WorldWideScience

Sample records for power system stabilization

  1. Power system stabilizer control for wind power to enhance power system stability

    OpenAIRE

    Domínguez García, José Luís; Gomis Bellmunt, Oriol; Bianchi, Fernando Daniel; Sumper, Andreas

    2011-01-01

    The paper presents a small signal stability analysis for power systems with wind farm interaction. Power systems have damping oscillation modes that can be excited by disturbance or fault in the grid. The power converters of the wind farms can be used to reduce these oscillations and make the system more stable. These ideas are explored to design a power system stabilized (PSS) for a network with conventional generators and a wind farm in order to increase the damping of the oscillation...

  2. Impacts of Wind Power on Power System Stability

    NARCIS (Netherlands)

    Vittal, E.; Keane, A.; Slootweg, J.G.; Kling, W.L.; Ackermann, T.

    2012-01-01

    This chapter examines how wind power will impact the stability of power systems. It focuses on the three aspects of power system stability: voltage stability, rotor angle stability and frequency stability. It completes a detailed analysis as to how wind power in power systems will impact the

  3. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical......This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  4. Power system stabilization by SMES using current-fed pwm power conditioner

    International Nuclear Information System (INIS)

    Ishikawa, T.; Akita, S.; Taniguchi, H.; Kosho, S.; Tanaka, T.

    1988-01-01

    A superconducting magnetic energy storage (SMES) unit, consisted of superconducting coil and AC/DC power conditioner, can be used to suppress various kinds of instability that may cause service interruption in electric power system as it has high controllability of input/output electric power. Power system stabilizing ability of SMES has been examined experimentally by using model power system and small SMES unit. Current-fed PWM power conditioner was used to obtain maximum stabilizing effect by controlling active and reactive power simultaneously and independently. Power conditioner configuration, operating characteristics and control scheme for power system stabilization are also described. Results from experiments show the effectiveness of SMES on power system stabilization

  5. The electric power engineering handbook power system stability and control

    CERN Document Server

    Grisby, Leonard L

    2012-01-01

    With contributions from worldwide leaders in the field, Power System Stability and Control, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) updates coverage of recent developments and rapid technological growth in essential aspects of power systems. Edited by L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Miroslav Begovic, Prabha Kundur, and Bruce Wollenberg, this reference presents substantially new and revised content. Topics covered include: * Power System Protection * Power System Dynamics and Stability *

  6. Probabilistic stability analysis: the way forward for stability analysis of sustainable power systems.

    Science.gov (United States)

    Milanović, Jovica V

    2017-08-13

    Future power systems will be significantly different compared with their present states. They will be characterized by an unprecedented mix of a wide range of electricity generation and transmission technologies, as well as responsive and highly flexible demand and storage devices with significant temporal and spatial uncertainty. The importance of probabilistic approaches towards power system stability analysis, as a subsection of power system studies routinely carried out by power system operators, has been highlighted in previous research. However, it may not be feasible (or even possible) to accurately model all of the uncertainties that exist within a power system. This paper describes for the first time an integral approach to probabilistic stability analysis of power systems, including small and large angular stability and frequency stability. It provides guidance for handling uncertainties in power system stability studies and some illustrative examples of the most recent results of probabilistic stability analysis of uncertain power systems.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  7. Performance of Power System Stabilizer (UNITROL D) in Benghazi North Power Plant

    OpenAIRE

    T. Hussein

    2011-01-01

    The use of power system stabilizers (PSSs) to damp power system swing mode of oscillations is practical important. Our purpose is to retune the power system stabilizer (PSS1A) parameters in Unitrol D produced by ABB– was installed in 1995in Benghazi North Power Plants (BNPPs) at General Electricity Company of Libya (GECOL). The optimal values of the power system stabilizer (PSS1A) parameters are determined off-line by a particle swarm optimization technique (PSO). The obj...

  8. Design of Simulation Product for Stability of Electric Power System Using Power System Stabilizer and Optimal Control

    Science.gov (United States)

    Junaidi, Agus; Hamid, K. Abdul

    2018-03-01

    This paper will discuss the use of optimal control and Power System Stabilizer (PSS) in improving the oscillation of electric power system. Oscillations in the electric power system can occur due to the sudden release of the load (Switcing-Off). The oscillation of an unstable system for a long time causes the equipment to work in an interruption. To overcome this problem, a control device is required that can work effectively in repairing the oscillation. The power system is modeled from the Single Machine Infinite Bus Model (SMIB). The state space equation is used to mathematically model SMIB. SMIB system which is a plant will be formed togetherness state variables (State-Space), using riccati equation then determined the optimal gain as controller plant. Plant is also controlled by Power Stabilizer System using phase compensation method. Using Matlab Software based simulation will be observed response of rotor speed change and rotor angle change for each of the two controlling methods. Simulation results using the Simulink-MATLAB 6.1 software will compare the analysis of the plant state in Open loop state and use the controller. The simulation response shows that the optimal control and PSS can improve the stability of the power system in terms of acceleration to achieve settling-time and Over Shoot improvement. From the results of both methods are able to improve system performance.

  9. On-line tuning of a fuzzy-logic power system stabilizer

    International Nuclear Information System (INIS)

    Hossein-Zadeh, N.; Kalam, A.

