WorldWideScience

Sample records for power systems study

  1. High power communication satellites power systems study

    International Nuclear Information System (INIS)

    Josloff, A.T.; Peterson, J.R.

    1994-01-01

    This paper discusses a DOE-funded study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. This study brings together a preeminent US Industry/Russian team to cooperate on the role of high power communication satellites in the rapidly expanding communications revolution. These high power satellites play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities will be significant

  2. High power communication satellites power systems study

    Science.gov (United States)

    Josloff, Allan T.; Peterson, Jerry R.

    1995-01-01

    This paper discusses a planned study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. These high power satellites can play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities can be significant.

  3. Solar dynamic power system definition study

    Science.gov (United States)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  4. Power system studies of new ancillary services

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  5. Multi-megawatt power system trade study

    Science.gov (United States)

    Longhurst, Glen R.; Schnitzler, Bruce G.; Parks, Benjamin T.

    2002-01-01

    A concept study was undertaken to evaluate potential multi-megawatt power sources for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Two configurations examined were (1) a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and (2) a molten metal-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study considered the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of reaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass and volume efficiency, and power conversion and distribution electronics and systems capable of operating at high temperatures. The gas-Brayton system showed a specific mass advantage (3.17 vs 6.43 kg/kWe for the baseline cases) under the set of assumptions used and eliminated the need to deal with two-phase working fluid flows in the microgravity environment of space. .

  6. Powersail High Power Propulsion System Design Study

    Science.gov (United States)

    Gulczinski, Frank S., III

    2000-11-01

    A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

  7. Tokamak power systems studies, FY 1985

    International Nuclear Information System (INIS)

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-12-01

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs

  8. Tokamak power systems studies, FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-12-01

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs.

  9. Feasibility study of wireless power transmission systems

    Science.gov (United States)

    Robinson, W. J., Jr.

    1968-01-01

    Wireless microwave or laser energy transfers power from a manned earth-orbiting central station to unmanned astronomical substations. More efficient systems are required for the microwave power transmission.

  10. Study of aircraft electrical power systems

    Science.gov (United States)

    1972-01-01

    The formulation of a philosophy for devising a reliable, efficient, lightweight, and cost effective electrical power system for advanced, large transport aircraft in the 1980 to 1985 time period is discussed. The determination and recommendation for improvements in subsystems and components are also considered. All aspects of the aircraft electrical power system including generation, conversion, distribution, and utilization equipment were considered. Significant research and technology problem areas associated with the development of future power systems are identified. The design categories involved are: (1) safety-reliability, (2) power type, voltage, frequency, quality, and efficiency, (3) power control, and (4) selection of utilization equipment.

  11. Communication Systems and Study Method for Active Distribution Power systems

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    Due to the involvement and evolvement of communication technologies in contemporary power systems, the applications of modern communication technologies in distribution power system are becoming increasingly important. In this paper, the International Organization for Standardization (ISO......) reference seven-layer model of communication systems, and the main communication technologies and protocols on each corresponding layer are introduced. Some newly developed communication techniques, like Ethernet, are discussed with reference to the possible applications in distributed power system....... The suitability of the communication technology to the distribution power system with active renewable energy based generation units is discussed. Subsequently the typical possible communication systems are studied by simulation. In this paper, a novel method of integrating communication system impact into power...

  12. Centralized vs decentralized lunar power system study

    Science.gov (United States)

    Metcalf, Kenneth; Harty, Richard B.; Perronne, Gerald E.

    1991-09-01

    Three power-system options are considered with respect to utilization on a lunar base: the fully centralized option, the fully decentralized option, and a hybrid comprising features of the first two options. Power source, power conditioning, and power transmission are considered separately, and each architecture option is examined with ac and dc distribution, high and low voltage transmission, and buried and suspended cables. Assessments are made on the basis of mass, technological complexity, cost, reliability, and installation complexity, however, a preferred power-system architecture is not proposed. Preferred options include transmission based on ac, transmission voltages of 2000-7000 V with buried high-voltage lines and suspended low-voltage lines. Assessments of the total cost associated with the installations are required to determine the most suitable power system.

  13. Mars power system concept definition study. Volume 1: Study results

    Science.gov (United States)

    Littman, Franklin D.

    1994-01-01

    A preliminary top level study was completed to define power system concepts applicable to Mars surface applications. This effort included definition of power system requirements and selection of power systems with the potential for high commonality. These power systems included dynamic isotope, Proton Exchange Membrane (PEM) regenerative fuel cell, sodium sulfur battery, photovoltaic, and reactor concepts. Design influencing factors were identified. Characterization studies were then done for each concept to determine system performance, size/volume, and mass. Operations studies were done to determine emplacement/deployment maintenance/servicing, and startup/shutdown requirements. Technology development roadmaps were written for each candidate power system (included in Volume 2). Example power system architectures were defined and compared on a mass basis. The dynamic isotope power system and nuclear reactor power system architectures had significantly lower total masses than the photovoltaic system architectures. Integrated development and deployment time phasing plans were completed for an example DIPS and reactor architecture option to determine the development strategies required to meet the mission scenario requirements.

  14. Results of an electrical power system fault study

    Science.gov (United States)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA-Marshall conducted a study of electrical power system faults with a view to the development of AI control systems for a spacecraft power system breadboard. The results of this study have been applied to a multichannel high voltage dc spacecraft power system, the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard. Some of the faults encountered in testing LASEPS included the shorting of a bus an a falloff in battery cell capacity.

  15. Feasibility study on volcanic power generation system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-01

    Investigations were carried out to determine the feasibility of volcanic power generation on Satsuma Io Island. Earthquakes were studied, as were the eruptions of subaerial and submarine hot springs. Hydrothermal rock alteration was studied and electrical surveys were made. General geophysical surveying was performed with thermocameras and radiation monitoring equipment. In particular, the Toyoba mine was studied, both with respect to its hot spring and its subsurface temperatures.

  16. Generic 12-Bus Test System for Wind Power Integration Studies

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Altin, Müfit; Göksu, Ömer

    2012-01-01

    , inertial response, frequency control, damping of electromechanical oscillations, balanced and unbalanced fault management, etc. Hence, the power system components: conventional power plants with controls, transmission lines, transformers and loads should be represented accurately to achieve realistic power......High wind power penetration levels into power systems requires an appropriate power system model when assessing impact on the overall system stability. The model should capture the wide range of dynamics related to the wind integration studies, such as voltage control, synchronizing power control...... system characteristics. Additionally, the power system model should be simple and computationally manageable in order to simulate multiple scenarios with different control parameters in a reasonable time. In this paper, a generic power system model is presented in order to comprehend the wind integration...

  17. Results of an electrical power system fault study (CDDF)

    Science.gov (United States)

    Dugal-Whitehead, N. R.; Johnson, Y. B.

    1993-01-01

    This report gives the results of an electrical power system fault study which has been conducted over the last 2 and one-half years. First, the results of the literature search into electrical power system faults in space and terrestrial power system applications are reported. A description of the intended implementations of the power system faults into the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard is then presented. Then, the actual implementation of the faults into the breadboard is discussed along with a discussion describing the LASEPS breadboard. Finally, the results of the injected faults and breadboard failures are discussed.

  18. Tokamak power system studies at ANL

    International Nuclear Information System (INIS)

    Baker, C.C.; Ehst, D.A.; Brooks, J.N.; Evans, K. Jr.

    1986-06-01

    The following features, in particular, have been examined: (a) large aspect ratio (A ≅ 6), which may ease maintenance; (b) high beta (β ≥ 0.20) without indentation, which brings the maximum toroidal field down to about 6 to 7 T; (c) low toroidal current (I ≅ 4MA), which reduces the cost of the current drive and equilibrium field system; and (d) steady state operation with current density control via fast and slow wave current drive. The key to high beta operation with low toroidal current lies in utilizing second stability regime equilibria with the required current distributions produced by an appropriate selection of wave driver frequencies and power spectra. The ray tracing and current drive calculation is self-consistent with the actual magnetic fields they produce in the plasma. The impurity control activities in TPSS have emphasized the self-pumping concept as applied to using the entire first wall or ''slot'' limiters. The blanket design effort has emphasized liquid metal and Flibe concepts. The reference concept is a liquid lithium/vanadium, self-cooled configuration. Overall, there exists a number of major design improvements which will substantially improve the attractiveness of tokamak reactors

  19. Tokamak power systems studies at ANL

    International Nuclear Information System (INIS)

    Baker, C.C.; Ehst, D.A.; Brooks, J.N.; Evans, K. Jr.

    1986-01-01

    A number of advances in plasma physics and engineering promise to greatly improve the reactor prospects of tokamaks. The following features, in particular, are examined: (a) large aspect ratio (A ≅ 6), which may ease maintenance; (b) high beta (β ≥ 0.20) without indentation, which brings the maximum toroidal field down to about 7 T; (c) low toroidal current (I ≅ 5MA), which reduces the cost of the current drive and equilibrium field system; and (d) steady state operation with current density control via fast and slow wave current drive. The key to high beta operation with low toroidal current lies in utilizing second stability regime equilibria with the required current distributions produced by an appropriate selection of wave driver frequencies and power spectra. The ray tracing and current drive calculation is self-consistent with the actual magnetic fields produced in the plasma. In addition to matching desirable high-beta equilibria, this method is capable of producing a large variety of new equilibria, many of which look attractive. The impurity control activities in TPSS have emphasized the self-pumping concept as applied to using the entire first wall or ''slot'' limiters. The blanket design effort has emphasized liquid metal and Flibe concepts. The reference concept is a liquid lithium/vanadium, self-cooled configuration. Overall, there exists a number of major design improvements which will substantially improve the attractiveness of tokamak reactors

  20. System Study: Emergency Power System 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the emergency power system (EPS) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. An extremely statistically significant increasing trend was observed for EPS system unreliability for an 8-hour mission. A statistically significant increasing trend was observed for EPS system start-only unreliability.

  1. System Study: Emergency Power System 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-02-01

    This report presents an unreliability evaluation of the emergency power system (EPS) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the EPS results.

  2. Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies

    DEFF Research Database (Denmark)

    Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer

    2014-01-01

    Large amount of wind power installations introduce modeling challenges for power system operators at both the planning and operational stages of power systems. Depending on the scope of the study, the modeling details of the wind turbine or the wind power plant are required to be different. A wind...... turbine model which is developed for the short-term voltage stability studies can be inaccurate and sufficient for the frequency stability studies. Accordingly, a complete and detailed wind power plant model for every kind of study is not feasible in terms of the computational time and also...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system....

  3. Mars power system concept definition study. Volume 2: Appendices

    Science.gov (United States)

    Littman, Franklin D.

    1994-01-01

    This report documents the work performed by Rockwell International's Rocketdyne Division on NASA Contract No. NAS3-25808 (Task Order No. 16) entitled 'Mars Power System Definition Study'. This work was performed for NASA's Lewis Research Center (LeRC). The report is divided into two volumes as follows: Volume 1 - Study Results; and Volume 2 - Appendices. The results of the power system characterization studies, operations studies, and technology evaluations are summarized in Volume 1. The appendices include complete, standalone technology development plans for each candidate power system that was investigated.

  4. Conceptual study of superconducting urban area power systems

    International Nuclear Information System (INIS)

    Noe, Mathias; Gold-acker, Wilfried; Bach, Robert; Prusseit, Werner; Willen, Dag; Poelchau, Juri; Linke, Christian

    2010-01-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  5. Design study of electrical power supply system for tokamak fusion power reactor

    International Nuclear Information System (INIS)

    1977-01-01

    Design study of the electrical power supply system for a 2000MWt Tokamak-type fusion reactor has been carried out. The purposes are to reveal and study problems in the system, leading to a plan of the research and development. Performed were study of the electrical power supply system and design of superconducting inductive energy storages and power switches. In study of the system, specification and capability of various power supplies for the fusion power reactor and design of the total system with its components were investigated. For the superconducting inductive energy storages, material choice, design calculation, and structural design were conducted, giving the size, weight and performance. For thyristor switches, circuit design in the parallel / series connection of element valves and cooling design were studied, providing the size and weight. (auth.)

  6. Revised sequence components power system models for unbalanced power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Akher, M. [Tunku Abdul Rahman Univ., Kuala Lumpur (Malaysia); Nor, K.-M. [Univ. of Technology Malaysia, Johor (Malaysia); Rashid, A.H.A. [Univ. of Malaya, Kuala Lumpur (Malaysia)

    2007-07-01

    The principle method of analysis using positive, negative, and zero-sequence networks has been used to examine the balanced power system under both balanced and unbalanced loading conditions. The significant advantage of the sequence networks is that the sequence networks become entirely uncoupled in the case of balanced three-phase power systems. The uncoupled sequence networks then can be solved in independent way such as in fault calculation programs. However, the hypothesis of balanced power systems cannot be considered in many cases due to untransposed transmission lines; multiphase line segments in a distribution power system; or transformer phase shifts which cannot be incorporated in the existing models. A revised sequence decoupled power system models for analyzing unbalanced power systems based on symmetrical networks was presented in this paper. These models included synchronous machines, transformers, transmission lines, and voltage regulators. The models were derived from their counterpart's models in phase coordinates frame of reference. In these models, the three sequence networks were fully decoupled with a three-phase coordinates features such as transformer phase shifts and transmission line coupling. The proposed models were used to develop an unbalanced power-flow program for analyzing both balanced and unbalanced networks. The power flow solution was identical to results obtained from a full phase coordinate three-phase power-flow program. 11 refs., 3 tabs.

  7. A Dynamic Wind Generation Model for Power Systems Studies

    OpenAIRE

    Estanqueiro, Ana

    2007-01-01

    In this paper, a wind park dynamic model is presented together with a base methodology for its application to power system studies. This detailed wind generation model addresses the wind turbine components and phenomena more relevant to characterize the power quality of a grid connected wind park, as well as the wind park response to the grid fast perturbations, e.g., low voltage ride through fault. The developed model was applied to the operating conditions of the selected sets of wind turbi...

  8. British and Italian electric power systems: Comparative study

    International Nuclear Information System (INIS)

    Lolli, A.

    1992-01-01

    This study compares the new electricity system in England, Wales and Scotland, after the 1989 Electricity Act, and the Italian electricity system (as modified by the January, 9, 1991, Law No. 9 and by the December 5, 1991, Decree No. 386 made law (No. 35) on January, 29, 1992). The study focuses on legal aspects and socio-economic factors influencing planning and organizing by the national electric power industries in their efforts to maintain supply and demand equilibrium

  9. Feasibility study of dish/stirling power systems in Turkey

    Science.gov (United States)

    Zilanlı, Gülin Acarol; Eray, Aynur

    2017-06-01

    In this study, two different commercial dish/stirling systems, SES (Stirling Energy Systems) and WGA-ADDS (WGAssociates - Advanced Dish Development System), are modeled using the "System Advisor Model" (SAM) modeling software in designated settlement areas. Both systems are modeled for the US state of Albuquerque, where they were designed, and Turkish provinces of Ankara, Van, Muğla, Mersin, Urfa and Konya. At first, the dish/stirling system is optimized according to the power output values and the system loss parameters. Then, the layout of the solar field is designed with an installed capacity of 600kW both of SES and WGA-ADDS systems, Upon securing the most suitable layout, the system is modeled for the aforementioned settlements using the optimum output values gathered from the parametric analysis. As a result of the simulation studies, the applicability of this model is discussed according to the power output and the efficiency. Although Turkey is located in an area called "the sun belt" where solar energy technologies can be used, there is no advanced application of these systems. This study aims to discuss the application of these systems in detail and to pave the way for future studies in this field.

  10. Inertial confinement fusion reaction chamber and power conversion system study

    International Nuclear Information System (INIS)

    Maya, I.; Schultz, K.R.; Battaglia, J.M.

    1984-09-01

    GA Technologies has developed a conceptual ICF reactor system based on the Cascade rotating-bed reaction chamber concept. Unique features of the system design include the use of low activation SiC in a reaction chamber constructed of box-shaped tiles held together in compression by prestressing tendons to the vacuum chamber. Circulating Li 2 O granules serve as the tritium breeding and energy transport material, cascading down the sides of the reaction chamber to the power conversion system. The total tritium inventory of the system is 6 kg; tritium recovery is accomplished directly from the granules via the vacuum system. A system for centrifugal throw transport of the hot Li 2 O granules from the reaction chamber to the power conversion system has been developed. A number of issues were evaluated during the course of this study. These include the response of first-layer granules to the intense microexplosion surface heat flux, cost effective fabrication of Li 2 O granules, tritium inventory and recovery issues, the thermodynamics of solids-flow options, vacuum versus helium-medium heat transfer, and the tradeoffs of capital cost versus efficiency for alternate heat exchange and power conversion system option. The resultant design options appear to be economically competitive, safe, and environmentally attractive

  11. Integration of wind power in the Danish generation system. EC wind power penetration study, phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-06-01

    The Commission of the European Communities has asked utilities in the member countries to carry out a coordinated study of the wind energy potential. The main objective is to show the consequences for the future electricity system when integrating wind power production covering 5, 10 or 15% of total demand. In addition to the best estimate scenario believed to be operational, some additional calculations have been carried out: wind power production as a negative load only (not operational for the total system); different levels of investment in wind farms. The methodology is based on the following steps: define a reference scenario for year 2000; define an alternative scenario with a certain amount of wind power production; calculate time-series for electrical load and district heating from combined heat/power production; calculate time-series for wind power production; make economic evaluation and sensitivity analysis; show environmental differences. Incorporation of wind power into the ELSAM power system, with the wind energy meeting, about 5% of demand will give rise to additional control capacity, or call for new contracts with neighbouring countries. The study includes estimated network investments. The simulations have been made with the SIM and SLUMP computer programmes. The economic analyses and the sensitivity analyses have been carried out using spreadsheets. The conclusion concerning profitability - based on the best estimate assumptions - is that the studied wind power scenarios are unprofitable. (EG)

  12. Evaluation of hybrid power system alternatives: a case study

    International Nuclear Information System (INIS)

    Rosenthal, Andrew L.

    1999-01-01

    Pursuant to executive and statutory policies, the National Park Service (NPS) has been evaluating the use of photovoltaic (PV) hybrid power systems, for many of its remote, off-grid areas. This paper reports the results of a detailed technical and economic evaluation for one such area: the Needles District of Canyonlands National Park. The study evaluates the presented power systems and five alternative power generation configurations, four of which utilise PV. Projections are provided for the generator run-time and fuel use associated with each configuration as well as all initial and future costs. Included in the study are specific recommendations for energy efficiency improvements at the site. Results show that the generation systems presently in use, two full-time diesel generators, has the lowest conventional 20-year life cycle costs (LCC) of the six systems evaluated. However, when emissions costs are included (per NPS guidelines), several of the PV hybrid alternatives attain a lower LCC than the diesel-only systems. General discussion of the effects of initial versus future costs of PV hybrids as they compare with engine generator system is presented. (Author)

  13. Modelling and Simulation of TCPAR for Power System Flow Studies

    Directory of Open Access Journals (Sweden)

    Narimen Lahaçani AOUZELLAG

    2012-12-01

    Full Text Available In this paper, the modelling of Thyristor Controlled Phase Angle Regulator ‘TCPAR’ for power flow studies and the role of that modelling in the study of Flexible Alternating Current Transmission Systems ‘FACTS’ for power flow control are discussed. In order to investigate the impact of TCPAR on power systems effectively, it is essential to formulate a correct and appropriate model for it. The TCPAR, thus, makes it possible to increase or decrease the power forwarded in the line where it is inserted in a considerable way, which makes of it an ideal tool for this kind of use. Knowing that the TCPAR does not inject any active power, it offers a good solution with a less consumption. One of the adverse effects of the TCPAR is the voltage drop which it causes in the network although it is not significant. To solve this disadvantage, it is enough to introduce a Static VAR Compensator ‘SVC’ into the electrical network which will compensate the voltages fall and will bring them back to an acceptable level.

  14. A study on expert system applications for nuclear power plant

    International Nuclear Information System (INIS)

    Huh, Young Hwan; Kim, Yeong Jin; Park, Nam Seog; Dong, In Sook; Choi, In Seon

    1987-12-01

    The application of artificial intelligence techniques to nuclear power plants such as expert systems is rapidly emerging. expert systems can contribute significantly to the availability and the improved operation and safety of nuclear power plants. The objective of the project is to develop an expert system in a selected application area in the nuclear power plants. This project will last for 3 years. The first year's tasks are: - Information collection and literature survey on expert systems. - Analysis of several applicable areas for applying AI technologies to the nuclear power plants. - Conceptual design of a few selected domains. - Selection of hardware and software tools for the development of the expert system

  15. Solar power satellite system definition study. Volume 7, phase 1: SPS and rectenna systems analyses

    Science.gov (United States)

    1979-01-01

    A systems definition study of the solar power satellite systems is presented. The design and power distribution of the rectenna system is discussed. The communication subsystem and thermal control characteristics are described and a failure analysis performed on the systems is reported.

  16. Solar central receiver hybrid power system. Phase I study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-11-01

    A management plan is presented for implementation during the Solar Central Receiver Hybrid Power System - Phase I study project. The project plan and the management controls that will be used to assure technically adequate, timely and cost effective performance of the work required to prepare the designated end products are described. Bechtel in-house controls and those to be used in directing the subcontractors are described. Phase I of the project consists of tradeoff studies, parametric analyses, and engineering studies leading to conceptual definition and evaluation of a commercial hybrid power system that has the potential for supplying economically competitive electric power to a utility grid in the 1985-1990 time frame. The scope also includes the preparation of a development plan for the resolution of technical uncertainties and the preparation of plans and a proposal for Phase II of the program. The technical approach will be based on a central receiver solar energy collection scheme which supplies thermal energy to a combined cycle, generating system, consisting of a gas turbine cycle combined with a steam bottoming cycle by means of a heat recovery steam generator.

  17. Study of solar array switching power management technology for space power system

    Science.gov (United States)

    Cassinelli, J. E.

    1982-01-01

    This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts which could satisfy the mission requirements were identified. The switching concepts were compared with a conventional buck regulator system for cost, weight and volume, reliability, efficiency and thermal control. Solar array switching provided significant advantages in all areas of comparison for the reviewed missions.

  18. Study of thermoelectric systems applied to electric power generation

    International Nuclear Information System (INIS)

    Rodriguez, A.; Vian, J.G.; Astrain, D.; Martinez, A.

    2009-01-01

    A computational model has been developed in order to simulate the thermal and electric behavior of thermoelectric generators. This model solves the nonlinear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empirical expressions for the convection coefficients. A thermoelectric electric power generation test bench has been built in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, such as the temperature of the Peltier modules. With the computational model, we study the influence of the heat flux supplied as well as the room temperature on the electric power generated.

  19. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  20. Considerations for transient stability, fault capacity and power flow study of offsite power system

    Energy Technology Data Exchange (ETDEWEB)

    Shin, M C; Kim, C W; Gwon, M H; Park, C W; Lee, K W; Kim, H M; Lee, G Y; Joe, P H [Sungkyunkwan Univ., Seoul (Korea, Republic of)

    1994-04-15

    By study of power flow calculation, fault capacity calculation and stability analysis according to connection of two units YGN 3 and 4 to KEPCO power system, we have conclusions as follows. As the result of power flow calculation, at peak load, the voltage change of each bus is very small when YGN 3 and 4 is connected with KEPCO power system. At base load, installation of phase modifing equipment is necessary in Seoul, Kyungki province where load is concentrated because bus voltage rises by increasing of charge capacity caused installation of underground cables. As the result of fault capacity calculation, fault capacity is increased because fault current increases when two units YGN 3 and 4 is connected with KEPCO power system. But it is enough to operate with presenting circuits breaker rated capacity. Transient stability studies have been conducted on the YK N/P generators 3 and 4 using a digital computer program. Three phase short faults have been simulated at the YK N/P 345[KV] bus with the resulting outage of transmission circuits. Several fault clearing times are applied: 6 cycles, 12 cycles, 15 cycles. The study results demonstrate that the transient stability of YK N/P is adequate to maintain stable for three phase short faults cleared within 12 cycles. The study results also demonstrate that the transient stability of YK N/P is stable for machine removals except 4-machine removal. In addition, the study shows that the transient stability analysis is implemented for the case of load.

  1. A low power ADS for transmutation studies in fast systems

    Science.gov (United States)

    Panza, Fabio; Firpo, Gabriele; Lomonaco, Guglielmo; Osipenko, Mikhail; Ricco, Giovanni; Ripani, Marco; Saracco, Paolo; Viberti, Carlo Maria

    2017-12-01

    In this work, we report studies on a fast low power accelerator driven system model as a possible experimental facility, focusing on its capabilities in terms of measurement of relevant integral nuclear quantities. In particular, we performed Monte Carlo simulations of minor actinides and fission products irradiation and estimated the fission rate within fission chambers in the reactor core and the reflector, in order to evaluate the transmutation rates and the measurement sensitivity. We also performed a photo-peak analysis of available experimental data from a research reactor, in order to estimate the expected sensitivity of this analysis method on the irradiation of samples in the ADS considered.

  2. A study of the status and future of superconducting magnetic energy storage in power systems

    International Nuclear Information System (INIS)

    Xue, X D; Cheng, K W E; Sutanto, D

    2006-01-01

    Superconducting magnetic energy storage (SMES) systems offering flexible, reliable, and fast acting power compensation are applicable to power systems to improve power system stabilities and to advance power qualities. The authors have summarized researches on SMES applications to power systems. Furthermore, various SMES applications to power systems have been described briefly and some crucial schematic diagrams and equations are given. In addition, this study presents valuable suggestions for future studies of SMES applications to power systems. Hence, this paper is helpful for co-researchers who want to know about the status of SMES applications to power systems. (topical review)

  3. Study of reactor Brayton power systems for nuclear electric spacecraft

    Science.gov (United States)

    1979-01-01

    The feasibility of using Brayton power systems for nuclear electric spacecraft was investigated. The primary performance parameters of systems mass and radiator area were determined for systems from 100 to 1000 kW sub e. Mathematical models of all system components were used to determine masses and volumes. Two completely independent systems provide propulsion power so that no single-point failure can jeopardize a mission. The waste heat radiators utilize armored heat pipes to limit meteorite puncture. The armor thickness was statistically determined to achieve the required probability of survival. A 400 kW sub e reference system received primary attention as required by the contract. The components of this system were defined and a conceptual layout was developed with encouraging results. An arrangement with redundant Brayton power systems having a 1500 K (2240 F) turbine inlet temperature was shown to be compatible with the dimensions of the space shuttle orbiter payload bay.

  4. A fundamental study on nuclear power plant diagnosis system

    International Nuclear Information System (INIS)

    Yoshimura, Sei-ichi; Fujimoto, Junzo

    1987-01-01

    Diagnosis of nuclear power plant is a large application field of knowledge engineering. But, the study examples are few and the diagnosis method is not established yet. This report describes the diagnosis method using cross correlation coefficients and describes the knowledge acquisition method of undefined transients in order to enhance the system performance. The usefulness of the system was verified by putting some data into the system. Main results are as follows. (1) Diagnosis method. Some transients are selected by the first judgement and one of them is identified by the second judgement using the cross correlation. (2) Knowledge aquisition method. When putting new data into the knowledge-base, the system indicates the inconsistency by arranging the aquired data, and the operators input new transient names and corresponding manipulation methods after analyzing the indicated results. (3) Usefulness of the system. Freedwater controller failures(2 transients), 2 recirculation pumps trip and a dummy datum combined 2 transients(one is feedwater controller failure and one is 2 recirculation pumps trip) were put into the system. It was proved that the system identified the transients correctly and it indicated the first hit and the inconsisency of the transients in the course of knowledge acquisition. (author)

  5. Implementation of IEC Standard Models for Power System Stability Studies

    DEFF Research Database (Denmark)

    Margaris, Ioannis; Hansen, Anca Daniela; Bech, John

    2012-01-01

    , namely a model for a variable speed wind turbine with full scale power converter WTG including a 2- mass mechanical model. The generic models for fixed and variable speed WTGs models are suitable for fundamental frequency positive sequence response simulations during short events in the power system...

  6. Modeling of wind turbines for power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Petru, T.

    2001-05-01

    When wind turbines are installed into the electric grid, the power quality is affected. Today, strict installation recommendations often prevail due to a lack of knowledge on this subject. Consequently, it is important to predict the impact of wind turbines on the electric grid before the turbines are installed. The thesis describes relevant power quality issues, discusses different configurations of wind turbines with respect to power quality and draw requirements regarding wind turbine modeling. A model of a stall-regulated, fixed-speed wind turbine system is introduced and its power quality impact on the electric grid is evaluated. The model is verified with field measurements.

  7. A study on expert system applications for nuclear power plant

    International Nuclear Information System (INIS)

    Huh, Young Hwan; Kim, Kil Yoo; Kang, Soon Ju; Park, Nam Seok; Ryu, Chan Ho; Choi, In Seon; Chung, Young Moo; Chung, Tae Eon; Yim, Chang Jae; Lee, Yoon Sang.

    1990-01-01

    The objectives of this research are 1) to develop an expert system which can automatically evaluate eddy current (EC) signal during an eddy current test (ECT) of SG U tube inspection, 2) to build an effective data base management system for ECT data. By this expert system the reliability in EC signal evaluation can be improved, and the required man-power can be reduced. And this expert system can supply a stable ECT and contribute to a safe operation of the nuclear power plant. (author)

  8. Study of LANs access technologies in wind power system

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    2010-01-01

    Due to the energy challenges in the world, new types of generation technologies, such as renewable energy based generators, attract great attention and are being quickly developed, which results in the dramatic developments and changes in modern power systems, the communication technologies play...... a increasingly important role in guaranteeing the power system’s stability, reliability, and security. In this paper the necessity of communication technologies employed in wind power system are introduced. According the International Standards Organization (ISO) reference 7-layered model, the communication...... power environment are explained and discussed. Furthermore the simulation of application of Ethernet in an offshore wind farm communication network by a software, OPNET, is elaborated. With the investigation of the communication technologies in this paper, the offshore wind farm SCADA system can...

  9. Impact Study on Power Factor of Electrical Load in Power Distribution System

    International Nuclear Information System (INIS)

    Syirrazie Che Soh; Harzawardi Hasim; Ahmad Asraf, A.S.

    2014-01-01

    Low Power Factor of electrical loads cause high current is drawn from power supply. The impact of this circumstance is influenced by impedance of electrical load. Therefore, the key consideration of this study is how impedance of electrical loads influence power factor of electrical loads, and then power distribution as the whole. This study is important to evaluate the right action to mitigate low power factor effectively for electrical energy efficiency purpose. (author)

  10. Wide Area Measurement Based Security Assessment & Monitoring of Modern Power System: A Danish Power System Case Study

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2013-01-01

    Power System security has become a major concern across the global power system community. This paper presents wide area measurement system (WAMS) based security assessment and monitoring of modern power system. A new three dimensional security index (TDSI) has been proposed for online security...... monitoring of modern power system with large scale renewable energy penetration. Phasor measurement unit (PMU) based WAMS has been implemented in western Danish Power System to realize online security monitoring and assessment in power system control center. The proposed security monitoring system has been...

  11. Crew emergency return vehicle - Electrical power system design study

    Science.gov (United States)

    Darcy, E. C.; Barrera, T. P.

    1989-01-01

    A crew emergency return vehicle (CERV) is proposed to perform the lifeboat function for the manned Space Station Freedom. This escape module will be permanently docked to Freedom and, on demand, will be capable of safely returning the crew to earth. The unique requirements that the CERV imposes on its power source are presented, power source options are examined, and a baseline system is selected. It consists of an active Li-BCX DD-cell modular battery system and was chosen for the maturity of its man-rated design and its low development costs.

  12. Study of hybrid power system potential to power agricultural water pump in mountain area

    International Nuclear Information System (INIS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-01-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  13. Study of hybrid power system potential to power agricultural water pump in mountain area

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, Ahmad, E-mail: syuhada-mech@yahoo.com; Mubarak, Amir Zaki, E-mail: amir-zaki-mubarak@yahoo.com; Maulana, M. Ilham, E-mail: mil2ana@yahoo.com [Mechanical Engineering Department, Engineering Faculty, Syiah Kuala University Jl. Syech Abdul Rauf No.7 Darussalam Banda Aceh 23111 (Indonesia)

    2016-03-29

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  14. Study on the power control system for NPP power unit with the WWER-440 reactor

    International Nuclear Information System (INIS)

    Aleksandrova, N.D.; Naumov, A.V.

    1981-01-01

    Results of model investigations into basic version of the power control systems (PCS) conformably to the WWER-440 NPP power unit are stated. Transient processes in the power unit system when being two PCS versions during perturbations of different parameters: unit power, vapour pressure or position of control rods have been simulated. Investigations into the different PCS versions show that quality of operation of a traditional scheme with a turbine power controller and reactor pressure controller can be significantly improved with the introduction of a high-speed signal of pressure into the reactor controller. The PCS version with the compensation of interrelations between the turbine and reactor controllers constructed according to the same principles as the standard schemes of power units of thermal electric power plant is perspective as well [ru

  15. Bayesian approach in the power electric systems study of reliability ...

    African Journals Online (AJOL)

    Keywords: Reliability - Power System - Bayes Theorem - Weibull Model - Probability. ... ensure a series of estimated parameter (failure rate, mean time to failure, function .... only on random variable r.v. describing the operating conditions: ..... Multivariate performance reliability prediction in real-time, Reliability Engineering.

  16. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 2, part 1: System engineering

    Science.gov (United States)

    Hanley, G. M.

    1979-01-01

    Volume 2, Part 1, of a seven volume report is presented. Part 1 encompasses Satellite Power Systems (SPS) systems engineering aspects and is divided into three sections. The first section presents descriptions of the various candidate concepts considered and conclusions and recommendations for a preferred concept. The second section presents a summary of results of the various trade studies and analysis conducted during the course of the study. The third section describes the Photovoltaic Satellite Based Satellite Power System (SPS) Point Design as it was defined through studies performed during the period January 1977 through March 1979.

  17. Implementation of IEC standard models for power system stability studies

    Energy Technology Data Exchange (ETDEWEB)

    Margaris, Ioannis D.; Hansen, Anca D.; Soerensen, Poul [Technical Univ. of Denmark, Roskilde (Denmark). Dept. of Wind Energy; Bech, John; Andresen, Bjoern [Siemens Wind Power A/S, Brande (Denmark)

    2012-07-01

    This paper presents the implementation of the generic wind turbine generator (WTG) electrical simulation models proposed in the IEC 61400-27 standard which is currently in preparation. A general overview of the different WTG types is given while the main focus is on Type 4B WTG standard model, namely a model for a variable speed wind turbine with full scale power converter WTG including a 2-mass mechanical model. The generic models for fixed and variable speed WTGs models are suitable for fundamental frequency positive sequence response simulations during short events in the power system such as voltage dips. The general configuration of the models is presented and discussed; model implementation in the simulation software platform DIgSILENT PowerFactory is presented in order to illustrate the range of applicability of the generic models under discussion. A typical voltage dip is simulated and results from the basic electrical variables of the WTG are presented and discussed. (orig.)

  18. HYLIFE-II power conversion system design and cost study

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1990-09-01

    The power conversion system for the HYLIFE-2 fusion power plant has been defined to include the IHX's (intermediate heat exchangers) and everything that support the exchange of energy from the reactor. It is referred to simply as the BOP (balance of plant) in the rest of this report. The above is a convenient division between the reactor equipment and the rest of the fusion power plant since the BOP design and cost then depend only on the specification of the thermal power to the IHX's and the temperature of the primary Flibe coolant into and out of the IHX's, and is almost independent of the details of the reactor design. The main efforts during the first year have been on the definition and thermal-hydraulics of the IHX's, the steam generators and the steam power plant, leading to the definition of a reference BOP with the molten salt, Flibe, as the primary coolant. A summary of the key results in each of these areas is given in this report

  19. Tokamak power systems studies, FY 1986: A second stability power reactor

    International Nuclear Information System (INIS)

    Ehst, D.; Baker, C.; Billone, M.

    1987-03-01

    This report presents the results of the work at Argonne National Laboratory (ANL) during FY-1986 on the Tokamak Power Systems Study (TPSS). The purpose of the TPSS is to explore and develop ideas that would lead to improvements in the tokamak as a power reactor concept. The work at ANL concentrated on plasma engineering, impurity control, and the blanket/first wall/shield system. The work in FY-1986 extended these studies and focused them on a reference design point. The key features of the design point include: second stability regime with higher β and larger aspect ratio, steady-state operation with fast wave current drive, impurity control via a self-pumped slot limiter, a self-cooled liquid lithium, vanadium alloy blanket with simplified poloidal flow, and reduced reactor building volume with vertical lift maintenance. Sufficient work was carried out to report a preliminary cost estimate. In addition, reactor implications of steady-state operation in the first stability regime were also studied. 174 refs., 124 figs., 65 tabs

  20. The performance study of a small hydroelectric power system

    International Nuclear Information System (INIS)

    Al-Jumaily, Khalil E. J.; Tawfi, Sinan Samir

    2006-01-01

    A small hydroelectric power system of an undershot waterwheel was designed, constructed and experimented in the hydraulic channel which has a sluice gate as a small dam. The constructed waterwheel diameter could be changed from 0.4 m to 0.6 m at interval steps of 0.04 m. The number of blades of the constructed waterwheel could be changed from 9 to 12 to 18 and to 36 blades. By increasing the water mass flow rate from 0.341 to 1.765 kg/s at channel cross sectional area (12.75 cm 2 ), the undershot waterwheel generated power which increased to 0.201 Watt, the mechanical efficiency increased to more than 10.8%, and the electrical efficiency increased to more than 80.6%. But the channel efficiency was decreased to 10.9%. while the volumetric efficiency was fixed at 72.9%. The waterwheel efficiency 17.25 m 2 at fixed water mass flow rate (1.765kg/s), the undershot waterwheel generated power system decreased in the following. The generator output power from 0.201 to 0.067 Watt, the mechanical efficiency reduced to 26.7% and the electrical efficiency reduced 94.4% and increased the channel efficiency from 8.6% to 100%, the volumetric efficiency from 70.9% to 75.5%, and the waterwheel efficiency from 85.7%( to 91.3%. The transitional efficiency was fixed at 97.9%. The maximum overall efficiency of the small generated power system was 6.69% at the water head 15.45 cm. The output power was 0.18 Watt. these values obtained when the number of blades 36, number of revolutions per minute 57 rpm, waterwheel diameter 0.44 m, water mass flow rate 1.765 kg/s, and channel cross sectional area 12.75 cm 2 . The theoretical extrapolation of the waterwheel diameter to 2 m with water head of 5 m gives an output generated power of 675 Watt.(Author)

  1. Studying Electromechanical Wave Propagation and Transport Delays in Power Systems

    Science.gov (United States)

    Dasgupta, Kalyan; Kulkarni, A. M.; Soman, Shreevardhan

    2013-05-01

    Abstract: In this paper, we make an attempt to describe the phenomenon of wave propagation when a disturbance is introduced in an electromechanical system. The focus is mainly on generator trips in a power system. Ordering of the generators is first done using a sensitivity matrix. Thereafter, orthogonal decomposition of the ordered generators is done to group them based on their participation in different modes. Finally, we find the velocity of propagation of the wave and the transport delay associated with it using the ESPRIT method. The analysis done on generators from the eastern and western regions of India.1

  2. Study on intermediate frequency power supply automatic monitor system

    International Nuclear Information System (INIS)

    Wang Yuntong; Xu Bin

    2007-06-01

    A new design project of the automatic monitor system for the intermediate frequency power supply system by using the communication server is put for- ward and the realizing principle method and the key technique are clarified in detail. This system made use of the conversion function with the series communication server's control, realized the data collecting function by the double machine backup and redundancy. The new network system adopted the photoelectric-insulated-communication connect device and the diagnosis technique, increased the anti-interference ability, the communication adopted the technique by the alarm information sending out in first and circularly repeating, the slowly speed is overcame in the original monitor network system, and strengthened the celerity of the monitor system and the reliability of the alarm report. After the new monitor system running, the result shows that the functions is more perfect than the original monitor system, the usage is more convenient, have the higher and dependable stability, the report of alarm is more quickly, and is convenient for the analysis after the trouble, at the same time, the system still have the strong ability and value to expand. (authors)

  3. Study and Handling Methods of Power IGBT Module Failures in Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Lee, Kyo-Beum

    2015-01-01

    Power electronics plays an important role in a wide range of applications in order to achieve high efficiency and performance. Increasing efforts are being made to improve the reliability of power electronics systems to ensure compliance with more stringent constraints on cost, safety......, and availability in different applications. This paper presents an overview of the major failure mechanisms of IGBT modules and their handling methods in power converter systems improving reliability. The major failure mechanisms of IGBT modules are presented first, and methods for predicting lifetime...... and estimating the junction temperature of IGBT modules are then discussed. Subsequently, different methods for detecting open- and short-circuit faults are presented. Finally, fault-tolerant strategies for improving the reliability of power electronic systems under field operation are explained and compared...

  4. A study on the development and application of expert system for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hee Gon; Kim, Seong Bok [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    It is a final report of the research that is a study on the development and application of expert system for nuclear power plants and development of the schemes computing environments and user interfaces for the expert system, which is a systematic and efficient development of expert system for nuclear power plants in the future. This report is consisted of -Development trends of expert system for nuclear power plants. -Classification of expert system applications for nuclear power plants. -Systematic and efficient developments schemes of expert system for nuclear power plants, and -Suitable computing environments and user interfaces for the expert systems. (author). 113 refs., 85 figs.

  5. A study on the development and application of expert system for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hee Gon; Kim, Seong Bok [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    It is a final report of the research that is a study on the development and application of expert system for nuclear power plants and development of the schemes computing environments and user interfaces for the expert system, which is a systematic and efficient development of expert system for nuclear power plants in the future. This report is consisted of -Development trends of expert system for nuclear power plants. -Classification of expert system applications for nuclear power plants. -Systematic and efficient developments schemes of expert system for nuclear power plants, and -Suitable computing environments and user interfaces for the expert systems. (author). 113 refs., 85 figs.

  6. Simplified drive system models for power system transient studies in industrial plants

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Sannino, Ambra

    2007-01-01

    In order to simulate industrial plants for different power system transient studies, simplified adjustable speed drive (ASD) models are needed. For power system transient studies such as assessing the voltage dip ride-through capability of ASDs, detailed representation of semiconductor valve...... switching can be avoided, thereby making possible to increase the time step of the simulation. In this paper, simplified ASD models are developed and compared with corresponding detailed models. The performance of the simplified models is assessed when increasing the simulation step as much as possible...

  7. Stockholm Power Tech. Power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The proceedings from this symposium is presented in six volumes: Invited speakers` sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  8. Stockholm Power Tech. Power systems

    International Nuclear Information System (INIS)

    1995-01-01

    The proceedings from this symposium is presented in six volumes: Invited speakers' sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  9. Study on training of nuclear power system operators

    International Nuclear Information System (INIS)

    Guo Lifeng; Zhou Gang; Yu Lei

    2012-01-01

    In order to satisfy new requirements about operators of nuclear power system, which are brought up by development and changes of social environment, science and technology, we do research on and make analysis of the problem of operator training. This paper focuses on development and changes of operator training system and content, mentality training, application of new technology to training, feedback of experience and so on. Analysis showed that the content of operator training is also confronted with some new requirements. So we bring up the new requirements to the operator, such as mentality training, cognizance ability training, adaptability training of special environment and endurance training. Besides, it is important for perfecting operator cultivation mechanism and improving training effect to feed back experience and apply new technology. So the trainer must improve training content and cultivation mechanism continuously. (authors)

  10. Optimal power flow using the league championship algorithm: A case study of the Algerian power system

    International Nuclear Information System (INIS)

    Bouchekara, H.R.E.H.; Abido, M.A.; Chaib, A.E.; Mehasni, R.

    2014-01-01

    Highlights: • Optimal power flow. • Reducing electrical energy loss. • Saving electrical energy. • Optimal operation. - Abstract: A new efficient optimization method, called the League Championship Algorithm (LCA) is proposed in this paper for solving the optimal power flow problem. This method is inspired by the competition of sport teams in an artificial sport league for several weeks and over a number of seasons. The proposed method has been applied to the Algerian power system network for different objectives. Furthermore, in order to assess the effectiveness of the proposed LCA method the obtained results using this method have been compared to those obtained using other methods reported in the literature. The obtained results and the comparison with other techniques indicate that the league championship algorithm provides effective and high-quality solution when solving the optimal power flow problem

  11. Improving human reliability through better nuclear power plant system design: Program for advanced nuclear power studies

    International Nuclear Information System (INIS)

    Golay, M.W.

    1993-01-01

    The project on ''Development of a Theory of the Dependence of Human Reliability upon System Designs as a Means of Improving Nuclear Power Plant Performance'' was been undertaken in order to address the problem of human error in advanced nuclear power plant designs. Lack of a mature theory has retarded progress in reducing likely frequencies of human errors. Work being pursued in this project is to perform a set of experiments involving human subjects who are required to operate, diagnose and respond to changes in computer-simulated systems, relevant to those encountered in nuclear power plants, which are made to differ in complexity in a systematic manner. The computer program used to present the problems to be solved also records the response of the operator as it unfolds

  12. Power System Study for Renewable Energy Interconnection in Malaysia

    International Nuclear Information System (INIS)

    Askar, O F; Ramachandaramurthy, V K

    2013-01-01

    The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.

  13. Power System Study for Renewable Energy Interconnection in Malaysia

    Science.gov (United States)

    Askar, O. F.; Ramachandaramurthy, V. K.

    2013-06-01

    The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.

  14. Study for wireless power transmission of nuclear robot system

    International Nuclear Information System (INIS)

    Kim, Jongseog

    2013-01-01

    Gasoline engine or electric motor is generally used for driving power of working. Gasoline tank is uncomfortable to carry. Battery capacity does not sustain long time working. Frequent moving back of robot to power charger or refueling tank is inconvenient. Long power cable connection occur winding problem if there are complex structures in walking way. We need some solution for continuous supply of robot energy at the free moving condition of robot. 'Wireless power transmission' is one of the solutions. Some experiment result to transmit wireless power to moving robot is described herein. To find possible wireless power transmission method for nuclear robot, wireless power transmission tests were performed. As result of these tests, it was confirmed that wireless power transmission by using dipole and mat type magnetic induction were possible. As result of flying robot experiment, it was realized that development of light weight core for receiver and wave reflection device for high directional transmitter are necessary for practical use of the dipole type wireless power transmission. Small size core and high directional transmitter will be next target. Mat type wireless power transmission is regarded as useful for robot power charging station in the inside containment

  15. Study for wireless power transmission of nuclear robot system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongseog [Central Research Institute of Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-05-15

    Gasoline engine or electric motor is generally used for driving power of working. Gasoline tank is uncomfortable to carry. Battery capacity does not sustain long time working. Frequent moving back of robot to power charger or refueling tank is inconvenient. Long power cable connection occur winding problem if there are complex structures in walking way. We need some solution for continuous supply of robot energy at the free moving condition of robot. 'Wireless power transmission' is one of the solutions. Some experiment result to transmit wireless power to moving robot is described herein. To find possible wireless power transmission method for nuclear robot, wireless power transmission tests were performed. As result of these tests, it was confirmed that wireless power transmission by using dipole and mat type magnetic induction were possible. As result of flying robot experiment, it was realized that development of light weight core for receiver and wave reflection device for high directional transmitter are necessary for practical use of the dipole type wireless power transmission. Small size core and high directional transmitter will be next target. Mat type wireless power transmission is regarded as useful for robot power charging station in the inside containment.

