardant ethylene propylene rubber (FR-EPR)-insulated cables. On the basis of those results, we suggest a maximum primary peak temperature of the EQ temperature profile of 250degC. We also suggest increasing the primary peak period of the EQ temperature profile to 48 h without experiment, on the basis of inherent excessive margin for mechanical integrity during the ageing phase. (author)

  15. Safety research of insulating materials of cable for nuclear power generating station

    Science.gov (United States)

    Lee, C. K.; Choi, J. H.; Kong, Y. K.; Chang, H. S.

    1988-01-01

    The polymers PE, EPR, PVC, Neoprene, CSP, CLPE, EP and other similar substances are frequently used as insulation and protective covering for cables used in nuclear power generating stations. In order to test these materials for flame retardation, environmental resistance, and cable specifications, they were given the cable normal test, flame test, chemical tests, and subjected to design analysis and loss of coolant accident tests. Material was collected on spark tests and actual experience standards were established through these contributions and technology was accumulated.

  16. Development of Integrated Assessment System for Underground Power Cable Performance: A Case Study

    Science.gov (United States)

    Turan, Faiz Mohd; Johan, Kartina; Soliha Sahimi, Nur; Nor, Nik Hisyamudin Muhd

    2017-08-01

    The basic operation of any electrical machines that is catered to serve needs of civilization involves electrical power which is the main source to trigger the internal mechanism in the machines then transfer the power to other form of energy such as mechanical, light, sound and etc. The supplies of electrical does not happen just by providing the source itself, it has load carrying agent which in many cases, user would refer to it as cable. Specifically, it is the power cable which its ampacity depends significantly on the operation temperature and load stress on it. Apart from having to focus on providing improvement on improving efficiency on the source itself, power cable plays and important role because without it, current ranging from low to high could not be transmitted and hence a failure of the power system generally. Studies have conducted to discuss whether which factor contributes relatively more to the causes of power cable failure or breakdown. Such factors can be narrowed down to the three major causes which are over temperature, over voltage and stress caused by over current. Over current is one of the factor which is depends on the usage of the power system itself. The higher the usage of the power system, higher the chances of over current to take place. This will then produce load stress on the cable which eventually destroy the insulator of the cable and slowly reach the core of the cable. It is believed that an assessment method should be implemented in order to predict the performance and failure rate of the power cable and use this prediction as reference rather than just letting power failure to happen anytime unpredictable which cause huge inconvenience to users and industries. Not only do a method should be implemented, it should be as easy to be used and understood by large range of users and integrated by a graphical user interface to be used. Therefore, this research will further narrow down on the approaches to do so and the location

  17. Specifications, tests, and installation of wires and cables for the Diablo Canyon Nuclear Power Project

    International Nuclear Information System (INIS)

    Dan, F.J.

    1977-01-01

    The process of selecting wires and cables for the Diablo Canyon Nuclear Power Project is described. The criteria for the fire and environmental tests, the basis for the specifications, and the reasons for the final choice and acceptance are outlined. A short section is dedicated to the installation of cables in raceways with reference to separation and color coding. Also covered are the selection and testing of fire stops and the selection of seismic supports

  18. The thermal relay design to improve power system security for the HTS cables in Icheon substation

    International Nuclear Information System (INIS)

    Lee, Hansang; Yang, Byeong-Mo; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to study thermal characteristics of the HTS cable. •The thermal relay in the Icheon substation has been developed. •Well-designed thermal relay has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes a model for thermal protection relay for the high temperature superconducting (HTS) cables and thermal protection scheme in Icheon substation in Korea. The thermal protection is one of the most important factors to guarantee the reliability of the HTS cable as well as power system security. The superconductivity of the HTS cables, which can be guaranteed by the liquid nitrogen near 70 K, can be threatened by the large fault current. To avoid the overheating in HTS cable and to secure the power system operation with the HTS cable, the thermal protection relay should be considered. To find the optimal thermal-protection scheme, the model for the superconducting power system has been achieved in Icheon substation and the thermal protection scheme has been verified through PSCAD/EMTDC simulation

  19. The thermal relay design to improve power system security for the HTS cables in Icheon substation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Yang, Byeong-Mo [Korea Electric Power Research Institute, Munji-dong, Yuseong-gu, Daejeon 305-760 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to study thermal characteristics of the HTS cable. •The thermal relay in the Icheon substation has been developed. •Well-designed thermal relay has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes a model for thermal protection relay for the high temperature superconducting (HTS) cables and thermal protection scheme in Icheon substation in Korea. The thermal protection is one of the most important factors to guarantee the reliability of the HTS cable as well as power system security. The superconductivity of the HTS cables, which can be guaranteed by the liquid nitrogen near 70 K, can be threatened by the large fault current. To avoid the overheating in HTS cable and to secure the power system operation with the HTS cable, the thermal protection relay should be considered. To find the optimal thermal-protection scheme, the model for the superconducting power system has been achieved in Icheon substation and the thermal protection scheme has been verified through PSCAD/EMTDC simulation.

  20. Harmonics in transmission power systems

    DEFF Research Database (Denmark)

    Wiechowski, Wojciech Tomasz

    . The comparison shows that results obtained used both types of the cores are the same, so it is concluded that both cores can be used for harmonic measurements. Low-inductance resistors are introduced in the secondary circuits, in series with the metering and protective relaying. On those resistors, the harmonic......Some time ago, Energinet.dk, the Transmission System Operator of the 150 kV and 400 kV transmission network in Denmark, had experienced operational malfunctions of some of the measuring and protection equipment. Also an overloading of a harmonic filter has been reported, and therefore, a need...... end only so the ground is not used as a return path. A way to reduce the capacitive coupling is to provide shielding. Harmonic currents are measured using the conventional inductive voltage transformers. Both protective and metering cores were compared if they could be used for harmonic measurements...

  1. Microwave transmission system for space power

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R M [Jet Propulsion Lab., Pasadena, Calif. (USA)

    1976-09-01

    A small total system model and a large subsystem element similar to those that could be eventually used for wireless power transmission experiments in space have been successfully demonstrated by NASA. The short range, relatively low-power laboratory system achieved a dc-to-dc transmission efficiency of 54%. A separate high-power-level receiving subsystem, tested over a 1.54-km range at Goldstone, California, has achieved the transportation of over 30 kW of dc output power. Both tests used 12-cm wave-length microwaves.

  2. Wireless power transmission for battery charging

    Science.gov (United States)

    Mi, Chris; Li, Siqi; Nguyen, Trong-Duy; Wang, Junhua; Li, Jiangui; Li, Weihan; Xu, Jun

    2016-11-15

    A wireless power transmission system is provided for high power applications. The power transmission system is comprised generally of a charging unit configured to generate an alternating electromagnetic field and a receive unit configured to receive the alternating electromagnetic field from the charging unit. The charging unit includes a power source; an input rectifier; an inverter; and a transmit coil. The transmit coil has a spirangle arrangement segmented into n coil segments with capacitors interconnecting adjacent coil segments. The receive unit includes a receive coil and an output rectifier. The receive coil also has a spirangle arrangement segmented into m coil segments with capacitors interconnecting adjacent coil segments.

  3. Electrical Insulation of 500-m High-Tc Superconducting Power Cable

    International Nuclear Information System (INIS)

    Takahashi, T; Ichikawa, M; Suzuki, H; Okamoto, T; Akita, S; Mukoyama, S; Yagi, M; Maruyama, S; Kimura, A

    2006-01-01

    Electrical insulation is one of the essential technologies for the electric power apparatus. Determination of testing voltages and design method of the electrical insulation layer are inextricably linked each other, and are critical to developing and realizing a cold dielectric (CD) type high-Tc superconducting (HTS) power cable. The authors had proposed the electrical insulation design method with concepts of partial discharge-free designs for ac voltage condition. This paper discusses the testing voltages for a 77 kV 1000 A HTS power cable with a length of 500 m, and describes results of various voltage withstand test. As a result, it is concluded that the proposed electrical insulation design method is appropriate for the HTS power cable

  4. 4th International Conference on Power Transmissions

    CERN Document Server

    2013-01-01

    This books contains the Proceedings of the 4th International Conference on Power Transmissions, that was held in Sinaia, Romania from June 20 -23, 2012. Power Transmissions is a very complex and multi-disciplinary scientific field of Mechanical Engineering that covers the different types of transmissions (mechanical, hydraulic, pneumatic) as well as all the machine elements involved, such as gears, bearings, shafts, couplings and a lot more. It concerns not only their basic theory but also their design, analysis, testing, application and maintenance. The requirements set to modern power transmissions are really tough to meet: They need to be more efficient, stronger, smaller, noiseless, easier to produce and to cost less. There is a strong demand to become easier in operation and maintenance, or even automatic and in maintenance-free. Last but not least, they should be easily recycled and respect the environment. Joint efforts of specialists from both academia and industry can significantly contribute to fulf...

  5. Transmission Line Adapted Analytical Power Charts Solution

    Science.gov (United States)

    Sakala, Japhet D.; Daka, James S. J.; Setlhaolo, Ditiro; Malichi, Alec Pulu

    2017-08-01

    The performance of a transmission line has been assessed over the years using power charts. These are graphical representations, drawn to scale, of the equations that describe the performance of transmission lines. Various quantities that describe the performance, such as sending end voltage, sending end power and compensation to give zero voltage regulation, may be deduced from the power charts. Usually required values are read off and then converted using the appropriate scales and known relationships. In this paper, the authors revisit this area of circle diagrams for transmission line performance. The work presented here formulates the mathematical model that analyses the transmission line performance from the power charts relationships and then uses them to calculate the transmission line performance. In this proposed approach, it is not necessary to draw the power charts for the solution. However the power charts may be drawn for the visual presentation. The method is based on applying derived equations and is simple to use since it does not require rigorous derivations.

  6. Characterization of the cable fire in Block 1 of the Greifswald nuclear power plant

    International Nuclear Information System (INIS)

    Albrecht, L.; Gelfort, E.

    1996-01-01

    In December 1975 a cable fire was initiated in a stand-by power distribution by a short circuit and an incorrectly fitted diode. Unpredictably and accidentally, some control and power cables were destroyed during the fire. This caused the failure of safety-relevant components. Decay heat removal was achieved initially by natural convection in the primary loop, and finally by an emergency feed pump in the secondary loop, for which a preovisional power cable had been successfully installed after approximately 8.5 hours. This serious accident was caused by human failure and lack of experience, by the insufficiency of the redundancies as provided in the plant design, by the lack of spatial separation of safety systems, and by insufficient quality control. (orig.) [de

  7. Test of a cryogenic set-up for a 10 meter long liquid nitrogen cooled superconducting power cable

    DEFF Research Database (Denmark)

    Træholt, Chresten; Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa

    2000-01-01

    High temperature superconducting power cables may be cooled by a forced flow of sub-cooled liquid nitrogen. One way to do this is to circulate the liquid nitrogen (LN2) by means of a mechanical pump through the core of the cable and through a sub-cooler.Besides the cooling station, the cryogenics...... cable. We report on our experimental set-up for testing a 10 meter long high temperature superconducting cable with a critical current of 3.2 kA at 77K. The set-up consists of a custom designed cable end termination, current lead, coolant feed-through, liquid nitrogen closed loop circulation system...

  8. Power cables thermal protection by interval simulation of imprecise dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Bontempi, G. [Universite Libre de Brussels (Belgium). Dept. d' Informatique; Vaccaro, A.; Villacci, D. [Universita del Sannio Benevento (Italy). Dept. of Engineering

    2004-11-01

    The embedding of advanced simulation techniques in power cables enables improved thermal protection because of higher accuracy, adaptiveness and. flexibility. In particular, they make possible (i) the accurate solution of differential equations describing the cables thermal dynamics and (ii) the adoption of the resulting solution in the accomplishment of dedicated protective functions. However, the use of model-based protective systems is exposed to the uncertainty affecting some model components (e.g. weather along the line route, thermophysical properties of the soil, cable parameters). When uncertainty can be described in terms of probability distribution, well-known techniques, such as Monte Carlo, are used to simulate the system behaviour. On the other hand, when the description of uncertainty in probabilistic terms is unfeasible or problematic, nonprobabilistic alternatives should be taken into consideration. This paper will discuss and compare three interval-based techniques as alternatives to probabilistic methods in the simulation of power cable dynamics. The experimental session will assess the interval-based approaches by simulating the thermal behaviour of medium voltage power cables.(author)

  9. Harmonic modelling, propagation and mitigation for large wind power plants connected via long HVAC cables

    DEFF Research Database (Denmark)

    Dowlatabadi, Mohammadkazem Bakhshizadeh; Hjerrild, Jesper; Kocewiak, Łukasz

    2016-01-01

    This paper presents a state-of-the-art review on grid connection of large offshore wind power plants (OWPPs) using extra-long high voltage AC (HVAC) cables. The paper describes research by DONG Energy Wind Power in close collaboration with Aalborg University addressing related challenges through...... an industrial PhD project. The overall goal is to gain a better understanding of extra-long HVAC cable connected OWPPs, in order to ensure reliability and availability of OWPPs. This will reduce the cost of energy, as the risk of costly delays and modifications after the project has been commissioned can...

  10. Visibility, Power and Citizen Intervention: The Five Eyes and New Zealand’s Southern Cross Cable

    DEFF Research Database (Denmark)

    McCrow-Young, Ally

    2017-01-01

    government, as part of the Five Eyes intelligence community, had been collecting data on the population by tapping the Southern Cross Cable. ‘If you live in New Zealand,’ Snowden wrote, ‘you are being watched.’ This article examines the relationship between power and visibility; specifically how creative...... citizen engagement can serve to reveal structures of power surrounding global politics and surveillance. Visibility is a central concept, extending beyond issues of local visibility at the micro level, into the networked, global environment through online media. The significance of the cable landing point...

  11. Cable Insulation Breakdowns in the Modulator with a Switch Mode High Voltage Power Supply

    CERN Document Server

    Cours, A

    2004-01-01

    The Advanced Photon Source modulators are PFN-type pulsers with 40 kV switch mode charging power supplies (PSs). The PS and the PFN are connected to each other by 18 feet of high-voltage (HV) cable. Another HV cable connects two separate parts of the PFN. The cables are standard 75 kV x-ray cables. All four cable connectors were designed by the PS manufacturer. Both cables were operating at the same voltage level (about 35 kV). The PS’s output connector has never failed during five years of operation. One of the other three connectors failed approximately five times more often than the others. In order to resolve the failure problem, a transient analysis was performed for all connectors. It was found that transient voltage in the connector that failed most often was subjected to more high-frequency, high-amplitude AC components than the other three connectors. It was thought that these components caused partial discharge in the connector insulation and led to the insulation breakdown. Modification o...

  12. Design and development of 500 m long HTS cable system in the KEPCO power grid, Korea

    Science.gov (United States)

    Sohn, S. H.; Lim, J. H.; Yang, B. M.; Lee, S. K.; Jang, H. M.; Kim, Y. H.; Yang, H. S.; Kim, D. L.; Kim, H. R.; Yim, S. W.; Won, Y. J.; Hwang, S. D.

    2010-11-01

    In Korea, two long-term field demonstrations for high temperature superconducting (HTS) cable have been carried out for several years; Korea Electric Power Corporation (KEPCO) and LS Cable Ltd. (LSC) independently. Encouraged at the result of the projects performed in parallel, a new project targeting the real grid operation was launched in the fourth quarter of 2008 with the Korean government's financial support. KEPCO and LSC are jointly collaborating in the selection of substation, determination of cable specification, design of cryogenic system, and the scheme of protection coordination. A three phase 500 m long HTS cable at a distribution level voltage of 22.9 kV is to be built at 154/22.9 kV Icheon substation located in near Seoul. A hybrid cryogenic system reflecting the contingency plan is being designed including cryocoolers. The HTS cable system will be installed in the second quarter of 2010, being commissioned by the fall of 2010. This paper describes the objectives of the project and design issues of the cable and cryogenic system in detail.

  13. Results of Cable Aging Management Tests for Laguna Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Garcia Hernandez, E.E.; Vazquez Cervantes, R.M.; Bonifacio M, J.; Garcia Garcia, J.

    2012-01-01

    Laguna Verde Nuclear Power Plant (LVNPP) located in Veracruz, Mexico is a BWR plant, two Units with 810 MWe each one, Unit 1 (1989) and Unit 2 (1990). The Equipment Qualification (EQ) Group at the Nuclear Research National Institute (ININ) has been working with the plant on tasks to develop the LVNPP cables Aging Management Program (AMP), as part of the technical basis to extend the operational life of the plant through license renewal up to 60 years. LVNPP cables are qualified for 40 years plus a LOCA DBA in accordance with 10.CFR 50.49 and the IEEE Std-323 and IEEE St. 383. The first studies for cables AMP have been performed with samples of safety related I and C cables taken from the LVNPP warehouse, similar brands and models as installed at the plant. ININ applied the condition monitoring techniques to these samples to identify predictive degradation and to establish the methodology for cables AMP, focused to the LVNPP license renewal. Cable tests program has been running at the EQ Lab in ININ, performing accelerated aging by steps up to 60 years and to 40 years plus a LOCA test. Determination for Activation Energy (Ea) and Oxidation Induction Time (OIT) methods were developed applying a DSC/TGA calorimeter. (author)

  14. High Cable Forces Deteriorate Pinch Force Control in Voluntary-Closing Body-Powered Prostheses.

    Directory of Open Access Journals (Sweden)

    Mona Hichert

    Full Text Available It is generally asserted that reliable and intuitive control of upper-limb prostheses requires adequate feedback of prosthetic finger positions and pinch forces applied to objects. Body-powered prostheses (BPPs provide the user with direct proprioceptive feedback. Currently available BPPs often require high cable operation forces, which complicates control of the forces at the terminal device. The aim of this study is to quantify the influence of high cable forces on object manipulation with voluntary-closing prostheses.Able-bodied male subjects were fitted with a bypass-prosthesis with low and high cable force settings for the prehensor. Subjects were requested to grasp and transfer a collapsible object as fast as they could without dropping or breaking it. The object had a low and a high breaking force setting.Subjects conducted significantly more successful manipulations with the low cable force setting, both for the low (33% more and high (50% object's breaking force. The time to complete the task was not different between settings during successful manipulation trials.High cable forces lead to reduced pinch force control during object manipulation. This implies that low cable operation forces should be a key design requirement for voluntary-closing BPPs.

  15. Microwave power engineering generation, transmission, rectification

    CERN Document Server

    Okress, Ernest C

    1968-01-01

    Microwave Power Engineering, Volume 1: Generation, Transmission, Rectification considers the components, systems, and applications and the prevailing limitations of the microwave power technology. This book contains four chapters and begins with an introduction to the basic concept and developments of microwave power technology. The second chapter deals with the development of the main classes of high-power microwave and optical frequency power generators, such as magnetrons, crossed-field amplifiers, klystrons, beam plasma amplifiers, crossed-field noise sources, triodes, lasers. The third

  16. Electric power transmission pricing regulations and efficiency

    International Nuclear Information System (INIS)

    Goldoni, G.

    1999-01-01

    An efficient-price mechanism for electricity transmission is very hard to find, essentially because of the natural monopoly condition of the grid and its peculiar interactions with generation. The use of Optimal Power Flow Models is difficult to implement and could be easily distorted by strategical behaviour of generators. These models, however, could became a valuable efficiency-test for actual transmission charges and codes [it

  17. Signal Transmission on Power Lines

    DEFF Research Database (Denmark)

    Dalby, Arne Brejning

    1997-01-01

    In the analysis of power-line networks over a large frequency span, the time-domain method used in programs like EMTP (Electromagnetic Time domain Program) can not be used. A more rigorous analysis method must be employed. The correct analysis method (assuming TEM-mode propagation) for multiple....... An approximate analysis method must be usedIn this paper it is shown that an eigenvectormatrix, that is the propagation modes, can be chosen almost arbitrarily if the frequency interval of interest lies below the frequency, where the line length is about 1/3 times the wavelength for the propagation mode...... with the lowest phase velocity. The propagation constants corresponding to the chosen eigenvector matrix (the quasi modes) are found iteratively, which is a much simpler procedure than finding the eigenvalues....

  18. Cooling unit for a superconducting power cable. Two years successful operation

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Friedhelm [Messer Group GmbH, Krefeld (Germany); Kutz, Thomas [Messer Industriegase GmbH, Bad Soden (Germany); Stemmle, Mark [Nexans Deutschland GmbH, Hannover (Germany); Kugel, Torsten [Westnetz GmbH, Essen (Germany)

    2016-07-01

    High temperature super conductors (HTS) can efficiently be cooled with liquid nitrogen down to a temperature of 64 K (-209 C). Lower temperatures are not practical, because nitrogen becomes solid at 63 K (-210 C). To achieve this temperature level the coolant has to be vaporized below atmospheric pressure. Messer has developed a cooling unit with an adequate vacuum subcooler, a liquid nitrogen circulation system, and a storage vessel for cooling an HTS power cable. The cooling unit was delivered in 2013 for the German AmpaCity project of RWE Deutschland AG, Nexans and Karlsruhe Institute of Technology. Within this project RWE and Nexans installed the worldwide longest superconducting power cable in the city of Essen, Germany. The cable is in operation since March 10th, 2014.

  19. Radiation resistance of cable insulation and jacket materials for nuclear power plants

    International Nuclear Information System (INIS)

    Morita, Minoru; Kon, Shuji; Nishikawa, Ichiro

    1978-01-01

    The cables for use in nuclear power plants are required to satisfy the specific environmental resistance and excellent flame resistance as stipulated in IEEE Std. 383. The materials to be used to cables intended for this specific purpose of use must therefore be strictly tested so as to evaluate their flame resistance in addition to compliance with various environmental requirements, such as heat resistance, water-vapor resistance, and radiation resistance. This paper describes general information on radiation resistance and deterioration of various high-molecular materials, suggests the direction of efforts to be made to improve their properties including flame resistance of various rubber and plastic materials for cables to be used in nuclear power plants, and indicates the performance characteristics of such materials. (author)

  20. Transmission media appropriate laser-microwave solar power satellite system

    Science.gov (United States)

    Schäfer, C. A.; Gray, D.

    2012-10-01

    As a solution to the most critical problems with Solar power Satellite (SPS) development, a system is proposed which uses laser power transmission in space to a receiver high in the atmosphere that relays the power to Earth by either cable or microwave power transmission. It has been shown in the past that such hybrid systems have the advantages of a reduction in the mass of equipment required in geostationary orbit and avoidance of radio frequency interference with other satellites and terrestrial communications systems. The advantage over a purely laser power beam SPS is that atmospheric absorption is avoided and outages due to clouds and precipitation will not occur, allowing for deployment in the equatorial zone and guaranteeing year round operation. This proposal is supported by brief literature surveys and theoretical calculations to estimate crucial parameters in this paper. In relation to this concept, we build on a recently proposed method to collect solar energy by a tethered balloon at high altitude because it enables a low-cost start for bringing the first Watt of power to Earth giving some quick return on investment, which is desperately missing in the traditional SPS concept. To tackle the significant problem of GW-class SPSs of high launch cost per kg mass brought to space, this paper introduces a concept which aims to achieve a superior power over mass ratio compared to traditional satellite designs by the use of thin-film solar cells combined with optical fibres for power delivery. To minimise the aperture sizes and cost of the transmitting and receiving components of the satellite and high altitude receiver, closed-loop laser beam pointing and target tracking is crucial for pointing a laser beam onto a target area that is of similar size to the beam's diameter. A recently developed technique based on optical phase conjugation is introduced and its applicability for maintaining power transmission between the satellite and high altitude receiver is

  1. High power RF transmission line component development

    International Nuclear Information System (INIS)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I.

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant ε=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  2. High power RF transmission line component development

    Energy Technology Data Exchange (ETDEWEB)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant {epsilon}=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  3. Development and characteristics of halogen-free flame-retardant cables for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kanemitsuya, K.; Furukawa, K.; Tachibana, T.; Ohara, H.; Ebiike, Y.; Hamachi, K.; Makino, M. (Mitsubishi Cable Industries Ltd., Tokyo (Japan))

    1992-10-01

    Halogen-free flame-retardant (HF-FR) cables for use in nuclear power plants, especially in pressurized water type (PWR) plants, have been developed to advancing the safety and reliability of nuclear power plants. HF-FR cables generate no corrosive gases and minimal amount of toxic gases and smoke during fires, and are accordingly quite safe in comparison with the conventional cables which can cause the secondary calamity by eliminating a large amount of hydrogen halide gas and smoke. HF-FR ethylene-propylene rubber (EPR) and crosslinked polyolefin (XLPO) are used as insulating materials, and HF-FR ethylene-vinyl acetate (EVA) elastomer and polyolefin (PO) are used as jacketing materials. The results of a series of experiments on several types of HF-FR cables have revealed that these cables fully satisfy every requirement, including reliability under LOCA (Loss of Coolant Accidents) simulated conditions, long-term (40y) reliability under thermal and [gamma]-ray exposure, and flame resistivity under vertical tray test (IEEE Std. 383). (author).

  4. A digital, decentralized power station control system with bus-transmission facilitates the problem of backfitting

    International Nuclear Information System (INIS)

    Kaiser, G.E.; Schemmel, R.R.

    1985-01-01

    Current NPP control equipment technology is essentially characterized by the transmission of information in parallel using individual cables, and utilizes hardwired techniques for the processing of information. Progress in the area of semiconductor development characterized by micro-processors and LSI-circuits, has opened up new possibilities for the solution of the control tasks. The new power station control system PROCONTROL P utilizes these possibilities

  5. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Ichikawa, Takemi; Ueda, Kiyotaka; Machida, Takehiko

    1979-01-01

    The HVDC transmission directly from nuclear power plants is one of the patterns of long distance and large capacity HVDC transmission systems. In this report, the double pole, two-circuit HVDC transmission from a BWR nuclear power plant is considered, and the dynamic response characteristics due to the faults in dc line and ac line of inverter side are analyzed, to clarify the dynamic characteristics of the BWR nuclear power plant and dc system due to system faults and the effects of dc power control to prevent reactor scram. (1) In the instantaneous earthing fault of one dc line, the reactor is not scrammed by start-up within 0.8 sec. (2) When the earthing fault continues, power transmission drops to 75% by suspending the faulty pole, and the reactor is scrammed. (3) In the instantaneous ground fault of 2 dc lines, the reactor is not scrammed if the faulty dc lines are started up within 0.4 sec. (4) In the existing control of dc lines, the reactor is scrammed when the ac voltage at an ac-dc connection point largely drops due to ac failure. (J.P.N.)

  6. Efficiency of Finish power transmission network companies

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The Finnish Energy Market Authority has investigated the efficiency of power transmissions network companies. The results show that the intensification potential of the branch is 402 million FIM, corresponding to about 15% of the total costs of the branch and 7.3 % of the turnout. Energy Market Authority supervises the reasonableness of the power transmission prices, and it will use the results of the research in supervision. The research was carried out by the Quantitative Methods Research Group of Helsinki School of Economics. The main objective of the research was to create an efficiency estimation method for electric power distribution network business used for Finnish conditions. Data of the year 1998 was used as basic material in the research. Twenty-one of the 102 power distribution network operators was estimated to be totally efficient. Highest possible efficiency rate was 100, and the average of the efficiency rates of all the operators was 76.9, the minimum being 42.6

  7. Design and Application of Cables and Overhead Lines in Wind Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, M. R. [IEEE PES Wind Plant Collector System Design Working Group; Bellei, T.A. [IEEE PES Wind Plant Collector System Design Working Group; Bloethe, W.G. [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Brooks, C. [IEEE PES Wind Plant Collector System Design Working Group; Camm, E H [IEEE PES Wind Plant Collector System Design Working Group; Dilling, W. [IEEE PES Wind Plant Collector System Design Working Group; Goltz, B. [IEEE PES Wind Plant Collector System Design Working Group; Hermanson, J. [IEEE PES Wind Plant Collector System Design Working Group; Li, J. [IEEE PES Wind Plant Collector System Design Working Group; Loy, P. [IEEE PES Wind Plant Collector System Design Working Group; McLean, K. [IEEE PES Wind Plant Collector System Design Working Group; Niemira, J. [IEEE PES Wind Plant Collector System Design Working Group; Nuckles, K. [IEEE PES Wind Plant Collector System Design Working Group; Patino, J. [IEEE PES Wind Plant Collector System Design Working Group; Reza, M [IEEE PES Wind Plant Collector System Design Working Group; Richardson, B. [IEEE PES Wind Plant Collector System Design Working Group; Samaan, N. [IEEE PES Wind Plant Collector System Design Working Group; Schoene, Jens [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Snyder, Isabelle B [ORNL; Starke, Michael R [ORNL; Tesch, M. [IEEE PES Wind Plant Collector System Design Working Group; Walling, R. [IEEE PES Wind Plant Collector System Design Working Group; Zahalka, G. [IEEE PES Wind Plant Collector System Design Working Group

    2010-01-01

    This paper presents a summary of the most impor- tant considerations for wind power plant collection system un- derground and overhead cable designs. Various considerations, including conductor selection, soil thermal properties, installa- tion methods, splicing, concentric grounding, and NESC/NEC requirements are discussed.

  8. Facts controllers in power transmission and distribution

    CERN Document Server

    Padiyar, KR

    2007-01-01

    About the Book: The emerging technology of Flexible AC Transmission System (FACTS) enables planning and operation of power systems at minimum costs, without compromising security. This is based on modern high power electronic systems that provide fast controllability to ensure ''flexible'' operation under changing system conditions. This book presents a comprehensive treatment of the subject by discussing the operating principles, mathematical models, control design and issues that affect the applications. The concepts are explained often with illustrative examples and case studies. In partic

  9. New method for the detection and monitoring of subsea power cable

    Science.gov (United States)

    Held, Philipp; Schneider, Jens; Feldens, Peter; Wilken, Dennis

    2016-04-01

    Marine renewable energy farms, no matter what kind of, have in common that they need a connection with the onshore power grid. Thus, not only their offshore generation facilities could have impacts on the surrounding environment, but also associated submarine power cables. These cables have to be buried in the seabed - at least in coastal heavy shipping environments - for safety reasons. Cable laying disturbs the local seafloor and the sub-bottom. Refillment of dredged sediments are expected softer than the original material and could be washed away by currents. Therefore, buried cables have to be repeatedly monitored to ensure their burial depth. This study presents a new method for efficient cable detection. A parametric echosounder system using 15 kHz as secondary frequency was adapted to investigate the angular response of sub-bottom backscatter strength of layered mud and to introduce a new method for enhanced acoustic detection of buried targets. Adaptations to achieve both vertical (0°) and non-vertical inclination of incident sound on the seabed (1-15°, 30°, 45°, and 60°) comprise mechanical tilting of the acoustic transducer and electronic beam steering. A sample data set was acquired at a study site at 18 m water depth and a flat and muddy seafloor. At this site, a 0.1 m diameter power cable is buried 1-2 m below the sea floor. Surveying the cable with vertical incidence revealed that the buried cable can hardly be discriminated against the backscatter strength of the layered mud. However, the backscatter strength of layered mud was found to strongly decrease at >3±0.5° incidence and the layered mud echo pattern vanished beyond 5°. As a consequence the visual recognition of the cable echo in acoustic images improves for higher incidence angles of 15°, 30°, 45°, and 60°. Data analysis support this visual impression. The size of the cable echo pattern was found to linearly increase with incidence, whereas the signal-to-noise ratio peaks at about

  10. Hydraulic fluid used for power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Heikkilae, M.; Pikulinsky, K.; Leisio, C.

    1996-11-01

    In early October another 50-kilowatt wind turbine was provided with new power transmission technology at the Kopparnaes Energy Park in Inkoo, Finland, west of Helsinki. The new technology is thought to make this wind turbine located on the south coast of Finland more efficient, lighter, and cheaper. Certain aspects of this new technology can be applied to older wind turbines. (orig.)

  11. Design of a termination for a high temperature superconduction power cable

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa; Tønnesen, Ole

    1999-01-01

    ). This assembly is electrically insulated with an extruded polymer dielectric kept at room temperature. Cooling is provided by a flow of liquid nitrogen inside the former. The purpose of the termination is to connect the superconducting cable conductor at cryogenic temperature to the existing power grid at room...... temperatures, the transfer of liquid nitrogen over a high voltage drop and that of providing a well defined atmosphere inside the termination and around the cable conductor. Designs based on calculations and experiments will be presented. The solutions are optimized with respect to a low heat in-leak....