    2002-01-01

    A scheme for on-line tuning of a fuzzy-logic power system stabilizer is presented. firstly, a fuzzy-logic power system stabilizer is developed using speed deviation and accelerating power as the controller input variables. The inference mechanism of fuzzy-logic controller is represented by a decision table, constructed of linguistic IF-THEN rules. The Linguistic rules are available from experts and the design procedure is based on these rules. It assumed that an exact model of the plant is not available and it is difficult to extract the exact parameters of the power plant. Thus, the design procedure can not be based on an exact model. This is an advantage of fuzzy logic that makes the design of a controller possible without knowing the exact model of the plant. Secondly, two scaling parameters are introduced to tune the fuzzy-logic power system stabilizer. These scaling parameters are the outputs of another fuzzy-logic system, which gets the operating conditions of power system as inputs. These mechanism of tuning the fuzzy-logic power system stabilizer makes the fuzzy-logic power system stabilizer adaptive to changes in the operating conditions. Therefore, the degradation of the system response, under a wide range of operating conditions, is less compared to the system response with a fixed-parameter fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. The tuned stabilizer has been tested by performing nonlinear simulations using a synchronous machine-infinite bus model. The responses are compared with a fixed parameters fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. It is shown that the tuned fuzzy-logic power system stabilizer is superior to both of them

  10. Power system stabilizers based on modern control techniques

    Energy Technology Data Exchange (ETDEWEB)

    Malik, O P; Chen, G P; Zhang, Y; El-Metwally, K [Calgary Univ., AB (Canada). Dept. of Electrical and Computer Engineering

    1994-12-31

    Developments in digital technology have made it feasible to develop and implement improved controllers based on sophisticated control techniques. Power system stabilizers based on adaptive control, fuzzy logic and artificial networks are being developed. Each of these control techniques possesses unique features and strengths. In this paper, the relative performance of power systems stabilizers based on adaptive control, fuzzy logic and neural network, both in simulation studies and real time tests on a physical model of a power system, is presented and compared to that of a fixed parameter conventional power system stabilizer. (author) 16 refs., 45 figs., 3 tabs.

  11. Power system small signal stability analysis and control

    CERN Document Server

    Mondal, Debasish; Sengupta, Aparajita

    2014-01-01

    Power System Small Signal Stability Analysis and Control presents a detailed analysis of the problem of severe outages due to the sustained growth of small signal oscillations in modern interconnected power systems. The ever-expanding nature of power systems and the rapid upgrade to smart grid technologies call for the implementation of robust and optimal controls. Power systems that are forced to operate close to their stability limit have resulted in the use of control devices by utility companies to improve the performance of the transmission system against commonly occurring power system

  12. Transient Stability Assessment of Power System with Large Amount of Wind Power Penetration

    DEFF Research Database (Denmark)

    Liu, Leo; Chen, Zhe; Bak, Claus Leth

    2012-01-01

    Recently, the security and stability of power system with large amount of wind power are the concerned issues, especially the transient stability. In Denmark, the onshore and offshore wind farms are connected to distribution system and transmission system respectively. The control and protection...... methodologies of onshore and offshore wind farms definitely affect the transient stability of power system. In this paper, the onshore and offshore wind farms are modeled in detail in order to assess the transient stability of western Danish power system. Further, the computation of critical clearing time (CCT...... plants, load consumption level and high voltage direct current (HVDC) transmission links are taken into account. The results presented in this paper are able to provide an early awareness of power system security condition of the western Danish power system....

  13. The armenian power system operation stability investigation accounting putting new power systems into operation

    International Nuclear Information System (INIS)

    Yeghiazaryan, L.V.; Hakobyan, S.G.; Gharibyan, G.V.; Harutyunyan, G.S.; Galstyan, G.H.

    2010-01-01

    The description of the power systems operation stability failure caused by the system significant emergency states occurred during the last working period in Armenian and USA power systems is performed. With the use of PSSTME-31 software portfolio of Siemens Firm a design model is developed and transient electromechanical process calculations for Armenian power system are performed. The accuracy of the model is checked by comparing real-time transient state parameters and their reproduction calculation results.The Armenia - Iran current power transmission lines permissible limit under the condition of the static and dynamic stability requirements and in case of the new thermal power units maintenance are defined

  14. Wind energy systems solutions for power quality and stabilization

    CERN Document Server

    Ali, Mohd Hasan

    2012-01-01

    Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases--and wind energy is a free, renewable resource. However, the induction machines commonly used as wind generators have stability problems similar to the transient stability of synchronous machines. To minimize power, frequency, and voltage fluctuations caused by network faults or random wind speed variations, control mechanisms are necessary. Wind Energy Systems: Solutions for Power Quality and Stabilization clearly explains how to solve stability and power quality issues of wind generator systems. Covering

  15. Effects of SMES units on power system stability

    International Nuclear Information System (INIS)

    Byerly, R.T.; Juves, J.A.

    1980-01-01

    A mathematical model suitable for representing SMES units in power system stability studies has been developed and incorporated into an existing large-scale stability program. Demonstration studies have been performed which emphasize the use of SMES units to improve the damping of oscillations associated with synchronizing power flow among generators. The capability exists to conduct stability studies of large systems which include SMES units

  16. Long term stability of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Kundur, P; Gao, B [Powertech Labs. Inc., Surrey, BC (Canada)

    1994-12-31

    Power system long term stability is still a developing subject. In this paper we provide our perspectives and experiences related to long term stability. The paper begins with the description of the nature of the long term stability problem, followed by the discussion of issues related to the modeling and solution techniques of tools for long term stability analysis. Cases studies are presented to illustrate the voltage stability aspect and plant dynamics aspect of long term stability. (author) 20 refs., 11 figs.

  17. Solar Dynamic Power System Stability Analysis and Control

    Science.gov (United States)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  18. Probabilistic assessment of power system transient stability incorporating SMES

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jiakun, E-mail: Jiakun.Fang@gmail.com [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Yao, Wei [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Wen, Jinyu, E-mail: jinyu.wen@hust.edu.cn [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Cheng, Shijie; Tang, Yuejin; Cheng, Zhuo [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China)

    2013-01-15

    Highlights: ► Probabilistic study of power system with wind farm and SMES is proposed. ► Quantitative relationship between system stability and SMES capacity is given. ► System stability increases with the capacity of the SMES. ► System stability decreases with the penetration of wind power. ► Together with the cost function, the coil size is optimized. -- Abstract: This paper presents a stochastic-based approach to evaluate the probabilistic transient stability index of the power system incorporating the wind farm and the SMES. Uncertain factors include both sequence of disturbance in power grid and stochastic generation of the wind farm. The spectrums of disturbance in the grid as the fault type, the fault location, the fault clearing time and the automatic reclosing process with their probabilities of occurrence are used to calculate the probability indices, while the wind speed statistics and parameters of the wind generator are used in a Monte Carlo simulation to generate samples for the studies. With the proposed method, system stability is ”measured”. Quantitative relationship of penetration level, SMES coil size and system stability is established. Considering the stability versus coil size to be the production curve, together with the cost function, the coil size is optimized economically.