  16. Co-Simulation of Detailed Whole Building with the Power System to Study Smart Grid Applications

    Energy Technology Data Exchange (ETDEWEB)

    Makhmalbaf, Atefe; Fuller, Jason C.; Srivastava, Viraj; Ciraci, Selim; Daily, Jeffrey A.

    2014-12-24

    Modernization of the power system in a way that ensures a sustainable energy system is arguably one of the most pressing concerns of our time. Buildings are important components in the power system. First, they are the main consumers of electricity and secondly, they do not have constant energy demand. Conventionally, electricity has been difficult to store and should be consumed as it is generated. Therefore, maintaining the demand and supply is critical in the power system. However, to reduce the complexity of power models, buildings (i.e., end-use loads) are traditionally modeled and represented as aggregated “dumb” nodes in the power system. This means we lack effective detailed whole building energy models that can support requirements and emerging technologies of the smart power grid. To gain greater insight into the relationship between building energy demand and power system performance, it is important to constitute a co-simulation framework to support detailed building energy modeling and simulation within the power system to study capabilities promised by the modern power grid. This paper discusses ongoing work at Pacific Northwest National Laboratory and presents underlying tools and framework needed to enable co-simulation of building, building energy systems and their control in the power system to study applications such as demand response, grid-based HVAC control, and deployment of buildings for ancillary services. The optimal goal is to develop an integrated modeling and simulation platform that is flexible, reusable, and scalable. Results of this work will contribute to future building and power system studies, especially those related to the integrated ‘smart grid’. Results are also expected to advance power resiliency and local (micro) scale grid studies where several building and renewable energy systems transact energy directly. This paper also reviews some applications that can be supported and studied using the framework introduced

  17. FY 2000 report on the demonstrative research for photovoltaic power generation system in Thailand. Demonstrative study on photovoltaic power generation grid-connected system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    In relation to the demonstrative study of the photovoltaic power system that is planned in Libong island, Thailand, the FY 2000 results were reported. In this R and D, construction/demonstrative operation were planned for a photovoltaic power station with a generation output of 100kW, photovoltaic power system in school facilities, and system for transmitting/distributing power to houses by connecting the power station and power system. In this fiscal year, the field survey was conducted together with the alteration from Yao Yai island, for which the demonstrative study was planned at first, to Libong island. The electric equipment was selected which met the requests from Thailand and the results of the field survey, and the basic design of the photovoltaic power generation/transmission/distribution system was completed. Based on this, the design/manufacture of photovoltaic power generation modules, power control equipment, measuring equipment, etc. were made. At the construction site of photovoltaic power station, construction work such as land formation was conducted. Further, Thai engineers who visited Japan did the following: discussions about power system, presence at test/inspection of photovoltaic power generation modules, visits to photovoltaic power stations, wind power stations, etc. (NEDO)

  18. The simulation study on the Nuclear Heating Reactor's power auto-control system

    International Nuclear Information System (INIS)

    Yang Zhijun; Liu Longzhi; Hu Guifen

    2000-01-01

    The power automatic control system on nuclear heating reactor (NHR) is a multi-input and multi-output non-linear system. The power automatic control system on NHR is studied by modern control theory. Through the simulation experiments, it is clear that adopting μ outer-loop and LQR inner-loop feedback, the best control results are obtained

  19. Study of the dynamic operational characteristics of the Taiwan Power Company system - a nuclear majority system

    International Nuclear Information System (INIS)

    Yu, I.H.

    1982-01-01

    All conclusions drawn in this dissertation are based on the results of about six hundred study cases. The dynamic characteristics of the present Taiwan Power Company system are very different not only from the characteristics of any other power system in the world but also from Taipower's own history characteristics. Based on the engineers' knowledge, this dissertation takes a calculation risk approach to deal with the problems in the energy systems. Chapter I introduces the information related with the stability of the present Taipower system. Taipower operating engineers are facing the problem of committing a large amount of nuclear generation at a low base load level. The general introduction of the stability program developed for this study is described in Chapter II. In Chapter III, the processes of performing the transient stability study are explained to show how this study was performed. Critical tie flows were suggested in Chapter IV, which might help balance the nuclear generation and thermal generation at the base load level and plan the unit maintenance schedule. Several operation modes which may increase the degree of stability or minimize the number unit trippings were discussed in Chapter V. In Chapter VI, how to adjust the load shedding policy to improve the stability are discussed. The remote tripping scheme which is effective in preventing massive system blackout was studied in Chapter VII. Some broader concepts in load management are presented in Chapter VII for Taipower's management decision

  20. Impact Study of PMSG-Based Wind Power Penetration on Power System Transient Stability Using EEAC Theory

    Directory of Open Access Journals (Sweden)

    Zhongyi Liu

    2015-11-01

    Full Text Available Wind turbines with direct-driven permanent magnet synchronous generators (PMSGs are widely used in wind power generation. According to the dynamic characteristics of PMSGs, an impact analysis of PMSG-based wind power penetration on the transient stability of multi-machine power systems is carried out in this paper based on the theory of extended equal area criterion (EEAC. Considering the most severe PMSG integration situation, the changes in the system’s equivalent power-angle relationships after integrating PMSGs are studied in detail. The system’s equivalent mechanical input power and the fault period electrical output power curves are found to be mainly affected. The analysis demonstrates that the integration of PMSGs can cause either detrimental or beneficial effects on the system transient stability. It is determined by several factors, including the selection of the synchronous generators used to balance wind power, the reactive power control mode of PMSGs and the wind power penetration level. Two different simulation systems are also adopted to verify the analysis results.

  1. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  2. Simulation for transient stability study of the Taiwan power system - a nuclear majority system

    International Nuclear Information System (INIS)

    Huang, J.C.C.

    1984-01-01

    A transient stability program was developed for the Taiwan Power Company, which has a high proportion of nuclear generation in its power system. This program offers a new territory to investigate nuclear plant effects on the power system transient stability. This program also provides a high speed tool for the Taipower system operational planning. A generalized procedure of synchronous machine modeling for a large-scale stability study is presented. The merits and weaknesses of machine modeling can be comprehended through each item of this procedure. Three types of nonlinear synchronous machine modeling implemented into this stability program are derived by following this procedure. A robust subroutine was derived to perform the fourth order Runge-Kutta integration method, making the software programming neat and systematical. For simulating the nuclear plant influence on the system, this program implemented an additional four functions: load-limit operation simulated by a low-value gate in the governor model, bypass valve capacity monitored by sending out a warning message, rotor overspeed protection relay, and generator anti-motoring relay

  3. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  4. Automatic Generation Control Study in Two Area Reheat Thermal Power System

    Science.gov (United States)

    Pritam, Anita; Sahu, Sibakanta; Rout, Sushil Dev; Ganthia, Sibani; Prasad Ganthia, Bibhu

    2017-08-01

    Due to industrial pollution our living environment destroyed. An electric grid system has may vital equipment like generator, motor, transformers and loads. There is always be an imbalance between sending end and receiving end system which cause system unstable. So this error and fault causing problem should be solved and corrected as soon as possible else it creates faults and system error and fall of efficiency of the whole power system. The main problem developed from this fault is deviation of frequency cause instability to the power system and may cause permanent damage to the system. Therefore this mechanism studied in this paper make the system stable and balance by regulating frequency at both sending and receiving end power system using automatic generation control using various controllers taking a two area reheat thermal power system into account.

  5. Combined cycle solar central receiver hybrid power system study. Volume III. Appendices. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    A design study for a 100 MW gas turbine/steam turbine combined cycle solar/fossil-fuel hybrid power plant is presented. This volume contains the appendices: (a) preconceptual design data; (b) market potential analysis methodology; (c) parametric analysis methodology; (d) EPGS systems description; (e) commercial-scale solar hybrid power system assessment; and (f) conceptual design data lists. (WHK)

  6. Bayesian approach in the power electric systems study of reliability ...

    African Journals Online (AJOL)

    Subsequently, Bayesian methodologies are framed in an ampler problem list, based on the definition of an opportune "vector of state" and of a vector describing the system performances, aiming to the definition and the calculation or the estimation of system reliability. The purpose of our work is to establish a useful model ...

  7. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    International Nuclear Information System (INIS)

    Yu Qingchang; Ouyang Huafu; Xu Taoguang

    2002-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the authors consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  8. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    CERN Document Server

    Yu Qi; Ouyang Hua Fu; Xu Tao Guang

    2001-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  9. Study for reactive power on distribution system line B RSG-GAS

    International Nuclear Information System (INIS)

    Yan Bony Marsahala

    2010-01-01

    Study for reactive power on distribution system line B RSG-GA is already done. The study intended to evaluate how much inductive load need the reactive power (positive), how much power factor, and what will be done to increase the power factor. The reactive power is the losses power, can't be changed into energy, but it is need for transmission process and it is cause the energy losses. The loads on distribution system line B consist of induction motors which are used for primary cooling system and secondary cooling system, lift, blower on cooling tower, and air condition system. Due to the motors using, the power factor are falling down to low. By the calculation results give that the inductive loads on distribution line B are 850 KVA and these loads caused the low power factor 0.80. If we want to increase the power factor up to 0.95, it is need to install the reactive loads likes capacitor bank 250 KVAR. (author)

  10. Study on frequency characteristics of wireless power transmission system based on magnetic coupling resonance

    Science.gov (United States)

    Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.

    2017-11-01

    In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.

  11. Study on high power ultraviolet laser oil detection system

    Science.gov (United States)

    Jin, Qi; Cui, Zihao; Bi, Zongjie; Zhang, Yanchao; Tian, Zhaoshuo; Fu, Shiyou

    2018-03-01

    Laser Induce Fluorescence (LIF) is a widely used new telemetry technology. It obtains information about oil spill and oil film thickness by analyzing the characteristics of stimulated fluorescence and has an important application in the field of rapid analysis of water composition. A set of LIF detection system for marine oil pollution is designed in this paper, which uses 355nm high-energy pulsed laser as the excitation light source. A high-sensitivity image intensifier is used in the detector. The upper machine sends a digital signal through a serial port to achieve nanoseconds range-gated width control for image intensifier. The target fluorescence spectrum image is displayed on the image intensifier by adjusting the delay time and the width of the pulse signal. The spectral image is coupled to CCD by lens imaging to achieve spectral display and data analysis function by computer. The system is used to detect the surface of the floating oil film in the distance of 25m to obtain the fluorescence spectra of different oil products respectively. The fluorescence spectra of oil products are obvious. The experimental results show that the system can realize high-precision long-range fluorescence detection and reflect the fluorescence characteristics of the target accurately, with broad application prospects in marine oil pollution identification and oil film thickness detection.

  12. Electric power system / emergency power supply

    International Nuclear Information System (INIS)

    Dorn, P.G.

    1980-01-01

    One factor of reliability of reactor safety systems is the integrity of the power supply. The purpose of this paper is a review and a discussion of the safety objectives required for the planning, licensing, manufacture and erection of electrical power systems and components. The safety aspects and the technical background of the systems for - the electric auxiliary power supply system and - the emergency power supply system are outlined. These requirements result specially from the safety standards which are the framework for the studies of safety analysis. The overall and specific requirements for the electrical power supply of the safety systems are demonstrated on a 1300 MW standard nuclear power station with a pressurized water reactor. (orig.)

  13. Consolidating Learning in Power Systems: Virtual Reality Applied to the Study of the Operation of Electric Power Transformers

    Science.gov (United States)

    Barata, Pebertli Nils Alho; Filho, Manoel Ribeiro; Nunes, Marcus V. Alves

    2015-01-01

    Within the field of electric power systems, the study of electrical equipment can be frustrating and demotivating because of the lack of a clear vision of how this equipment functions and operates in a real environment. The use of virtual reality can provide a more concrete representation for students, who rarely have the opportunity to visit a…

  14. Comparative study of popular objective functions for damping power system oscillations in multimachine system.

    Science.gov (United States)

    Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A

    2014-01-01

    Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.

  15. Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chick, Lawrence A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gotthold, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Whyatt, Greg A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    Solid oxide fuel cell (SOFC) power systems can be designed to produce electricity from fossil fuels at extremely high net efficiencies, approaching 70%. However, in order to penetrate commercial markets to an extent that significantly impacts world fuel consumption, their cost will need to be competitive with alternative generating systems, such as gas turbines. This report discusses a cost model developed at PNNL to estimate the manufacturing cost of SOFC power systems sized for ground-based distributed generation. The power system design was developed at PNNL in a study on the feasibility of using SOFC power systems on more electric aircraft to replace the main engine-mounted electrical generators [Whyatt and Chick, 2012]. We chose to study that design because the projected efficiency was high (70%) and the generating capacity was suitable for ground-based distributed generation (270 kW).

  16. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  17. Theoretical and experimental study of a wireless power supply system for moving low power devices in ferromagnetic and conductive medium

    Science.gov (United States)

    Safour, Salaheddine; Bernard, Yves

    2017-10-01

    This paper focuses on the design of a wireless power supply system for low power devices (e.g. sensors) located in harsh electromagnetic environment with ferromagnetic and conductive materials. Such particular environment could be found in linear and rotating actuators. The studied power transfer system is based on the resonant magnetic coupling between a fixed transmitter coil and a moving receiver coil. The technique was utilized successfully for rotary machines. The aim of this paper is to extend the technique to linear actuators. A modeling approach based on 2D Axisymmetric Finite Element model and an electrical lumped model based on the two-port network theory is introduced. The study shows the limitation of the technique to transfer the required power in the presence of ferromagnetic and conductive materials. Parametric and circuit analysis were conducted in order to design a resonant magnetic coupler that ensures good power transfer capability and efficiency. A design methodology is proposed based on this study. Measurements on the prototype show efficiency up to 75% at a linear distance of 20 mm.

  18. 10-75-kWe-reactor-powered organic Rankine-cycle electric power systems (ORCEPS) study. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-30

    This 10-75 kW(e) Reactor-ORCEPS study was concerned with the evaluation of several organic Rankine cycle energy conversion systems which utilized a /sup 235/U-ZrH reactor as a heat source. A liquid metal (NaK) loop employing a thermoelectric converter-powered EM pump was used to transfer the reactor energy to the organic working fluid. At moderate peak cycle temperatures (750/sup 0/F), power conversion unit cycle efficiencies of up to 25% and overall efficiencies of 20% can be obtained. The required operating life of seven years should be readily achievable. The CP-25 (toluene) working fluid cycle was found to provide the highest performance levels at the lowest system weights. Specific weights varies from 100 to 50 lb/kW(e) over the power level range 10 to 75 kW(e). (DLC)

  19. AES Modular Power Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Modular Power Systems (AMPS) project will demonstrate and infuse modular power electronics, batteries, fuel cells, and autonomous control for exploration...

  20. Study on emergency power control strategy for AC/DC hybrid power system containing VSC-HVDC

    Science.gov (United States)

    Liu, Lin; Hu, Zhenda; Ye, Rong; Lin, Zhangsui; Yang, Xiaodong; Yi, Yang

    2018-04-01

    This paper presents a comprehensive emergency power control strategy for AC/DC hybrid power systems containing VSC-HVDC. Firstly, the paper analyzes the power support of the VSC-HVDC to the AC lines using the Power Transferring Relativity Factor (PTRF). Then the power adjustment of the VSC-HVDC in several different circumstances are calculated. Finally, the online power control strategies of VSC-HVDC are designed, which could rapidly control the power of the VSC-HVDC, keeping the power flow of AC lines below the upper limit. Furthermore, the strategy is proven to be effective by the simulations with EMTDC/PSCAD.

  1. Explicit model predictive control applications in power systems: an AGC study for an isolated industrial system

    DEFF Research Database (Denmark)

    Jiang, Hao; Lin, Jin; Song, Yonghua

    2016-01-01

    Model predictive control (MPC), that can consider system constraints, is one of the most advanced control technology used nowadays. In power systems, MPC is applied in a way that an optimal control sequence is given every step by an online MPC controller. The main drawback is that the control law...

  2. A digital computer simulation and study of a direct-energy-transfer power-conditioning system

    Science.gov (United States)

    Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.

    1975-01-01

    An investigation of the behavior of the power-conditioning system as a whole is a necessity to ensure the integrity of the aggregate system in the case of space applications. An approach for conducting such an investigation is considered. A description is given of the application of a general digital analog simulator program to the study of an aggregate power-conditioning system which is being developed for use on the International Ultraviolet Explorer spacecraft. The function of the direct energy transfer system studied involves a coupling of a solar array through a main distribution bus to the spacecraft electrical loads.

  3. An investigation of the effect of changes of planning criteria on power system expansion planning with a case study of the Jordanian power system

    International Nuclear Information System (INIS)

    Elkarmi, Fawwaz; Abu-Shikhah, Nazih; Abu-Zarour, Mohammad

    2010-01-01

    Many factors contribute to the planning process of power systems. In the context of expansion planning, focus is paid to selection criteria that enable the optimization of related factors that will result in the best performance. This is described as meeting demand whilst reducing costs and maintaining minimal risk in operation. In this paper, different criteria used in the planning of power system expansion studies are investigated with the objective of identifying their impact on the expansion plan. The results of these criteria on the expansion study of the Jordanian power system are presented. Results show good correspondence to the actual adopted solutions. The spinning reserve is the most influential planning criterion on the overall system expansion cost. This is followed by the peak load changes, and the forced outage rate of the candidate units used for capacity additions to meet future expected demand. Finally, the loss of load expectation and cost of energy not served have the least effect on the overall system expansion cost. These results highlight the importance to be placed on performing sensitivity analyses to determine the most cost effective and acceptable expansion plan of the electric power system. There is a need to continually update the planning criteria to cater for changes and developments in the power system and the economic situation. Finally, the methodology of this study can be generalized to other power systems.

  4. An investigation of the effect of changes of planning criteria on power system expansion planning with a case study of the Jordanian power system

    Energy Technology Data Exchange (ETDEWEB)

    Elkarmi, Fawwaz; Abu-Shikhah, Nazih [Al-Ahliyya Amman University, College of Engineering, AA University Post Office, Zip code 19328 (Jordan); Abu-Zarour, Mohammad [NEPCO, Department of Generation Planning, P.O. Box 2310, Amman 11194 (Jordan)

    2010-10-15

    Many factors contribute to the planning process of power systems. In the context of expansion planning, focus is paid to selection criteria that enable the optimization of related factors that will result in the best performance. This is described as meeting demand whilst reducing costs and maintaining minimal risk in operation. In this paper, different criteria used in the planning of power system expansion studies are investigated with the objective of identifying their impact on the expansion plan. The results of these criteria on the expansion study of the Jordanian power system are presented. Results show good correspondence to the actual adopted solutions. The spinning reserve is the most influential planning criterion on the overall system expansion cost. This is followed by the peak load changes, and the forced outage rate of the candidate units used for capacity additions to meet future expected demand. Finally, the loss of load expectation and cost of energy not served have the least effect on the overall system expansion cost. These results highlight the importance to be placed on performing sensitivity analyses to determine the most cost effective and acceptable expansion plan of the electric power system. There is a need to continually update the planning criteria to cater for changes and developments in the power system and the economic situation. Finally, the methodology of this study can be generalized to other power systems. (author)

  5. A study on the social risk comparison for various power systems: focusing on the social acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Young Soo [Myongji Univ., Seoul (Korea, Republic of); Kim, Young Pyung [Korea Univ, Seoul (Korea, Republic of); Lee, Jae Eun [Chungbuk Nat. Univ., Cheongju (Korea, Republic of)

    2007-02-15

    The objective of this study is to develop measurement indices for social risk acceptance of various power systems(nuclear, coal, oil, LNG, hydro, wind, solar) and compare them empirically. In order to measure social risk acceptance of various power systems, four measurement fields and twelve measurement indices were developed. Measurement areas contains rationality, emotion, trust, communication. Each measurement field has two or three measurement indices. Rationality field has indices of amount of knowledge, recognition of technological utility, risk controllability. Emotion field has indices of experiences, risk recognition. Trust field has indices of openness, sincerity, willingness of sharing knowledge and experiences. Communication field has indices of scientist's roll, media's roll, public relations. Based on these measurement field and indices, this study made questionnaire and surveyed citizens to compare deciding factors of social acceptance on risk of various power systems. Questionnaire respondents were sampled from six different groups, including power system specialists, highschool students, university students, general citizen, professors and environmental NGOs. The methodologies used to analyze the deciding factors of social acceptance on risk of various power systems were frequency analysis, cross-tab analysis, t-test and ANOVA analysis. AHP method was used to analyze power system specialists' perception on relative severance and priority among measurement fields and indices.

  6. A study on the social risk comparison for various power systems: focusing on the social acceptance

    International Nuclear Information System (INIS)

    Jung, Young Soo; Kim, Young Pyung; Lee, Jae Eun

    2007-02-01

    The objective of this study is to develop measurement indices for social risk acceptance of various power systems(nuclear, coal, oil, LNG, hydro, wind, solar) and compare them empirically. In order to measure social risk acceptance of various power systems, four measurement fields and twelve measurement indices were developed. Measurement areas contains rationality, emotion, trust, communication. Each measurement field has two or three measurement indices. Rationality field has indices of amount of knowledge, recognition of technological utility, risk controllability. Emotion field has indices of experiences, risk recognition. Trust field has indices of openness, sincerity, willingness of sharing knowledge and experiences. Communication field has indices of scientist's roll, media's roll, public relations. Based on these measurement field and indices, this study made questionnaire and surveyed citizens to compare deciding factors of social acceptance on risk of various power systems. Questionnaire respondents were sampled from six different groups, including power system specialists, highschool students, university students, general citizen, professors and environmental NGOs. The methodologies used to analyze the deciding factors of social acceptance on risk of various power systems were frequency analysis, cross-tab analysis, t-test and ANOVA analysis. AHP method was used to analyze power system specialists' perception on relative severance and priority among measurement fields and indices

  7. Next generation information communication infrastructure and case studies for future power systems

    Science.gov (United States)

    Qiu, Bin

    As power industry enters the new century, powerful driving forces, uncertainties and new functions are compelling electric utilities to make dramatic changes in their information communication infrastructure. Expanding network services such as real time measurement and monitoring are also driving the need for more bandwidth in the communication network. These needs will grow further as new remote real-time protection and control applications become more feasible and pervasive. This dissertation addresses two main issues for the future power system information infrastructure: communication network infrastructure and associated power system applications. Optical networks no doubt will become the predominant data transmission media for next generation power system communication. The rapid development of fiber optic network technology poses new challenges in the areas of topology design, network management and real time applications. Based on advanced fiber optic technologies, an all-fiber network is investigated and proposed. The study will cover the system architecture and data exchange protocol aspects. High bandwidth, robust optical networks could provide great opportunities to the power system for better service and efficient operation. In the dissertation, different applications are investigated. One of the typical applications is the SCADA information accessing system. An Internet-based application for the substation automation system will be presented. VLSI (Very Large Scale Integration) technology is also used for one-line diagrams auto-generation. High transition rate and low latency optical network is especially suitable for power system real time control. In the dissertation, a new local area network based Load Shedding Controller (LSC) for isolated power system will be presented. By using PMU (Phasor Measurement Unit) and fiber optic network, an AGE (Area Generation Error) based accurate wide area load shedding scheme will also be proposed. The objective

  8. Electric power systems

    CERN Document Server

    Weedy, B M; Jenkins, N; Ekanayake, J B; Strbac, G

    2012-01-01

    The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now e

  9. Adapting a commercial power system simulator for smart grid based system study and vulnerability assessment

    Science.gov (United States)

    Navaratne, Uditha Sudheera

    The smart grid is the future of the power grid. Smart meters and the associated network play a major role in the distributed system of the smart grid. Advance Metering Infrastructure (AMI) can enhance the reliability of the grid, generate efficient energy management opportunities and many innovations around the future smart grid. These innovations involve intense research not only on the AMI network itself but as also on the influence an AMI network can have upon the rest of the power grid. This research describes a smart meter testbed with hardware in loop that can facilitate future research in an AMI network. The smart meters in the testbed were developed such that their functionality can be customized to simulate any given scenario such as integrating new hardware components into a smart meter or developing new encryption algorithms in firmware. These smart meters were integrated into the power system simulator to simulate the power flow variation in the power grid on different AMI activities. Each smart meter in the network also provides a communication interface to the home area network. This research delivers a testbed for emulating the AMI activities and monitoring their effect on the smart grid.

  10. Study of a molten carbonate fuel cell combined heat, hydrogen and power system: Energy analysis

    International Nuclear Information System (INIS)

    Agll, Abdulhakim Amer A.; Hamad, Yousif M.; Hamad, Tarek A.; Thomas, Mathew; Bapat, Sushrut; Martin, Kevin B.; Sheffield, John W.

    2013-01-01

    Countries around the world are trying to use alternative fuels and renewable energy to reduce the energy consumption and greenhouse gas emissions. Biogas contains methane is considered a potential source of clean renewable energy. This paper discusses the design of a combined heat, hydrogen and power system, which generated by methane with use of Fuelcell, for the campus of Missouri University of Science and Technology located in Rolla, Missouri, USA. An energy flow and resource availability study was performed to identify sustainable type and source of feedstock needed to run the Fuelcell at its maximum capacity. FuelCell Energy's DFC1500 unit (a molten carbonate Fuelcell) was selected as the Fuelcell for the tri-generation (heat, hydrogen and electric power) system. This tri-generation system provides electric power to the campus, thermal energy for heating the anaerobic digester, and hydrogen for transportation, backup power and other applications on the campus. In conclusion, the combined heat, hydrogen and power system reduces fossil fuel usage, and greenhouse gas emissions at the university campus. -- Highlights: • Combined heat, hydrogen and power (CHHP) using a molten carbonate fuel cell. • Energy saving and alternative fuel of the products are determined. • Energy saving is increased when CHHP technology is implemented. • CHHP system reduces the greenhouse gas emissions and fuel consumption

  11. A Comparison Study on the Integrated Risk Estimation for Various Power Systems

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Ha, J. J.; Kim, S. H.; Jeong, J. T.; Min, K. R.; Kim, K. Y.

    2007-06-01

    The objective of this study is to establish a system for the comparative analysis of the environmental impacts, risks, health effects, and social acceptance for various electricity generation systems and a computational framework and necessary databases. In this study, the second phase of the nuclear research and development program(2002-2004), the methodologies for the comparative analysis of the environmental impacts, risks, and health effects for various electricity generation systems was investigated and applied to reference power plants. The life cycle assessment (LCA) methodology as a comparative analysis tool for the environmental impacts was adopted and applied to fossil-fueled and nuclear power plants. The scope of the analysis considered in this study are the construction, operation/fuel cycle), and demolition of each power generation system. In the risk analysis part, the empirical and analytical methods were adopted and applied to fossil-fueled and nuclear power plants. In the empirical risk assessment part, we collected historical experiences of worldwide energy-related accidents with fatalities over the last 30 years. The scope of the analysis considered in this study are the construction, operation (fuel cycle), and demolition stages of each power generation systems. The risks for the case of nuclear power plants which have potential releases of radioactive materials were estimated In a probabilistic way (PSA) by considering the occurrence of severe accidents and compared with the risks of other electricity generation systems. The health effects testimated as external cost) resulting from the operation of nuclear, coal, and hydro power systems were estimated and compared by using the program developed by the IAEA. Regarding a comprehensive comparison of the various power systems, the analytic hierarchy process (AHP) method is introduced to aggregate the diverse information under conflicting decision criteria. Social aspect is treated by a web

  12. A REVIEW OF EXPERIMENTAL STUDY OF POWER QUALITY MEASUREMENT OF PHOTOVOLTAIC CELLS WITH MAXIMUM POWER POINT TRACKING SYSTEM

    OpenAIRE

    Smriti Dwivedi; Prof. Sunil Kumar Bhatt

    2016-01-01

    Maximum power point tracking (MPPT) is a technique that charge controllers use for wind turbines and PV solar systems to maximize power output. PV solar systems exist in several different configurations. The most basic version sends power from collector panels directly to the DC-AC inverter and from there directly to the electrical grid. A second version, called a hybrid inverter, might split the power at the inverter, where a percentage of the power goes to the grid and the remainder goes to...

  13. Power quality load management for large spacecraft electrical power systems

    Science.gov (United States)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  14. Techno-economical analysis of innovative technologies in electrical power systems. A feasibility study for a Russian distribution system operator

    International Nuclear Information System (INIS)

    Mueller, Holger; Nikitina, Elena; Makarov, Andrej

    2015-01-01

    Since the liberalization of the energy market in Europe transmission and distribution system operators have been facing fundamentally new challenges when ensuring a safe and reliable power supply. In addition to purely technical criteria economical aspects have become increasingly important in the strategic planning and operation of power systems. As described in this contribution, the results of a feasibility study demonstrate how the use of innovative technologies can make a valuable contribution to improve the economical situation.

  15. Power system relaying

    CERN Document Server

    Horowitz, Stanley H; Niemira, James K

    2013-01-01

    The previous three editions of Power System Relaying offer comprehensive and accessible coverage of the theory and fundamentals of relaying and have been widely adopted on university and industry courses worldwide. With the third edition, the authors have added new and detailed descriptions of power system phenomena such as stability, system-wide protection concepts and discussion of historic outages. Power System Relaying, 4th Edition continues its role as an outstanding textbook on power system protection for senior and graduate students in the field of electric power engineering and a refer

  16. A multivariate statistical study on a diversified data gathering system for nuclear power plants

    International Nuclear Information System (INIS)

    Samanta, P.K.; Teichmann, T.; Levine, M.M.; Kato, W.Y.

    1989-02-01

    In this report, multivariate statistical methods are presented and applied to demonstrate their use in analyzing nuclear power plant operational data. For analyses of nuclear power plant events, approaches are presented for detecting malfunctions and degradations within the course of the event. At the system level, approaches are investigated as a means of diagnosis of system level performance. This involves the detection of deviations from normal performance of the system. The input data analyzed are the measurable physical parameters, such as steam generator level, pressurizer water level, auxiliary feedwater flow, etc. The study provides the methodology and illustrative examples based on data gathered from simulation of nuclear power plant transients and computer simulation of a plant system performance (due to lack of easily accessible operational data). Such an approach, once fully developed, can be used to explore statistically the detection of failure trends and patterns and prevention of conditions with serious safety implications. 33 refs., 18 figs., 9 tabs

  17. Data processing and optimization system to study prospective interstate power interconnections

    Science.gov (United States)

    Podkovalnikov, Sergei; Trofimov, Ivan; Trofimov, Leonid

    2018-01-01

    The paper presents Data processing and optimization system for studying and making rational decisions on the formation of interstate electric power interconnections, with aim to increasing effectiveness of their functioning and expansion. The technologies for building and integrating a Data processing and optimization system including an object-oriented database and a predictive mathematical model for optimizing the expansion of electric power systems ORIRES, are described. The technology of collection and pre-processing of non-structured data collected from various sources and its loading to the object-oriented database, as well as processing and presentation of information in the GIS system are described. One of the approaches of graphical visualization of the results of optimization model is considered on the example of calculating the option for expansion of the South Korean electric power grid.

  18. A study on emergency preparedness for nuclear power plant/ Establishment of emergency communication network system

    International Nuclear Information System (INIS)

    Yang, Y. K.; Jung, Y. D.; Kim, S. Y.

    1991-12-01

    The objective of this study was to develop an emergency database search system for nuclear power plants during nuclear incidents / accidents. Image data reported from nuclear power plants to the regulatory body and other related data will be stored systematically in the computer. The data will be utilized during nuclear emergency to prevent the accident from spreading out and to minimize its effect. It will also be used in exchanging information on accident or incidents with the foreign countries. The operational documents in the Kori-4 nuclear power plant are used as the major source for the categorization and analysis in performing this research. It was not easy to access the detailed operational data due to its unique characteric for the security. Therefore, we strongly suggest to increase manpower for this project in Korea Institute of Nuclear Safety (KINS) and archive involvement from Korea Electric Power Company to establish better database retrieval system

  19. A study on emergency preparedness for nuclear power plant/ Establishment of emergency communication network system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y K; Jung, Y D; Kim, S Y [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    1991-12-15

    The objective of this study was to develop an emergency database search system for nuclear power plants during nuclear incidents / accidents. Image data reported from nuclear power plants to the regulatory body and other related data will be stored systematically in the computer. The data will be utilized during nuclear emergency to prevent the accident from spreading out and to minimize its effect. It will also be used in exchanging information on accident or incidents with the foreign countries. The operational documents in the Kori-4 nuclear power plant are used as the major source for the categorization and analysis in performing this research. It was not easy to access the detailed operational data due to its unique characteric for the security. Therefore, we strongly suggest to increase manpower for this project in Korea Institute of Nuclear Safety (KINS) and archive involvement from Korea Electric Power Company to establish better database retrieval system.

  20. A study on evaluating the power generation of solar-wind hybrid systems in Izmir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ulgen, K. [Ege Univ., Solar Energy Inst., Izmir (Turkey); Hepbasli, A. [Ege Univ., Dept. of Mechanical Engineering, Izmir (Turkey)

    2003-03-15

    Turkey is abundant in terms of renewable energy resources. Residential and industrial utilization of solar energy started in the 1980s, while the first Build-Operate-Transfer (BOT) windmill park, located at Alacati, Izmir, was commissioned in 1998. Additionally, power generation through solar-wind hybrid systems has recently appeared on the Turkish market. This study investigates the wind and solar thermal power availability in Izmir, located in the western part of Turkey. Simple models were developed to determine wind, solar, and hybrid power resources per unit area. Experimental data, consisting of hourly records over a 5 yr period, 1995-1999, were measured in the Solar/Wind Meteorological Station of the Solar Energy Institute at Ege University. Correlations between solar and wind power data were carried out on an hourly, a daily, and a monthly basis. It can be concluded that possible applications of hybrid systems could be considered for the efficient utilization of these resources. (Author)

  1. Shipboard electrical power systems

    CERN Document Server

    Patel, Mukund R

    2011-01-01

    Shipboard Electrical Power Systems addresses new developments in this growing field. Focused on the trend toward electrification to power commercial shipping, naval, and passenger vessels, this book helps new or experienced engineers master cutting-edge methods for power system design, control, protection, and economic use of power. Provides Basic Transferable Skills for Managing Electrical Power on Ships or on LandThis groundbreaking book is the first volume of its kind to illustrate optimization of all aspects of shipboard electrical power systems. Applying author Mukund Patel's rare combina

  2. Parametric study of emerging high power accelerator applications using Accelerator Systems Model (ASM)

    International Nuclear Information System (INIS)

    Berwald, D.H.; Mendelsohn, S.S.; Myers, T.J.; Paulson, C.C.; Peacock, M.A.; Piaszczyk, CM.; Rathke, J.W.; Piechowiak, E.M.

    1996-01-01

    Emerging applications for high power rf linacs include fusion materials testing, generation of intense spallation neutrons for neutron physics and materials studies, production of nuclear materials and destruction of nuclear waste. Each requires the selection of an optimal configuration and operating parameters for its accelerator, rf power system and other supporting subsystems. Because of the high cost associated with these facilities, economic considerations become paramount, dictating a full evaluation of the electrical and rf performance, system reliability/availability, and capital, operating, and life cycle costs. The Accelerator Systems Model (ASM), expanded and modified by Northrop Grumman during 1993-96, provides a unique capability for detailed layout and evaluation of a wide variety of normal and superconducting accelerator and rf power configurations. This paper will discuss the current capabilities of ASM, including the available models and data base, and types of trade studies that can be performed for the above applications. (author)

  3. Study of a molten carbonate fuel cell combined heat, hydrogen and power system

    International Nuclear Information System (INIS)

    Hamad, Tarek A.; Agll, Abdulhakim A.; Hamad, Yousif M.; Bapat, Sushrut; Thomas, Mathew; Martin, Kevin B.; Sheffield, John W.

    2014-01-01

    To address the problem of fossil fuel usage and high greenhouse gas emissions at the Missouri University of Science and Technology campus, using of alternative fuels and renewable energy sources can lower energy consumption and greenhouse gas emissions. Biogas, produced by anaerobic digestion of wastewater, organic waste, agricultural waste, industrial waste, and animal by-products is a potential source of renewable energy. In this work, we have discussed the design of CHHP (combined heat, hydrogen and power) system for the campus using local resources. An energy flow and resource availability study is performed to identify the type and source of feedstock required to continuously run the fuel cell system at peak capacity. Following the resource assessment study, the team selects FuelCell Energy DFC (direct fuel cell) 1500™ unit as a molten carbonate fuel cell. The CHHP system provides electricity to power the university campus, thermal energy for heating the anaerobic digester, and hydrogen for transportation, back-up power and other needs. In conclusion, the CHHP system will be able to reduce fossil fuel usage, and greenhouse gas emissions at the university campus. - Highlights: • A molten carbonate fuel cell tri-generation by using anaerobic digestion system. • Anaerobic digestion system will be able to supply fuel for the DFC1500™ unit. • Use locally available feedstock to production electric power, hydrogen and heat. • Application energy end-uses on the university. • CHHP system will reduce energy consumption, fossil fuel usage, and GHG emissions

  4. UNISAT-3 Power System

    Science.gov (United States)

    Santoni, Fabio; Piergentili, Fabrizio; Bulgarelli, Fabio; Graziani, Filippo

    2005-05-01

    An overview of the UNISAT-3 microsatellite power subsystem is given. This is an educational, low weight and low cost microsatellite designed, built, launched and operated in space by students and professors of Scuola di Ingegneria Aerospaziale, at University of Rome "La Sapienza". The satellite power system is based on terrestrial technology solar arrays and NiCd batteries. The microsatellite hosts other solar arrays, including multi-junction solar cells and mono- crystalline silicon high efficiency solar cells, in order to compare their behaviour in orbit. Moreover a MPPT (Maximum Power Point Tracking ) system has been designed and tested, and it is a technological payload of UNISAT-3. The MPPT design follows the studies performed in the field of solar powered racing cars, with modifications to make the system suitable for use in space. The system design, numerical simulation and hardware ground testing are described in the paper. The experiment and the performance evaluation criterion are described, together with the preliminary results of the first eight months of operation in orbit.

  5. Study on 'Safety qualification of process computers used in safety systems of nuclear power plants'

    International Nuclear Information System (INIS)

    Bertsche, K.; Hoermann, E.

    1991-01-01

    The study aims at developing safety standards for hardware and software of computer systems which are increasingly used also for important safety systems in nuclear power plants. The survey of the present state-of-the-art of safety requirements and specifications for safety-relevant systems and, additionally, for process computer systems has been compiled from national and foreign rules. In the Federal Republic of Germany the KTA safety guides and the BMI/BMU safety criteria have to be observed. For the design of future computer-aided systems in nuclear power plants it will be necessary to apply the guidelines in [DIN-880] and [DKE-714] together with [DIN-192]. With the aid of a risk graph the various functions of a system, or of a subsystem, can be evaluated with regard to their significance for safety engineering. (orig./HP) [de

  6. Vehicular Integration of Wireless Power Transfer Systems and Hardware Interoperability Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Campbell, Steven L [ORNL; Seiber, Larry Eugene [ORNL; White, Cliff P [ORNL; Chinthavali, Madhu Sudhan [ORNL

    2016-01-01

    Several wireless charging methods are under development or available as an aftermarket option in the light-duty automotive market. However, there are not a sufficient number of studies detailing the vehicle integration methods, particularly a complete vehicle integration with higher power levels. This paper presents the design, development, implementation, and vehicle integration of wireless power transfer (WPT)-based electric vehicle (EV) charging systems for various test vehicles. Before having the standards effective, it is expected that WPT technology first will be integrated as an aftermarket retrofitting approach. Inclusion of this technology on production vehicles is contingent upon the release of the international standards. The power stages of the system are introduced with the design specifications and control systems including the active front-end rectifier with power factor correction, high frequency power inverter, high frequency isolation transformer, coupling coils, vehicle side full-bridge rectifier and filter, and the vehicle battery. The operating principles of the control, and communications, systems are presented. Aftermarket conversion approaches including the WPT on-board charger (OBC) integration, WPT CHAdeMO integration, and WPT direct battery connection scenarios are described. The experiments are carried out using the integrated vehicles and the results obtained to demonstrate the system performance including the stage-by-stage efficiencies.

  7. Development of Integrated Assessment System for Underground Power Cable Performance: A Case Study

    Science.gov (United States)

    Turan, Faiz Mohd; Johan, Kartina; Soliha Sahimi, Nur; Nor, Nik Hisyamudin Muhd

    2017-08-01

    The basic operation of any electrical machines that is catered to serve needs of civilization involves electrical power which is the main source to trigger the internal mechanism in the machines then transfer the power to other form of energy such as mechanical, light, sound and etc. The supplies of electrical does not happen just by providing the source itself, it has load carrying agent which in many cases, user would refer to it as cable. Specifically, it is the power cable which its ampacity depends significantly on the operation temperature and load stress on it. Apart from having to focus on providing improvement on improving efficiency on the source itself, power cable plays and important role because without it, current ranging from low to high could not be transmitted and hence a failure of the power system generally. Studies have conducted to discuss whether which factor contributes relatively more to the causes of power cable failure or breakdown. Such factors can be narrowed down to the three major causes which are over temperature, over voltage and stress caused by over current. Over current is one of the factor which is depends on the usage of the power system itself. The higher the usage of the power system, higher the chances of over current to take place. This will then produce load stress on the cable which eventually destroy the insulator of the cable and slowly reach the core of the cable. It is believed that an assessment method should be implemented in order to predict the performance and failure rate of the power cable and use this prediction as reference rather than just letting power failure to happen anytime unpredictable which cause huge inconvenience to users and industries. Not only do a method should be implemented, it should be as easy to be used and understood by large range of users and integrated by a graphical user interface to be used. Therefore, this research will further narrow down on the approaches to do so and the location

  8. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    Science.gov (United States)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  9. Power system health analysis

    International Nuclear Information System (INIS)

    Billinton, Roy; Fotuhi-Firuzabad, Mahmud; Aboreshaid, Saleh

    1997-01-01

    This paper presents a technique which combines both probabilistic indices and deterministic criteria to reflect the well-being of a power system. This technique permits power system planners, engineers and operators to maximize the probability of healthy operation as well as minimizing the probability of risky operation. The concept of system well-being is illustrated in this paper by application to the areas of operating reserve assessment and composite power system security evaluation

  10. A Study on Evaluation Issues of Real-Time Operating System in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S. [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2006-07-01

    Control applications such as aircraft, robotics and nuclear power plant have to maintain a very high level of safety, typically defined as the avoidance of unplanned events resulting in hazard. These applications usually operate with hard real-time operating system (RTOS). In this case, hard RTOS software should be reliable and safe. RTOS used in safety-critical I and C system is the base software for the purpose of satisfying the real-time constraints. So, careful evaluation of its safety and functionality is very important. In this paper, we present the case study for RTOSs used in real nuclear power plants (NPP), and suggest the evaluation approach for the RTOS.

  11. A Study on Evaluation Issues of Real-Time Operating System in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S.

    2006-01-01

    Control applications such as aircraft, robotics and nuclear power plant have to maintain a very high level of safety, typically defined as the avoidance of unplanned events resulting in hazard. These applications usually operate with hard real-time operating system (RTOS). In this case, hard RTOS software should be reliable and safe. RTOS used in safety-critical I and C system is the base software for the purpose of satisfying the real-time constraints. So, careful evaluation of its safety and functionality is very important. In this paper, we present the case study for RTOSs used in real nuclear power plants (NPP), and suggest the evaluation approach for the RTOS

  12. Power management of a hybrid renewable system for artificial islands: A case study

    International Nuclear Information System (INIS)

    Cozzolino, R.; Tribioli, L.; Bella, G.

    2016-01-01

    In this paper, a hybrid wind/solar/fuel cell power plant is designed and a possible power management strategy is proposed. In particular, wind and solar energy sources are used as primary power suppliers, while a pure-hydrogen-fueled fuel cell – with hydrogen produced by means of an electrolyzer recovering excess power – and a battery pack are employed to fulfill the power demand, when the power supplied by the renewable sources is not sufficient. The analysis is applied to a particular case study, i.e. the TUNeIT [TUNisia and ITaly] Project, that involves the realization of four artificial islands to connect Bon (Tunisia) and Pizzolato (Sicily), provided with electrical-power-demanding facilities for tourists. Components sizing has been performed with HOMER, where a load profile has been assumed in order to reproduce the possible power demand of one of these artificial islands, while Matlab/Simulink"® is used for simulations and power management strategy design. The obtained results demonstrate the possibility of realizing an almost self-sustaining renewable power plant, able to realize a good integration of different energy sources and power converters, with no negative effects on end-user satisfaction. The system would consist of a wind turbine of 1 MW and a photovoltaic array of 1.1 MW, acting as primary power sources and several backup systems, such as a 72-kWh battery, a 300-kW fuel cell and a 300-kW diesel engine to cope with power demand unmatches and/or failures. In order to verify the system performance under different situations, simulation studies have been carried out using practical load demand profiles and real weather data. Typical winter and summer day loads have been kept for simulations of a four-season scenario and results are provided to show the effectiveness of the proposed system. The major drawback encountered during the analysis is the low value of the utilization factors of both wind turbine and photovoltaic array, which are 10

  13. Satellite power systems (SPS) concept definition study. Volume 2, part 1: System engineering

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    Top level trade studies are presented, including comparison of solid state and klystron concepts, higher concentration on the solar cells, composite and aluminum structure, and several variations to the reference concept. Detailed trade studies are presented in each of the subsystem areas (solar array, power distribution, structures, thermal control, attitude control and stationkeeping, microwave transmission, and ground receiving station). A description of the selected point design is also presented.

  14. Study of Demand as Frequency Controlled Reserve in Nordic Power System

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Huang, Shaojun

    2016-01-01

    This paper investigates the efficacy of Demand Frequency Reserve (DFR) in Nordic power system. Heat pump, due to its switching flexibility, less disturbing impacts to customers and promising future in application, is used to represent DFR in the study. Thermodynamics of the heat pump unit...