  12. In-Containment Signal Acquisition and Data Transmission via Power Lines within High Dose Areas of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Mueller Steffen; Wibbing Sascha; Weigel Robert; Koelpin Alexander; Dennerlein, Juergen; Janke, Iryna; Weber, Johannes

    2015-01-01

    Signal acquisition and data transmission for innovative sensor systems and networks inside the containment of nuclear power plants (NPPs) is still a challenge with respect to safety, performance, reliability, availability, and costs. This especially applies to equipment upgrades for existing plants, special measurements, but also for new builds. This paper presents a novel method for efficient and cost-effective sensor signal acquisition and data transmission via power lines, in order to cope with the disadvantages of common system architectures that often suffer from poor signal integrity due to raw data transmissions via long cables, huge efforts and costs for installation, and low flexibility with respect to maintenance and upgrades. A transmitter-receiver architecture is proposed that allows multiplexing of multiple sensor inputs for unidirectional point-to-point transmission by superimposing information signals on existing AC or DC supply lines, but also on active and inactive sensor wires, or spare cables, using power line communication (PLC) technology. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter hardware is designed to operate in harsh environment within the containment during full plant operation. The system's modular approach allows application specific trade-offs between redundancy and throughput regarding data transmission, as well as various sensor input front-ends which are compatible with state of the art systems. PLC technology eliminates the need for costly installation of additional cables and wall penetrations, while providing a complementary and diverse communication technology for upgrades of existing systems. At the receiver side in low dose areas, signals are extracted from the power line, demodulated, and de-multiplexed, in order to regain the original sensor signal information and provide it either in analog or digital output format. Successful laboratory qualification tests, field trails

  13. In-Containment Signal Acquisition and Data Transmission via Power Lines within High Dose Areas of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mueller Steffen; Wibbing Sascha; Weigel Robert; Koelpin Alexander [Institute for Electronics Engineering, University of Erlangen-Nuremberg (Germany); Dennerlein, Juergen; Janke, Iryna; Weber, Johannes [AREVA GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany)

    2015-07-01

    Signal acquisition and data transmission for innovative sensor systems and networks inside the containment of nuclear power plants (NPPs) is still a challenge with respect to safety, performance, reliability, availability, and costs. This especially applies to equipment upgrades for existing plants, special measurements, but also for new builds. This paper presents a novel method for efficient and cost-effective sensor signal acquisition and data transmission via power lines, in order to cope with the disadvantages of common system architectures that often suffer from poor signal integrity due to raw data transmissions via long cables, huge efforts and costs for installation, and low flexibility with respect to maintenance and upgrades. A transmitter-receiver architecture is proposed that allows multiplexing of multiple sensor inputs for unidirectional point-to-point transmission by superimposing information signals on existing AC or DC supply lines, but also on active and inactive sensor wires, or spare cables, using power line communication (PLC) technology. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter hardware is designed to operate in harsh environment within the containment during full plant operation. The system's modular approach allows application specific trade-offs between redundancy and throughput regarding data transmission, as well as various sensor input front-ends which are compatible with state of the art systems. PLC technology eliminates the need for costly installation of additional cables and wall penetrations, while providing a complementary and diverse communication technology for upgrades of existing systems. At the receiver side in low dose areas, signals are extracted from the power line, demodulated, and de-multiplexed, in order to regain the original sensor signal information and provide it either in analog or digital output format. Successful laboratory qualification tests, field trails

  14. Cryogenic system with the sub-cooled liquid nitrogen for cooling HTS power cable

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y.F. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Graduate School of Chinese Academy of Sciences, Beijing (China); Gong, L.H.; Xu, X.D.; Li, L.F.; Zhang, L. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Xiao, L.Y. [Chinese Academy of Sciences, Beijing (China). Institute of Electrical Engineering

    2005-04-01

    A 10 m long, three-phase AC high-temperature superconducting (HTS) power cable had been fabricated and tested in China August 2003. The sub-cooled liquid nitrogen (LN{sub 2}) was used to cool the HTS cable. The sub-cooled LN{sub 2} circulation was built by means of a centrifugal pump through a heat exchanger in the sub-cooler, the three-phase HTS cable cryostats and a LN{sub 2} gas-liquid separator. The LN{sub 2} was cooled down to 65 K by means of decompressing, and the maximum cooling capacity was about 3.3 kW and the amount of consumed LN{sub 2} was about 72 L/h at 1500 A. Cryogenic system design, test and some experimental results would be presented in this paper. (author)

  15. Suppression of discharge breakdown of polyethylene insulation during electron beam irradiation to power cable

    International Nuclear Information System (INIS)

    Sasaki, T.; Hosoi, F.; Kasai, N.; Hagiwara, M.

    1981-01-01

    In an attempt to apply the electron beam process to the crosslinking procedure for polyethylene insulation of high tension power cables, the suppression of discharge breakdown during irradiation has been investigated in the presence of crosslinking agents. Alkylamines of strong basicity and secondary or tertiary alcoholamines were found to be effective additives to suppress the discharge breakdown. The retardation of crosslinking by amines was minimized by reducing the amount of an amine and adding an alcohol instead. Polyethylene compounds contaning crosslinking agents, amines and alcohols which gave properties suitable for insulating a cable were obtained. The feasibility of these results are ascertained by irradiating cable specimens of a 22 kV class. (author)

  16. Outages of electric power supply resulting from cable failures Boston Edison Company system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    Factual data are provided regarding 5 electric power supply interruptions that occurred in the Boston Metropolitan area during April to June, 1979. Common to all of these outages was the failure of an underground cable as the initiating event, followed by multiple equipment failures. There was significant variation in the voltage ratings and types of cables which failed. The investigation was unable to delineate a single specific Boston Edison design operating or maintenance practice that could be cited as the cause of the outages. After reviewing the investigative report the following actions were recommended: the development and implementation of a plan to eliminate the direct current cable network; develop a network outage restoration plan; regroup primary feeder cables wherever possible to minimize the number of circuits in manholes, and to separate feeders to high load density areas; develop a program to detect incipient cable faults; evaluate the separation of the north and south sections of Back Bay network into separate networks; and, as a minimum, install the necessary facilities to make it possible to re-energize one section without interfering with the other; and re-evaluate the cathodic protection scheme where necessary. (LCL)

  17. Study on condition monitoring techniques for low voltage electrical cables in nuclear power plants

    International Nuclear Information System (INIS)

    Hirao, Hideo; Sakai, Takeshi; Kajimura, Yuusaku

    2017-01-01

    Low voltage electrical cables installed in nuclear power plants are required to maintain its function in a design basis accident environment and they are qualified to that environment. The cables degrade also in normal operating conditions due to ageing and they must maintain integrity until the end of their qualified life. Demands for the condition monitoring technique for low voltage electrical cables have therefore been increasing as nuclear power plants operate longer. A single perfect method for this purpose is not available yet, but the possibility to use two different types of methods which can complement with each other has been examined. The combination of Fourier Transform Infrared Spectroscopy (FT-IR) and Indenter Modulus (IM) method was found highly effective. FT-IR is a method that determines chemical properties (changes in molecular bindings) of cables by using infrared rays, while IM is a method that determines mechanical properties (changes in hardness) of cables by indenters. Both methods are non-destructive and can be applied in-situ to the same material. Reliability of the evaluation can be assured by applying two different types of measurement principles that complement with each other. In this study, various cable samples with different kinds of insulation material (cross-linked polyethylene, ethylene propylene rubber, silicone rubber etc.) were aged with a special accelerated ageing technique which applies simultaneous thermal and radiation ageing to simulate ageing phenomena in a more realistic manner, and the degree of ageing was evaluated with FT-IR and IM. The evaluation result shows good correlation with ageing time and other ageing properties for most material types and the effectiveness of these methods were demonstrated. (author)

  18. Transmission Power Control for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Kuo-Hsien Hsia

    2017-02-01

    Full Text Available Wireless sensor networks can be widely applied for a security system or a smart home system. Since some of the wireless remote sensor nodes may be powered by energy storage devices such as batteries, it is a very important issue to transmit signals at lower power with the consideration of the communication effectiveness. In this paper, we will provide a fuzzy controller with two inputs and one output for received signal strength indicator (RSSI and link quality indicator (LQI to adjust transmission power suitably in order to maintaining a certain communication level with a reduced energy consumption. And we will divide the sampling period of a sensor node into four intervals so that the sensor node radio device does not in receiving or transmission status all the time. Hence the sensor node can adjust transmission power automatically and reduce sensor node power consumption. Experimental results show that the battery life can be extended to about 10 times for the designed sensor node comparing to a normal node.

  19. Eco-design of power transmissions systems

    International Nuclear Information System (INIS)

    Wang, W.

    2011-01-01

    The demand to preserve the environment and form a sustainable development is greatly increasing in the recent decades all over the world, and this environmental concern is also merged in electrical power industry, resulting in many eco-design approaches in Transmission and Distribution (T and D) industries. As a method of eco-design, Life Cycle Assessment (LCA) is a systematic tool that enables the assessment of the environmental impacts of a product or service throughout its entire life cycle, i.e. raw material production, manufacture, distribution, use and disposal including all intervening transportation steps necessary or caused by the product's existence. In T and D industries, LCA has been done for a lot of products individually, in order to see one product's environmental impacts and to seek for ways of improving its environmental performance. This eco-design for product approach is a rather well-developed trend, however, as only a single electrical product cannot provide the electrical power to users, electrical system consists of a huge number of components, in order to investigate system's environmental profile, the entire environmental profiles of different composing products has to be integrated systematically, that is to say, a system approach is needed. Under this philosophy, the study 'Eco-design of Power Transmission Systems' is conducted in this thesis, with the purpose of analysing the transmission systems' environmental impacts, locating the major environmental burden sources of transmission systems, selecting and/or developing methodologies of reducing its environmental impacts. (author)

  20. Microstructural characterization of XLPE electrical insulation in power cables: determination of void size distributions using TEM

    International Nuclear Information System (INIS)

    Markey, L; Stevens, G C

    2003-01-01

    In an effort to progress in our understanding of the ageing mechanisms of high voltage cables submitted to electrical and thermal stresses, we present a quantitative study of voids, the defects which are considered to be partly responsible for cable failure. We propose a method based on large data sets of transmission electron microscopy (TEM) observations of replicated samples allowing for the determination of void concentration distribution as a function of void size in the mesoscopic to microscopic range at any point in the cable insulation. A theory is also developed to calculate the effect of etching on the apparent size of the voids observed. We present the first results of this sort ever obtained on two industrial cables, one of which was aged in an AC field. Results clearly indicate that a much larger concentration of voids occur near the inner semiconductor compared to the bulk of the insulation, independently of ageing. An effect of ageing can also be seen near the inner semiconductor, resulting in an increase in the total void internal surface area and a slight shift of the concentration curve towards larger voids, with the peak moving from about 40 nm to about 50 nm

  1. Acoustic Power Transmission Through a Ducted Fan

    Science.gov (United States)

    Envia, Ed

    2016-01-01

    For high-speed ducted fans, when the rotor flowfield is shock-free, the main contribution to the inlet radiated acoustic power comes from the portion of the rotor stator interaction sound field that is transmitted upstream through the rotor. As such, inclusion of the acoustic transmission is an essential ingredient in the prediction of the fan inlet noise when the fan tip relative speed is subsonic. This paper describes a linearized Euler based approach to computing the acoustic transmission of fan tones through the rotor. The approach is embodied in a code called LINFLUX was applied to a candidate subsonic fan called the Advanced Ducted Propulsor (ADP). The results from this study suggest that it is possible to make such prediction with sufficient fidelity to provide an indication of the acoustic transmission trends with the fan tip speed.

  2. Aging and condition monitoring of electric cables in nuclear power plants

    International Nuclear Information System (INIS)

    Lofaro, R.J.; Grove, E.; Soo, P.

    1998-05-01

    There are a variety of environmental stressors in nuclear power plants that can influence the aging rate of components; these include elevated temperatures, high radiation fields, and humid conditions. Exposure to these stressors over long periods of time can cause degradation of components that may go undetected unless the aging mechanisms are identified and monitored. In some cases the degradation may be mitigated by maintenance or replacement. However, some components receive neither and are thus more susceptible to aging degradation, which might lead to failure. One class of components that falls in this category is electric cables. Cables are very often overlooked in aging analyses since they are passive components that require no maintenance. However, they are very important components since they provide power to safety related equipment and transmit signals to and from instruments and controls. This paper will look at the various aging mechanisms and failure modes associated with electric cables. Condition monitoring techniques that may be useful for monitoring degradation of cables will also be discussed

  3. Effects evaluation of artificial aging by temperature and gamma radiation on cables for Laguna Verde nuclear power plant (LVNPP)

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez C, R. M.; Bonifacio M, J.; Garcia H, E. E.; Loperena Z, J. A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia M, C., E-mail: raulmario.vazquez@inin.gob.m [CFE, Central Nuclear Laguna Verde, Km. 42.5 Carretera Cardel-Nautla, Veracruz (Mexico)

    2010-10-15

    A set of tests has been carried out at the Equipment Qualification Laboratory at National Institute of Nuclear Research to perform accelerated aging up to 60 years under temperature and gamma radiation environment for electrical cables. The results obtained from such tests are the base line data for comparison to with the current cable conditions at the plant. This work is intended for establishing the cable aging management program for the Laguna Verde nuclear power plant (LVNPP). For such purpose, the Institute has prepared methodologies and procedures to apply condition monitoring techniques in accelerated aging tests on samples of new cables drawn from the LVNPP warehouse. The condition indicators of the material selected for condition monitoring and the aging management process of cables were: Elongation at Break (EAB) and Oxidation Induction Time (OIT). A cable aging management program includes activities for cable selection, determination of condition indicators of the cable materials (EAB, OIT, Ind enter), accelerated aging of cable samples at the laboratory, analysis of maintenance history, operational experience of the plant and analysis of the environmental and service conditions (temperature and gamma radiation), as well as the establishment of a condition monitoring plan for cables in the plant. Two cable model samples were thermally aged and gamma irradiated with doses corresponding to differential operational periods. EAB and OIT values of cable insulating material (ethylene propylene and cross linked polyethylene) were obtained. It was found that the EAB and OIT data correlation is very closed, and it could be applied to infer values that are not possible to measure directly at the plant and be used for cable aging evaluation and remaining life time determination. (Author)

  4. Economic Aspect of HVDC Transmission System for Indonesia Consideration in Nuclear Power Development

    International Nuclear Information System (INIS)

    Edwaren Liun

    2009-01-01

    As a country with hundreds million people, Indonesia needs to generate large scale power and distribute it to thorough country to improve gross domestic product of the population. In the power transmission domain, the High Voltage Direct Current (HVDC) transmission system should be considered for the next decades concerning any technical and economical problems with HVAC transmission. HVDC transmission system is the answer for the Indonesian condition. This system can connect the high energy potential regions to the high energy demand regions. HVDC is the most efficient to transport energy from one region to another one region. Dismantling and removing assets costs are included to the estimated for capital costs, while the environmental and property costs are the costs of securing designations and resource consents, and valuation and legal advice for the HVDC investment. Although converter terminals are expensive however, for long transmissions HVDC system can compensate the costs over breakeven distance through very efficient transmission system. Efficiency of HVDC is appearing from conductor wire, supporting tower, low energy loses and free space used by route of the transmission line. HVDC system is also free from some problem, concerning stability, inductive and capacitive load components, phase differences and frequency system. In the economic aspect the HVDC capital costs for the transmission options comprise estimates of the cost to design, purchase and construct new HVDC transmission components. While operating and maintenance costs of HVDC assets comprise the costs for replacement the old existing overhead transmission lines, underground and submarine cables, and HVDC converter station components. (author)

  5. An ultrasonic guided wave approach for the inspection of overhead transmission line cables

    DEFF Research Database (Denmark)

    Yücel, Mehmet K.; Legg, Mathew; Kappatos, Vasileios

    2017-01-01

    as a non-destructive testing technique is well established for simple geometries such as plates, pipes, and rods. However, its application for multi-wire cables is still in development. In this study, ultrasonic guided waves excited by a shear mode transducer collar are utilised as a defect detection...... technique for untensioned aluminium conductor steel reinforced cable specimens. The identification and analysis of wave propagation for a broad range of frequencies is performed using a laser scanning vibrometer, and the effect of defect size on wave propagation is studied. Signal processing algorithms...

  6. Type test of Class 1E electric cables, field splices, and connections for nuclear power generating stations - 1975

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard provides direction for establishing type tests which may be used in qualifying Class 1E electric cables, field splices, and other connections for service in nuclear power generating stations. General guidelines for qualifications are given in IEEE Std 323-1974, Standard for Qualifying Class 1E Electric Equipment for Nuclear Power Generating Stations. Categories of cables covered are those used for power control and instrumentation services. Though intended primarily to pertain to cable for field installation, this guide may also be used for the qualification of internal wiring of manufactured devices

  7. Transmission tariffs based on optimal power flow

    International Nuclear Information System (INIS)

    Wangensteen, Ivar; Gjelsvik, Anders

    1998-01-01

    This report discusses transmission pricing as a means of obtaining optimal scheduling and dispatch in a power system. This optimality includes consumption as well as generation. The report concentrates on how prices can be used as signals towards operational decisions of market participants (generators, consumers). The main focus is on deregulated systems with open access to the network. The optimal power flow theory, with demand side modelling included, is briefly reviewed. It turns out that the marginal costs obtained from the optimal power flow gives the optimal transmission tariff for the particular load flow in case. There is also a correspondence between losses and optimal prices. Emphasis is on simple examples that demonstrate the connection between optimal power flow results and tariffs. Various cases, such as open access and single owner are discussed. A key result is that the location of the ''marketplace'' in the open access case does not influence the net economical result for any of the parties involved (generators, network owner, consumer). The optimal power flow is instantaneous, and in its standard form cannot deal with energy constrained systems that are coupled in time, such as hydropower systems with reservoirs. A simplified example of how the theory can be extended to such a system is discussed. An example of the influence of security constraints on prices is also given. 4 refs., 24 figs., 7 tabs

  8. Innovating Technological Process for Expanding the Service Life of Underground Power Cables

    Directory of Open Access Journals (Sweden)

    Tabacaru V.

    2016-08-01

    Full Text Available As a public power distribution operator on low voltage (023/0.4 kV, medium voltage (6 and 20 kV, and high voltage (110 kV in the territory of Galati County, SDEE Galati serves approximately 240,000 consumers (captive and eligible, domestic and non-domestic For this purpose, in the field of medium voltage underground distribution lines, SDEE Galati manages and operates a volume of approx. 500 km UDL/6kV circuit and approximately 630 km UDL/20 kV circuit. Many of these cables which are still in operation, were manufactured with materials and on the technological level of the ’60s,’70s and ‘80s decades and have reached the end of their service life. Evidence does and incident statistics from these networks in which, every year, one of the "tips" is the medium voltage cables damaged "technical wear" normal operating conditions. The current paper will present the main features of an innovating technological process called SPR (Sustained Pressure Rejuvenation, designed for on-site refurbishing of underground power cable insulation medium and high voltage. The process offers a viable alternative that has proven, over the 25 years of application initially on the American content and now on the worldwide, substantially more cost effective than replacing cables. The paper does not propose detailed presentation of the technological process, but to inform the family of energetics NPS about the existence and the benefits of applying this new technological process to the old cable medium and high voltage.

  9. Cable line engineering

    International Nuclear Information System (INIS)

    Jang, Hak Sin; Kim, Sin Yeong

    1998-02-01

    This book is about cable line engineering. It is comprised of nine chapters, which deals with summary of cable communication such as way, process of cable communication and optical communication, Line constant of transmission on primary constant, reflection and crosstalk, communication cable line of types like flat cable, coaxial cable and loaded cable, Install of communication line with types and facility of aerial line, construction method of communication line facility, Measurement of communication line, Carrier communication of summary, PCM communication with Introduction, regeneration relay system sampling and quantization and Electric communication service and general information network with mobile communication technique and satellite communication system.

  10. Light Water Reactor Sustainability Program: Evaluation of Localized Cable Test Methods for Nuclear Power Plant Cable Aging Management Programs

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Samuel W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hartman, Trenton S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-30

    This Pacific Northwest National Laboratory (PNNL) milestone report describes progress to date on the investigation of nondestructive test (NDE) methods focusing particularly on local measurements that provide key indicators of cable aging and damage. The work includes a review of relevant literature as well as hands-on experimental verification of inspection capabilities. As NPPs consider applying for second, or subsequent, license renewal (SLR) to extend their operating period from 60 years to 80 years, it important to understand how the materials installed in plant systems and components will age during that time and develop aging management programs (AMPs) to assure continued safe operation under normal and design basis events (DBE). Normal component and system tests typically confirm the cables can perform their normal operational function. The focus of the cable test program is directed toward the more demanding challenge of assuring the cable function under accident or DBE. Most utilities already have a program associated with their first life extension from 40 to 60 years. Regrettably, there is neither a clear guideline nor a single NDE that can assure cable function and integrity for all cables. Thankfully, however, practical implementation of a broad range of tests allows utilities to develop a practical program that assures cable function to a high degree. The industry has adopted 50% elongation at break (EAB) relative to the un-aged cable condition as the acceptability standard. All tests are benchmarked against the cable EAB test. EAB is a destructive test so the test programs must apply an array of other NDE tests to assure or infer the overall set of cable’s system integrity. These cable NDE programs vary in rigor and methodology. As the industry gains experience with the efficacy of these programs, it is expected that implementation practice will converge to a more common approach. This report addresses the range of local NDE cable tests that are

  11. 37 CFR 256.2 - Royalty fee for compulsory license for secondary transmission by cable systems.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Royalty fee for compulsory... ADJUSTMENT OF ROYALTY FEE FOR CABLE COMPULSORY LICENSE § 256.2 Royalty fee for compulsory license for... receipts be reduced to less than $10,400. The royalty fee payable under this paragraph shall be 0.5 of 1...

  12. Wireless power transmission using ultrasonic guided waves

    International Nuclear Information System (INIS)

    Kural, A; Pullin, R; Featherston, C; Holford, K; Paget, C

    2011-01-01

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  13. Wireless power transmission using ultrasonic guided waves

    Energy Technology Data Exchange (ETDEWEB)

    Kural, A; Pullin, R; Featherston, C; Holford, K [School of Engineering, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 2AA (United Kingdom); Paget, C, E-mail: kurala@cardiff.ac.uk [Airbus Operations Ltd, New Filton Road, BS99 7AR Bristol (United Kingdom)

    2011-07-19

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  14. Arrangement for guiding transport cables

    International Nuclear Information System (INIS)

    1981-01-01

    This patent relates especially to x-ray equipment such as that used for computerized tomography, and in particular to an arrangement for guiding and supporting a plurality of power transmission cables and cooling hoses in a flexible manner. (U.K.)

  15. Improved cable compensation technique for self powered neutron detectors

    International Nuclear Information System (INIS)

    Nieuwenhove, R. van

    1996-01-01

    Measurements with cobalt self powered neutron detectors on the BR2 reactor have revealed that the currents induced by external gamma radiation can be of the same order as the neutron induced signal and that the gamma induced current on the emitter and the compensator wires are not symmetric. In this case, the standard detection electronic setup leads to erroneous results. It is shown that a slightly modified electronic setup, in which this asymmetry is compensated for, can nevertheless allow to obtain correct neutron flux measurements. Measures to reduce the influence of external gamma radiation in general will also be discussed. (orig.)

  16. EXPERIMENTAL DETERMINATION OF LONGITUDINAL COMPONENT OF MAGNETIC FLUX IN FERROMAGNETIC WIRE OF SINGLE-CORE POWER CABLE ARMOUR

    Directory of Open Access Journals (Sweden)

    I.A. Kostiukov

    2014-12-01

    Full Text Available A problem of determination of effective longitudinal magnetic permeability of single core power cable armour is defined. A technique for experimental determination of longitudinal component of magnetic flux in armour spiral ferromagnetic wire is proposed.

  17. Analysis of eddy current loss in high-Tc superconducting power cables with respect to various structure of stabilizer

    International Nuclear Information System (INIS)

    Choi, S. J.; Song, M. K.; Lee, S. J.; Cho, J. W.; Sim, K. D.

    2005-01-01

    The High-Tc superconducting power cable consists of a multi-layer high-Tc superconducting cable core and a stabilizer which is used to bypass the current at fault time. Eddy current loss is generated in the stabilizer in normal operating condition and affects the whole system. In this paper, the eddy current losses are analyzed with respect to various structure of stabilizer by using opera-3d. Moreover, optimal conditions of the stabilizer are derived to minimize the eddy current losses from the analyzed results. The obtained results could be applied to the design and manufacture of the high-Tc superconducting power cable system.

  18. Water-hydraulic power transmission for offshore wind farms

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.; Kempenaar, A.S.

    2012-01-01

    The current state of the art of offshore wind turbine power transmission technology is expensive, heavy and maintenance intensive. The Delft Offshore Turbine project considers a radically new concept for power transmission in an offshore wind farm: using seawater as power transmission medium. For

  19. Parameters optimization for magnetic resonance coupling wireless power transmission.

    Science.gov (United States)

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  20. An energy harvesting system using the wind-induced vibration of a stay cable for powering a wireless sensor node

    International Nuclear Information System (INIS)

    Jung, Hyung-Jo; Kim, In-Ho; Jang, Seon-Jun

    2011-01-01

    This paper proposes an electromagnetic energy harvesting system, which utilizes the wind-induced vibration of a stay cable, and investigates its feasibility for powering a wireless sensor node on the cable through numerical simulations as well as experimental tests. To this end, the ambient acceleration responses of a stay cable installed in an in-service cable-stayed bridge are measured, and then they are used as input excitations in cases of both numerical simulations and experimental tests to evaluate the performance of the proposed energy harvesting system. The results of the feasibility test demonstrate that the proposed system generates sufficient electricity for operation of a wireless sensor node attached on the cable under the moderate wind conditions

  1. High-power fiber optic cable with integrated active sensors for live process monitoring

    Science.gov (United States)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  2. Development of the qualitative techniques for monitoring of the power cables condition using infrared analysis

    International Nuclear Information System (INIS)

    Puiu, D.; Gyongyosi, T.; Dinu, E.; Cristi, P.

    2015-01-01

    The specimens analysed have been sampled from CYY 3 x 25 mm type cable sections. These sections were 3.5 mm long and have been accelerated thermal aged (by Joule Lenz effect), the thermal ageing time equivalent for NPP operation being of 10, 20, 30, 40 and 50 years. This technique is using the fact that, the polymers are degrading, the structure changes taking place leads on development of some new cross-linking having different absorption characteristics than the initial un-aged material linking. The dominant oxidation mechanisms for the aged polymers in air are producing bunch of carbonyl O=C<. In the infrared (IR) spectrum, the carbonyl bunch shows a vibration of the characteristic valence at reciprocal characteristic wave band about 1720 cm-1.The absorbance at 1720 cm-1 trends to grow related to increasing of degradation. The results are useful to identify, model and manage the power cable material ageing phenomenon in the NPP. (authors)

  3. Sensor Transmission Power Schedule for Smart Grids

    Science.gov (United States)

    Gao, C.; Huang, Y. H.; Li, J.; Liu, X. D.

    2017-11-01

    Smart grid has attracted much attention by the requirement of new generation renewable energy. Nowadays, the real-time state estimation, with the help of phasor measurement unit, plays an important role to keep smart grid stable and efficient. However, the limitation of the communication channel is not considered by related work. Considering the familiar limited on-board batteries wireless sensor in smart grid, transmission power schedule is designed in this paper, which minimizes energy consumption with proper EKF filtering performance requirement constrain. Based on the event-triggered estimation theory, the filtering algorithm is also provided to utilize the information contained in the power schedule. Finally, its feasibility and performance is demonstrated using the standard IEEE 39-bus system with phasor measurement units (PMUs).

  4. In-Containment Signal Conditioning and Transmission via Power Lines within High Dose Rate Areas of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Steffen; Weigel, Robert; Koelpin, Alexander [Institute for Electronics Engineering, University of Erlangen-Nuremberg, Cauerstr. 9, 91058 Erlangen (Germany); Dennerlein, Juergen; Janke, Iryna; Weber, Johannes [AREVA GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany)

    2015-07-01

    Signal conditioning and transmission for sensor systems and networks within the containment of nuclear power plants (NPPs) still poses a challenge to engineers, particularly in the case of equipment upgrades for existing plants, temporary measurements, decommissioning of plants, but also for new builds. This paper presents an innovative method for efficient and cost-effective instrumentation within high dose rate areas inside the containment. A transmitter-receiver topology is proposed that allows simultaneous, unidirectional point-to-point transmission of multiple sensor signals by superimposing them on existing AC or DC power supply cables using power line communication (PLC) technology. Thereby the need for costly installation of additional cables and containment penetrations is eliminated. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter is designed to operate in harsh environment within the containment during full plant operation. Hardware modularity of the transmitter allows application specific tradeoffs between redundancy and channel bandwidth. At receiver side in non-radiated areas, signals are extracted from the power line, demodulated, and provided either in analog or digital output format. Laboratory qualification tests and field test results within a boiling water reactor (BWR) are validating the proof of concept of the proposed system. (authors)

  5. A Novel Method of Autonomous Inspection for Transmission Line based on Cable Inspection Robot LiDAR Data

    Directory of Open Access Journals (Sweden)

    Xinyan Qin

    2018-02-01

    Full Text Available With the growth of the national economy, there is increasing demand for electricity, which forces transmission line corridors to become structurally complicated and extend to complex environments (e.g., mountains, forests. It is a great challenge to inspect transmission line in these regions. To address these difficulties, a novel method of autonomous inspection for transmission line is proposed based on cable inspection robot (CIR LiDAR data, which mainly includes two steps: preliminary inspection and autonomous inspection. In preliminary inspection, the position and orientation system (POS data is used for original point cloud dividing, ground point filtering, and structured partition. A hierarchical classification strategy is established to identify the classes and positions of the abnormal points. In autonomous inspection, CIR can autonomously reach the specified points through inspection planning. These inspection targets are imaged with PTZ (pan, tilt, zoom cameras by coordinate transformation. The feasibility and effectiveness of the proposed method are verified by test site experiments and actual line experiments, respectively. The proposed method greatly reduces manpower and improves inspection accuracy, providing a theoretical basis for intelligent inspection of transmission lines in the future.

  6. Air insulated cables for medium and low voltage supplies of the EVU

    Energy Technology Data Exchange (ETDEWEB)

    Dienstel, S

    1977-02-01

    Air insulated cables and insulated overhead cables are electrical components, which, by the use of new insulating materials and technology, are particularly suitable for the introduction of systems for overhead power transmission plants. They combine the favorable properties of underground cables, such as compact construction and low inductance, with their high mechanical strength. The present report deals with the construction, accessories and technical properties of these cables. The constructional and operational aspects of such systems and their costs are also discussed.

  7. Fiscal 1999 research result report on energy and environment technology demonstration research support project (International joint demonstration research project). Improvement of long-distant power transmission efficiency and reliability, and its environmental impact assessment; 1999 nendo chokyori soden hoshiki ni kansuru soden koritsu to soden shinraido no kojo oyobi kankyo eno eikyo hyoka seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Japan-Russia international joint research was made on overhead ultrahigh-voltage DC power transmission lines for transmission loss reduction and reliability improvement, and an optimum international power supply cable system, considering energy saving and environment conservation. Using the European-Russian DC power transmission line of {+-}500kV and 4GW as a model, comparison was made between a model using Russian round strands and glass insulators and a model using Japanese low-loss wires and insulators. As for improvement of the reliability in cold districts, Russian design techniques for tower structure and ice loading were reasonable to counteract galloping oscillation and ice load. In evaluation and selection of optimum underground and marine cables, study was made on cable specifications using the Turkey-Russia power transmission route as a model. The environmental assessment result of these cables showed that XLPE cable under development is optimum. (NEDO)

  8. Heat-shrinkable splicing materials for Class 1E wire and cable systems in nuclear power generating stations

    International Nuclear Information System (INIS)

    Handa, Katsue; Maruyama, Masahiro; Kanno, Mikio; Ohya, Shingo; Nagakawa, Seiji; Sugimori, Mikihiro

    1987-01-01

    This report describes the shapes of heat-shrinkable splicing materials (cable sleeve and breakout, and round end cap) made of polyolefine resin, their application to cable splicing, and the properties of the materials as well as of the splice using them. Particularly, the report features introduction of their properties as determined by tests under the same conditions as used in Japan in qualifying tests on wires and cables for nuclear power generating stations. The heat-shrinkable splicing materials proved to be equal in properties to flame-retardant cables for nuclear power plants when tested for oxygen index and subjected to a vertical flame test on ''insulated wire'' and a vertical tray flame test on the cable splice. It was also confirmed that Class 1E cable using these splicing materials could stand the most rigorous environmental test in Japan. Therefore they can be used for splicing Class 1E wires and cables and the splice formed with them can be regarded as Class 1E specified in IEEE Std. 383. (author)

  9. Calculation of harmonic losses and ampacity in low-voltage power cables when used for feeding large LED lighting loads

    Directory of Open Access Journals (Sweden)

    N. J. Milardovich

    2014-10-01

    Full Text Available A numerical investigation on the harmonic disturbances in low-voltage cables feeding large LED loads is reported. A frequency domain analysis on several commercially-available LEDs was performed to investigate the signature of the harmonic current injected into the power system. Four-core cables and four single-core cable arrangements (three phases and neutral of small, medium, and large conductor cross sections, with the neutral conductor cross section approximately equal to the half of the phase conductors, were examined. The cables were modelled by using electromagnetic finite-element analysis software. High harmonic power losses (up to 2.5 times the value corresponding to an undistorted current of the same rms value of the first harmonic of the LED current were found. A generalized ampacity model was employed for re-rating the cables. It was found that the cross section of the neutral conductor plays an important role in the derating of the cable ampacity due to the presence of a high-level of triplen harmonics in the distorted current. The ampacity of the cables should be derated by about 40 %, almost independent of the conductor cross sections. The calculation have shown that an incoming widespread use of LED lamps in lighting could create significant additional harmonic losses in the supplying low-voltage lines, and thus more severely harmonic emission limits should be defined for LED lamps.