  19. Probabilistic assessment of power system transient stability incorporating SMES

    International Nuclear Information System (INIS)

    Fang, Jiakun; Yao, Wei; Wen, Jinyu; Cheng, Shijie; Tang, Yuejin; Cheng, Zhuo

    2013-01-01

    Highlights: ► Probabilistic study of power system with wind farm and SMES is proposed. ► Quantitative relationship between system stability and SMES capacity is given. ► System stability increases with the capacity of the SMES. ► System stability decreases with the penetration of wind power. ► Together with the cost function, the coil size is optimized. -- Abstract: This paper presents a stochastic-based approach to evaluate the probabilistic transient stability index of the power system incorporating the wind farm and the SMES. Uncertain factors include both sequence of disturbance in power grid and stochastic generation of the wind farm. The spectrums of disturbance in the grid as the fault type, the fault location, the fault clearing time and the automatic reclosing process with their probabilities of occurrence are used to calculate the probability indices, while the wind speed statistics and parameters of the wind generator are used in a Monte Carlo simulation to generate samples for the studies. With the proposed method, system stability is ”measured”. Quantitative relationship of penetration level, SMES coil size and system stability is established. Considering the stability versus coil size to be the production curve, together with the cost function, the coil size is optimized economically

  20. Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies

    DEFF Research Database (Denmark)

    Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer

    2014-01-01

    Large amount of wind power installations introduce modeling challenges for power system operators at both the planning and operational stages of power systems. Depending on the scope of the study, the modeling details of the wind turbine or the wind power plant are required to be different. A wind...... turbine model which is developed for the short-term voltage stability studies can be inaccurate and sufficient for the frequency stability studies. Accordingly, a complete and detailed wind power plant model for every kind of study is not feasible in terms of the computational time and also...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system....

  1. Power system stability enhancement using facts controllers: a review

    International Nuclear Information System (INIS)

    Abido, M. A

    2009-01-01

    In recent years, power demand has increased substantially while the expansion of power generation and transmission has been severely limited due to limited resources and environmental restrictions. As a consequence, some transmission lines are heavily loaded and the system stability becomes a power transfer-limiting factor. Flexible AC transmission systems (FACTS) controllers have been mainly used for solving various power system steady state control problems. However, recent studies reveal that FACTS controllers could be employed to enhance power system stability in addition to their main function of power flow control. The literature shows an increasing interest in this subject for the last two decades, where the enhancement of system stability using FACTS controllers has been extensively investigated. This paper presents a comprehensive review on the research and developments in the power system stability enhancement using FACTS damping controllers. Several technical issues related to FACTS installations have been highlighted and performance comparison of different FACTS controllers has been discussed. In addition, some of the utility experience, real-world installations, and semiconductor technology development have been reviewed and summarized. Applications of FACTS to other power system studies have also been discussed. About two hundred twenty seven research publications have been classified and appended for a quick reference. (author)

  2. An Optimal Power Flow (OPF) Method with Improved Power System Stability

    DEFF Research Database (Denmark)

    Su, Chi; Chen, Zhe

    2010-01-01

    This paper proposes an optimal power flow (OPF) method taking into account small signal stability as additional constraints. Particle swarm optimization (PSO) algorithm is adopted to realize the OPF process. The method is programmed in MATLAB and implemented to a nine-bus test power system which...... has large-scale wind power integration. The results show the ability of the proposed method to find optimal (or near-optimal) operating points in different cases. Based on these results, the analysis of the impacts of wind power integration on the system small signal stability has been conducted....

  3. Power system dynamics and stability with synchrophasor measurement and power system toolbox

    CERN Document Server

    Sauer, Peter W; Chow, Joe H

    2017-01-01

    This new edition addresses the needs of dynamic modeling and simulation relevant to power system planning, design, and operation, including a systematic derivation of synchronous machine dynamic models together with speed and voltage control subsystems. Reduced-order modeling based on integral manifolds is used as a firm basis for understanding the derivations and limitations of lower-order dynamic models. Following these developments, a multi-machine model interconnected through the transmission network is formulated and simulated using numerical simulation methods. Energy function methods are discussed for direct evaluation of stability. Small-signal analysis is used for determining the electromechanical modes and mode-shapes, and for power system stabilizer design. Time-synchronized high-sampling-rate phasor measurement units (PMUs) to monitor power system disturbances ave been implemented throughout North America and many other countries. In this second edition, new chapters on synchrophasor measurement ...

  4. Impact of Wind Power on the Angular Stability of a Power System

    Directory of Open Access Journals (Sweden)

    Djemai NAIMI

    2008-06-01

    Full Text Available Wind energy conversion systems are very different in nature from conventional generators. Therefore dynamic studies must be addressed in order to integrate wind power into the power system. Angular stability assessment of wind power generator is one of main issues in power system security and operation. The angular stability for the wind power generator is determined by its corresponding Critical Clearing Time (CCT. In this paper, the effect of wind power on the transient fault behavior is investigated by replacing the power generated by two main types of wind turbine, increasing gradually a rate of wind power penetration and changing the location of wind resources. The simulation analysis was established on a 14 bus IEEE test system by PSAT/Matlab, which gives access to an extensive library of grid components, and relevant wind turbine model.