  15. Feasibility study of a small, thorium-based fission power system for space and terrestrial applications

    Science.gov (United States)

    Worrall, Michael Jason

    One of the current challenges facing space exploration is the creation of a power source capable of providing useful energy for the entire duration of a mission. Historically, radioisotope batteries have been used to provide load power, but this conventional system may not be capable of sustaining continuous power for longer duration missions. To remedy this, many forays into nuclear powered spacecraft have been investigated, but no robust system for long-term power generation has been found. In this study, a novel spin on the traditional fission power system that represents a potential optimum solution is presented. By utilizing mature High Temperature Gas Reactor (HTGR) technology in conjunction with the capabilities of the thorium fuel cycle, we have created a light-weight, long-term power source capable of a continuous electric power output of up to 70kW for over 15 years. This system relies upon a combination of fissile, highly-enriched uranium dioxide and fertile thorium carbide Tri-Structural Isotropic (TRISO) fuel particles embedded in a hexagonal beryllium oxide matrix. As the primary fissile material is consumed, the fertile material breeds new fissile material leading to more steady fuel loading over the lifetime of the core. Reactor control is achieved through an innovative approach to the conventional boron carbide neutron absorber by utilizing sections of borated aluminum placed in rotating control drums within the reflector. Borated aluminum allows for much smaller boron concentrations, thus eliminating the potential for 10B(n,alpha)6Li heating issues that are common in boron carbide systems. A wide range of other reactivity control systems are also investigated, such as a radially-split rotating reflector. Lastly, an extension of the design to a terrestrial based system is investigated. In this system, uranium enrichment is dropped to 20 percent in order to meet current regulations, a solid uranium-zirconium hydride fissile driver replaces the

  16. A brief review study of various thermodynamic cycles for high temperature power generation systems

    International Nuclear Information System (INIS)

    Yu, Si-Cong; Chen, Lin; Zhao, Yan; Li, Hong-Xu; Zhang, Xin-Rong

    2015-01-01

    Highlights: • Various high temperature power generation cycles for are reviewed and analyzed. • The operating temperature is higher than 700 K for high temperature power systems. • Thermodynamic cycle model study and working fluid choices are discussed. • Characteristics and future developments of high temperature cycles are presented and compared. - Abstract: This paper presents a review of the previous studies and papers about various thermodynamic cycles working for high temperature power generation procedures, in these cycles the highest temperature is not lower than 700 K. Thermodynamic cycles that working for power generation are divided into two broad categories, thermodynamic cycle model study and working fluid analysis. Thermodynamic cycle contains the simple cycle model and the complex cycle model, emphasis has been given on the complex thermodynamic cycles due to their high thermal efficiencies. Working fluids used for high temperature thermodynamic cycles is a dense gas rather than a liquid. A suitable thermodynamic cycle is crucial for effectively power generation especially under the condition of high temperature. The main purpose is to find out the characteristics of various thermodynamic cycles when they are working in the high temperature region for power generation. As this study shows, combined cycles with both renewable and nonrenewable energies as the heat source can show good performance

  17. Status of CEA reactor studies for a 200 kWe turboelectric Space Power System

    International Nuclear Information System (INIS)

    Carre, F.; Gervaise, F.; Proust, E.; Schwartz, J.P.; Tilliette, Z.; Vrillon, B.

    1986-01-01

    A reference design for a 200 kWe Space Nuclear Power System has been developed by the CNES and CEA Agencies of the French Government in order to assess within a first study phase running from mid 1984 to mid 1986, the key feasibility issues and the development cost of a Space Power System compatible with the version of the European launcher (ARIANE V), that will be available after 1995, and with adequate power range and lifetime performances for the missions considered at that time. The heat from a fast spectrum lithium cooled reactor is converted by a turboelectric system, selected for its technological readiness and for its advantage over thermionics and thermoelectricity, of minimizing the total mass of 100 to 300 kWe power systems, considering the available radiator area afforded by the specific ARIANE V geometrical features. A heat pipe radiator is preferred to an equivalent gas cooled system, for the increased reliability brought by the large number of independent cooling elements. The successive topics addressed in the paper, include a description of the system main components and steady state operating conditions, and the present views about the start up procedure and the reactor control

  18. Performance study of a dual power source residential CCHP system based on PEMFC and PTSC

    International Nuclear Information System (INIS)

    Chen, Xi; Gong, Guangcai; Wan, Zhongmin; Zhang, Caizhi; Tu, Zhengkai

    2016-01-01

    Highlights: • A novel dual power source residential CCHP system model is proposed. • Low temperature and high current density guarantee the high efficiency of PTSC. • High system efficiency can be obtained at a relatively low solar radiation. • Government subsidy is a crucial factor to improve system economic performance. • System environmental performance is discussed by parametric study. - Abstract: This paper presents an innovative, hybrid residential CCHP system based on fuel cell and solar technologies that can provide electric power, heating and cooling. The CCHP system consists of a proton exchange membrane fuel cell (PEMFC) stack, parabolic trough solar collector (PTSC), double-effect absorption chiller and their relevant accessories. The effects of key operating parameters for PEMFC and PTSC systems (e.g.: current density, operating temperature and solar radiation) on the system thermodynamic performance are analyzed and discussed. The results show that the PEMFC operation temperature has a significant influence on the PTSC output performance in a hybrid CCHP system and that the PTSC also plays an important role as a bridge between the PEMFC stack and absorption chiller. The maximum efficiency of a hybrid system can reach 80.5%, which is higher than conventional CCHP systems, due to the high efficiency of PEMFC, PTSC and double-effect absorption chiller. The economic and environmental analysis of CCHP system are also performed, the results indicate the project is practicable, meanwhile, high current density and solar radiation and low operating temperature can improve pollutant emissions reduction of the system.

  19. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  20. Power System Analysis

    Science.gov (United States)

    Taniguchi, Haruhito

    Electric power generation that relies on various sources as the primary sources of energy is expected to bring down CO2 emissions levels to support the overall strategy to curb global warming. Accordingly, utilities are moving towards integrating more renewable sources for generation, mostly dispersed, and adopting Smart Grid Technologies for system control. In order to construct, operate, and maintain power systems stably and economically in such background, thorough understanding about the characteristics of power systems and their components is essential. This paper presents modeling and simulation techniques available for the analysis of critical aspects such as thermal capacity, stability, voltage stability, and frequency dynamics, vital for the stable operation of power systems.

  1. A Study on the Safety Evaluation of Real-Time Operating System in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Hyung Tae; Jeong, Choong Heui; Kim, Dail Il

    2008-01-01

    Along with the digitalisation of the nuclear Instrumentation and Control (I and C) system, Real-Time Operating System (RTOS) is being widely used. The RTOS used in nuclear I and C system should satisfy strict performance requirements and resolve various technical issues under complicated conditions. In this regard a careful safety evaluation of RTOS is important for the safety of Nuclear Power Plants. The objective of this study is to provide a guideline for safety evaluation of RTOS appropriate to the nuclear I and C system. In this paper, we suggest evaluation approach for the RTOS

  2. A Study on the Safety Evaluation of Real-Time Operating System in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Tae; Jeong, Choong Heui; Kim, Dail Il [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-10-15

    Along with the digitalisation of the nuclear Instrumentation and Control (I and C) system, Real-Time Operating System (RTOS) is being widely used. The RTOS used in nuclear I and C system should satisfy strict performance requirements and resolve various technical issues under complicated conditions. In this regard a careful safety evaluation of RTOS is important for the safety of Nuclear Power Plants. The objective of this study is to provide a guideline for safety evaluation of RTOS appropriate to the nuclear I and C system. In this paper, we suggest evaluation approach for the RTOS.

  3. Optimization in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Geraldo R.M. da [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia

    1994-12-31

    This paper discusses, partially, the advantages and the disadvantages of the optimal power flow. It shows some of the difficulties of implementation and proposes solutions. An analysis is made comparing the power flow, BIGPOWER/CESP, and the optimal power flow, FPO/SEL, developed by the author, when applied to the CEPEL-ELETRONORTE and CESP systems. (author) 8 refs., 5 tabs.

  4. Study on development system of increasing gearbox for high-performance wind-power generator

    Science.gov (United States)

    Xu, Hongbin; Yan, Kejun; Zhao, Junyu

    2005-12-01

    Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.

  5. Status of CEA reactor studies for a 200 kWe turbo electric space power system

    International Nuclear Information System (INIS)

    Carre, F.; Gervaise, F.; Proust, E.; Schwartz, J.P.; Tilliette, Z.; Vrillon, B.

    1986-01-01

    The present European ARIANE space program will expand after 1995 in the development of the large ARIANE 5 launch vehicle. Considering, that the range of power needs (50 to 400 kWe) and operation times required for the space missions planned after the year 2000, are relevant to a nuclear power system, the French Centre National d'Etudes Spatiales (CNES) invited in 1983 the Commissariat a l'Energie Atomique (CEA) to undertake preliminary studies on space power systems. The purpose of the present two year phase (mid 1984-mid 1986) is to identify key technologies for a space generator within the power range of interest and to estimate the development cost of such a project to be examined for commitment in 1986. This work mainly consists in the feasibility and cost assessment of a reference 200 kWe turboelectric space generator, selected for the maturity and availability of the conversion system and for its attractive specific mass compared to thermionics and thermoelectricity, considering the available radiator area afforded by the specific ARIANE 5 geometrical features. The system is basically composed of a fast neutron spectrum lithium cooled reactor, of a Brayton conversion loop and of a heat pipe radiator

  6. Experimental Study on Productivity Performance of Household Combined Thermal Power and Biogas System in Northwest China

    Directory of Open Access Journals (Sweden)

    Jian Kang

    2018-01-01

    Full Text Available Ample quantities of solar and local biomass energy are available in the rural regions of northwest China to satisfy the energy needs of farmers. In this work, low-temperature solar thermal collectors, photovoltaic solar power generators, and solar-powered thermostatic biogas digesters were combined to create a heat, electricity, and biogas cogeneration system and were experimentally studied through two buildings in a farming village in northwestern China. The results indicated that the floor heater had the best heating effect. And the fraction of the energy produced by the solar elements of the system was 60.3%. The photovoltaic power-generation system achieved photovoltaic (PV conversion efficiencies of 8.3% and 8.1% during the first and second season, respectively. The intrinsic power consumption of the system was 143.4 kW·h, and 115.7 kW·h of electrical power was generated by the system in each season. The average volume of biogas produced daily was approximately 1.0 m3. Even though the ambient temperature reached −25°C, the temperature of the biogas digester was maintained at 27°C ± 2 for thermostatic fermentation. After optimization, the energy-saving rate improved from 66.2% to 85.5%. The installation reduced CO2 emissions by approximately 27.03 t, and the static payback period was 3.1 yr. Therefore, the system is highly economical, energy efficient, and beneficial for the environment.

  7. Experimental Study on Productivity Performance of Household Combined Thermal Power and Biogas System in Northwest China

    Science.gov (United States)

    Zhen, Xiaofei; Osman, Yassir Idris Abdalla; Feng, Rong; Si, Zetian

    2018-01-01

    Ample quantities of solar and local biomass energy are available in the rural regions of northwest China to satisfy the energy needs of farmers. In this work, low-temperature solar thermal collectors, photovoltaic solar power generators, and solar-powered thermostatic biogas digesters were combined to create a heat, electricity, and biogas cogeneration system and were experimentally studied through two buildings in a farming village in northwestern China. The results indicated that the floor heater had the best heating effect. And the fraction of the energy produced by the solar elements of the system was 60.3%. The photovoltaic power-generation system achieved photovoltaic (PV) conversion efficiencies of 8.3% and 8.1% during the first and second season, respectively. The intrinsic power consumption of the system was 143.4 kW·h, and 115.7 kW·h of electrical power was generated by the system in each season. The average volume of biogas produced daily was approximately 1.0 m3. Even though the ambient temperature reached −25°C, the temperature of the biogas digester was maintained at 27°C ± 2 for thermostatic fermentation. After optimization, the energy-saving rate improved from 66.2% to 85.5%. The installation reduced CO2 emissions by approximately 27.03 t, and the static payback period was 3.1 yr. Therefore, the system is highly economical, energy efficient, and beneficial for the environment. PMID:29862289

  8. Study on electromagnetic characteristics of the magnetic coupling resonant coil for the wireless power transmission system.

    Science.gov (United States)

    Wang, Zhongxian; Liu, Yiping; Wei, Yonggeng; Song, Yilin

    2018-01-01

    The resonant coil design is taken as the core technology in the magnetic coupling resonant wireless power transmission system, which achieves energy transmission by the coupling of the resonant coil. This paper studies the effect of the resonant coil on energy transmission and the efficiency of the system. Combining a two-coil with a three-coil system, the optimum design method for the resonant coil is given to propose a novel coil structure. First, the co-simulation methods of Pspice and Maxwell are used. When the coupling coefficient of the resonant coil is different, the relationship between system transmission efficiency, output power, and frequency is analyzed. When the self-inductance of the resonant coil is different, the relationship between the performance and frequency of the system transmission is analyzed. Then, two-coil and three-coil structure models are built, and the parameters of the magnetic field of the coils are calculated and analyzed using the finite element method. In the end, a dual E-type simulation circuit model is used to optimize the design of the novel resonance coil. The co-simulation results show that the coupling coefficients of the two-coil, three-coil, and novel coil systems are 0.017, 0.17 and 0.0126, respectively. The power loss of the novel coil is 16.4 mW. There is an obvious improvement in the three-coil system, which shows that the magnetic leakage of the field and the energy coupling are relatively small. The new structure coil has better performance, and the load loss is lower; it can improve the system output power and transmission efficiency.

  9. Validation study on reliability analysis of main safety system in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Jin; Cho, Chang Keun; Kim, Yong Hui; Kim, Tae Hyeong; Hong, Seo Kee; Park, Keon Woo; Park, Chang Jea [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Cheong, Woo Sik [Institute for Advanced Engineering, Yongin (Korea, Republic of); Park, Moon Kyu [KEPRI, Taejon (Korea, Republic of)

    1993-12-15

    The scope and contents of this validation study are to review the design changes of the four main safety systems in Wolsong 2/3/4 Nuclear Power Plants, to review the consideration of the above design changes in the AECL reports, the structure of fault trees, and the data base used in the quantification of the fault trees, to quantify the unavailabilities of main safety systems and check them if they meet the requirements, and to recommend desirable design changes in the emergency core cooling system to reduce the unavailability.

  10. 76 FR 48159 - Integrated System Power Rates

    Science.gov (United States)

    2011-08-08

    ... DEPARTMENT OF ENERGY Southwestern Power Administration Integrated System Power Rates AGENCY... American Electric Reliability Corporation and to cover increased investments and replacements in..., prepared a Current Power Repayment Study using existing system rates. The Study indicates that Southwestern...

  11. Study of system dynamics model and control of a high-power LED lighting luminaire

    International Nuclear Information System (INIS)

    Huang, B.-J.; Hsu, P.-C.; Wu, M.-S.; Tang, C.-W.

    2007-01-01

    The purpose of the present study is to design a current control system which is robust to the system dynamics uncertainty and the disturbance of ambient temperature to assure a stable optical output property of LED. The system dynamics model of the LED lighting system was first derived. A 96 W high-power LED luminaire was designed and built in the present study. The linearly perturbed system dynamics model for the LED luminaire is derived experimentally. The dynamics model of LED lighting system is of a multiple-input-multiple-output (MIMO) system with two inputs (applied voltage and ambient temperature) and two outputs (forward current and heat conducting body temperature). A step response test method was employed to the 96 W LED luminaire to identify the system dynamics model. It is found that the current model is just a constant gain (resistance) and the disturbance model is of first order, both changing with operating conditions (voltage and ambient temperature). A feedback control system using PI algorithm was designed using the results of the system dynamics model. The control system was implemented on a PIC microprocessor. Experimental results show that the control system can stably and accurately control the LED current to a constant value at the variation of ambient temperature up to 40 o C. The control system is shown to have a robust property with respect to the plant uncertainty and the ambient temperature disturbance

  12. Economic Operation of Power Systems with Significant Wind Power Penetration

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa

    This dissertation addresses economic operation of power systems with high penetration of wind power. Several studies are presented to address the economic operation of power systems with high penetration of variable wind power. The main concern in such power systems is high variability...... and unpredictability. Unlike conventional power plants, the output power of a wind farm is not controllable. This brings additional complexity to operation and planning of wind dominant power systems. The key solution in face of wind power uncertainty is to enhance power system flexibility. The enhanced flexibility......, cooperative wind-storage operation is studied. Lithium-Ion battery units are chosen as storage units. A novel formulation is proposed to investigate optimal operation of a storage unit considering power system balancing conditions and wind power imbalances. An optimization framework is presented to increase...

  13. Literature study regarding fire protection in nuclear power plants. Part 2: Fire detection and -extinguishing systems

    International Nuclear Information System (INIS)

    Isaksson, S.

    1996-01-01

    This literature study has been made on behalf of the Swedish Nuclear Power Inspectorate. The aim is to describe different aspects of fire protection in nuclear power plants. Detection and extinguishing systems in Swedish nuclear power plants have only to a limited extent been designed after functional demands, such as a maximum acceptable damage or a maximum time to detect a fire. The availability of detection systems is difficult to assess, partly because of lack of statistics. The user interface is very important in complex systems as nuclear plants. An extinguishing system designed according to the insurance companies' regulations will only fulfill the basic demands. It should be noted that normal sprinkler design does not aim for extinguishing fires, the objective is to control fire until manual extinguishment is possible. There is a great amount of statistics on wet and dry pipe sprinkler systems, while statistics are more scarce for deluge systems. The statistics on the reliability of gaseous extinguishing systems have been found very scarce. A drawback of these systems is that they are normally designed for one shot only. There are both traditional and more recent extinguishing systems that can replace halons. From now on there will be a greater need for a thorough examination of the properties needed for the individual application and a quantification of the acceptable damage. There are several indications on the importance of a high quality maintenance program as well as carefully developed routines for testing and surveillance to ensure the reliability of detection and extinguishing systems. 78 refs, 8 figs, 10 tabs

  14. Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle. Phase 1; Preliminary System Studies

    Science.gov (United States)

    Bose, Bimal K.; Kim, Min-Huei

    1995-01-01

    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.

  15. Diagnosis and Reconfiguration using Bayesian Networks: An Electrical Power System Case Study

    Science.gov (United States)

    Knox, W. Bradley; Mengshoel, Ole

    2009-01-01

    Automated diagnosis and reconfiguration are important computational techniques that aim to minimize human intervention in autonomous systems. In this paper, we develop novel techniques and models in the context of diagnosis and reconfiguration reasoning using causal Bayesian networks (BNs). We take as starting point a successful diagnostic approach, using a static BN developed for a real-world electrical power system. We discuss in this paper the extension of this diagnostic approach along two dimensions, namely: (i) from a static BN to a dynamic BN; and (ii) from a diagnostic task to a reconfiguration task. More specifically, we discuss the auto-generation of a dynamic Bayesian network from a static Bayesian network. In addition, we discuss subtle, but important, differences between Bayesian networks when used for diagnosis versus reconfiguration. We discuss a novel reconfiguration agent, which models a system causally, including effects of actions through time, using a dynamic Bayesian network. Though the techniques we discuss are general, we demonstrate them in the context of electrical power systems (EPSs) for aircraft and spacecraft. EPSs are vital subsystems on-board aircraft and spacecraft, and many incidents and accidents of these vehicles have been attributed to EPS failures. We discuss a case study that provides initial but promising results for our approach in the setting of electrical power systems.

  16. Preliminary Findings of the South Africa Power System Capacity Expansion and Operational Modelling Study: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Reber, Timothy J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chartan, Erol Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brinkman, Gregory L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-01

    Wind and solar power contract prices have recently become cheaper than many conventional new-build alternatives in South Africa and trends suggest a continued increase in the share of variable renewable energy (vRE) on South Africa's power system with coal technology seeing the greatest reduction in capacity, see 'Figure 6: Percentage share by Installed Capacity (MW)' in [1]. Hence it is essential to perform a state-of-the-art grid integration study examining the effects of these high penetrations of vRE on South Africa's power system. Under the 21st Century Power Partnership (21CPP), funded by the U.S. Department of Energy, the National Renewable Energy Laboratory (NREL) has significantly augmented existing models of the South African power system to investigate future vRE scenarios. NREL, in collaboration with Eskom's Planning Department, further developed, tested and ran a combined capacity expansion and operational model of the South African power system including spatially disaggregated detail and geographical representation of system resources. New software to visualize and interpret modelling outputs has been developed, and scenario analysis of stepwise vRE build targets reveals new insight into associated planning and operational impacts and costs. The model, built using PLEXOS, is split into two components, firstly a capacity expansion model and secondly a unit commitment and economic dispatch model. The capacity expansion model optimizes new generation decisions to achieve the lowest cost, with a full understanding of capital cost and an approximated understanding of operational costs. The operational model has a greater set of detailed operational constraints and is run at daily resolutions. Both are run from 2017 through 2050. This investigation suggests that running both models in tandem may be the most effective means to plan the least cost South African power system as build plans seen to be more expensive than optimal by the

  17. Personal power systems

    Energy Technology Data Exchange (ETDEWEB)

    Dunn-Rankin, Derek; Leal, Elisangela Martins; Walther, David C. [Mechanical and Aerospace Engineering Department, University of California, Irvine, CA 92697 (United States)

    2005-07-01

    The lack of compact, efficient, human compatible, lightweight power sources impedes the realization of machine-enhanced human endeavor. Electronic and communication devices, as well as mobile robotic devices, need new power sources that will allow them to operate autonomously for periods of hours. In this work, a personal power system implies an application of interest to an individual person. The human-compatible gravimetric energy density spans the range from 500 to 5000Wh/kg, with gravimetric power density requirements from 10 to 1000W/kg. These requirements are the primary goals for the systems presented here. The review examines the interesting and promising concepts in electrochemical, thermochemical, and biochemical approaches to small-scale power, as well as their technological and physical challenges and limitations. Often it is the limitations that dominate, so that while the technology to create personal autonomy for communications, information processing and mobility has accelerated, similar breakthroughs for the systems powering these devices have not yet occurred. Fuel cells, model airplane engines, and hummingbird metabolism, are three promising examples, respectively, of electrochemical, thermochemical, and biochemical power production strategies that are close to achieving personal power systems' power demands. Fuel cells show great promise as an energy source when relatively low power density is demanded, but they cannot yet deliver high peak powers nor respond quickly to variable loads. Current small-scale engines, while achieving extraordinary power densities, are too inefficient to achieve the energy density needed for long-duration autonomous operation. Metabolic processes of flying insects and hummingbirds are remarkable biological energy converters, but duplicating, accelerating, and harnessing such power for mobility applications is virtually unexplored. These challenges are significant, and they provide a fertile environment for

  18. Study on a non-powered heat transporting system; Mudoryoku netsu hanso system ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Y [Kanto Gakuin University, Yokohama (Japan)

    1997-11-25

    This paper proposes a non-powered heat transportation (HT) system. The system is composed of an evaporator, condenser, receiver, switching chamber (SC) and 3 check valves which are connected with each other by vapor and liquid tubes. Condensed liquid supercooled in the condenser exists in the receiver forming a saturated condition at a concerned temperature, and condensed liquid is lifted up from the condenser to the receiver by pressure difference between the evaporator and receiver. Generally evaporation pressure is higher by pressure difference between liquid levels in the condenser and receiver. The lifted up amount of condensed liquid increases with evaporation pressure, resulting in an increase in heating surface area of the condenser and amount of condensed liquid. A proper evaporator pressure is thus retained by reduction of evaporation pressure. SC is connected with the receiver and evaporator, and switches high- and low-pressure valves by motion of an inner float to transport heat from the evaporator to condenser. Reverse HT is possible as normal latent HT by installing a bypass. Some problems are also described. 2 refs., 8 figs.

  19. ANASEC: a model for studying the operation security of a power transmission system

    Energy Technology Data Exchange (ETDEWEB)

    Batut, J; Dodu, J C [Electricite de France, 92 - Clamart

    1985-01-01

    Presently, planning studies for the EHV system are carried out using probabilistic models which allow for an assessment of the characteristic values linked to the power transmission system. Among these values, the unsupplied energy (UE) measures the performances of the system from the standpoint of service quality, whereas the availability of the system at a given moment is characterized by the unsupplied power (UP). The ANASEC model computes the mathematical expectation of the UP and UE due to transient losses of load for a fixed load point. To achieve this, the model simulates a great number of incidents liable to result in a progressive degradation of the system. Such a degradation results in the cascade tripping of transmission equipment and generation units through the interplay of protection devices and automata. This cascade tripping is due either to load transfers on the lines, or a loss of unit stability. Since 1983, the ANASEC model is used in the decision-making studies for the planning of EHV transmission systems. To the traditional components of the assets of a new transmission equipment (fuel saving and reduction in structural UE), the ANASEC model makes it possible to add its contribution to the improvement of operation security.

  20. Economic and Environmental Study of Wineries Powered by Grid-Connected Photovoltaic Systems in Spain

    Directory of Open Access Journals (Sweden)

    Daniel Gómez-Lorente

    2017-02-01

    Full Text Available This research developed a system that can make factories more independent from the grid. The system enhances efficiency since factory operation is powered by the renewable energy generated during the production process. Winemaking is a key sector that can profit from such a system because wineries can recycle much of the waste from the raw materials employed in wine production. Moreover, the solar energy collected at winemaking facilities can also be used to reduce electricity consumption and thus increase energy efficiency. This study investigated the feasibility of using renewable energy sources, such as solar energy, in wineries in Spain, given the quantity of renewable energy produced in the country. For this purpose, cost-effectiveness, power generation, CO2 emissions and the renewable energy fraction were taken into account. The assumption was that the photovoltaic system was grid-connected. Research results showed a reduction in electrical power costs ranging from 4% to 36%. This reduction was accompanied by an increase in the use of renewable energy of up to 57%. The results obtained are based on self-consumption or net metering policy as well as the production capacity of the winery.

  1. Design study of high-temperature superconducting generators for wind power systems

    Energy Technology Data Exchange (ETDEWEB)

    Maki, N [Technova Inc. 13th Fl. Imperial Hotel Tower, 1-chome, Chiyoda-ku, Tokyo 100-0011 (Japan)], E-mail: naokmaki@technova.co.jp

    2008-02-15

    Design study on high-temperature superconducting machines (HTSM) for wind power systems was carried out using specially developed design program. Outline of the design program was shown and the influence of machine parameters such as pole number, rotor outer diameter and synchronous reactance on the machine performance was clarified. Three kinds of generator structure are considered for wind power systems and the HTSM operated under highly magnetic saturated conditions with conventional rotor and stator has better performance than the other types of HTSM. Furthermore, conceptual structure of 8 MW, 20 pole HTSM adopting salient-pole rotor as in the case of water turbine generators and race-truck shaped HTS field windings like Japanese Maglev was shown.

  2. Design study of high-temperature superconducting generators for wind power systems

    International Nuclear Information System (INIS)

    Maki, N

    2008-01-01

    Design study on high-temperature superconducting machines (HTSM) for wind power systems was carried out using specially developed design program. Outline of the design program was shown and the influence of machine parameters such as pole number, rotor outer diameter and synchronous reactance on the machine performance was clarified. Three kinds of generator structure are considered for wind power systems and the HTSM operated under highly magnetic saturated conditions with conventional rotor and stator has better performance than the other types of HTSM. Furthermore, conceptual structure of 8 MW, 20 pole HTSM adopting salient-pole rotor as in the case of water turbine generators and race-truck shaped HTS field windings like Japanese Maglev was shown

  3. Preliminary study of nuclear power cogeneration system using gas turbine process

    Energy Technology Data Exchange (ETDEWEB)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author).

  4. Preliminary study of nuclear power cogeneration system using gas turbine process

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya.

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author)

  5. Comparison Study of Power System Small Signal Stability Improvement Using SSSC and STATCOM

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Fang, Jiakun

    2013-01-01

    the connected power system, both SSSC and STATCOM are able to participate in the power system inter-area oscillation damping by changing the compensated reactance or the provided reactive power. This paper analyses the influence of SSSC and STATCOM on power system small signal stability. The damping controller...... schemes for SSSC and STATCOM are presented and discussed. The IEEE 39-bus New England system model as the test system is built in DIgSIELNT PowerFactory, in which the damping control strategies for both SSSC and STATCOM are validated by time domain simulations and modal analysis. Furthermore, comparison......A static synchronous series compensator (SSSC) has the ability to emulate a reactance in series with the connected transmission line. A static synchronous compensator (STATCOM) is able to provide the reactive power to an electricity network. When fed with some supplementary signals from...

  6. Case studies on the feasibility of the transient analysis system STAR in German nuclear power plants

    International Nuclear Information System (INIS)

    Buettner, W.E.; Felkel, L.; Zapp, A.

    1984-01-01

    On the basis of distubances which actually have occurred in German nuclear power plants a case-study has been performed to evaluate the feasibility of the computer-based disturbance analysis system STAR. By means of a compact plant simulator the disturbances collected have been remodelled and anlysed, on-line, with the disturbance analysis system STAR. In the last phase of the project experiments have been performed with reactor operators to get their reaction to, and opinion on, computerbased-operator aids. (orig.) [de

  7. A modular Space Station/Base electrical power system - Requirements and design study.

    Science.gov (United States)

    Eliason, J. T.; Adkisson, W. B.

    1972-01-01

    The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.

  8. Numerical Hydraulic Study on Seawater Cooling System of Combined Cycle Power Plant

    Science.gov (United States)

    Kim, J. Y.; Park, S. M.; Kim, J. H.; Kim, S. W.

    2010-06-01

    As the rated flow and pressure increase in pumping facilities, a proper design against surges and severe cavitations in the pipeline system is required. Pressure surge due to start-up, shut-down process and operation failure causes the water hammer in upstream of the closing valve and the cavitational hammer in downstream of the valve. Typical cause of water hammer is the urgent closure of valves by breakdown of power supply and unexpected failure of pumps. The abrupt changes in the flow rate of the liquid results in high pressure surges in upstream of the valves, thus kinetic energy is transformed into potential energy which leads to the sudden increase of the pressure that is called as water hammer. Also, by the inertia, the liquid continues to flow downstream of the valve with initial speed. Accordingly, the pressure decreases and an expanding vapor bubble known as column separation are formed near the valve. In this research, the hydraulic study on the closed cooling water heat exchanger line, which is the one part of the power plant, is introduced. The whole power plant consists of 1,200 MW combined power plant and 220,000 m3/day desalination facility. Cooling water for the plant is supplied by sea water circulating system with a capacity of 29 m3/s. The primary focus is to verify the steady state hydraulic capacity of the system. The secondary is to quantify transient issues and solutions in the system. The circuit was modeled using a commercial software. The stable piping network was designed through the hydraulic studies using the simulation for the various scenarios.

  9. Feasibility Study and System Architecture of Radioisotope Thermoelectric Generation Power Systems for USMC Forward Operating Bases

    Science.gov (United States)

    2013-06-01

    33 d. Initial Pure Mass to Produce 300W Power at EOL ...............33 e. Initial Compound Mass to Produce 300W Power at EOL ....34 f...Estimated Cost to Produce 300W Power at EOL ...................34 2. Estimated Cost and Weight Data...energy at beginning of life (BOL), and after 10 years ( EOL ) was calculated, along with the estimated cost associated with the purchase of each

  10. Limits to power system growth

    International Nuclear Information System (INIS)

    Slater, S.M.; Klein, A.C.; Webb, B.J.; Pauley, K.A.

    1993-01-01

    In the design of space nuclear power systems a variety of conversion techniques may be used, each with its own advantages and disadvantages. A study was performed which analyzed over 120 proposed system designs. The designs were compared to identify the optimum conversion system as a function of power level and find limits to specific mass (kg/kWe) for each power cycle. Furthermore, the component masses were studied to determine which component of the overall design contributes the most to total system mass over a variety of power levels. The results can provide a focus for future research efforts by selecting the best conversion technology for the desired power range, and optimizing the system component which contributes most to the total mass

  11. Aging studies of batteries and transformers in class IE power systems

    International Nuclear Information System (INIS)

    Edson, J.L.; Roberts, E.W.

    1992-01-01

    A Phase I aging study of batteries used in 1E Power Systems of nuclear power plants concluded that significant aging effects for aged batteries are growth of positive plants, loosening of active material in plates that have grown, loss of active material caused by gassing and corrosion, and embrittlement of the lead grids and straps. These effects contribute to decreased electrical capacity and decreased seismic ruggedness which, during a seismic event, can lead to decreased electrical performance or complete failure. Subsequently a Phase II test program was conducted to determine if seismic ruggedness of aged batteries can be inadequate even if the electrical capacity is satisfactory, as determined by tests recommended by IEEE Std 450-1987, open-quote IEEE Recommended Practice for Maintenance, Testing, and Replacement of Large Storage Batteries for Generating Stations and Substations.close quotes In addition, a Phase I aging study of transformers in 1E Power Systems was performed to identify stressors and failure mechanisms, investigate whether transformers are showing the effects of aging as they grow older, and to determine if current surveillance methods are effective in mitigating aging effects. This paper presents the results of these studies

  12. Methods for Probabilistic Fault Diagnosis: An Electrical Power System Case Study

    Science.gov (United States)

    Ricks, Brian W.; Mengshoel, Ole J.

    2009-01-01

    Health management systems that more accurately and quickly diagnose faults that may occur in different technical systems on-board a vehicle will play a key role in the success of future NASA missions. We discuss in this paper the diagnosis of abrupt continuous (or parametric) faults within the context of probabilistic graphical models, more specifically Bayesian networks that are compiled to arithmetic circuits. This paper extends our previous research, within the same probabilistic setting, on diagnosis of abrupt discrete faults. Our approach and diagnostic algorithm ProDiagnose are domain-independent; however we use an electrical power system testbed called ADAPT as a case study. In one set of ADAPT experiments, performed as part of the 2009 Diagnostic Challenge, our system turned out to have the best performance among all competitors. In a second set of experiments, we show how we have recently further significantly improved the performance of the probabilistic model of ADAPT. While these experiments are obtained for an electrical power system testbed, we believe they can easily be transitioned to real-world systems, thus promising to increase the success of future NASA missions.

  13. Reliability study: digital engineered safety feature actuation system of Korean Standard Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sudarno; Kang, H. G.; Jang, S. C.; Eom, H. S.; Ha, J. J.

    2003-04-01

    The usage of digital Instrumentation and Control (I and C) in a nuclear power plant becomes more extensive, including safety related systems. The PSA application of these new designs are very important in order to evaluate their reliability. In particular, Korean Standard Nuclear Power Plants (KSNPPs), typically Ulchin 5 and 6 (UCN 5 and 6) reactor units, adopted the digital safety-critical systems such as Digital Plant Protection System (DPPS) and Digital Engineered Safety Feature Actuation System (DESFAS). In this research, we developed fault tree models for assessing the unavailability of the DESFAS functions. We also performed an analysis of the quantification results. The unavailability results of different DESFAS functions showed that their values are comprised from 5.461E-5 to 3.14E-4. The system unavailability of DESFAS AFAS-1 is estimated as 5.461E-5, which is about 27% less than that of analog system if we consider the difference of human failure probability estimation between both analyses. The results of this study could be utilized in risk-effect analysis of KSNPP. We expect that the safety analysis result will contribute to design feedback

  14. Nuclear power system

    International Nuclear Information System (INIS)

    Yampolsky, J.S.; Cavallaro, L.; Paulovich, K.F.; Schleicher, R.W.

    1989-01-01

    This patent describes an inherently safe modular nuclear power system for producing electrical power at acceptable efficiency levels using working fluids at relatively low temperatures and pressures. The system comprising: a reactor module for heating a first fluid; a heat exchanger module for transferring heat from the first fluid to a second fluid; a first piping system effecting flow of the first fluid in a first fluid circuit successively through the reactor module and the heat exchanger module; a power conversion module comprising a turbogenerator driven by the second fluid, and means for cooling the second fluid upon emergence thereof from the turbogenerator; a second piping system comprising means for effecting flow of the second fluid in a second fluid circuit successively through the heat exchanger module and the power conversion module; and a plurality of pits for receiving the modules

  15. Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system

    Science.gov (United States)

    Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian

    2017-08-01

    The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.

  16. Simulation and study on reactivity disturbs dynamic character of HTR-10 nuclear power system

    International Nuclear Information System (INIS)

    Huang Xiaojin; Feng Yuankun

    2002-01-01

    In order to not only know 10 MW High Temperature Gas Cooled Reactor (HTR-10) nuclear power system's dynamic character more deeply but also to satisfy requirements of control system's design and analysis, the dynamic model of HTR-10 nuclear power system is established on the basis of dynamic model of HTR-10 nuclear system, which supplies turbine and generate electricity system model. Using this model, system's main variables' dynamic processes are simulated when control rod takes step reactivity disturb. The concussive progresses which is caused by reactivity disturb are analyzed. The results indicate that fuel temperature changing more slowly than nuclear power makes reactivity negative feedback not to restrain power changing, and then power concussive progress comes to being

  17. NSTX Electrical Power Systems

    International Nuclear Information System (INIS)

    A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

    1999-01-01

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems

  18. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  19. Study on advanced nuclear power plants expert evaluation system in China

    International Nuclear Information System (INIS)

    Zhang Qi; Yoshikawa, Hidekazu; Shimoda, Hiroshi; Zhou Zhiwei; Zhu Shutang; Ren Junsheng; Yang Mengjia; Gu Junyang

    2005-01-01

    Based on current status and developing trend of nuclear power plant technology, an evaluation software system is developed to assess advanced NPPs systematically according to a set of pre-established evaluation indices. The selection and classification of the indices, the determination of their weighting factors in applying AHP (analytic hierarchy process) method are discussed. The Fuzzy Comprehensive method and the Fuzzy Borda Number method are studied in detail. The original input data required by the evaluation system are deduced from the expert survey sheets Evaluation results with common significance of public attraction are discussed and analyzed according to the opinions of different experts grouped by age, profession and working expertise etc. The evaluation system is computer network based with high flexible and user friendly human-machine interface on which it is easy to manipulate and update the evaluation system, and to display evaluation results as well. (author)

  20. A comparative study of the maximum power point tracking methods for PV systems

    International Nuclear Information System (INIS)

    Liu, Yali; Li, Ming; Ji, Xu; Luo, Xi; Wang, Meidi; Zhang, Ying

    2014-01-01

    Highlights: • An improved maximum power point tracking method for PV system was proposed. • Theoretical derivation procedure of the proposed method was provided. • Simulation models of MPPT trackers were established based on MATLAB/Simulink. • Experiments were conducted to verify the effectiveness of the proposed MPPT method. - Abstract: Maximum power point tracking (MPPT) algorithms play an important role in the optimization of the power and efficiency of a photovoltaic (PV) generation system. According to the contradiction of the classical Perturb and Observe (P and Oa) method between the corresponding speed and the tracking accuracy on steady-state, an improved P and O (P and Ob) method has been put forward in this paper by using the Atken interpolation algorithm. To validate the correctness and performance of the proposed method, simulation and experimental study have been implemented. Simulation models of classical P and Oa method and improved P and Ob method have been established by MATLAB/Simulink to analyze each technique under varying solar irradiation and temperature. The experimental results show that the tracking efficiency of P and Ob method is an average of 93% compared to 72% for P and Oa method, this conclusion basically agree with the simulation study. Finally, we proposed the applicable conditions and scope of these MPPT methods in the practical application

  1. Feasibility Study on The Modulization of Structure and System Facility for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    This final report is a results of Study on applicable to SC(Steel Concrete) structure for NPPS and experimentation of SC wall-Support joint carried out by KEPRI from 2001.7.1 to 2000.3.27. The major objectives is to study on application of SC structure and behavior of SC wall-support joint. This result is applicable to plan a main project for ''Development of Modular Construction System in the Nuclear Power Plant''. (author). 45 refs., 19 figs., 23 tabs.

  2. A study on the linearity characteristics of neutron power measurement system for Hanaro

    International Nuclear Information System (INIS)

    Kang, Tai Ki; Kim, Young Ki; Lee, Byung Chul; Park, Sang Jun

    1999-06-01

    It is briefly described the general principles of neutron detection and the method of neutron measurement in the nuclear reactor which neutron flux varies widely and gamma radiation also exists. Wide-range Fission Chamber System which is excellent in electrical and mechanical performances has been selected for neutron power measurement system for Hanaro. The linearity characteristics of neutron power signals is a critical factor of the reliability in reactor power control. In particular , the linearity of the log power signal, which covers 10 decade form 10 -8 %FP to 200 %FP was a matter of primary concern during commissioning. In case of the linear power signal for reactor control at high power condition, the output signals were additionally analyzed in connection with the reactor thermal power and the delayed neutron signal from the primary pipe as well as the output signal from the compensated ion chamber as a reference signal. (author). 13 refs., 7 tabs., 33 figs

  3. A study on the linearity characteristics of neutron power measurement system for Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tai Ki; Kim, Young Ki; Lee, Byung Chul; Park, Sang Jun

    1999-06-01

    It is briefly described the general principles of neutron detection and the method of neutron measurement in the nuclear reactor which neutron flux varies widely and gamma radiation also exists. Wide-range Fission Chamber System which is excellent in electrical and mechanical performances has been selected for neutron power measurement system for Hanaro. The linearity characteristics of neutron power signals is a critical factor of the reliability in reactor power control. In particular , the linearity of the log power signal, which covers 10 decade form 10 {sup -8} %FP to 200 %FP was a matter of primary concern during commissioning. In case of the linear power signal for reactor control at high power condition, the output signals were additionally analyzed in connection with the reactor thermal power and the delayed neutron signal from the primary pipe as well asthe output signal from the compensated ion chamber as a reference signal. (author). 13 refs., 7 tabs., 33 figs.

  4. Middle Eastern power systems

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Middle Eastern Power systems have evolved independently of each other over many decades. The region covers a wide geographical area of over 4 million square kilometers with an estimated population in 1990 of over 120 million people. This paper discusses the present status and future power system developments in the Middle East with emphasis on the Mashrequ Arab Countries (MAC). MAC consists of Egypt, Iraq, Jordan, Lebanon, Syria, Yemen, and the six Gulf Cooperation Council (GCC) countries, namely, Bahrain, Kuwait, Qatar, Saudi Arabia, Oman, and the United Arab Emirates (UAE). Interconnections within MAC and possible extensions to Turkey, Europe, and Central Africa are discussed. A common characteristic of the MAC power systems is that they are all operated by government or semi-government bodies. The energy resources in the region are varied. Countries such as Iraq, Egypt, and Syria have significant hydro power resources. On the other hand, the GCC countries and Iraq have abundant fossil fuel reserves

  5. Study on heat pipe assisted thermoelectric power generation system from exhaust gas

    Science.gov (United States)

    Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock

    2017-11-01

    Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.

  6. Inertial confinement fusion reaction chamber and power conversion system study. Final report

    International Nuclear Information System (INIS)

    Maya, I.; Schultz, K.R.; Bourque, R.F.

    1985-10-01

    This report summarizes the results of the second year of a two-year study on the design and evaluation of the Cascade concept as a commercial inertial confinement fusion (ICF) reactor. We developed a reactor design based on the Cascade reaction chamber concept that would be competitive in terms of both capital and operating costs, safe and environmentally acceptable in terms of hazard to the public, occupational exposure and radioactive waste production, and highly efficient. The Cascade reaction chamber is a double-cone-shaped rotating drum. The granulated solid blanket materials inside the rotating chamber are held against the walls by centrifugal force. The fusion energy is captured in a blanket of solid carbon, BeO, and LiAlO 2 granules. These granules are circulated to the primary side of a ceramic heat exchanger. Primary-side granule temperatures range from 1285 K at the LiAlO 2 granule heat exchanger outlet to 1600 K at the carbon granule heat exchanger inlet. The secondary side consists of a closed-cycle gas turbine power conversion system with helium working fluid, operating at 1300 K peak outlet temperature and achieving a thermal power conversion efficiency of 55%. The net plant efficiency is 49%. The reference design is a plant producing 1500 MW of D-T fusion power and delivering 815 MW of electrical power for sale to the utility grid. 88 refs., 44 figs., 47 tabs

  7. A Study on Electric Power Smoothing System for Lead-Acid Battery of Stand-Alone Natural Energy Power System Using EDLC

    Science.gov (United States)

    Jia, Yan; Shibata, Ryosuke; Yamamura, Naoki; Ishida, Muneaki

    To resolve energy shortage and global warming problem, renewable natural resource and its power system has been gradually generalizing. However, the power fluctuation suppressing in short period and the balance control of consumption and supply in long period are two of main problems that need to be resolved urgently in natural energy power system. In Stand-alone Natural Energy Power System (SNEPS) with power energy storage devices, power fluctuation in short period is one of the main reasons that recharge cycle times increase and lead-acid battery early failure. Hence, to prolong the service life of lead-acid battery and improve power quality through suppressing the power fluctuation, we proposed a method of electric power smoothing for lead-acid battery of SNEPS using bi-directional Buck/Boost converter and Electric Double Layer Capacitor (EDLC) in this paper. According to the test data of existing SNEPS, a power fluctuation condition is selected and as an example to analyze the validity of the proposed method. The analysis of frequency characteristics indicates the power fluctuation is suppressed a desired range in the target frequency region. The experimental results of confirmed the feasibility of the proposed system and the results well satisfy the requirement of system design.

  8. Solar Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  9. Electric utility system planning studies for OTEC power integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-30

    Florida Power Corporation (FPC) conducted an evaluation of the possible integration of OTEC into the FPC system. Existing system planning procedures, assumptions, and corporate financial criteria for planning new generating capacity were used without modification. A baseline configuration for an OTEC plant was developed for review with standard planning procedures. The OTEC plant characteristics and costs were incorporated in considerable detail. These basic inputs were examined using the FPC system planning methods. It was found that with the initial set of conditions, OTEC would not be economically viable. Using the same system planning procedures, a number of adjustments were made to the key study assumptions. It was found that two considerations dominate the analysis; the assumed rate of fuel cost escalation, and the projected capital cost of the OTEC plant. The analysis produced a parametric curve: on one hand, if fuel costs were to escalate at a rate greater than assumed (12% vs the assumed 5% for coal), and if no change were made to the OTEC input assumptions, the basic economic competitive criteria would be equivalent to the principal alternative, coal fueled plants. Conversely, if the projected cost of the OTEC plant were to be reduced from the assumed $2256/kW to $1450/kW, the economic competitiveness criterion would be satisfied. After corporate financial analysis, it was found that even if the cost competitive criterion were to be reached, the plan including OTEC could not be financed by Florida Power Corporation. Since, under the existing set of conditions for financing new plant capital requirements, FPC could not construct an OTEC plant, some other means of ownership would be necessary to integrate OTEC into the FPC system. An alternative such as a third party owning the plant and selling power to FPC, might prove attractive. (WHK)

  10. POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  11. Studies on the power systems stability; Estudios de estabilidad en sistemas de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Inda Ruiz, Adrian; Calderon Guizar, Jorge Guillermo; Friaga Vargas, Jose Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    One of the everyday problems that the electric power systems (EPS), is related to the dynamic response of these in face of the occurrence of disturbs. The computer tool needed to perform studies of this kind in the current EPS, requires the efficient conjunction of advanced modeling, simulation and programming techniques to make its use practical and useful. In this article are presented the advances achieved by the Power Nets Analysis Department in the development of a digital package for the stability analysis of the electric power systems [Espanol] Uno de los problemas cotidianos que el ingeniero de potencia debe enfrentar tanto en la fase de planeacion como en la de operacion de los sistemas electricos de potencia (SEP) es el relacionado con la respuesta dinamica de estos ante la ocurrencia de disturbios. La herramienta computacional necesaria para realizar estudios de esta naturaleza en los actuales SEP requiere de la conjugacion eficiente de tecnicas avanzadas de modelacion, simulacion y programacion para hacer su empleo practico y util. En este articulo se presentan los avances logrados por el Departamento de Analisis de Redes en el desarrollo de un paquete digital para el analisis de estabilidad en los sistemas electricos de potencia.