  10. Management program of cables and electrical conductions in operating nuclear power plant; Programa de gestion de cables y conducciones electricas en C. N. en Operacion

    Energy Technology Data Exchange (ETDEWEB)

    Perez Pereira, J.

    2012-07-01

    The management of cables and electrical conductions of a nuclear power plant is an activity very important during making the original design and subsequent design modifications, by the cable volume and nuclear safety regulations. During the design and construction of the Nuclear Power Plants, the late XX century, this work was carried out using manual procedures. The introduction of new technology provides users the ability to create relational databases for data according to the needs. Also tools and IT programs develop for the management of these databases with more reliability and a major number of possibilities at the moment of handling the available information. This paper aims to expose advances and developments in this field and present the methodology and lessons learned.

  11. Aging predictions in nuclear power plants: Crosslinked polyolefin and EPR cable insulation materials

    International Nuclear Information System (INIS)

    Gillen, K.T.; Clough, R.L.

    1991-06-01

    In two earlier reports, we derived a time-temperature-dose rate superposition methodology, which, when applicable, can be used to predict cable degradation versus dose rate, temperature and exposure time. This methodology results in long-term predictive capabilities at the low dose rates appropriate to ambient nuclear power plant aging environments. The methodology was successfully applied to numerous important cable materials used in nuclear applications and the extrapolated predictions were verified by comparisons with long-term (7 to 12 year) results for similar or identical materials aged in nuclear environments. In this report, we test the methodology on three crosslinked polyolefin (CLPO) and two ethylene propylene rubber (EPR) cable insulation materials. The methodology applies to one of the CLPO materials and one of the EPR materials, allowing predictions to be made for these materials under low dose-rate, low temperature conditions. For the other materials, it is determined that, at low temperatures, a decrease in temperature at a constant radiation dose rate leads to an increase in the degradation rate for the mechanical properties. Since these results contradict the fundamental assumption underlying time-temperature-dose rate superposition, this methodology cannot be applied to such data. As indicated in the earlier reports, such anomalous results might be expected when attempting to model data taken across the crystalline melting region of semicrystalline materials. Nonetheless, the existing experimental evidence suggests that these CLPO and EPR materials have substantial aging endurance for typical reactor conditions. 28 refs., 26 figs., 3 tabs

  12. Studying radiolytic ageing of nuclear power plant electric cables with FTIR spectroscopy.

    Science.gov (United States)

    Levet, A; Colombani, J; Duponchel, L

    2017-09-01

    Due to the willingness to extend the nuclear power plants length of life, it is of prime importance to understand long term ageing effect on all constitutive materials. For this purpose gamma-irradiation effects on insulation of instrumentation and control cables are studied. Mid-infrared spectroscopy and principal components analysis (PCA) were used to highlight molecular modifications induced by gamma-irradiation under oxidizing conditions. In order to be closer to real world conditions, a low dose rate of 11Gyh -1 was used to irradiate insulations in full cable or alone with a dose up to 58 kGy. Spectral differences according to irradiation dose were extracted using PCA. It was then possible to observe different behaviors of the insulation constitutive compounds i.e. ethylene vinyl acetate (EVA), ethylene propylene diene monomer (EPDM) and aluminium trihydrate (ATH). Irradiation of insulations led to the oxidation of their constitutive polymers and a modification of filler-polymer ratio. Moreover all these modifications were observed for insulations alone or in full cable indicating that oxygen easily diffuses into the material. Spectral contributions were discussed considering different degradation mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Experimental evaluation of a self-powered smart damping system in reducing vibrations of a full-scale stay cable

    International Nuclear Information System (INIS)

    Kim, In-Ho; Jung, Hyung-Jo; Koo, Jeong-Hoi

    2010-01-01

    This paper investigates the effectiveness of a self-powered smart damping system consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) device in reducing cable vibrations. The proposed smart damping system incorporates an EMI device, which is capable of converting vibration energy into useful electrical energy. Thus, the incorporated EMI device can be used as an alternative power source for the MR damper, making it a self-powering system. The primary goal of this experimental study is to evaluate the performance of the proposed smart damping system using a full-scale, 44.7 m long, high-tension cable. To this end, an EMI part and an MR damper were designed and manufactured. Using a cable test setup in a laboratory setting, a series of tests were performed to evaluate the effectiveness of the self-powered smart damping system in reducing free vibration responses of the cable. The performances of the proposed smart damping system are compared with those of an equivalent passive system. Moreover, the damping characteristics of the smart damping system and the passive system are compared. The experimental results show that the self-powered smart damping system outperforms the passive control cases in reducing the vibrations of the cable. The results also show that the EMI can operate the smart damping system as a sole power source, demonstrating the feasibility of the self-powering capability of the system

  14. Wireless electricity (Power) transmission using solar based power satellite technology

    International Nuclear Information System (INIS)

    Maqsood, M; Nasir, M Nauman

    2013-01-01

    In the near future due to extensive use of energy, limited supply of resources and the pollution in environment from present resources e.g. (wood, coal, fossil fuel) etc, alternative sources of energy and new ways to generate energy which are efficient, cost effective and produce minimum losses are of great concern. Wireless electricity (Power) transmission (WET) has become a focal point as research point of view and nowadays lies at top 10 future hot burning technologies that are under research these days. In this paper, we present the concept of transmitting power wirelessly to reduce transmission and distribution losses. The wired distribution losses are 70 – 75% efficient. We cannot imagine the world without electric power which is efficient, cost effective and produce minimum losses is of great concern. This paper tells us the benefits of using WET technology specially by using Solar based Power satellites (SBPS) and also focuses that how we make electric system cost effective, optimized and well organized. Moreover, attempts are made to highlight future issues so as to index some emerging solutions.

  15. Wireless Power Transmission Options for Space Solar Power

    Science.gov (United States)

    Potter, Seth; Davis, Dean; Born, Martin; Bayer, Martin; Howell, Joe; Mankins, John

    2008-01-01

    Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In the long term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. In the near term, we can beam power over more moderate distances, but still stretch the limits of today s technology. In recent studies, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost have been considered as the first steps in using these WPT options for SSP. Our current assessments include consideration of orbits, wavelengths, and structural designs to meet commercial, civilian government, and military needs. Notional transmitter and receiver sizes are considered for use in supplying 5 to 40 MW of power. In the longer term, lunar or asteroidal material can be used. By using SSP and WPT technology for near-term missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from space to Earth.

  16. Impacts of an underwater high voltage DC power cable on fish migration movements in the San Francisco Bay.

    Science.gov (United States)

    Wyman, M. T.; Kavet, R.; Klimley, A. P.

    2016-02-01

    There is an increasingly strong interest on a global scale in offshore renewable energy production and transportation. However, there is concern that the electromagnetic fields (EMF) produced by these underwater cables may alter the behavior and physiology of marine species. Despite this concern, few studies have investigated these effects in free-living species. In 2009, a 85 km long high-voltage DC (HVDC) power cable was placed within the San Francisco Bay, running parallel, then perpendicular to, the migration route of anadromous species moving from the inland river system to the oceans. In this study, we assess the impacts of this HVDC cable on the migration behaviors of EMF-sensitive fish, including juvenile salmonids (Chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, Oncorhynchus mykiss) and adult green sturgeon, Acipenser medirostris. Acoustic telemetry techniques were used to track fish migration movements through the San Francisco Bay both before and after the cable was activated; individuals implanted with acoustic transmitters were detected on cross-channel hydrophone arrays at key locations in the system. Magnetic fields were surveyed and mapped at these locations using a transverse gradiometer, and models of the cable's magnetic field were developed that closely matched the empirically measured values. Here, we present our analyses on the relationships between migration-related behavioral metrics (e.g., percent of successful migrations, duration of migration, time spent near vs. far from cable location, etc.) and environmental parameters, such as cable activation and load level, local magnetic field levels, depth, and currents.

  17. AC loss in superconducting tapes and cables

    NARCIS (Netherlands)

    Oomen, M.P.

    2000-01-01

    The present study discusses the AC loss in high-temperature superconductors. Superconducting materials with a relatively high critical temperature were discovered in 1986. They are presently developed for use in large-scale power-engineering devices such as power-transmission cables, transformers

  18. Long-distance power transmission technology. Microwave power transmission; Denryoku no chokyori yuso gijutsu. Micro ha musen soden

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N [Kobe University, Kobe (Japan). Faculty of Engineering

    1994-11-05

    This paper explains the principles of microwave power transmission as a long-distance power transmission technology, and the status of its development. Under an assumption of using a wave length of 12 cm (2.45 GHz) and a transmission distance of 1 km, an ideal wireless power transmission can realize transmitting the power at an efficiency of 95% or higher if transmitting and receiving antennas with a radius of 8.8 m are used. What remains as important requirements is raising the efficiency of conversion from power supply into microwaves, and the efficiency of rectification after the power has been received. By using microwave energy sent from a transmission antenna installed on the roof of an automobile, a model airplane with a receiving antenna installed at its rear flew successfully for 40 seconds under the microwave lifted airplane experiment (MILAX). In an experiment of transmitting microwave power in space, power was successfully transmitted to the child rocket as an event under the International Space Year - Microwave Energy Transmission in Space (ISY-METS). The microwave wireless power transmission on the ground would have a possibility of taking over the overhead line transmission into islands. An attempt is scheduled to send power of 5 kW by using transmission and receiving antennas with a diameter of 3 m to investigate effects on transmission efficiency, and communications and electromagnetic environments, and to collect basic data. 3 refs., 3 figs.

  19. Maximal network reliability for a stochastic power transmission network

    International Nuclear Information System (INIS)

    Lin, Yi-Kuei; Yeh, Cheng-Ta

    2011-01-01

    Many studies regarded a power transmission network as a binary-state network and constructed it with several arcs and vertices to evaluate network reliability. In practice, the power transmission network should be stochastic because each arc (transmission line) combined with several physical lines is multistate. Network reliability is the probability that the network can transmit d units of electric power from a power plant (source) to a high voltage substation at a specific area (sink). This study focuses on searching for the optimal transmission line assignment to the power transmission network such that network reliability is maximized. A genetic algorithm based method integrating the minimal paths and the Recursive Sum of Disjoint Products is developed to solve this assignment problem. A real power transmission network is adopted to demonstrate the computational efficiency of the proposed method while comparing with the random solution generation approach.

  20. Detection of Local Temperature Change on HTS Cables via Time-Frequency Domain Reflectometry

    Science.gov (United States)

    Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Ji, Gyeong Hwan; Sohn, Songho; Park, Kijun; Shin, Yong-June

    2017-07-01

    High temperature superconducting (HTS) cables are drawing attention as transmission and distribution cables in future grid, and related researches on HTS cables have been conducted actively. As HTS cables have come to the demonstration stage, failures of cooling systems inducing quench phenomenon of the HTS cables have become significant. Several diagnosis of the HTS cables have been developed but there are still some limitations of the experimental setup. In this paper, a non-destructive diagnostic technique for the detection of the local temperature change point is proposed. Also, a simulation model of HTS cables with a local temperature change point is suggested to verify the proposed diagnosis. The performance of the diagnosis is checked by comparative analysis between the proposed simulation results and experiment results of a real-world HTS cable. It is expected that the suggested simulation model and diagnosis will contribute to the commercialization of HTS cables in the power grid.

  1. Electrodynamic Wireless Power Transmission to Rotating Magnet Receivers

    International Nuclear Information System (INIS)

    Garraud, A; Jimenez, J D; Garraud, N; Arnold, D P

    2014-01-01

    This paper presents an approach for electrodynamic wireless power transmission (EWPT) using a synchronously rotating magnet located in a 3.2 cm 3 receiver. We demonstrate wireless power transmission up to 99 mW (power density equal to 31 mW/cm 3 ) over a 5-cm distance and 5 mW over a 20-cm distance. The maximum operational frequency, and hence maximal output power, is constrained by the magnetic field amplitude. A quadratic relationship is found between the maximal output power and the magnetic field. We also demonstrate simultaneous, power transmission to multiple receivers positioned at different locations

  2. 2000 MCM electrical power jumper cable with controlled flexibility: Design and life cycle test

    International Nuclear Information System (INIS)

    Bultman, D.H.; Sims, J.R.; Reass, W.A.

    1989-01-01

    The ZTH Reversed Field Pinch (RFP) plasma confinement experiment being built at the Los Alamos National Laboratory will use magnet coils to provide ohmic heating currents in the plasma. The ohmic heating coils are supported by a structure that will allow them limited movement with respect to surrounding hardware and the connecting electrical bus work. To minimize displacement-induced stresses in the coils, ''flexible'' power conducting links are necessary to accommodate the relative motion between the bus work and the coils. A semi-flexible 2000 MCM jumper cable has been designed with enough flexibility to allow free movement of the coils, yet it is stiff enough to withstand large magnetically-induced lateral loads and minimize the effect of the lateral loads on the magnet coil leads. A full-power life cycle test of the jumper was performed under magnetic, thermal and dynamic loads that closely simulate the expected operating conditions. This test evaluated the structural and electrical integrity of the jumper as well as the quality and reliability of the bolted electrical connections at the jumper ends in a high-stress, cyclic-loading environment. The jumper cable design is presented with an explanation of the requirements for a semi-flexible link. A description of the life cycle test and test results are given, as well as a description of the test apparatus and setup. 4 figs

  3. Applying Diagnostics to Enhance Cable System Reliability (Cable Diagnostic Focused Initiative, Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Hartlein, Rick [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Hampton, Nigel [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Perkel, Josh [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Hernandez, JC [Univ. de Los Andes, Merida (Venezuela); Elledge, Stacy [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); del Valle, Yamille [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Grimaldo, Jose [Georgia Inst. of Technology, Atlanta, GA (United States). School of Electrical and Computer Engineering; Deku, Kodzo [Georgia Inst. of Technology, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

    2016-02-01

    The Cable Diagnostic Focused Initiative (CDFI) played a significant and powerful role in clarifying the concerns and understanding the benefits of performing diagnostic tests on underground power cable systems. This project focused on the medium and high voltage cable systems used in utility transmission and distribution (T&D) systems. While many of the analysis techniques and interpretations are applicable to diagnostics and cable systems outside of T&D, areas such as generating stations (nuclear, coal, wind, etc.) and other industrial environments were not the focus. Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach as a result of this project. Previous to the CDFI, different diagnostic technology providers individually promoted their approach as the “the best” or “the only” means of detecting cable system defects.

  4. First operation experiences from a 30 kV 104 MVA HTS power cable installed in a utility substation

    DEFF Research Database (Denmark)

    Willen, D.; Hansen, F.; Daumling, M.

    2002-01-01

    realistic conditions in the substation of Amager (AMK). Approximately 50 000 private and business customers are supplied from this cable. The load can be adjusted from 20% to 100% of the power supplied and the number of branches connected can be altered. This and other early HTS power installations...... are expected to act as ice-breakers for the HTS technology...

  5. The Electrical Aspects of the choice of Former in a High T-c Superconducting Power Cable

    DEFF Research Database (Denmark)

    Däumling, Manfred; Kühle (fratrådt), Anders Van Der Aa; Olsen, Søren Krüger

    1999-01-01

    Centrally located in a superconducting power cable the former supplies a rigid means onto which to wind the superconducting tapes and enables a continuous supply of cooling power via a flow of liquid cryogen through it. Therefore, the choice of former has a broad impact on the construction and de...

  6. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Science.gov (United States)

    2010-07-01

    ... portable or mobile equipment from low-voltage three-phase resistance grounded power systems shall contain... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables supplying power to low-voltage... STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage...

  7. AC HTS Transmission Cable for Integration into the Future EHV Grid of the Netherlands

    OpenAIRE

    Zuijderduin, R.; Chevtchenko, O.; Smit, J.J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    2012-01-01

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future grid must be capable to transmit all the connected power. Power generation will be more decentralized like for instance wind parks connected to the grid. Furthermore, future large scale production units are expected to be installed near coastal regions. This creates some potential grid issues, such as: large power amounts to be transmitted to consumers from west to east and grid stability. High tem...

  8. AC HTS Transmission Cable for Integration into the Future EHV Grid of the Netherlands

    NARCIS (Netherlands)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J.J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    2012-01-01

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future grid must be capable to transmit all the connected power. Power generation will be more decentralized like for instance wind parks connected to the grid. Furthermore, future large scale production units

  9. Seismic Response of Power Transmission Tower-Line System Subjected to Spatially Varying Ground Motions

    Directory of Open Access Journals (Sweden)

    Li Tian

    2010-01-01

    Full Text Available The behavior of power transmission tower-line system subjected to spatially varying base excitations is studied in this paper. The transmission towers are modeled by beam elements while the transmission lines are modeled by cable elements that account for the nonlinear geometry of the cables. The real multistation data from SMART-1 are used to analyze the system response subjected to spatially varying ground motions. The seismic input waves for vertical and horizontal ground motions are also generated based on the Code for Design of Seismic of Electrical Installations. Both the incoherency of seismic waves and wave travel effects are accounted for. The nonlinear time history analytical method is used in the analysis. The effects of boundary conditions, ground motion spatial variations, the incident angle of the seismic wave, coherency loss, and wave travel on the system are investigated. The results show that the uniform ground motion at all supports of system does not provide the most critical case for the response calculations.

  10. Experimental evaluation of the wind effects on an operating power transmission tower

    Directory of Open Access Journals (Sweden)

    Hermes Carvalho

    Full Text Available Abstract Static and dynamic effects on power transmission towers can be evaluated by methodologies available in codes, which suggest the use of linear static analysis. By using numerical simulations, it is possible to observe the strong influence of the geometric nonlinear behavior of transmission cables. Dynamic effects also strongly influence this behavior, with the possibility of resonance between the cables and the structure, but up to the moment, the existent analysis procedures have not been completely validated on an experimental basis. In order to validate a complete analysis methodology, experimental procedures are proposed for a suspension tower of a 138kV transmission line in use. A tridimensional anemometer was installed on this structure in order to measure the values and directions of wind speeds. Simultaneous strain values were collected on the main elements of the tower through optical extensometers. Optical sensor technology with Fiber Bragg Gratings was used, due to the characteristic of immunity to the electromagnetic field occasioned by high electric currents. The string swing angle was evaluated through a high-resolution camera and a tridimensional accelerometer. With this instrumentation, it is possible to create a complete database that correlates wind speeds with the responses of the structural set. At the moment, 5 months of data have been collected and the instrumentation is in the final testing phase and synchronized. After this step, real-time measurements will be performed.

  11. Integration of High-Tc Superconducting Cables in the Dutch Power Grid of the Future

    NARCIS (Netherlands)

    Zuijderduin, R.

    2016-01-01

    Worldwide there is an increasing need for a more sustainable form of electrical power delivery with a growing share of renewable energy generation. In the distribution and transmission network, large-scale and small-scale wind and solar power plants will be introduced, in proportion to the annual

  12. Transmission and distribution of information in power plants

    International Nuclear Information System (INIS)

    Pinkernell, H.

    1978-01-01

    Operation of modern large-site power plants is no longer imaginable without facilities for automatic control. Brown-Boveri Company has developed a promising control system for power plants called Procontrol k. An essential piece of the system is DATRAS k, a digital bus-oriented data transport system for transmitting and distributing signals in power plants. DATRAS will save a large amount of cables and reduce the constructional effect. It offers opportunities for diagnosis and service and by means of continuous monitoring of all system components it will essentially improve plant availability. (orig.) [de

  13. IEEE Std 383-1974: IEEE standard for type test of Class IE electric cables, field splices, and connections for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard provides direction for establishing type tests which may be used in qualifying Class 1E electric cables, field splices, and other connections for service in nuclear power generating stations. General guidelines for qualifications are given in IEEE Std 323-1974, Standard for Qualifying Class IE Electric Equipment for Nuclear Power Generating Stations. Categories of cables covered are those used for power control and instrumentation services. Though intended primarily to pertain to cable for field installation, this guide may also be used for the qualification of internal wiring of manufactured devices. This guide does not cover cables for service within the reactor vessel

  14. Microwave power - An energy transmission alternative for the year 2000

    Science.gov (United States)

    Nalos, E.; Sperber, R.

    1980-01-01

    Recent technological advances related to the feasibility of efficient RF-dc rectification make it likely that by the year 2000 the transmission of power through space will have become a practical reality. Proposals have been made to power helicopters, aircraft, balloons, and rockets remotely. Other proposals consider the transfer of power from point to point on earth via relay through space or a transmission of power from large power sources in space. Attention has also been given to possibilities regarding the transmission of power between various points in the solar system. An outline is provided of the microwave power transmission system envisaged for the solar power satellite, taking into account the transmitting antenna, the receiver on earth, aspects of beam formation and control, transmitter options, the receiving antenna design, and cost and efficiency considerations.

  15. Novel approach to assess local market power considering transmission constraints

    International Nuclear Information System (INIS)

    Li, Canbing; Xia, Qing; Kang, Chongqing; Jiang, Jianjian

    2008-01-01

    Market power (MP) assessment and mitigation affect the efficiency of the generation market. The traditional indices such as HHI and Lerner index can not express local market power, which caused by transmission constraints. Transmission constraints divide the market into some smaller parts. Some generators can abuse their MP in one part but not in the whole market. This paper describes a new approach to assess market power. The main contributions of the new method can be summarized as following. First, the concept of local market is developed, and the whole power system is divided into several local markets, as transmission congestions dividing the market. In the local markets, there are no transmission constraints so local market power does not exist. Then the local market power index (LMPI) is calculated according to market concentration, transmission constraints, and demand-supply ratio. Based on LMPI, the integrated local market power index which describes the whole picture of market can be obtained. It has been proved that the new approach can assess market power exactly, and identify the critical factor that results in market power and where generators are easy to exercise market power. The finding in this paper is helpful for market monitoring and mitigating market power. Moreover, the new index can be used to evaluate the power grid availability to generation competition and the power transmission expansion planning. (author)

  16. Design and construction of a high temperature superconducting power cable cryostat for use in railway system applications

    International Nuclear Information System (INIS)

    Tomita, M; Muralidhar, M; Suzuki, K; Fukumoto, Y; Ishihara, A; Akasaka, T; Kobayashi, Y

    2013-01-01

    The primary objective of the current effort was to design and test a cryostat using a prototype five-meter long high temperature Bi 2 Sr 2 Ca 2 Cu 3 O y (Bi-2223) superconducting dc power cable for railway systems. To satisfy the safety regulations of the Govt of Japan a mill sheet covered by super-insulation was used inside the walls of the cryostat. The thicknesses of various walls in the cryostat were obtained from a numerical analysis. A non-destructive inspection was utilized to find leaks under vacuum or pressure. The cryostat target temperature range was around 50 K, which is well below liquid nitrogen temperature, the operating temperature of the superconducting cable. The qualification testing was carried out from 77 down to 66 K. When using only the inner sheet wire, the maximum current at 77.3 K was 10 kA. The critical current (I c ) value increased with decreasing temperature and reached 11.79 kA at 73.7 K. This is the largest dc current reported in a Bi 2 Sr 2 Ca 2 Cu 3 O y or YBa 2 Cu 3 O y (Y-123) superconducting prototype cable so far. These results verify that the developed DC superconducting cable is reliable and fulfils all the requirements necessary for successful use in various power applications including railway systems. The key issues for the design of a reliable cryogenic system for superconducting power cables for railway systems are discussed. (paper)

  17. Power transmission pricing: issues and international experience

    International Nuclear Information System (INIS)

    Bodenhoefer, H.J.; Wohlgemuth, N.

    2001-01-01

    A key aspect of electricity industry reorganization is transmission pricing because it heavily influences the degree of effective competition in 'liberalized' electricity markets. this paper presents an overview transmission pricing models, of issues related to an effective design of a transmission pricing approach, and presents approaches implemented internationally. A conclusion is that, due to the great number of institutional designs of electricity market organizations, particularly in Europe, it will be difficult to design/implement a model of cross-border transmission pricing that is capable of inducing a high degree of non-discriminatory international competition in electricity markets. (author)

  18. Superconducting ac cable

    Science.gov (United States)

    Schmidt, F.

    1980-11-01

    The components of a superconducting 110 kV ac cable for power ratings or = 2000 MVA were developed. The cable design is of the semiflexible type, with a rigid cryogenic envelope containing a flexible hollow coaxial cable core. The cable core consists of spirally wound Nb-A1 composite wires electrically insulated by high pressure polyethylene tape wrappings. A 35 m long single phase test cable with full load terminals rated at 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of this cable design.

  19. Superconducting ac cable

    International Nuclear Information System (INIS)

    Schmidt, F.

    1980-01-01

    The components of a superconducting 110 kV ac cable for power ratings >= 2000 MVA have been developed. The cable design especially considered was of the semiflexible type, with a rigid cryogenic envelope and flexible hollow coaxial cable cores pulled into the former. The cable core consists of spirally wound Nb-Al composite wires and a HDPE-tape wrapped electrical insulation. A 35 m long single phase test cable with full load terminations for 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of our cable design. (orig.) [de

  20. Phased Array Excitations For Efficient Near Field Wireless Power Transmission

    Science.gov (United States)

    2016-09-01

    channeled to the battery or power plant. Figure 2. WPT System Block Diagram for Battery Charging. Source : [2]. Wireless power transfer has gained...EXCITATIONS FOR EFFICIENT NEAR-FIELD WIRELESS POWER TRANSMISSION by Sean X. Hong September 2016 Thesis Advisor: David Jenn Second Reader...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE PHASED ARRAY EXCITATIONS FOR EFFICIENT NEAR-FIELD WIRELESS POWER TRANSMISSION 5

  1. Power system technical performance issues related to the application of long HVAC cables

    DEFF Research Database (Denmark)

    Wiechowski, on behalf of Cigre WG C4.502, W.; Sluis, L. V. der; Ohno, Teruo

    2011-01-01

    This paper reports the progress of work of Cigre Working Group C4.502 “Power system technical performance issues related to the application of long HVAC cables”. The primary goal of the WG C4.502 is to write a technical brochure that will serve as practical guide for performing studies necessary...... for assessing the technical performance of HV/EHV systems with large share of AC cable lines. This paper besides providing a background for formulation of WG C4.502 and its overall aim, describes the tasks that were accomplished before the interim report was submitted to Study Committee C4 System Technical...... Performance in August 2010. The work in the WG is ongoing and final report will be ready according to the time schedule in 2012. The focus of this paper is in particular to show all issues related to system technical performance with assigned weights in terms of their importance and/or uniqueness for cable...

  2. towards solving the problem of transmission and distribution of ...

    African Journals Online (AJOL)

    DISTRIBUTION OF ELECTRIC POWER IN NIGERIA VIA. SUPERCONDUCTOR POWER ... that Nigerian power transmission network is characterized by prolonged and .... (a) The design of superconducting cables generally includes flexibility ...

  3. Assessment of proactive transmission power control for wireless sensor networks

    NARCIS (Netherlands)

    kotian, Roshan; Exarchakos, Georgios; Liotta, Antonio

    2014-01-01

    In order to prolong lifetime of Wireless Sensor Networks (WSN), Transmission Power Control (TPC) techniques are employed. The existing TPC schemes adjust the transmission power mostly reacting to changes at link quality between communicating nodes. Proactive TPC has been proposed in the recent past

  4. Data driven transmission power control for wireless sensor networks

    NARCIS (Netherlands)

    kotian, Roshan; Exarchakos, Georgios; Liotta, Antonio; Di Fatta, G.; Fortino, G.; Li, W.; Pathan, M.; Stahl, F.; Guerrieri, A.

    2015-01-01

    Transmission Power Control (TPC) is employed in the sensor nodes with the main objective of minimizing transmission power consumption. However, major drawbacks with well-known TPC are time consuming and energy inefficient initialization phase. Moreover, they employ Received Signal Strength Indicator

  5. The optimization of wireless power transmission: design and realization.

    Science.gov (United States)

    Jia, Zhiwei; Yan, Guozheng; Liu, Hua; Wang, Zhiwu; Jiang, Pingping; Shi, Yu

    2012-09-01

    A wireless power transmission system is regarded as a practical way of solving power-shortage problems in multifunctional active capsule endoscopes. The uniformity of magnetic flux density, frequency stability and orientation stability are used to evaluate power transmission stability, taking into consideration size and safety constraints. Magnetic field safety and temperature rise are also considered. Test benches are designed to measure the relevent parameters. Finally, a mathematical programming model in which these constraints are considered is proposed to improve transmission efficiency. To verify the feasibility of the proposed method, various systems for a wireless active capsule endoscope are designed and evaluated. The optimal power transmission system has the capability to supply continuously at least 500 mW of power with a transmission efficiency of 4.08%. The example validates the feasibility of the proposed method. Introduction of novel designs enables further improvement of this method. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Dynamic temperature estimation and real time emergency rating of transmission cables

    DEFF Research Database (Denmark)

    Olsen, R. S.; Holboll, J.; Gudmundsdottir, Unnur Stella

    2012-01-01

    enables real time emergency ratings, such that the transmission system operator can make well-founded decisions during faults. Hereunder is included the capability of producing high resolution loadability vs. time schedules within few minutes, such that the TSO can safely control the system.......). It is found that the calculated temperature estimations are fairly accurate — within 1.5oC of the finite element method (FEM) simulation to which it is compared — both when looking at the temperature profile (time dependent) and the temperature distribution (geometric dependent). The methodology moreover...

  7. The future of power transmission and distribution in India

    International Nuclear Information System (INIS)

    Parakh, S.C.

    1995-01-01

    India's growing economy requires considerable investment in the power sector. Though rapid strides have been made, the power sector has been unable to supply quality power and demand is continuously outstripping supply. The future of power transmission and distribution in India is discussed. 2 tabs

  8. Energy cable engineering. Energiekabeltechnik

    Energy Technology Data Exchange (ETDEWEB)

    Luecking, H W

    1981-01-01

    This textbook intends to explain cable elements and common cable constructions according to VDE, and in a second part, to review the theoretical fundamentals and their consequences with a view to the construction of cables for higher voltages and powers. It will give the student a picture of the variety of problems and solutions which make cable engineering so interesting and show the practising engineer how to derive a theoretical system from their extensive everyday experience.

  9. A Study on the Measurement of Ultrasound Velocity to Evaluate Degradation of Low Voltage Cables for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Cho; Kang, Suk Chull; Goo, Cheol Soo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Jin Ho; Park, Jae Seok; Joo, Geum Jong; Park, Chi Seung [KAITEC, Seoul (Korea, Republic of)

    2004-08-15

    Several kinds of low voltage cables have been used in nuclear power plants for the supply of electric power, supervision, and the propagation of control signals. These low voltage tables must be inspected for safe and stable operation of nuclear power plants. In particular, the degradation diagnosis to estimate the integrity of low voltage rabies has recently been emphasized according to the long use of nuclear power plants. In order to evaluate their degradation, the surrounding temperature, hardness of insulation material, elongation at breaking point (EAB), etc. have been used. However, the measurement of temperature or hardness is not useful because of the absence of quantitative criteria; the inspection of a sample requires turning off of the power plant power; and, the electrical inspection method is not sufficiently sensitive from the initial through the middle stage of degradation. In this research, based on the theory that the ultrasonic velocity changes with relation to the degradation of the material, we measured the ultrasonic velocity as low voltage cables were degraded. To this end, an ultrasonic degradation diagnosis device was developed and used to measure the ultrasonic velocity with the clothing on the cable, and it was confirmed that the ultrasonic velocity changes according to the degradation of low voltage cables. The low voltage cables used in nuclear power plants were degraded at an accelerated rate, and EAB was measured in a tensile test conducted after the measurement of ultrasonic velocity. With the increasing degradation degree, the ultrasonic velocity decreased, whose potential as a useful parameter for the quantitative degradation evaluation was thus confirmed

  10. Characterization of a prototype batch of long polyimide cables designed for fast data transmission on ATLAS ITk strip staves

    CERN Document Server

    Dopke, Jens; The ATLAS collaboration; Sawyer, Craig; Sullivan, Stephanie W

    2018-01-01

    The silicon-strip system in the ATLAS ITk detector has individual sensor modules mounted on staves to provide integrated solution for mechanical support, power, cooling, and data transmission. The data and power are transmitted to individual modules on polyimide tapes placed on thermo-mechanical stave cores. The 1.4 m long tapes transmit module data at the rate of 640 Mbps, along with providing several multi-drop clock and command links, and power lines. The first batch of 25 tapes has been produced. We characterized the line impedance and its variation across the batch, examined the tape cross-section, and assessed the variation between design and fabrication.

  11. Technical and economic considerations of extra high voltage power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kahnt, R

    1966-09-01

    The reasons for the employment of higher transmission voltages are listed and the points decisive for the selection of three phase ac or dc systems are reviewed. This is followed by treatment of the technical and economic problems arising in three phase-extra high voltage transmission. These include selection of voltage, economical design of power lines, insulation problems, power supply dependability, equipment rating, and reactive power and stability problems.

  12. Technical and economic considerations of extra high voltage power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kahnt, R

    1966-09-01

    The reasons for the employment of higher transmission voltages are listed and the points decisive for the selection of three phase ac or dc systems are reviewed. The technical and economic problems arising in three phase extra high voltage transmission are discussed. These include selection of voltage, economical design of power lines, insulation problems, power supply dependability, equipment rating and reactive power and stability problems.