  5. Improvement of the transient stability using SFCL in Korean power systems

    International Nuclear Information System (INIS)

    Hwang, Intae; Lee, Seung Ryul; Seo, Sangsoo; Yoon, Jaeyoung; Kim, Chul-Hwan

    2013-01-01

    Highlights: •In Korea, the Special Protection System is applied for protecting the power system. •Hybrid SFCL is protecting the power system from viewpoint of the transient stability. •Basic hybrid SFCL system cannot recover during the auto-reclosing operation. •This paper performs analysis of transient stability using the novel hybrid SFCL. -- Abstract: This paper proposed a novel hybrid SFCL system for the enhancement of the transient stability in Korean power transmission system with auto-reclosing operation. The proposed SFCL system has an operation mechanism that the current limiting impedance is eliminated from the power system in a fault clearing time for the enhancement of the transient stability. Also, the system can cover the auto-reclosing operation of the transmission power system. This study analyzed an improvement of the special protection system by applying the proposed SFCL system to real power system in Korea

  6. Stability improvement of wind turbine penetrated using power system stabilizer (PSS) on South Sulawesi transmission system

    Science.gov (United States)

    Siswanto, Agus; Gunadin, Indar Chaerah; Said, Sri Mawar; Suyuti, Ansar

    2018-03-01

    The purpose of this research is to improve the stability of interconnection of South Sulawesi system caused by penetration new wind turbine in Sidrap area on bus 2 and in Jeniponto area on bus 34. The method used in this research was via software Power System analysis Toolbox (PSAT) under MATLAB. In this research, there are two problems that are evaluated, the stability of the system before and after penetration wind turbine into the system South Sulawesi system. From the simulation result shows that penetration of wind turbine on bus 2 Sidrap, bus 37 Jeniponto give effect oscillation on the system. The oscillation was damped by installation of Power System Stabilizer (PSS) on bus 29 area Sungguminasa, that South Sulawesi system stable according to normal condition.

  7. Synchrophasor-Assisted Prediction of Stability/Instability of a Power System

    Science.gov (United States)

    Saha Roy, Biman Kumar; Sinha, Avinash Kumar; Pradhan, Ashok Kumar

    2013-05-01

    This paper presents a technique for real-time prediction of stability/instability of a power system based on synchrophasor measurements obtained from phasor measurement units (PMUs) at generator buses. For stability assessment the technique makes use of system severity indices developed using bus voltage magnitude obtained from PMUs and generator electrical power. Generator power is computed using system information and PMU information like voltage and current phasors obtained from PMU. System stability/instability is predicted when the indices exceeds a threshold value. A case study is carried out on New England 10-generator, 39-bus system to validate the performance of the technique.

  8. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Science.gov (United States)

    2010-01-01

    ... power-operated systems. 29.672 Section 29.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated system is necessary to show...

  9. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Science.gov (United States)

    2010-01-01

    ... power-operated systems. 27.672 Section 27.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  10. Impact of PSS and SVC on the Power System Transient Stability

    Directory of Open Access Journals (Sweden)

    Mohammed Omar Benaissa

    2017-06-01

    Full Text Available The Static Var Compensator (SVC is used to improve the stability of the power system because of its role in injecting or absorbing the reactive power in the electrical transmission lines. The Power System Stabilizer (PSS is also a control device which ensures maximum power transfer and thus the stability of the power system enhancement. The PSS has been widely used to damp electromechanical oscillations occur in power systems. If no adequate damping is available, the oscillations will increase leading to instability. The present work is an original contribution to the problem of transient stability in the electrical power system, the authors have made some efforts to illustrate the flexibility and the importance of inserting the SVC alone or with the PSS the fact that maintain the characteristics of the system within acceptable limits in a very short time. The results show that the system has been developed successfully in terms of transient stability in a bi-machine transmission system only with the presence of PSS when a single-phase fault has been occurred, while the presence of SVC is more than essential when a three-phase fault is occurred.

  11. A summary of impacts of wind power integration on power system small-signal stability

    Science.gov (United States)

    Yan, Lei; Wang, Kewen

    2017-05-01

    Wind power has been increasingly integrated into power systems over the last few decades because of the global energy crisis and the pressure on environmental protection, and the stability of the system connected with wind power is becoming more prominent. This paper summaries the research status, achievements as well as deficiencies of the research on the impact of wind power integration on power system small-signal stability. In the end, the further research needed are discussed.

  12. Assessing Power System Stability Following Load Changes and Considering Uncertainty

    Directory of Open Access Journals (Sweden)

    D. V. Ngo

    2018-04-01

    Full Text Available An increase in load capacity during the operation of a power system usually causes voltage drop and leads to system instability, so it is necessary to monitor the effect of load changes. This article presents a method of assessing the power system stability according to the load node capacity considering uncertainty factors in the system. The proposed approach can be applied to large-scale power systems for voltage stability assessment in real-time.

  13. Impact of Offshore Wind Power Integrated by VSC-HVDC on Power Angle Stability of Power Systems

    Science.gov (United States)

    Lu, Haiyang; Tang, Xisheng

    2017-05-01

    Offshore wind farm connected to grid by VSC-HVDC loses frequency support for power system, so adding frequency control in wind farm and VSC-HVDC system is an effective measure, but it will change wind farm VSC-HVDC’s transient stability on power system. Through theoretical analysis, concluding the relationship between equivalent mechanical power and electromagnetic power of two-machine system with the active power of wind farm VSC-HVDC, then analyzing the impact of wind farm VSC-HVDC with or without frequency control and different frequency control parameters on angle stability of synchronous machine by EEAC. The validity of theoretical analysis has been demonstrated through simulation in PSCAD/EMTDC.