  12. Studies on the power systems stability; Estudios de estabilidad en sistemas de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Inda Ruiz, Adrian; Calderon Guizar, Jorge Guillermo; Friaga Vargas, Jose Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    One of the everyday problems that the electric power systems (EPS), is related to the dynamic response of these in face of the occurrence of disturbs. The computer tool needed to perform studies of this kind in the current EPS, requires the efficient conjunction of advanced modeling, simulation and programming techniques to make its use practical and useful. In this article are presented the advances achieved by the Power Nets Analysis Department in the development of a digital package for the stability analysis of the electric power systems [Espanol] Uno de los problemas cotidianos que el ingeniero de potencia debe enfrentar tanto en la fase de planeacion como en la de operacion de los sistemas electricos de potencia (SEP) es el relacionado con la respuesta dinamica de estos ante la ocurrencia de disturbios. La herramienta computacional necesaria para realizar estudios de esta naturaleza en los actuales SEP requiere de la conjugacion eficiente de tecnicas avanzadas de modelacion, simulacion y programacion para hacer su empleo practico y util. En este articulo se presentan los avances logrados por el Departamento de Analisis de Redes en el desarrollo de un paquete digital para el analisis de estabilidad en los sistemas electricos de potencia.

  13. Feasibility Study of Seawater Electrolysis for Photovoltaic/Fuel Cell Hybrid Power System for the Coastal Areas in Thailand

    Science.gov (United States)

    Srisiriwat, A.; Pirom, W.

    2017-10-01

    Solar photovoltaic cell and fuel cell are the practicable options to realize as a possible hybrid power system because the power of the sun cannot be utilized at night or cloudy days but hydrogen has been found as an ideal energy carrier for being transportable, storable, and converting energy though fuel cell. Hydrogen storage is chosen for its ability to obtain a clean energy option. Electrolysis, which is the simplest process to produce hydrogen, can be powered by the dc voltage from the photovoltaic cell instead of using the battery as power supply. This paper concentrates on a feasibility study of seawater electrolysis using photovoltaic power integrated fuel cell system for the coastal cities in Thailand. The proposed system composed of photovoltaic arrays, seawater electrolyzer and fuel cell is presented when the 10-kW of fuel cell electrical power is considered. The feasibility study of hydrogen production and energy analysis of this proposed system is also evaluated.

  14. A Study of Energy Management Systems and its Failure Modes in Smart Grid Power Distribution

    Science.gov (United States)

    Musani, Aatif

    The subject of this thesis is distribution level load management using a pricing signal in a smart grid infrastructure. The project relates to energy management in a spe-cialized distribution system known as the Future Renewable Electric Energy Delivery and Management (FREEDM) system. Energy management through demand response is one of the key applications of smart grid. Demand response today is envisioned as a method in which the price could be communicated to the consumers and they may shift their loads from high price periods to the low price periods. The development and deployment of the FREEDM system necessitates controls of energy and power at the point of end use. In this thesis, the main objective is to develop the control model of the Energy Management System (EMS). The energy and power management in the FREEDM system is digitally controlled therefore all signals containing system states are discrete. The EMS is modeled as a discrete closed loop transfer function in the z-domain. A breakdown of power and energy control devices such as EMS components may result in energy con-sumption error. This leads to one of the main focuses of the thesis which is to identify and study component failures of the designed control system. Moreover, H-infinity ro-bust control method is applied to ensure effectiveness of the control architecture. A focus of the study is cyber security attack, specifically bad data detection in price. Test cases are used to illustrate the performance of the EMS control design, the effect of failure modes and the application of robust control technique. The EMS was represented by a linear z-domain model. The transfer function be-tween the pricing signal and the demand response was designed and used as a test bed. EMS potential failure modes were identified and studied. Three bad data detection meth-odologies were implemented and a voting policy was used to declare bad data. The run-ning mean and standard deviation analysis method proves to be

  15. A Comparative case study of remote area power supply systems using photovoltaic-battery vs thermoelectric-battery configuration

    NARCIS (Netherlands)

    Tan, Lippong; Date, Abhijit; Zhang, Bingjie; Singh, Baljit; Ganguly, Sayantan

    The paper presents a comparative study of two types of remote area power supply (RAPS) systems, which are the existing photovoltaic-based (PV) configuration and the proposed thermoelectric-based (TE) configuration. Both RAPS systems are solar-based power generators and sized according to Melbourne

  16. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  17. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    Science.gov (United States)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  18. Basic Concept and Theoretical Study of Condition-based Maintenance for Power Transmission System

    Institute of Scientific and Technical Information of China (English)

    LIMing; HAN Xueshan; YANG Ming; GUO Zhihong

    2011-01-01

    The appropriate maintenance time for the single equipment can be found easily and efficiently under the background of condition-based maintenance. However, from the perspective of the whole power system, discrepancy between equipment individual and the whole power system would appear. Once this discrepancy can not be coordinated, it will certainly cause contradiction and conflict between individual equipment and the whole system, and lose the integral efficiency. To solve this contradiction and conflicts is of significant meaning.

  19. A comparative study of voltage stability indices in a power system

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.K. [I.I.T., Kharagpur (India). Dept. of Electrical Engineering; Hazarika, D. [Assam Engineering College (India)

    2000-11-01

    The paper compares the effectiveness of voltage stability indices in providing information about the proximity of voltage instability of a power system. Three simple voltage stability indices are proposed and their effectiveness is compared with some of the recently proposed indices. The comparison is carried out over a wide range of system operating conditions by changing the load power factor and feeder X/R ratios. Test results for the IEEE 57 bus and IEEE 118 bus system are presented. (author)

  20. Multiwavelength Study of Powerful New Jet Activity in the Symbiotic Binary System R Aqr

    Science.gov (United States)

    Karovska, Margarita

    2016-09-01

    We propose to carry out coordinated high-spatial resolution Chandra ACIS-S and HST/WFC3 observations of R Aqr, a very active symbiotic interacting binary system. Our main goal is to study the physical characteristics of multi-scale components of the powerful jet; from near the central binary (within a few AU) to the jet-circumbinary material interaction region (2500 AU) and beyond , and especially of the recently discovered inner jet, to gain insight on early jet formation and propagation, such as jet kinematics and precession.

  1. Study on A Control Method of PAPF for Resonance Damping and Harmonics Compensation in Power System

    DEFF Research Database (Denmark)

    Zhou, Fang; Wu, Longhui; Chen, Zhe

    2009-01-01

    In power system, capacitors are widely used to compensate reactive power, which generally cause resonance problems in harmonic distorted network. In this paper, A method of using a parallel active power filter (PAPF) to damp the resonances is proposed. The proposed method is compound with traditi......In power system, capacitors are widely used to compensate reactive power, which generally cause resonance problems in harmonic distorted network. In this paper, A method of using a parallel active power filter (PAPF) to damp the resonances is proposed. The proposed method is compound...... with traditional method, it shows that whether the capacitor current is included in the detecting current of PAPF or not. Also the PAPF with proposed method has strong ability in harmonic compensation. Finally, the experiment results are presented to verify the analysis....

  2. Modelling and Simulation of the SVC for Power System Flow Studies: Electrical Network in voltage drop

    Directory of Open Access Journals (Sweden)

    Narimen Aouzellag LAHAÇANI

    2008-12-01

    Full Text Available The goal of any Flexible AC Transmission Systems (FACTS devices study is to measure their impact on the state of the electrical networks into which they are introduced. Their principal function is to improve the static and dynamic properties of the electrical networks and that by increasing the margins of static and dynamic stability and to allow the power transit to the thermal limits of the lines.To study this impact, it is necessary to establish the state of the network (bus voltages and angles, powers injected and forwarded in the lines before and after the introduction of FACTS devices. This brings to calculate the powers transit by using an iterative method such as Newton-Raphson. Undertaking a calculation without the introduction of FACTS devices followed by a calculation with the modifications induced by the integration of FACTS devices into the network, makes it possible to compare the results obtained in both cases and thus assess the interest of the use of devices FACTS.

  3. Wind power in modern power systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    In recent years, wind power is experiencing a rapid growth, and large-scale wind turbines/wind farms have been developed and connected to power systems. However, the traditional power system generation units are centralized located synchronous generators with different characteristics compared...... with wind turbines. This paper presents an overview of the issues about integrating large-scale wind power plants into modern power systems. Firstly, grid codes are introduced. Then, the main technical problems and challenges are presented. Finally, some possible technical solutions are discussed....

  4. Analytic study for physical protection system (PPS) in nuclear power plants (NPPs)

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho, E-mail: thw@snu.ac.kr

    2013-12-15

    Highlights: • The physical protection system (PPS) is investigated. • General NPPs are modeled in the study. • Possible terror cases, likelihood, and consequence are studied. • PPS is constructed by analytical methods. - Abstract: The nuclear safeguard is analyzed in the aspect of the physical protection system (PPS) in nuclear power plants (NPPs). The PPS is reviewed and its related terror scenarios are investigated. The PPS is developed using analytical methods. In the terror scenarios, there are 8 possible cases for the terror attacks to the NPPs. Then, the likelihood of terror is classified by the general terror incidents. The consequence of terror is classified by Design Basis Threat (DBT) of the International Atomic Energy Agency (IAEA) scale. The physical protection method is suggested by defense-in-depth constraints and severe accident countermeasures. Finally, the advanced PPS is constructed, which could be used for the preparation for the possible terror attacks in the NPPs.

  5. Analytic study for physical protection system (PPS) in nuclear power plants (NPPs)

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2013-01-01

    Highlights: • The physical protection system (PPS) is investigated. • General NPPs are modeled in the study. • Possible terror cases, likelihood, and consequence are studied. • PPS is constructed by analytical methods. - Abstract: The nuclear safeguard is analyzed in the aspect of the physical protection system (PPS) in nuclear power plants (NPPs). The PPS is reviewed and its related terror scenarios are investigated. The PPS is developed using analytical methods. In the terror scenarios, there are 8 possible cases for the terror attacks to the NPPs. Then, the likelihood of terror is classified by the general terror incidents. The consequence of terror is classified by Design Basis Threat (DBT) of the International Atomic Energy Agency (IAEA) scale. The physical protection method is suggested by defense-in-depth constraints and severe accident countermeasures. Finally, the advanced PPS is constructed, which could be used for the preparation for the possible terror attacks in the NPPs

  6. Pure tension superconducting toroidal-field coil system design studies for the Argonne Experimental Power Reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Purcell, J.R.; Demichele, D.W.; Turner, L.R.

    1975-11-01

    As part of the Argonne Tokamak Experimental Power Reactor (TEPR) design studies, a toroidal field (TF) coil system has been designed. NbTi was chosen as the most suitable superconductor and 8T was regarded as a practical peak field level in this study. The 16-coil design was chosen as a reasonable compromise between 2 percent field ripple and 3 m access gap. To minimize the coil structure and the bending moments on the conductor, a pure tension coil shape is necessary. A correct approach for determining the pure tension coil profile in a bumpy TF coil system is given. Verification of the pure tension coil by a three-dimensional stress analysis is presented. For coil quench protection, a series-connected scheme is proposed

  7. Demand and generation cost uncertainty modelling in power system optimization studies

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Bruno Andre; Saraiva, Joao Tome [INESC Porto and Departamento de Engenharia Electrotecnica e Computadores, Faculdade de Engenharia da Universidade do Porto, FEUP, Campus da FEUP Rua Roberto Frias 378, 4200 465 Porto (Portugal)

    2009-06-15

    This paper describes the formulations and the solution algorithms developed to include uncertainties in the generation cost function and in the demand on DC OPF studies. The uncertainties are modelled by trapezoidal fuzzy numbers and the solution algorithms are based on multiparametric linear programming techniques. These models are a development of an initial formulation detailed in several publications co-authored by the second author of this paper. Now, we developed a more complete model and a more accurate solution algorithm in the sense that it is now possible to capture the widest possible range of values of the output variables reflecting both demand and generation cost uncertainties. On the other hand, when modelling simultaneously demand and generation cost uncertainties, we are representing in a more realistic way the volatility that is currently inherent to power systems. Finally, the paper includes a case study to illustrate the application of these models based on the IEEE 24 bus test system. (author)

  8. Space-based solar power conversion and delivery systems study. Volume 2: Engineering analysis of orbital systems

    Science.gov (United States)

    1976-01-01

    Program plans, schedules, and costs are determined for a synchronous orbit-based power generation and relay system. Requirements for the satellite solar power station (SSPS) and the power relay satellite (PRS) are explored. Engineering analysis of large solar arrays, flight mechanics and control, transportation, assembly and maintenance, and microwave transmission are included.

  9. Thermodynamic analysis and theoretical study of a continuous operation solar-powered adsorption refrigeration system

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.

    2013-01-01

    Due to the intermittent nature of the solar radiation, the day-long continuous production of cold is a challenge for solar-driven adsorption cooling systems. In the present study, a developed solar-powered adsorption cooling system is introduced. The proposed system is able to produce cold continuously along the 24-h of the day. The theoretical thermodynamic operating cycle of the system is based on adsorption at constant temperature. Both the cooling system operating procedure as well as the theoretical thermodynamic cycle are described and explained. Moreover, a steady state differential thermodynamic analysis is performed for all components and processes of the introduced system. The analysis is based on the energy conservation principle and the equilibrium dynamics of the adsorption and desorption processes. The Dubinin–Astakhov adsorption equilibrium equation is used in this analysis. Furthermore, the thermodynamic properties of the refrigerant are calculated from its equation of state. The case studied represents a water chiller which uses activated carbon–methanol as the working pair. The chiller is found to produce a daily mass of 2.63 kg cold water at 0 °C from water at 25 °C per kg of adsorbent. Moreover, the proposed system attains a cooling coefficient of performance of 0.66. - Highlights: • A new continuous operation solar-driven adsorption refrigeration system is introduced. • The theoretical thermodynamic cycle is presented and explained. • A complete thermodynamic analysis is performed for all components and processes of the system. • Activated carbon–methanol is used as the working pair in the case study

  10. A study on optimal SFCL specification to enhance the transfer capability on Korean power system

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Minhan, E-mail: radiance0@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Lee, Hansang [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic university of Daegu, Gyeongbuk 712-702 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2014-09-15

    Highlights: • The fault current problem is a severe issue in the Korean power system in the future. • The fault current contribution method has been used with the real Korean power system planning data. • The effectiveness of the SFCL application is verified using the proposed algorithm. - Abstract: The Korea Electric Power Corporation (KEPCO) power system has the characteristics of the load being concentrated in the Seoul metropolitan region and direct power transfer from generations located at distant points in the system thereby resulting in high levels of fault current in the metropolitan region during fault conditions. This fault current problem in the metropolitan region has been a critical issue during the past few years where the increase in the load elevates the fault current levels thereby requiring the replacement of numerous circuit breakers. In order to reduce the fault current levels in the system, the installation of superconductivity fault current limiter (SFCL) has been considered as a solution to reduce the fault current levels in the system. In this paper, an optimal SFCL specification is proposed, by using the fault current contribution method, for siting the optimal location of the SFCL to minimize the current injection into the fault point. The effectiveness of the SFCL application is being verified by simulations based on the KEPCO power system planning data where several installation points are examined for effective reduction of the fault current issue in the system.

  11. Power system protection

    International Nuclear Information System (INIS)

    Venkata, S.S.; Damborg, M.J.; Jampala, A.K.

    1991-01-01

    Power systems of the 21st century will be more modern, and complex, utilizing the latest available technologies. At the same time, generating plants will have to operate with minimal spinning margins and energy transportation has to take place at critical levels due to environmental and economical constraints. These factors dictate that the power systems be protected with optimum sensitivity, selectivity and time of operation to assure maximum reliability, and security at minimal cost. With an increasing role played by digital computers in every aspect of protection, it is important to take a critical and fresh look at the art and science of relaying and protection. The main objective of this paper is to review the past, present and future of power system protection from a software point of view

  12. PowerFactory applications for power system analysis

    CERN Document Server

    Gonzalez-Longatt, Francisco

    2014-01-01

    This book presents a comprehensive set of guidelines and applications of DIgSILENT PowerFactory, an advanced power system simulation software package, for different types of power systems studies. Written by specialists in the field, it combines expertise and years of experience in the use of DIgSILENT PowerFactory with a deep understanding of power systems analysis. These complementary approaches therefore provide a fresh perspective on how to model, simulate and analyse power systems. It presents methodological approaches for modelling of system components, including both classical and non-

  13. Power System Overview for the Small RPS Centaur Flyby and the Mars Polar Hard Lander NASA COMPASS Studies

    Science.gov (United States)

    Cataldo, Robert L.

    2014-01-01

    The NASA Glenn Research Center (GRC) Radioisotope Power System Program Office (RPSPO) sponsored two studies lead by their mission analysis team. The studies were performed by NASA GRCs Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team. Typically a complete toplevel design reference mission (DRM) is performed assessing conceptual spacecraft design, launch mass, trajectory, science strategy and sub-system design such as, power, propulsion, structure and thermal.

  14. Comparative Study of Maximum Power Point Tracking Techniques for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Fernando Lessa Tofoli

    2015-01-01

    Full Text Available The generation of electricity from photovoltaic (PV arrays has been increasingly considered as a prominent alternative to fossil fuels. However, the conversion efficiency is typically low and the initial cost is still appreciable. A required feature of a PV system is the ability to track the maximum power point (MPP of the PV array. Besides, MPP tracking (MPPT is desirable in both grid-connected and stand-alone photovoltaic systems because the solar irradiance and temperature change throughout the day, as well as along seasons and geographical conditions, also leading to the modification of the I×V (current versus voltage and P×V (power versus voltage curves of the PV module. MPPT is also justified by the relatively high cost of the energy generated by PV systems if compared with other sources. Since there are various MPPT approaches available in the literature, this work presents a comparative study among four popular techniques, which are the fixed duty cycle method, constant voltage (CV, perturb and observe (P&O, and incremental conductance (IC. It considers different operational climatic conditions (i.e., irradiance and temperature, since the MPP is nonlinear with the environment status. PSIM software is used to validate the assumptions, while relevant results are discussed in detail.

  15. Comparative study of alternative ORC-based combined power systems to exploit high temperature waste heat

    International Nuclear Information System (INIS)

    Zhang, Chengyu; Shu, Gequn; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

    2015-01-01

    Highlights: • Three ORC-based combined systems for ICE exhaust waste heat recovery are studied. • A parametric investigation is conducted under several typical engine conditions. • Performance is evaluated considering six thermodynamic, techno-economic indexes. • DORC distinguishes among other solutions for its highest energy recovery capacity. • TEG–ORC system becomes attractive when exhaust temperature is relatively low. - Abstract: In this paper, various combined power systems which regard organic Rankine cycle (ORC) as bottoming cycle to recover engine’s high temperature exhaust heat are proposed. The topping recovery cycle includes steam Rankine cycle (RC), Brayton cycle (BC) and thermoelectric generator (TEG). Comprehensive evaluations are conducted under five typical engine conditions, ranging from high load to low load, and system performance is assessed in terms of many thermodynamic indexes, such as net output power, thermal efficiency, recovery efficiency and exergy efficiency. Besides that, the irreversibility of each component is also discussed in detail. R123, R245fa and R600a for ORC system are considered to analyze the influence of working fluids. Considering the system techno-economy, the turbine size parameter (SP) and heat transfer capacity (UA) are chosen as key indicators. The results show that compared with the other two investigated approaches, dual-loop ORC (DORC) possesses the highest energy exploitation capacity under the whole operating region, with a 5.57% increase of fuel economy under the rated condition, but its values of SP and UA are large as well. TEG–ORC becomes appealing while under the relatively low load

  16. power quality study of the electrical system of the second research reactor of egypt

    International Nuclear Information System (INIS)

    Fathi, H.M.E.

    2007-01-01

    identifying problems in an electrical network which may results in an extensive damage occur is advisable for any power system. monitoring of power quality is necessary for maintaining accurate operation of sensitive equipment, it also ensures that unnecessary for maintaining accurate operation of sensitive equipment, it also ensures that unnecessary energy losses in a power system are kept at a minimum which lead to more profits. with advanced in technology growing of industrial/commercial facilities in many region. power quality problems have been a major concern among engineers; particularly in an industrial environment, where there are many large-scale type of equipment.thus, it would be useful to monitor and analyze the power quality problems.determination of power quality requires the identification of any anomalous behavior on a power system, which adversely affects the normal operation of electrical or electronic equipment. the choice of monitoring equipment in a survey is also important to ascertain a solution to these power quality problems. a power quality survey involves gathering data resources; analyzing the data (with reference to power quality standard); then , if problems exist, recommendation of mitigation techniques. the main objective of the present work is to identify power quality problems in second research reactor of egypt (ETRR-2). electrical power is supplied to the installation via tow incoming feeders from tow different substations (incoming feeder from new Abo-Zabal substation and incoming feeder from old Abo-Zabal substation ) to keep good reliability , each feeder is designed to carry the full load of ETRR-2. the monitoring investigations were performed at the second research reactor of egypt for both feeders at different operation conditions

  17. Power Aware Distributed Systems

    National Research Council Canada - National Science Library

    Schott, Brian

    2004-01-01

    The goal of PADS was to study power aware management techniques for wireless unattended ground sensor applications to extend their operational lifetime and overall capabilities in this battery-constrained environment...

  18. A study on advanced man-machine interface system for autonomous nuclear power plants

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Numano, Masayoshi; Fukuto, Junji; Sugasawa, Shinobu; Miyazaki, Keiko; Someya, Minoru; Haraki, Nobuo

    1994-01-01

    A man-machine interface(MMI) system of an autonomous nuclear power plant has an advanced function compared with that of the present nuclear power plants. The MMI has a function model of a plant state, and updates and revises this function model by itself. This paper describes the concept of autonomous nuclear power plants, a plant simulator of an autonomous power plant, a contracted function model of a plant state, three-dimensional color graphic display of a plant state, and an event-tree like expression for plant states. (author)

  19. A Study on the Application for Enhancing the Transmission Capability of the KEPCO Power System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Han; Kwon, Tea Won; Whang, Jong Young; Lee, Gun Joon; Kim, Tae Hoon; Chang, Byung Hoon; Min, Wan Ki [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Park, Young Moon; Park, Jong Gun [Seoul National University, Seoul (Korea, Republic of); Kim, Gun Joong [Chungnam National University, Taejon (Korea, Republic of); Oh, Tae Kwu; Choi, Kwu Hyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    Investigation of stability for power system in 2000 year and 2006 year by using the analysis of real power system. Comparative investigation of the conventional transmission line upgrading methods such as HVDC, HOP, new conductor scheme. Investigation of FACTS, the recent transmission line upgrading method, with respect to the aspect of technique and cost and effect analysis when this method is applied to real power system. Development of the evaluation method of transmission type that should be considered when above method is applied to real power system with respect to aspect of technique and cost. Development of a long-range plan for the transmission capacity upgrading and the evaluation method of reliability. (author).

  20. Feasibility Study of Cargo Airship Transportation Systems Powered by New Green Energy Technologies

    Science.gov (United States)

    Skuza, Jonathan R.; Park, Yeonjoon; Kim, Hyun Jung; Seaman, Shane T.; King, Glen C.; Choi, Sang H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Kunik

    2014-01-01

    The development of transportation systems that use new and sustainable energy technologies is of utmost importance due to the possible future shortfalls that current transportation modes will encounter because of increased volume and costs. The introduction and further research and development of new transportation and energy systems by materials researchers at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) and the Department of Transportation are discussed in this Technical Memorandum. In this preliminary study, airship concepts were assessed for cargo transportation using various green energy technologies capable of 24-hour operation (i.e., night and day). Two prototype airships were successfully constructed and tested at LaRC to demonstrate their feasibility: one with commercially available solar cells for operation during the daytime and one with microwave rectennas (i.e., rectifying antennas) developed in-house for night-time operation. The test results indicate the feasibility of a cargo transportation airship powered by new green energy sources and wireless power technology. Future applications will exploit new green energy sources that use materials and devices recently developed or are in the process of being developed at LaRC. These include quantum well SiGe solar cells; low, mid-, and high temperature thermoelectric modules; and wireless microwave and optical rectenna devices. This study examines the need and development of new energy sources for transportation, including the current status of research, materials, and potential applications.

  1. Study of arcview GIS application in the nuclear power plant emergency response decision support system

    International Nuclear Information System (INIS)

    Li Peng; Chen Lin; Dong Binjiang

    2003-01-01

    It is very significant to apply the technique of GIS to the development of the Nuclear Power Plant Emergency Response Decision Support System. On the basis of the software system ArcView. This paper investigate the framework, the function and the development methods of the system. (authors)

  2. A Study on the computerization of power system analysis of local control center

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae Won; Hwang, Jong Young; Jeon, Young Soo; Park, Yong Bae [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Kun Jung; Kim, Yong Bae [Electrical Engineering and Science Research Institute (Korea, Republic of)

    1995-12-31

    Introducing PSS/E software PC version of PTI, after investigating several programs. For convenient use, translated application manual and operational manual in korean language. Unifying of bus numbering for managing and sharing the data which is using in PSS/E program. Preparing load flow theory quick reference manual and training users of PSS/E to promotability of power system analysis and power system planning (author). 12 refs., 43 figs.

  3. A Study on the computerization of power system analysis of local control center

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae Won; Hwang, Jong Young; Jeon, Young Soo; Park, Yong Bae [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Kun Jung; Kim, Yong Bae [Electrical Engineering and Science Research Institute (Korea, Republic of)

    1996-12-31

    Introducing PSS/E software PC version of PTI, after investigating several programs. For convenient use, translated application manual and operational manual in korean language. Unifying of bus numbering for managing and sharing the data which is using in PSS/E program. Preparing load flow theory quick reference manual and training users of PSS/E to promotability of power system analysis and power system planning (author). 12 refs., 43 figs.

  4. Design study of an AC power supply system in JT-60SA

    International Nuclear Information System (INIS)

    Shimada, Katsuhiro; Baulaigue, Olivier; Cara, Philippe; Coletti, Alberto; Coletti, Roberto; Matsukawa, Makoto; Terakado, Tsunehisa; Yamauchi, Kunihito

    2011-01-01

    In the initial research phase of JT-60SA, which is the International Thermonuclear Experimental Reactor (ITER) satellite Tokamak with superconducting toroidal and poloidal magnetic field coils, the plasma heating operation of 30 MW-60 s or 20 MW-100 s is planned for 5.5 MA single null divertor plasmas. To achieve this operation, AC power source of the medium voltage of 18 kV and ∼7 GJ has to be provided in total to the poloidal field coil power supplies and additional heating devices such as neutral beam injection (NBI) and electron cyclotron radio frequency (ECRF). In this paper, the proposed AC power supply system in JT-60SA was estimated from the view point of available power, and harmonic currents based on the standard plasma operation scenario during the initial research phase. This AC power supply system consists of the reused JT-60 power supply facilities including motor generators with flywheel, AC breakers, harmonic filters, etc., to make it cost effective. In addition, the conceptual design of the upgraded AC power supply system for the ultimate heating power of 41 MW-100 s in the extended research phase is also described.

  5. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    This Guide applies to nuclear power plants for which the total power supply comprises normal power supply (which is electric) and emergency power supply (which may be electric or a combination of electric and non-electric). In its present form the Guide provides general guidance for all types of emergency power systems (EPS) - electric and non-electric, and specific guidance (see Appendix A) on the design principles and the features of the emergency electric power system (EEPS). Future editions will include a second appendix giving specific guidance on non-electric power systems. Section 3 of this Safety Guide covers information on considerations that should be taken into account relative to the electric grid, the transmission lines, the on-site electrical supply system, and other alternative power sources, in order to provide high overall reliability of the power supply to the EPS. Since the nuclear power plant operator does not usually control off-site facilities, the discussion of methods of improving off-site reliability does not include requirements for facilities not under the operator's control. Sections 4 to 11 of this Guide provide information, recommendations and requirements that would apply to any emergency power system, be it electric or non-electric

  6. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation (Study on the development of wind power generation systems for small-scale power grids); 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (shokibo keito ni okeru furyoku hatsuden system ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey includes the characteristics of small-scale power grids, feasibility studies on introduction of wind turbines in these grids, and statuses of application of wind turbines to isolated islands or the like in the advanced countries, in order to promote introduction of wind power generation systems in isolated islands or the like. It is concluded that small-capacity wind power generation systems can be possibly introduced in the intermediate- to large-scale grids in isolated islands, 1,500kW or larger in capacity, in the Tokyo, Kyushu and Okinawa Electric Power Companies' areas. A scheduled steamer ship for isolated islands can carry up to 10 ton track, and introduction of a small-scale wind turbine is more advantageous viewed from the transportation cost. Some foreign countries have the sites which have achieved a high percentage of grid connection of wind power units by stabilizing wind conditions and connecting them to the main high-voltage grids in different manners from those adopted in Japan. For developing wind turbine bodies, most of the foreign countries surveyed are concentrating their efforts on development and manufacture of large-size units, paying little attention on development of small-size wind turbines for isolated islands. For the future prospects, the promising concepts include adoption of wind turbines small in capacity and easy to transport and assemble, and hybrid systems combined with power storage units. (NEDO)

  7. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation (Study on the development of wind power generation systems for small-scale power grids); 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (shokibo keito ni okeru furyoku hatsuden system ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey includes the characteristics of small-scale power grids, feasibility studies on introduction of wind turbines in these grids, and statuses of application of wind turbines to isolated islands or the like in the advanced countries, in order to promote introduction of wind power generation systems in isolated islands or the like. It is concluded that small-capacity wind power generation systems can be possibly introduced in the intermediate- to large-scale grids in isolated islands, 1,500kW or larger in capacity, in the Tokyo, Kyushu and Okinawa Electric Power Companies' areas. A scheduled steamer ship for isolated islands can carry up to 10 ton track, and introduction of a small-scale wind turbine is more advantageous viewed from the transportation cost. Some foreign countries have the sites which have achieved a high percentage of grid connection of wind power units by stabilizing wind conditions and connecting them to the main high-voltage grids in different manners from those adopted in Japan. For developing wind turbine bodies, most of the foreign countries surveyed are concentrating their efforts on development and manufacture of large-size units, paying little attention on development of small-size wind turbines for isolated islands. For the future prospects, the promising concepts include adoption of wind turbines small in capacity and easy to transport and assemble, and hybrid systems combined with power storage units. (NEDO)

  8. Measurement-based harmonic current modeling of mobile storage for power quality study in the distribution system

    Directory of Open Access Journals (Sweden)

    Wenge Christoph

    2017-12-01

    Full Text Available Electric vehicles (EVs can be utilized as mobile storages in a power system. The use of battery chargers can cause current harmonics in the supplied AC system. In order to analyze the impact of different EVs with regardto their number and their emission of current harmonics, a generic harmonic current model of EV types was built and implemented in the power system simulation tool PSS®NETOMAC. Based on the measurement data for different types of EVs three standardized harmonic EV models were developed and parametrized. Further, the identified harmonic models are used by the computation of load flow in a modeled, German power distribution system. As a benchmark, a case scenario was studied regarding a high market penetration of EVs in the year 2030 for Germany. The impact of the EV charging on the power distribution system was analyzed and evaluated with valid power quality standards.

  9. Experimental study on a resorption system for power and refrigeration cogeneration

    International Nuclear Information System (INIS)

    Jiang, L.; Wang, L.W.; Liu, C.Z.; Wang, R.Z.

    2016-01-01

    Energy conversion technologies, especially for power generation and refrigeration technologies driven by the low temperature heat, are gathering the momentum recently. This paper presents a novel resorption system for electricity and refrigeration cogeneraion. Compared with adsorption refrigeration system, resorption refrigeration is characterized as safety and simple structure since there is no ammonia liquid in the system. The cogeneration system is mainly composed of three HTS (high temperature salt) unit beds; three LTS (low temperature salts) unit beds, one expander, three ammonia valves, two oil valves, four water valves and connection pipes. Chemical working pair of MnCl 2 –CaCl 2 –NH 3 is selected. Since scroll expander is suitable for small type power generation system, it is chosen for expansion process. 4.8 kg MnCl 2 and 3.9 kg CaCl 2 impregnated in expanded natural graphite treated with sulfuric acid (ENG-TSA) are filled in the cogeneration system. Experimental results show that maximum cooling power 2.98 kW is able to be obtained while maximum shaft power is about 253 W with 82.3 W average value. The cogeneration system can be utilized for the heat source temperature lower than 170 °C. Total energy efficiency increases from 0.293 to 0.417 then decreases to 0.407 while exergy efficiency increases from 0.12 to 0.16. - Highlights: • A resorption system for power and refrigeration cogeneration is established and investigated. • ENG-TSA as the additive improves the heat and mass performance of composite adsorbent. • The highest shaft power and refrigeration power are 253 W and 2.98 kW, respectively. • Total energy efficiency of the system increases from 0.293 to 0.417 then decreases to 0.407.

  10. Calculation and Simulation Study on Transient Stability of Power System Based on Matlab/Simulink

    Directory of Open Access Journals (Sweden)

    Shi Xiu Feng

    2016-01-01

    Full Text Available The stability of the power system is destroyed, will cause a large number of users power outage, even cause the collapse of the whole system, extremely serious consequences. Based on the analysis in single machine infinite system as an example, when at the f point two phase ground fault occurs, the fault lines on either side of the circuit breaker tripping resection at the same time,respectively by two kinds of calculation and simulation methods of system transient stability analysis, the conclusion are consistent. and the simulation analysis is superior to calculation analysis.

  11. A Human Factors Study on an Information Visualization System for Nuclear Power Plants Decommissioning Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chih Wei; Yang, Li Chen [Institute of Nuclear Energy Research, Atomic Energy Council, Longtan (China)

    2014-08-15

    Most nuclear power plants (NPPs) in the world have an operating life of up to 40 years. The utility should prepare a comprehensive decommissioning plan with purpose to document and to display how decommissioning activities can be safely performed. In the past, most studies related to NPPs decommissioning planning put emphasis on technical issues, little attention have been given to human factors in decommissioning activities. In fact, human factors are a critical factor to successful NPPs decommissioning. NPPs decommissioning will face potential risks. These risks include not only dismantling and moving large equipment but also treating with the radioactive materials. Using information visualization system, such as virtual reality (VR) technology, for staff training can improve decommissioning work safety and economy. Therefore, this study presents a study using VR to solve real world problems in the nuclear plant decommissioning. Then appropriate cases for introducing VR systems are summarized and future prospects are given. This study assesses availability and performance of the work training system by using heuristic evaluation and actual experiment. In the result, block type of radiation visibility was found relatively better both in performance and person's preference than other types. The results presented in this paper illustrate the VR applications a NPP decommissioning perspective.

  12. A Human Factors Study on an Information Visualization System for Nuclear Power Plants Decommissioning Engineering

    International Nuclear Information System (INIS)

    Yang, Chih Wei; Yang, Li Chen

    2014-01-01

    Most nuclear power plants (NPPs) in the world have an operating life of up to 40 years. The utility should prepare a comprehensive decommissioning plan with purpose to document and to display how decommissioning activities can be safely performed. In the past, most studies related to NPPs decommissioning planning put emphasis on technical issues, little attention have been given to human factors in decommissioning activities. In fact, human factors are a critical factor to successful NPPs decommissioning. NPPs decommissioning will face potential risks. These risks include not only dismantling and moving large equipment but also treating with the radioactive materials. Using information visualization system, such as virtual reality (VR) technology, for staff training can improve decommissioning work safety and economy. Therefore, this study presents a study using VR to solve real world problems in the nuclear plant decommissioning. Then appropriate cases for introducing VR systems are summarized and future prospects are given. This study assesses availability and performance of the work training system by using heuristic evaluation and actual experiment. In the result, block type of radiation visibility was found relatively better both in performance and person's preference than other types. The results presented in this paper illustrate the VR applications a NPP decommissioning perspective

  13. Modelling and control of variable speed wind turbines for power system studies

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2010-01-01

    and implemented in the power system simulation tool DIgSILENT. Important issues like the fault ride-through and grid support capabilities of these wind turbine concepts are addressed. The paper reveals that advanced control of variable speed wind turbines can improve power system stability. Finally......, it will be shown in the paper that wind parks consisting of variable speed wind turbines can help nearby connected fixed speed wind turbines to ride-through grid faults. Copyright © 2009 John Wiley & Sons, Ltd.......Modern wind turbines are predominantly variable speed wind turbines with power electronic interface. Emphasis in this paper is therefore on the modelling and control issues of these wind turbine concepts and especially on their impact on the power system. The models and control are developed...

  14. A study of a small nuclear power plant system for district heating

    International Nuclear Information System (INIS)

    Imamura, Mitsuru; Sato, Kotaro; Narabayashi, Tadashi; Shimazu, Yoichiro; Tsuji, Masashi

    2009-01-01

    We have studied nuclear power plant for district heating. Already some towns and villages in Hokkaido have requested small reactor for district heating. Using existing technology allows us to shorten development period and to keep a lid on development cost. We decided to develop new reactor based on 'MUTSU' reactor technology because 'MUTSU' had already proved its safety. And this reactor was boron free reactor. It allows plant system to reduce the chemical control system. And moderator temperature coefficient is deeply negative. It means to improve its operability and leads to dependability enhancement. We calculated burn-up calculation of erbium addition fuel. In the result, the core life became about 10 years. And we adapt the cassette type refueling during outagein in order to maintain nonproliferation. In the district heating system, a double heat exchanger system enables to response to load change in season. To obtain the acceptance of public, this system has a leak prevention system of radioactive materials to public. And road heating system of low grade heat utilization from turbine condenser leads to improve the heat utilization efficiency. We carried out performance evaluation test of district heating pipeline. Then the heat loss of pipeline is estimated at about 0.440degC/km. This result meets general condition, which is about 1degC/km. This small plant has passive safety system. It is natural cooling of containment vessel. In case of loss of coolant accident, decay heat can remove by natural convection air cooling after 6 hours. Decay heat within 6 hours can remove by evaporative heat transfer of pool on containment vessel. (author)

  15. Study on a heat recovery system for the thermal power plant utilizing air cooling island

    International Nuclear Information System (INIS)

    Sun, Jian; Fu, Lin; Sun, Fangtian; Zhang, Shigang

    2014-01-01

    A new heat recovery system for CHP (combined heat and power) systems named HRU (heat recovery unit) is presented, which could recover the low grade heat of exhausted steam from the turbine at the thermal power plant directly. Heat recovery of exhausted steam is often accomplished by recovering the heat of cooling water in current systems. Therefore, two processes of heat transfer is needed at least. However, exhausted steam could be condensed in the evaporator of HRU directly, which reduce one process of heat transfer. A special evaporator is designed condense the exhausted steam directly. Simulated results are compared to experiments, which could include the calculation of heat transfer coefficients of different parts of HRU. It is found that about 25Mw of exhausted steam is recovered by this system. HRU could be promising for conventional CHP systems, which could increase the total energy efficiency obviously and enlarge the heating capacity of a built CHP system. - Highlights: • A new heat recovery system for thermal power plant is presented. • A mathematical model including heat transfer coefficients calculation is given. • This heat recovery system is experimented at a thermal power plant. • Performances of this system under different working conditions are simulated

  16. Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study

    Directory of Open Access Journals (Sweden)

    Simone Pascuzzi

    2016-07-01

    Full Text Available A greenhouse containing an integrated system of photovoltaic panels, a water electrolyzer, fuel cells and a geothermal heat pump was set up to investigate suitable solutions for a power system based on solar energy and hydrogen, feeding a self-sufficient, geothermal-heated greenhouse. The electricity produced by the photovoltaic source supplies the electrolyzer; the manufactured hydrogen gas is held in a pressure tank. In these systems, the electrolyzer is a crucial component; the technical challenge is to make it work regularly despite the irregularity of the solar source. The focus of this paper is to study the performance and the real energy efficiency of the electrolyzer, analyzing its operational data collected under different operating conditions affected by the changeable solar radiant energy characterizing the site where the experimental plant was located. The analysis of the measured values allowed evaluation of its suitability for the agricultural requirements such as greenhouse heating. On the strength of the obtained result, a new layout of the battery bank has been designed and exemplified to improve the performance of the electrolyzer. The evaluations resulting from this case study may have a genuine value, therefore assisting in further studies to better understand these devices and their associated technologies.

  17. Electrical power systems for Space Station

    Science.gov (United States)

    Simon, W. E.

    1984-01-01

    Major challenges in power system development are described. Evolutionary growth, operational lifetime, and other design requirements are discussed. A pictorial view of weight-optimized power system applications shows which systems are best for missions of various lengths and required power level. Following definition of the major elements of the electrical power system, an overview of element options and a brief technology assessment are presented. Selected trade-study results show end-to-end system efficiencies, required photovoltaic power capability as a function of energy storage system efficiency, and comparisons with other systems such as a solar dynamic power system.

  18. Study on aging management of fire protection system in nuclear power plant

    International Nuclear Information System (INIS)

    Fang Huasong; Du Yu; Li Jianwen; Shi Haining; Tu Fengsheng

    2010-01-01

    Fire prevention, fire fighting and fire automatic alarms are three aspects which be included in fire protection system in nuclear power plants. The fire protection system can protect personnel, equipment etc in the fire, so their performance will have a direct influence on the safe operation in nuclear power plants. The disabled accidents caused by aging have happened continuously with the extension of time in the fire protection system, which is the major security risk during the running time in nuclear power plants. In view of the importance of fire protection system and the severity of aging problems, the aging are highly valued by the plant operators and related organizations. Though the feedback of operating experience in nuclear power plant, the impact of the fire-fighting equipment aging on system performance and reliability be assessed, the aging sensitive equipment be selected to carry out the aging analysis and to guide the management and maintenance to guarantee the healthy operation in life time of fire protection system in nuclear power plant. (authors)

  19. Wireless power transfer system

    Science.gov (United States)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  20. Powering laser diode systems

    CERN Document Server

    Trestman, Grigoriy A

    2017-01-01

    This Tutorial Text discusses the competent design and skilled use of laser diode drivers (LDDs) and power supplies (PSs) for the electrical components of laser diode systems. It is intended to help power-electronic design engineers during the initial design stages: the choice of the best PS topology, the calculation of parameters and components of the PS circuit, and the computer simulation of the circuit. Readers who use laser diode systems for research, production, and other purposes will also benefit. The book will help readers avoid errors when creating laser systems from ready-made blocks, as well as understand the nature of the "mystical failures" of laser diodes (and possibly prevent them).

  1. Satellite Power Systems (SPS) concept definition study. Volume 2, part 2: System engineering. [cost and programmatics

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    The latest technical and programmatic developments are considered as well as expansions of the Rockwell SPS cost model covering each phase of the program through the year 2030. Comparative cost/economic analyses cover elements of the satellite, construction system, space transportation vehicles and operations, and the ground receiving station. System plans to define time phased costs and planning requirements that support major milestones through the year 2000. A special analysis is included on natural resources required to build the SPS reference configuration. An appendix contains the SPS Work Breakdown Structure and dictionary along with detail cost data sheet on each system and main element of the program. Over 200 line items address DDT&E, theoretical first unit, investment cost per satellite, and operations charges for replacement capital and normal operations and maintenance costs.

  2. AC power supply systems

    International Nuclear Information System (INIS)

    Law, H.

    1987-01-01

    An ac power supply system includes a rectifier fed by a normal ac supply, and an inverter connected to the rectifier by a dc link, the inverter being effective to invert the dc output of the receiver at a required frequency to provide an ac output. A dc backup power supply of lower voltage than the normal dc output of the rectifier is connected across the dc link such that the ac output of the rectifier is derived from the backup supply if the voltage of the output of the inverter falls below that of the backup supply. The dc backup power may be derived from a backup ac supply. Use in pumping coolant in nuclear reactor is envisaged. (author)

  3. Experimental Study of a Low-Temperature Power Generation System in an Organic Rankine Cycle

    DEFF Research Database (Denmark)

    Mu, Yongchao; Zhang, Yufeng; Deng, Na

    2015-01-01

    This paper presents a new power generation system under the principle of organic Rankine cycle which can generate power with a low-temperature heat source. A prototype was built to investigate the proposed system. In the prototype, an air screw compressor was converted into an expander and used...... as the engine of the power generator. The style of the preheater was a shell and tube heat exchanger, which could provide a long path for the working fluid. A flooded heat exchanger with a high heat transfer coefficient was taken as the evaporator. R134a was used as working fluid for the Rankine cycle......, the average isentropic efficiency of the screw expander was 68%, and the efficiency of power generation varies from 1.2 to 4.56%. The highest value of thermodynamical perfectness was 29.06%. It can be concluded that organic Rankine cycle could be competitive for recovering low-temperature heat source...

  4. Power system optimization

    International Nuclear Information System (INIS)

    Bogdan, Zeljko; Cehil, Mislav

    2007-01-01

    Long-term gas purchase contracts usually determine delivery and payment for gas on the regular hourly basis, independently of demand side consumption. In order to use fuel gas in an economically viable way, optimization of gas distribution for covering consumption must be introduced. In this paper, a mathematical model of the electric utility system which is used for optimization of gas distribution over electric generators is presented. The utility system comprises installed capacity of 1500 MW of thermal power plants, 400 MW of combined heat and power plants, 330 MW of a nuclear power plant and 1600 MW of hydro power plants. Based on known demand curve the optimization model selects plants according to the prescribed criteria. Firstly it engages run-of-river hydro plants, then the public cogeneration plants, the nuclear plant and thermal power plants. Storage hydro plants are used for covering peak load consumption. In case of shortage of installed capacity, the cross-border purchase is allowed. Usage of dual fuel equipment (gas-oil), which is available in some thermal plants, is also controlled by the optimization procedure. It is shown that by using such a model it is possible to properly plan the amount of fuel gas which will be contracted. The contracted amount can easily be distributed over generators efficiently and without losses (no breaks in delivery). The model helps in optimizing of fuel gas-oil ratio for plants with combined burners and enables planning of power plants overhauls over a year in a viable and efficient way. (author)

  5. A study on the development of a expert system for diagnosing fossil power plants

    International Nuclear Information System (INIS)

    Baik, Young Min; Jeong, Hee Don; Shin, Eun Ju

    2009-01-01

    In order to analyze the causes of fossil power plant facilities due to a degradation and corrosion, artificial degraded materials composed of the facilities were manufactured. Various experiment were performed based on mechanical test, microstructure observation, hardness test, Electrochemical Potentiokinetic Reactivation test (EPR) and corrosion scale thickness measurement test. The master curves were write out using Larson-Miller parameter to evaluate the degree of degradation with the above diagnosis methods. These data were applied to materials database of fossil power plant diagnosis. Finally expert system on the fossil power plant diagnosis was developed using the master curves and diagnosis algorithms.