  13. Power Transmission by Optical Fibers for Component Inherent Communication

    Directory of Open Access Journals (Sweden)

    Michael Dumke

    2010-02-01

    Full Text Available The use of optical fibers for power transmission has been investigated intensely. An optically powered device combined with optical data transfer offers several advantages compared to systems using electrical connections. Optical transmission systems consist of a light source, a transmission medium and a light receiver. The overall system performance depends on the efficiency of opto-electronic converter devices, temperature and illumination dependent losses, attenuation of the transmission medium and coupling between transmitter and fiber. This paper will summarize the state of the art for optically powered systems and will discuss reasons for negative influences on efficiency. Furthermore, an outlook on power transmission by the use of a new technology for creating polymer optical fibers (POF via micro dispensing will be given. This technology is capable to decrease coupling losses by direct contacting of opto-electronic devices.

  14. The Replacement of Copper with Aluminum Should Not be Implemented in China’s Power Cable Industry

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Recently,the results of the project entitled Research on Strategic Planning for the Application of China’s Copper and Aluminum Resources to the Power Cable Market,undertaken by the Resources Environment&Policy Research Institute,the Development Research Center of the State Council pointed

  15. Automated wireless monitoring system for cable tension using smart sensors

    Science.gov (United States)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jongwoong; Cho, Soojin; Spencer, Billie F.; Yun, Chung-Bang

    2013-04-01

    Cables are critical load carrying members of cable-stayed bridges; monitoring tension forces of the cables provides valuable information for SHM of the cable-stayed bridges. Monitoring systems for the cable tension can be efficiently realized using wireless smart sensors in conjunction with vibration-based cable tension estimation approaches. This study develops an automated cable tension monitoring system using MEMSIC's Imote2 smart sensors. An embedded data processing strategy is implemented on the Imote2-based wireless sensor network to calculate cable tensions using a vibration-based method, significantly reducing the wireless data transmission and associated power consumption. The autonomous operation of the monitoring system is achieved by AutoMonitor, a high-level coordinator application provided by the Illinois SHM Project Services Toolsuite. The monitoring system also features power harvesting enabled by solar panels attached to each sensor node and AutoMonitor for charging control. The proposed wireless system has been deployed on the Jindo Bridge, a cable-stayed bridge located in South Korea. Tension forces are autonomously monitored for 12 cables in the east, land side of the bridge, proving the validity and potential of the presented tension monitoring system for real-world applications.

  16. Matching problems in pulse power radial transmission lines

    International Nuclear Information System (INIS)

    Mittag, K.; Brandelik, A.

    1984-12-01

    In this report we study the power transfer from a generator along a coaxial transmission line followed by a radial transmission line into a load, which in our application is a pseudo-spark plasma of about one millimeter diameter and about 15 cm in length. First the theoretical background based on transmission line theory is described. Then numerical results are presented. The main conclusion is that when matching the pulse power generator to the pseudo-spark plasma, the effect of the impedance transformation caused by the radial transmission line has to be taken into account. The conditions to obtain an optimal match are described. (orig.) [de

  17. A Comparison of Fishes and Invertebrates Living in the Vicinity of Energized and Unenergized Submarine Power Cables and Natural Sea Floor off Southern California, USA

    Directory of Open Access Journals (Sweden)

    Milton S. Love

    2017-01-01

    Full Text Available Increasing reliance on deep-water renewable energy has increased concerns about the effects of the electromagnetic fields (EMFs generated by submarine power cables on aquatic organisms. Off southern California, we conducted surveys of marine organisms living around energized and unenergized submarine power cables and nearby sea floor during 2012–2014 at depths between 76 and 213 m. In general, EMFs declined to background levels about one meter from the cable. We found no statistical difference in species composition between the fish assemblages along the energized and unenergized cables. The natural habitat community statistically differed from both energized and unenergized cable communities. Within species (or species groups, we found no differences in densities between energized and unenergized cables. Total fish densities were significantly higher around the cables than over the natural habitat. We found that invertebrate communities were structured by habitat type and depth and, similar to the fishes, there was no statistical difference between the energized and unenergized cables. Individually, the densities of four invertebrate species or species groups (Metridium farcimen, Luidia spp., unidentified black Crinoidea, and Urticina spp. differed between energized and unenergized cables, but this difference was not significant across all depth strata. The invertebrate community inhabiting the natural habitat strongly differed from the energized and unenergized cable community exhibiting the fewest species and individuals.

  18. THE TECHNOLOGICAL AND EXPLOITATIVE FACTORS OF LOCAL INCREASE OF ELECTRIC FIELD STRENGTH IN THE POWER CABLE OF COAXIAL DESIGN

    Directory of Open Access Journals (Sweden)

    G. V. Bezprozvannych

    2016-12-01

    Full Text Available Introduction. Reliability of high voltage power cables in the process of long-term operation is largely due to the intensity of polymeric insulation aging. It is now established that the aging of polyethylene, which is the main material for the insulation of high voltage power cables, under the action of the electric field is determined primarily by the presence of structural heterogeneity arising both during cable production and during use. The cable is always there deviations from the ideal structure, which manifest in a deviation of diameters of conductors from nominal values; in the arrangement of the conductor and the insulation is not strictly coaxially and eccentrically; in elliptic (oval core and insulation; change in relative dielectric constant and thickness of insulation on cable length force the formation of low molecular weight products (including water in the flow at the manufacturing stage crosslinked polyethylene insulation and moisture during operation. Such defects are structural, technological and operational irregularities, which lead to a local change in the electric field. Purpose. Analysis of the influence of the eccentricity, elliptic and spherical inclusions in the electric field distribution in the power cable of a coaxial design with cross-linked polyethylene insulation, based on numerical simulation. Methodology. The bases of the numerical method of calculation of the electrical field strength are Fredholm integral equations of the first and second kind (method of secondary sources for an axially symmetric field. Analysis of the influence of irregularities, including water treeing, the shape of the sounding signal is made using the method of discrete resistive circuit inductance and capacitance of substitution with the initial conditions. Solving systems of linear algebraic equations nodal analysis performed by the sweep method. Results. The presence of the eccentricity and ellipticity in the construction of cable has

  19. IEEE standard for type test of class 1E electric cables, field splices, and connections for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    The Institute of Electrical and Electronics Engineers has generated this document to provide guidance for developing a program to type test cables, field splices, and connections and obtain specific type test data. It supplements IEEE Std 323-1974 Standard for Qualifying Class IE Equipment for Nuclear Power Generating Stations, which describes basic requirements for equipment qualification. It is the integrated performance of the structures, fluid systems, the electrical systems, the instrumentation systems of the station, and in particular, the plant protection system, that limits the consequences of accidents. Seismic effects on installed cable systems are not within the scope of this document. Section 2 of this guide is an example of type tests. It is the purpose of this guide to deal with cable and connections; however, at the time of issue, detailed examples of tests for connections were not available

  20. Electrodynamic wireless power transmission to a torsional receiver

    International Nuclear Information System (INIS)

    McEachern, K M; Arnold, D P

    2013-01-01

    This paper presents a wireless power transmission (WPT) concept that uses electrodynamic coupling and torsional motion of a permanent magnet in the receiver. The system is shown to transfer an average power of 3.09 mW (power density equal to 143 μW/cm 3 ) over a distance of 1 cm, an average power of 1.98 mW over a distance of 2 cm, and an average power of 126 μW over a distance of 7 cm. We also demonstrate unaltered power transmission through conductive media, including a human hand and an aluminum plate, highlighting a key advantage of the electrodynamic wireless power transmission approach

  1. Proposed superscreened cables and connectors

    International Nuclear Information System (INIS)

    Fowler, E.P.

    1975-11-01

    The paper summarises the present availability of superscreened cables and proposes the specification of a family of cables to meet the foreseeable needs of the nuclear power industry. The cable numbering system is described, special tests outlined and important details given for the chosen cables. Appropriate connectors are also discussed and listed with an outline of their required screening performance. (author)

  2. Transmission of power at high voltages

    Energy Technology Data Exchange (ETDEWEB)

    Lane, F J

    1963-01-01

    High voltage transmission is considered to be concerned with circuits and systems operating at or above 132 kV. While the general examination is concerned with ac transmission, dc systems are also included. The choice of voltage for a system will usually involve hazardous assessments of the future requirements of industry, commerce and a changing population. Experience suggests that, if the estimated economic difference between two voltages is not significant, there is good reason to choose the higher voltage, as this will make the better provision for unexpected future expansion. Two principal functions served by transmission circuits in a supply system are: (a) the transportation of energy in bulk from the generator to the reception point in the distribution system; and (b) the interconnection and integration of the generating plant and associated loads. These functions are considered and various types of system are discussed in terms of practicability, viability, quality and continuity of supply. Future developments requiring transmission voltages up to 750 kV will raise many problems which are in the main empirical. Examples are given of the type of problem envisaged and it is suggested that these can only be partially solved by theory and model operation.

  3. Testing Selective Transmission with Low Power Listening

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg; Arroyo-Valles, Rocio; Cid-Sueiro, Jesus

    2010-01-01

    Selective transmission policies allow nodes in a sensor network to autonomously decide between transmitting or discarding packets depending on the importance of the information content and the energetic cost of communications. The potential benefits of these policies depend on the capability...

  4. Vehicle power supply cable with optical jacket monitoring and arcing interference detection; Bordnetzkabel mit optischer Mantelueberwachung und Stoerlichtbogendetektion

    Energy Technology Data Exchange (ETDEWEB)

    Viehmann, Matthias [Fachhochschule Nordhausen (Germany). Lehrstuhl fuer Industrieelektronik; Kloss, Christina [Fachhochschule Nordhausen (Germany). Forschungsschwerpunkte Polymere/Elastomere und Lichtwellenleiter; Lustermann, Birgit [Fachhochschule Nordhausen (Germany). Forschungsschwerpunkte Lichtwellenleiter und Simulation optischer Systeme

    2012-10-15

    In vehicles with electrical drive, vehicle power supplies are used with high-voltage level, as well as with several voltage levels. In order to minimise any hazards through arcing faults associated with this, constructive and material-technical measures are necessary. Nordhausen Technical College presents a patented, opticalelectrical combination conductor - the main constituent of an innovative vehicle power supply cable with optical jacket monitoring and arcing interference detection. (orig.)

  5. Wind power, distrubted generation and transmission

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    the possibilities for integration of even more wind power using new power balancing strategies that exploit the possibilities given by the existence of CHP plants as well as the impact of heat pumps for district heating. The analyses demonstrate that it is possible to accommodate 50% or more wind power without......Denmark has the World?s highest penetration of wind power in electricity generation with a share of 15.0% of total domestic demand in 2002 (DEA, 2004). This is unevenly distributed in the two electricity systems of Denmark giving a share as high as 20.7% in Western Denmark in 2003 up from 18...... power balancing strategies are not applied, costly grid expansions will follow expansions in installed wind power capacity....

  6. Proximity effects of high voltage electric power transmission lines on ...

    African Journals Online (AJOL)

    Yomi

    2010-08-18

    Aug 18, 2010 ... transmission lines on ornamental plant growth. Zeki Demir ... The effects of proximity to power-line on specific leaf area and seedling dbh were tested .... during vegetation season is about 72% and common wind blow.

  7. Cable Terminations for the BSURE (Barking Sands Underwater Range Expansion) Terminal and Transmission Units (TATU). Design Review Team Report.

    Science.gov (United States)

    1985-01-01

    One, a cable termination pull out and two, leakage. It is felt that both of these problems have been solved. The cable termiration pullout problem...nm selctroicse~I -. V~- 30.3 Z? Ul.T Casio Ca" inOS Allow waer to tam. feai Mone 11 l i"f MM Goali (30.321) -= 9to75 % col roo NMI V023 ’..ca...t-he third typ. of failure, an SD cable pulled out of termination. This was obviously not caused by a Morrison seal or an 0-ring. it appears

  8. Line Capacity Expansion and Transmission Switching in Power Systems With Large-Scale Wind Power

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Bronmo, Geir; Philpott, Andy B.

    2013-01-01

    In 2020 electricity production from wind power should constitute nearly 50% of electricity demand in Denmark. In this paper we look at optimal expansion of the transmission network in order to integrate 50% wind power in the system, while minimizing total fixed investment cost and expected cost...... of power generation. We allow for active switching of transmission elements to reduce congestion effects caused by Kirchhoff's voltage law. Results show that actively switching transmission lines may yield a better utilization of transmission networks with large-scale wind power and increase wind power...

  9. Analysis of main dynamic parameters of split power transmission

    Directory of Open Access Journals (Sweden)

    A. Janulevičius

    2008-06-01

    Full Text Available The review carried out had shown one basic approach of split power transmission to the organization of drive which is applied to stepless transmissions of tractors and parallel hybrid cars. In the split power transmission the power split device uses a planetary gear. Tractor engine power in the split power transmission is transmitted to the drive shaft via a mechanical and hydraulic path. The theoretical analysis of main parameters of the split power transmission of the tractor is presented. The angular velocity of sun and coronary gears of the differential set is estimated by solution of the system of equations in which one equation is made for planetary differential gear, and another – for hydrostatic drive. The analysis of the transmission gear-ratio dependencies on the ratio of hydraulic machines capacities is carried out. Dependence of the variation of angular velocity of the coronary and the sun gears on the ground speed of the tractor is presented. Dependence of sum shaft torque and its constituents, carried by mechanical and hydraulic lines, on sum shaft angular velocity and ground speed of tractor and engine speed is also presented.

  10. Characteristics of the joint mini-model high temperature superconducting cable

    International Nuclear Information System (INIS)

    Kim, H.; Sim, K.; Cho, J.; Kim, S.; Kim, J.H.; Jung, H.Y.

    2008-01-01

    To obtain realistic data on the high temperature superconducting (HTS) power cable, 3-phase 100 m long, 22.9 kV class HTS power transmission cable system have been developed by Korea Electrotechnology Research Institute (KERI) and LS cable Ltd. that is one of 21st Century Frontier Project in Korea. This cable was installed at Go-chang testing site of Korea Electric Power Corporation (KEPCO). For the application of the HTS power cable joint is very important to ensure the performance. Therefore, this paper gives some investigation of AC loss, critical current and joint resistance in jointed HTS tape. We experimentally showed that the influence of joint resistance on AC loss by using several joint methods. Finally, we are measured critical current, AC loss and jointed resistance for the manufactured mini-model cable

  11. High-voltage direct current (HVDC) transmission - a key technology for our power supply

    International Nuclear Information System (INIS)

    Dorn, J.

    2016-01-01

    The phasing-out of nuclear power in some countries and the aspirations of reducing carbon dioxide emissions have far-reaching implications for electric power generation in Europe. In the future, renewable electricity generation will account for a considerable share of the energy mix, but this type of production is often far from the load centers. In Germany, for example, large quantities of wind energy are already generated in the north and in the North Sea, but large load centers are located several hundred kilometers south of there. This requires an expansion of the transmission network with innovative solutions. High-voltage direct-current (HVDC) transmission plays an important role, since it brings a number of advantages over conventional AC technology and makes certain requirements feasible, for example Cable transmission over longer distances. The lecture presents the advantages of HVDC, the semiconductors used as well as the basic functions and typical performance of the used converter topopologies. The plant configurations and main components are illustrated using current projects. (rössner) [de

  12. HVDC Transmission an Outlook and Significance for Pakistani Power Sector

    Science.gov (United States)

    Ahmad, Muhammad; Wang, Zhixin; Wang, Jinjian; Baloach, Mazhar H.; Longxin, Bao; Hua, Qing

    2018-04-01

    Recently a paradigm shift in the power sector is observed, i.e., countries across the globe have deviated their attention to distributed generation rather than conventional centralized bulk generation. Owing to the above narrative, distributed energy resources e.g., wind and PV have gained the adequate attention of governments and researchers courtesy to their eco-friendly nature. On the contrary, the increased infiltration of distributed generation to the power system has introduced many technical and economical glitches such as long-distance transmission, transmission lines efficiency, control capability and cost etc. To mitigate these complications, the utility of high voltage direct current (HVDC) transmission has emerged as a possible solution. In this context, this paper includes a brief discussion on the fundamentals HVDC and its significance in Pakistani power sector. Furthermore, the potential of distributed energy resources for Pakistan is also the subject matter of this paper, so that significance of HVDC transmission can effectively be deliberated.

  13. DEVELOPMENT OF WIRELESS TECHNIQUES IN DATA AND POWER TRANSMISSION APPLICATION FOR PARTICLE-PHYSICS DETECTORS

    CERN Document Server

    Brenner, R; Dehos, C; De Lurgio, P; Djurcic, Z; Drake, G; Gonzales Gimenez, JL; Gustafsson, L; Kim, DW; Locci, E; Pfeiffer, U; Röhrich, D; Rydberg, D; Schöning, A; Siligaris, A; Soltveit, HK; Ullaland, K; Vincent, P; Vasquez, PR; Wiedner, D; Yang, S

    2017-01-01

    In the WADAPT project described in this Letter of Intent, we propose to develop wireless techniques for data and power transmission in particle-physics detectors. Wireless techniques have developed extremely fast over the last decade and are now mature for being considered as a promising alternative to cables and optical links that would revolutionize the detector design. The WADAPT consortium has been formed to identify the specific needs of different projects that might benefit from wireless techniques with the objective of providing a common platform for research and development in order to optimize effectiveness and cost. The proposed R&D will aim at designing and testing wireless demonstrators for large instrumentation systems.

  14. Stray current induced corrosion in lightning rod cables of 525 kV power lines towers: a case study

    International Nuclear Information System (INIS)

    Wojcicki, F. R.; Negrisoli, M. E. M.; Franco, C. V.

    2003-01-01

    With the growth of several areas in modern society, the necessity to generate and carry electrical energy to big cities has greatly increased. Cables supported by power towers with galvanized steel foundation usually carry energy. As the foundations are underground they may cause high rates of corrosion. These are usually detected by a conventional potential measurement using a Cu/CuSO 4 reference electrode. It is believed that corrosion results from stray currents that flow through the ground to close the loop between neighboring towers. Stray currents originate in the lightning rod cables of the power line towers, induced by the strong electromagnetic and electric fields of the energized power lines. The intensity and direction of those currents were measured, indicating substantial values of both their AC and DC components. The potential of the tower ground system, measured in the perpendicular direction of the main axis of the power line, was plotted as a function of the distance to the tower base. The results clearly indicated the tendency to corrosive attack in the anodic towers as reflected by the slope of the plot, whereas no signs of corrosion could be found in the reverse slope, confirming the visual inspection of the foundation. The profile of the potential plots could be changed providing the electric insulation of the lightning rod cable. (Author) 8 refs

  15. Review of nuclear power plant safety cable aging studies with recommendations for improved approaches and for future work

    International Nuclear Information System (INIS)

    Gillen, Kenneth Todd; Bernstein, Robert

    2010-01-01

    Many U. S. nuclear power plants are approaching 40 years of age and there is a desire to extend their life for up to 100 total years. Safety-related cables were originally qualified for nuclear power plant applications based on IEEE Standards that were published in 1974. The qualifications involved procedures to simulate 40 years of life under ambient power plant aging conditions followed by simulated loss of coolant accident (LOCA). Over the past 35 years or so, substantial efforts were devoted to determining whether the aging assumptions allowed by the original IEEE Standards could be improved upon. These studies led to better accelerated aging methods so that more confident 40-year lifetime predictions became available. Since there is now a desire to potentially extend the life of nuclear power plants way beyond the original 40 year life, there is an interest in reviewing and critiquing the current state-of-the-art in simulating cable aging. These are two of the goals of this report where the discussion is concentrated on the progress made over the past 15 years or so and highlights the most thorough and careful published studies. An additional goal of the report is to suggest work that might prove helpful in answering some of the questions and dealing with some of the issues that still remain with respect to simulating the aging and predicting the lifetimes of safety-related cable materials.

  16. Potential of remote multiplexing systems in reducing cabling cost and complexity in nuclear power stations

    International Nuclear Information System (INIS)

    Stirling, A.J.; L'Archeveque, J.V.R.

    1977-03-01

    Control and instrumentation cabling accounts for nearly 1% of the capital cost of a CANDU generating station. This study of cabling requirements, methods and costs for nuclear reactors, shows that efficient design and scale economies make CANDU wiring costs (per field point) among the lowest for comparable applications. Although attractive in other reactors, commercially available remote multiplexing systems are not, as yet, cost effective for general use in CANDU stations. The report, with its comprehensive tabulation of remote multiplexing equipment, and analysis of cabling procedures describes an approach for re-evaluating the tradeoff between remote multiplexing and conventional wiring as conditions change. (author)

  17. Dynamic modeling of fluid power transmissions for wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2011-01-01

    Fluid power transmission for wind turbines is quietly gaining more ground/interest. The principle of the various concepts presented so far is to convert aerodynamic torque of the rotor blades into a pressurized fluid flow by means of a positive displacement pump. At the other end of the fluid power

  18. A Novel Oscillating Rectenna for Wireless Microwave Power Transmission

    Science.gov (United States)

    McSpadden, J. O.; Dickinson, R. M.; Fan, L.; Chang, K.

    1998-01-01

    A new concept for solid state wireless microwave power transmission is presented. A 2.45 GHz rectenna element that was designed for over 85% RF to dc power conversion efficiency has been used to oscillate at 3.3 GHz with an approximate 1% dc to RF conversion efficiency.

  19. ARMAX, OE and SSIF model predictors for power transmission and ...

    African Journals Online (AJOL)

    Three mathematical model structures, namely: ARMAX, OE and a SSIF are first formulated followed by the formulation of their respective model predictors for the model identification and prediction of power transmission and distribution within Akure and its environs. A total of 51,350 data samples from the Power Holding ...

  20. Evaluation of Environmentally Assisted Cracking of Armour Wires in Flexible Pipes, Power Cables and Umbilicals

    Science.gov (United States)

    Zhang, Zhiying

    Environmentally assisted cracking (EAC) of armour wires in flexible pipes, power cables and umbilicals is a major concern with the development of oil and gas fields and wind farms in harsh environments. Hydrogen induced cracking (HIC) or hydrogen embrittlement (HE) of steel armour wires used in deep-water and ultra-deep-water has been evaluated. Simulated tests have been carried out in simulated sea water, under conditions where the susceptibility is the highest, i.e. at room temperature, at the maximum negative cathodic potential and at the maximum stress level expected in service for 150 hours. Examinations of the tested specimens have not revealed cracking or blistering, and measurement of hydrogen content has confirmed hydrogen charging. In addition, sulphide stress cracking (SSC) and chloride stress cracking (CSC) of nickel-based alloy armour wires used in harsh down-hole environments has been evaluated. Simulated tests have been carried out in simulated solution containing high concentration of chloride, with high hydrogen sulphide partial pressure, at high stress level and at 120 °C for 720 hours. Examinations of the tested specimens have not revealed cracking or blistering. Subsequent tensile tests of the tested specimens at ambient pressure and temperature have revealed properties similar to the as-received specimens.

  1. State of the Art Assessment of NDE Techniques for Aging Cable Management in Nuclear Power Plants FY2015

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Samuel W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hartman, Trenton S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-08

    This milestone report presents an update on the state-of-the-art review and research being conducted to identify key indicators of in-containment cable aging at nuclear power plants (NPPs), and devise in-situ measurement techniques that are sensitive to these key indicators. The motivation for this study stems from the need to address open questions related to nondestructive evaluation (NDE) of aging cables for degradation detection and estimation of condition-based remaining service life. These questions arise within the context of a second round of license extension for NPPs that would extend the operating license to 60 and 80 years. Within the introduction, a review of recently published U.S. and international research and guidance for cable aging management programs including NDE technologies is provided. As with any “state-of-the-art” report, the observations are deemed accurate as of the publication date but cannot anticipate evolution of the technology. Moreover, readers are advised that research and development of cable NDE technology is an ongoing issue of global concern.

  2. State of the Art Assessment of NDE Techniques for Aging Cable Management in Nuclear Power Plants FY2015

    International Nuclear Information System (INIS)

    Glass, Samuel W.; Fifield, Leonard S.; Dib, Gerges; Tedeschi, Jonathan R.; Jones, Anthony M.; Hartman, Trenton S.

    2015-01-01

    This milestone report presents an update on the state-of-the-art review and research being conducted to identify key indicators of in-containment cable aging at nuclear power plants (NPPs), and devise in-situ measurement techniques that are sensitive to these key indicators. The motivation for this study stems from the need to address open questions related to nondestructive evaluation (NDE) of aging cables for degradation detection and estimation of condition-based remaining service life. These questions arise within the context of a second round of license extension for NPPs that would extend the operating license to 60 and 80 years. Within the introduction, a review of recently published U.S. and international research and guidance for cable aging management programs including NDE technologies is provided. As with any 'state-of-the-art' report, the observations are deemed accurate as of the publication date but cannot anticipate evolution of the technology. Moreover, readers are advised that research and development of cable NDE technology is an ongoing issue of global concern.

  3. Watt-level wireless power transmission to multiple compact receivers

    International Nuclear Information System (INIS)

    Garraud, A; Munzer, D J; Althar, M; Garraud, N; Arnold, D P

    2015-01-01

    This paper reports an electrodynamic wireless power transmission (EWPT) system using a low-frequency (300 Hz) magnetic field to transmit watt-scale power levels to multiple compact receivers. As compared to inductively or resonantly coupled coils, EWPT facilitates transmission to multiple non-interacting receivers with little restriction on their orientation. A single 3.0 cm 3 receiver achieves 1.25 W power transmission with 8% efficiency at a distance of 1 cm (350 mW/cm 3 power density) from the transmitter. The same prototype achieves 9 mW at a distance of 9 cm. Moreover, we demonstrate simultaneous recharge of two wearable devices, using two receivers located in arbitrary positions and orientations. (paper)

  4. SUPER-CAPACITOR APPLICATION IN ELECTRICAL POWER CABLE TESTING FACILITIES IN THERMAL ENDURANCE AND MECHANICAL BRACING TESTS

    Directory of Open Access Journals (Sweden)

    I. V. Oleksyuk

    2015-01-01

    Full Text Available The current-carrying cores of the electrical power cables should be resistant to effects of short-circuit currents whose values depend on the material of the core, its cross-sectional area, cable insulation properties, environment temperature, and the duration of the short-circuit current flow (1 and 3–4 sec. when tested for thermal endurance and mechanical bracing. The facilities for testing the 10 kV aluminum core cables with short-circuit current shall provide mechanical-bracing current 56,82 kA and thermal endurance current 11,16 kA. Although capacitors provide such values of the testing currents to the best advantage, utilizing conventional capacitor-units will involve large expenditures for erecting and  running a separate building. It is expedient to apply super-capacitors qua the electric power supply for testing facilities, as they are capacitors with double-electrical layer and involve the current values of tens of kilo-amperes.The insulation voltage during short-circuit current testing being not-standardized, it is not banned to apply voltages less than 10 kV when performing short-circuit thermal endurance and mechanical bracing tests for electrical power cables of 10 kV. The super-capacitor voltage variation-in-time graph consists of two regions: capacitive and resistive. The capacitive part corresponds to the voltage change consequent on the energy change in the super-capacitors. The resistive part shows the voltage variation due to the active resistance presence in the super-capacitor.The author offers the algorithm determining the number of super capacitors requisite for testing 10 kV-electrical power cables with short-circuit currents for thermal endurance and mechanical bracing. The paper shows that installation of super-capacitors in the facilities testing the cables with short-circuit currents reduces the area needed for the super-capacitors in comparison with conventional capacitors more than by one order of magnitude.

  5. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    CERN Document Server

    Bayer, Christoph M

    2017-01-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  6. Stray current induced corrosion in lightning rod cables of 525 kV power lines towers: a case study

    OpenAIRE

    Wojcicki, F. R.; Negrisoli, M. E. M.; Franco, C. V.

    2003-01-01

    With the growth of several areas in modem society, the necessity to generate and carry electrical energy to big cities has greatly increased. Cables supported by power towers with galvanized steel foundation usually carry energy. As the foundations are underground they may cause high rates of corrosion. These are usually detected by a conventional potential measurement using a Cu/CuSO4 reference electrode. It is believed that corrosion results from stray currents that f...

  7. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Christoph M.

    2017-05-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  8. Lightweight Metal Rubber Wire and Cable for Space Power Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA STTR program is to produce ultra-lightweight electrical wire and cable harnesses to reduce the liftoff weight of future space flight...

  9. Restructuring in Turkish power generation and transmission

    International Nuclear Information System (INIS)

    Dilli, B.

    2001-01-01

    Restructuring of power sector is an evolutionary process and it is in its early days. As the reform proceeds and the market evolve and become more efficient, a number of unresolved issues shall be overcomed through re-regulations. So, the most important point is the smooth transition to the liberalized markets. The solution is dependent upon the assimilation, acceptation and supporting of the reform by the parties concerned. Market participants' acceptance and actions will be the key element for the success of the new market. (author)

  10. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    International Nuclear Information System (INIS)

    1975-09-01

    The major issues examined in the comparison of the DIST and HNEC transmission concepts are: (1) type of transmission to be employed and an assessment of its technical feasibility, (2) availability of rights-of-way, (3) economics, (4) environmental impact, and (5) overall reliability of the transmission system. The type of transmission selected for bulk power transfer from an HNEC for the time period studied is overhead AC, 500 kV double or single circuit, a voltage currently used in the PNW system. This type of system can accommodate growth up to at least 23,000 MW of thermal capacity at an HNEC. Significant additional transmountain capacity needs would require 1100 kV transmission, which should be technologically proved by the end of the 1970s. (auth)

  11. Assessment and study of existing concepts and methods of cryogenic refrigeration for superconducting transmission cables. Final report. Draft

    International Nuclear Information System (INIS)

    Kadi, F.J.; Longsworth, R.C.

    1976-02-01

    A review of current programs to develop superconducting power transmission shows that current plans require helium refrigerators operating at 5 to 13 0 K and 3 to 15 atm pressure with compressor power input in the range of 1300 to 3500 HP. Future requirements will probably trend towards slightly higher temperatures and larger refrigerators. Present large helium refrigerators and APCI standard nitrogen plants were studied and average outage frequency of about 18 per year is found to be typical for both. Cost and reliability studies of alternate refrigeration systems based on studies of components shows that the best current system which would have a failure rate of once in 20 y would consist of two full size oil flooded screw compressors in parallel, manifolded to two full size cold boxes and a liquid helium back up dewar. The principal area of development needed to implement this system is in the switch over mechanisms. These include switching to an auxillary power source in the event of power interruption, switching to the standby compressor, and switching to the back up liquid helium dewar. Costs are projected as being only slightly greater than preliminary estimates

  12. Assessment and study of existing concepts and methods of cryogenic refrigeration for superconducting transmission cables. Final report

    International Nuclear Information System (INIS)

    Kadi, F.J.; Longsworth, R.C.

    1976-02-01

    A review of current programs to develop superconducting power transmission shows that current plans require helium refrigerators operating at 5 to 13 0 K and 3 to 15 atm pressure with compressor power input in the range of 1,300 to 3,500 HP. Future requirements will probably trend toward slightly higher temperatures and larger refrigerators. Present large helium refrigerators and APCI standard nitrogen plants were studied and an average outage frequency of about 18 per year is found to be typical for both. Cost and reliability studies of alternate refrigeration systems based on studies of components shows that the best current system which would have a failure rate of once in 20 years would consist of two full size oil flooded screw compressors in parallel, manifolded to two full size cold boxes and a liquid helium back up dewar. The principal area of development needed to implement this system is in the switch over mechanisms. These include switching to an auxillary power source in the event of power interruption, switching to the standby compressor, and switching to the back up liquid helium dewar. Costs are projected as being only slightly greater than preliminary estimates

  13. X-ray flourescence spectrometry (XRFS) analysis of aluminum cable types commonly used in electric power distribution

    International Nuclear Information System (INIS)

    Kwaha, B. J.; Durodola, O. M.

    2011-01-01

    A comparative analysis of five different aluminium cable types tagged J 1 , J 2 , J 3 , J 4 and J 5 from five different cable manufacturing companies was carried out using two different test methods namely - X-ray fluorescence spectrometry (XRFS) and resistivity tests with the main objective of ascertaining why some cables of the same gauge fail under the same load levels. Purity levels, resistivity and conductivity checks were performed. Equal dimensions of the five cable brands were sampled and grounded to fine powder. The percentage purity of each sample was determined through XRFS test. One set of similar samples was subjected to resistivity test. XRFS results show that J 1 had purity of 99.3%, J 2 had 99.1 %, J 3 had 98.5%, J 4 had 99.2% and J 5 had 98.8%. J 1 had resistivity and conductivity values of 2.3 x 10 -9 Ωm and 430.3 x 10 6 Ωm -1 respectively. While J 2 had 3.9 x 10 -9 Ωm and 255.0 x 10 6 Ωm -1 . J 3 had 2.7 x 10 -9 Ωm and 371.9 x 10 6 Ωm -1 , J 4 had 2.6 x 10 -9 Ωm and 382.6 x 10 6 Ωm -1 , and J 5 had 2.9 x 10 -9 Ωm and 346.6 x 10 6 Ωm -1 . Comparing these values to the standard resistivity value of pure aluminium, which is 2.8 x 10 -8 m, these results are in agreement with theoretically computed values. The XRFS test used in this research could be used to test the purity of aluminum before stretching into cables. It can also be used to determine the standard of aluminum products. The electrical resistivity test could be used to determine and set a standard resistivity and conductivity requirements to be met by different cable brands and types used in electric power distribution so as to curb the menace of cable failure and electric hazards.