  14. Site selection of active damper for stabilizing power electronics based power distribution system

    DEFF Research Database (Denmark)

    Yoon, Changwoo; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    electronics based power device, which provides an adjustable damping capability to the power system where the voltage harmonic instability is measured. It can stabilize by adjusting the equivalent node impedance with its plug and play feature. This feature gives many degrees of freedom of its installation......Stability in the nowadays distribution power system is endangered by interaction problems that may arise from newly added power-electronics based power devices. Recently, a new concept to deal with this higher frequency instability, the active damper, has been proposed. The active damper is a power...... point when the system has many nodes. Therefore, this paper addresses the proper placement of an active damper in an unstable small-scale power distribution system. A time-domain model of the Cigre benchmark low-vltage network is used as a test field. The result shows the active damper location...

  15. Wind Power Impact to Transient and Voltage Stability of the Power System in Eastern Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Joana; Jørgensen, Preben; Palsson, Magni Thor

    2005-01-01

    Voltage stability, transient stability and reactive power compensation are extremely important issues for largescale integration of wind power in areas distant from the main transmission system in Eastern Denmark. This paper describes the application of a dynamic wind farm model in simulation...... studies for assessments of a large wind power penetration. The simulation results reveal problems with voltage stability due to the characteristic of wind turbine generation as well as the inability of the power system to meet the reactive power demand. Furthermore, the established model is applied...

  16. Advances in power system modelling, control and stability analysis

    CERN Document Server

    Milano, Federico

    2016-01-01

    Advances in Power System Modelling, Control and Stability Analysis captures the variety of new methodologies and technologies that are changing the way modern electric power systems are modelled, simulated and operated.

  17. Transient stability risk assessment of power systems incorporating wind farms

    DEFF Research Database (Denmark)

    Miao, Lu; Fang, Jiakun; Wen, Jinyu

    2013-01-01

    fed induction generator has been established. Wind penetration variation and multiple stochastic factors of power systems have been considered. The process of transient stability risk assessment based on the Monte Carlo method has been described and a comprehensive risk indicator has been proposed......Large-scale wind farm integration has brought several aspects of challenges to the transient stability of power systems. This paper focuses on the research of the transient stability of power systems incorporating with wind farms by utilizing risk assessment methods. The detailed model of double....... An investigation has been conducted into an improved 10-generator 39-bus system with a wind farm incorporated to verify the validity and feasibility of the risk assessment method proposed....

  18. 14 CFR 25.672 - Stability augmentation and automatic and power-operated systems.

    Science.gov (United States)

    2010-01-01

    ... power-operated systems. 25.672 Section 25.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 25.672 Stability augmentation and automatic and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  19. Harmonics and voltage stability analysis in power systems including ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    two parameters affecting power quality – harmonics and voltage stability. ... is necessary to pay attention to energy system stability in the planning, management, and ... where k ∈ {m, m + 1,... ,n} and n is total number of the buses in the system.

  20. Congestion management enhancing transient stability of power systems

    International Nuclear Information System (INIS)

    Esmaili, Masoud; Shayanfar, Heidar Ali; Amjady, Nima

    2010-01-01

    In a competitive electricity market, where market parties try to maximize their profits, it is necessary to keep an acceptable level of power system security to retain the continuity of electricity services to customers at a reasonable cost. Congestion in a power system is turned up due to network limits. After relieving congestion, the network may be operated with a reduced transient stability margin because of increasing the contribution of risky participants. In this paper, a novel congestion management method based on a new transient stability criterion is introduced. Using the sensitivity of corrected transient stability margin with respect to generations and demands, the proposed method so alleviates the congestion that the network can more retain its transient security compared with earlier methods. The proposed transient stability index is constructed considering the likelihood of credible faults. Indeed, market parties participate by their security-effective bids rather than raw bids. Results of testing the proposed method along with the earlier ones on the New-England test system elaborate the efficiency of the proposed method from the viewpoint of providing a better transient stability margin with a lower security cost. (author)

  1. Midterm Stability Evaluation of Wide-area Power System by using Synchronized Phasor Measurements

    Science.gov (United States)

    Ota, Yutaka; Ukai, Hiroyuki; Nakamura, Koichi; Fujita, Hideki

    In recent years, the PMU (Phasor Measurement Unit) receives a great deal of attention as a synchronized measurement system of power systems. Synchronized phasor angles obtained by the PMU provide the effective information for evaluating the stability of a bulk power system. The aspect of instability phenomena during midterm tends to be more complicated, and the stability analysis using the synchronized phasor measurements is significant in order to keep a complicated power system stable. This paper proposes a midterm stability evaluation method of the wide-area power system by using the synchronized phasor measurements. By clustering and aggregating the power system to some coherent groups, the step-out is effectively predicted on the basis of the two-machine equivalent power system model. The midterm stability of a longitudinal power system model of Japanese 60Hz systems constructed by the PSA, which is a hybrid-type power system simulator, is practically evaluated using the proposed method.

  2. Transient Stability Improvement of IEEE 9 Bus System Using Power World Simulator

    Directory of Open Access Journals (Sweden)

    Kaur Ramandeep

    2016-01-01

    Full Text Available The improvement of transient stability of power system was one of the most challenging research areas in power engineer.The main aim of this paper was transient stability analysis and improvement of IEEE 9 bus system. These studies were computed using POWER WORLD SIMULATOR. The IEEE 9 bus system was modelled in power world simulator and load flow studies were performed to determine pre-fault conditions in the system using Newton-Raphson method. The transient stability analysis was carried out using Runga method during three-phase balanced fault. For the improvement transient stability, the general methods adopted were fast acting exciters, FACT devices and addition of parallel transmission line. These techniques play an important role in improving the transient stability, increasing transmission capacity and damping low frequency oscillations.