  6. Autonomously managed electrical power systems

    Science.gov (United States)

    Callis, Charles P.

    1986-01-01

    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.

  7. The electric power engineering handbook power systems

    CERN Document Server

    2012-01-01

    Power Systems, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) covers all aspects of power system protection, dynamics, stability, operation, and control. Under the editorial guidance of L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Andrew Hanson, Pritindra Chowdhuri, Gerry Sheble, and Mark Nelms, this carefully crafted reference includes substantial new and revised contributions from worldwide leaders in the field. This content provides convenient access to overviews and detailed information on a diverse arr

  8. Space Station power system issues

    International Nuclear Information System (INIS)

    Giudici, R.J.

    1985-01-01

    Issues governing the selection of power systems for long-term manned Space Stations intended solely for earth orbital missions are covered briefly, drawing on trade study results from both in-house and contracted studies that have been conducted over nearly two decades. An involvement, from the Program Development Office at MSFC, with current Space Station concepts began in late 1982 with the NASA-wide Systems Definition Working Group and continued throughout 1984 in support of various planning activities. The premise for this discussion is that, within the confines of the current Space Station concept, there is good reason to consider photovoltaic power systems to be a venerable technology option for both the initial 75 kW and 300 kW (or much greater) growth stations. The issue of large physical size required by photovoltaic power systems is presented considering mass, atmospheric drag, launch packaging and power transmission voltage as being possible practicality limitations. The validity of searching for a cross-over point necessitating the introduction of solar thermal or nuclear power system options as enabling technologies is considered with reference to programs ranging from the 4.8 kW Skylab to the 9.5 gW Space Power Satellite

  9. Optimal Hybrid Renewable Airport Power System: Empirical Study on Incheon International Airport, South Korea

    Directory of Open Access Journals (Sweden)

    Seoin Baek

    2016-06-01

    Full Text Available In response to global energy problems (e.g., the oil crisis, the Fukushima accident, the Paris Agreement, the South Korean government has executed a strict renewable energy plan to decrease the country’s dependence on fossil fuel. Public facilities, such as international airports, which use substantial amounts of electricity, are the most in need of government regulation. In this study, we attempt to determine the optimal hybrid electricity generation system for South Korea’s largest airport: Incheon International Airport. In the analysis, we use three scenarios: the current load, 120% of the current load, and 140% of the current load, according to the plan to expand Incheon International Airport. According to the COE (cost of electricity and the NPC (net present cost of the result, it is economically feasible to completely cover the potential increase in the electric load with PV power. Government policy implications and limitations are discussed.

  10. Multiwavelength Study of Powerful New Jet Activity in the Symbiotic System R AQR

    Science.gov (United States)

    Karovska, Margarita

    2016-10-01

    We propose to carry out coordinated high-spatial resolution Chandra ACIS-S and multiwavelength (UV-Optical) HST/WFC3 observations of R Aqr, a very active symbiotic interacting binary system. Our main goal is to study the physical characteristics of the multi-scale components of the powerful jet; from the vicinity of the central binary (within a few AU) to the jet-circumbinary material interaction region (2500 AU) and beyond, and especially of the recently discovered new component of the inner jet (likely due to recent ejection of material). Our main goal is to gain new insight on early jet formation and propagation, including jet kinematics and precession.

  11. Study of regeneration system of 300 MW power unit based on nondeaerating heat balance diagram at reduced load

    Science.gov (United States)

    Esin, S. B.; Trifonov, N. N.; Sukhorukov, Yu. G.; Yurchenko, A. Yu.; Grigor'eva, E. B.; Snegin, I. P.; Zhivykh, D. A.; Medvedkin, A. V.; Ryabich, V. A.

    2015-09-01

    More than 30 power units of thermal power stations, based on the nondeaerating heat balance diagram, successfully operate in the former Soviet Union. Most of them are power units with a power of 300 MW, equipped with HTGZ and LMZ turbines. They operate according to a variable electric load curve characterized by deep reductions when undergoing night minimums. Additional extension of the range of power unit adjustment makes it possible to maintain the dispatch load curve and obtain profit for the electric power plant. The objective of this research is to carry out estimated and experimental processing of the operating regimes of the regeneration system of steam-turbine plants within the extended adjustment range and under the conditions when the constraints on the regeneration system and its equipment are removed. Constraints concerning the heat balance diagram that reduce the power unit efficiency when extending the adjustment range have been considered. Test results are presented for the nondeaerating heat balance diagram with the HTGZ turbine. Turbine pump and feed electric pump operation was studied at a power unit load of 120-300 MW. The reliability of feed pump operation is confirmed by a stable vibratory condition and the absence of cavitation noise and vibration at a frequency that characterizes the cavitation condition, as well as by oil temperature maintenance after bearings within normal limits. Cavitation performance of pumps in the studied range of their operation has been determined. Technical solutions are proposed on providing a profitable and stable operation of regeneration systems when extending the range of adjustment of power unit load. A nondeaerating diagram of high-pressure preheater (HPP) condensate discharge to the mixer. A regeneration system has been developed and studied on the operating power unit fitted with a deaeratorless thermal circuit of the system for removing the high-pressure preheater heating steam condensate to the mixer

  12. Wind-powered aqueduct systems

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, F R; Ljungstroem, O [ed.

    1976-01-01

    The MITRE Corporation is proposing to develop a preliminarydesign for a system that would use large-scale wind-driven units to provide power for the pumping of water from the main reservoir to auxiliary reservoirs in other parts of an aqueduct system. The study would include a comparison of the cost and effectiveness of alternative methods of performing such operations.

  13. Dynamic influences of wind power on the power system

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, Pedro

    2003-03-01

    The thesis first presents the basics influences of wind power on the power system stability and quality by pointing out the main power quality issues of wind power in a small-scale case and following, the expected large-scale problems are introduced. Secondly, a dynamic wind turbine model that supports power quality assessment of wind turbines is presented. Thirdly, an aggregate wind farm model that support power quality and stability analysis from large wind farms is presented. The aggregate wind farm model includes the smoothing of the relative power fluctuation from a wind farm compared to a single wind turbine. Finally, applications of the aggregate wind farm model to the power systems are presented. The power quality and stability characteristics influenced by large-scale wind power are illustrated with three cases. In this thesis, special emphasis has been given to appropriate models to represent the wind acting on wind farms. The wind speed model to a single wind turbine includes turbulence and tower shadow effects from the wind and the rotational sampling turbulence due to the rotation of the blades. In a park scale, the wind speed model to the wind farm includes the spatial coherence between different wind turbines. Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suitable to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power system quality and stability. The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates on the voltage stability and on the power system oscillations. From the cases studied, voltage and the frequency variations were smaller than expected from the large-scale wind power integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting large

  14. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  15. Simulation study of a system for diagnosis of nuclear power plant operation

    International Nuclear Information System (INIS)

    Wakabayashi, J.; Fukumoto, A.

    1981-01-01

    A diagnostic system of the nuclear power plant operation is proposed and the applicability of this system to the actual plant has been verified by computer simulation. A typical pressurized water reactor plant simulator was made by an analog computer and the diagnostic system was made by a digital computer. The observed signals obtained from the actual plant are simulated by superposing the equivalent observation noises generated by the digital computer on the sampled signals obtained from the plant simulator. 8 refs

  16. Demonstrative study for the wind and solar hybrid power system. 2; Furyoku taiyoko hybrid hatsuden system ni kansuru jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y; Sakuma, H; Ushiyama, I [Ashikaga Institute of Technology, Tochigi (Japan)

    1996-10-27

    In order to verify the complementary relationship between wind and solar energy, the long-term field test of the hybrid power system was conducted at the natural energy square of Ashikaga Institute of Technology. The solar cell blade windmill composed of a Savonius windmill and flexible solar cells applied to swept buckets was also prepared. As a result, the wind power generation was promising mainly in the winter period including the late fall and early spring, while solar one was stable all the year through although it was slightly poor in winter. Stable power generation was thus achieved by combining wind energy with solar energy. As the whole data of other wind and solar power generation systems at the square were analyzed for every month, the same conclusion as the solar cell blade windmill was obtained as follows: the wind power generation in Ashikaga area is promising in Nov.-March from the field test result for 16 months, solar power generation is stable all the year through, the hybrid power system is effective in Nov.-April, and the solar cell blade windmill is equivalent to the hybrid power system. 3 refs., 5 figs.

  17. Power conditioning unit for photovoltaic power systems

    Science.gov (United States)

    Beghin, G.; Nguyen Phuoc, V. T.

    Operational features and components of a power conditioning unit for interconnecting solar cell module powers with a utility grid are outlined. The two-stage unit first modifies the voltage to desired levels on an internal dc link, then inverts the current in 2 power transformers connected to a vector summation control to neutralize harmonic distortion up to the 11th harmonic. The system operates in parallel with the grid with extra inductors to absorb line-to-line voltage and phase differences, and permits peak power use from the PV array. Reactive power is gained internally, and a power system controller monitors voltages, frequencies, and currents. A booster preregulator adjusts the input voltage from the array to provide voltage regulation for the inverter, and can commutate 450 amps. A total harmonic distortion of less than 5 percent is claimed, with a rating of 5 kVA, 50/60 Hz, 3-phase, and 4-wire.

  18. Reliability Analysis Study of Digital Reactor Protection System in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Guo, Xiao Ming; Liu, Tao; Tong, Jie Juan; Zhao, Jun

    2011-01-01

    The Digital I and C systems are believed to improve a plants safety and reliability generally. The reliability analysis of digital I and C system has become one research hotspot. Traditional fault tree method is one of means to quantify the digital I and C system reliability. Review of advanced nuclear power plant AP1000 digital protection system evaluation makes clear both the fault tree application and analysis process to the digital system reliability. One typical digital protection system special for advanced reactor has been developed, which reliability evaluation is necessary for design demonstration. The typical digital protection system construction is introduced in the paper, and the process of FMEA and fault tree application to the digital protection system reliability evaluation are described. Reliability data and bypass logic modeling are two points giving special attention in the paper. Because the factors about time sequence and feedback not exist in reactor protection system obviously, the dynamic feature of digital system is not discussed

  19. A study of a small nuclear power plant system for district heating

    International Nuclear Information System (INIS)

    Imamura, Mitsuru; Sato, Kotaro; Narabayashi, Tadashi; Shimazu, Yoichiro; Tsuji, Masashi

    2008-01-01

    We have studied nuclear power plant for district heating. Already some towns and villages in Hokkaido have requested small reactor for district heating. Using existing technology allows us to shorten development period and to keep a lid on development cost. We decided to develop new reactor based on 'MUTSU' reactor technology. 'MUTSU' had already proved its safety. And 'MUTSU' reactor was boron free reactor. It allows plant system to become more compact and simple. And load following capability by core reactivity become bigger. It means to reduce control rod movement. It leads to dependability enhancement. We calculated burn-up calculation of erbium addition fuel. In the result the core life became about 10 years. In the district heating system, there are not only district heating but also snow melting with warm water. It uses steam condenser's heat, which are only discharged now. This small plant has passive safety system. It is natural cooling of containment vessel. In case of loss of coolant accident, decay heat can remove by natural convection air cooling after 6 hours. Decay heat within 6 hours can remove by evaporative heat transfer of pool on containment vessel. (author)

  20. A study of PLC system vulnerability checklists in nuclear power plants

    International Nuclear Information System (INIS)

    Cha, Ki Jong; Cho, Gi Ho; Ahn, Jaeh Young; Kim, Young Mi; Kwon, Yong Il

    2012-01-01

    Because the design of the PLCs (Programmable Logic Controller) in the I and C (Instrument and Control) systems for NPP (Nuclear Power Plant) were carried out independently, the problems of cyber security were not addressed in the PLC system designs. Recently, the analysis and the countermeasure development for the PLC systems became mandatory due to the developments in cyber attack techniques and the increasingly revealed vulnerability to such attacks. A comparative analysis on the cyber security checklist of PLC in industry control system and in NPP systems was carried out, and in this paper, the cyber security regulatory trend and the PLC usage status are described

  1. A study of PLC system vulnerability checklists in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Ki Jong; Cho, Gi Ho; Ahn, Jaeh Young [Convergence technology Research Commercialization Center, Daejeon (Korea, Republic of); Kim, Young Mi; Kwon, Yong Il [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    Because the design of the PLCs (Programmable Logic Controller) in the I and C (Instrument and Control) systems for NPP (Nuclear Power Plant) were carried out independently, the problems of cyber security were not addressed in the PLC system designs. Recently, the analysis and the countermeasure development for the PLC systems became mandatory due to the developments in cyber attack techniques and the increasingly revealed vulnerability to such attacks. A comparative analysis on the cyber security checklist of PLC in industry control system and in NPP systems was carried out, and in this paper, the cyber security regulatory trend and the PLC usage status are described.

  2. Preliminary Study of Printed Circuit Heat Exchanger (PCHE) for various power conversion systems for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jinsu; Baik, Seungjoon; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The steam-Rankine cycle was the most widely used power conversion system for a nuclear power plant. The size of the heat exchanger is important for the modulation. Such a challenge was conducted by Kang et al. They change the steam generator type for the SMART from helical type heat exchanger to Printed Circuit Heat Exchanger (PCHE). Recently, there has been a growing interest in the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle as the most promising power conversion system. The reason is high efficiency with simple layout and compact power plant due to small turbomachinery and compact heat exchanger technology. That is why the SCO{sub 2} Brayton cycle can enhance the existing advantages of Small Modular Reactor (SMR) like SMART, such as reduction in size, capital cost, and construction period. Thermal hydraulic and geometric parameters of a PCHE for the S-CO{sub 2} power cycle coupled to SMART. The results show that the water - CO{sub 2} printed circuit heat exchanger size is smaller than printed circuit steam generator for the superheated steam Rankine cycle. This results show the potential benefit of using the S-CO-2 Brayton power cycle to a water-cooled small modular reactor.

  3. Study of a wireless power transmission system for an active capsule endoscope.

    Science.gov (United States)

    Xin, Wenhui; Yan, Guozheng; Wang, Wenxin

    2010-03-01

    An active capsule endoscope (ACE) will consume much more energy than can be power by batteries. Its orientation and position are always undetermined when it continues the natural way down the gastrointestinal track. In order to deliver stable and sufficient energy to ACE safely, a wireless power transmission system based on inductive coupling is presented. The system consists of a Helmholtz primary coil outside and a multiple secondary coils inside the body. The Helmholtz primary coil is driven to generate a uniform alternating magnetic field covering the whole of the alimentary tract, and the multiple secondary coils receive energy regardless of the ACE's position and orientation relative to the generated magnetic field. The human tissue safety of the electromagnetic field generated by transmitting coil was evaluated, based on a high-resolution realistic human model. At least 310 mW usable power can be transmitted under the worst geometrical conditions. Outer dimensions of the power receiver, 10 mm diameter x 12 mm; transmitting power, 25 W; resonant frequency, 400 kHz. The maximum specific absorption rate (SAR) and current density of human tissues are 0.329 W/kg and 3.82 A/m(2), respectively, under the basic restrictions of the International Commission on Non-ionizing Radiation Protection (ICNIRP). The designed wireless power transmission is shown to be feasible and potentially safe in a future application. (c) 2010 John Wiley & Sons, Ltd.

  4. Concentrating Solar Power Systems

    Science.gov (United States)

    Pitz-Paal, R.

    2017-07-01

    Development of Concentrating Solar Power Systems has started about 40 years ago. A first commercial implementation was performed between 1985 and 1991 in California. However, a drop in gas prices caused a longer period without further deployment. It was overcome in 2007 when new incentive schemes for renewables in Spain and the US enabled a commercial restart. In 2016, almost 100 commercial CSP plants with more than 5GW are installed worldwide. This paper describes the physical background of CSP technology, its technical characteristics and concepts. Furthermore, it discusses system performances, cost structures and the expected advancement.

  5. A Feasibility Assessment of Photovoltaic Power Systems in Ireland; a Case Study for the Dublin Region

    Directory of Open Access Journals (Sweden)

    Fionnuala Murphy

    2017-02-01

    Full Text Available Photovoltaic (PV power generation is one of the cleanest sources for producing renewable energy; however uptake on the Irish renewable energy market to date has been low. There is a lack of support for solar PV systems in Ireland; there is currently no solar PV energy feed-in-tariff as there are for other renewable energy systems in Ireland. Despite the current lack of support, the Government has indicated that support for the uptake of solar PV installations will be provided through the provision of a feed-in tariff in the future. The aim of this study was to determine the feasibility of installing PV systems under Irish climatic conditions at a location based in Dublin, Ireland, from a technical, environmental and economic point of view. This was achieved by carrying out a life cycle assessment of potential environmental impacts, and analysis of energy and economic payback times relating to the proposed PV system. Four possible renewable feed-in-tariffs (based on existing feed-in-tariffs for other renewable energy systems were considered to determine the effect of such tariffs on the overall economics of the proposed PV system. Results show that life cycle GHG emissions are 69 g CO2-eq per kWh generated by the system, significantly lower than the current electricity grid mix emissions of 469 g CO2-eq per kWh. It will take 5.23 years of operation of the solar plant to generate the same amount of energy (in terms of primary energy equivalent that was used to produce the system itself. The economic payback time varies from 19.3 and 34.4 years depending on the rate of renewable energy feed-in-tariff applied. The costs for the production of PV electricity in this study are higher than is usual in countries where the solar PV market is more developed, e.g., Germany, due to constraints with building integration and lack of experienced PV installers. As more PV is deployed, the Irish PV installer base will increase and ‘learning by doing’ effects

  6. Assessment Studies regarding the Optimal Sizing of Wind Integrated Hybrid Power Plants for Off-Grid Systems

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin; Tarnowski, German Claudio

    2018-01-01

    The paper focusses on the optimal sizing of off-grid hybrid power plants including wind power generation. A modular and scalable system topology as well as an optimal sizing algorithm for the HPP has been presented in a previous publication. In this paper, the sizing process is evaluated by means...... of assessment studies. The aim is to address the impact of renewable resource data, the required power supply availability and reactive power load demand on the optimal sizing of wind integrated off-grid HPPs....

  7. Reactive Power Management in Electric Power Systems

    African Journals Online (AJOL)

    (Ferranti effect) would limit the power transfer and the transmission range in the absence of any compensation measures. Journal of EAEA, Vol 14, 1997. In this paper, the management of the reactive power is explored with the aim of improving the quality and the reliability of the supply in the EELPA's interconnected system ...

  8. Power System for Intelligent House

    Directory of Open Access Journals (Sweden)

    Michal Jahelka

    2010-01-01

    Full Text Available Power supply of intelligent houses or house phones is possible to do with standard transformer with voltage stabilizer or with intelligent power supply. Standard solution can has as a result of failure fuse blown or fire occurrence. Intelligent power supply switch off power and tests with little current whether short circuit is removed. After it resume system power supply. At the same time it cares of system backup with accumulator, informs control system about short circuit or failure net power supply, or can switch off all system power after command from control system.

  9. TOPEX electrical power system

    Science.gov (United States)

    Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest

    1991-01-01

    The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.

  10. A Study on the Determination of Power Supply Class for HVAC System in KJRR

    International Nuclear Information System (INIS)

    Kim, Hagtae; Kim, Minjin; Suh, Yong-Suk; Kim, Jun-Yeon; Chae, Hee-Taek

    2016-01-01

    The purpose of this paper is to propose an appropriate electrical class, power supply class, and operation logic for the major equipment of the HVAC system such as a Confinement Isolation Damper (CID), Fission Molybdenum Isolation Damper (FID), Air Handling Unit (AHU), Air Cleaning Unit (ACU), and Contaminated Air Purification System (CAPS) in light of their functional requirements and importance. The classification for the overall HVAC system of the KJRR is a safety class NNS, Non-Seismic category, quality class S, and electrical class Non-1E. Exceptionally, the CID and FID are safety class 3, seismic category I, and quality class Q. The electrical class for the major equipment of the HVAC system should be determined considering the operation concept during Loss of Normal Electric Power (LOEP) regardless of the safety class. In this paper, the electrical and power supply class is determined and the operation logic is proposed for the major equipment of the HVAC system for the KJRR such as the CID, FID, CAPS, ACU, and AHU. The electrical class Non-1E is determined to implement a fail closed for the enhancement of safety. The power supply class is based on the functional requirements of each equipment. The CID, FID, CAPS, and ACU are Class III, but the AHU is Class IV by reflecting the importance and electrical load. After the recovery of the power supply, there is a difference in the operation concept for the HVAC system between the reactor building and fission molybdenum production building depending on the operator's residence time. The CID and CAPS are operated manually through procedures for checking the accident status, and the FID and ACU are operated automatically without special procedures

  11. A Study on the Determination of Power Supply Class for HVAC System in KJRR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hagtae; Kim, Minjin; Suh, Yong-Suk; Kim, Jun-Yeon; Chae, Hee-Taek [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this paper is to propose an appropriate electrical class, power supply class, and operation logic for the major equipment of the HVAC system such as a Confinement Isolation Damper (CID), Fission Molybdenum Isolation Damper (FID), Air Handling Unit (AHU), Air Cleaning Unit (ACU), and Contaminated Air Purification System (CAPS) in light of their functional requirements and importance. The classification for the overall HVAC system of the KJRR is a safety class NNS, Non-Seismic category, quality class S, and electrical class Non-1E. Exceptionally, the CID and FID are safety class 3, seismic category I, and quality class Q. The electrical class for the major equipment of the HVAC system should be determined considering the operation concept during Loss of Normal Electric Power (LOEP) regardless of the safety class. In this paper, the electrical and power supply class is determined and the operation logic is proposed for the major equipment of the HVAC system for the KJRR such as the CID, FID, CAPS, ACU, and AHU. The electrical class Non-1E is determined to implement a fail closed for the enhancement of safety. The power supply class is based on the functional requirements of each equipment. The CID, FID, CAPS, and ACU are Class III, but the AHU is Class IV by reflecting the importance and electrical load. After the recovery of the power supply, there is a difference in the operation concept for the HVAC system between the reactor building and fission molybdenum production building depending on the operator's residence time. The CID and CAPS are operated manually through procedures for checking the accident status, and the FID and ACU are operated automatically without special procedures.

  12. Study on on-machine defects measuring system on high power laser optical elements

    Science.gov (United States)

    Luo, Chi; Shi, Feng; Lin, Zhifan; Zhang, Tong; Wang, Guilin

    2017-10-01

    The influence of surface defects on high power laser optical elements will cause some harm to the performances of imaging system, including the energy consumption and the damage of film layer. To further increase surface defects on high power laser optical element, on-machine defects measuring system was investigated. Firstly, the selection and design are completed by the working condition analysis of the on-machine defects detection system. By designing on processing algorithms to realize the classification recognition and evaluation of surface defects. The calibration experiment of the scratch was done by using the self-made standard alignment plate. Finally, the detection and evaluation of surface defects of large diameter semi-cylindrical silicon mirror are realized. The calibration results show that the size deviation is less than 4% that meet the precision requirement of the detection of the defects. Through the detection of images the on-machine defects detection system can realize the accurate identification of surface defects.

  13. A Comparative Study of Power Supply Architectures In Wireless Electric Vehicle Charging Systems

    Science.gov (United States)

    Esteban, Bryan

    Wireless inductive power transfer is a transformational and disruptive technology that enables the reliable and efficient transfer of electrical power over large air gaps for a host of unique applications. One such application that is now gaining much momentum worldwide is the wireless charging of electric vehicles (EVs). This thesis examines two of the primary power supply topologies being predominantly used for EV charging, namely the SLC and the LCL resonant full bridge inverter topologies. The study of both of these topologies is presented in the context of designing a 3 kW, primary side controlled, wireless EV charger with nominal operating parameters of 30 kHz centre frequency and range of coupling in the neighborhood of .18-.26. A comparison of both topologies is made in terms of their complexity, cost, efficiency, and power quality. The aim of the study is to determine which topology is better for wireless EV charging.

  14. Study on the characters of high voltage charging power supply system for diagnostics neutral beam on HT-7 Tokamak

    International Nuclear Information System (INIS)

    Zhang Jian; Huang Yiyun; Liu Baohua; Guo Wenjun; Shen Xiaoling; Wei Wei

    2011-01-01

    A high voltage power supply system has been developed for the diagnostic neutral beam on the HT-7 experimental Tokamak, and the over-voltage phenomenon of storage capacitor was founded in the experiment. In order to analyse and resolve this problem, the structure and principle of high voltage power supply is described and the primary high voltage charging power supply system is introduced in detail. The phenomenon of over-voltage on the capacitors is also studied with circuit model, and the conclusion is obtained that the leakage inductance is the mA in reason which causes the over-voltage on the capacitors. (authors)

  15. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    Science.gov (United States)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  16. Power Systems Development Facility

    International Nuclear Information System (INIS)

    1993-06-01

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell

  17. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  18. Long-term optimization case studies for combined heat and power system

    Directory of Open Access Journals (Sweden)

    Polyzakis Apostolis L.

    2009-01-01

    Full Text Available In the next years distributed poly-generation systems are expected to play an increasingly important role in the electricity infrastructure and market. The successful spread of small-scale generation either connected to the distribution network or on the customer side of the meter depends on diverse issues, such as the possibilities of technical implementation, resource availability, environmental aspects, and regulation and market conditions. The aim of this approach is to develop an economic and parametric analysis of a distributed generation system based on gas turbines able to satisfy the energy demand of a typical hotel complex. Here, the economic performance of six cases combining different designs and regimes of operation is shown. The software Turbomatch, the gas turbine performance code of Cranfield University, was used to simulate the off-design performance of the engines in different ambient and load conditions. A clear distinction between cases running at full load and following the load could be observed in the results. Full load regime can give a shorter return on the investment then following the load. In spite combined heat and power systems being currently not economically attractive, this scenario may change in future due to environmental regulations and unavailability of low price fuel for large centralized power stations. Combined heat and power has a significant potential although it requires favorable legislative and fair energy market conditions to successfully increase its share in the power generation market.

  19. Energy system, electricity market and economic studies on increasing nuclear power capacity

    International Nuclear Information System (INIS)

    Forsstrom, J.; Pursiheimo, E.; Kekkonen, V.; Honkatukia, J.

    2010-04-01

    Objective of this research project is to examine effects of addition of nuclear capacity from three different angles by using energy system, electricity market and economic analysis. In each area the analysis is based on computational methods. Finland is a member of Nordic electricity market which is further connected to networks of Continental Europe and Russia. Due to the foreign connections Finland has been able to import inexpensive electricity from its neighboring countries and this state is expected to continue. Addition of nuclear capacity lowers electricity import demand, affects level of electricity price decreasingly and decreases shortfall of installed production capacity. Substantial additions of nuclear power capacity and generous import supply have disadvantageous effect on profitability of combined heat and power production. The development of import possibilities depends on progression of difficult-to-estimate balance between electricity consumption and production in the neighboring countries. Investments on nuclear power increase national product during the construction phase. Growth of employment is also rather significant, especially during the construction phase. In the long term permanent jobs will be created too. Increase of employment is held back by increasing real wages, but it is though evident that consumer purchasing power is improved due to these nuclear power developments. (orig.)

  20. Study of recycling exhaust gas energy of hybrid pneumatic power system with CFD

    International Nuclear Information System (INIS)

    Huang, K. David; Quang, Khong Vu; Tseng, K.-T.

    2009-01-01

    A hybrid pneumatic power system (HPPS) is integrated by an internal combustion engine (ICE), a high efficiency turbine, an air compressor and an energy merger pipe, which can not only recycle and store exhaust gas energy but also convert it into useful mechanical energy. Moreover, it can make the ICE operate in its optimal state of maximum efficiency; and thus, it can be considered an effective solution to improve greatly the exhaust emissions and increase the overall energy efficiency of the HPPS. However, in this system, the flow energy merger of both high pressure compressed air flow and high temperature exhaust gas flow of the ICE greatly depends on the merging capability of the energy merger pipe. If the compressed air pressure (P air ) at the air inlet is too high, smooth transmission and mixture of the exhaust gas flow are prevented, which will interfere with the operation condition of the ICE. This shortcoming is mostly omitted in the previous studies. The purpose of this paper is to study the effect of the level of P air and the contraction of cross-section area (CSA) at the merging position on the flow energy merger and determine their optimum adjustments for a better merging process by using computation fluid dynamics (CFD). In addition, the CFD model was validated on the basis of the experimental data, including the temperature and static pressure of the merger flow at the outlet of the energy merger pipe. It was found that the simulation results were in good agreement with the experimental data. The simulation results show that exhaust gas recycling efficiency and merger flow energy are significantly dependent on the optimum adjustment of the CSA for changes in P air . Under these optimum adjustments, the exhaust gas recycling efficiency can reach about 83%. These results will be valuable bases to research and design the energy merger pipe of the HPPS.

  1. Profit Allocation of Hybrid Power System Planning in Energy Internet: A Cooperative Game Study

    Directory of Open Access Journals (Sweden)

    Jicheng Liu

    2018-02-01

    Full Text Available The rapid development of Energy Internet (EI has prompted numbers of generators to participate, leading to a hybrid power system. Hence, how to plan the hybrid power system and allocate its profit becomes necessary. In this paper, the cooperative game theory is introduced to discuss this problem. We first design the basic structure of EI, and point out the object of this study—coal power plant-wind farm-photovoltaic power station-energy storage provider (CWPE alliance. Subsequently, average allocation strategy (AAS, capacity-based allocation strategy (CAS and Shapley value allocation strategy (SAS are proposed, and then the modified disruption propensity (MDP index is constructed to judge the advantages and disadvantages of the three schemes. Thirdly, taking a certain area of A Province as an example, the profits of CWPE under three strategies are calculated respectively. Finally, by analyzing individual rationality and collective rationality of cooperative game and the MDP index of the three profit allocation schemes, we find that SAS is the most stable.

  2. High Power laser power conditioning system new discharge circuit research

    CERN Document Server

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping

    2002-01-01

    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  3. Study on system integration of robots operated in nuclear fusion facility and nuclear power plant facilities

    International Nuclear Information System (INIS)

    Oka, Kiyoshi

    2004-07-01

    A present robot is required to apply to many fields such as amusement, welfare and protection against disasters. The are however only limited numbers of the robots, which can work under the actual conditions as a robot system. It is caused by the following reasons: (1) the robot system cannot be realized by the only collection of the elemental technologies, (2) the performance of the robot is determined by that of the integrated system composed of the complicated elements with many functions, and (3) the respective elements have to be optimized in the integrated robot system with a well balance among them, through their examination, adjustment and improvement. Therefore, the system integration of the robot composed of a large number of elements is the most critical issue to realize the robot system for actual use. In the present paper, I describe the necessary approaches and elemental technologies to solve the issues on the system integration of the typical robot systems for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. These robots work under the intense radiation condition and restricted space in place of human. In particular, I propose a new approach to realize the system integration of the robot for actual use from the viewpoints of not only the environment and working conditions but also the restructure and optimization of the required elemental technologies with a well balance in the robot system. Based on the above approach, I have a contribution to realize the robot systems working under the actual conditions for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. (author)

  4. Design and study of water supply system for supercritical unit boiler in thermal power station

    Science.gov (United States)

    Du, Zenghui

    2018-04-01

    In order to design and optimize the boiler feed water system of supercritical unit, the establishment of a highly accurate controlled object model and its dynamic characteristics are prerequisites for developing a perfect thermal control system. In this paper, the method of mechanism modeling often leads to large systematic errors. Aiming at the information contained in the historical operation data of the boiler typical thermal system, the modern intelligent identification method to establish a high-precision quantitative model is used. This method avoids the difficulties caused by the disturbance experiment modeling for the actual system in the field, and provides a strong reference for the design and optimization of the thermal automation control system in the thermal power plant.

  5. Study on power coupling of annular vortex beam propagating through a two-Cassegrain-telescope optical system in turbulent atmosphere.

    Science.gov (United States)

    Wu, Huiyun; Sheng, Shen; Huang, Zhisong; Zhao, Siqing; Wang, Hua; Sun, Zhenhai; Xu, Xiegu

    2013-02-25

    As a new attractive application of the vortex beams, power coupling of annular vortex beam propagating through a two- Cassegrain-telescope optical system in turbulent atmosphere has been investigated. A typical model of annular vortex beam propagating through a two-Cassegrain-telescope optical system is established, the general analytical expression of vortex beams with limited apertures and the analytical formulas for the average intensity distribution at the receiver plane are derived. Under the H-V 5/7 turbulence model, the average intensity distribution at the receiver plane and power coupling efficiency of the optical system are numerically calculated, and the influences of the optical topological charge, the laser wavelength, the propagation path and the receiver apertures on the power coupling efficiency are analyzed. These studies reveal that the average intensity distribution at the receiver plane presents a central dark hollow profile, which is suitable for power coupling by the Cassegrain telescope receiver. In the optical system with optimized parameters, power coupling efficiency can keep in high values with the increase of the propagation distance. Under the atmospheric turbulent conditions, great advantages of vortex beam in power coupling of the two-Cassegrain-telescope optical system are shown in comparison with beam without vortex.

  6. Feasibility Study of a 400 Hz, 4160 Volt 3-Phase Electrical Power Distribution System

    Science.gov (United States)

    1977-02-25

    as a potential suppliex _, the electrical equip- ment checked below which will be required for the 400 HZ power systems. A full disclosure of...1580 49 I or J 748 100 1780 1850 48 1 or J 10001 12Y2 1950 2030 48 1 or J 1092 150 2400 2495 53 I or J 1285 200 2850 2960 50 : ifr J 1875 225 3105

  7. Recent materials compatibility studies in refractory metal-alkali metal systems for space power applications.

    Science.gov (United States)

    Harrison, R. W.; Hoffman, E. E.; Davies, R. L.

    1972-01-01

    Advanced Rankine and other proposed space power systems utilize refractory metals in contact with both single-phase and two-phase alkali metals at elevated temperatures. A number of recent compatibility experiments are described which emphasize the excellent compatibility of refractory metals with the alkali metals, lithium, sodium, and potassium, under a variety of environmental conditions. The alkali metal compatibilities of tantalum-, columbium-, molybdenum-, and tungsten-base alloys are discussed.

  8. Power Management for Energy Systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel

    In this thesis, we consider the control of two different industrial applications that belong at either end of the electricity grid; a power consumer in the form of a commercial refrigeration system, and wind turbines for power production. Our primary studies deal with economic model predictive...... penetration of renewable, fossil-free energy sources such as solar and wind power. To facilitate such intermittent power producers, we must not only control the production of electricity, but also the consumption, in an ecient and exible manner. By enabling the use of thermal energy storage in supermarkets...... of temperature dependent efficiencies in the refrigeration cycle. -Nonlinear economic MPC with uncertain predictions and the implementation of very simple predictors that use entirely historical data of, e.g., electricity prices and outdoor temperatures. Economic MPC for wind turbines, including -Optimal steady...

  9. Study of Real Time Location System For Worker in Containment Building at Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.; Kim, G. S. [Samchang Enterprise Company, Ulsan (Korea, Republic of); Kim, H. S. [Ulsan Univ., Ulsan (Korea, Republic of)

    2012-03-15

    Workers are required special management to minimize radiation exposure in nuclear power plant. Especially, there are many limitation in their activities at containment building in nuclear power plant. Test personnel shall administer the workers by tracing the location of them inside containment building in nuclear power plant. They may be exposed to the unnecessary radiation due to a complex and high radiation area in the building. Test personnel needs to manage efficiently for worker's safety and work hours at containment building. Therefore, it is critical for the test personnel to notice the risk to the workers by identifying the location when the workers are facing the dangerous situation on the high area. In this paper, we introduce requirements and design method to develop the one and two dimensional RTLS(Real Time Locating System) by using CSS(Chirp Spread Spectrum) which enables precise location measurement and robust data communication even indoor environment with serious electromagnetic interference caused by complicated structure such as the inside of containment building in the nuclear power plant. In the algorithm to compute the distance, it is suggested to use SDS-TWR(Symmetrical Double-Sided Two-Way Ranging) to solve the issue of indirect routes, and develop the power circuit with 10mW of designing gain for output power to meet the KCC standard in order to increase the raging distance, in addition, communication between Anchor and distance measuring computer shall be designed to increase energy using time of Tags(nodes) by using CAN(Controller Area Network) communication.

  10. Sustain ability and sustainable development indicators case study: Egypt electric power supply system

    International Nuclear Information System (INIS)

    Rashad, S.M.

    2007-01-01

    This paper addresses sustain ability criteria and the associated indicators allowing ope rationalization of the sustain ability concept in general and specially in the context of electricity supply. The criteria and indicators cover economic, environmental and social aspects. Egypt has rapidly growing population and per capita demand. As a signatory of the framework convention on climate change, Egypt is making all efforts to comply with the strategy of Egypt to meet the challenge of the increasing demand management, integrating it into national decision making and improving environmental performance continuously: for the electricity sector, this can be summarized in improvement of power system efficiency by all available means. On the other hand energy conservation and demand side management programs are ongoing, also the environmental consideration has become one of the major issues in calculating the feasibility of any new addition to the system. This paper deals with the review of the Macro Indicators based on total greenhouse emissions provide a measure of overall performance. Then propose the Primary Indicators. A set of performance indicators is developed against which implementation of the national strategy measures aimed at reducing green house gas emissions can be evaluated. Some selected results from environmental analysis are given. In the study about 20 indicators are used as a measure of the overall performance relative to targets and benchmarks for past and future projections up to year 2020. The potential performance indicators for energy sector include: fossil fuel consumption (primary energy), greenhouse gas emissions from energy sector, energy related greenhouse gas emissions per unit of energy delivered, energy related greenhouse gas emission per unit GDP, and energy related greenhouse gas emission per capita. The selected indicators are used to measure progress towards sustainable development in the country

  11. ANFIS-based modelling for photovoltaic power supply system: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, Adel [Faculty of Sciences and Technology, Department of Electronics, LAMEL, Jijel University, Ouled-Aissa, P.O. Box 98, Jijel 18000 (Algeria); Kalogirou, Soteris A. [Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, P.O. Box 50329, Limassol 3603 (Cyprus)

    2011-01-15

    Due to the various seasonal, monthly and daily changes in meteorological data, it is relatively difficult to find a suitable model for Photovoltaic power supply (PVPS) system. This paper deals with the modelling and simulation of a PVPS system using an Adaptive Neuro-Fuzzy Inference Scheme (ANFIS) and the proposition of a new expert configuration PVPS system. For the modelling of the PVPS system, it is required to find suitable models for its different components (ANFIS PV generator, ANFIS battery and ANFIS regulator) that could give satisfactory results under variable climatic conditions in order to test its performance and reliability. A database of measured climate data (global radiation, temperature and humidity) and electrical data (photovoltaic, battery and regulator voltage and current) of a PVPS system installed in Tahifet (south of Algeria) has been recorded for the period from 1992 to 1997. These data have been used for the modelling and simulation of the PVPS system. The results indicated that the reliability and the accuracy of the simulated system are excellent and the correlation coefficient between measured values and those estimated by the ANFIS gave a good prediction accuracy of 98%. Additionally, test results show that the ANFIS performed better than the Artificial Neural Network (ANN), which has also being tried to model the system. In addition, a new configuration of an expert PVPS system is proposed in this work. The predicted electrical data by the ANFIS model can be used for several applications in PV systems. (author)

  12. Studying quick coupler efficiency in working attachment system of single-bucket power shovel

    Science.gov (United States)

    Duganova, E. V.; Zagorodniy, N. A.; Solodovnikov, D. N.; Korneyev, A. S.

    2018-03-01

    A prototype of a quick-disconnect connector (quick coupler) with an unloaded retention mechanism was developed from the analysis of typical quick couplers used as intermediate elements for power shovels of different manufacturers. A method is presented, allowing building a simulation model of the quick coupler prototype as an alternative to physical modeling for further studies.

  13. The BPX electrical power system

    International Nuclear Information System (INIS)

    Huttar, D.; Bronnev, G.; Fromm, N.

    1992-01-01

    This paper reports on the Burning Plasma Experiment (BPX) which when operating at a toroidal field of 8.1 tesla and a plasma current of 10.6 megamps, requires peak power of 1235 megawatts and total pulse energy of over 21 gigajoules. These requirements are twice and over four times the corresponding figures for the Tokamak Fusion Test Reactor (TFTR), respectively. The design of the BPX power system has evolved, along with the tokamak, over a period of several years and has included studies of several alternative approaches. The reapplication of the existing TFTR power and energy facilities has been basic to all approaches. Among the new sources of pulse power and energy that have been considered are: direct utility grid pulsing, new flywheel units, and lead-acid storage batteries. The toroidal field power requirements are the greatest of the BPX subsystems and, fortunately, are sufficiently free of dynamics to allow the consideration of all approaches. Additional design challenges were presented by the multiplicity of plasma control scenarios incorporated in the BPX physics planning and the power response demanded of the plasma position control system

  14. Identification of seismically risk-sensitive systems and components in nuclear power plants: feasibility study

    International Nuclear Information System (INIS)

    Azarm, M.; Boccio, J.; Farahzad, P.

    1983-06-01

    An approach for the identification of risk-sensitive components in a nuclear power plant during and after a seismic event is described. Application of the methodology to two hypothetical power plants - a Boiling Water Reactor and a Pressurized Water Reactor - are presented and the results are given in tabular and graphical form. Conclusions drawn and lessons learned through the course of this study, based on the relative importance of various accident scenarios and sensitivity analyses, are discussed. In addition, the areas that may need further investigation are identified

  15. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  16. Study the effect on the electronic system made by photovoltaic power generation

    Science.gov (United States)

    Li, Zhuoyun

    2017-10-01

    With the development of the social economy, the problem of the source is more and more prominent in the world. People always focus on the economic development and pay little attention to the environment pollution, which has brought a wide range of environment damages, like the greenhouse effect. The environment pollution has influenced our daily life. In this case, green energy and renewable energy gradually become the popular subsitutes for fossil fuel. In the new electronic system, renewable energy is playing an increasingly significant role as the most important part of the system. This thesis is mainly about the photovoltaic power generation in the electronic system with environmental-friendly energy and the stability of that system. In addition, we also puts forward some ideas about the promotion of some technologies to accelerate the speed of new energy development in our country.

  17. Study of expert system of fault diagnosis for nuclear power plant

    International Nuclear Information System (INIS)

    Chen Zhihui; Xia Hong; Liu Miao

    2005-01-01

    Based on the fault features of Nuclear Power Plant, the ES (expert system) of fault diagnosis has been programmed. The knowledge in the ES adopts the production systems, which can express the certain and uncertain knowledge. For certain knowledge, the simple reasoning mechanism of prepositional logic is adopted. For the uncertain knowledge, CF (certain factor) is used to express the uncertain, thus to set up the reasoning mechanism. In order to solve the 'bottleneck' problem for knowledge acquisition, rough set theory is incorporated into the fault diagnose system and the reduction algorithm based on the discernibility matrix is improved. In the improved algorithm, the measure of attribute importance first calculate the attribute which have the same value in the same decision-sort, then calculate the degrees of attribute in the discernibility matrix. Several different faults have been diagnosed on some emulator with this expert system. (authors)

  18. Study of Power Flow Algorithm of AC/DC Distribution System including VSC-MTDC

    Directory of Open Access Journals (Sweden)

    Haifeng Liang

    2015-08-01

    Full Text Available In recent years, distributed generation and a large number of sensitive AC and DC loads have been connected to distribution networks, which introduce a series of challenges to distribution network operators (DNOs. In addition, the advantages of DC distribution networks, such as the energy conservation and emission reduction, mean that the voltage source converter based multi-terminal direct current (VSC-MTDC for AC/DC distribution systems demonstrates a great potential, hence drawing growing research interest. In this paper, considering losses of the reactor, the filter and the converter, a mathematical model of VSC-HVDC for the load flow analysis is derived. An AC/DC distribution network architecture has been built, based on which the differences in modified equations of the VSC-MTDC-based network under different control modes are analyzed. In addition, corresponding interface functions under five control modes are provided, and a back/forward iterative algorithm which is applied to power flow calculation of the AC/DC distribution system including VSC-MTDC is proposed. Finally, by calculating the power flow of the modified IEEE14 AC/DC distribution network, the efficiency and validity of the model and algorithm are evaluated. With various distributed generations connected to the network at appropriate locations, power flow results show that network losses and utilization of transmission networks are effectively reduced.

  19. Adoption of photovoltaic power supply systems: A study of key determinants in India

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Raja [Department of Management and Enterprise Development, Massey University, Private Box 756, Wellington (New Zealand); Dickie, Laurence [Teaching and Learning, Research, CBS - International Programs, Curtin Business School, Curtin University of Technology, Western Australia (Australia); Peter, Vasanthi M. [Whitireia Polytechnic, Wellington (New Zealand)

    2006-11-15

    This paper examines the key determinants that foster the adoption of photovoltaic (PV) power supply systems. The authors provide empirical evidence which suggest that 'government initiatives' and institutional 'finance' are important influencers of the decision to adopt PV power supply systems in developing countries. In order to diffuse PV technology it is also necessary to provide decision-makers with opportunities for direct and vicarious experience of PV systems through 'demonstration sites'. These factors have been ignored in earlier models of the innovation-decision process formulated by Rogers and the new innovation-decision framework proposed by Kaplan. Governments need to play a leadership role, and this coupled with the availability of Finance and Demonstration Sites will result in an increased interest leading to the adoption of PV technology in India. This research has led to the identification of variables such as the government initiatives, demonstration sites and finance, which are critical to the adoption of PV systems in developing countries like India. The research provided empirical evidence that is currently lacking in the area of adoption of PV technology in developing countries. (author)

  20. Recent Joint Studies Related to the Development of Space Radioisotope Power Systems

    Directory of Open Access Journals (Sweden)

    Kramer Daniel P.

    2017-01-01

    Full Text Available Over the last several years there has been a mutually beneficial ongoing technical interchange between the U.K and the U.S. related to various aspects of space radioisotope power systems (RPS. While this interchange has been primarily focused on materials based activities, it has also included some aspects related to safety, environmental, and lessons learned during the application of RPSs by the U.S. during the last fifty years. Recent joint technical RPS endeavors have centered on the development of a possible “cold” ceramic surrogate for 238PuO2 and 241AmOx and the irradiation of thermoelectrics and other materials at expected RPS related neutron fluences. As the U.S. continues to deploy and Europe develops RPS capability, on-going joint RPS technical interfaces will continue to enhance each entities’ endeavors in this nuclear based power technology critical for deep space exploration.