  14. Structure-property relationships in an Al matrix Ca nanofilamentary composite conductor with potential application in high-voltage power transmission

    Science.gov (United States)

    Tian, Liang

    This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.

  15. Nonsynchronous vibrations observed in a supercritical power transmission shaft

    Science.gov (United States)

    Darlow, M. S.; Zorzi, E. S.

    1979-01-01

    A flexible shaft is prone to a number of vibration phenomena which occur at frequencies other than synchronous with rotational speed. Nonsynchronous vibrations from several sources were observed while running a test rig designed to simulate the operation of a supercritical power transmission shaft. The test rig was run first with very light external damping and then with a higher level of external damping, for comparison. As a result, the effect of external damping on the nonsynchronous vibrations of the test rig was observed. All of these nonsynchronous vibrations were of significant amplitude. Their presence in the vibrations spectra for a supercritical power transmission shaft at various speeds in the operating range indicates that very careful attention to all of the vibration spectra should be made in any supercritical power transmission shafting. This paper presents a review of the analysis performed and a comparison with experimental data. A thorough discussion of the observed nonsynchronous whirl is also provided.

  16. 10BASE5 Ethernet Cable & Vampire Tap

    CERN Document Server

    1983-01-01

    10BASE5 Thick Ethernet Cable, 10Mbit/sec. In the 1980s and early 1990's, Ethernet became more popular and provided a much faster data transmission rate. This cable is one of the first ethernet cables from 1983, a thick, bulky affair. Computers were attached via "Vampire Taps" which were connectors screwed straight through the shielding of the cable.

  17. Soil scientific supervision of 220/38 kV cable circuits of the power station 'Eemscentrale' in the Dutch province Groningen: Part 2

    International Nuclear Information System (INIS)

    Langevoord, J.; Kraeima, A.F.

    1995-01-01

    Recently, five underground cable circuits were completed at the site of the EPON (an energy utility for the north-eastern part of the Netherlands) title power station, consisting of two 220 kV and two 380 kV connections with a total length of 24 km. In a previous article, attention is paid to theoretical aspects of heat transfer of cables for underground electricity transport, the research method of the soil scientific survey, and the results of the survey for the design of the cable connection, to be made by NKF (cable manufacturer) and for the final execution of the cable design. In this article attention will be paid to soil scientific marginal conditions and soil scientific supervision during the realization. 1 fig., 2 tabs., 2 refs

  18. Optimization of output power and transmission efficiency of magnetically coupled resonance wireless power transfer system

    Science.gov (United States)

    Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng

    2018-05-01

    Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.

  19. Development of CFD fire models for deterministic analyses of the cable issues in the nuclear power plant

    International Nuclear Information System (INIS)

    Lin, C.-H.; Ferng, Y.-M.; Pei, B.-S.

    2009-01-01

    Additional fire barriers of electrical cables are required for the nuclear power plants (NPPs) in Taiwan due to the separation requirements of Appendix R to 10 CFR Part 50. The risk-informed fire analysis (RIFA) may provide a viable method to resolve these fire barrier issues. However, it is necessary to perform the fire scenario analyses so that RIFA can quantitatively determine the risk related to the fire barrier wrap. The CFD fire models are then proposed in this paper to help the RIFA in resolving these issues. Three typical fire scenarios are selected to assess the present CFD models. Compared with the experimental data and other model's simulations, the present calculated results show reasonable agreements, rendering that present CFD fire models can provide the quantitative information for RIFA analyses to release the cable wrap requirements for NPPs

  20. 37 CFR 201.17 - Statements of Account covering compulsory licenses for secondary transmissions by cable systems.

    Science.gov (United States)

    2010-07-01

    ... system that meets this definition is considered a “cable system” for copyright purposes, even if the FCC... contiguous communities under common ownership or control or (ii) Operating from one headend. (3) FCC means... microvolts per meter measured at the foot of the tower or pole to which the antenna is attached. (5) The...

  1. Hydropower generation and storage, transmission constraints and market power

    International Nuclear Information System (INIS)

    Johnsen, T.A.

    2001-01-01

    We study hydropower generation and storage in the presence of uncertainty about future inflows, market power and limited transmission capacity to neighboring regions. Within our simple two-period model, market power leads to too little storage. The monopolist finds it profitable to produce more than the competitive amount in the first period and thereby stores little water in the first of two periods in order to become import constrained in the second period. In addition, little storage reduces the probability of becoming export constrained in the second period, even if the second period exhibits large inflow. Empirical findings for an area in the western part of Norway with only hydropower and high ownership concentration at the supply side, fit well to our theoretical model. We apply a numerical model to examine various policies to reduce the inefficiencies created by the local monopoly. Transmission investments have two effects. First, the export possibilities in the first period increase. More export leads to lower storage in the first period. Second, larger import capacity reduces the market power problem in the second period. The two opposite effects of transmission investments in a case with market power may be unique to hydropower systems. Introducing financial transmission rights enhance the market power of the monopolist in our model. Price caps in both or in the second period only, reduce the strategic value of water storage. (Author)

  2. Digital computers' cable replacement at the Hydro-Quebec Gentilly 2 nuclear power station

    International Nuclear Information System (INIS)

    Gour, N.; Rivest, J.-M.

    1992-01-01

    During the 1990 annual outage of Gentilly-2, inspection of the digital control computers revealed signs of degradation in about 20% of the cable connector assemblies. This raised concern of increased risk of signal failure by short circuit. The degradation of the insulation was traced to a material incompatibility problem originating during manufacture of the cables. Migration of the plasticizer contained in the PVC of the transparent sheaths surrounding many of the conductors resulted in chemical attack on the insulation. All the cable assemblies were replaced during 1991-1992. The new cable assemblies were manufactured using the Raychem process, which lacked the faulty material. Also, the opportunity was taken to modify the ground network while the computer systems were stripped of their main components. Although the work cost over C$900,000, nevertheless planning and execution were nearly flawless, and the project a complete success. Integrity of cable insulation should not be a concern for the rest of the plant's life. 5 refs

  3. HVDC transmission power conversion applications in power systems

    CERN Document Server

    Kim, Chan-Ki; Jang, Gil-Soo; Lim, Seong-Joo; Lee, Seok-Jin

    2009-01-01

    HVDC is a critical solution to several major problems encountered when trying to maintain systemic links and quality in large-scale renewable energy environments. HDVC can resolve a number of issues, including voltage stability of AC power networks, reducing fault current, and optimal management of electric power, ensuring the technology will play an increasingly important role in the electric power industry. To address the pressing need for an up-to-date and comprehensive treatment of the subject, Kim, Sood, Jang, Lim and Lee have collaborated to produce this key text and reference.  Combin

  4. 1KW Power Transmission Using Wireless Acoustic-Electric Feed-Through (WAEF)

    Science.gov (United States)

    Sherrit, S.; Bao, X.; Badescu, M.; Aldrich, J.; Bar-Cohen, Y.; Biederman, W.

    2008-01-01

    A variety of space applications require the delivery of power into sealed structures. Since the structural integrity can be degraded by holes for cabling we present an alternative method of delivering power and information using stress waves to the internal space of a sealed structure. One particular application of this technology is in sample return missions where it is critical to preserve the sample integrity and to prevent earth contamination. Therefore, the container has to be hermetically sealed and the integrity of the seal must be monitored in order to insure to a high degree of reliability the integrity of the sample return vessel. In this study we investigated the use of piezoelectric acoustic-electric power feed-through devices to transfer electric power wirelessly through a solid wall by using elastic or acoustic waves. The technology is applicable to a range of space and terrestrial applications where power is required by electronic equipment inside sealed containers, vacuum or pressure vessels, etc., where holes in the wall are prohibitive or may result in significant structural performance degradation or unnecessarily complex designs. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-through devices were analyzed by finite element models and an equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the results of the analysis a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1.068-kW was successfully conducted. Efficiencies in the 80-90% range were also demonstrated and methods to increase the efficiency further are currently being considered.

  5. Portable wireless power transmission system for video capsule endoscopy.

    Science.gov (United States)

    Zhiwei, Jia; Guozheng, Yan; Bingquan, Zhu

    2014-10-01

    Wireless power transmission is considered a practical way of overcoming the power shortage of wireless capsule endoscopy (VCE). However, most patients cannot tolerate the long hours of lying in a fixed transmitting coil during diagnosis. To develop a portable wireless power transmission system for VCE, a compact transmitting coil and a portable inverter circuit driven by rechargeable batteries are proposed. The couple coils, optimized considering the stability and safety conditions, are 28 turns of transmitting coil and six strands of receiving coil. The driven circuit is designed according to the portable principle. Experiments show that the integrated system could continuously supply power to a dual-head VCE for more than 8 h at a frame rate of 30 frames per second with resolution of 320 × 240. The portable VCE exhibits potential for clinical applications, but requires further improvement and tests.

  6. Enhanced Wireless Power Transmission Using Strong Paramagnetic Response.

    Science.gov (United States)

    Ahn, Dukju; Kiani, Mehdi; Ghovanloo, Maysam

    2014-03-01

    A method of quasi-static magnetic resonant coupling has been presented for improving the power transmission efficiency (PTE) in near-field wireless power transmission, which improves upon the state of the art. The traditional source resonator on the transmitter side is equipped with an additional resonator with a resonance frequency that is tuned substantially higher than the magnetic field excitation frequency. This additional resonator enhances the magnetic dipole moment and the effective permeability of the power transmitter, owing to a phenomenon known as the strong paramagnetic response. Both theoretical calculations and experimental results show increased PTE due to amplification of the effective permeability. In measurements, the PTE was improved from 57.8% to 64.2% at the nominal distance of 15 cm when the effective permeability was 2.6. The power delivered to load was also improved significantly, with the same 10 V excitation voltage, from 0.38 to 5.26 W.

  7. Optimisation of VSC-HVDC Transmission for Wind Power Plants

    DEFF Research Database (Denmark)

    Silva, Rodrigo Da

    Connection of Wind Power Plants (WPP), typically oshore, using VSCHVDC transmission is an emerging solution with many benefits compared to the traditional AC solution, especially concerning the impact on control architecture of the wind farms and the grid. The VSC-HVDC solution is likely to meet...... more stringent grid codes than a conventional AC transmission connection. The purpose of this project is to analyse how HVDC solution, considering the voltage-source converter based technology, for grid connection of large wind power plants can be designed and optimised. By optimisation, the project...... the robust control technique is applied is compared with the classical proportional-integral (PI) performance, by means of time domain simulation in a point-to-point HVDC connection. The three main parameters in the discussion are the wind power delivered from the offshore wind power plant, the variation...

  8. The electric power engineering handbook electric power generation, transmission, and distribution

    CERN Document Server

    Grigsby, Leonard L

    2012-01-01

    Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation

  9. Transmission Reinforcements in the Central American Regional Power System

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo, Marcelo A.; Vallem, Mallikarjuna R.; Samaan, Nader A.; Makarov, Yuri V.; Vyakaranam, Bharat; Nguyen, Tony B.; Munoz, Christian; Herrera, Ricardo; Midence, Diego; Shpitsberg, Anna

    2016-07-25

    The Central American regional interconnected power system (SER) connects the countries members of the Central American regional electricity market (MER): Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, and Panama. The SER was a result of a long term regional effort, and was initially conceived to transfer 300 MW between countries. However, the current transfer limits between countries range from 70 MW to 300 MW. Regional entities, like CRIE (Regional Commission of Electrical Interconnection), EOR (Central American Regional System Operator), and CDMER (Board of Directors of the Central American Market) are working on coordinating the national transmission expansion plans with regional transmission planning efforts. This paper presents experience in Central America region to recommend transmission reinforcements to achieve 300 MW transfer capacity between any pair of member countries of the Central American regional electricity market (MER). This paper also provides a methodology for technical analysis and for coordination among the regional and national entities. This methodology is unique for transmission systems of these characteristics.

  10. Architecture Analysis of Wireless Power Transmission for Lunar Outposts

    Science.gov (United States)

    2015-09-01

    continuous supply of electrical power would be required. The primary research was to determine if it is feasible to provide power to a lunar polar...space exploration business wish to go beyond the Moon, to Mars and to the asteroids , the technology for these ventures is not yet adequate for the task...klystron, both 16 developed during World War II, that the use of microwaves became available for effective transmission of energy. However, the

  11. Environmental concerns regarding electric power transmission in North America

    International Nuclear Information System (INIS)

    DeCicco, J.M.; Bernow, S.S.; Beyea, J.

    1992-01-01

    The electric utilities of North America have become ever more interconnected via transmission facilities, largely to insure reliability. Current policy discussions regarding transmission include calls for improved access, increased capacity, and deregulation to facilitate trade in electric power. From an environmental perspective, two issues have been notably absent in much of the debate: (1) a recognition of the full range of environmental impacts related to electricity transmission; and (2) the potential for end-use efficiency to address the reliability and economy requirements that motivate attention to transmission. This paper broaches these issues, starting with an elaboration of the environmental impacts, which range from global and regional effects to local concerns, including the potential health risks associated with electric and magnetic fields. We emphasize that transmission planning should occur as part of an integrated planning process, in which the environmental and social costs of various options are fully considered. We discuss the potential for end-use efficiency to lessen environmental impacts of both transmission and generation. We conclude that there is a need to ensure that environmental externalities and demand-side alternatives are adequately considered when transmission network expansions are proposed. (Author)

  12. Financial transmission rights meet Cournot: How TCCs curb market power

    International Nuclear Information System (INIS)

    Stoft, S.

    1999-01-01

    This paper reconsiders the problem of market power when generators face a demand curve limited by a transmission constraint. After demonstrating that the problem's importance originates in an inherent ambiguity in Cournot-Nash theory, the author reviews Oren's argument that generators in this situation capture all congestion rents. In the one-line case, this argument depends on an untested hypothesis while in the three-line case, the Nash equilibrium was misidentified. Finally, the argument that financial transmission rights (and TCCs in particular) will have zero market value is refuted by modeling the possibility of their purchase by generators. This allows transmission owners, who initially own the TCCs, to capture some of the congestion rent. In fact when total capacity exceeds line capacity by more than the capacity of the largest generator, TCCs should attain their perfectly competitive value, thereby curbing the market power of generators

  13. Case study on the US superconducting power transmission program

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, E.F.

    1996-02-01

    After the 1911 discovery of superconductivity (the abrupt loss of electrical resistance in certain materials at very low temperatures), attempts were made to make practical use of this phenomenon. Initially these attempts failed, but in the early 1960s (after 50 years of research) they succeeded. By then, the projected growth in the production and consumption of electrical energy required much higher capacity power transmission capabilities than were available or likely to become available from incremental improvements in existing transmission technology. Since superconductors were capable in principle of transmitting huge amounts of power, research programs to develop and demonstrate superconducting transmission lines were initiated in the US and abroad. The history of the US program, including the participants, their objectives, funding and progress made, is outlined. Since the R&D program was terminated before the technology was completely demonstrated, the reasons for and consequences of this action are discussed in a final section.

  14. Proximity effects of high voltage electric power transmission lines on ...

    African Journals Online (AJOL)

    The proximity effects of high voltage electric power transmission lines on Leyland Cypress (xCupressocyparis leylandii (Dallim. and A.B. Jacks.) Dallim) and Japanese Privet (Ligustrum japonicum Thunb.) growth were examined in a private nursery located in Sakarya, Turkey. Five transect were randomly chosen in both ...

  15. A wireless smart sensor network for automated monitoring of cable tension

    International Nuclear Information System (INIS)

    Sim, Sung-Han; Cho, Soojin; Li, Jian; Jo, Hongki; Park, Jong-Woong; Jung, Hyung-Jo; Spencer Jr, Billie F

    2014-01-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea. (paper)

  16. A wireless smart sensor network for automated monitoring of cable tension

    Science.gov (United States)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo

    2014-02-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.

  17. Sizewell 'B' cable installation

    International Nuclear Information System (INIS)

    Gemmell, D.R.

    1992-01-01

    N G Bailey and Co. Ltd., UK were awarded the contract for the procurement, manufacture, works testing, works finishing, supply, delivery, off-loading, storage, installation, site finishing, preservation, setting to work and site testing of the following; the main cable installation throughout the Station including the addition of the Radioactive Waste Building, earthing and lightning protection installation, cable supporting steelwork and carriers and glanding and termination of cables. The cabling installation comprises power distribution, control and instrumentation cabling including all the associated cabling accessories, terminal boxes and similar components. The way that the contract was set-up, awarded and is now being carried out is described. Planning and industrial relations have been key features of the contract. (Author)

  18. Landing Marine-derived Renewable Energy: Optimising Power Cable Routing in the Nearshore Environment

    Science.gov (United States)

    Turner, Rosalind, ,, Dr.; Keane, Tom; Mullins, Brian; Phipps, Peter

    2010-05-01

    Numerous studies have demonstrated that a vast unexploited source of energy can be derived from the marine environment. Recent evolution of the energy market and looming EU renewable energy uptake targets for 2020 have driven a huge explosion of interest in exploiting this resource, triggering both governments and industry to move forward in undertaking feasibility assessments and demonstration projects for wave, tidal and offshore wind farms across coastlines. The locations which naturally lend themselves to high yield energy capture, are by definition, exposed and may be remote, located far from the end user of the electricity generated. A fundamental constraint to successfully exploiting these resources will be whether electricity generated in high energy, variable and constantly evolving environments can be brought safely and reliably to shore without the need for constant monitoring and maintenance of the subsea cables and landfall sites. In the case of riverine cable crossings superficial sediments would typically be used to trench and bury the cable. High energy coastal environments may be stripped of soft sediments. Any superficial sediments present at the site may be highly mobile and subject to re-suspension throughout the tidal cycle or under stormy conditions. EirGrid Plc. and Mott MacDonald Ireland Ltd. have been investigating the potential for routing a cable across the exposed Shannon estuary in Ireland. Information regarding the geological ground model, meteo-oceanographic and archaeological conditions of the proposed site was limited, necessitating a clear investigation strategy. The investigation included gathering site information on currents, bathymetry and geology through desk studies, hydrographic and geophysical surveys, an intrusive ground investigation and coastal erosion assessments at the landfall sites. The study identified a number of difficulties for trenching and protecting a cable through an exposed environment such as the Shannon

  19. Studies on the flame and radiation resistant modification of wires and cables for nuclear power generation plants

    International Nuclear Information System (INIS)

    Hagiwara, Miyuki; Morita, Yosuke; Udagawa, Akira; Oda, Eisuke; Fujimura, Shunichi.

    1982-08-01

    For the use in the light-water nuclear power generation plants, wires and cables are required to keep high flame retardancy and superior resistivity against heat and radiation throughout the whole period of service. They are expected, further, to fulfill their functions even under LOCA conditions. The present work aimed to provide new technology to give flame and radiation resistancy to insulating materials for the cables which are used under the above requirements. For the improvement of flame retardancy and the elongation of life time, polymerizable flame retardants were examined their applicability to ethylene-propylene-diene rubber. Various polymerizable flame retardants were first synthesized, and their performance was analyzed, especially, as to the relationship between molecular structure and their effectiveness. As a guiding principle for developing of a high performance flame and radiation resistant reagent, it was suggested that the back born of the reagent molecule should be constructed by carbon-carbon bond including fused aromatic rings and groups which can undergo polymerization by radical initiators. After careful consideration and detailed experimental work, condensed bromoacenaphthylene (con-BACN) was shown to have an effectiveness enough for the present purpose. Its satisfactory performance was also shown by making cables of a practical size using con-BACN, and by carrying out various performance tests based substantially on IEEE standards. (author)

  20. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

    2012-09-14

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

  1. Power System Technical Performance Issues Related to the Application of Long HVAC Cables

    DEFF Research Database (Denmark)

    Bak, Claus Leth

    The aim of this TB is to serve as a practical guide for preparing models and performing studies necessary during the assessment of the technical performance of HV/EHV systems with a large share of (long) AC cables. The brochure follows all phases of planning and analysis of a typical underground...

  2. Proportional derivative based stabilizing control of paralleled grid converters with cables in renewable power plants

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    consisting in LCL filters and cables. Both grid and converter current controls are analyzed. The frequency region, within which the system may be destabilized, is identified by means of the impedance-based stability analysis and frequency-domain passivity theory. A proportional derivative control strategy...

  3. Fiber optic transmission system delivered to Fusion Research Center of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Hayashida, Mutsuo; Hiramoto, Kiyoshi; Yamazaki, Kunihiro

    1983-01-01

    In general there are many electromagnetically induced noises in the premises of factories, power plants and substations. Under such electrically bad environments, for the computer data transmission that needs high speed processing and high reliability, the optical fiber cable is superion to the coaxial cable or the flat-type cable in aspects of the inductionlessness and a wide bandwidth. Showa Electric Wire and Cable Co., Ltd. has delivered and installed a computer data transmission system consisting of optical modems and optical fiber cables for connecting every experiment building in the premises of Fusion Research Center of Japan Atomic Energy Research Institute. This paper describes the outline of this system. (author)

  4. Microwave energy transmission system for solar power station

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi

    1988-05-05

    This paper deals with a microwave wireless energy transmission system which will be required for a solar power station under investigation, particularly, it describes its foundation and future investigation. It is supposed that for realization of microwave wireless transmission techniques, it is most important to investigate the effect of strong microwave beams on a plasma environment, establish control techniques for microwave beams in which a retro-directive system is combined with a computer control system, and develop a semiconductor transmission module. Institute of Space and Astronautical Science (Japan) made an experiment on the effect of microwaves on ionospheric plasma by using an observatory rocket. The institute has planned to make an experiment on a microwave energy transmission system which is to be mounted to a small-scale space flyer unit in order to examine the control of microwave beams and 10 KW power transmission, in addition to investigation on the interaction of microwave energy beams with a plasma environment. (4 figs, 3 tabs, 20 refs)

  5. Real option valuation of power transmission investments by stochastic simulation

    International Nuclear Information System (INIS)

    Pringles, Rolando; Olsina, Fernando; Garcés, Francisco

    2015-01-01

    Network expansions in power markets usually lead to investment decisions subject to substantial irreversibility and uncertainty. Hence, investors need valuing the flexibility to change decisions as uncertainty unfolds progressively. Real option analysis is an advanced valuation technique that enables planners to take advantage of market opportunities while preventing or mitigating losses if future conditions evolve unfavorably. In the past, many approaches for valuing real options have been developed. However, applying these methods to value transmission projects is often inappropriate as revenue cash flows are path-dependent and affected by a myriad of uncertain variables. In this work, a valuation technique based on stochastic simulation and recursive dynamic programming, called Least-Square Monte Carlo, is applied to properly value the deferral option in a transmission investment. The effect of option's maturity, the initial outlay and the capital cost upon the value of the postponement option is investigated. Finally, sensitivity analysis determines optimal decision regions to execute, postpone or reject the investment projects. - Highlights: • A modern investment appraisal method is applied to value power transmission projects. • The value of the option to postpone decision to invest in transmission projects is assessed. • Simulation methods are best suited for valuing real options in transmission investments

  6. 77 FR 19525 - Specification for 15 kV and 25 kV Primary Underground Power Cable

    Science.gov (United States)

    2012-04-02

    ... resistant cables shall have strip tension of 0 through 18 pounds (0 through 8.16 kg). Comment: General Cable suggested changing the requirement of stripping tension for TR-XLPE cable to the industry standard of a maximum of 24 lb. Limiting the maximum stripping tension to 18 lb will cause quality cable to be rejected...

  7. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  8. Power and signal transmission for mobile teleoperated systems

    International Nuclear Information System (INIS)

    Morris, A.C. Jr.; Hamel, W.R.

    1986-01-01

    Appropriate means must be furnished for supplying power and for sending controlling commands to mobile teleoperated systems. This paper describes a number of umbilical, onboard, and wireless systems used in transmitting power that are available for mobile teleoperator services. The pros and cons of selecting appropriate methods from a list of possible communication systems (wired, fiber optic, and radio frequency) are also examined. Moreover, hybrid systems combining wireless power transmissions with command-information signals are also possible. 20 refs., 6 figs., 1 tab

  9. Economic assessment group on power transmission and distribution networks tariffs

    International Nuclear Information System (INIS)

    2000-06-01

    Facing the new law on the electric power market liberalization, the french government created an experts group to analyze solutions and assessment methods of the electrical networks costs and tariffs and to control their efficiency. This report presents the analysis and the conclusions of the group. It concerns the three main subjects: the regulation context, the tariffing of the electric power transmission and distribution (the cost and efficiency of the various options) and the tariffing of the electric power supply to the eligible consumers. The authors provide a guideline for a tariffing policy. (A.L.B.)

  10. [A wireless power transmission system for capsule endoscope].

    Science.gov (United States)

    Xin, Wenhui; Yan, Guozheng; Wang, Wenxing

    2010-06-01

    In order to deliver power to the capsule endoscope, whose position and orientation are always changing when traveling along the alimentary tract, a wireless power transmission system based on electromagnetic coupling was proposed. The system is composed of Helmholtz transmitting coil and three-dimensional receiving coil. Helmholtz coil outside the body generates a uniform magnetic field covering the whole alimentary tract; three-dimensional coil inside retrieves stable power regardless of its position and orientation. The transmitter and receiver were designed and implemented, and the experiments validated the feasibility of the system. The results show that at least 320 mW of usable power can be transmitted to capsule endoscope when its position and orientation are changing at random and the transmitting power is 25W.

  11. Soil scientific survey of 220/38 kV cable circuits of the power station 'Eemscentrale' in the Dutch province Groningen; Theoretical backgrounds, research method and results

    International Nuclear Information System (INIS)

    Langevoord, J.; Van Loon, L.J.M.

    1995-01-01

    Recently, five underground cable circuits were completed at the site of the EPON (an energy utility for the north-eastern part of the Netherlands) title power station, consisting of two 220 kV and two 380 kV connections with a total length of 24 km. Soil scientific in situ investigations and laboratory tests were carried out in advance to collect data, on the basis of which thermal resistivity and critical thermal conditions could be calculated. It was demonstrated by the calculated results that no de-hydrated zones occurred around the cable for design criteria conditions. Optimal cable bed conditions could be achieved, using some of the sand excavated from the trench. In this article, attention will be paid to theoretical aspects of heat transfer of cables for underground electricity transport, the research method of the soil scientific survey, and the results of the survey for the design of the cable connection, to be made by NKF (cable manufacturer) and for the final execution of the cable design. In the second article, to be published in a next issue of this magazine, attention will be paid to soil scientific marginal conditions and soil scientific supervision during the realization. 9 figs., 6 tabs., 9 refs

  12. Impedance matching wireless power transmission system for biomedical devices.

    Science.gov (United States)

    Lum, Kin Yun; Lindén, Maria; Tan, Tian Swee

    2015-01-01

    For medical application, the efficiency and transmission distance of the wireless power transfer (WPT) are always the main concern. Research has been showing that the impedance matching is one of the critical factors for dealing with the problem. However, there is not much work performed taking both the source and load sides into consideration. Both sides matching is crucial in achieving an optimum overall performance, and the present work proposes a circuit model analysis for design and implementation. The proposed technique was validated against experiment and software simulation. Result was showing an improvement in transmission distance up to 6 times, and efficiency at this transmission distance had been improved up to 7 times as compared to the impedance mismatch system. The system had demonstrated a near-constant transfer efficiency for an operating range of 2cm-12cm.

  13. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    International Nuclear Information System (INIS)

    Harty, H.; Dowis, W.J.

    1983-06-01

    The original study of transmission for a Hanford Nuclear Energy Center (HNEC), which was completed in September 1975, was updated in June 1978. The present 1983 revision takes cognizance of recent changes in the electric power situation of the PNW with respect to: (1) forecasts of load growth, (2) the feasibility of early use of 1100 kV transmission, and (3) the narrowing opportunities for siting nuclear plants in the region. The purpose of this update is to explore and describe additions to the existing transmission system that would be necessary to accommodate three levels of generation at HNEC. Comparisons with a PNW system having new thermal generating capacity distributed throughout the marketing region are not made as was done in earlier versions

  14. Transmission pricing and stranded costs in the electric power industry

    International Nuclear Information System (INIS)

    Baumol, W.J.; Sidak, J.G.

    1995-09-01

    Stranded costs are those costs that electric utilities are currently permitted to recover through their rates but whose recovery may be impeded or prevented by the advent of competition in the industry. Estimates of these costs run from the tens to the hundreds of billions of dollars. Should regulators permit utilities to recover stranded costs while they take steps to promote competition in the electric power industry. William Baumol and J. Gregory Sidak argue that answer to that question should be yes.The authors show that a transmission price, the price for sending electricity over the transmission grid, can be determined in a manner that is compatible with economic efficiency and clearly neutral in its effects upon all competitors in electricity generation. A correctly constructed regime of transmission pricing may in fact achieve the efficiency and equity goals that justify the recovery of stranded costs

  15. Automation of Underground Cable Laying Equipment Using PLC and Hmi

    Science.gov (United States)

    Mal Kothari, Kesar; Samba, Vishweshwar; Tania, Kinza; Udayakumar, R., Dr; Karthikeyan, Ram, Dr

    2018-04-01

    Underground cable laying is an alternative for overhead cable laying of telecommunication and power transmission lines. It is becoming very popular in recent times because of some of its advantages over overhead cable laying. This type of cable laying is mostly practiced in developed countries because it is more expensive than overhead cable laying. Underground cable laying is more suitable when land is not available, and it also increases the aesthetics. This paper implements the automation on a manually operated cable pulling winch machine using programmable logic controller (PLC). Winch machines are useful in underground cable laying. The main aim of the project is to replace all the mechanical functions with electrical controls which are operated through a touch screen (HMI). The idea is that the machine should shift between parallel and series circuit automatically based on the pressure sensed instead of manually operating the solenoid valve. Traditional means of throttling the engine using lever and wire is replaced with a linear actuator. Sensors such as proximity, pressure and load sensor are used to provide the input to the system. The HMI used will display the speed, length and tension of the rope being winded. Ladder logic is used to program the PLC.

  16. Stray current induced corrosion in lightning rod cables of 525 kV power lines towers: a case study

    Directory of Open Access Journals (Sweden)

    Wojcicki, F. R.

    2003-12-01

    Full Text Available With the growth of several areas in modem society, the necessity to generate and carry electrical energy to big cities has greatly increased. Cables supported by power towers with galvanized steel foundation usually carry energy. As the foundations are underground they may cause high rates of corrosion. These are usually detected by a conventional potential measurement using a Cu/CuSO4 reference electrode. It is believed that corrosion results from stray currents that flow through the ground to close the loop between neighboring towers. Stray currents originate in the lightning rod cables of the power line towers, induced by the strong electromagnetic and electric fields of the energized power lines. The intensity and direction of those currents were measured, indicating substantial values of both their AC and DC components. The potential of the tower ground system, measured in the perpendicular direction of the main axis of the power line, was plotted as a function of the distance to the tower base. The results clearly indicated the tendency to corrosive attack in the anodic towers as reflected by the slope of the plot, whereas no signs of corrosion could be found in the reverse slope, confirming the visual inspection of the foundation. The profile of the potential plots could be changed providing the electric insulation of the lightning rod cable.

    Con el crecimiento de varias áreas en la sociedad moderna, la necesidad de generar y conducir la energía eléctrica a las grandes ciudades ha aumentado enormemente. La energía, normalmente, se transporta por cables sostenidos por torres de energía con base de acero galvanizado. Cuando las bases son subterráneas, pueden ocasionar altas tasas de corrosión. Estas, normalmente, se detectan por la medida convencional del potencial empleando un electrodo de referencia de Cu/CuSO4. Se cree que la corrosión es el resultado de corrientes perdidas que fluyen a través de la

  17. Experimental investigations of overvoltages in 6kV station service cable networks of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Vukelja, P.I.; Naumov, R.M.; Drobnjak, G.V.; Mrvic, J.D. [Nikola Tesla Inst., Belgrade (Yugoslavia)

    1996-12-31

    The paper presents the results of experimental investigations of overvoltages on 6kV isolated neutral station service cable networks of thermal power plants. The overvoltages were recorded with capacitive voltage measurement systems made at the Nikola Tesla Institute. Wideband capacitive voltage measurement systems recorded a flat response from below power frequencies to 10MHz. Investigations of overvoltages were performed for appearance and interruption of metal earth faults, intermittent earth faults, switching operation of HV motors switchgear, switching operation of transformers switchgear, and transfer of the network supply from one transformer to another. On the basis of these investigations, certain measures are proposed for limiting overvoltages and for the reliability of station service of thermal power plants.