  3. Stability of power systems coupled with market dynamics

    Science.gov (United States)

    Meng, Jianping

    This Ph.D. thesis presented here spans two relatively independent topics. The first part, Chapter 2 is self-contained, and is dedicated to studies of new algorithms for power system state estimation. The second part, encompassing the remaining chapters, is dedicated to stability analysis of power system coupled with market dynamics. The first part of this thesis presents improved Newton's methods employing efficient vectorized calculations of higher order derivatives in power system state estimation problems. The improved algorithms are proposed based on an exact Newton's method using the second order terms. By efficiently computing an exact gain matrix, combined with a special optimal multiplier method, the new algorithms show more reliable convergence compared with the existing methods of normal equations, orthogonal decomposition, and Hachtel's sparse tableau. Our methods are able to handle ill-conditioned problems, yet show minimal penalty in computational cost for well-conditioned cases. These claims are illustrated through the standard IEEE 118 and 300 bus test examples. The second part of the thesis focuses on stability analysis of market/power systems. The work presented is motivated by an emerging problem. As the frequency of market based dispatch updates increases, there will inevitably be interaction between the dynamics of markets determining the generator dispatch commands, and the physical response of generators and network interconnections, necessitating the development of stability analysis for such coupled systems. We begin with numeric tests using different market models, with detailed machine/exciter/turbine/governor dynamics, in the New England 39 bus test system. A progression of modeling refinements are introduced, including such non-ideal effects as time delays. Electricity market parameter identification algorithms are also studied based on real time data from the PJM electricity market. Finally our power market model is augmented by optimal

  4. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not ...

  5. Optimal Parameter Selection of Power System Stabilizer using Genetic Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hyeng Hwan; Chung, Dong Il; Chung, Mun Kyu [Dong-AUniversity (Korea); Wang, Yong Peel [Canterbury Univeristy (New Zealand)

    1999-06-01

    In this paper, it is suggested that the selection method of optimal parameter of power system stabilizer (PSS) with robustness in low frequency oscillation for power system using real variable elitism genetic algorithm (RVEGA). The optimal parameters were selected in the case of power system stabilizer with one lead compensator, and two lead compensator. Also, the frequency responses characteristics of PSS, the system eigenvalues criterion and the dynamic characteristics were considered in the normal load and the heavy load, which proved usefulness of RVEGA compare with Yu's compensator design theory. (author). 20 refs., 15 figs., 8 tabs.

  6. Research on a Small Signal Stability Region Boundary Model of the Interconnected Power System with Large-Scale Wind Power

    Directory of Open Access Journals (Sweden)

    Wenying Liu

    2015-03-01

    Full Text Available For the interconnected power system with large-scale wind power, the problem of the small signal stability has become the bottleneck of restricting the sending-out of wind power as well as the security and stability of the whole power system. Around this issue, this paper establishes a small signal stability region boundary model of the interconnected power system with large-scale wind power based on catastrophe theory, providing a new method for analyzing the small signal stability. Firstly, we analyzed the typical characteristics and the mathematic model of the interconnected power system with wind power and pointed out that conventional methods can’t directly identify the topological properties of small signal stability region boundaries. For this problem, adopting catastrophe theory, we established a small signal stability region boundary model of the interconnected power system with large-scale wind power in two-dimensional power injection space and extended it to multiple dimensions to obtain the boundary model in multidimensional power injection space. Thirdly, we analyzed qualitatively the topological property’s changes of the small signal stability region boundary caused by large-scale wind power integration. Finally, we built simulation models by DIgSILENT/PowerFactory software and the final simulation results verified the correctness and effectiveness of the proposed model.

  7. Transient stability probability evaluation of power system incorporating with wind farm and SMES

    DEFF Research Database (Denmark)

    Fang, Jiakun; Miao, Lu; Wen, Jinyu

    2013-01-01

    Large scale renewable power generation brings great challenges to the power system operation and stabilization. Energy storage is one of the most important technologies to face the challenges. This paper proposes a method for transient stability probability evaluation of power system with wind farm...... and SMES. Firstly, a modified 11-bus test system with both wind farm and SMES has been implemented. The wind farm is represented as a doubly fed induction generator (DFIG). Then a stochastic-based approach to evaluate the probabilistic transient stability index of the power system is presented. Uncertain...... the probability indices. With the proposed method based on Monte-Carlo simulation and bisection method, system stability is "measured". Quantitative relationship of penetration level, SMES coil size and system stability is established. Considering the stability versus coil size to be the production curve...

  8. An Effective Distributed Model for Power System Transient Stability Analysis

    Directory of Open Access Journals (Sweden)

    MUTHU, B. M.

    2011-08-01

    Full Text Available The modern power systems consist of many interconnected synchronous generators having different inertia constants, connected with large transmission network and ever increasing demand for power exchange. The size of the power system grows exponentially due to increase in power demand. The data required for various power system applications have been stored in different formats in a heterogeneous environment. The power system applications themselves have been developed and deployed in different platforms and language paradigms. Interoperability between power system applications becomes a major issue because of the heterogeneous nature. The main aim of the paper is to develop a generalized distributed model for carrying out power system stability analysis. The more flexible and loosely coupled JAX-RPC model has been developed for representing transient stability analysis in large interconnected power systems. The proposed model includes Pre-Fault, During-Fault, Post-Fault and Swing Curve services which are accessible to the remote power system clients when the system is subjected to large disturbances. A generalized XML based model for data representation has also been proposed for exchanging data in order to enhance the interoperability between legacy power system applications. The performance measure, Round Trip Time (RTT is estimated for different power systems using the proposed JAX-RPC model and compared with the results obtained using traditional client-server and Java RMI models.

  9. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Introduction. Modern excitation systems considerably enhance the overall transient stability of power systems ..... to the local bus rather than the angle δ measured with respect to the remote bus. ... With this in view, the linear and nonlinear per-.

  10. Security region-based small signal stability analysis of power systems with FSIG based wind farm

    Science.gov (United States)

    Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong

    2018-02-01

    Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.