  1. Modelling of electrical power systems for power flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The industry systems in Brazil are responsible for a consumption of over 50% (fifty per cent) of the total electrical power generated: therefore, they are import loads in power flow studies, and their modeling should be as much the best. Usually, in power flow studies, the industry systems are modeled by taking the influence of the power (active and reactive) and of the current on the voltage into account. Since the inducting motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversize, it is proposed to represent the industry systems as a function of the characteristic of power on shaft versus voltage into account. Since the induction motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversized, it is proposed to represent the industry systems as a function of the characteristics of power on shaft versus voltage for the analysis of power systems, aiming a load flow study. Thereafter, a model of an equivalent motor which has a basis the typical performance curve of an induction motor is present. This model is obtained from empirical parameters, surveyed from a population of over 1000 motors. (author) 3 refs., 1 fig., 4 tabs.

  2. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show......Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...

  3. A Study on Soft Computing Applications in I and C Systems of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kang, H. T.; Chung, H. Y.

    2006-01-01

    In the paper, the application of the soft computing based nuclear power plant(NPP) is discussed. Soft computing such as neural network(NN), fuzzy logic controller(FLC), and genetic algorithm(GA) and/or their hybrid will be a new frontier for the development of instrument and control(I and C) systems in NPP. The application includes several fields, for example, the diagnostics of system transient, optimal data selection in NN, and intelligent control etc. Two or more combining structure, hybrid system, is more efficient. The concept of FLC, NN, and GA is presented in Section 2. The applications of soft computing used in NPP are presented in Section 3

  4. 3D NUMERICAL STUDY OF FLOW IN A SOLAR CHIMNEY POWER PLANT SYSTEM

    Directory of Open Access Journals (Sweden)

    TAHAR TAYEBI

    2015-12-01

    Full Text Available Heat transfer process and fluid flow in a Solar Chimney Power Plant System (SCPPS are investigated numerically. As simulation object we use the Spanish prototype plant. The calculative model and boundary conditions in calculation are introduced. Boussinesq model was chosen in the natural convection processus, Discrete Ordinate radiation model was employed for radiation. The principal factors that influence on the performance of the Solar Chimney have been analysed. The effects on the flow of the Solar Chimney which caused by solar radiation intensity have been simulated. The calculated results are compared and are approximately equivalent to the relative experimental data of the Manzanares prototype. It can be concluded that the temperature difference between the inlet and outlet of collector, as well as the air velocity in the collector of the system, is increase with the increase of solar radiation intensity and the pressure throughout system is negative value.

  5. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    Directory of Open Access Journals (Sweden)

    Nahidul Hoque Samrat

    Full Text Available Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  6. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    Science.gov (United States)

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  7. Technical Study of a Standalone Photovoltaic–Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia

    Science.gov (United States)

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions. PMID:26121032

  8. Design study on evaluation for power conversion system concepts in high temperature gas cooled reactor with gas turbine

    International Nuclear Information System (INIS)

    Minatsuki, Isao; Mizokami, Yorikata

    2007-01-01

    The design studies on High Temperature Gas Cooled Reactor with Gas Turbine (HTGR-GT) have been performed, which were mainly promoted by Japan Atomic Energy Agency (JAEA) and supported by fabricators in Japan. HTGR-GT plant feature is almost determined by selection of power conversion system concepts. Therefore, plant design philosophy is observed characteristically in selection of them. This paper describes the evaluation and analysis of the essential concepts of the HTGR-GT power conversion system through the investigations based on our experiences and engineering knowledge as a fabricator. As a result, the following concepts were evaluated that have advantages against other competitive one, such as the horizontal turbo machine rotor, the turbo machine in an individual vessel, the turbo machine with single shaft, the generator inside the power conversion vessel, and the power conversion system cycle with an intercooler. The results of the study can contribute as reference data when the concepts will be selected. Furthermore, we addressed reasonableness about the concept selection of the Gas Turbine High Temperature Reactor GTHTR300 power conversion system, which has been promoted by JAEA. As a conclusion, we recognized the GTHTR300 would be one of the most promising concepts for commercialization in near future. (author)

  9. EXPERIMENTAL STUDY AND PERFORMANCE OF SOLAR ENERGY SYSTEM WITH GRID CONNECTED POWER SUPPLY

    OpenAIRE

    Pradeep Bharti; Dr. A.K.Sharma

    2017-01-01

    In this paper , we are analyzed about the solar power with grid connection using of various component such as PV Cells battery inverter, and grid power connection , in this way we are connected the grid power and solar power , after that finally we are analyzed the power quality of output with the help of various devices.

  10. Study of a solar PV-diesel-battery hybrid power system for a remotely located population near Rafha, Saudi Arabia

    International Nuclear Information System (INIS)

    Rehman, Shafiqur; Al-Hadhrami, Luai M.

    2010-01-01

    This study presents a PV-diesel hybrid power system with battery backup for a village being fed with diesel generated electricity to displace part of the diesel by solar. The hourly solar radiation data measured at the site along with PV modules mounted on fixed foundations, four generators of different rated powers, diesel prices of 0.2-1.2US$/l, different sizes of batteries and converters were used to find an optimal power system for the village. It was found that a PV array of 2000 kW and four generators of 1250, 750, 2250 and 250 kW; operating at a load factor of 70% required to run for 3317 h/yr, 4242 h/yr, 2820 h/yr and 3150 h/yr, respectively; to produce a mix of 17,640 MWh of electricity annually and 48.33 MWh per day. The cost of energy (COE) of diesel only and PV/diesel/battery power system with 21% solar penetration was found to be 0.190$/kWh and 0.219$/kWh respectively for a diesel price of 0.2$/l. The sensitivity analysis showed that at a diesel price of 0.6$/l the COE from hybrid system become almost the same as that of the diesel only system and above it, the hybrid system become more economical than the diesel only system. (author)

  11. Study and discussion on management of nuclear island in-service inspection procedure system in nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Xueliang; Fan Yancheng

    2014-01-01

    In-service inspection of nuclear island is the important way for keeping safety operation of nuclear power plant. Taking Daya Bay Nuclear Power Plant as example, the management problems of in-service inspection system was studied and discussed from the angle of references, contents, classifications etc. Based on comparison with French practice, some points of view on perfection of in-service inspection system and improvement of management ability under future multi-bases and multi-units management mode were presented. (authors)

  12. A study on DC hybrid three-phase fault current limiting interrupter for a power distribution system

    International Nuclear Information System (INIS)

    Shao, Hongtian; Satoh, Tomoyuki; Yamaguchi, Mitsugi; Fukui, Satoshi; Ogawa, Jun; Satoh, Takao; Ishikawa, Hiroyuki

    2005-01-01

    For the purpose of protecting electric power system, many researches and developments of fault current limiters are being performed. The authors studied a dc hybrid three-phase fault current limiting interrupter (FCLI) composed of a superconducting reactor and an S/N transition element, connected in series each other. The dc hybrid type fault current limiting interrupter can limit a fault current by means of the inductance of high temperature superconducting (HTS) coil together with the normal transition of HTS bulk material (HTSB). In the case of an accident, the normal transition of the bulk material can be accelerated by the magnetic field of the HTS coil. In this paper, the dc hybrid type fault current limiting interrupter for 5.5 km long 6.6 kV-600 A power distribution system is analyzed, and performances of fault current limitation and interruption are confirmed. Moreover, a reclosing operation is discussed for this power distribution system

  13. Design study of nuclear power systems for deep space explorers. (2) Electricity supply capabilities of solid cores

    International Nuclear Information System (INIS)

    Yamaji, Akifumi; Takizuka, Takakazu; Nabeshima, Kunihiko; Iwamura, Takamichi; Akimoto, Hajime

    2009-01-01

    This study has been carried out in series with the other study, 'Criticality of Low Enriched Uranium Fueled Core' to explore the possibilities of a solid reactor electricity generation system for supplying propulsion power of a deep space explorer. The design ranges of two different systems are determined with respect to the electric power, the radiator mass, and the operating temperatures of the heat-pipes and thermoelectric converters. The two systems are the core surface cooling with heat-pipe system (CSHP), and the core direct cooling with heat-pipe system (CDHP). The evaluated electric powers widely cover the 1 to 100 kW range, which had long been claimed to be the range that lacked the power sources in space. Therefore, the concepts shown by this study may lead to a breakthrough of the human activities in space. The working temperature ranges of the main components, namely the heat-pipes and thermoelectric converters, are wide and covers down to relatively low temperatures. This is desirable from the viewpoints of broadening the choices, reducing the development needs, and improving the reliabilities of the devices. Hence, it is advantageous for an early establishment of the concept. (author)

  14. Conclusions and Recommendations Regarding the Deep Sea Hybrid Power Systems Initial Study

    Science.gov (United States)

    2010-06-01

    proton-exchange membrane fuel cells ( PEMFC ) powered with hydrogen and oxygen, similar to that used on proven subsurface vessels; (2) fuel-cells...AND STORAGE OPTIONS CONSIDERED FOR INITIAL STUDY NO. NOMENCLATURE DESCRIPTION 1 PWR Nuclear Reactor + Battery 2 FC1 PEMFC + Line for surface O2...Wellhead Gas + Reformer + Battery 3 FC2 PEMFC + Stored O2 + Wellhead Gas + Reformer + Battery 4 SV1 PEMFC + Submersible Vehicle for O2 Transport

  15. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  16. Feasibility study of the university of Utah TRIGA reactor power upgrade - Part I: Neutronics-based study in respect to control rod system requirements and design

    Directory of Open Access Journals (Sweden)

    Ćutić Avdo

    2013-01-01

    Full Text Available We present a summary of extensive studies in determining the highest achievable power level of the current University of Utah TRIGA core configuration in respect to control rod requirements. Although the currently licensed University of Utah TRIGA power of 100 kW provides an excellent setting for a wide range of experiments, we investigate the possibility of increasing the power with the existing fuel elements and core structure. Thus, we have developed numerical models in combination with experimental procedures so as to assess the potential maximum University of Utah TRIGA power with the currently available control rod system and have created feasibility studies for assessing new core configurations that could provide higher core power levels. For the maximum determined power of a new University of Utah TRIGA core arrangement, a new control rod system was proposed.

  17. Power system dynamics and control

    CERN Document Server

    Kwatny, Harry G

    2016-01-01

    This monograph explores a consistent modeling and analytic framework that provides the tools for an improved understanding of the behavior and the building of efficient models of power systems. It covers the essential concepts for the study of static and dynamic network stability, reviews the structure and design of basic voltage and load-frequency regulators, and offers an introduction to power system optimal control with reliability constraints. A set of Mathematica tutorial notebooks providing detailed solutions of the examples worked-out in the text, as well as a package that will enable readers to work out their own examples and problems, supplements the text. A key premise of the book is that the design of successful control systems requires a deep understanding of the processes to be controlled; as such, the technical discussion begins with a concise review of the physical foundations of electricity and magnetism. This is followed by an overview of nonlinear circuits that include resistors, inductors, ...

  18. Power management for energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gybel Hovgaard, T.

    2013-02-15

    In this thesis, we consider the control of two different industrial applications that belong at either end of the electricity grid; a power consumer in the form of a commercial refrigeration system, and wind turbines for power production. Our primary studies deal with economic model predictive control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms, e.g., in supermarkets. For control of the commercial refrigeration application as well as the wind turbine application, we propose an economic optimizing model predictive controller, economic MPC. Our investigations are primarily concerned with: 1) modeling of the applications to suit the chosen control framework; 2) formulating the MPC controller laws to overcome challenges introduced by the industrial applications, and defining economic objectives that reect the real physics of the systems as well as our control objectives; 3) solving the involved, non-trivial optimization problems eciently in real-time; 4) demonstrating the feasibility and potential of the proposed methods by extensive simulation and comparison with existing control methods and evaluation of data from systems in actual operation. We demonstrate, i.a., substantial cost savings, on the order of 30 %, compared to a standard thermostat-based supermarket refrigeration system and show how our methods exhibit sophisticated demand response to real-time variations in electricity prices. Violations of the temperature ranges can be kept at a very low frequency of occurrence inspite of the presence of uncertainty. For the power output from wind turbines, ramp rates, as low a 3 % of the rated power per minute, can be effectively ensured with the use of energy storage and we show how the active use of rotor inertia as an additional energy storage can reduce the needed storage capacity by up to 30 % without reducing the power output. (Author)

  19. A study for the sequence of events (SOE) system on the nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Chae; Jeon, Jong Sun; Lee, Sun Sung; Lee, Kyung Ho; Lee, Byung Ju; Sohn, Kwang Young [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    It is important to identify where and why an event or a trip is occurred in the Nuclear Power Plant(NPP) and to provide proper resolution against above situation. In order to analyze the prime cause or conspicuous reason of trouble occurred after events or trips occur, the Sequence of Events(SOE) system has been adopted in Korean NPP to acquire the sequential information along where and when an event or a trip take place. The SOE system of UCN 3 and 4 plant which is included in the Plant Data Acquisition System (PDAS), shares the 3205 computer and system software with PDAS. Sharing of the computer H/w and S/W, however, requires more complicated process to provide the events or trip signals due to the inherent characteristics of the shared system. Moreover there are high potentiality of collision between synchronization signals and data transmitted to the Plant Computer System (PCS), when the synchronization signals are sent from PCS to the three SOE processors. When this collision happens the SOE system will break down, thus it is not possible to analyze the trend of events or trips. An independent SOE system composed with single processor is proposed in this paper. To begin with, the analyses on the hardware and software of SOE and PDAS system of UCN 3 and 4 were performed to justify the problems and the resolution if it exists. In order to test the new SOE system, VMEbus, VM30 CPU, change of status I/O card and OS-9 for the operating system were adopted and the analysis for this test system was done as follows; the verification should be achieved through the simulation; the simulated signals for events are given the test system as inputs and the outputs are monitored to verify whether the sequential events logging function works well or not on PC. In conclusion, this report is expected to provide the technical background for the improvement and changing of the NPP PDAS and SOE system in the future. 18 tabs., 33 figs., 26 refs. (Author) .new.

  20. A study for the sequence of events (SOE) system on the nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Byung Chae; Jeon, Jong Sun; Lee, Sun Sung; Lee, Kyung Ho; Lee, Byung Ju; Sohn, Kwang Young

    1996-06-01

    It is important to identify where and why an event or a trip is occurred in the Nuclear Power Plant(NPP) and to provide proper resolution against above situation. In order to analyze the prime cause or conspicuous reason of trouble occurred after events or trips occur, the Sequence of Events(SOE) system has been adopted in Korean NPP to acquire the sequential information along where and when an event or a trip take place. The SOE system of UCN 3 and 4 plant which is included in the Plant Data Acquisition System (PDAS), shares the 3205 computer and system software with PDAS. Sharing of the computer H/w and S/W, however, requires more complicated process to provide the events or trip signals due to the inherent characteristics of the shared system. Moreover there are high potentiality of collision between synchronization signals and data transmitted to the Plant Computer System (PCS), when the synchronization signals are sent from PCS to the three SOE processors. When this collision happens the SOE system will break down, thus it is not possible to analyze the trend of events or trips. An independent SOE system composed with single processor is proposed in this paper. To begin with, the analyses on the hardware and software of SOE and PDAS system of UCN 3 and 4 were performed to justify the problems and the resolution if it exists. In order to test the new SOE system, VMEbus, VM30 CPU, change of status I/O card and OS-9 for the operating system were adopted and the analysis for this test system was done as follows; the verification should be achieved through the simulation; the simulated signals for events are given the test system as inputs and the outputs are monitored to verify whether the sequential events logging function works well or not on PC. In conclusion, this report is expected to provide the technical background for the improvement and changing of the NPP PDAS and SOE system in the future. 18 tabs., 33 figs., 26 refs. (Author) .new

  1. Study of toluene stability for an Organic Rankine Cycle (ORC) space-based power system

    Science.gov (United States)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    The design, fabrication, assembly, and endurance operation of a dynamic test loop, built to evaluate the thermal stability of a proposed Organic Rankine Cycle (ORC) working fluid, is discussed. The test fluid, toluene, was circulated through a heater, simulated turbine, regenerator, condenser and pump to duplicate an actual ORC system. The maximum nominal fluid temperature, 750 F, was at the turbine simulator inlet. Samples of noncondensible gases and liquid toluene were taken periodically during the test. The samples were analyzed to identify the degradation products formed and the quantity of these products. From these data it was possible to determine the degradation rate of the working fluid and the generation rate of noncondensible gases. A further goal of this work was to relate the degradation observed in the dynamic operating loop to degradation obtained in isothermal capsule tests. This relationship was the basis for estimating the power loop degradation in the Space Station Organic Rankine Cycle system.

  2. A study on the operation analysis of the power conditioning system with real HTS SMES coil

    International Nuclear Information System (INIS)

    Kim, A.R.; Jung, H.Y.; Kim, J.H.; Ali, Mohd. Hasan; Park, M.; Yu, I.K.; Kim, H.J.; Kim, S.H.; Seong, K.C.

    2008-01-01

    Voltage sag from sudden increasing loads is one of the major problems in the utility network. In order to compensate the voltage sag problem, power compensation devices have widely been developed. In the case of voltage sag, it needs an energy source to overcome the energy caused by voltage sag. According as the SMES device is characterized by its very high response time of charge and discharge, it has widely been researched and developed for more than 20 years. However, before the installation of SMES into utility, the system analysis has to be carried out with a certain simulation tool. This paper presents a real-time simulation algorithm for the SMES system by using the miniaturized SMES model coil whose properties are same as those of real size SMES coil. With this method, researchers can easily analyse the performance of SMES connected into utility network by abstracting the properties from the real modeled SMES coil and using the virtual simulated power network in RSCAD/RTDS

  3. STUDIES ON IGBT MODULE TO IMPROVE THE RELIABILITY OF POWER ELECTRONIC SYSTEMS

    DEFF Research Database (Denmark)

    Choi, Uimin

    component level to converter level. It is divided into two main parts: the first part, which consists of Chapters 2 and 3, is reliability studies of the IGBT module regarding thermal stresses and the second part, composed of Chapters 4 and 5, discusses strategies to improve the reliability and availability...... are presented. Then, in Chapter 3, the effect of junction temperature swing duration t△Tj on the lifetime of the transfer molded Intelligent Power IGBT Module is investigated and modeled based on the power cycling test results. In addition, the physics-of-failure analysis results of the tested modules...... are presented. Finally, in Chapters 4 and 5, open-circuit fault detection and fault-tolerant control methods are proposed for two kinds of neutral-point clamped three-level inverters T-type and NPC inverters. One of main contributions in this project is the development of an apparatus and methodology...

  4. Manned spacecraft electrical power systems

    Science.gov (United States)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  5. Interconnected power systems

    International Nuclear Information System (INIS)

    Fassina, E.

    2001-01-01

    The import of electric power from foreign countries at profitable prices is today a determinant factor to prime the competition in a national free trade. It is important to define the power transmission capacity and economic regulations for import forms in 2001 [it

  6. Using System Dynamics to Define, Study, and Implement Smart Control Strategies on the Electric Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    Lyle G. Roybal; Robert F Jeffers

    2013-07-01

    The United States electric power grid is the most complex and expansive control system in the world. Local generation control occurs at individual units based on response time and unit economics, larger regional control coordinates unit response to error conditions, and high level large-area regional control is ultimately administered by a network of humans guided by economic and resiliency related factors. Under normal operating conditions, the grid is a relatively slow moving entity that exhibits high inertia to outside stimuli, and behaves along repeatable diurnal and seasonal patterns. However, that paradigm is quickly changing because of the increasing implementation of renewable generation sources. Renewable generators by nature cannot be tightly controlled or scheduled. They appear like a negative load to the system with all of the variability associated with load on a larger scale. Also, grid-reactive loads (i.e. smart devices) can alter their consumption based on price or demand rules adding more variability to system behavior. This paper demonstrates how a systems dynamic modeling approach capable of operating over multiple time scales, can provide valuable insight into developing new “smart-grid” control strategies and devices needed to accommodate renewable generation and regulate the frequency of the grid.

  7. Skylab technology electrical power system

    Science.gov (United States)

    Woosley, A. P.; Smith, O. B.; Nassen, H. S.

    1974-01-01

    The solar array/battery power systems for the Skylab vehicle were designed to operate in a solar inertial pointing mode to provide power continuously to the Skylab. Questions of power management are considered, taking into account difficulties caused by the reduction in power system performance due to the effects of structural failure occurring during the launching process. The performance of the solar array of the Apollo Telescope Mount Power System is discussed along with the Orbital Workshop solar array performance and the Airlock Module power conditioning group performance. A list is presented of a number of items which have been identified during mission monitoring and are recommended for electrical power system concepts, designs, and operation for future spacecraft.

  8. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  9. Technical study of real-time simulation system for digital I and C system of steam generator in nuclear power plant

    International Nuclear Information System (INIS)

    Shi Ji; Jiang Mingyu; Ma Yunqin

    2004-01-01

    The real-time simulation system, which forms a interactive closed circle together with the steam generator control system, has been developed using a dynamic mathematical model of steam generator in this paper. It can provide a simulation target for upgrades of digital Instrument and Control system in Nuclear Power Plant (NPP) and is applicable for further research of control schemes. With this program, the authors have studied and analyzed the response of transient parameters to some different disturbance, the calculated results are in good agreement with those calculated by NPP simulator program. This will give a theoretical analysis for upgrades of digital I and C system in nuclear power plant

  10. Basic Study of Establishment of Quality Assurance Processes to Develop an Integrated Quality Assurance System for Nuclear Power Plant Construction

    International Nuclear Information System (INIS)

    Lim, Byungki; Moon, Byeongsuk; Lee, Jae Kyoung

    2014-01-01

    An integrated quality assurance system has necessitated carrying out quality assurance programs in a systematic manner because the opportunities to expand business in overseas markets have increased since the export of a nuclear power plant to UAE in 2009. In this study, we use PDCA method to systematically analyze the quality assurance procedures that were used in previous projects for constructing nuclear power plants. We reached a classification system of quality assurance processes at each phase of nuclear power plant construction by integrating similar work related to quality such as planning, design, equipment manufacturing, construction and start-up. We also established a hierarchy of quality assurance processes to develop an integrated quality assurance system as a technology goal to be developed later. To obtain most updated quality assurance activities, a quality assurance process is structured by integrating similar works analyzed from quality assurance procedures through PDCA cycle method. At the implementation phase of Hierarchy of quality processes and sequence of processes for constructing nuclear power plant are established in this study. Integrated quality assurance system is to be developed by connecting organizations as well as stakeholders such as owners, Architect engineering, suppliers, contractors, and sub-contractors to carry out assigned work efficiently

  11. Basic Study of Establishment of Quality Assurance Processes to Develop an Integrated Quality Assurance System for Nuclear Power Plant Construction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Byungki; Moon, Byeongsuk; Lee, Jae Kyoung [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    An integrated quality assurance system has necessitated carrying out quality assurance programs in a systematic manner because the opportunities to expand business in overseas markets have increased since the export of a nuclear power plant to UAE in 2009. In this study, we use PDCA method to systematically analyze the quality assurance procedures that were used in previous projects for constructing nuclear power plants. We reached a classification system of quality assurance processes at each phase of nuclear power plant construction by integrating similar work related to quality such as planning, design, equipment manufacturing, construction and start-up. We also established a hierarchy of quality assurance processes to develop an integrated quality assurance system as a technology goal to be developed later. To obtain most updated quality assurance activities, a quality assurance process is structured by integrating similar works analyzed from quality assurance procedures through PDCA cycle method. At the implementation phase of Hierarchy of quality processes and sequence of processes for constructing nuclear power plant are established in this study. Integrated quality assurance system is to be developed by connecting organizations as well as stakeholders such as owners, Architect engineering, suppliers, contractors, and sub-contractors to carry out assigned work efficiently.

  12. A Study of a Two Stage Maximum Power Point Tracking Control of a Photovoltaic System under Partially Shaded Insolation Conditions

    Science.gov (United States)

    Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio

    A photovoltaic array shows relatively low output power density, and has a greatly drooping Current-Voltage (I-V) characteristic. Therefore, Maximum Power Point Tracking (MPPT) control is used to maximize the output power of the array. Many papers have been reported in relation to MPPT. However, the Current-Power (I-P) curve sometimes shows multi-local maximum points mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. In addition, simulated experiment confirms fundament al operation of the two stage MPPT control.

  13. A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio [Kogakuin University, Tokyo 163-8677 (Japan)

    2006-11-23

    A photovoltaic (PV) array shows relatively low output power density, and has a greatly drooping current-voltage (I-V) characteristic. Therefore, maximum power point tracking (MPPT) control is used to maximize the output power of the PV array. Many papers have been reported in relation to MPPT. However, the current-power (I-P) curve sometimes shows multi-local maximum point mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However, most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. (author)

  14. Design of an optimized photovoltaic and microturbine hybrid power system for a remote small community: Case study of Palestine

    International Nuclear Information System (INIS)

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • Solar data was analyzed in the location under consideration. • A program was developed to simulate the operation of the PV-microturbine hybrid system. • Different scenarios were analyzed to select and design the optimal system. • It is cost effective to power houses in remote areas with such hybrid systems. • The hybrid system had lower CO 2 emissions compared to a microturbine only operation. - Abstract: Hybrid systems are defined as systems that utilize more than one energy source to supply a certain load. The implementation of a hybrid system that is based upon Photovoltaic (PV) to supply power to remote and isolated locations is considered a viable option. This is especially true for areas that receive sufficient amounts of annual solar radiation. While analysis of hybrid systems that depend on diesel generators as backup sources can be found in many previous research works, detailed techno economic analysis of hybrid systems that depend on microturbines as backup sources are less addressed. A techno-economic analysis and the design of a complete hybrid system that comprises of Photovoltaic (PV) panels, a battery system, and a microturbine as a backup power source for a remote community is presented in this paper. The investigation of the feasibility of using the microturbines as backup sources in the hybrid systems is one of the purposes of this study. A scenario depending on PV standalone system and other scenario depending on microturbine only were also studied in this paper. The comparison between different scenarios with regards to the cost of energy and pollutant emissions was also conducted. A simulation program was developed to optimize both the sizes of the PV system and the battery bank, and consequently determine the detailed specifications of the different components that make up the hybrid system. The optimization of the PV tilt angle that maximizes the annual energy production was also carried out. The effect of the

  15. Reactor power control system

    International Nuclear Information System (INIS)

    Tomisawa, Teruaki.

    1981-01-01

    Purpose: To restore reactor-power condition in a minimum time after a termination of turbine bypass by reducing the throttling of the reactor power at the time of load-failure as low as possible. Constitution: The transient change of the internal pressure of condenser is continuously monitored. When a turbine is bypassed, a speed-control-command signal for a coolant recirculating pump is generated according as the internal pressure of the condenser. When the signal relating to the internal pressure of the condenser indicates insufficient power, a reactor-control-rod-drive signal is generated. (J.P.N.)

  16. Power system protection 3 application

    CERN Document Server

    1995-01-01

    The worldwide growth in demand for electricity has forced the pace of developments in electrical power system design to meet consumer needs for reliable, secure and cheap supplies. Power system protection, as a technology essential to high quality supply, is widely recognised as a specialism of growing and often critical importance, in which power system needs and technological progress have combined to result in rapid developments in policy and practice in recent years. In the United Kingdom, the need for appropriate training in power system protection was recognised in the early 1960s with t

  17. Organic Rankine-cycle power systems working fluids study. Topical report No. 1: Fluorinol 85

    Science.gov (United States)

    Jain, M. L.; Demirgian, J. C.; Cole, R. L.

    1986-09-01

    The thermal stability limits and degradation rates of Fluorinol 85 as a function of maximum cycle temperatures are determined. Following the design and construction of a dynamic test loop capable of simulating the thermodynamic conditions of possible prototypical organic Rankine-cycle (ORC) power systems, several test runs were completed. The Fluorinol 85 test loop was operated for about 3800 h at a temperature range of 525 to 600 F. Both liquid and noncondensable vapor (gas) samples were drawn periodically and analyzed using capillary column gas chromatography, gas chromatography/mass spectrometry and mass spectrometry. Results indicate that Fluorinol 85 would not decompose significantly over an extended period, up to a maximum cycle temperature of 550 F. However, 506-h data at 575 F show initiation of significant degradation. The 770-h data at 600 F, using a fresh charge of Fluorinol 85, indicate an annual degradation rate of more than 17.2%. The most significant degradation product observed is hydrofluoric acid, which could cause severe corrosion in an ORC system. Removal of the hydrofluoric acid and prevention of temperature extremes are necessary for an ORC system using Fluorinol 85 as a working fluid.

  18. Water Powered Bioassay System

    National Research Council Canada - National Science Library

    Lin, Liwei

    2004-01-01

    ... of 0.2 1/hr without requiring electrical power. A low-leakage, hole-in-the-wall micro valve was demonstrated that provided fluidic resistance 255 times higher in the closed state than in the open state...

  19. Power Systems Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    California Institute of Technology

    2007-03-31

    In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

  20. A New Study of Maximum Power Point Tracker Techniques and Comparison for PV Systems

    Directory of Open Access Journals (Sweden)

    Ahmed M. Atallah

    2016-07-01

    Full Text Available The maximum power point tracker techniques vary in many aspects as simplicity, digital or analogical implementation, sensor required, convergence speed, range of effectiveness, implementation hardware,popularity, cost and in other aspects. This paper presents in details comparative study between two most popular  algorithm  technique  which  is  incremental  conductance  algorithm  and  perturb  and  observe algorithm.  Two  different  converters  buck  and  cuk  converter  use  for  comparative  in  this  study. Few comparisons such as efficiency, voltage, current and power output for each different combination have been recorded. Multi changes in irradiance, temperature by keeping voltage and current as main sensed parameter been done in the simulation. Matlab simulink tools have been used for performance evaluation on energy point. Simulation will consider different solar irradiance and temperature variations.

  1. A study on the implementation of an integrated Environmental Qualification Management System(EQMS) for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bhang, Keug Jin; Jeong, Sun Chul; Kang, Pil Sun [KHNP CRI, Daejeon (Korea, Republic of)

    2012-10-15

    Environmental Qualification Management System(EQMS) for Nuclear Power Plant is a web based program for preventing degradation and managing original functions of environmental qualification equipment during nuclear power plant life cycle by inspecting and improving status of them periodically. But cognitive issues have stayed in the construction phase of EQMS: almost EQ equipment are not registered in DREAMS because the approach is not based on a standard data structure. In this study, we are to obtain the requirements of integrated EQMS by considering a standard and surveying the problems of current EQMS.

  2. A study on the implementation of an integrated Environmental Qualification Management System(EQMS) for nuclear power plant

    International Nuclear Information System (INIS)

    Bhang, Keug Jin; Jeong, Sun Chul; Kang, Pil Sun

    2012-01-01

    Environmental Qualification Management System(EQMS) for Nuclear Power Plant is a web based program for preventing degradation and managing original functions of environmental qualification equipment during nuclear power plant life cycle by inspecting and improving status of them periodically. But cognitive issues have stayed in the construction phase of EQMS: almost EQ equipment are not registered in DREAMS because the approach is not based on a standard data structure. In this study, we are to obtain the requirements of integrated EQMS by considering a standard and surveying the problems of current EQMS

  3. Fuel Cell/ Super-capacitor power management system assessment and Lifetime Cost study in a 500kVA UPS

    Directory of Open Access Journals (Sweden)

    Imen Ben Amira

    2018-03-01

    Full Text Available A 500 KVA Uninterruptible power supply (UPS using Fuel Cells (FC and super-capacitors (SCs was studied with the worst case of 10 minutes and eight hours of interruption per day. A power management system was established to control the FC and the SCs in order to extract the hybridization benefits with a comparison between a Proton exchange membrane FC (PEMFC working alone and another combined with SCs. Moreover, possible FC degradations were discussed. The start/stop cycling, the high-power loads and load changes degradations were taken into consideration in order to estimate the FC lifetime span using a prediction formula. Besides, the FC costs were studied to estimate the best average cost. Finally, the SCs filter constant time and their charging currents were revealed.

  4. Study on photovoltaic power systems. Development of dispersed stand-alone system (seawater desalination system for remote island areas-osmosis)

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    This study deals with development of a system of seawater osmosis desalination for remote island areas and agricultural-process water-supply. The demonstration system, installed in Hosojima, was simulated for examination. The yearly-averaged generated electric energy was 76 kWh/day, and the consumed energy 72 kWh/day. The calculated water productivity was 5.5 m/sup 3//day in the first step, and 4.9 m/sup 3//day in the second. This amount had a high balance with that required for hydropholic water of 4.5 m/sup 3//day. The generated output was 30.8 kWp (power range of 10-100 kW) for the solar cells, and 840 Ah for the electric batteries. The generated direct-current power was supplied to the loads without use of a DA converter, which contributes to the high energy efficiency and the inexpensiveness of the system. This system can be unattendantly operated in the normal conditions. After construction of the demonstration plant, the respective units and the total system were adjusted to give good results. (1 fig, 1 tab)

  5. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    Energy Technology Data Exchange (ETDEWEB)

    King, W.R.; Johnson, B.L. III (Science Applications International Corp., McLean, VA (USA))

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries'' (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study. 86 refs.

  6. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    Science.gov (United States)

    King, W. R.; Johnson, B. L., III

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study.

  7. Thermoeconomic Modeling and Parametric Study of a Photovoltaic-Assisted 1 MWe Combined Cooling, Heating, and Power System

    Directory of Open Access Journals (Sweden)

    Alexandros Arsalis

    2016-08-01

    Full Text Available In this study a small-scale, completely autonomous combined cooling, heating, and power (CCHP system is coupled to a photovoltaic (PV subsystem, to investigate the possibility of reducing fuel consumption. The CCHP system generates electrical energy with the use of a simple gas turbine cycle, with a rated nominal power output of 1 MWe. The nominal power output of the PV subsystem is examined in a parametric study, ranging from 0 to 600 kWe, to investigate which configuration results in a minimum lifecycle cost (LCC for a system lifetime of 20 years of service. The load profile considered is applied for a complex of households in Nicosia, Cyprus. The solar data for the PV subsystem are taken on an hourly basis for a whole year. The results suggest that apart from economic benefits, the proposed system also results in high efficiency and reduced CO2 emissions. The parametric study shows that the optimum PV capacity is 300 kWe. The minimum lifecycle cost for the PV-assisted CCHP system is found to be 3.509 million €, as compared to 3.577 million € for a system without a PV subsystem. The total cost for the PV subsystem is 547,445 €, while the total cost for operating the system (fuel is 731,814 € (compared to 952,201 € for a CCHP system without PVs. Overall the proposed system generates a total energy output of 210,520 kWh (during its whole lifetime, which translates to a unit cost of 17 €/kWh.

  8. The Power of a Question: A Case Study of Two Organizational Knowledge Capture Systems

    Science.gov (United States)

    Cooper, Lynn P.

    2003-01-01

    This document represents a presentation regarding organizational knowledge capture systems which was delivered at the HICSS-36 conference held from January 6-9, 2003. An exploratory case study of two knowledge resources is offered. Then, two organizational knowledge capture systems are briefly described: knowledge transfer from practitioner and the use of questions to represent knowledge. Finally, the creation of a database of peer review questions is suggested as a method of promoting organizational discussions and knowledge representation and exchange.

  9. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  10. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  11. Handbook of power systems I

    CERN Document Server

    Pardalos, P M; Pereira, Mario V; Iliadis, Niko A

    2010-01-01

    Energy is one of the world's most challenging problems, and power systems are an important aspect of energy-related issues. The Handbook of Power Systems contains state-of-the-art contributions on power systems modeling. In particular, it covers topics like operation planning, expansion planning, transmission and distribution modelling, computing technologies in energy systems, energy auctions, risk management, market regulation, stochastic programming in energy, and forecasting in energy. The book is separated into nine sections, which cover the most important areas of energy systems. The con

  12. Power systems engineering and mathematics

    CERN Document Server

    Knight, U G

    1972-01-01

    Power Systems Engineering and Mathematics investigates the application of mathematical aids, particularly the techniques of resource planning, to some of the technical-economic problems of power systems engineering. Topics covered include the process of engineering design and the use of computers in system design and operation; power system planning and operation; time scales and computation in system operation; and load prediction and generation capacity. This volume is comprised of 13 chapters and begins by outlining the stages in the synthesis of designs (or operating states) for engineerin

  13. Research and development of system to utilize photovoltaic energy. Study on large-scale PV power supply system; Taiyoko hatsuden riyo system no kenkyu kaihatsu. Taiyo energy kyokyu system no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on large-scale PV power supply systems in fiscal 1994. (1) On optimization of large-scale systems, the conceptual design of the model system was carried out which supposes a large-scale integrated PV power generation system in desert area. As a result, a pair of 250kW generation system was designed as minimum one consisting power unit. Its frame and construction method were designed considering weather conditions in the inland of China. (2) On optimization of large-scale transmission systems, as large-scale power transmission systems for PV power generation, the following were studied: AC aerial transmission, DC aerial transmission, superconducting transmission, hydrogen gas pipeline, and LH2 tanker transport. (3) On the influence of large-scale systems, it was estimated that emission control is expected by substituting PV power generation for coal fired power generation, the negative influence on natural environment cannot be supposed, and the favorable economic effect is expected as influence on social environment. 4 tabs.

  14. Reactive power compensating system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Timothy J. (Redondo Beach, CA); El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Seattle, WA)

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  15. Reactive Power Compensating System.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  16. Power system protection 2 systems and methods

    CERN Document Server

    1995-01-01

    The worldwide growth in demand for electricity has forced the pace of developments in electrical power system design to meet consumer needs for reliable, secure and cheap supplies. Power system protection, as a technology essential to high quality supply, is widely recognised as a specialism of growing and often critical importance, in which power system needs and technological progress have combined to result in rapid developments in policy and practice in recent years. In the United Kingdom, the need for appropriate training in power system protection was recognised in the early 1960s with t

  17. Assessing organizational culture in complex sociotechnical systems. Methodological evidence from studies in nuclear power plant maintenance organizations

    International Nuclear Information System (INIS)

    Reiman, T.

    2007-03-01

    Failures in industrial organizations dealing with hazardous technologies can have widespread consequences for the safety of the workers and the general population. Psychology can have a major role in contributing to the safe and reliable operation of these technologies. Most current models of safety management in complex sociotechnical systems such as nuclear power plant maintenance are either non-contextual or based on an overly-rational image of an organization. Thus, they fail to grasp either the actual requirements of the work or the socially-constructed nature of the work in question. The general aim of the present study is to develop and test a methodology for contextual assessment of organizational culture in complex sociotechnical systems. This is done by demonstrating the findings that the application of the emerging methodology produces in the domain of maintenance of a nuclear power plant (NPP). The concepts of organizational culture and organizational core task (OCT) are operationalized and tested in the case studies

  18. Assessing organizational culture in complex sociotechnical systems. Methodological evidence from studies in nuclear power plant maintenance organizations

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, T.

    2007-03-15

    Failures in industrial organizations dealing with hazardous technologies can have widespread consequences for the safety of the workers and the general population. Psychology can have a major role in contributing to the safe and reliable operation of these technologies. Most current models of safety management in complex sociotechnical systems such as nuclear power plant maintenance are either non-contextual or based on an overly-rational image of an organization. Thus, they fail to grasp either the actual requirements of the work or the socially-constructed nature of the work in question. The general aim of the present study is to develop and test a methodology for contextual assessment of organizational culture in complex sociotechnical systems. This is done by demonstrating the findings that the application of the emerging methodology produces in the domain of maintenance of a nuclear power plant (NPP). The concepts of organizational culture and organizational core task (OCT) are operationalized and tested in the case studies

  19. Lunar power systems. Final report

    International Nuclear Information System (INIS)

    1986-12-01

    The findings of a study on the feasibility of several methods of providing electrical power for a permanently manned lunar base are provided. Two fundamentally different methods for lunar electrical power generation are considered. One is the use of a small nuclear reactor and the other is the conversion of solar energy to electricity. The baseline goal was to initially provide 300 kW of power with growth capability to one megawatt and eventually to 10 megawatts. A detailed, day by day scenario for the establishment, build-up, and operational activity of the lunar base is presented. Also presented is a conceptual approach to a supporting transportation system which identifies the number, type, and deployment of transportation vehicles required to support the base. An approach to the use of solar cells in the lunar environment was developed. There are a number of heat engines which are applicable to solar/electric conversions, and these are examined. Several approaches to energy storage which were used by the electric power utilities were examined and those which could be used at a lunar base were identified

  20. Incipient fault detection and power system protection for spaceborne systems

    Science.gov (United States)

    Russell, B. Don; Hackler, Irene M.

    1987-01-01

    A program was initiated to study the feasibility of using advanced terrestrial power system protection techniques for spacecraft power systems. It was designed to enhance and automate spacecraft power distribution systems in the areas of safety, reliability and maintenance. The proposed power management/distribution system is described as well as security assessment and control, incipient and low current fault detection, and the proposed spaceborne protection system. It is noted that the intelligent remote power controller permits the implementation of digital relaying algorithms with both adaptive and programmable characteristics.

  1. Electrical power systems for Mars

    Science.gov (United States)

    Giudici, Robert J.

    1986-01-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  2. Impact of advanced wind power ancillary services on power system

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  3. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 2, part 2: System engineering, cost and programmatics

    Science.gov (United States)

    Hanley, G. M.

    1979-01-01

    Volume 2, Part 2, of a seven volume Satellite Power Systems (SPS) report is presented. Part 2 covers cost and programmatics and is divided into four sections. The first section gives illustrations of the SPS reference satellite and rectenna concept, and an overall scenario for SPS space transportation involvement. The second section presents SPS program plans for the implementation of PHASE C/D activities. These plans describe SPS program schedules and networks, critical items of systems evolution/technology development, and the natural resources analysis. The fourth section presents summary comments on the methods and rationale followed in arriving at the results documented. Suggestions are also provided in those areas where further analysis or evaluation will enhance SPS cost and programmatic definitions.

  4. Power transmission study for a wave energy scheme based on Lancaster Flexible Bag devices. Supervisory and telecontrol system

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Various options are considered for power data transmission associated with the power collection and transmission system of a postulated wave energy conversion scheme off the Outer Hebrides. For data transmission between the off-shore and on-shore power collector stations a Power Line Carrier (PLC) system is judged to be most suitable. In the case of data transmission between power collector stations and the main control centre, a microwave/radio link is proposed as the amount of data does not lend itself to a PLC system. Cost estimates, in the main for equipment supply only, are given.

  5. Status of CEA design and simulation studies of 200 KWe turboelectric space power system

    International Nuclear Information System (INIS)

    Carre, F.; Proust, E.; Gervaise, F.; Schwartz, J.P.; Tilliette, Z.; Vrillon, B.

    1987-01-01

    This paper presents the updated design features of the reference 200 kWe turboelectric space generator studied in France, and comments some of the alternative options to be analyzed in the near future, concerning the reactor and the conversion system in particular. Also presented the major conclusions of the simulation studies, that have been performed to analyze the overall behavior of the reference generator, during the start up and the accidental transients

  6. The importance of meteorology in the environmental impacts assessment of nuclear power plants: scenarios studies using geographic information system

    International Nuclear Information System (INIS)

    Leao, I.L.B.; Biagio, R.M.S.; Costa, E.M.; Alves, R.N.

    1999-01-01

    The Brazilian Nuclear Power Plant (CNAAA) is located in a very complex region of the state of Rio de Janeiro. The environmental impact caused by the normal operation of such installation can be better evaluated by using an integrated approach, in which a geographical information system plays a very important role. In this study, environmental scenarios are integrated with some extreme and representative meteorological situations. (author)

  7. Study on profits and the financial position of the Dutch power transmission system operator Tennet 2005-2009

    International Nuclear Information System (INIS)

    2010-12-01

    A study has been conducted into the profits of the grid operator of the Dutch national high-voltage power transmission system operator TenneT in the years 2005 to 2009. Also attention is paid to the financial position of TenneT. These results are taken into account with regard to method decisions for TenneT in the fifth regulatory period. [nl

  8. Developing maintainability for tokamak fusion power systems. Phase I report. Volume I. Study results

    International Nuclear Information System (INIS)

    Zahn, H.S.

    1977-10-01

    The overall purpose of the study is to identify design features of tokamak fusion power reactors which contribute to the achievement of high levels of maintainability. In this first phase, the principal emphasis is on scheduled maintenance whose frequency is determined by the life of the reactor first wall/blanket. Remote operations are baselined. Five conceptual reactor designs have been analyzed. Each concept is characterized by the size of the replaceable first wall/blanket module--large, intermediate, small--and whether access to the module was from the outside of the reactor, the inside of the reactor or a combination of both. The study results are expressed in terms of availability (scheduled maintenance downtime), the costs of maintenance (capital and recurring) and the percent effect of maintenance on the cost of electricity. During this first phase, the study benefitted significantly by the critical review of the feasibility of maintenance functions and the time-to-perform estimates by numerous persons involved in nuclear maintenance and remote operations

  9. Power reactor information system (PRIS)

    International Nuclear Information System (INIS)

    1989-06-01

    Since the very beginning of commercial operation of nuclear power plants, the nuclear power industry worldwide has accumulated more than 5000 reactor years of experience. The IAEA has been collecting Operating Experience data for Nuclear Power Plants since 1970 which were computerized in 1980. The Agency has undertaken to make Power Reactor Information System (PRIS) available on-line to its Member States. The aim of this publication is to provide the users of PRIS from their terminals with description of data base and communication systems and to show the methods of accessing the data

  10. RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Popescu V.S.

    2012-04-01

    Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.

  11. Impacts of Wind Power on Power System Stability

    NARCIS (Netherlands)

    Vittal, E.; Keane, A.; Slootweg, J.G.; Kling, W.L.; Ackermann, T.

    2012-01-01

    This chapter examines how wind power will impact the stability of power systems. It focuses on the three aspects of power system stability: voltage stability, rotor angle stability and frequency stability. It completes a detailed analysis as to how wind power in power systems will impact the

  12. Building America Case Study: Photovoltaic Systems with Module-Level Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    Direct current (DC) power optimizers and microinverters (together known as module-level power electronics, or MLPE) are one of the fastest growing market segments in the solar industry. According to GTM Research in The Global PV Inverter Landscape 2015, over 55% of all residential photovoltaic (PV) installations in the United States used some form of MLPE in 2014.

  13. Electrical power system WP-04

    Science.gov (United States)

    Nored, Donald L.

    1990-01-01

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  14. Feasibility Analysis and Simulation of Integrated Renewable Energy System for Power Generation: A Hypothetical Study of Rural Health Clinic

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2015-01-01

    Full Text Available This paper presents the feasibility analysis and study of integrated renewable energy (IRE using solar photovoltaic (PV and wind turbine (WT system in a hypothetical study of rural health clinic in Borno State, Nigeria. Electrical power consumption and metrology data (such as solar radiation and wind speed were used for designing and analyzing the integrated renewable energy system. The health clinic facility energy consumption is 19 kWh/day with a 3.4 kW peak demand load. The metrological data was collected from National Aeronautics and Space Administration (NASA website and used to analyze the performance of electrical generation system using HOMER program. The simulation and optimization results show that the optimal integrated renewable energy system configuration consists of 5 kW PV array, BWC Excel-R 7.5 kW DC wind turbine, 24 unit Surrette 6CS25P battery cycle charging, and a 19 kW AC/DC converter and that the PV power can generate electricity at 9,138 kWh/year while the wind turbine system can generate electricity at 7,490 kWh/year, giving the total electrical generation of the system as 16,628 kWh/year. This would be suitable for deployment of 100% clean energy for uninterruptable power performance in the health clinic. The economics analysis result found that the integrated renewable system has total NPC of 137,139 US Dollar. The results of this research show that, with a low energy health facility, it is possible to meet the entire annual energy demand of a health clinic solely through a stand-alone integrated renewable PV/wind energy supply.