  18. Simulation Analysis of Wireless Power Transmission System for Biomedical Applications

    Science.gov (United States)

    Yang, Zhao; Wei, Zhiqiang; Chi, Haokun; Yin, Bo; Cong, Yanping

    2018-03-01

    In recent years, more and more implantable medical devices have been used in the medical field. Some of these devices, such as brain pacemakers, require long-term power support. The WPT(wireless power transmission) technology which is more convenient and economical than replacing the battery by surgery, has become the first choice of many patients. In this paper, we design a WPT system that can be used in implantable medical devices, simulate the transmission efficiency of the system in the air and in the head model, and simulate the SAR value when the system working in the head model. The results show that when implantation depth of the secondary coil is 3 mm, the efficiency of the system can reach 45%, and the maximum average SAR value is 2.19 W / kg, slightly higher than the standard of IEEE.

  19. A GIS-based Power Transmission Management Information System

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Based on analyzing the shortcomings of electric power enterprise in traditional operation pattern,this paper combines components GIS with the application of management information system,and uses the structure which unifies three layers C/S and B/S.Also,proposed using the GPS intellectualization patrol.This may be useful to guarantees the transmission line’s operation to be safe and stable.

  20. Solar pumped laser technology options for space power transmission

    Science.gov (United States)

    Conway, E. J.

    1986-01-01

    An overview of long-range options for in-space laser power transmission is presented. The focus is on the new technology and research status of solar-pumped lasers and their solar concentration needs. The laser options include gas photodissociation lasers, optically-pumped solid-state lasers, and blackbody-pumped transfer lasers. The paper concludes with a summary of current research thrusts.

  1. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.; Coble, J.B.; Hashemian, H.M.; Konnick, R.; Ray, S.

    2012-09-01

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).

  2. Induced voltages in metallic pipelines near power transmission lines

    International Nuclear Information System (INIS)

    Grcev, Leonid; Jankov, Voislav; Filiposki, Velimir

    2002-01-01

    With the continuous development of the electric power system and the pipeline networks used to convey oil or natural gas, cases of close proximity of high voltage structures and metallic pipelines become more and more frequent. Accordingly there is a growing concern about possible hazards resulting from voltages induced in the metallic pipelines by magnetic coupling with nearby power transmission lines. This paper presents a methodology for computation of the induced voltages in buried isolated metallic pipelines. A practical example of computation is also presented. (Author)

  3. Solar-pumped lasers for space power transmission

    Science.gov (United States)

    Taussig, R.; Bruzzone, C.; Nelson, L.; Quimby, D.; Christiansen, W.

    1979-01-01

    Multi-Megawatt CW solar-pumped lasers appear to be technologically feasible for space power transmission in the 1990s time frame. A new concept for a solar-pumped laser is presented which utilizes an intermediate black body cavity to provide a uniform optical pumping environment for the lasant, either CO or CO2. Reradiation losses are minimized with resulting high efficiency operation. A 1 MW output laser may weigh as little as 8000 kg including solar collector, black body cavity, laser cavity and ducts, pumps, power systems and waste heat radiator. The efficiency of such a system will be on the order of 10 to 20%. Details of the new concept, laser design, comparison to competing solar-powered lasers and applications to a laser solar power satellite (SPS) concept are presented.

  4. Power and signal transmission for mobile teleoperated systems

    International Nuclear Information System (INIS)

    Morris, A.C. Jr.; Hamel, W.R.

    1985-01-01

    Appropriate means must be furnished for supplying power and for sending controlling commands to mobile teleoperated systems. Because a sizable number of possibilities are available for such applications, methods used in designing both the power and communications systems built into mobile vehicles that serve in radiological emergencies must be carefully selected. This paper describes a number of umbilical, on-board, and wireless systems used in tranmitting power that are available for mobile teleoperator services. The pros and cons of selecting appropriate methods from a list of possible communication systems (wired, fiber optic, and radio frequency) are also examined. Moreover, hybrid systems combining wireless power transmissions with command-information signals are also possible

  5. Voltage control in the future power transmission systems

    DEFF Research Database (Denmark)

    Qin, Nan

    Wind energy in Denmark covers 42% of the total power consumption in 2015, and will share up to 50% by 2020. Consequently, the conventional power plants are decommissioning. Under the progress of the green transition, the national decision leads to underground many overhead lines in the future...... stages. The voltage uncertainty caused by the wind power forecasting errors is estimated, which is applied as a voltage security margin to further constrain the voltage magnitude in the optimization problem. The problem under the uncertainty is therefore converted to a deterministic problem, which...... to ensure a highly reliable transmission, e.g. balancing the generation and the consumption in large geographic regions, the exchange capacities will be enlarged by upgrading the interconnections. The Danish power system, the electricity transportation hub between the Nordic and continental European systems...

  6. Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors

    Science.gov (United States)

    Zhi, Mingjia; Manivannan, Ayyakkannu; Meng, Fanke; Wu, Nianqiang

    2012-06-01

    This paper presents highly conductive carbon nanofiber/MnO2 coaxial cables in which individual electrospun carbon nanofibers are coated with an ultrathin hierarchical MnO2 layer. In the hierarchical MnO2 structure, an around 4 nm thick sheath surrounds the carbon nanofiber (CNF) in a diameter of 200 nm, and nano-whiskers grow radically outward from the sheath in view of the cross-section of the coaxial cables, giving a high specific surface area of MnO2. The CNFs are synthesized by electrospinning a precursor containing iron acetylacetonate (AAI). The addition of AAI not only enlarges the specific surface area of the CNF but also greatly enhances their electronic conductivity, which leads to a dramatic improvement in the specific capacitance and the rate capability of the CNF/MnO2 electrode. The AAI-CNF/MnO2 electrode shows a specific capacitance of 311 F g-1 for the whole electrode and 900 F g-1 for the MnO2 shell at a scan rate of 2 mV s-1. Good cycling stability, high energy density (80.2 Wh kg-1) and high power density (57.7 kW kg-1) are achieved. This work indicates that high electronic conductivity of the electrode material is crucial to achieving high power and energy density for pseudo-supercapacitors.

  7. Experiment of Power Supply Method for WLAN Sensor Using Both Energy Harvesting and Microwave Power Transmission

    International Nuclear Information System (INIS)

    Sakaguchi, K; Yamashita, S; Yamamoto, K; Nishio, T; Morikura, M; Huang, Y; Shinohara, N

    2014-01-01

    This paper proposes to improve effectiveness of supplying a sensor with energy using microwave power transmission (MPT) and energy harvesting (EH). The MPT duration should be as short as possible to avoid serious interference between the MPT and wireless local area network data transmission when co-channel operation of both microwave power transmission (MPT) and wireless data transmissions is performed. To shorten the MPT duration, we use multiple power sources such as an MPT source and an EH source to supply a sensor with power. Here, an overcharge or an energy shortage could occur at the sensor if the power supplied by both the MPT and EH sources is not adjusted appropriately. To solve this problem, the power supplied by multiple sources should be estimated precisely. In this paper, we propose a scheme for estimating the power supplied by multiple sources on the basis of an existing MPT scheduling system and then conducted an experiment using the scheme. From the experimental results, it is confirmed to estimate the power supplied by multiple sources successfully. In addition, the required MPT duration when the EH source is used is reduced compared to that when it is not used. Moreover, it is confirmed that the sensor station successfully estimates the power supplied by an MPT source and that by an EH source and adequately configures the MPT duration

  8. Transmission rights and market power on electric power networks. 2. Physical rights

    International Nuclear Information System (INIS)

    Joskow, Paul; Tirole, Jean

    1999-01-01

    This discussion paper examines physical transmission rights where the capacity of each potentially congested interface is defined and the rights to use the congested interfaces are created and allocated in some way for suppliers and consumers. The way in which the allocation of physical rights affects competition or increases the buyers or sellers market power in the power generation market when a transmission interface is congested, and how rights markets with different microstructures allocate physical rights and determine rights prices are explored. An electricity market with physical transmission rights in the absence of capacity release rules, and physical transmission rights and market power are addressed. Loop flows, and capacity release rules are discussed. (UK)

  9. Harmonics in Offshore Wind Power Plants Employing Power Electronic Devices in the Transmission System

    DEFF Research Database (Denmark)

    Glasdam, Jakob Bærholm

    Introduction The trend in power generation is to partly replace conventional power plants with renewable energy sources. Offshore wind power has been selected to take up a significant proportion of the renewable energy production. The grid codes have been updated to accommodate the rising share...... of wind power. The onshore as well as offshore wind power plants (OWPPs) therefore have to meet the same stringent requirement as the conventional power plants. This can be accommodated by employment of flexible alternating current transmission system (FACTS) devices, such as the static compensator...... gives rise to a number of challenges to the wind power industry with regard to construction, installation as well as transmission of the generated energy. The STATCOM and the voltage-sourced converter high-voltage direct current (VSC-HVDC) are attractive solutions for grid connection of remotely located...

  10. Dynamic testing of cable structures

    Directory of Open Access Journals (Sweden)

    Caetano Elsa

    2015-01-01

    Full Text Available The paper discusses the role of dynamic testing in the study of cable structures. In this context, the identification of cable force based on vibration measurements is discussed. Vibration and damping assessment are then introduced as the focus of dynamic monitoring systems, and particular aspects of the structural behaviour under environmental loads are analysed. Diverse application results are presented to support the discussion centred on cable-stayed bridges, roof structures, a guyed mast and a transmission line.

  11. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  12. Environmental impacts of power plants and transmission lines in power system planning

    International Nuclear Information System (INIS)

    Miracapillo, C.; Moreschini, G.; Rome Univ. 'La Sapienza'

    1992-01-01

    This paper deals with a criterion to assess the environmental impacts of power plants and transmission lines in power system planning. First, the effects of hydro-plants, thermal plants and transmission lines are reviewed. Then, a number of methods for the evaluation of the environmental impacts of civil and industrial plants are described. A new criterion is proposed to introduce the evaluation of the environmental impact and related costs into methods for power system planning. Finally, the criterion is applied to a simple case

  13. Normalized power transmission between ABP and ICP in TBI.

    Science.gov (United States)

    Shahsavari, S; Hallen, T; McKelvey, T; Ritzen, C; Rydenhag, B

    2009-01-01

    A new approach to study the pulse transmission between the cerebrovascular bed and the intracranial space is presented. In the proposed approach, the normalized power transmission between ABP and ICP has got the main attention rather than the actual power transmission. Evaluating the gain of the proposed transfer function at any single frequency can reveal how the percentage of contribution of that specific frequency component has been changed through the cerebrospinal system. The gain of the new transfer function at the fundamental cardiac frequency was utilized to evaluate the state of the brain in three TBI patients. Results were assessed using the reference evaluations achieved by a novel CT scan-based scoring scheme. In all three study cases, the gain of the transfer function showed a good capability to follow the trend of the CT scores and describe the brain state. Comparing the new transfer function with the traditional one and also the index of compensatory reserve, the proposed transfer function was found more informative about the state of the brain in the patients under study.

  14. Combination of AC Transmission Expansion Planning and Reactive Power Planning in the restructured power system

    International Nuclear Information System (INIS)

    Hooshmand, Rahmat-Allah; Hemmati, Reza; Parastegari, Moein

    2012-01-01

    Highlights: ► To overcome the disadvantages of DC model in Transmission Expansion Planning, AC model should be used. ► The Transmission Expansion Planning associated with Reactive Power Planning results in fewer new transmission lines. ► Electricity market concepts should be considered in Transmission Expansion Planning problem. ► Reliability aspects should be considered in Transmission Expansion Planning problem. ► Particle Swarm Optimization is a suitable optimization method to solve Transmission Expansion Planning problem. - Abstract: Transmission Expansion Planning (TEP) is an important issue in power system studies. It involves decisions on location and number of new transmission lines. Before deregulation of the power system, the goal of TEP problem was investment cost minimization. But in the restructured power system, nodal prices, congestion management, congestion surplus and so on, have been considered too. In this paper, an AC model of TEP problem (AC-TEP) associated with Reactive Power Planning (RPP) is presented. The goals of the proposed planning problem are to minimize investment cost and maximize social benefit at the same time. In the proposed planning problem, in order to improve the reliability of the system the Expected Energy Not Supplied (EENS) index of the system is limited by a constraint. For this purpose, Monte Carlo simulation method is used to determine the EENS. Particle Swarm Optimization (PSO) method is used to solve the proposed planning problem which is a nonlinear mixed integer optimization problem. Simulation results on Garver and RTS systems verify the effectiveness of the proposed planning problem for reduction of the total investment cost, EENS index and also increasing social welfare of the system.

  15. A portable wireless power transmission system for video capsule endoscopes.

    Science.gov (United States)

    Shi, Yu; Yan, Guozheng; Zhu, Bingquan; Liu, Gang

    2015-01-01

    Wireless power transmission (WPT) technology can solve the energy shortage problem of the video capsule endoscope (VCE) powered by button batteries, but the fixed platform limited its clinical application. This paper presents a portable WPT system for VCE. Besides portability, power transfer efficiency and stability are considered as the main indexes of optimization design of the system, which consists of the transmitting coil structure, portable control box, operating frequency, magnetic core and winding of receiving coil. Upon the above principles, the correlation parameters are measured, compared and chosen. Finally, through experiments on the platform, the methods are tested and evaluated. In the gastrointestinal tract of small pig, the VCE is supplied with sufficient energy by the WPT system, and the energy conversion efficiency is 2.8%. The video obtained is clear with a resolution of 320×240 and a frame rate of 30 frames per second. The experiments verify the feasibility of design scheme, and further improvement direction is discussed.

  16. Variable Ratio Hydrostatic Transmission Simulator for Optimal Wind Power Drivetrains

    Directory of Open Access Journals (Sweden)

    Jose M. Garcia-Bravo

    2017-01-01

    Full Text Available This work presents a hydromechanical transmission coupled to an electric AC motor and DC generator to simulate a wind power turbine drive train. The goal of this project was to demonstrate and simulate the ability of a hydrostatic variable ratio system to produce constant electric power at varying wind speeds. The experimental results show that the system can maintain a constant voltage when a 40% variation in input speed is produced. An accompanying computer simulation of the system was built and experimentally validated showing a discrete error no larger than 12%. Both the simulation and the experimental results show that the electrical power output can be regulated further if an energy storage device is used to absorb voltage spikes produced by abrupt changes in wind speed or wind direction.

  17. Transmission probability-based dynamic power control for multi-radio mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2008-09-01

    Full Text Available This paper presents an analytical model for the selection of the transmission power based on the bi-directional medium access information. Most of dynamic transmission power control algorithms are based on the single directional channel...

  18. Diamond Windows for High Powered Microwave Transmission. Final Report

    International Nuclear Information System (INIS)

    Gat, R.

    2011-01-01

    This phase II SBIR developed technology for manufacturing diamond windows for use in high energy density photon transmission e.g. microwave or laser light photons. Microwave sources used in fusion research require microwave extraction windows with high thermal conductivity, low microwave absorption, and low resistance to thermal cracking. Newly developed, man made diamond windows have all three of these properties, but these windows are prohibitively expensive. This limits the natural progress of these important technologies to higher powers and slows the development of additional applications. This project developed a lower cost process for manufacturing diamond windows using microwave plasma. Diamond windows were deposited. A grinding process was used to provide optical smoothness for 2 cm diameter diamond windows that met the parallelism specifications for fusion beam windows. The microwave transmission performance (loss tangent) of one of the windows was measured at 95GHz to be less than 10-4, meeting specifications for utilization in the ITER tokamak.

  19. Magnetic shielding structure optimization design for wireless power transmission coil

    Science.gov (United States)

    Dai, Zhongyu; Wang, Junhua; Long, Mengjiao; Huang, Hong; Sun, Mingui

    2017-09-01

    In order to improve the performance of the wireless power transmission (WPT) system, a novel design scheme with magnetic shielding structure on the WPT coil is presented in this paper. This new type of shielding structure has great advantages on magnetic flux leakage reduction and magnetic field concentration. On the basis of theoretical calculation of coil magnetic flux linkage and characteristic analysis as well as practical application feasibility consideration, a complete magnetic shielding structure was designed and the whole design procedure was represented in detail. The simulation results show that the coil with the designed shielding structure has the maximum energy transmission efficiency. Compared with the traditional shielding structure, the weight of the new design is significantly decreased by about 41%. Finally, according to the designed shielding structure, the corresponding experiment platform is built to verify the correctness and superiority of the proposed scheme.

  20. Active Power Flow Optimization of Industrial Power Supply with Regard to the Transmission Line Conductor Heating

    Directory of Open Access Journals (Sweden)

    Leyzgold D.Yu.

    2015-04-01

    Full Text Available This article studies the problem of the transmission line conductor heating effect on the active power flows optimization in the local segment of industrial power supply. The purpose is to determine the optimal generation rating of the distributed power sources, in which the power flow values will correspond to the minimum active power losses in the power supply. The timeliness is the need to define the most appropriate rated power values of distributed sources which will be connected to current industrial power supply. Basing on the model of active power flow optimization, authors formulate the description of the nonlinear transportation problem considering the active power losses depending on the transmission line conductor heating. Authors proposed a new approach to the heating model parameters definition based on allowable current loads and nominal parameters of conductors as part of the optimization problem. Analysis of study results showed that, despite the relatively small active power losses reduction to the tune 0,45% due to accounting of the conductors heating effect for the present configuration of power supply, there are significant fluctuations in the required generation rating in nodes of the network to 9,32% within seasonal changes in the outer air temperature. This fact should be taken into account when selecting the optimum power of distributed generation systems, as exemplified by an arbitrary network configuration.

  1. Optimal Operation of Energy Storage in Power Transmission and Distribution

    Science.gov (United States)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider

  2. Wireless (Power Transfer Transmission of Electrical Energy (Electricity Intended for Consumer Purposes up to 50 W

    Directory of Open Access Journals (Sweden)

    Marek Piri

    2016-01-01

    Full Text Available This project deals with Power Semiconductor Systems PSS for wireless transmission of electricity to the power of 50~W with regard to the distance and transmission efficiency. We decided to use electromagnetic resonance for electrical energy transmission. For experimental verification, we have wound two coils of identical dimensions. At a given power transmission solutions, we obtain the highest efficiency η = 70% at a distance of 5 cm, where the transmitted power was 48 W.

  3. Understanding losses in three core armoured submarine cables

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Ebdrup, Thomas; Bak, Claus Leth

    2016-01-01

    . For practical an economical reasons the preferred choice of cable for both the array and the transmission cables are three-core armoured submarine cables. Therefore, it has becoming increasingly important to be able to calculate the ampacity of such cables accurately. At present time, the ampacity of three......-core armoured submarine cables is calculated according to IEC 60287-1-1 [1]. Various measurements conducted both by cable manufacturers and transmission system operators (TSO) have shown that using the cable rating method stated in IEC 60287-1-1 underestimates the cable ampacity [2]-[6]. Furthermore......, measurements conducted within the cable industry have shown that an armoured three core cable has higher losses than equal unarmoured three core cables. It is also suggested that the inaccuracy in the IEC armour’s loss factor (λ2) is the main responsible for the conservatism in the IEC cable rating method...

  4. High Temperature Superconducting Underground Cable

    International Nuclear Information System (INIS)

    Farrell, Roger A.

    2010-01-01

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  5. Technical and economic feasibility of superconducting power transmission: a case study

    International Nuclear Information System (INIS)

    Forsyth, E.B.; Mulligan, G.A.; Beck, J.W.; Williams, J.A.

    1975-01-01

    The long-range plans of the Long Island Lighting Company include the installation of 4600 MW of generation capacity at nuclear sites on eastern Long Island by the 1990's. A single site, Shoreham, was chosen for this study which would require transmission facilities to the Ruland Road substation, 43 miles away. Conventional 345 kV overhead and underground circuits are planned for this service. For the case study three superconducting cable schemes have been investigated which reflect various technical options. The superconducting cables have been designed to meet acceptable normal and contingency load flow conditions and to withstand maximum short circuit faults. A cost analysis has been made of the complete installation, providing a valuable comparison of the estimated cost of this new technology with conventional methods. The most favorable cost comparison is a two-circuit 345 kV superconducting system, which appears to be about one-half the cost of an all underground 345 kV high pressure oil-filled cable system. No reactive compensation will be required for the superconducting system, whereas extensive compensation is required for HPOF cables over the same distance. The cost estimate for the two-circuit superconducting system is about twice that of 345 kV overhead transmission, which would consist of two double circuits and one single circuit, assuming right-of-way could be obtained. (U.S.)

  6. Improved Power System of the Future

    OpenAIRE

    Rabinowitz, Mario

    2003-01-01

    This paper is intended to provide an insight into physics and engineering that can modernize electric power systems. Topics covered are Flexible ac transmission systems (FACTS), Custom Power, Greatly improved Capacitors, Electrical Insulation, Distribution Cables, Improved Polymeric Insulation, Underground Vault Explosions, Fault Location, Smart Cables, Neutral and Ground, Corrosion and Protection, Conventional Transformers, Compact Transformers, Ferroresonance, and Solid State Transformers.

  7. Development of flame retardant and anti-pollution (AP) electric cable

    International Nuclear Information System (INIS)

    Fujimura, Shunichi; Ishitani, Hayao; Sakamoto, Kazuhide; Ohtani, Kenichi; Udoh, Sinichi; Hisatsune, Toyokazu; Igarashi, Yasuhiro; Ohya, Shingo; Handa, Katsue

    1985-01-01

    Varies means are in use to prevent the spread of cable fire. But little attention has been paid to the generation of smoke, corrosive gas, and toxic gas from burning cables. In Europe control on gas-producing cables is widespread, and Japan is beginning to be influenced by it. The authors report their development of what is called ''anti-pollution flame-retardant cable'' which produces no metal-corroding and highly toxic halogenides and only very little smoke. The AP cable can be designed in varied constructions according to the applications for which it is used. It is therefore usable for power transmission, communications, ships, vehicles, nuclear power facilities, etc. (author)

  8. Modeling particle emission and power flow in pulsed-power driven, nonuniform transmission lines

    Directory of Open Access Journals (Sweden)

    Nichelle Bruner

    2008-04-01

    Full Text Available Pulsed-power driven x-ray radiographic systems are being developed to operate at higher power in an effort to increase source brightness and penetration power. Essential to the design of these systems is a thorough understanding of electron power flow in the transmission line that couples the pulsed-power driver to the load. In this paper, analytic theory and fully relativistic particle-in-cell simulations are used to model power flow in several experimental transmission-line geometries fielded on Sandia National Laboratories’ upgraded Radiographic Integrated Test Stand [IEEE Trans. Plasma Sci. 28, 1653 (2000ITPSBD0093-381310.1109/27.901250]. Good agreement with measured electrical currents is demonstrated on a shot-by-shot basis for simulations which include detailed models accounting for space-charge-limited electron emission, surface heating, and stimulated particle emission. Resonant cavity modes related to the transmission-line impedance transitions are also shown to be excited by electron power flow. These modes can drive oscillations in the output power of the system, degrading radiographic resolution.

  9. Cable aging management

    International Nuclear Information System (INIS)

    Anandkumaran, A.; Sedding, H.

    2012-01-01

    Worldwide, due to the age of the majority of nuclear generating stations significant attention is being paid to the condition of the major components, e.g., reactor, steam generator, turbine generator, transformer, etc., with respect to relicensing and life extension. However, there is recognition that cable systems are critical to the safe, reliable and economic operation of nuclear power plants. Consequently, there is great interest in ageing management of low and medium voltage cables in the nuclear environment. Successful implementation of such programs requires an understanding of how the materials associated with cables and their accessories behave under normal operating and accident conditions. However, there is also a great need to determine the actual condition of the materials and systems in order to make rational decisions on whether or not to replace cables to ensure long term assurance of reliable operation. This proposed contribution describes an approach to cable ageing management of low and medium voltage cables based on measurements of material and electrical properties obtained in the laboratory and in the field. The effectiveness of various chemical, mechanical and electrical test methods are discussed in the context of, • Cable configuration, i.e., low or medium voltage, shielded or unshielded • Material type, i.e., PVC, XLPE, EPR, etc., • Ageing stress, i.e., electrical, thermal, radiation, thermal plus radiation, etc. These factors are key to identifying the most appropriate test method (or methods) to enable understanding of the current condition of the cable. While electrical test methods, e.g., ac withstand testing, partial discharge and various dielectric loss measurement techniques have been found effective for medium voltage cables, they are of very limited use on low voltage cables that constitute the majority of cables in nuclear power plants. This limited effectiveness is due to the lack of a well defined ground plane that is a

  10. Recent Accomplishments in Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Fikes, John C.; Henley, Mark W.; Mankins, John C.; Howell, Joe T.; Fork, Richard L.; Cole, Spencer T.; Skinner, Mark

    2003-01-01

    Wireless power transmission can be accomplished over long distances using laser power sources and photovoltaic receivers. Recent research at AMOS has improved our understanding of the use of this technology for practical applications. Research by NASA, Boeing, the University of Alabama-Huntsville, the University of Colorado, Harvey Mudd College, and the Naval Postgraduate School has tested various commercial lasers and photovoltaic receiver configurations. Lasers used in testing have included gaseous argon and krypton, solid-state diodes, and fiber optic sources, at wavelengths ranging from the visible to the near infra-red. A variety of Silicon and Gallium Arsenide photovoltaic have been tested with these sources. Safe operating procedures have been established, and initial tests have been conducted in the open air at AMOS facilities. This research is progressing toward longer distance ground demonstrations of the technology and practical near-term space demonstrations.

  11. Electromagnetic Interference Issues of A Wireless Power Transmission Converter

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Haji Bashi, Mazaher; Silva, Filipe Miguel Faria da

    2018-01-01

    field and the leakage current flowing through stray capacitors. In this paper, the EMI of wireless power transmission technology is highlighted and for the first time evaluated from a new perspective. The possible parasitic paths are identified simply. Additionally, effective high-frequency models......Many recent studies have focused on the inductive charging to transfer electrical power from a source to batteries without any electrical interface. The main problem with them is that inductive charging technologies may have electromagnetic compatibility (EMC) issues caused by the leakage magnetic...... for each part of the inductive charger are presented. At the first, the lowest EMI technology for wireless charging is chosen and simulated. To overcome the EMI and leakage current problems, this paper also suggests using a new passive EMI filter topology. Simulation results show the necessity...

  12. Practical Coupled Resonators in Domino Arrangements for Power Transmission and Distribution: Replacing Step-Down Power Transformers and Their Branches across the Power Grid

    Directory of Open Access Journals (Sweden)

    Athanasios G. Lazaropoulos

    2013-01-01

    /low-voltage (MV/LV, and HV/LV power transformers used across the world is investigated verifying their replacement potential with practical DCR configurations in all the cases examined. Fifth, based on a detailed collection of dimensions concerning power transformers and transmission line branches, it is first verified that practical DCR configurations cannot only substitute all step-down power transformers of the today's power grid but also replace entire transmission line branches too. Finally, it is obvious that there is a long journey ahead for WPT technology and its ultramodern DCR configurations to be affordably, widely, reliably, sustainably, and safely adopted in the human society. During these first steps of WPT development for power transmission and distribution, theoretical analyses and visions are necessary. The last cable problem, that is, the seamless power delivery as easily as information is now transmitted through the air, is one of the major technological challenges of the 21st century, and, thus, WPT technology will certainly play key role.

  13. Improvement of a high current DC power supply system for testing the large scaled superconducting cables and magnets

    International Nuclear Information System (INIS)

    Yamada, Shuichi; Chikaraishi, Hirotaka; Tanahashi, Shugo

    1993-11-01

    A dc 75 kA power supply system was constructed to test the superconducting (SC) R and D cables and magnets for the Large Helical Device. It consists of three 25 kA unit banks. A unit bank has two double-star-rectifier connections with the inter-phase reactors. A digital feedback control method is applied to the automatic current regulation (ACR) in each unit bank. For shortening the dead time of the feedback process, a new algorithm of a digital phase controller for the ACR is investigated. A Bode diagram of the feedback process is directly measured. It is confirmed that the dead time of the feedback process is reduced to one sixth, and that the feedback gain of PID compensation is improved by a factor of two from the original method. (author)

  14. Comparison of Conductor-Temperature Calculations Based on Different Radial-Position-Temperature Detections for High-Voltage Power Cable

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2018-01-01

    Full Text Available In this paper, the calculation of the conductor temperature is related to the temperature sensor position in high-voltage power cables and four thermal circuits—based on the temperatures of insulation shield, the center of waterproof compound, the aluminum sheath, and the jacket surface are established to calculate the conductor temperature. To examine the effectiveness of conductor temperature calculations, simulation models based on flow characteristics of the air gap between the waterproof compound and the aluminum are built up, and thermocouples are placed at the four radial positions in a 110 kV cross-linked polyethylene (XLPE insulated power cable to measure the temperatures of four positions. In measurements, six cases of current heating test under three laying environments, such as duct, water, and backfilled soil were carried out. Both errors of the conductor temperature calculation and the simulation based on the temperature of insulation shield were significantly smaller than others under all laying environments. It is the uncertainty of the thermal resistivity, together with the difference of the initial temperature of each radial position by the solar radiation, which led to the above results. The thermal capacitance of the air has little impact on errors. The thermal resistance of the air gap is the largest error source. Compromising the temperature-estimation accuracy and the insulation-damage risk, the waterproof compound is the recommended sensor position to improve the accuracy of conductor-temperature calculation. When the thermal resistances were calculated correctly, the aluminum sheath is also the recommended sensor position besides the waterproof compound.

  15. Benchmark Analysis for Condition Monitoring Test Techniques of Aged Low Voltage Cables in Nuclear Power Plants. Final Results of a Coordinated Research Project

    International Nuclear Information System (INIS)

    2017-10-01

    used for in situ testing of installed cables while a nuclear power plant is operating.The results of these benchmark tests were then compared to identify the best condition monitoring methods and establish recommendations for improvements. The conclusions of the data analysis provided insight into condition monitoring techniques which yield usable or traceable results

  16. Damping properties of non-conductive composite materials for applications in power transmission pylons

    DEFF Research Database (Denmark)

    Kliem, Mathias; Rüppel, Marvin; Høgsberg, Jan

    2018-01-01

    This study aims to characterize the fibre direction dependent damping properties of non-conductive composite materialsto be used in newly designed electrical power transm°ission pylons, on which the conducting cables will be directlyconnected. Thus, the composite structure can be designed both to...

  17. Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) : Part 2: cables for rated voltages from 6 kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV)

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2005-01-01

    Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) : Part 2: cables for rated voltages from 6 kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV)

  18. Electric power transmission and distribution in Germany - an NTPA success

    International Nuclear Information System (INIS)

    Staschus, K.

    2002-01-01

    The German Energy Law of April 1998 opened 100 percent of the German electricity market to competition without any transition phase. Over four years later, the degree of market opening is still ahead of that in many other European countries. Transition phases elsewhere have been dominated by the need to develop detailed rules not only for the functioning of the power markets - e.g. in power exchanges - but also for the transmission and distribution system operators and for the data exchange between market participants. Especially the data exchange needs for the handling of household customers switching suppliers has been a challenge in all the countries that have opened the household customer market. But also the network access fees on both transmission and distribution level are still being debated in many countries. The German governments have so far chosen to let the network operators develop the access rules, pricing rules and data exchange standards in intense - and intensely observed - negotiations with the network users. Important outcomes of such negotiations include the well-known A ssociations' Agreements , GridCode, DistributionCode, MeteringCode as well as the government's Best Practice Recommendations on data exchange standards for the switching between suppliers. One important advantage of this negotiation-based rather than regulatory approach is its speed and flexibility. For example, the Associations' Agreement on network access fees is now valid in its third version, and each successive version included important learning from the experience of both network operators and network users with the previous agreement. This paper will summarise the legal framework of the liberalised power market in Germany and focus on the current state of pricing rules in the Associations' Agreement, of well advanced comparisons run by VDN, of the network access fees of hundreds of distribution system operators including specific data on structural differences of their

  19. Submerged Medium Voltage Cable Systems at Nuclear Power Plants. A Review of Research Efforts Relevant to Aging Mechanisms and Condition Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jason [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernstein, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); White, II, Gregory Von [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Glover, Steven F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neely, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pena, Gary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williamson, Kenneth Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zutavern, Fred J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gelbard, Fred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    In a submerged environment, power cables may experience accelerated insulation degradation due to water - related aging mechanisms . Direct contact with water or moisture intrusion in the cable insulation s ystem has been identified in the literature as a significant aging stressor that can affect performance and lifetime of electric cables . Progressive reduction of the dielectric strength is commonly a result of water treeing which involves the development of permanent hydrophilic structures in the insulation coinciding with the absorption of water into the cable . Water treeing is a phenomenon in which dendritic microvoids are formed in electric cable insulation due to electrochemic al reactions , electromechanical forces , and diffusion of contaminants over time . These reactions are caused by the combined effect s of water presence and high electrical stress es in the material . Water tree growth follow s a tree - like branching pattern , i ncreasing in volume and length over time . Although these cables can be "dried out," water tree degradation , specifically the growth of hydrophilic regions, is believed to be permanent and typically worsens over time. Based on established research , water treeing or water induced damage can occur in a variety of electric cables including XLPE, TR - XLPE and other insulating materials, such as EPR and butyl rubber . Once water trees or water induced damage form, the dielectric strength of an insulation materia l will decrease gradually with time as the water trees grow in length, which could eventually result in failure of the insulating material . Under wet conditions or i n submerged environments , several environmental and operational parameters can influence w ater tree initiation and affect water tree growth . These parameters include voltage cycling, field frequency, temperature, ion concentration and chemistry, type of insula tion material , and the characteristics of its defects. In this effort, a review of academic

  20. Ocean Thermal Conversion (OTEC) Project Bottom Cable Protection Study: Environmental Characteristics and Hazards Analysis,

    Science.gov (United States)

    1981-10-01

    Chesaneake Division, Naval Facilities Engineering Command, Washington, DC) 34. "Strait of Belle Isle Crossing HVDC Transmission - Submarine Cable...phenomena; such as wind storm generated wave action, bottom currents, bottom mudslides, or seismic activity; as well as human activity, such as...engaging a cable. Ship anchors are used to develop holding power on the seafloor for mooring a floating body permanently or temporary on site. The major

  1. Design and testing of low capacitance, 80-kV source cables for MFTF sustaining neutral beam power supplies

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Shimer, D.W.