  11. Impact of Wind Power Plants with Full Converter Wind Turbines on Power System Small-Signal Stability

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nygaard Nielsen, Jørgen; Dixon, Andrew

    Wind power is being developed in power systems all around the world, and already today wind power covers more than 20 % of the electricity consumption in some countries. As the size of each wind power plant (WPP) increases and as the levels of penetration reaches certain magnitudes, the inclusion...... of the dynamic properties of the WPPs in the power system stability studies become important. The work presented in this report deal with the impact of WPPs based on full converter wind turbines (WTs) on the power system small-signal rotor angle stability. During small disturbances in the power system, the rotor...... speed of the synchronous machines will eventually return to its steady state if the power system is small-signal stable. The dynamic properties of a WPP are fundamentally dierent from those of a synchronous machine, and the interaction of WPPs with the synchronous machines in power system oscillations...

  12. Considerations for transient stability, fault capacity and power flow study of offsite power system

    Energy Technology Data Exchange (ETDEWEB)

    Shin, M C; Kim, C W; Gwon, M H; Park, C W; Lee, K W; Kim, H M; Lee, G Y; Joe, P H [Sungkyunkwan Univ., Seoul (Korea, Republic of)

    1994-04-15

    By study of power flow calculation, fault capacity calculation and stability analysis according to connection of two units YGN 3 and 4 to KEPCO power system, we have conclusions as follows. As the result of power flow calculation, at peak load, the voltage change of each bus is very small when YGN 3 and 4 is connected with KEPCO power system. At base load, installation of phase modifing equipment is necessary in Seoul, Kyungki province where load is concentrated because bus voltage rises by increasing of charge capacity caused installation of underground cables. As the result of fault capacity calculation, fault capacity is increased because fault current increases when two units YGN 3 and 4 is connected with KEPCO power system. But it is enough to operate with presenting circuits breaker rated capacity. Transient stability studies have been conducted on the YK N/P generators 3 and 4 using a digital computer program. Three phase short faults have been simulated at the YK N/P 345[KV] bus with the resulting outage of transmission circuits. Several fault clearing times are applied: 6 cycles, 12 cycles, 15 cycles. The study results demonstrate that the transient stability of YK N/P is adequate to maintain stable for three phase short faults cleared within 12 cycles. The study results also demonstrate that the transient stability of YK N/P is stable for machine removals except 4-machine removal. In addition, the study shows that the transient stability analysis is implemented for the case of load.

  13. Computation On dP Type power System Stabilizer Using Fuzzy Logic

    International Nuclear Information System (INIS)

    Iskandar, M.A.; Irwan, R.; Husdi; Riza; Mardhana, E.; Triputranto, A.

    1997-01-01

    Power system stabilizers (PSS) are widely applied in power generators to damp power oscillation caused by certain disturbances in order to increase the power supply capacity. PSS design is often suffered from the difficulty on setting periodically its parameters, which are gain and compensators, in order to have an optimal damping characteristic. This paper proposes a methode to determine parameters of dP type PSS by implementing fuzzy logic rules in a computer program,to obtain the appropriate characteristics of synchronous torque and damping torque. PSS with the calculated parameters is investigated on a simulation using a non-linear electric power system of a thermal generator connected to infinite bus system model. Simulation results show that great improvement in damping characteristic and enhancement of stability margin of electric power system are obtained by using the proposed PSS

  14. Small disturbance voltage stability assessment of power systems by modal analysis and dynamic simulation

    International Nuclear Information System (INIS)

    Amjady, Nima; Ansari, Mohammad Reza

    2008-01-01

    The introduction of liberalized electricity markets in many countries has resulted in more highly stressed power systems. On the other hand, operating points of a power system are acceptable in the feasible region, which is surrounded by the borders of different stabilities. Power system instability is critical for all participants of the electricity market. Determination of different stability margins can result in the optimum utilization of power system with minimum risk. This paper focuses on the small disturbance voltage stability, which is an important subset of the power system global stability. This kind of voltage stability is usually evaluated by static analysis tools such as continuation power flow, while it essentially has dynamic nature. Besides, a combination of linear and nonlinear analysis tools is required to correctly analyze it. In this paper, a hybrid evaluation method composed of static, dynamic, linear, and nonlinear analysis tools is proposed for this purpose. Effect of load scenario, generation pattern, branch and generator contingency on the small disturbance voltage stability are evaluated by the hybrid method. The test results are given for New England and IEEE68 bus test systems. (author)

  15. Technical impacts of high penetration levels of wind power on power system stability

    DEFF Research Database (Denmark)

    Flynn, Damian; Rather, Z.; Ardal, Atle

    2017-01-01

    With increasing penetrations of wind generation, based on power-electronic converters, power systems are transitioning away from well-understood synchronous generator-based systems, with growing implications for their stability. Issues of concern will vary with system size, wind penetration level......, geographical distribution and turbine type, network topology, electricity market structure, unit commitment procedures, and other factors. However, variable-speed wind turbines, both onshore and connected offshore through DC grids, offer many control opportunities to either replace or enhance existing...... capabilities. Achieving a complete understanding of future stability issues, and ensuring the effectiveness of new measures and policies, is an iterative procedure involving portfolio development and flexibility assessment, generation cost simulations, load flow, and security analysis, in addition...

  16. Robust design of decentralized power system stabilizers using meta-heuristic optimization techniques for multimachine systems

    Directory of Open Access Journals (Sweden)

    Jeevanandham Arumugam

    2009-01-01

    Full Text Available In this paper a classical lead-lag power system stabilizer is used for demonstration. The stabilizer parameters are selected in such a manner to damp the rotor oscillations. The problem of selecting the stabilizer parameters is converted to a simple optimization problem with an eigen value based objective function and it is proposed to employ simulated annealing and particle swarm optimization for solving the optimization problem. The objective function allows the selection of the stabilizer parameters to optimally place the closed-loop eigen values in the left hand side of the complex s-plane. The single machine connected to infinite bus system and 10-machine 39-bus system are considered for this study. The effectiveness of the stabilizer tuned using the best technique, in enhancing the stability of power system. Stability is confirmed through eigen value analysis and simulation results and suitable heuristic technique will be selected for the best performance of the system.