  15. Autonomously managed high power systems

    International Nuclear Information System (INIS)

    Weeks, D.J.; Bechtel, R.T.

    1985-01-01

    The need for autonomous power management capabilities will increase as the power levels of spacecraft increase into the multi-100 kW range. The quantity of labor intensive ground and crew support consumed by the 9 kW Skylab cannot be afforded in support of a 75-300 kW Space Station or high power earth orbital and interplanetary spacecraft. Marshall Space Flight Center is managing a program to develop necessary technologies for high power system autonomous management. To date a reference electrical power system and automation approaches have been defined. A test facility for evaluation and verification of management algorithms and hardware has been designed with the first of the three power channel capability nearing completion

  16. Experimental study on an S-band near-field microwave magnetron power transmission system on hundred-watt level

    Science.gov (United States)

    Zhang, Biao; Jiang, Wan; Yang, Yang; Yu, Chengyang; Huang, Kama; Liu, Changjun

    2015-11-01

    A multi-magnetron microwave source, a metamaterial transmitting antenna, and a large power rectenna array are presented to build a near-field 2.45 GHz microwave power transmission system. The square 1 m2 rectenna array consists of sixteen rectennas with 2048 Schottky diodes for large power microwave rectifying. It receives microwave power and converts them into DC power. The design, structure, and measured performance of a unit rectenna as well as the entail rectenna array are presented in detail. The multi-magnetron microwave power source switches between half and full output power levels, i.e. the half-wave and full-wave modes. The transmission antenna is formed by a double-layer metallic hole array, which is applied to combine the output power of each magnetron. The rectenna array DC output power reaches 67.3 W on a 1.2 Ω DC load at a distance of 5.5 m from the transmission antenna. DC output power is affected by the distance, DC load, and the mode of microwave power source. It shows that conventional low power Schottky diodes can be applied to a microwave power transmission system with simple magnetrons to realise large power microwave rectifying.

  17. Keys to success for wind power in isolated power systems

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J C; Lundsager, P; Bindner, H; Hansen, L; Frandsen, S [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    It is generally expected that wind power could contribute significantly to the electricity supply in power systems of small and medium sized isolated communities. The market for such applications of wind power has not yet materialized. Wind power in isolated power systems have the main market potentials in developing countries. The money available world-wide for this technological development is limited and the necessary R and D and pilot programmes have difficult conditions. Consequently, technology developed exclusively for developing countries rarely becomes attractive for consumers, investors and funding agencies. A Danish research project is aimed at studying development of methods and guidelines rather than `universal solutions` for the use of wind energy in isolated communities. This paper report on the findings of the project regarding barriers removal and engineering methods development, with a focus on analysis and specification of user demand and priorities, numerical modeling requirements as well as wind power impact on power quality and power system operation. Input will be provided on these subjects for establishing of common guidelines on relevant technical issues, and thereby enabling the making of trustworthy project preparation studies. (au) EFP-97. 12 refs.

  18. Economy of scale for nuclear power plants operating in hydroelectric systems - Brazilian case study

    International Nuclear Information System (INIS)

    Andrade, Gilberto

    1996-01-01

    Economy of scale is considered to enhance competitiveness of nuclear energy for electricity generation but only when high capacity factors are considered. This study shows that for the brazilian electricity generation system low capacity factors are expected and economy of scale has to be considered against the size of the Nuclear program. Units of 600 MW are competitive both for small and large Programs. (author)

  19. Satellite Power Systems (SPS) concept definition study. Volume 6: SPS technology requirements and verification

    Science.gov (United States)

    Hanley, G.

    1978-01-01

    Volume 6 of the SPS Concept Definition Study is presented and also incorporates results of NASA/MSFC in-house effort. This volume includes a supporting research and technology summary. Other volumes of the final report that provide additional detail are as follows: (1) Executive Summary; (2) SPS System Requirements; (3) SPS Concept Evolution; (4) SPS Point Design Definition; (5) Transportation and Operations Analysis; and Volume 7, SPS Program Plan and Economic Analysis.

  20. Study on the optimization allocation of wind-solar in power system based on multi-region production simulation

    Directory of Open Access Journals (Sweden)

    Xu Zhicheng

    2018-01-01

    Full Text Available In this paper, a power supply optimization model is proposed. The model takes the minimum fossil energy consumption as the target, considering the output characteristics of the conventional power supply and the renewable power supply. The optimal capacity ratio of wind-solar in the power supply under various constraints is calculated, and the interrelation between conventional power supply and renewable energy is analyzed in the system of high proportion renewable energy integration. Using the model, we can provide scientific guidance for the coordinated and orderly development of renewable energy and conventional power sources.

  1. Power generation systems and methods

    Science.gov (United States)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  2. Power turbine ventilation system

    Science.gov (United States)

    Wakeman, Thomas G. (Inventor); Brown, Richard W. (Inventor)

    1991-01-01

    Air control mechanism within a power turbine section of a gas turbine engine. The power turbine section includes a rotor and at least one variable pitch propulsor blade. The propulsor blade is coupled to and extends radially outwardly of the rotor. A first annular fairing is rotatable with the propulsor blade and interposed between the propulsor blade and the rotor. A second fairing is located longitudinally adjacent to the first fairing. The first fairing and the second fairing are differentially rotatable. The air control mechanism includes a platform fixedly coupled to a radially inner end of the propulsor blade. The platform is generally positioned in a first opening and a first fairing. The platform and the first fairing define an outer space. In a first position corresponding with a first propulsor blade pitch, the platform is substantially conformal with the first fairing. In a second position corresponding with the second propulsor blade pitch, an edge portion of the platform is displaced radially outwardly from the first fairing. When the blades are in the second position and rotating about the engine axis, the displacement of the edge portion with respect to the first fairing allows air to flow from the outer space to the annular cavity.

  3. Protection of industrial power systems

    CERN Document Server

    DAVIES, T

    2006-01-01

    The protection which is installed on an industrial power system is likely to be subjected to more difficult conditions than the protection on any other kind of power system. Starting with the many simple devices which are employed and covering the whole area of industrial power system protection, this book aims to help achieve a thorough understanding of the protection necessary.Vital aspects such as the modern cartridge fuse, types of relays, and the role of the current transformer are covered and the widely used inverse definite-minimum time overcurrent relay, the theory of the M

  4. Photovoltaic power system reliability considerations

    Science.gov (United States)

    Lalli, V. R.

    1980-01-01

    This paper describes an example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems. This particular application was for a solar cell power system demonstration project in Tangaye, Upper Volta, Africa. The techniques involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of a fail-safe and planned spare parts engineering philosophy.

  5. Optimization of power system operation

    CERN Document Server

    Zhu, Jizhong

    2015-01-01

    This book applies the latest applications of new technologies topower system operation and analysis, including new and importantareas that are not covered in the previous edition. Optimization of Power System Operation covers both traditional andmodern technologies, including power flow analysis, steady-statesecurity region analysis, security constrained economic dispatch,multi-area system economic dispatch, unit commitment, optimal powerflow, smart grid operation, optimal load shed, optimalreconfiguration of distribution network, power system uncertaintyanalysis, power system sensitivity analysis, analytic hierarchicalprocess, neural network, fuzzy theory, genetic algorithm,evolutionary programming, and particle swarm optimization, amongothers. New topics such as the wheeling model, multi-areawheeling, the total transfer capability computation in multipleareas, are also addressed. The new edition of this book continues to provide engineers andac demics with a complete picture of the optimization of techn...

  6. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Wang, Huai; Ma, Ke; Blaabjerg, Frede

    2012-01-01

    Advances in power electronics enable efficient and flexible processing of electric power in the application of renewable energy sources, electric vehicles, adjustable-speed drives, etc. More and more efforts are devoted to better power electronic systems in terms of reliability to ensure high......). A collection of methodologies based on Physics-of-Failure (PoF) approach and mission profile analysis are presented in this paper to perform reliability-oriented design of power electronic systems. The corresponding design procedures and reliability prediction models are provided. Further on, a case study...... on a 2.3 MW wind power converter is discussed with emphasis on the reliability critical components IGBTs. Different aspects of improving the reliability of the power converter are mapped. Finally, the challenges and opportunities to achieve more reliable power electronic systems are addressed....

  7. Solar cell power source system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoichi; Toma, Kunio; Fukuwa, Shinji

    1988-05-14

    This invention aims to supply a power source system with stable power output by reducing the power loss due to switching in the voltage stabilization even when the power source is a solar cell with frequent voltage variation. For this purpose, in a solar cell power source system consisting of a solar cell, a storage battery, a switching regulator placed between the storage cell and the load, and a load, arrangement was made that, by judging the input voltage from the storage battery, switch-acting the transistor of the switching regulator, if the input voltage is higher than the specified voltage; is the input voltage is lower than the specified voltage, the transistor is put in a full-on state. By this, the supply voltage can be stabilized even when the voltage fluctuates, and system gets more efficient as the switching loss decreases in the voltage stabilizing means. (1 fig)

  8. Wind power systems. Applications of computational intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingfeng [Toledo Univ., OH (United States). Dept. of Electrical Engineering and Computer Science; Singh, Chanan [Texas A and M Univ., College Station, TX (United States). Electrical and Computer Engineering Dept.; Kusiak, Andrew (eds.) [Iowa Univ., Iowa City, IA (United States). Mechanical and Industrial Engineering Dept.

    2010-07-01

    Renewable energy sources such as wind power have attracted much attention because they are environmentally friendly, do not produce carbon dioxide and other emissions, and can enhance a nation's energy security. For example, recently more significant amounts of wind power are being integrated into conventional power grids. Therefore, it is necessary to address various important and challenging issues related to wind power systems, which are significantly different from the traditional generation systems. This book is a resource for engineers, practitioners, and decision-makers interested in studying or using the power of computational intelligence based algorithms in handling various important problems in wind power systems at the levels of power generation, transmission, and distribution. Researchers have been developing biologically-inspired algorithms in a wide variety of complex large-scale engineering domains. Distinguished from the traditional analytical methods, the new methods usually accomplish the task through their computationally efficient mechanisms. Computational intelligence methods such as evolutionary computation, neural networks, and fuzzy systems have attracted much attention in electric power systems. Meanwhile, modern electric power systems are becoming more and more complex in order to meet the growing electricity market. In particular, the grid complexity is continuously enhanced by the integration of intermittent wind power as well as the current restructuring efforts in electricity industry. Quite often, the traditional analytical methods become less efficient or even unable to handle this increased complexity. As a result, it is natural to apply computational intelligence as a powerful tool to deal with various important and pressing problems in the current wind power systems. This book presents the state-of-the-art development in the field of computational intelligence applied to wind power systems by reviewing the most up

  9. Feasibility Study of a Building-Integrated PV Manager to Power a Last-Mile Electric Vehicle Sharing System

    Directory of Open Access Journals (Sweden)

    Manuel Fuentes

    2017-01-01

    Full Text Available Transportation is one of the largest single sources of air pollution in urban areas. This paper analyzes a model of solar-powered vehicle sharing system using building-integrated photovoltaics (BIPV, resulting in a zero-emission and zero-energy mobility system for last-mile employee transportation. As a case study, an electric bicycle sharing system between a public transportation hub and a work center is modeled mathematically and optimized in order to minimize the number of pickup trips to satisfy the demand, while minimizing the total energy consumption of the system. The whole mobility system is fully powered with BIPV-generated energy. Results show a positive energy balance in e-bike batteries and pickup vehicle batteries in the worst day of the year regarding solar radiation. Even in this worst-case scenario, we achieve reuse rates of 3.8 people per bike, using actual data. The proposed system manages PV energy using only the batteries from the electric vehicles, without requiring supportive energy storage devices. Energy requirements and PV generation have been analyzed in detail to ensure the feasibility of this approach.

  10. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  11. Basic Study on Data-Centric design information integration system framework development for adapting Nuclear Power Plant construction in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Byung Ki [KHNP, Gyeongju (Korea, Republic of)

    2016-05-15

    This study established the concept of data-centric design, which is the latest design technique, by analyzing the existing literature so that the data-centric design would be applied to the nuclear power plant projects in Korea and analyzed the status of data-centric design application by the advanced companies and the domestic design companies participating in the nuclear power plant projects. By analyzing the function of the 3D CAD commercial system and all design drawings used in the nuclear power plant projects in Korea, a data-centric design integrated system model has been developed. This study established the concept of data-centric design technology, analyzed the functions of the plant architect engineering (A/E) software being globally used in the plant field and the design process status of nuclear power plant projects in Korea. A design information integration system building model, which is capable of data-centric design, in the place of the existing document-centric system design such as P and ID and SLD, has been suggested through the investigation on the data-centric design cases of the advanced companies. The major functions of the suggested model required for the application to the domestic industry were drawn. The suggested framework builds the field design, which was performed in the 3D system of the constructor, as an owner's field design system, which can manage all design drawings generated from the field design and the related information in integrated way. An as-built full model integrated of plant architect engineering, supplier design and field design is built. It is handed over to the operation team at the O and M stage and utilized in the maintenance and repair. As a power plant full model of future construction project has been enabled, an improved design process has been suggested, in which only the design change information during the plant architect engineering (A/E) and the design change information during the field design

  12. Radioisotope Power Systems Technology Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the RPS's technology portfolio is to advance performance of radioisotope power systems through new and novel innovations being developed and transitioned...

  13. New vision solar system exploration missions study: Analysis of the use of biomodal space nuclear power systems to support outer solar system exploration missions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-08

    This report presents the results of an analysis of the capability of nuclear bimodal systems to perform outer solar system exploration missions. Missions of interest include orbiter mission s to Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. An initial technology baseline consisting of a NEBA 10 kWe, 1000 N thrust, 850 s, 1500 kg bimodal system was selected, and its performance examined against a data base for trajectories to outer solar system planetary destinations to select optimal direct and gravity assisted trajectories for study. A conceptual design for a common bimodal spacecraft capable of performing missions to all the planetary destinations was developed and made the basis of end to end mission designs for orbiter missions to Jupiter, Saturn, and Neptune. Concepts for microspacecraft capable of probing Jupiter`s atmosphere and exploring Titan were also developed. All mission designs considered use the Atlas 2AS for launch. It is shown that the bimodal nuclear power and propulsion system offers many attractive option for planetary missions, including both conventional planetary missions in which all instruments are carried by a single primary orbiting spacecraft, and unconventional missions in which the primary spacecraft acts as a carrier, relay, and mother ship for a fleet of micro spacecraft deployed at the planetary destination.

  14. Solar power satellite system; Uchu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S [Institute of Space and Astronautical Science, Tokyo (Japan)

    1995-09-05

    The solar power satellite system is a system that converts solar energy into electric energy in the space, transmits power to earth through wireless resort such as microwave and supplies energy of new concept. In order to realize this system it is necessary to have new technologies such as space power transmission at low cost, construction of large space buildings and wireless high power transmission. In this paper, the principles, characteristics and the necessary technology of this system were explained. Besides Japan`s SPS2000 Plan (cooperative research by universities, government agencies and private corporations on the model of solar power satellite) the group of Europe, Russia and the United States has also proposed some ideas concerning the solar power satellite system. As far as the microwave power transmission, which is the key technology for solar power satellite system, is concerned, ground demonstration tests at the level of several tens of kW are discussed in Canada and France. 3 refs., 3 figs.

  15. Wind farm - A power source in future power systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2009-01-01

    wind turbines and wind farms, and then introduces the wind power development and wind farms. An optimization platform for designing electrical systems of offshore wind farms is briefed. The major issues related to the grid connection requirements and the operation of wind turbines/farms in power......The paper describes modern wind power systems, introduces the issues of large penetration of wind power into power systems, and discusses the possible methods of making wind turbines/farms act as a power source, like conventional power plants in power systems. Firstly, the paper describes modern...... systems are illustrated....

  16. Study of the characteristic response of the pressure control system for the design parameters of the new turbine control system, MARK VI, in Cofrentes Nuclear Power Plant

    International Nuclear Information System (INIS)

    Palomo anaya, M. J.; Ruiz Bueno, G.; Mora, J. A.; Vaquer, J. I.; Bucho, L.; Lopez, B.

    2010-01-01

    This paper presents the results of the study of the characteristic response of the ancient Pressure and Turbine Control System for the OCP-4300 Project in the Cofrentes Nuclear Power Plant, made by Tatiana Servicios Tecnologicos in collaboration with the Institute for Industrial, Radiophysical and Environmental Safety. This work was done as one of the preliminary work necessary for replacing the old control system by Mark VI.

  17. CANDU nuclear power system

    International Nuclear Information System (INIS)

    1981-01-01

    This report provides a summary of the components that make up a CANDU reactor. Major emphasis is placed on the CANDU 600 MW(e) design. The reasons for CANDU's performance and the inherent safety of the system are also discussed

  18. High power lasers & systems

    OpenAIRE

    Chatwin, Chris; Young, Rupert; Birch, Philip

    2015-01-01

    Some laser history;\\ud Airborne Laser Testbed & Chemical Oxygen Iodine Laser (COIL);\\ud Laser modes and beam propagation;\\ud Fibre lasers and applications;\\ud US Navy Laser system – NRL 33kW fibre laser;\\ud Lockheed Martin 30kW fibre laser;\\ud Conclusions

  19. Study of power-to-weight ratio of the electrothermal propulsion system of nanosatellite maneuvering satellite platform

    Science.gov (United States)

    Blinov, V. N.; Vavilov, I. S.; Kositsin, V. V.; Lukyanchik, A. I.; Ruban, V. I.; Shalay, V. V.

    2018-01-01

    The direction of the solution of the actual task of maneuvering satellite platforms (MSP) design for nanosatellite weighing up to 10 kg, power-to-weight ratio of PS up to 8 W (electrothermal micro engine (ETME) 5 W, vaporizer 2 W, electrovalve up to 1 W) and with characteristic velocity up to 60 m/s were considered on the basis of studies of the propulsion system(PS) with ETME. The aim of study is the confirmation of technical possibility of nanosatellites design with mass up to 10 kg, power-to-weight ratio up to 8 W and with characteristic velocity up to 60 m/s on the basis of PS prototype experimental studies. In the course of the research tasks were solved to determine the design of PS and ETME of nanosatellit’s MSP, determine the electric parameters of PS depending on power consumption that determining specific impulse of ETME, and estimate the implemented characteristic velocity of the nanosatellite. The PS constructive scheme of nanosatellite mass of 10 kg was design, PS experimental prototype was produced and PS experimental research on ammonia were conducted. The 200°C was reached per 900 s at 5 W ETME power consumption with nitrogen, that equivalent to specific impulse of ammonia ETME 124/136 s when entering the stationary mode. 2 W energy consumption of a two-thread liquid ammonia vaporizer is experimentally substantiated. The using of electrovelve stepped control cyclogram allowed to reduce the average power consumption to 1 W.

  20. Diversification criteria for power systems

    International Nuclear Information System (INIS)

    Kharbach, Mohammed

    2016-01-01

    Growing power demand, fuel availability and prices, technology changes, the environmental impacts of energy consumption, the changing regulatory environments and the uncertainties around such elements make the planning for optimal power mix a challenging task. The diversity approach is advocated as a most appropriate planning methodology for the optimal energy mix (Hickey et al., 2010). Shannon Wiener Index (SWI), which is the most cited diversity metric has been used to assess power systems diversity mainly from an energy perspective. To our best knowledge, there is no rigorous justification why energy has been the main variable used in diversification exercises rather than other variables such as capacity. We use a stylized power generation framework to show that diversity based on energy or capacity could lead to different outcomes in terms of vulnerability to fuel exposure, among others. We also introduce a Shannon Wiener Index ratio (SWIR) that we believe captures better the diversity of a power system compared to the standard SWI. - Highlights: • Ranking power systems, from a diversity perspective, based on one criteria has many shortcomings. • Diversity based on energy or capacity could lead to different outcomes in terms of vulnerability to fuel exposure, among others. • A Shannon Wiener Index ratio (SWIR) captures better the diversity of a power system compared to the standard SWI.

  1. Smart power systems and renewable energy system integration

    CERN Document Server

    2016-01-01

    This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage. .

  2. Brayton cycle space power systems

    International Nuclear Information System (INIS)

    Pietsch, A.; Trimble, S.W.; Harper, A.D.

    1985-01-01

    The latest accomplishments in the design and development of the Brayton Isotope Power System (BIPS) for space applications are described, together with a reexamination of the design/cost tradeoffs with respect to current economic parameters and technology status. The results of tests performed on a ground test version of the flight configuration, the workhorse loop, were used to confirm the performance projections made for the flight system. The results of cost-model analysis indicate that the use of the highest attainable power conversion system efficiency will yield the most cost-effective systems. 13 references

  3. Aggregated Modelling for Wind Farms for Power System Transient Stability Studies

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe

    2012-01-01

    Wind energy is consistently attracting great research effort and actively developed in many countries. As a result, the penetration level of wind power in the power grid is increasing as well as the size of wind farms. A large-scale wind farm may consist of hundreds of wind turbines and its total...... on a wind farm with permanent magnet synchronous generator (PMSG) wind turbines. Simulation results of the aggregated models and the detailed model are compared and analyzed respectively to prove the effectiveness of the aggregating techniques.......Wind energy is consistently attracting great research effort and actively developed in many countries. As a result, the penetration level of wind power in the power grid is increasing as well as the size of wind farms. A large-scale wind farm may consist of hundreds of wind turbines and its total...... installed capacity could be at a level of 1000MW or even more. Consequently, the large-scale wind farm could seriously impact the operation and control of the grid. To represent a large-scale wind farm, aggregated modelling takes advantage of fast computation and simplified implementation compared...

  4. Biomass-powered Solid Oxide Fuel Cells : Experimental and Modeling Studies for System Integrations

    NARCIS (Netherlands)

    Liu, M.

    2013-01-01

    Biomass is a sustainable energy source which, through thermo-chemical processes of biomass gasification, is able to be converted from a solid biomass fuel into a gas mixture, known as syngas or biosyngas. A solid oxide fuel cell (SOFC) is a power generation device that directly converts the chemical

  5. Optimal control applications in electric power systems

    CERN Document Server

    Christensen, G S; Soliman, S A

    1987-01-01

    Significant advances in the field of optimal control have been made over the past few decades. These advances have been well documented in numerous fine publications, and have motivated a number of innovations in electric power system engineering, but they have not yet been collected in book form. Our purpose in writing this book is to provide a description of some of the applications of optimal control techniques to practical power system problems. The book is designed for advanced undergraduate courses in electric power systems, as well as graduate courses in electrical engineering, applied mathematics, and industrial engineering. It is also intended as a self-study aid for practicing personnel involved in the planning and operation of electric power systems for utilities, manufacturers, and consulting and government regulatory agencies. The book consists of seven chapters. It begins with an introductory chapter that briefly reviews the history of optimal control and its power system applications and also p...

  6. An experimental study on damping characteristics of mechanical snubber for nuclear power plant piping systems

    International Nuclear Information System (INIS)

    Chiba, T.; Kobayashi, H.; Kitamura, K.; Ando, K.; Koyanagi, R.

    1983-01-01

    The objectives of this study are 1) to clarify the damping characteristics and the dynamic stiffness of mechanical snubber, 2) to take the damping characteristics of mechanical snubber into the damping evaluation method obtained in SDREP. Therefore, following vibration tests were conducted. 1) Component test: As a first step, mechanical snubbers were excited with sinusoidal wave, and damping ratio and dynamic stiffness were measured at several loading levels. 2) Piping model test: Second, a 8'' diameter x 16 m length 3-dimensional piping model simulating the supporting conditions of actual piping systems was tested. Damping ratio and made shapes of piping model with mechanical snubbers were measured at several supporting conditions and response levels. From the results of these tests, the damping characteristics and the dynamic stiffness of mechanical snubber can be summarized as follows: 1) The damping effect of mechanical snubber is as strong as that of oil snubber. 2) Mechanical snubber contributes effectively to the damping of piping system, and it is indicated that the damping characteristics of mechanical snubber is applicable to the damping evaluation method obtained in SDREP. (orig./HP)

  7. Electric power system applications of optimization

    CERN Document Server

    Momoh, James A

    2008-01-01

    Introduction Structure of a Generic Electric Power System  Power System Models  Power System Control Power System Security Assessment  Power System Optimization as a Function of Time  Review of Optimization Techniques Applicable to Power Systems Electric Power System Models  Complex Power Concepts Three-Phase Systems Per Unit Representation  Synchronous Machine Modeling Reactive Capability Limits Prime Movers and Governing Systems  Automatic Gain Control Transmission Subsystems  Y-Bus Incorporating the Transformer Effect  Load Models  Available Transfer Capability  Illustrative Examples  Power

  8. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  9. Power system stabilizer control for wind power to enhance power system stability

    OpenAIRE

    Domínguez García, José Luís; Gomis Bellmunt, Oriol; Bianchi, Fernando Daniel; Sumper, Andreas

    2011-01-01

    The paper presents a small signal stability analysis for power systems with wind farm interaction. Power systems have damping oscillation modes that can be excited by disturbance or fault in the grid. The power converters of the wind farms can be used to reduce these oscillations and make the system more stable. These ideas are explored to design a power system stabilized (PSS) for a network with conventional generators and a wind farm in order to increase the damping of the oscillation...

  10. Control Architecture for Future Power Systems

    DEFF Research Database (Denmark)

    Heussen, Kai

    for assessment of control architecture of electric power systems with a means-ends perspective. Given this purpose-oriented understanding of a power system, the increasingly stochastic nature of this problem shall be addressed and approaches for robust, distributed control will be proposed and analyzed....... The introduction of close-to-real-time markets is envisioned to enable fast distributed resource allocation while guaranteeing system stability. Electric vehicles will be studied as a means of distributed reversible energy storage and a flexible power electronic interface, with application to the case......This project looks at control of future electric power grids with a high proportion of wind power and a large number of decentralized power generation, consumption and storage units participating to form a reliable supply of electrical energy. The first objective is developing a method...

  11. Study of the heat transport primary system flow of Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Coutsiers, Eduardo E.; Moreno, Carlos A.; Pomerantz, Marcelo E.

    1999-01-01

    In this work, the HTPS coolant channels flow and associate aleatory errors are estimated. The objective of this estimation is to verify the validity of the flow calculated using the Canadian thermalhydraulic design code 'NUCIRC'. From measurements it can also be observed the evolution of the calculated flow with power of the reactor and to correct the maximum flow with power. The percentage of standard deviation discrepancies of flow estimated by measurements and those calculated using NUCIRC code is 5,7%. As the average aleatory error in flow estimation is 8,0%, it is concluded that the flow distribution calculated using NUCIRC is representative of the current state of the reactor channels. (author)

  12. A solid-breeder blanket and power conversion system for the Mirror Advanced Reactor Study (MARS)

    International Nuclear Information System (INIS)

    Bullis, R.; Clarkson, I.

    1983-01-01

    A solid-breeder blanket has been designed for a commercial fusion power reactor based on the tandem mirror concept (MARS). The design utilizes lithium oxide, cooled by helium which powers a conventional steam electric generating cycle. Maintenance and fabricability considerations led to a modular configuration 6 meters long which incorporates two magnets, shield, blanket and first wall. The modules are arranged to form the 150 meter long reactor central cell. Ferritic steel is used for the module primary structure. The lithium oxide is contained in thin-walled vanadium alloy tubes. A tritium breeding ratio of 1.25 and energy multiplication of 1.1 is predicted. The blanket design appears feasible with only a modest advance in current technology

  13. An automated system for studying the power distribution of electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Filarowski, C.A.

    1994-12-01

    Precise welds with an electron beam welder are difficult to reproduce because the factors effecting the electron beam current density distribution are not easily controlled. One method for measuring the power density distribution in EB welds uses computer tomography to reconstruct an image of the current density distribution. This technique uses many separate pieces of hardware and software packages to obtain the data and then reconstruct it consequently, transferring this technology between different machines and operators is difficult. Consolidating all of the hardware and software into one machine to execute the same tasks will allow for real-time measurement of the EB power density distribution and will provide a facilitated means for transferring various welding procedure between different machines and operators, thereby enhancing reproducibility of electron beam welds.

  14. Power system harmonics and passive filter designs

    CERN Document Server

    Das, J C

    2015-01-01

    J.C. Das is a consultant of electrical power systems at Power Systems Studies, Inc., USA. He is Life Fellow of IEEE (UK), Fellow of IET (India), and has authored approximately sixty technical papers and published 190 study reports of real-world power systems. He is the author of three books including ARC Flash Hazard Analysis and Mitigation. He is a registered P.E. in the states of Georgia and Oklahoma, C.Eng. in UK, and Eur Ing in Europe. J. C. Das is also a member of CIGRE, Federation of European Engineers, and other technical associations and organizations.

  15. Studies on methods and systems to improve communication between man and machine in nuclear power plants

    International Nuclear Information System (INIS)

    Bastl, W.

    1980-01-01

    The most important results of the research project are explained and analyzed: 1) Special measuring techniques for on-line control of the mechanical state of the reactor plant; 2) use of process computers for a best representation of the state of plant, for alarm condensation and for alarm analysis; 3) use of the display technique in the observatory; 4) new observatory concepts, and 5) human factors in nuclear power plants. (orig./HP) [de

  16. A Study on Establishment of Nuclear Power Plant Technical Support System and Activation Plan

    International Nuclear Information System (INIS)

    Wi, M. H.; Park, W. S.; Lee, H. S.; Kim, J. H.; Won, B. C.; Kim, Y. H.; Goo, D. S.; Choi, H. B.

    2009-11-01

    This report includes activities related to establishment of 'BaroBaro nuclear plant technical support center', 'selection of nuclear plant applicable technology', and 'various information interchange between KAERI and nuclear power plant'. 'BaraBaro center was newly organized to support on resolving the technical difficulties in operation of nuclear power plant'. The center consists of 10 technical parts and a leading expert is assigned to each part to support more efficiently. This center is always served for 24 hour. The plant operators can register their problem to the center by a call, e-mail, or internet and they can receive the answer about what they issued from KAERI experts. To make a brochure, we selected 32 technologies which are applicable in nuclear plant without additional R and D activity. The brochure was distributed to the officer in charge of nuclear plant operations. Various meetings were held to increase interchange of experience and technology between KAERI and nuclear power plant and we discussed many different issues at that meeting

  17. Power Quality in DC Power Distribution Systems and Microgrids

    Directory of Open Access Journals (Sweden)

    Stephen Whaite

    2015-05-01

    Full Text Available This review paper discusses power quality considerations for direct current (DC electric power distribution systems, particularly DC microgrids. First, four selected sample DC architectures are discussed to provide motivation for the consideration of power quality in DC systems. Second, a brief overview of power quality challenges in conventional alternating current (AC distribution systems is given to establish the field of power quality. Finally, a survey of literature addressing power quality issues in DC systems is presented, and necessary power quality considerations in DC distribution system design and operation are discussed.

  18. A Comparative Study of the Application of FACTS Devices in Wind Power Plants of the Southeast Area of the Mexican Electric System

    Energy Technology Data Exchange (ETDEWEB)

    Beltran-Valle, Omar; Pena-Gallardo, Rafael; Segundo-Ramirez, Juan; Muljadi, Eduard

    2017-01-26

    This paper presents a comparative study of the application of Flexible AC Transmission System (FACTS) devices, as Thyristor Controlled Series Capacitor (TCSC), Static Synchronous Compensator (STATCOM) and Unified Power Controller (UPFC) on congestion management and voltage support in the area of the Istmo of Tehuantepec, Oaxaca, Mexico. The present work provides an analysis about the performance of the control of active and reactive power of the FACTS controllers applied to mentioned problems in the power system.

  19. Recent space nuclear power systems

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Yasuda, Hideshi; Hishida, Makoto

    1991-01-01

    For the advance of mankind into the space, the power sources of large output are indispensable, and it has been considered that atomic energy is promising as compared with solar energy and others. Accordingly in USA and USSR, the development of the nuclear power generation systems for space use has been carried out since considerable years ago. In this report, the general features of space nuclear reactors are shown, and by taking the system for the SP-100 project being carried out in USA as the example, the contents of the recent design regarding the safety as an important factor are discussed. Moreover, as the examples of utilizing space nuclear reactors, the concepts of the power source for the base on the moon, the sources of propulsive power for the rockets used for Mars exploration and others, the remote power transmission system by laser in the space and so on are explained. In September, 1988, the launching of a space shuttle of USA was resumed, and the Jupiter explorer 'Galileo' and the space telescope 'Hubble' were successfully launched. The space station 'Mir' of USSR has been used since February, 1986. The history of the development of the nuclear power generation systems for space use is described. (K.I.)

  20. Reliability evaluation of power systems

    CERN Document Server

    Billinton, Roy

    1996-01-01

    The Second Edition of this well-received textbook presents over a decade of new research in power system reliability-while maintaining the general concept, structure, and style of the original volume. This edition features new chapters on the growing areas of Monte Carlo simulation and reliability economics. In addition, chapters cover the latest developments in techniques and their application to real problems. The text also explores the progress occurring in the structure, planning, and operation of real power systems due to changing ownership, regulation, and access. This work serves as a companion volume to Reliability Evaluation of Engineering Systems: Second Edition (1992).

  1. Solar Powered Automatic Shrimp Feeding System

    Directory of Open Access Journals (Sweden)

    Dindo T. Ani

    2015-12-01

    Full Text Available - Automatic system has brought many revolutions in the existing technologies. One among the technologies, which has greater developments, is the solar powered automatic shrimp feeding system. For instance, the solar power which is a renewable energy can be an alternative solution to energy crisis and basically reducing man power by using it in an automatic manner. The researchers believe an automatic shrimp feeding system may help solve problems on manual feeding operations. The project study aimed to design and develop a solar powered automatic shrimp feeding system. It specifically sought to prepare the design specifications of the project, to determine the methods of fabrication and assembly, and to test the response time of the automatic shrimp feeding system. The researchers designed and developed an automatic system which utilizes a 10 hour timer to be set in intervals preferred by the user and will undergo a continuous process. The magnetic contactor acts as a switch connected to the 10 hour timer which controls the activation or termination of electrical loads and powered by means of a solar panel outputting electrical power, and a rechargeable battery in electrical communication with the solar panel for storing the power. By undergoing through series of testing, the components of the modified system were proven functional and were operating within the desired output. It was recommended that the timer to be used should be tested to avoid malfunction and achieve the fully automatic system and that the system may be improved to handle changes in scope of the project.

  2. TFTR neutral beam power system

    International Nuclear Information System (INIS)

    Deitz, A.; Murray, H.; Winje, R.

    1977-01-01

    The TFTR NB System will be composed of four beam lines, each containing three ion sources presently being developed for TFTR by the Lawrence Berkeley Laboratories (LBL). The Neutral Beam Power System (NBPS) will provide the necessary power required to operate these Ion Sources in both an experimental or operational mode as well as test mode. This paper describes the technical as well as the administrative/management aspects involved in the development and building of this system. The NBPS will combine the aspects of HV pulse (120 kV) and long pulse width (0.5 sec) together to produce a high power system that is unique in the Electrical Engineering field

  3. Strategies to overcome barriers for cleaner generation technologies in small developing power systems: Sri Lanka case study

    International Nuclear Information System (INIS)

    Wijayatunga, Priyantha D.C.; Siriwardena, Kanchana; Fernando, W.J.L.S.; Shrestha, Ram M.; Attalage, Rahula A.

    2006-01-01

    The penetration of cleaner and energy efficient technologies in small power systems such as the one in Sri Lanka has encountered many problems. This has caused major concerns among the policy makers, mainly in the context of the growing need to reduce harmful emissions in the electricity supply industry from the point of view of both local environmental pollution as well as the global warming concerns. This paper presents the outcome of a study involved in identifying and ranking the barriers to the promotion of cleaner and energy efficient technologies and strategies to overcome these barriers in Sri Lanka. Barriers for renewable energy based systems such as wind and wood fuel fired plants (dendro thermal power) and cleaner technologies such as liquefied natural gas (LNG) fired combined cycle and IGCC (coal) were identified based on a survey. A direct assessment multi-criteria decision making method called Analytic Hierarchy Process (AHP) was used to rank the barriers. The most effective strategies are proposed to address the three major barriers for each of these technologies based on extensive discussions with all the stakeholders in the electricity industry. It was found that lack of financing instruments, high initial cost and lack of assurance of resource supply or availability are the main barriers for renewable technologies. As for cleaner fuel and technology options associated with conventional generation systems, the lack of a clear government policy, uncertainty of fuel supplies and their prices and the reliability of the technologies themselves are the major barriers. Strategies are identified to overcome the above barriers. Establishment of a proper feed in tariff, geographical diversification of installations and capacity building in commercial banks are suggested for wind power. Investment incentives, streamlining of wood production and research on site identification are proposed for wood fuel fired plants. Also the study suggests delayed

  4. Measuring international electricity integration: a comparative study of the power systems under the Nordic Council, MERCOSUR, and NAFTA

    International Nuclear Information System (INIS)

    Pineau, P.-O.; Hira, Anil; Froschauer, Karl

    2004-01-01

    Many regions of the world feel the pressure to interconnect electric power systems internationally. Regional integrations of the electricity sector have become part of free trade and common market initiatives, though the steps individual national jurisdictions take towards developing integrated systems vary. In this article, we review three regions concerned with common market initiatives and at different stages of integration processes that involve infrastructural, regulatory, and commercial decisions. First, we examine the North European countries in the Nordic Council, then countries in the Southern Cone of South America in MERCOSUR, and finally Mexico, the United States and Canada, linked under NAFTA. This comparative study highlights the potential, but also the many hurdles, that electricity sector integrations face. The study suggests a framework for measuring the level of electricity sector integration that could be applied to other regions

  5. Simulation study of multi-step model algorithmic control of the nuclear reactor thermal power tracking system

    International Nuclear Information System (INIS)

    Shi Xiaoping; Xu Tianshu

    2001-01-01

    The classical control method is usually hard to ensure the thermal power tracking accuracy, because the nuclear reactor system is a complex nonlinear system with uncertain parameters and disturbances. A sort of non-parameter model is constructed with the open-loop impulse response of the system. Furthermore, a sort of thermal power tracking digital control law is presented using the multi-step model algorithmic control principle. The control method presented had good tracking performance and robustness. It can work despite the existence of unmeasurable disturbances. The simulation experiment testifies the correctness and effectiveness of the method. The high accuracy matching between the thermal power and the referenced load is achieved

  6. Developing maintainability for tokamak fusion power systems. Phase II report. Volume II: study results

    International Nuclear Information System (INIS)

    Fuller, G.M.; Zahn, H.S.; Mantz, H.C.; Kaletta, G.R.; Waganer, L.M.; Carosella, L.A.; Conlee, J.L.

    1978-11-01

    In this second phase the impact of unscheduled maintenance, several vacuum wall arrangements, and maintenance of other reactor interfacing subsystems and maintenance equipment are added to the evaluation of the maintainability of the fusion power reactor concepts. Four concepts are normalized to common performance parameters and evaluated for their capability to achieve availability and cost of electricity goals considering both scheduled and unscheduled maintenance. The results of this evaluation are used to generate a series of maintainability design guidelines and to select the more desirable features and design options which are used to configure a preliminary reactor concept having improved maintainability

  7. Power Reactor Information System (PRIS)

    International Nuclear Information System (INIS)

    Spiegelberg, R.

    1992-01-01

    The IAEA has been collecting Operating Experience data for Nuclear Power Plants of the IAEA Member States since 1970. In order to facilitate an analysis of nuclear power plant performance as well as to produce relevant publications, all previously collected data supplied from the questionnaires were computerized in 1980 and the Power Reactor Information System was implemented. PRIS currently contains production records for the years up to and including 1990 and about 98% of the reactors-years operating experience in the world is contained in PRIS. (orig.)

  8. Optimization of photovoltaic power systems

    CERN Document Server

    Rekioua, Djamila

    2012-01-01

    Photovoltaic generation is one of the cleanest forms of energy conversion available. One of the advantages offered by solar energy is its potential to provide sustainable electricity in areas not served by the conventional power grid. Optimisation of Photovoltaic Power Systems details explicit modelling, control and optimisation of the most popular stand-alone applications such as pumping, power supply, and desalination. Each section is concluded by an example using the MATLAB(R) and Simulink(R) packages to help the reader understand and evaluate the performance of different photovoltaic syste

  9. Study on liquid-metal MHD power generation system with two-phase natural circulation. Applicability to fast reactor conditions

    International Nuclear Information System (INIS)

    Saito, Masaki

    2000-03-01

    Feasibility study of the liquid-metal MHD power generation system combined with the high-density two-phase natural circulation has been performed for the applicability to the simple, autonomic energy conversion system of the liquid-metal cooled fast reactor. The present system has many promising aspects not only in the energy conversion process, but also in safety and economical improvements of the liquid-metal cooled fast reactor. For example, the high cycle efficiency can be expected because of the similarity of the present cycle to the Ericsson cycle. Sodium-Water Interaction problem can be excluded by proper combination of the working fluids. As the economical feature, the present system is so simple that the liquid-metal main circular pump, the steam turbine generator, and even the steam generator can be excluded if the thermodynamic working fluid is injected directly into the high temperature liquid metal MHD working fluid. In addition, the present system has the potential to be applied to various heat sources including solar energy because of the high flexibility of the operation temperature. In the present paper, as the first step of the feasibility study, the cycle analyses were performed to examine the effects of the main system parameters on the fundamental characteristics of the system. It is found that the cycle efficiency of the present system is enough competitive with that of the conventional steam turbine system. It is, however, found that the cycle efficiency depends strongly on the gas-liquid slip ratio in the two-phase flow channel. As the conclusions, it is recommended to perform experimental study to obtain the fundamental data, such as the gas-liquid slip ratio in the high-density liquid-metal two-phase natural circulation. (author)

  10. Wind power integration into the automatic generation control of power systems with large-scale wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2014-01-01

    Transmission system operators have an increased interest in the active participation of wind power plants (WPP) in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC......) of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs) and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described...... and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different...

  11. Numerical study on cavitation inception in the rotary valve of the hydraulic power steering system

    International Nuclear Information System (INIS)

    Ryu, Gwang Nyeon; Cho, Myung Hwan; Yoo, Jung Yul; Park, Sun Hong

    2009-01-01

    The rotary valve directs the power steering oil to either side of a power piston and relieves the driver of the effort to turn the wheel, when a driver begins to operate the vehicle. It is well known that the hiss noise occurring at that moment is caused mainly by cavitation of the oil inside the rotary valve. In this paper, two types of rotary valve (round and straight type) have been analyzed numerically using three-dimensional cavitation model embedded in the commercial code, FLUENT v6.2 and the results have been compared with the measured hiss noise level in a semi-anechoic chamber. The volume of the oil vapor generated from cavitation was larger in Round type valve which has a convex shape of the sleeve grooves than in Straight type valve which has a rectangular shape of the sleeve grooves. The hiss noise level of Round type valve was higher than that of Straight type valve as well. These results mean that the hiss noise can be reduced by the change of the shape of the grooves.

  12. Study concerning the power plant control and safety equipment by integrated distributed systems

    International Nuclear Information System (INIS)

    Optea, I.; Oprea, M.; Stanescu, P.

    1995-01-01

    The paper deals with the trends existing in the field of nuclear control and safety equipment and systems, proposing a high-efficiency integrated system. In order to enhance the safety of the plant and reliability of the structure system and components, we present a concept based on the latest computer technology with an open, distributed system, connected by a local area network with high redundancy. A modern conception for the control and safety system is to integrate all the information related to the reactor protection, active engineered safeguard and auxiliary systems parameters, offering a fast flow of information between all the agencies concerned so that situations can be quickly assessed. The integrated distributed control is based on a high performance operating system for realtime applications, flexible enough for transparent networking and modular for demanding configurations. The general design considerations for nuclear reactors instrumentation reliability and testing methods for real-time functions under dynamic regime are presented. Taking into account the fast progress in information technology, we consider the replacement of the old instrumentation of Cernavoda-1 NPP by a modern integrated system as an economical and efficient solution for the next units. (Author) 20 Refs

  13. A preliminary feasibility study of passive in-core thermionic reactors for highly compact space nuclear power systems

    International Nuclear Information System (INIS)

    Parlos, A.G.; Khan, E.U.; Frymire, R.; Negron, S.; Thomas, J.K.; Peddicord, K.L.

    1991-01-01

    Results of a preliminary feasibility study on a new concept for a highly compact space reactor power systems are presented. Notwithstanding the preliminary nature of the present study, the results which include a new space reactor configuration and its associated technologies indicate promising avenues for the devleopment of highly compact space reactors. The calculations reported in this study include a neutronic design trade-off study using a two-dimensioinal neutron transport model, as well as a simplified one-dimensional thermal analysis of the reactor core. In arriving at the most desirable configuration, various options have been considered and analyzed, and their advantages/disadvantages have been compared. However, because of space limitation, only the most favorable reactor configuration is presented in this summary

  14. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1991-01-01

    This Safety Guide was prepared as part of the Nuclear Safety Standards programme for establishing Codes and Safety Guides relating to nuclear power plants (NPPs). The first edition of the present Safety Guide was developed in the early 1980s. The text has now been brought up-to-date, refined in several details and amended to include non-electrical diverse and independent power sources. This Guide applies to NPP for which the total power supply comprises a normal power supply and an emergency power supply (EPS), which may be electrical or a combination of electrical and non-electrical. The Guide provides general guidance for all types of EPS and specific guidance on the design safety requirements and the features of the electrical and non-electrical portions of the EPS. 9 figs, 2 tabs

  15. Integration of Renewable Generation in Power System Defence Plans

    DEFF Research Database (Denmark)

    Das, Kaushik

    Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity of conven......Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity......, one of them being the North East area with high share of wind power generation.The aim of this study is to investigate how renewable generations like wind power can contribute to the power system defence plans. This PhD project “Integration of Renewable Generation in Power System Defence Plans...

  16. Power oscillation suppression by robust SMES in power system with large wind power penetration

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai; Cuk Supriyadi, A.N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions

  17. Power oscillation suppression by robust SMES in power system with large wind power penetration

    Science.gov (United States)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  18. Public concerns and alternative nuclear power systems

    International Nuclear Information System (INIS)

    Mayo, L.H.

    1980-02-01

    The basic task undertaken in this study was to assess the relative public acceptability of three general types of nuclear power systems as alternatives to the existing Light Water Reactor (LWR) system. Concerns registered toward nuclear power constituted the basic data for this assessment. The primary measure adopted for determining the significance of concerns was the degree of difficulty posed by the concern to the nuclear power decisional structure in the establishment and maintenance of norms to control risks or to advance intended energy objectives. Alleviations or exacerbations of concern resulting from particular attributes of alternative systems were measured from an LWR baseline

  19. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    Science.gov (United States)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  20. Power system EMP protection. Final report

    International Nuclear Information System (INIS)

    Marable, J.H.; Barnes, P.R.; Nelson, D.B.