    1979-01-01

    In this paper we summarize characteristics of several cable configurations and consider one design in detail, which consists of twelve, 250 MCM arc cables, ten 4/0 filament cables, and accel, gradient grid, control, and instrumentation cables within a circular split Al pipe. The pipe is air insulated from an outer 24-in. x 24-in. steel duct by utility pin insulators. Varying run lengths require adjustment of the arc inductance by variation of cross sectional cable position. Equilibrium heat transfer analysis indicates the pulse-off time for source conditioning must be somewhat greater than 60 s to keep conductor temperatures below 90 0 C. The results of a high voltage test of a model cable are presented

  2. Technical development of cost-efficient installation of power distribution cables under pavements. Haiden chichuka ni okeru doboku kensetsu gorika gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kokusho, Koji; Kataoka, Tetsuyuki; Tanaka, Yasuyuki; Yoshida, Yasuo; Ikemi, Motoyoshi; Suzuki, Koichi; Kitano, Koichi; Kobayashi, Seiichi; Kanazu, Tsutomu; Komada, Hiroya.

    1987-12-01

    Various latest technical developments were surveyed for the cost-effective installation of power distribution cables under pavements, and their applicabilities were demonstrated with the evaluation of their cost-reduction effects. Cables in conventional vinyl protection tubes could be buried only 30cm under pavements, and in such case, the cost was reduced to 51% of those of conventional methods. As the results of soil tests, excavated soil over 80% was reusable through coarse screening. Underground radar technique to explore buried pipes from the surface was detectable several pipes buried 1.5-2.0m underground, although some problems in precision were found. The improvement of reinforced concrete man-hole structures to minimize the volume of excavated soil indicated the cost reduction of nearly 20%. The application of these techniques to the installation of cables was expected to ultimately halve the total civil engineering cost. 21 refs., 130 figs., 46 tabs.

  3. Use of FACTS for enhanced flexibility and efficiency in power transmission and distribution grids

    Energy Technology Data Exchange (ETDEWEB)

    Grunbaum, Rolf; Wahlberg, Conny; Sannino, Ambra

    2010-09-15

    The paper shows how the use of FACTS increases flexibility in power transmission and distribution, improving capacity of transmission corridors to integrate renewable power production. Examples included are 69 kV directly connected SVCs for grid stabilization in conjunction with a high degree of wind power penetration; series compensation to evacuate power from the largest wind power installation in USA; SVC to increase the reliability and reduce congestion over a heavily loaded power corridor; thyristor controlled series compensation to increase the dynamic stability and power transmission capability of a power inter-connector. Finally, some applications of Dynamic energy storage are highlighted.

  4. Performance evaluation of power transmission coils for powering endoscopic wireless capsules.

    Science.gov (United States)

    Basar, Md Rubel; Ahmad, Mohd Yazed; Cho, Jongman; Ibrahim, Fatimah

    2015-01-01

    This paper presents an analysis of H-field generated by a simple solenoid, pair of solenoids, pair of double-layer solenoids, segmented-solenoid, and Helmholtz power transmission coils (PTCs) to power an endoscopic wireless capsule (WC). The H-fields were computed using finite element analysis based on partial differential equations. Three parameters were considered in the analysis: i) the maximum level of H-field (Hmax) to which the patient's body would be exposed, ii) the minimum level of H-field (Hmin) effective for power transmission, and iii) uniformity of H-field. We validated our analysis by comparing the computed data with data measured from a fabricated Helmholtz PTC. This analysis disclosed that at the same excitation power, all the PTCs are able to transfer same amount of minimum usable power since they generated almost equal value of Hmin. The level of electromagnetic exposure and power transfer stability across all the PTCs would vary significantly which is mainly due to the different level of Hmax and H-field uniformity. The segmented solenoid PTC would cause the lowest exposure and this PTC can transfer the maximum amount of power. The Helmholtz PTC would be able to transfer the most stable power with a moderate level of exposure.

  5. Risk Evaluation on UHV Power Transmission Construction Project Based on AHP and FCE Method

    OpenAIRE

    Huiru Zhao; Sen Guo

    2014-01-01

    Ultra high voltage (UHV) power transmission construction project is a high-tech power grid construction project which faces many risks and uncertainty. Identifying the risk of UHV power transmission construction project can help mitigate the risk loss and promote the smooth construction. The risk evaluation on “Zhejiang-Fuzhou” UHV power transmission construction project was performed based on analytic hierarchy process (AHP) and fuzzy comprehensive evaluation (FCE) method in this paper. Afte...

  6. Pulsed Power for a Dynamic Transmission Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

    2009-06-25

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

  7. Pulsed Power for a Dynamic Transmission Electron Microscope

    International Nuclear Information System (INIS)

    DeHope, W.J.; Browning, N.; Campbell, G.; Cook, E.; King, W.; Lagrange, T.; Reed, B.; Stuart, B.; Shuttlesworth, R.; Pyke, B.

    2009-01-01

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM

  8. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  9. Experimental results of wind powered pumping plant with electrical transmission

    International Nuclear Information System (INIS)

    Falchetta, M.; Prischich, D.; Benedetti, A.; Cara, G.

    1992-01-01

    A demonstrative application of deep well pumping system employing a wind powered pumping plant with an electric transmission was set-up and tested for two years at the test field of the Casaccia center of ENEA (Italian Agency for Energy, New Technologies and the Environment), near Rome. The tests permitted the evaluation of the practical performance, advantages and drawbacks of a wind pumping plant of this type, in order to permit a design optimization and a proper choice of components and of control strategies for future commercial applications. The main point of investigation was the evaluation of the effectiveness of a control scheme based on a 'permanent link' between electric generator and electric motor, avoiding any electronics and switching components, and leading to a very robust and reliable means of transferring energy to the pump at variable speed, and at low cost

  10. Environmental impact of the aerial power transmission lines

    International Nuclear Information System (INIS)

    Cristescu, D.; Rusan, R.

    1993-01-01

    In the last 10-12 years the existence of the high voltage lines existence within populated areas has been more and more contested. The paper tries to complete a blank in the Romanian technical literature by introducing the concept of 'line corridor' which is different from the occupied geometric area and from 'the line disturbed corridor'. The concept is meant to specify the area where the high frequency and 50 Hz electromagnetic pollution exceeds some given limits. The impact of the power transmission lines on the human body, due to the effects of the electric and magnetic fields, is considered. Also, the aspects concerning the visual impact, the acoustic and radio noise and the area expensing by the high voltage lines, are considered. International standards and regulations regarding the limitations of this effects are presented. (author)

  11. Development of Live-working Robot for Power Transmission Lines

    Science.gov (United States)

    Yan, Yu; Liu, Xiaqing; Ren, Chengxian; Li, Jinliang; Li, Hui

    2017-07-01

    Dream-I, the first reconfigurable live-working robot for power transmission lines successfully developed in China, has the functions of autonomous walking on lines and accurately positioning. This paper firstly described operation task and object of the robot; then designed a general platform, an insulator replacement end and a drainage plate bolt fastening end of the robot, presented a control system of the robot, and performed simulation analysis on operation plan of the robot; and finally completed electrical field withstand voltage tests in a high voltage hall as well as online test and trial on actual lines. Experimental results show that by replacing ends of manipulators, the robot can fulfill operation tasks of live replacement of suspension insulators and live drainage plate bolt fastening.

  12. Initial assessment: electromagnetic compatibility aspects of proposed SPS Microwave Power Transmission System (MPTS) operations

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    An analysis of major concerns with regard to the effects on radio and electronic systems by the proposed Microwave Power Transmission System for transmitting power from a satellite solar power station to earth is presented. (LCL)

  13. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    Science.gov (United States)

    Baranov, M. I.; Rudakov, S. V.

    2018-03-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  14. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    Science.gov (United States)

    Baranov, M. I.; Rudakov, S. V.

    2018-05-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  15. Evaluation of a microwave high-power reception-conversion array for wireless power transmission

    Science.gov (United States)

    Dickinson, R. M.

    1975-01-01

    Initial performance tests of a 24-sq m area array of rectenna elements are presented. The array is used as the receiving portion of a wireless microwave power transmission engineering verification test system. The transmitting antenna was located at a range of 1.54 km. Output dc voltage and power, input RF power, efficiency, and operating temperatures were obtained for a variety of dc load and RF incident power levels at 2388 MHz. Incident peak RF intensities of up to 170 mW/sq cm yielded up to 30.4 kW of dc output power. The highest derived collection-conversion efficiency of the array was greater than 80 percent.

  16. Experimental study of thermal field deriving from an underground electrical power cable buried in non-homogeneous soils

    International Nuclear Information System (INIS)

    Lieto Vollaro, Roberto de; Fontana, Lucia; Vallati, Andrea

    2014-01-01

    The electrical cables ampacity mainly depends on the cable system operation temperature. To achieve a better cable utilization and reduce the conservativeness typically employed in buried cable design, an accurate evaluation of the heat dissipation through the cables and the surrounding soil is important. In the traditional method adopted by the International Electrotechnical Commission (IEC) and the Institute of Electrical and Electronics Engineers (IEEE) for the computation of the thermal resistance between an existing underground cable system and the external environment, it is still assumed that the soil is homogeneous and has uniform thermal conductivity. Numerical studies have been conducted to predict the temperature distribution around the cable for various configurations and thermal properties of the soil. The paper presents an experimental study conducted on a scale model to investigate the heat transfer of a buried cable, with different geometrical configurations and thermal properties of the soil, and to validate a simplified model proposed by the authors in 2012 for the calculation of the thermal resistance between the underground pipe or electrical cable and the ground surface, in cases where the filling of the trench is filled with layers of materials with different thermal properties. Results show that experimental data are in good agreement with the numerical ones. -- Highlights: • Heat transfer of a buried cable has been experimentally studied on a scale model. • Different configurations and thermal properties of the soil have been tested. • Authors previously proposed a simplified model and obtained numerical results. • Experimental results and numerical ones previously obtained were in accordance

  17. Optimal Power Transmission of Offshore Wind Power Using a VSC-HVdc Interconnection

    Directory of Open Access Journals (Sweden)

    Miguel E. Montilla-DJesus

    2017-07-01

    Full Text Available High-voltage dc transmission based on voltage-source converter (VSC-HVdc is quickly increasing its power rating, and it can be the most appropriate link for the connection of offshore wind farms (OWFs to the grid in many locations. This paper presents a steady-state operation model to calculate the optimal power transmission of an OWF connected to the grid through a VSC-HVdc link. The wind turbines are based on doubly fed induction generators (DFIGs, and a detailed model of the internal OWF grid is considered in the model. The objective of the optimization problem is to maximize the active power output of the OWF, i.e., the reduction of losses, by considering the optimal reactive power allocation while taking into account the restrictions imposed by the available wind power, the reactive power capability of the DFIG, the DC link model, and the operating conditions. Realistic simulations are performed to evaluate the proposed model and to execute optimal operation analyses. The results show the effectiveness of the proposed method and demonstrate the advantages of using the reactive control performed by DFIG to achieve the optimal operation of the VSC-HVdc.

  18. Environmental Assessment: Gulf Power Company Military Point Transmission Line Project

    Science.gov (United States)

    2014-05-12

    1500.4. 1.4. 1 Geology No geological hazards, seismic risks, or unstable slopes occur in the vicinity of Military Point on Tyndall AFB. Therefore, the...with sand grout to fill any voids within the casing and provide thermal insulation for the electric cable. Lengths greater than 3,000 feet would be...devices designed to either insulate or isolate potential contact points have. been recommended to minimize the risk of eagle electrocution, which are

  19. Electric power transmission system: A new expansion scheme

    International Nuclear Information System (INIS)

    Unidad de Planeacion Minero Energetica, UPME

    2000-01-01

    With the purpose of responding to the interconnection requirements among the main cities of the country, a company of public character was created, in charge of the planning and of the development of the national interconnected system (NIS), in such form that their work optimized the use of the available energy resources for the electricity supply and it improved the accounting levels and quality of the service. Starting from 1967, interconnection electric Corp., ISA, a very important task began in the development of methodologies and strategies of expansion of the INS that it allowed, in very short term, to connect the areas of Bogota the Atlantic Cost, Antioquia and the Cauca Valley and to develop important generation projects for the supply of electric power of the country. Then, the electric sector was reformed through the laws 142 and 143 of 1994, in search of the specialization of the business and in that sense, ISA is divided in two companies: ISAGEN that the activities degeneration and electric power commercialization, and ISA, company electric power transport, that it takes charge of the interconnection of the national system assumes. In connection with the execution of the transmission works and in the face of the possibility of lingering courts of energy, the law establishes that ISA will carry out the works that are needed and that the particular initiative doesn't develop. For that same time, it is considered that the planning should be carried out in an integral way, taking into account the requirements of the population's energy and its possibilities of supply and through programs and actions of appropriate use of the available energy resources. The UPME (Unit of Planning Miner Energetic) was created for assumes this work, so with their analyses they already offer signs to the state the investors, about the population's necessities and of the business opportunities, respectively

  20. Evaluating the merchant transmission market

    International Nuclear Information System (INIS)

    Hsieh, E.; Bartholomew Fisher, E.

    2007-01-01

    This paper reviewed the North American bulk electric transmission system, with particular reference to the following merchant power transmission projects that have applied to sell transmission at negotiated rates by the Federal Energy Regulatory Commission (FERC): Cross Sound Cable; Neptune Phase 1; TransCanada's Northern Lights HVDC line; Montana Alberta Tie; Juan de Fuca Cable; Linden VFT; Connecticut-Long Island Cable; Lake Erie Link; Empire Connection; Harbor Cable; Chesapeake Transmission; and the Neptune/Green Line. The projects were sorted by status as either active, inactive and restructured. Each summary included the interconnection points, capacity, and sponsor. This paper also identified the major hurdles in their approvals. The relative success of the merchant transmission framework in attracting new investment was then reviewed. The successful projects shared 3 common attributes. They connected areas with large price differentials and they used advanced flow control technology such as HVDC, PARs, and VFTs. The successful projects also bridged some type of border, either geographic, electrical, economic, or a combination. Three of the active projects crossed the Canadian-US border, while the other 3 connected New York City to neighbouring regions. It was shown that merchant transmission fills a niche, enabling market responses to connect areas that may be overlooked by a regional planning process. 27 refs

  1. Modular VSC converter based HVDC power transmission from offshore wind power plant: Compared to the conventional HVAC system

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Rasmussen, Tonny Wederberg; Jensen, Kim Høj

    2010-01-01

    power transmission options with HVDC systems are under consideration. In this paper, a comparison between a conventional HVAC transmission system and a HVDC system equipped with modular voltage source converters is provided. The comparison is based on the total energy transmission capability...

  2. Face Gear Technology for Aerospace Power Transmission Progresses

    Science.gov (United States)

    2005-01-01

    The use of face gears in an advanced rotorcraft transmission design was first proposed by the McDonnell Douglas Helicopter Company during their contracted effort with the U.S. Army under the Advanced Rotorcraft Transmission (ART) program. Face gears would be used to turn the corner between the horizontal gas turbine engine and the vertical output rotor shaft--a function currently done by spiral bevel gears. This novel gearing arrangement would substantially lower the drive system weight partly because a face gear mesh would be used to split the input power between two output gears. However, the use of face gears and their ability to operate successfully at the speeds and loads required for an aerospace environment was unknown. Therefore a proof-of-concept phase with an existing test stand at the NASA Lewis Research Center was pursued. Hardware was designed that could be tested in Lewis' Spiral Bevel Gear Test Rig. The initial testing indicated that the face gear mesh was a feasible design that could be used at high speeds and load. Surface pitting fatigue was the typical failure mode, and that could lead to tooth fracture. An interim project was conducted to see if slight modifications to the gear tooth geometry or an alternative heat treating process could overcome the surface fatigue problems. From the initial and interim tests, it was apparent that for the surface fatigue problems to be overcome the manufacturing process used for this component would have to be developed to the level used for spiral bevel gears. The current state of the art for face gear manufacturing required using less than optimal gear materials and manufacturing techniques because the surface of the tooth form does not receive final finishing after heat treatment as it does for spiral bevel gears. This resulted in less than desirable surface hardness and manufacturing tolerances. An Advanced Research and Projects Agency (ARPA) Technology Reinvestment Project has been funded to investigate

  3. Broadband internet connection utilizing electric power cables, v. 16(61)

    International Nuclear Information System (INIS)

    Plastinovski, Jovche

    2008-01-01

    Considering the introduction of wide spread communication, once again, pay our attention to the oldest network in Macedonia(and world wide)- the electrical network. Being widespread, it can make the broadband communication available from any place that has an electrical connection. This includes the rural areas, which the commercial companies are not interested in. Since the early 80-ties the big power companies have realized the potential of the use electric network for communication. its beginning had faced with difficulties, since in order to send data via the noisy interferes with other units such as the radio and military equipment. But nowadays these obstacles are more or lass overcame. Some of the companies are using BPL (broadband power lines) communication for their daily operations, while in the same time this relatively new technology for data transfer over power lines is under heavy developing. (Author)

  4. Broadband internet connection utilizing electric power cables, v. 16(62)

    International Nuclear Information System (INIS)

    Plastinovski, Jovche

    2008-01-01

    Considering the introduction of wide spread communication, once again, pay our attention to the oldest network in Macedonia(and world wide)- the electrical network. Being widespread, it can make the broadband communication available from any place that has an electrical connection. This includes the rural areas, which the commercial companies are not interested in. Since the early 80-ties the big power companies have realized the potential of the use electric network for communication. its beginning had faced with difficulties, since in order to send data via the noisy interferes with other units such as the radio and military equipment. But nowadays these obstacles are more or lass overcame. Some of the companies are using BPL (broadband power lines) communication for their daily operations, while in the same time this relatively new technology for data transfer over power lines is under heavy developing. (Author)

  5. Interference Cancellation for Coexisting Wireless Data and Power Transmission in the Same Frequency

    International Nuclear Information System (INIS)

    Yamazaki, Keita; Sugiyama, Yusuke; Saruwatari, Shunsuke; Kawahara, Yoshihiro; Watanabe, Takashi

    2014-01-01

    Combining wireless transmission of data and power signals enables wireless sensor networks to drive perpetually without changing batteries. To achieve the simultaneous data and power transmission, the present paper proposes power signal interference cancellation for wireless data and power transmission at the same time in the same frequency. We evaluate the performance of the proposed power signal interference cancellation using Universal Software Radio Peripheral N200 (USRP N200) software defined radio. Evaluations show that the proposed interference cancellation is feasible to receive data while transmitting power

  6. [Design and optimization of wireless power and data transmission for visual prosthesis].

    Science.gov (United States)

    Lei, Xuping; Wu, Kaijie; Zhao, Lei; Chai, Xinyu

    2013-11-01

    Boosting spatial resolution of visual prostheses is an effective method to improve implant subjects' visual perception. However, power consumption of visual implants greatly rises with the increasing number of implanted electrodes. In respond to this trend, visual prostheses need to develop high-efficiency wireless power transmission and high-speed data transmission. This paper presents a review of current research progress on wireless power and data transmission for visual prostheses, analyzes relative principles and requirement, and introduces design methods of power and data transmission.

  7. Development of a coordinated control system for BWR nuclear power plant and HVDC transmission system

    International Nuclear Information System (INIS)

    Ishikawa, M.; Hara, T.; Hirayama, K.; Sekiya, K.

    1986-01-01

    The combined use of dc and ac transmissions or so-called hybrid transmission was under study, employing both dc and ac systems to enable stable transmission of 10,000 MW of electric power generated by the BWR nuclear plant, scheduled to be built about 800 km away from the center of the load. It was thus necessary to develop a hybrid power transmission control system, the hybrid power transmission system consisting of a high voltage dc transmission system (HVDC) and an ultrahigh ac transmission system (UHVAC). It was also necessary to develop a control system for HVDC transmission which protects the BWR nuclear power plant from being influenced by any change in transmission mode that occurs as a result of faults on the UHVAC side when the entire power of the BWR plant is being sent by the HVDC transmission. This paper clarifies the requirements for the HVDC system control during hybrid transmission and also during dc transmission. The control method that satisfies these requirements was studied to develop a control algorithm

  8. Instrumentation Cables Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift

  9. Choice of antenna geometry for microwave power transmission from solar power satellites

    Science.gov (United States)

    Potter, Seth D.

    1992-01-01

    A comparison is made between square and circular transmitting antennas for solar power satellite microwave power transmission. It is seen that the exclusion zone around the rectenna needed to protect populations from microwaves is smaller for a circular antenna operating at 2.45 GHz than it is for a square antenna at that frequency. If the frequency is increased, the exclusion zone size remains the same for a square antenna, but becomes even smaller for a circular antenna. Peak beam intensity is the same for both antennas if the frequency and antenna area are equal. The circular antenna puts a somewhat greater amount of power in the main lobe and somewhat less in the side lobes. Since rain attenuation and atmospheric heating remain problems above 10 GHz, it is recommended that future solar power satellite work concentrate on circular transmitting antennas at frequencies of roughly 10 GHz.

  10. Review of candidate methods for detecting incipient defects due to aging of installed cables in nuclear power plants

    International Nuclear Information System (INIS)

    Martzloff, F.D.

    1988-01-01

    Several types of test methods have been proposed for detecting incipient defects due to aging in cable insulation systems, none offering certainty of detecting all possible types of defects. Some methods apply direct detection of a defect in the cable; other methods detect changes in electrical or non-electrical parameters from which inference can be drawn on the integrity of the cable. The paper summarizes the first year of a program conducted at the National Bureau of Standards to assess the potential of success for in situ detection of incipient defects by the most promising of these methods

  11. Literature Survey on Operational Voltage Control and Reactive Power Management on Transmission and Sub-Transmission Networks

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo, Marcelo A.; Samaan, Nader A.; Makarov, Yuri V.; Holzer, Jesse T.; Vallem, Mallikarjuna R.; Huang, Renke; Vyakaranam, Bharat GNVSR; Ke, Xinda; Pan, Feng

    2017-10-02

    Voltage and reactive power system control is generally performed following usual patterns of loads, based on off-line studies for daily and seasonal operations. This practice is currently challenged by the inclusion of distributed renewable generation, such as solar. There has been focus on resolving this problem at the distribution level; however, the transmission and sub-transmission levels have received less attention. This paper provides a literature review of proposed methods and solution approaches to coordinate and optimize voltage control and reactive power management, with an emphasis on applications at transmission and sub-transmission level. The conclusion drawn from the survey is that additional research is needed in the areas of optimizing switch shunt actions and coordinating all available resources to deal with uncertain patterns from increasing distributed renewable generation in the operational time frame. These topics are not deeply explored in the literature.

  12. Health and safety issues for microwave power transmission

    International Nuclear Information System (INIS)

    Osepchuk, J.M.

    1996-01-01

    A general public perception that microwaves are hazardous has been a key obstacle for acceptance of microwave power transmission (MPT). This perception will eventually dissipate and then attention will focus on a real technical problem, that of interference (RFI). This can range from perceptible through annoying to hazardous. A program of actions is proposed to accelerate the goal of public acceptance of MPT. In this paper, a historical review shows that the solar power satellite (SPS) was reviewed a number of times relative to potential microwave exposure hazards. In all cases, no “show-stopper” was found but often the shibboleth “more research is needed” was aired. It is shown that standards for safe exposure to microwaves are the most important asset in convincing an audience that microwave exposure associated with MPT or SPS is safe. Standard-setting, world-wide, is shown to converge towards rational limits that are supportive of the MPT/SPS concepts. In recent times there has been the proposed substitute of “risk communication” (“prudent avoidance”). This is an unwise substitute for standards. Other aspects of microwave exposure standards are the new interface with RFI—hence the need for a rational division of responsibility between the radiators and the victim devices, like medical electronics—using both radiation limits and susceptibility limits. Beneficial applications of microwave exposure are being developed. Several studies are recommended which could put into perspective the likelihood of improbable events that represent “catastrophe”—e.g. the inadvertent focusing of a great amount of energy into inhabited areas. (author)

  13. Cable handling

    International Nuclear Information System (INIS)

    1980-01-01

    In computerized axial tomography scanning, problems arise in exchanging electrical signals between fixed and rotating assemblies. A novel method of overcoming this problem is described in detail for both signal and high voltage cables. Apparatus using a sequence of drums and pulleys is used to maintain the interconnecting cables in a neat arrangement and free from mechanical strain. The apparatus is simple and relatively easy and inexpensive to assemble and maintain. (UK)

  14. A New Fractal Multiband Antenna for Wireless Power Transmission Applications

    Directory of Open Access Journals (Sweden)

    Taoufik Benyetho

    2018-01-01

    Full Text Available The Microwave Power Transmission (MPT is the possibility of feeding a system without contact by using microwave energy. The challenge of such system is to increase the efficiency of transmitted energy from the emitter to the load. This can be achieved by rectifying the microwave energy using a rectenna system composed of an antenna of a significant gain associated with a rectifier with a good input impedance matching. In this paper, a new multiband antenna using the microstrip technology and fractal geometry is developed. The fractal antenna is validated into simulation and measurement in the ISM (industrial, scientific, and medical band at 2.45 GHz and 5.8 GHz and it presents a wide aperture angle with an acceptable gain for both bands. The final antenna is printed over an FR4 substrate with a dimension of 60 × 30 mm2. These characteristics make the antenna suitable for a multiband rectenna circuit use.

  15. Timing belt in power transmission and conveying system

    Directory of Open Access Journals (Sweden)

    Domek Grzegorz

    2018-01-01

    Full Text Available This paper presents the problem of phenomena occurring at the contact of a timing belt and a pulley. Depending on a belt size range these phenomena differ significantly. There is no indication as to what solutions are optimal for drive belts. The analysis of the coupling process and performance tests have shown that the drive belt should have a cord of very good mechanical properties and its raceway side should be made from the material of a low friction coefficient against the pulley material. A flat belt in power transmission and conveying systems cooperates with several elements consisting of timing pulleys, tensioners or guiding rails. In gear with timing belts they depend strongly on characteristics of the process as well as the type of friction. In recent constructions, producers of timing belts are very much concerned about achieving as much slippery surface as possible. The work describes the problem of friction on different surfaces as well as its influence on gear lifetime. Research results confirm that on many surfaces bigger coefficient of friction is expected.

  16. Regulatory Guide 1.131: Qualification tests of electric cables, field splices, and connections for light-water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Criterion III, ''Design Control,'' of Appendix B, ''Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plant,'' to 10 CFR Part 50, ''Licensing of Production and Utilization Facilities,'' requires that, where a test program is used to verify the adequacy of a specific design feature, it include suitable qualification testing of a prototype unit under the most adverse design conditions. This regulatory guide describes a method acceptable to the NRC staff for complying with the Commission's regulations with regard to qualification testing of electric cables, field splices, and connections for service in light-water-cooled nuclear power plants to ensure that the cables, field splices, and connections can perform their safety-related functions. The fire test provisions of this guide do not apply to qualification for an installed configuration

  17. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications.

    Science.gov (United States)

    Khan, Farid Ullah

    For wireless sensor node (WSN) applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters' wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V) and rechargeable battery (Nickel-Cadmium, 3.8 V) are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented.

  18. Corrosion study on high power feeding of telecomunication copper cable in 5 wt.% CaSO4.2H2O solution

    Science.gov (United States)

    Shamsudin, Shaiful Rizam; Hashim, Nabihah; Ibrahim, Mohd Saiful Bahri; Rahman, Muhammad Sayuzi Abdul; Idrus, Muhammad Amin; Hassan, Mohd Rezadzudin; Abdullah, Wan Razli Wan

    2016-07-01

    The studies were carried out to find out the best powering scheme over the copper telephone line. It was expected that the application of the higher power feeding could increase the data transfer and capable of providing the customer's satisfaction. To realize the application of higher remote power feeding, the potential of corrosion problem on Cu cables was studied. The natural corrosion behaviour of copper cable in the 0.5% CaSO4.2H2O solution was studied in term of open circuit potential for 30 days. The corrosion behaviour of higher power feeding was studied by the immersion and the planned interval test to determine the corrosion rate as well as the effect of voltage magnitudes and the current scheme i.e. positive direct (DC+) and alternating current (AC) at about 0.40 ± 0.01 mA/ cm2 current density. In the immersion test, both DC+ and AC scheme showed the increasing of feeding voltage magnitude has increased the corrosion rate of Cu samples starting from 60 to 100 volts. It was then reduced at about 100 - 120 volts which may due to the passive and transpassive mechanism. The corrosion rate was slowly reduced further from 120 to 200 volts. Visually, the positively charged of Cu cable was seems susceptible to severe corrosion, while AC scheme exhibited a slight corrosion reaction on the surface. However, the planned interval test and XRD results showed the corrosion activity of the copper cable in the studied solution was a relatively slow process and considered not to be corroded as a partially protective scale of copper oxide formed on the surface.

  19. Determination of elemental impurities in polymer materials of electrical cables of safety systems of nuclear power plants by k(0)-INAA

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Kubešová, Marie; Bartoníček, B.

    2014-01-01

    Roč. 300, č. 2 (2014), s. 685-691 ISSN 0236-5731. [6th International Ko Users Workshop. Budapest, 22.09.2013-27.09.2013] R&D Projects: GA TA ČR TA02010218; GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : neutron activation analysis * k(0) standardization * polymer materials * element additives * cables of safety systems * nuclear power plant Subject RIV: JF - Nuclear Energetics Impact factor: 1.034, year: 2014

  20. Linking Up : Public-Private Partnerships in Power Transmission in Africa

    OpenAIRE

    World Bank

    2017-01-01

    The 'Linking up: Public-Private Partnerships in Power Transmission in Africa' report examines private sector-led investments in transmission globally and how this approach is applicable in sub-Saharan Africa. The private sector has invested over US$25 billion in the generation sector in Africa, and across other regions, has also participated successfully in transmission networks in many co...

  1. Scenarios of power transmission networks; Cenarios de redes de transmissao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Souza Fonseca, L.G. de; Savi, T C.O.; Morozowski Filho, M; Camargo, C C [ELETROSUL, Florianopolis, SC (Brazil)

    1985-12-31

    This work discusses the electrical network expansion considering long term horizons and a purpose of methodology for the establishment of transmission network scenarios. As part of the transmission scenario studies the network expansion problem is described by linearized power flow models and, for transmission system analysis and synthesis, the minimum effort criteria and interactive SINTRA program are used. 4 refs., 3 figs., 2 tabs.

  2. Length of a Hanging Cable

    Directory of Open Access Journals (Sweden)

    Eric Costello

    2011-01-01

    Full Text Available The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined by a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor.

  3. Grounding modelling for transient overvoltage simulation in electric power transmission

    International Nuclear Information System (INIS)

    Moreno O, German; Valencia V, Jaime A; Villada, Fernando

    1992-01-01

    Grounding plays an important role in transmission line outages and consequently on electric energy transmission quality indexes. Fundamentals of an accurate modelling for transient behaviour analysis, particularly for the response of transmission lines to lightning, are presented. Also, a method to take into account the electromagnetic propagation guided by the grounding electrodes and finally to assess the grounding impedance in order to simulate the transmission line behaviour under lightning is presented. Analysis of impedance behaviour for diverse configurations and simulation results of over voltages on a real 220 kV line are presented to illustrate the capabilities of the method and of the computational program developed

  4. Technical analysis of magneto-inductive crane cables in nuclear power plants. Application crane Cofrentes Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gavilan Moreno, C. J.

    2010-01-01

    In 2009, the Cofrentes Nuclear Power Plant made a study about crane inspection techniques available on the market and other industries. The result was the location of the magneto-inductive technique inspection. Its use provides an objective assessment of the resistant section and; through these data; it could be made calculations as the maximum voltage allowed. Therefore, the technique is proven and available to all nuclear power plants.

  5. The Thermal Regime Around Buried Submarine High-Voltage Cables

    Science.gov (United States)

    Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.

    2015-12-01

    The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.

  6. Cost and Benefit Analysis of VSC-HVDC Schemes for Offshore Wind Power Transmission

    Institute of Scientific and Technical Information of China (English)

    Sheng WANG; Chunmei FENG; An WEN; Jun LIANG

    2013-01-01

    Due to low load factors of wind power generation,it is possible to reduce transmission capacity to minimize the cost of transmission system construction.Two VSC-HVDC schemes for offshore wind farm,called the point to point (PTP) and DC mesh connections are compared in terms of the utilization of transmission system and its cost.A Weibull distribution is used for estimating offshore wind power generation,besides,the cross correlation between wind farms is considered.The wind energy curtailment is analyzed using the capacity output possibility table (COPT).The system power losses,costs of transmission investment and wind energy curtailment are also computed.A statistic model for the wind generation and transmission is built and simulated in MATLAB to validate the study.It is concluded that a DC mesh transmission can reduce the energy curtailment and power losses.Further benefit is achievable as the wind cross correlation between wind farms decreases.

  7. 75 FR 81264 - Critical Path Transmission, LLC; Clear Power, LLC; v. California Independent System Operator, Inc...

    Science.gov (United States)

    2010-12-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-11-000] Critical Path Transmission, LLC; Clear Power, LLC; v. California Independent System Operator, Inc.; Notice of Complaint... and 306 of the Federal Power Act, 16 U.S.C. 824e and 825e (2006), Critical Path Transmission, LLC and...

  8. Long distance transmission of bulk power: the EHV-UHV DC challenge

    Energy Technology Data Exchange (ETDEWEB)

    Clerici, A; Valtorta, G

    1994-12-31

    This paper deals with technical and economical analysis of transmission of powers in the range from 1000 to 5000 MW and distances included between 1000 to 4000 km. The advantages of adoption of UHV DC transmission are evident especially for the longest distances and the largest power levels considered. (author) 4 refs., 9 figs.

  9. 2015 Plan. Project 5: transmission systems of electric power

    International Nuclear Information System (INIS)

    1992-12-01

    The planning aspects of transmission system expansion in Brazil are described, mentioning the evolution at long date of the transmission system, emphasizing the qualitative and strategic aspects. The engineering aspects and the technological development are also presented. (C.G.C.)

  10. Radiation-pulse transmission via a long cable without a preamplifier and/or a pulse transformer; Transmission d'impulsions de rayonnement par cable long sans l'adjonction d'un preamplificateur ou d'un transformateur d'impulsions; Peredacha impul'snykh izluchenij no kabelyu na dal'nie rasstoyaniya bez predvaritel'nogo usileniya i/ili bez preobrazovaniya impul'sov; Transmision de impulsos por cables de gran longitud sin preamplificador y/o transformador de impulsos

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, H; Tohyama, T [Kobe Kogyo Corporation, Okubo, Akashi, Hyogo (Japan)

    1962-04-15

    conditions such as high or low temperature, high neutron (gamma) flux, etc. A single coaxial cable enables the simple operation of detectors in remote positions. Scintillation gamma spectroscopy was not affected by a long cable pulse-transmission of over 500 m. (author) [French] Pour l'introduction de transistors dans les instruments d'electronique nucleaire, la faiblesse inherente de l'impedance d'entree exige certaines modifications du circuit d'entree. Les auteurs ont fait une etude comparee de trois circuits d'entree caracterises par leur tension (systeme 1), leur tension-courant (systeme 2) et leur courant (systeme 3). Le systeme 1 est, dans une large mesure, analogue a celui du circuit des tubes a vide classiques. Les auteurs ont mis au point un emetteur-analyseur polarise par contre-reaction; utilise comme circuit a haute impedance d'entree, depassant 10{sup 7} {Omega}, il a donne d'excellents resultats, sans affecter la stabilite du courant continu. Presque tous les detecteurs de rayonnement peuvent etre consideres comme des generateurs de courant. Ainsi, la sortie des detecteurs peut etre connectee a l'amplificateur a faible impedance d'entree. C'est le systeme 3 qui donne une excellente amplitude d'impulsion; toutefois, la limite superieure de frequence de l'amplificateur devrait depasser 10 MHz, compte tenu de la vitesse des impulsions et de la faible valeur de la constante de temps d'integration a l'entree. Le systeme 2 est une combinaison des deux autres. Le courant de sortie des detecteurs est connecte par une resistance de 10{sup 5} {Omega} environ a l'amplificateur a faible impedance d'entree. La resistance donne la valeur convenable a la constante de temps d'integration a l'entree et ramene a 2 MHz environ la limite superieure de frequence exigee par le circuit electronique. En outre, ce dispositif permet de maintenir la proportionnalite entre l'amplitude de l'impulsion et l'energie du rayonnement. Lorsqu'on emploie des detecteurs a gaz, la resistance joue

  11. An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy.

    Science.gov (United States)

    Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Ziqiang; Wang, Zhihua

    2010-01-01

    This paper investigates the design and optimization of a wireless power transmission link targeting Micro-Ball Endoscopy applications. A novel asymmetric resonant coupling structure is proposed to deliver power to an endoscopic Micro-Ball system for image read-out after it is excreted. Such a technology enables many key medical applications with stringent requirements for small system volume and high power delivery efficiency. A prototyping power transmission sub-system of the Micro-Ball system was implemented. It consists of primary coil, middle resonant coil, and cube-like full-direction secondary receiving coils. Our experimental results proved that 200mW of power can be successfully delivered. Such a wireless power transmission capability could satisfy the requirements of the Micro-Ball based endoscopy application. The transmission efficiency is in the range of 41% (worst working condition) to 53% (best working condition). Comparing to conventional structures, Asymmetric Resonant Coupling Structure improves power efficiency by 13%.

  12. The Evaluation Method of the Lightning Strike on Transmission Lines Aiming at Power Grid Reliability

    Science.gov (United States)

    Wen, Jianfeng; Wu, Jianwei; Huang, Liandong; Geng, Yinan; Yu, zhanqing

    2018-01-01

    Lightning protection of power system focuses on reducing the flashover rate, only distinguishing by the voltage level, without considering the functional differences between the transmission lines, and being lack of analysis the effect on the reliability of power grid. This will lead lightning protection design of general transmission lines is surplus but insufficient for key lines. In order to solve this problem, the analysis method of lightning striking on transmission lines for power grid reliability is given. Full wave process theory is used to analyze the lightning back striking; the leader propagation model is used to describe the process of shielding failure of transmission lines. The index of power grid reliability is introduced and the effect of transmission line fault on the reliability of power system is discussed in detail.

  13. A review on fault classification methodologies in power transmission systems: Part-II

    Directory of Open Access Journals (Sweden)

    Avagaddi Prasad

    2018-05-01

    Full Text Available The countless extent of power systems and applications requires the improvement in suitable techniques for the fault classification in power transmission systems, to increase the efficiency of the systems and to avoid major damages. For this purpose, the technical literature proposes a large number of methods. The paper analyzes the technical literature, summarizing the most important methods that can be applied to fault classification methodologies in power transmission systems.The part 2 of the article is named “A review on fault classification methodologies in power transmission systems”. In this part 2 we discussed the advanced technologies developed by various researchers for fault classification in power transmission systems. Keywords: Transmission line protection, Protective relaying, Soft computing techniques

  14. Long-term Performance of PVC and CSPE Cables used in Nuclear Power Plants: the Effect of Degradation and Plasticizer migration

    International Nuclear Information System (INIS)

    Ekelund, Maria

    2009-10-01

    Enormous amounts of low voltage cables installed in a Swedish nuclear power plant are reaching their expected lifetimes. Since the cables are crucial to operational safety, it is of great importance that the actual condition of the installed cables is determined. In this study, cables based on poly(vinyl chloride) plasticized with di(2-ethylhexyl)phthalate (DEHP) were examined with respect to the degradation mechanisms responsible for the ageing of the insulation. This was achieved by studying samples that underwent accelerated ageing by different analytical methods, such as indenter modulus measurements, tensile testing, infrared spectroscopy, differential scanning calorimetry and liquid chromatography, to assess the condition of the cables. The results were unambiguous; the main deterioration mechanism differed for the jacket and the core insulation. The immediate increase in stiffness of the jacket insulation suggests that loss of plasticizer was the dominant cause for degradation. The core insulation on the other hand showed much smaller changes in the mechanical properties due to thermal ageing with an activation energy of the change in the indenter modulus matching that of the dehydrochlorination process. The electrical functionality during high-energy line break accident was correlated to the mechanical properties of the cable and this correlation was used to establish a lifetime criterion. The mechanical data showed Arrhenius temperature dependence with activation energies of 80 kJ/mol and 100 kJ/mol for the jacketing and 130 kJ/mol for the core insulation. These activation energies were used to extrapolate the lifetimes to service temperatures (20 deg C to 50 deg C). Plasticizer migration was determined as the lifetime controlling mechanism at the service temperatures. Experimental data, obtained by extraction of DEHP followed by liquid chromatography, were analysed by numerical methods to gain a better understanding of the migration. The analysis showed

  15. Long-term Performance of PVC and CSPE Cables used in Nuclear Power Plants: the Effect of Degradation and Plasticizer migration

    Energy Technology Data Exchange (ETDEWEB)

    Ekelund, Maria

    2009-10-15

    Enormous amounts of low voltage cables installed in a Swedish nuclear power plant are reaching their expected lifetimes. Since the cables are crucial to operational safety, it is of great importance that the actual condition of the installed cables is determined. In this study, cables based on poly(vinyl chloride) plasticized with di(2-ethylhexyl)phthalate (DEHP) were examined with respect to the degradation mechanisms responsible for the ageing of the insulation. This was achieved by studying samples that underwent accelerated ageing by different analytical methods, such as indenter modulus measurements, tensile testing, infrared spectroscopy, differential scanning calorimetry and liquid chromatography, to assess the condition of the cables. The results were unambiguous; the main deterioration mechanism differed for the jacket and the core insulation. The immediate increase in stiffness of the jacket insulation suggests that loss of plasticizer was the dominant cause for degradation. The core insulation on the other hand showed much smaller changes in the mechanical properties due to thermal ageing with an activation energy of the change in the indenter modulus matching that of the dehydrochlorination process. The electrical functionality during high-energy line break accident was correlated to the mechanical properties of the cable and this correlation was used to establish a lifetime criterion. The mechanical data showed Arrhenius temperature dependence with activation energies of 80 kJ/mol and 100 kJ/mol for the jacketing and 130 kJ/mol for the core insulation. These activation energies were used to extrapolate the lifetimes to service temperatures (20 deg C to 50 deg C). Plasticizer migration was determined as the lifetime controlling mechanism at the service temperatures. Experimental data, obtained by extraction of DEHP followed by liquid chromatography, were analysed by numerical methods to gain a better understanding of the migration. The analysis showed

  16. Power Split Based Dual Hemispherical Continuously Variable Transmission

    Directory of Open Access Journals (Sweden)

    Douwe Dresscher

    2017-04-01

    Full Text Available In this work, we present a new continuously variable transmission concept: the Dual-Hemi Continuously Variable Transmission (CVT. It is designed to have properties we believe are required to apply continuously variable transmissions in robotics to their full potential. These properties are a transformation range that includes both positive and negative ratios, back-drivability under all conditions, kinematically decoupled reconfiguration, high efficiency of the transmission, and a reconfiguration mechanism requiring little work for changing the transmission ratio. The design of the Dual-Hemi CVT and a prototype realisation are discussed in detail. We show that the Dual-Hemi CVT has the aforementioned desired properties. Experiments show that the efficiency of the CVT is above 90% for a large part of the range of operation of the CVT. Significant stiction in the transmission, combined with a relatively low bandwidth for changing the transmission ratio, may cause problems when applying the DH-CVT as part of an actuator in a control loop.

  17. Optimal Capacity Proportion and Distribution Planning of Wind, Photovoltaic and Hydro Power in Bundled Transmission System

    Science.gov (United States)

    Ye, X.; Tang, Q.; Li, T.; Wang, Y. L.; Zhang, X.; Ye, S. Y.

    2017-05-01

    The wind, photovoltaic and hydro power bundled transmission system attends to become common in Northwest and Southwest of China. To make better use of the power complementary characteristic of different power sources, the installed capacity proportion of wind, photovoltaic and hydro power, and their capacity distribution for each integration node is a significant issue to be solved in power system planning stage. An optimal capacity proportion and capacity distribution model for wind, photovoltaic and hydro power bundled transmission system is proposed here, which considers the power out characteristic of power resources with different type and in different area based on real operation data. The transmission capacity limit of power grid is also considered in this paper. Simulation cases are tested referring to one real regional system in Southwest China for planning level year 2020. The results verify the effectiveness of the model in this paper.

  18. Realisation and instrumentation of high current power station for superconducting cables testing

    International Nuclear Information System (INIS)

    Regnaud, S.

    2000-05-01

    This report deals with the designing of a high current station able to test electric properties of superconductors. This test station will be used for testing the superconducting wires of large hadron collider detectors in CERN. The high current test station will have to generate high intensity continuous current in a magnetic field of 0 to 5 tesla and in temperature conditions of 4.2 K. The length of wire samples submitted to the uniform magnetic field is 300 mm and the installation is fitted with equipment able to measure the magnetic field perpendicular to either faces of the wire. The peculiarity of this station is to use a superconducting transformer in order to generate the high current. The first part of this work recalls important notions concerning superconductivity. The second part presents the high current station by describing the superconducting transformer and the sample-holder. We have studied the designing of a transformer able to yield a secondary current whose intensity reaches 100 kA, such intensity generates powerful electromagnetic forces (566 kN/m) in case of defect, so the sample-holder has to be carefully design to bear them. The third part presents the cryogenic component of the station, the instrumentation of the sample-holder and the method used to measure secondary currents. In the last part we present the performance of a prototype transformer, this prototype is able to deliver a 22 kA secondary current for a 160 A primary current, the uncertainty on the measured value of the secondary current is about 3%

  19. 47 CFR 74.795 - Digital low power TV and TV translator transmission system facilities.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.795 Digital low power TV and TV translator transmission system facilities. (a) A digital low power TV or TV translator station shall operate...

  20. The creation of high-temperature superconducting cables of megawatt range in Russia

    Science.gov (United States)

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  1. The creation of high-temperature superconducting cables of megawatt range in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Sytnikov, V. E., E-mail: vsytnikov@gmail.com; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A. [JSC NTTs FSC EES (Russian Federation); Popov, D. A.; Fedotov, E. V.; Komandenko, O. V. [JSC Irkutskkabel (Russian Federation)

    2015-12-15

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  2. Batteryless wireless transmission system for electronic drum uses piezoelectric generator for play signal and power source

    International Nuclear Information System (INIS)

    Nishikawa, H; Yoshimi, A; Takemura, K; Tanaka, A; Douseki, T

    2015-01-01

    A batteryless self-powered wireless transmission system has been developed that sends a signal from a drum pad to a synthesizer. The power generated by a piezoelectric generator functions both as the “Play” signal for the synthesizer and as the power source for the transmitter. An FM transmitter, which theoretically operates with zero latency, and a receiver with quick-response squelch of the received signal were developed for wireless transmission with a minimum system delay. Experimental results for an electronic drum without any connecting wires fully demonstrated the feasibility of self-powered wireless transmission with a latency of 900 μs. (paper)

  3. OTEC riser cable model and prototype testing

    Science.gov (United States)

    Kurt, J. P.; Schultz, J. A.; Roblee, L. H. S.

    1981-12-01

    Two different OTEC riser cables have been developed to span the distance between a floating OTEC power plant and the ocean floor. The major design concerns for a riser cable in the dynamic OTEC environment are fatigue, corrosion, and electrical/mechanical aging of the cable components. The basic properties of the cable materials were studied through tests on model cables and on samples of cable materials. Full-scale prototype cables were manufactured and were tested to measure their electrical and mechanical properties and performance. The full-scale testing was culminated by the electrical/mechanical fatigue test, which exposes full-scale cables to simultaneous tension, bending and electrical loads, all in a natural seawater environment.

  4. Wireless Power Transmission via Sheet Medium Using Automatic Phase Adjustment of Multiple Inputs

    Science.gov (United States)

    Matsuda, Takashi; Oota, Toshifumi; Kado, Youiti; Zhang, Bing

    The wireless power transmission via sheet medium is a novel physical form of communication that utilizes the surface as a medium to provide both data and power transmission services. To efficiently transmit a relatively-large amount of electric power (several watts), we have developed a wireless power transmission system via sheet medium that concentrates the electric power on a specific spot by using phase control of multiple inputs. However, to find the optimal phases of the multiple inputs making the microwave converge on a specific spot in the sheet medium, the prior knowledge of the device's position, and the pre-experiment measuring the output power, are needed. In wireless communication area, it is known that the retrodirective array scheme can efficiently transmit the power in a self-phasing manner, which uses the pilot signals sent by the client devices. In this paper, we apply the retrodirective array scheme to the wireless power transmission system via sheet medium, and propose a power transmission scheme using the phase-adjustment of multiple inputs. To confirm the effectiveness of the proposal scheme, we evaluate its performance by computer simulation and realistic measurement. Both results show that the proposal scheme can achieve the retrodirectivity over the wireless power transmission via sheet medium.

  5. Transmission cost allocation based on power flow tracing considering reliability benefit

    International Nuclear Information System (INIS)

    Leepreechanon, N.; Singharerg, S.; Padungwech, W.; Nakawiro, W.; Eua-Arporn, B.; David, A.K.

    2007-01-01

    Power transmission networks must be able to accommodate the continuously growing demand for reliable and economical electricity. This paper presented a method to allocate transmission use and reliability cost to both generators and end-consumers. Although transmission cost allocation methods change depending on the local context of the electric power industry, there is a common principle that transmission line capacity should be properly allocated to accommodate actual power delivery with an adequate reliability margin. The method proposed in this paper allocates transmission embedded cost to both generators and loads in an equitable manner, incorporating probability indices to allocate transmission reliability margin among users in both supply and demand sides. The application of the proposed method was illustrated using Bialek's tracing method on a multiple-circuit, six-bus transmission system. Probabilistic indices known as the transmission internal reliability margin (TIRM) and transmission external reliability margin (TERM) decomposed from the transmission reliability margin (TRM) were introduced, making true cost of using overall transmission facilities. 6 refs., 11 tabs., 5 figs

  6. Field application of a cable NDT system for cable-stayed bridge using MFL sensors integrated

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Won; Choi, Jun Sung; Park, Seung Hee [Sungkyunkwan University, Seoul (Korea, Republic of); Lee, Eun Chan [Korea Maintance Co., Ltd., Seoul (Korea, Republic of)

    2014-02-15

    In this study, an automated cable non-destructive testing(NDT) system was developed to monitor the steel cables that are a core component of cable-stayed bridges. The magnetic flux leakage(MFL) method, which is suitable for ferromagnetic continuum structures and has been verified in previous studies, was applied to the cable inspection. A multi-channel MFL sensor head was fabricated using hall sensors and permanent magnets. A wheel-based cable climbing robot was fabricated to improve the accessibility to the cables, and operating software was developed to monitor the MFL-based NDT research and control the climbing robot. Remote data transmission and robot control were realized by applying wireless LAN communication. Finally, the developed element techniques were integrated into an MFL-based cable NDT system, and the field applicability of this system was verified through a field test at Seohae Bridge, which is a typical cable-stayed bridge currently in operation.

  7. Field application of a cable NDT system for cable-stayed bridge using MFL sensors integrated

    International Nuclear Information System (INIS)

    Kim, Ju Won; Choi, Jun Sung; Park, Seung Hee; Lee, Eun Chan

    2014-01-01

    In this study, an automated cable non-destructive testing(NDT) system was developed to monitor the steel cables that are a core component of cable-stayed bridges. The magnetic flux leakage(MFL) method, which is suitable for ferromagnetic continuum structures and has been verified in previous studies, was applied to the cable inspection. A multi-channel MFL sensor head was fabricated using hall sensors and permanent magnets. A wheel-based cable climbing robot was fabricated to improve the accessibility to the cables, and operating software was developed to monitor the MFL-based NDT research and control the climbing robot. Remote data transmission and robot control were realized by applying wireless LAN communication. Finally, the developed element techniques were integrated into an MFL-based cable NDT system, and the field applicability of this system was verified through a field test at Seohae Bridge, which is a typical cable-stayed bridge currently in operation.

  8. Contribution to calculating characteristics of power transmission of relevance to technical reliability

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, B

    1982-02-19

    The possibilities are shown how input parameters are determined for reliability computations. This is done for the components of a transmission system and the evaluated failure statistics of an electric utility company. The following parameters of high interest to reliability engineering are treated: dependence of the failure frequency on the system's cable length, distribution of failure intervals of cables with different voltage levels, followerd by a study of influencing variables due to daily or seasonal fluctuations. Possibilities are pointed out of computing the system reliability on the basis of component parameters, and a method is presented that can be applied in the planning stage as well as during operation of energy transmission systems. Finally, the calculation of a real sub-net of a given energy supply is presented. The methodology of fault-tree analysis, implemented in several, different computer programs, is the input parameter of this section. This method is applied to determine minimum interface structures of a system, to simulating the TOP event in the fault tree and, in the method presented here, to determining the structural significance of components within a system.

  9. Millimeter-Gap Magnetically Insulated Transmission Line Power Flow Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hutsel, Brian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stoltzfus, Brian S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fowler, William E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LeChien, Keith R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mazarakis, Michael G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, James K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mulville, Thomas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Savage, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stygar, William A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McKenney, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Peter A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); MacRunnels, Diego J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Finis W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Porter, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An experiment platform has been designed to study vacuum power flow in magnetically insulated transmission lines (MITLs). The platform was driven by the 400-GW Mykonos-V accelerator. The experiments conducted quantify the current loss in a millimeter-gap MITL with respect to vacuum conditions in the MITL for two different gap distances, 1.0 and 1.3 mm. The current loss for each gap was measured for three different vacuum pump down times. As a ride along experiment, multiple shots were conducted with each set of hardware to determine if there was a conditioning effect to increase current delivery on subsequent shots. The experiment results revealed large differences in performance for the 1.0 and 1.3 mm gaps. The 1.0 mm gap resulted in current loss of 40%-60% of peak current. The 1.3 mm gap resulted in current losses of less than 5% of peak current. Classical MITL models that neglect plasma expansion predict that there should be zero current loss, after magnetic insulation is established, for both of these gaps. The experiments result s indicate that the vacuum pressure or pump down time did not have a significant effect on the measured current loss at vacuum pressures between 1e-4 and 1e-5 Torr. Additionally, there was not repeatable evidence of a conditioning effect that reduced current loss for subsequent full-energy shots on a given set of hardware. It should be noted that the experiments conducted likely did not have large loss contributions due to ion emission from the anode due to the relatively small current densi-ties (25-40 kA/cm) in the MITL that limited the anode temperature rise due to ohmic heating. The results and conclusions from these experiments may have limited applicability to MITLs of high current density (>400 kA/cm) used in the convolute and load region of the Z which experience temperature increases of >400° C and generate ion emission from anode surfaces.

  10. FY 2000 research and development of fundamental technologies for AC superconducting power devices. R and D of fundamental technologies for superconducting power cables and faults current limiters, R and D of superconducting magnets for power applications, and study on the total systems and related subjects; 2000 nendo koryu chodendo denryoku kiki kiban gijutsu kenkyu kaihatsu seika hokokusho. Chodendo soden cable kiban gijutsu no kenkyu kaihatsu, chodendo genryuki kiban gijutsu no kenkyu kaihatsu, denryokuyo chodendo magnet no kenkyu kaihatsu, total system nado no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The project for research and development of fundamental technologies for AC superconducting power devices has been started, and the FY 2000 results are reported. The R and D of fundamental technologies for superconducting power cables include grasping the mechanical characteristics associated with integration necessary for fabrication of large current capacity and long cables; development of barrier cable materials by various methods; and development of short insulated tubes as cooling technology for long superconducting cables, and grasping its thermal/mechanical characteristics. The R and D of faults current limiters include introduction of the unit for superconducting film fabrication, determination of the structures and layouts for large currents, and improvement of performance of each device for high voltages. R and D of superconducting magnets for power applications include grasping the fundamental characteristics of insulation at cryogenic temperature, completion of the insulation designs for high voltage/current lead bushing, and development of prototype sub-cooled nitrogen cooling unit for cooling each AC power device. Study on the total systems and related subjects include analysis for stabilization of the group model systems, to confirm improved voltage stability when the superconducting cable is in service. (NEDO)

  11. A literature survey on asset management in electrical power [transmission and distribution] system

    OpenAIRE

    Khuntia, S.R.; Rueda Torres, José L.; Bouwman, S.; van der Meijden, M.A.M.M.

    2016-01-01

    Asset management is one of the key components in a transforming electric power industry. Electric power industry is undergoing significant changes because of technical, socio-economical and environmental developments. Also, because of restructuring and deregulation, the focus has been on transmission and distribution assets that include transmission lines, power transformers, protection devices, substation equipment and support structures. This study aims to provide a detailed exposure to ass...

  12. Construction and 1st Experiment of the 500-meter and 1000-meter DC Superconducting Power Cable in Ishikari

    Science.gov (United States)

    Yamaguchi, S.; Ivanov, Y.; Watanabe, H.; Chikumoto, N.; Koshiduka, H.; Hayashi, K.; Sawamura, T.

    Ishikari project constructs two lines. The length of the Line 1 is 500 m, and connects the photovoltaic cell to the internet-data center. The other line is 1 km length, and it is a test facility and called Line 2. The structures of the cable systems are not same to test their performance. The construction was started from 2014 in the field, the Line 1 was completed in May 2015, and it was cooled down and do the current experiment, and warmed up. The Line 2 is almost complete in October 2015. It will be tested in November and December, 2015. In order to reduce the stress of the cable induced by the thermal expansion and contraction, we adopted the way of the helical deformation of the cable. The force of the cable is reduced to 1/3 of an usual cable test. Because the cryogenic pipes are welded in the field and we cannot use the baking of the vacuum chamber of the cryogenic pipe, a new vacuum pumping method was proposed and tested for the cryogenic pipe. Since the straight pipes are used to compose the cryogenic pipe, the pressure drop of the circulation would be 1/100 of the corrugated pipe in the present condition, and it is suitable for longer cable system. The heat leak of the cryogenic pipe is ∼1.4W/m including the cable pipe's and the return pipe's. The heat leak of the current lead is ∼30W/kA in the test bench. Finally the current of 6kA/3 sec and the current of 5kA/15 min were achieved in Line 1. The reduction of heat leak will be a major subject of the longer cable system. The cost of the construction will be almost twice higher than that of the copper and aluminum over-head line with the iron tower in the present Japan. The cost construction of the over-head line is an average value, and depends on the newspaper.

  13. Cable Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bottura, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    Superconductor stability is at the core of the design of any successful cable and magnet application. This chapter reviews the initial understanding of the stability mechanism, and reviews matters of importance for stability such as the nature and magnitude of the perturbation spectrum and the cooling mechanisms. Various stability strategies are studied, providing criteria that depend on the desired design and operating conditions.

  14. Power transmission charges based on nodal pricing which considers restriction on power transmission; Soden setsuyaku wo koryoshita nodaru pricing ni motozuku soden ryokin

    Energy Technology Data Exchange (ETDEWEB)

    Okada, K.; Asano, H. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Matsukawa, I. [Musashi University, Tokyo (Japan)

    1997-01-30

    Power transmission charges were derived by using nodal pricing, and a discussion was given on what effects are given on system conditions, nodal price and consignment charge by how coordination points of independent power producers (IPP) and power demand are handled. A test model having six nodes (busbars) and eleven branches (transmission lines) was used. Since demands of the same kind are hypothesized to be coordinated in this simulation, the total nodal price becomes an equivalent value if there is no restrictions in transmission line current. If the transmission restrictions are taken into consideration, demand amounts at each node are so adjusted that excess current in a transmission line exceeding the transmission capacity will be eliminated. Thus, the demand-supply balancing amount in the entire system becomes smaller than when restrictions are not considered. As a result of the analysis, the IPP coordination points have possibilities to cause congestion (overload current) in the system, raise nodal price at each point, and sharply raise the consignment charge. It was found that an effect may also occur to a node depending on position of demand generation. 6 refs., 3 figs., 7 tabs.

  15. A robust low quiescent current power receiver for inductive power transmission in bio implants

    Science.gov (United States)

    Helalian, Hamid; Pasandi, Ghasem; Jafarabadi Ashtiani, Shahin

    2017-05-01

    In this paper, a robust low quiescent current complementary metal-oxide semiconductor (CMOS) power receiver for wireless power transmission is presented. This power receiver consists of three main parts including rectifier, switch capacitor DC-DC converter and low-dropout regulator (LDO) without output capacitor. The switch capacitor DC-DC converter has variable conversion ratios and synchronous controller that lets the DC-DC converter to switch among five different conversion ratios to prevent output voltage drop and LDO regulator efficiency reduction. For all ranges of output current (0-10 mA), the voltage regulator is compensated and is stable. Voltage regulator stabilisation does not need the off-chip capacitor. In addition, a novel adaptive biasing frequency compensation method for low dropout voltage regulator is proposed in this paper. This method provides essential minimum current for compensation and reduces the quiescent current more effectively. The power receiver was designed in a 180-nm industrial CMOS technology, and the voltage range of the input is from 0.8 to 2 V, while the voltage range of the output is from 1.2 to 1.75 V, with a maximum load current of 10 mA, the unregulated efficiency of 79.2%, and the regulated efficiency of 64.4%.

  16. An applicable 5.8 GHz wireless power transmission system with rough beamforming to Project Loon

    Directory of Open Access Journals (Sweden)

    Chang-Jun Ahn

    2016-06-01

    Full Text Available In recent, Google proposed the Project Loon being developed with the mission of providing internet access to rural and remote areas using high-altitude balloons. In this paper, we describe an applicable prototype of 5.8 GHz wireless power transmission system with rough beamforming method to Project Loon. From the measurement results, transmit beamforming phased array antenna can transmit power more efficiently compared to a horn antenna and array antenna without beamforming with increasing the transmission distance. For the transmission distance of 1000 mm, transmit beamforming phased array antenna can obtain higher received power about 1.46 times compared to array antenna without transmit beamforming.

  17. Wireless Power Transmission to Organic Light Emitting Diode Lighting Panel with Magnetically Coupled Resonator

    Science.gov (United States)

    Kim, Yong-Hae; Han, Jun-Han; Kang, Seung-Youl; Cheon, Sanghoon; Lee, Myung-Lae; Ahn, Seong-Deok; Zyung, Taehyoung; Lee, Jeong-Ik; Moon, Jaehyun; Chu, Hye Yong

    2012-09-01

    We are successful to lit the organic light emitting diode (OLED) lighting panel through the magnetically coupled wireless power transmission technology. For the wireless power transmission, we used the operation frequency 932 kHz, specially designed double spiral type transmitter, small and thin receiver on the four layered printed circuit board, and schottky diodes for the full bridge rectifier. Our white OLED is a hybrid type, in which phosphorescent and fluorescent organics are used together to generate stable white color. The total efficiency of power transmission is around 72%.

  18. Investigating the burning characteristics of electric cables used in the nuclear power plant by way of 3-D transient FDS code

    Energy Technology Data Exchange (ETDEWEB)

    Ferng, Y.M., E-mail: ymferng@ess.nthu.edu.t [Department of Engineering and System Science, Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2. Kuang-Fu Rd., Hsinchu 30013, Taiwan (China); Liu, C.H. [Department of Engineering and System Science, Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2. Kuang-Fu Rd., Hsinchu 30013, Taiwan (China)

    2011-01-15

    Burning characteristics of electrical cables are one of the key parameters for the fire hazard assessment of nuclear power plants (NPPs) since the cables are the essential sources of fire in the plants. A three-dimensional (3-D) transient computational fluid dynamics (CFD) code{sub F}DS is adopted in this paper to simulate these characteristics related to the cable burning. Being one of the NRC licensing fire codes, the FDS includes the thermal-hydraulic equations, the turbulence model and the chemical combustion model, etc. In order to assess the CFD fire models used in this code, a burning test using the control cable with the outer jacket of polyvinylchloride (PVC) and the inner insulation of cross-linked polyethylene (XLPE) is conducted. The measured parameters associated with the burning characteristics include the heat release rate (HRR), O{sub 2} depletion, and CO and CO{sub 2} production, etc. Except the amount of O{sub 2} consumption, the predicted transient behaviors of other parameters can reproduce the measured data. Based on the chemical combustion model in the FDS code, this discrepancy may be essentially resulted from the default value of hydrogen fraction (H{sub frac}) contained in the soot since the soot yield for the burning of PVC material is high enough that the uncertainty in the H{sub frac} value has a prominent effect on the amount of O{sub 2} consumption. This explanation can be confirmed by a benchmark calculation for simulating a burning test with the polymethylmethacrylate (PMMA) fuel of low-soot yield. The present simulation works can provide the useful information for the plant staff or the researcher as they would perform the fire hazard analysis in the NPPs using the FDS code.

  19. LSコイルを用いたWireless Power Transmission

    OpenAIRE

    吉川, 隆; 更谷, 翔太

    2014-01-01

    The wireless power transmission is widely studied for many kinds of application, for example, power supply for cell phone or power source of EV. The supplying power of those applications is always over mW. But it is impossible to transmit for longer distance under the index of regulation of protection from radiofrequency electromagnetic field. Then many of such applications are considered with restriction of narrow area. Then we have surveyed low power demanding application the suitable appl...

  20. 18 CFR 2.22 - Pricing policy for transmission services provided under the Federal Power Act.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Pricing policy for... INTERPRETATIONS Statements of General Policy and Interpretations Under the Federal Power Act § 2.22 Pricing policy... Policy Statement on its pricing policy for transmission services provided under the Federal Power Act...