    1975-05-01

    Voltage transients induced in electric power lines and control circuits by the electromagnetic pulse (EMP) from high-altitude nuclear detonations may cause widespread power failure and damage in electric power systems. This report contains a parametric study of EMP power line surges and discusses protective measures to minimize their effects. Since EMP surges have considerably greater rates of rise than lightning surges, recommended standards and test procedures are given to assure that surge arresters protect equipment from damage by EMP. Expected disturbances and damage to power systems are reviewed, and actions are presented which distribution companies can take to counter them. These include backup communications methods, stockpiling of vulnerable parts, repair procedures, and dispatcher actions to prevent blackout from EMP-caused instabilities. A long-range program is presented for improving distributors' protection against EMP. This involves employee training, hardware protection for power and control circuits, and improvement of plans for emergency action. (U.S.)

  1. Technology and Power Play in the International System: A Study of the 20th and 21st Centuries

    Directory of Open Access Journals (Sweden)

    Grace Yusuf

    2017-12-01

    Full Text Available Globalization has led to a profound diffusion of technological innovations among State and Non-state actors. This has a resultant impact on the arrangement of the distribution of power in the International System. History captures continuous transition in the distribution of power between states in the International System; from a multi-polar system during the first and Second World War, to the bipolar system of the cold war and the uni-polar system that emerged in the aftermath of the cold war. The emergence of new actors in the international system and the change in technological nature and application is ushering in a new era of ‘Non-polarity’ in the International System. The aim of this paper is to consider the evolving dynamics of the distribution of power in the International System while considering the roles technology has to play. The paper relays the conceptualization of basic terms, and then applies the ‘Balance of Power theory’ as its theoretical thrust. Finally, it expands on the role of technology in the distribution of power in the International System and what it entails for the future.

  2. The Caenorhabditis elegans Q neuroblasts: A powerful system to study cell migration at single-cell resolution in vivo.

    Science.gov (United States)

    Rella, Lorenzo; Fernandes Póvoa, Euclides E; Korswagen, Hendrik C

    2016-04-01

    During development, cell migration plays a central role in the formation of tissues and organs. Understanding the molecular mechanisms that drive and control these migrations is a key challenge in developmental biology that will provide important insights into disease processes, including cancer cell metastasis. In this article, we discuss the Caenorhabditis elegans Q neuroblasts and their descendants as a tool to study cell migration at single-cell resolution in vivo. The highly stereotypical migration of these cells provides a powerful system to study the dynamic cytoskeletal processes that drive migration as well as the evolutionarily conserved signaling pathways (including different Wnt signaling cascades) that guide the cells along their specific trajectories. Here, we provide an overview of what is currently known about Q neuroblast migration and highlight the live-cell imaging, genome editing, and quantitative gene expression techniques that have been developed to study this process. © 2016 Wiley Periodicals, Inc.

  3. Study on Communication Methods for Electric Power High-voltage Equipment Monitoring System

    Directory of Open Access Journals (Sweden)

    Jia Yu Chen

    2018-02-01

    Full Text Available Real-time monitoring of high-voltage equipment in substations is beneficial for early detection of faults. The use of wireless sensor networks to build monitoring system is an effective way, but the data collection is a difficult task. The author introduces a real-time monitoring system based on ZIGBEE and mobile communication technology. The system includes multiple monitoring points and terminal platforms. Each monitoring point consists of a number of sensor nodes to form a ZIGBEE network, detecting relevant parameters, coordinator node data collected one by one, known as linear transmission, and finally to the monitoring platform through the mobile communication network. This paper presents a fusion algorithm for monitoring cell data acquisition to reduce the amount of data uploaded to the base station. In addition, multi-hop routing algorithm based on opportunistic routing is proposed to balance network energy and improve network transmission rate and efficiency.

  4. Continuous hydrino thermal power system

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Randell L.; Zhao, Guibing; Good, William [BlackLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512 (United States)

    2011-03-15

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric. (author)

  5. Continuous hydrino thermal power system

    International Nuclear Information System (INIS)

    Mills, Randell L.; Zhao, Guibing; Good, William

    2011-01-01

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric.

  6. Real-time simulation requirements for study and optimization of power system controls

    Energy Technology Data Exchange (ETDEWEB)

    Nakra, Harbans; McCallum, David; Gagnon, Charles [Institut de Recherche d` Hydro-Quebec, Quebec, PQ (Canada); Venne, Andre; Gagnon, Julien [Hydro-Quebec, Montreal, PQ (Canada)

    1994-12-31

    At the time of ordering for the multi-terminal dc system linking Hydro-Quebec with New England, Hydro-Quebec also ordered functionally duplicate controls of all the converters and installed these in its real time simulation laboratory. The Hydro-Quebec ac system was also simulated in detail and the testing of the controls as thus made possible in a realistic environment. Many field tests were duplicated and many additional tests were done for correction and optimization. This paper describes some of the features of the real-time simulation carried out for this purpose. (author) 3 figs.

  7. Techno Economical Study of PV-Diesel Power System for a Remote Island in Indonesia : A Case Study of Miangas Island

    Science.gov (United States)

    Rumbayan, M.; Nagasaka, K.

    2018-05-01

    The purpose of this study is to conduct the techno economical study of PC-Diesel power system based on renewable energy available locally in a remote island. This research is a case study for Miangas island which is the border island between Indonesia and Philipines. It is located in Talaud Island regency of North Sulawesi province of Indonesia. The monthly average daily radiation in Miangas island is 5.52 kWh/m2.The research methods used are data collection and data analysis using software HOMER. Based on the simulation result, the techno economic study of PV-Diesel power plant system based on energy demand in Miangas island can be obtained. The Cost of Energy (COE), Net Present Cost (NPC) and operating cost for proposed hybrid PV-Diesel power generation can be assessed for the design power systems uses Canadian solar Max Power C56x-325P of 150 KW PV, 18 string of Surette 6CS25P, Diesel Generator 50 kW and converter Magnum MS4448PAE 25 kW. The annual electricity production from the PV Diesel system for Miangas island is 309.589 kWh in which 80.7% electricity comes from PV, 19.3% electricity comes from diesel with the 109.063 kWh excess electricity. The cost of generating electrical energy in the term of cost of energy (COE), Net Present Cost (NPC) and operating cost are 0.318 US/kWh, 719.673 US and 36.857 US respectively.

  8. Solid oxide fuel cell (SOFC) integrated power plants : System and kinetic studies

    NARCIS (Netherlands)

    Thallam Thattai, A.

    2017-01-01

    Increased climate change over past decades has resulted in an increase in the average temperature (also called global warming) of Earth’s climate system. At the recent Paris climate conference (COP21) in 2015, 195 countries in the world have agreed upon a stringent plan to limit global warming below

  9. Nuclear power systems for Lunar and Mars exploration

    International Nuclear Information System (INIS)

    Sovie, R.J.; Bozek, J.M.

    1994-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications

  10. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  11. A Practical Framework to Study Low-Power Scheduling Algorithms on Real-Time and Embedded Systems

    Directory of Open Access Journals (Sweden)

    Jian (Denny Lin

    2014-05-01

    Full Text Available With the advanced technology used to design VLSI (Very Large Scale Integration circuits, low-power and energy-efficiency have played important roles for hardware and software implementation. Real-time scheduling is one of the fields that has attracted extensive attention to design low-power, embedded/real-time systems. The dynamic voltage scaling (DVS and CPU shut-down are the two most popular techniques used to design the algorithms. In this paper, we firstly review the fundamental advances in the research of energy-efficient, real-time scheduling. Then, a unified framework with a real Intel PXA255 Xscale processor, namely real-energy, is designed, which can be used to measure the real performance of the algorithms. We conduct a case study to evaluate several classical algorithms by using the framework. The energy efficiency and the quantitative difference in their performance, as well as the practical issues found in the implementation of these algorithms are discussed. Our experiments show a gap between the theoretical and real results. Our framework not only gives researchers a tool to evaluate their system designs, but also helps them to bridge this gap in their future works.

  12. TPX power systems design overview

    International Nuclear Information System (INIS)

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1993-01-01

    The power systems for the Tokamak Physics Experiment (TPX) supply the Toroidal Field (TF). Poloidal Field (PF), Field Error Correction (FEC), and Fast Vertical Position Control (FVPC) coil systems, the Neutral Beam (NB), Ion Cyclotron (IC), Lower Hybrid (LH) and Electron Cyclotron (EC) heating and current drive systems, and all balance of plant loads. Existing equipment from the Tokamak Fusion Test Reactor (TFTR), including the motor-generator (MG) sets and the rectifiers, can be adapted for the supply of the TPX PF systems. A new TF power supply is required. A new substation is required for the heating and current drive systems (NB, IC, LH, and EC). The baseline TPX load can be taken directly from the grid without special provision, whereas if all upgrade options are undertaken, a modest amount of reactive compensation will be required. This paper describes the conceptual design of the power systems, with emphasis on the AC, TF, and PF Systems, and the quench protection of the superconducting coils

  13. Feasibility study of a wind powered water pumping system for rural Ethiopia

    Directory of Open Access Journals (Sweden)

    Misrak Girma

    2015-12-01

    Full Text Available Water is the primary source of life for mankind and one of the most basic necessities for rural development. Most of the rural areas of Ethiopia do not have access to potable water. Is some regions of the country access potable water is available through use of manual pumping and Diesel engine. In this research, wind water pump is designed to supply drinking water for three selected rural locations in Ethiopia. The design results show that a 5.7 m diameter windmill is required for pumping water from borehole through a total head of 75, 66 and 44 m for Siyadberand Wayu, Adami Tulu and East Enderta to meet the daily water demand of 10, 12 and 15 m3, respectively. The simulation for performance of the selected wind pump is conducted using MATLAB software and the result showed that monthly water discharge is proportional to the monthly average wind speed at the peak monthly discharge of 685 m3 in June, 888 m3 in May and 1203 m3 in March for Siyadberand Wayu, Adami Tulu and East Enderta sites, respectively. An economic comparison is conducted, using life cycle cost analysis, for wind mill and Diesel water pumping systems and the results show that windmill water pumping systems are more feasible than Diesel based systems.

  14. Estimation of power system variability due to wind power

    NARCIS (Netherlands)

    Papaefthymiou, G.; Verboomen, J.; Van der Sluis, L.

    2007-01-01

    The incorporation of wind power generation to the power system leads to an increase in the variability of the system power flows. The assessment of this variability is necessary for the planning of the necessary system reinforcements. For the assessment of this variability, the uncertainty in the

  15. Nuclear power plant annunciator systems

    International Nuclear Information System (INIS)

    Rankin, W.L.

    1983-08-01

    Analyses of nuclear power plant annunciator systems have uncovered a variety of problems. Many of these problems stem from the fact that the underlying philosophy of annunciator systems have never been elucidated so as to impact the initial annunciator system design. This research determined that the basic philosophy of an annunciator system should be to minimize the potential for system and process deviations to develop into significant hazards. In order to do this the annunciator system should alert the operators to the fact that a system or process deviation exists, inform the operators as to the priority and nature of the deviation, guide the operators' initial responses to the deviation, and confirm whether operators responses corrected the deviation. Annunciator design features were analyzed to determine to what degree they helped the system meet the functional criteria, the priority for implementing specific design features, and the cost and ease of implementing specific design features

  16. Unbalance on power systems: a general review

    Energy Technology Data Exchange (ETDEWEB)

    Reineri, Claudio A.; Gomez Targarona, Juan C.

    2009-07-01

    A general revision of different aspects in relation to the voltage unbalance in electric power systems is presented, that should necessarily be deeply known by technical operators and designers of facilities, installations, and electric equipment. Dissimilar unbalance definitions, unbalance measurement methods, their quantification and the interpretation of such magnitudes are revised. The causes of the unbalances in electric power systems were described and analyzed. The effects on power systems are also studied, specially those that have influence on: system operability, lost of efficiency of the three phase system and their impact in the definitions of traditional power. Similarly is studied the unbalance effect on certain loads, in particular: three-phase motors, power electronics and ASD's. Also methods to locate the origin of these problems, as well as the different normative or standards, and possible methods to mitigate their effects are deeply detailed. It is concluded in the necessity to deepen the study of the power system unbalance, because numerous non resolved aspects still exist whose solution requires of a deep knowledge on the part of the involved professionals. (author)

  17. The electric power engineering handbook power system stability and control

    CERN Document Server

    Grisby, Leonard L

    2012-01-01

    With contributions from worldwide leaders in the field, Power System Stability and Control, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) updates coverage of recent developments and rapid technological growth in essential aspects of power systems. Edited by L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Miroslav Begovic, Prabha Kundur, and Bruce Wollenberg, this reference presents substantially new and revised content. Topics covered include: * Power System Protection * Power System Dynamics and Stability *

  18. Study about the technical and economic viability of use of hybrid systems for the electric power generation

    International Nuclear Information System (INIS)

    Uribe C, Juan Pablo; Pinilla, Alvaro

    1997-01-01

    The work is directed to the study of the application of eolic- solar systems in Colombia. During the year of 1992 and the first trimester of 1993, the country suffered the worst crisis of electric power supply in the last thirty years, due to the criticize level of the reservoirs and also to the inefficiency of the planning and execution of necessary projects to cover the energy demand with the enough dependability in the system. This situation made see the present inefficiency and inform the Government of the necessity of reforming the traditional system of generation and distribution of energy of that moment. The result was the development of the laws 142 and 143 of 1994 in the one which it accent an open door for the participation of the private investors, so that these they can be present in new generation projects and commercialization of the electric power. One could not know the reasons for those which, having the guarantees given in these laws, it has not decided to carry out projects of energy generation, based on the hybrid systems, but it could speculate in the lack of the investors capital, and unfortunately for the country the fact that they are cost projects and smaller capacity comparing it with a hydroelectric one or with a thermoelectric one it doesn't link to the political class, since of these projects it could not take out financial resources for illegal means. If you wants to know the variables that affect the realization of a project based on the renewable energy sources, one could have a countless list. It is as well as information is required about the current net of transmission and electric power generation, about the legislation it has more than enough production and private commercialization of electricity, about the systems of electricity generation by means of renewable sources that at the moment are in the market, to outline a model in which determines by means of financial parameters the viability of an investment of this type

  19. A simplified model to study the location impact of latent thermal energy storage in building cooling heating and power system

    International Nuclear Information System (INIS)

    Zhang, Yin; Wang, Xin; Zhang, Yinping; Zhuo, Siwen

    2016-01-01

    Introducing the thermal energy storage (TES) equipment into the building cooling heating and power (BCHP) system proves to be an effective way to improve the part load performance of the whole system and save the primary energy consumption. The location of TES in BCHP has a great impact on the thermal performance of the whole system. In this paper, a simplified model of TES-BCHP system composed of a gas turbine, an absorption chiller/an absorption heat pump, and TES equipment with phase change materials (PCM) is presented. In order to minimize the primary energy consumption, the performances of BCHP systems with different PCM-TES locations (upstream and downstream) are analyzed and compared, for a typical hotel and an office building respectively. Moreover, the influence of the thermal performance of PCM-TES equipment on the energy saving effect of the whole system is investigated. The results confirm that PCM-TES can improve the energy efficiency and reduce the installed capacities of energy supply equipment, and that the optimal TES location in BCHP highly depends on the thermal performance of the TES equipment and the user load characteristics. It also indicates that: 1) the primary energy saving ratio of PCM-TES-BCHP increases with increasing NTU of TES; 2) for the studied cases, downstream TES location becomes more preferable when user loads fluctuate greatly; 3) only downstream TES can reduce the installed capacities of absorption chiller/absorption heat pump. This work can provide guidance for PCM-TES-BCHP system design. - Highlights: • A simplified model of the PCM-TES-BCHP system is established. • TES can increase energy efficiency and decrease installed capacity of equipment. • Primary energy saving ratio increases with increasing NTU of TES. • Downstream TES location is more preferable when user loads fluctuate greatly. • Optimal TES location depends on equipment performances and load characteristics.

  20. Comparison Study of Water Demineralization System for the OPR 1000 and AP 1000 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Dedy Priambodo; Siti Alimah; Erlan Dewita

    2009-01-01

    OPR 1000 adopts demineralization method based on ion exchanger resin and AP 1000 adopt the method that based on Reverse Osmosis (RO)-Electrodeionization (EDI). The Ion exchange process is a reversible chemical reaction of a solution and an insoluble solid. Ion exchanger use resin as polluter ions capture and will be regenerated after its saturated. RO is method using pressure to force a solution through a membrane, retaining the solute on one side and allowing the pure solvent to pass to the other side. Whereas, EDI is a combination of ion exchange and electrodialysis. The ions is taken by ion exchange resin, and then it is discharged utilizing electric potential difference. Due to water splitting phenomena in EDI, make resin will never be saturated, so the RO-EDI process is water demineralization system that use little chemical, more simple installation, capable to maintain demineralization water product quality and environmental friendly. Thereby, The RO-EDI water demineralization system is more advance then ion exchange technology. (author)

  1. Composite type nuclear power system

    International Nuclear Information System (INIS)

    Nakamoto, Koichiro.

    1993-01-01

    The present invention realizes a high thermal efficiency by heating steams at the exit of a steam generator of a nuclear power plant to high temperature by a thermal super-heating boiler. That is, a thermal superheating boiler is disposed between the steam generator and a turbogenerator to heat steams from the steam generator and supply them to the turbogenerator. In this case, it may be possible that feedwater superheating boiler pipelines to the steam generator are caused to pass through the thermal superheating boiler so that they also have a performance of heating feedwater. If the system of the present invention is used, it is possible to conduct base load operation by nuclear power and a load following operation by controlling the thermal superheating boiler. Further, a hydrogen producing performance is applied to the thermal superheating boiler to produce hydrogen when electric power load is lowered. An internally sustaining type operation method can be conducted of burning hydrogen by the superheating boiler upon increased electric power load. As a result, a power generation system which has an excellent economical property and can easily cope with the load following operation can be attained. (I.S.)

  2. Energy Flexibility in the Power System

    DEFF Research Database (Denmark)

    Billanes, Joy Dalmacio; Ma, Zheng; Jørgensen, Bo Nørregaard

    2017-01-01

    Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low electricity cost and sustainability. Various situations and factors influence...... the adoption of the flexibility solutions, such as flexible electricity generation, demand-response, and electricity storage. This paper tries to analyze the current energy flexibility solutions and the factors that can influence the energy flexibility adoption. This paper takes Philippines as case study...... to provide an overview of the current condition of the Philippines’ power system and discuss the energy flexibility in the Philippines’ power system. A further discussion and recommendation is conducted in the end of the paper....

  3. A study of some economic factors relating to the development and implementation of a satellite power system

    Science.gov (United States)

    1978-01-01

    Areas are examined relating to the design, development and implementation of a satellite power system (SPS): an analysis of the effect of energy R&D programs in general and SPS in particular on optimal fossil fuel consumption patterns, a study of alternative uses of SPS technologies, and a study of the electric power market penetration potential for SPS. It is shown that a credible program of R&D on long-range energy alternatives leads to lower optimal prices for fossil fuels, resulting in large short-term benefits accruing to the specific program elements. Several alternative uses of SPS technologies were identified; however the markets for these technologies are generally quite diffuse and difficult to assess. The notable exception is solar array technology which has, potentially, a very large non-SPS market. It is shown that the market for SPS units derives from two components of demand: the demand created by growth in the electrical energy demand which leads to an increased demand for baseload generating capacity, and a demand created by the need to replace retiring capacity.

  4. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    Science.gov (United States)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  5. Smart Shipboard Power System Operation and Management

    DEFF Research Database (Denmark)

    Kanellos, Fotis D.; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2016-01-01

    as all-electric ships (AESs), the need for more cost-effective and emission-aware solutions is augmented. Such onboard systems are prone to sudden load variations due to the changing weather conditions as well as mission profile, thus they require effective power management systems (PMSs) to operate...... optimally under different working conditions. In this paper, coordinated optimal power management at the supply/demand side of a given AES is studied with regard to different objectives and related technical/environmental constraints. The optimal power management problem is formulated as a mixed...

  6. Impact of integrating wind power in the Norwegian power system

    International Nuclear Information System (INIS)

    Tande, John Olav

    2006-04-01

    of wind power in Norway. Local control enables operation of a large wind farm on a fairly weak regional grid, and marked based balancing tackles large magnitudes of wind power. A future with high penetration of wind power seems thus viable, though the operational challenges with respect to operating reserves, frequency control and transmission capacity are expected to become increasingly important. The hourly wind power variations may be significant within local areas, but uncorrelated between distant sites. Hence, sufficient transmission capacity may be a key for efficient operation of a future Norwegian and indeed a European power system with a large share of wind power. The findings of this report are largely based on literature survey. Specific Norwegian studies are generally lacking on wind impact on system operation, balancing and adequacy. It may thus be relevant to carry out such studies, and then possible both for Norway as a whole and for Norwegian regions (author) (ml)

  7. Hydrogen fuel cell power system

    International Nuclear Information System (INIS)

    Lam, A.W.

    2004-01-01

    'Full text:' Batteries are typically a necessary and prime component of any DC power system, providing a source of on-demand stored energy with proven reliability. The integration of batteries and basic fuel cells for mobile and stationary utility applications poses a new challenge. For high value applications, the specification and operating requirements for this hybrid module differ from conventional requirements as the module must withstand extreme weather conditions and provide extreme reliability. As an electric utility company, BCHydro has embarked in the development and application of a Hydrogen Fuel Cell Power Supply (HFCPS) for field trial. A Proton Exchange Membrane (PEM)- type fuel cell including power electronic modules are mounted in a standard 19-inch rack that provides 48V, 24V, 12V DC and 120V AC outputs. The hydrogen supply consists of hydrogen bottles and regulating devices to provide a continuous fuel source to the power modules. Many tests and evaluations have been done to ensure the HFCPS package is robust and suitable for electric utility grade operation. A field trial demonstrating this standalone system addressed reliability, durability, and installation concerns as well as developed the overall system operating procedures. (author)

  8. Power System Operation with Large Scale Wind Power Integration

    DEFF Research Database (Denmark)

    Suwannarat, A.; Bak-Jensen, B.; Chen, Z.

    2007-01-01

    to the uncertain nature of wind power. In this paper, proposed models of generations and control system are presented which analyze the deviation of power exchange at the western Danish-German border, taking into account the fluctuating nature of wind power. The performance of the secondary control of the thermal......The Danish power system starts to face problems of integrating thousands megawatts of wind power, which produce in a stochastic behavior due to natural wind fluctuations. With wind power capacities increasing, the Danish Transmission System Operator (TSO) is faced with new challenges related...... power plants and the spinning reserves control from the Combined Heat and Power (CHP) units to achieve active power balance with the increased wind power penetration is presented....

  9. ONU Power Saving Scheme for EPON System

    Science.gov (United States)

    Mukai, Hiroaki; Tano, Fumihiko; Tanaka, Masaki; Kozaki, Seiji; Yamanaka, Hideaki

    PON (Passive Optical Network) achieves FTTH (Fiber To The Home) economically, by sharing an optical fiber among plural subscribers. Recently, global climate change has been recognized as a serious near term problem. Power saving techniques for electronic devices are important. In PON system, the ONU (Optical Network Unit) power saving scheme has been studied and defined in XG-PON. In this paper, we propose an ONU power saving scheme for EPON. Then, we present an analysis of the power reduction effect and the data transmission delay caused by the ONU power saving scheme. According to the analysis, we propose an efficient provisioning method for the ONU power saving scheme which is applicable to both of XG-PON and EPON.

  10. Handbook of power systems engineering with power electronics applications

    CERN Document Server

    Hase, Yoshihide

    2012-01-01

    Formerly known as Handbook of Power System Engineering, this second edition provides rigorous revisions to the original treatment of systems analysis together with a substantial new four-chapter section on power electronics applications. Encompassing a whole range of equipment, phenomena, and analytical approaches, this handbook offers a complete overview of power systems and their power electronics applications, and presents a thorough examination of the fundamental principles, combining theories and technologies that are usually treated in separate specialised fields, in a single u

  11. Space nuclear power systems for extraterrestrial basing

    International Nuclear Information System (INIS)

    Lance, J.R.; Chi, J.W.H.

    1989-01-01

    Previous studies of nuclear and non-nuclear power systems for lunar bases are compared with recent studies by others. Power levels from tens of kW e for early base operation up to 2000 kW e for a self-sustaining base with a Closed Environment Life Support System (CELSS) are considered. Permanent lunar or Martian bases will require the use of multiple nuclear units connected to loads with a power transmission and distribution system analogous to earth-based electric utility systems. A methodology used for such systems is applied to the lunar base system to examine the effects of adding 100 kW e SP-100 class and/or larger nuclear units when a reliability criterion is imposed. The results show that resource and logistic burdens can be reduced by using 1000 kW e units early in the base growth scenario without compromising system reliability. Therefore, both technologies being developed in two current programs (SP-100 and NERVA Derivative Reactor (NDR) technology for space power) can be used effectively for extraterrestrial base power systems. Recent developments in NDR design that result in major reductions in reactor mass are also described. (author)

  12. Concept definition study of small Brayton cycle engines for dispersed solar electric power systems

    Science.gov (United States)

    Six, L. D.; Ashe, T. L.; Dobler, F. X.; Elkins, R. T.

    1980-01-01

    Three first-generation Brayton cycle engine types were studied for solar application: a near-term open cycle (configuration A), a near-term closed cycle (configuration B), and a longer-term open cycle (configuration C). A parametric performance analysis was carried out to select engine designs for the three configurations. The interface requirements for the Brayton cycle engine/generator and solar receivers were determined. A technology assessment was then carried out to define production costs, durability, and growth potential for the selected engine types.

  13. Design of an off-grid hybrid PV/wind power system for remote mobile base station: A case study

    Directory of Open Access Journals (Sweden)

    Mulualem T. Yeshalem

    2017-01-01

    Full Text Available There is a clear challenge to provide reliable cellular mobile service at remote locations where a reliable power supply is not available. So, the existing Mobile towers or Base Transceiver Station (BTSs uses a conventional diesel generator with backup battery banks. This paper presents the solution to utilizing a hybrid of photovoltaic (PV solar and wind power system with a backup battery bank to provide feasibility and reliable electric power for a specific remote mobile base station located at west arise, Oromia. All the necessary modeling, simulation, and techno-economic evaluation are carried out using Hybrid Optimization Model for Electric Renewable (HOMER software. The best optimal system configurations namely PV/Battery and PV/Wind/Battery hybrid systems are compared with the conventional stand-alone diesel generator (DG system. Findings indicated that PV array and battery is the most economically viable option with the total net present cost (NPC of $\\$$57,508 and per unit cost of electricity (COE of $\\$$0.355. Simulation results show that the hybrid energy systems can minimize the power generation cost significantly and can decrease CO2 emissions as compared to the traditional diesel generator only. The sensitivity analysis is also carried out to analysis the effects of probable variation in solar radiation, wind speed, diesel price and average annual energy usage of the system load in the optimal system configurations.

  14. Preliminary study of the charged particle radiaton for th satellite power system

    International Nuclear Information System (INIS)

    Stassinopoulos, E.G.

    1978-01-01

    A preliminary radiation study was performed for the SPS project in order to determine the energetic charged particle environment for the three major phases of an SPS mission: the low earth orbit (LEO), the transfer ellipse (TE), and the synchronous geostationary trajectory (GEO). For that purpose, extensive calculations were performed and a large data base was generated, processeed, and analyzed. The external (surface incident) charged particle intensities, predicted for the SPS in each mission phase, were determined by orbital flux integration from the latest environment models. Magnetic field definitions for the three trajectories were obtained from a current field model. Spatial and temporal variations or conditions were considered and accounted for, where possible. Limited shielding and dose evaluations were performed for a simple geometry. The results of this analysis are presented in tabular and graphical form

  15. Feasibility Study of a Simulation Driven Approach for Estimating Reliability of Wind Turbine Fluid Power Pitch Systems

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; N. Soltani, Mohsen

    2018-01-01

    Recent field data indicates that pitch systems account for a substantial part of a wind turbines down time. Reducing downtime means increasing the total amount of energy produced during its lifetime. Both electrical and fluid power pitch systems are employed with a roughly 50/50 distribution. Fluid...... power pitch systems generally show higher reliability and have been favored on larger offshore wind turbines. Still general issues such as leakage, contamination and electrical faults make current systems work sub-optimal. Current field data for wind turbines present overall pitch system reliability...... and the reliability of component groups (valves, accumulators, pumps etc.). However, the failure modes of the components and more importantly the root causes are not evident. The root causes and failure mode probabilities are central for changing current pitch system designs and operational concepts to increase...

  16. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity....... This paper analyse the potential for using EVs in Denmark and identify the benefits of the electric power system with high wind power generation by intelligent charging of the EVs. Based on the analysis important technology gabs are identified, and the corresponding research and development initiatives...

  17. The innovation impact of the EU Emission Trading System. Findings of company case studies in the German power sector

    International Nuclear Information System (INIS)

    Rogge, Karoline S.; Schneider, Malte; Hoffmann, Volker H.

    2011-01-01

    This paper provides a detailed analysis of how the European Emission Trading System (EU ETS) as the core climate policy instrument of the European Union has impacted innovation. Towards this end, we investigate the impact of the EU ETS on research, development and demonstration (RD and D), adoption, and organizational change. In doing so, we pay particular attention to the relative influences of context factors (policy mix, market factors and public acceptance) and firm characteristics (value chain position, technology portfolio, size and vision). Empirically, our qualitative analysis is based on multiple case studies with 19 power generators, technology providers and project developers in the German power sector which were conducted in 2008/09. We find that the innovation impact of the EU ETS has remained limited so far because of the scheme's initial lack of stringency and predictability and the relatively greater importance of context factors. Additionally, the impact varies significantly across technologies, firms, and innovation dimensions and is most pronounced for RD and D on carbon capture technologies and organizational changes. Our analysis suggests that the EU ETS on its own may not provide sufficient incentives for fundamental changes in corporate innovation activities at a level which ensures political long-term targets can be achieved. (author)

  18. Feasibility study on economic operation of wind farms in the electric power system of the Republic of Croatia

    International Nuclear Information System (INIS)

    Rabadan, L.P.; Sansevic, M.; Klarin, B.

    1996-01-01

    In this work are analyzed island and coastal locations on the Adriatic Sea as possible sites of wind farms. The analysis is based on the expert system developed by authors of other literature. The macrolocation selection is performed by the multicriterial decision-making method and in compliance with the current world approach to their wind potential and some other criteria. The choice of wind turbine generator (WTG) unit is based on the fundamental criteria: operational efficiency on the given location, price per installed kW, and price of the generated electricity. The results obtained in this study show that the contribution in electricity yield from the selected wind power plants could amount to 4.33% of the electricity generated by the Croatian power plants in the year 1990. The calculations of electricity costs are based on the quantity of electricity obtained by simulating the operation of the best WTG units selected from the ES database and including other influential factors. In the choice of macrolocations and WTG units the fuzzy method is implemented as part of the ES. (author)

  19. Conceptual Design Study of a Closed Brayton Cycle Turbogenerator for Space Power Thermal-To-Electric Conversion System

    Science.gov (United States)

    Hansen, Jeff L.

    2000-01-01

    A conceptual design study was completed for a 360 kW Helium-Xenon closed Brayton cycle turbogenerator. The selected configuration is comprised of a single-shaft gas turbine engine coupled directly to a high-speed generator. The engine turbomachinery includes a 2.5:1 pressure ratio compression system with an inlet corrected flow of 0.44 kg/sec. The single centrifugal stage impeller discharges into a scroll via a vaned diffuser. The scroll routes the air into the cold side sector of the recuperator. The hot gas exits a nuclear reactor radiator at 1300 K and enters the turbine via a single-vaned scroll. The hot gases are expanded through the turbine and then diffused before entering the hot side sector of the recuperator. The single shaft design is supported by air bearings. The high efficiency shaft mounted permanent magnet generator produces an output of 370 kW at a speed of 60,000 rpm. The total weight of the turbogenerator is estimated to be only 123 kg (less than 5% of the total power plant) and has a volume of approximately 0.11 cubic meters. This turbogenerator is a key element in achieving the 40 to 45% overall power plant thermal efficiency.

  20. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  1. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ela, Erik [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hein, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schneider, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  2. Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System

    Directory of Open Access Journals (Sweden)

    Yanjuan Yu

    2018-01-01

    Full Text Available In regards to the cogeneration system in Northern China, mainly supported by combined heat and power (CHP plants, it usually offers limited operation flexibility due to the joint production of electric and thermal power. For that large-scale wind farms included in the cogeneration system, a large amount of wind energy may have to be wasted. To solve this issue, the utilization of the electric energy storages and the thermal energy auxiliaries are recommended, including pumped hydro storage (PHS, compressed air energy storage (CAES, hydrogen-based energy storage (HES, heat storage (HS, electric boilers (EB, and heat pumps (HP. This paper proposes a general evaluation method to compare the performance of these six different approaches for promoting wind power integration. In consideration of saving coal consumption, reducing CO2 emissions, and increasing investment cost, the comprehensive benefit is defined as the evaluation index. Specifically, a wind-thermal conflicting expression (WTCE is put forward to simplify the formulation of the comprehensive benefit. Further, according to the cogeneration system of the West Inner Mongolia (WIM power grid, a test system is modelled to perform the comparison of the six different approaches. The results show that introducing the electric energy storages and the thermal energy auxiliaries can both contribute to facilitating wind power integration, and the HP can provide the best comprehensive benefit.

  3. A method and system for power management

    NARCIS (Netherlands)

    Burchard, Arthur Tadeusz; Goossens, Koos Gerard Willen; Milutinovic, A.; Molnos, Anca Mariana; Steffens, Elisabeth Francisca Maria

    2009-01-01

    A method and system for power management is provided. To control power supplied to a second electronic device (106), an electronic system (100) comprises a power management subsystem (110), a first electronic device (102); The power management subsystem (110) monitors the power consumed by the first

  4. SP-100/Brayton power system concepts

    International Nuclear Information System (INIS)

    Owen, D.F.

    1989-01-01

    Use of closed Brayton cycle (CBC) power conversion technology has been investigated for use with SP-100 reactors for space power systems. The CBC power conversion technology is being developed by Rockwell International under the Dynamic Isotype Power System (DIPS) and Space Station Freedom solar dynamic power system programs to provide highly efficient power conversion with radioisotype and solar collector heat sources. Characteristics including mass, radiator area, thermal power, and operating temperatures for systems utilizing SP-100 reactor and CBC power conversion technology were determined for systems in the 10-to 100-kWe power range. Possible SP-100 reactor/CBC power system configurations are presented. Advantages of CBC power conversion technology with regard to reactor thermal power, operating temperature, and development status are discussed

  5. Deterministic and Stochastic Study for an Infected Computer Network Model Powered by a System of Antivirus Programs

    Directory of Open Access Journals (Sweden)

    Youness El Ansari

    2017-01-01

    Full Text Available We investigate the various conditions that control the extinction and stability of a nonlinear mathematical spread model with stochastic perturbations. This model describes the spread of viruses into an infected computer network which is powered by a system of antivirus software. The system is analyzed by using the stability theory of stochastic differential equations and the computer simulations. First, we study the global stability of the virus-free equilibrium state and the virus-epidemic equilibrium state. Furthermore, we use the Itô formula and some other theoretical theorems of stochastic differential equation to discuss the extinction and the stationary distribution of our system. The analysis gives a sufficient condition for the infection to be extinct (i.e., the number of viruses tends exponentially to zero. The ergodicity of the solution and the stationary distribution can be obtained if the basic reproduction number Rp is bigger than 1, and the intensities of stochastic fluctuations are small enough. Numerical simulations are carried out to illustrate the theoretical results.

  6. Robust power system frequency control

    CERN Document Server

    Bevrani, Hassan

    2014-01-01

    This updated edition of the industry standard reference on power system frequency control provides practical, systematic and flexible algorithms for regulating load frequency, offering new solutions to the technical challenges introduced by the escalating role of distributed generation and renewable energy sources in smart electric grids. The author emphasizes the physical constraints and practical engineering issues related to frequency in a deregulated environment, while fostering a conceptual understanding of frequency regulation and robust control techniques. The resulting control strategi

  7. NUCLEAR THERMIONIC SPACE POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Howard, R. C.; Rasor, N. S.

    1963-03-15

    The various concepts for utilizing thermionic conversion in space reactor power plants are described and evaluated. The problems (and progress toward their solution) of the in-core concept, particularly, are considered. Progress in thermionic conversion technology is then reviewed from both the hardware and research points of view. Anticipated progress in thermionic conversion and the possible consequences for the performance of electrical propulsion systems are summarized. 46 references. (D.C.W.)

  8. Dynamic model of frequency control in Danish power system with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2013-01-01

    This work evaluates the impact of large scale integration of wind power in future power systems when 50% of load demand can be met from wind power. The focus is on active power balance control, where the main source of power imbalance is an inaccurate wind speed forecast. In this study, a Danish...... power system model with large scale of wind power is developed and a case study for an inaccurate wind power forecast is investigated. The goal of this work is to develop an adequate power system model that depicts relevant dynamic features of the power plants and compensates for load generation...... imbalances, caused by inaccurate wind speed forecast, by an appropriate control of the active power production from power plants....

  9. Relativistic-klystron two-beam-accelerator as a power source for a 1 TeV next linear collider: A systems study

    International Nuclear Information System (INIS)

    Yu, S.; Goffeney, N.; Deadrick, F.

    1994-10-01

    A physics, engineering, and costing study has been conducted to explore the feasibility of a relativistic-klystron two-beam-accelerator system as a power source candidate for a 1 TeV linear collider. We present a point design example which has acceptable transverse and longitudinal beam stability properties. Preliminary ''bottom-up'' cost estimate yields the full power source system at less than 1 billion dollars. The overall efficiency for rf production is estimated to be 36%

  10. Lunar Wireless Power Transfer Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Freid, Sheldon [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Popovic, Zoya [Univ. of Colorado, Boulder, CO (United States); Beckett, David R. [Independent Consultant; Anderson, Scott R. [Independent Consultant; Mann, Diana [Independent Consultant; Walker, Stuart [Independent Consultant

    2008-03-01

    This study examines the feasibility of a multi-kilowatt wireless radio frequency (RF) power system to transfer power between lunar base facilities. Initial analyses, show that wireless power transfer (WPT) systems can be more efficient and less expensive than traditional wired approaches for certain lunar and terrestrial applications. The study includes evaluations of the fundamental limitations of lunar WPT systems, the interrelationships of possible operational parameters, and a baseline design approach for a notionial system that could be used in the near future to power remote facilities at a lunar base. Our notional system includes state-of-the-art photovoltaics (PVs), high-efficiency microwave transmitters, low-mass large-aperture high-power transmit antennas, high-efficiency large-area rectenna receiving arrays, and reconfigurable DC combining circuitry.

  11. Selectivity of power system protections at power swings in power system

    Directory of Open Access Journals (Sweden)

    Jan Machowski

    2012-12-01

    Full Text Available The paper discusses out-of-step protection systems such as: generator pole slip protections, out of step tripping protections, distance protections of step-up transformer, distance protections of transmission lines and transformers, power swing blocking, and special out-of-step protection. It is shown that all these protections make up a protection system, to which a setting concept uniform for the entire power system has to be applied. If a power system is inappropriately equipped with these protections, or their settings are inappropriate, they may operate unselectively, thus contributing to the development of power system blackouts. In the paper the concepts for a real power system are given for the two stages: target stage fully compliant with selectivity criteria, and transitional stage between the current and target stages.

  12. Design for Reliability and Robustness Tool Platform for Power Electronic SystemsStudy Case on Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Wang, Huai; Blaabjerg, Frede

    2018-01-01

    conventional approach, mainly based on failure statistics from the field, the reliability evaluation of the power devices is still a challenging task. In order to address the given problem, a MATLAB based reliability assessment tool has been developed. The Design for Reliability and Robustness (DfR2) tool...... allows the user to easily investigate the reliability performance of the power electronic components (or sub-systems) under given input mission profiles and operating conditions. The main concept of the tool and its framework are introduced, highlighting the reliability assessment procedure for power...... semiconductor devices. Finally, a motor drive application is implemented and the reliability performance of the power devices is investigated with the help of the DfR2 tool, and the resulting reliability metrics are presented....

  13. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    Science.gov (United States)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  14. Power fluctuation reduction methodology for the grid-connected renewable power systems

    Science.gov (United States)

    Aula, Fadhil T.; Lee, Samuel C.

    2013-04-01

    This paper presents a new methodology for eliminating the influence of the power fluctuations of the renewable power systems. The renewable energy, which is to be considered an uncertain and uncontrollable resource, can only provide irregular electrical power to the power grid. This irregularity creates fluctuations of the generated power from the renewable power systems. These fluctuations cause instability to the power system and influence the operation of conventional power plants. Overall, the power system is vulnerable to collapse if necessary actions are not taken to reduce the impact of these fluctuations. This methodology aims at reducing these fluctuations and makes the generated power capability for covering the power consumption. This requires a prediction tool for estimating the generated power in advance to provide the range and the time of occurrence of the fluctuations. Since most of the renewable energies are weather based, as a result a weather forecast technique will be used for predicting the generated power. The reduction of the fluctuation also requires stabilizing facilities to maintain the output power at a desired level. In this study, a wind farm and a photovoltaic array as renewable power systems and a pumped-storage and batteries as stabilizing facilities are used, since they are best suitable for compensating the fluctuations of these types of power suppliers. As an illustrative example, a model of wind and photovoltaic power systems with battery energy and pumped hydro storage facilities for power fluctuation reduction is included, and its power fluctuation reduction is verified through simulation.

  15. Wind power integration into the automatic generation control of power systems with large-scale wind power

    Directory of Open Access Journals (Sweden)

    Abdul Basit

    2014-10-01

    Full Text Available Transmission system operators have an increased interest in the active participation of wind power plants (WPP in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different possible future scenarios, when wind power production in the power system is high and conventional production from CHPs is at a minimum level. The investigation results of the proposed control strategy have shown that the WPPs can actively help the AGC, and reduce the real-time power imbalance in the power system, by down regulating their production when CHPs are unable to provide the required response.

  16. Instrumentation for Power System Disturbance Monitoring, Data ...

    African Journals Online (AJOL)

    In this paper, the level of instrumentation for power system disturbance monitoring, data acquisition and control in Nigerian Electric Power System; National Electric Power Authority (NEPA) is presented. The need for accurate power system disturbance monitoring is highlighted. A feature of an adequate monitoring, data ...

  17. Ongoing studies for the control system of a serially powered ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Kersten, S.; Püllen, L.; Zeitnitz, C.

    2016-01-01

    In terms of the phase-2 upgrade of the ATLAS detector, the entire inner tracker (ITk) of ATLAS will be replaced. This includes the pixel detector and the corresponding detector control system (DCS). The current baseline is a serial powering scheme of the detector modules. Therefore a new detector control system is being developed with emphasis on the supervision of serially powered modules. Previous chips had been designed to test the radiation hardness of the technology and the implementation of the modified I2C as well as the implementation of the logic of the CAN protocol. This included tests with triple redundant registers. The described chip is focusing on the implementation in a serial powering scheme. It was designed for laboratory tests, aiming for the proof of principle. The concept of the DCS for ATLAS pixel after the phase-2 upgrade is presented as well as the status of development including tests with the prototype ASIC

  18. Investigating power control in autonomous power systems with increasing wind power penetration

    Energy Technology Data Exchange (ETDEWEB)

    Margaris, Ioannis D. [National Technical Univ. of Athens (Greece). Electric Energy Systems Lab.; Hansen, Anca D.; Sorensen, Poul [Risoe National Laboratory, Roskilde (Denmark). Wind Energy Dept.; Hatziargyriou, Nikos D. [National Technical Univ. of Athens (Greece). Electric Energy Systems Lab.; Public Power Corporation S.A., Athens (Greece)

    2009-07-01

    Increasing levels of wind penetration in autonomous power systems has set intensively high standards with respect to wind turbine technology during the last years. Special features of non-interconnected power systems make security issues rather critical, as the operation of large wind farms like conventional power plants is becoming a necessity. This paper includes the study case of Rhodos island, in Greece, where rapidly increasing wind penetration has started to impose serious security issues for the immediate future. The scenarios studied here correspond to reference year of study 2012 and include wind farms with three different wind turbine technologies - namely Doubly Fed Induction Generator (DFIG), Permanent Magnet Synchronous Generator (PMSG) and Active Stall Induction Generator (ASIG) based wind turbines. Aggregated models of the wind farms are being used and results for different load cases are being analyzed and discussed. The ability of wind farms to assist in some of the power system control services traditionally carried out by conventional synchronous generation is being investigated and discussed. The power grid of the island, including speed governors and automatic voltage regulators, is simulated in the dedicated power system simulation program Power Factory from DIgSILENT. (orig.)

  19. Isolated systems with wind power. Main report

    DEFF Research Database (Denmark)

    Lundsager, P.; Bindner, Henrik W.; Clausen, Niels-Erik

    2001-01-01

    The overall objective of this research project is to study the development of methods and guidelines rather than "universal solutions" for the use of wind energy in isolated communities. The main specific objective of the project is to develop and present amore unified and generally applicable...... approach for assessing the technical and economical feasibility of isolated power supply systems with wind energy. As a part of the project the following tasks were carried out: Review of literature, fieldmeasurements in Egypt, development of an inventory of small isolated systems, overview of end...... for Isolated Systems with Wind Power, applicable for international organisations such as donoragencies and development banks....

  20. MEMS Rotary Engine Power System

    Science.gov (United States)

    Fernandez-Pello, A. Carlos; Pisano, Albert P.; Fu, Kelvin; Walther, David C.; Knobloch, Aaron; Martinez, Fabian; Senesky, Matt; Stoldt, Conrad; Maboudian, Roya; Sanders, Seth; Liepmann, Dorian

    This work presents a project overview and recent research results for the MEMS Rotary Engine Power System project at the Berkeley Sensor & Actuator Center of the University of California at Berkeley. The research motivation for the project is the high specific energy density of hydrocarbon fuels. When compared with the energy density of batteries, hydrocarbon fuels may have as much as 20x more energy. However, the technical challenge is the conversion of hydrocarbon fuel to electricity in an efficient and clean micro engine. A 12.9 mm diameter Wankel engine will be shown that has already generated 4 Watts of power at 9300rpm. In addition, the 1mm and 2.4 mm Wankel engines that BSAC is developing for power generation at the microscale will be discussed. The project goal is to develop electrical power output of 90milliwatts from the 2.4 mm engine. Prototype engine components have already been fabricated and these will be described. The integrated generator design concept utilizes a nickel-iron alloy electroplated in the engine rotor poles, so that the engine rotor also serves as the generator rotor.