  17. Technical impacts of high penetration levels of wind power on power system stability

    OpenAIRE

    Flynn, Damian; Rather, Z.; Ardal, Atle; Darco, Salvatore; Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar; Estanqueiro, Ana; Gomez, Emilio; Menemenlis, Nickie; Smith, Charlie; Wang, Ye

    2017-01-01

    With increasing penetrations of wind generation, based on power-electronic converters, power systems are transitioning away from well-understood synchronous generator-based systems, with growing implications for their stability. Issues of concern will vary with system size, wind penetration level, geographical distribution and turbine type, network topology, electricity market structure, unit commitment procedures, and other factors. However, variable-speed wind turbines, both onshore and con...

  18. Regional modeling approach for analyzing harmonic stability in radial power electronics based power system

    DEFF Research Database (Denmark)

    Yoon, Changwoo; Bai, Haofeng; Wang, Xiongfei

    2015-01-01

    Stability analysis of distributed power generation system becomes complex when there are many numbers of grid inverters in the system. In order to analyze system stability, the overall network impedance will be lumped and needs to be analyzed one by one. However, using a unified bulky transfer-fu...... and then it is expanded for generalizing its concept to an overall radial structured network....

  19. Simulation for transient stability study of the Taiwan power system - a nuclear majority system

    International Nuclear Information System (INIS)

    Huang, J.C.C.

    1984-01-01

    A transient stability program was developed for the Taiwan Power Company, which has a high proportion of nuclear generation in its power system. This program offers a new territory to investigate nuclear plant effects on the power system transient stability. This program also provides a high speed tool for the Taipower system operational planning. A generalized procedure of synchronous machine modeling for a large-scale stability study is presented. The merits and weaknesses of machine modeling can be comprehended through each item of this procedure. Three types of nonlinear synchronous machine modeling implemented into this stability program are derived by following this procedure. A robust subroutine was derived to perform the fourth order Runge-Kutta integration method, making the software programming neat and systematical. For simulating the nuclear plant influence on the system, this program implemented an additional four functions: load-limit operation simulated by a low-value gate in the governor model, bypass valve capacity monitored by sending out a warning message, rotor overspeed protection relay, and generator anti-motoring relay

  20. A comparative study of voltage stability indices in a power system

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.K. [I.I.T., Kharagpur (India). Dept. of Electrical Engineering; Hazarika, D. [Assam Engineering College (India)

    2000-11-01

    The paper compares the effectiveness of voltage stability indices in providing information about the proximity of voltage instability of a power system. Three simple voltage stability indices are proposed and their effectiveness is compared with some of the recently proposed indices. The comparison is carried out over a wide range of system operating conditions by changing the load power factor and feeder X/R ratios. Test results for the IEEE 57 bus and IEEE 118 bus system are presented. (author)

  1. Power System Transient Stability Improvement Using Demand Side Management in Competitive Electricity Markets

    DEFF Research Database (Denmark)

    Hu, Weihao; Wang, Chunqi; Chen, Zhe

    2012-01-01

    Since the hourly spot market price is available one day ahead in Denmark, the price could be transferred to the consumers and they may shift some of their loads from high price periods to the low price periods in order to save their energy costs. The optimal load response to an electricity price...... for demand side management generates different load profiles and may provide an opportunity to improve the transient stability of power systems with high wind power penetrations. In this paper, the idea of the power system transient stability improvement by using optimal load response to the electricity...... price is proposed. A 102-bus power system which represents a simplified model of the western Danish power system is chosen as the study case. Simulation results show that the optimal load response to electricity prices is an effective measure to improve the power system transient stability with high...

  2. QFT Framework for Robust Tuning of Power System Stabilizers

    DEFF Research Database (Denmark)

    Alavi, Seyyed Mohammad Mahdi; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    This paper discusses the use of conventional quantitative feedback design for Power System Stabilizer (PSS). An appropriate control structure of the PSS that is directly applicable to PSS, is described. Two desired performances are also proposed in order to achieve an overall improvement in damping...... and robustness. The efficiency of the proposed method is demonstrated on Single Machine Infinite Bus (SMIB) power system with level of uncertainty....

  3. Estimation of the Influence of Power System Mathematical Model Parameter Uncertainty on PSS2A System Stabilizers

    Directory of Open Access Journals (Sweden)

    Adrian Nocoń

    2015-09-01

    Full Text Available This paper presents an analysis of the influence of uncertainty of power system mathematical model parameters on optimised parameters of PSS2A system stabilizers. Optimisation of power system stabilizer parameters was based on polyoptimisation (multi-criteria optimisation. Optimisation criteria were determined for disturbances occurring in a multi-machine power system, when taking into account transient waveforms associated with electromechanical swings (instantaneous power, angular speed and terminal voltage waveforms of generators. A genetic algorithm with floating-point encoding, tournament selection, mean crossover and perturbative mutations, modified for the needs of investigations, was used for optimisation. The impact of uncertainties on the quality of operation of power system stabilizers with optimised parameters has been evaluated using various deformation factors.

  4. Robust stability analysis of large power systems using the structured singular value theory

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, R.; Sarmiento, H. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Messina, A.R. [Cinvestav, Graduate Program in Electrical Engineering, Guadalajara, Jalisco (Mexico)

    2005-07-01

    This paper examines the application of structured singular value (SSV) theory to analyse robust stability of complex power systems with respect to a set of structured uncertainties. Based on SSV theory and the frequency sweep method, techniques for robust analysis of large-scale power systems are developed. The main interest is focused on determining robust stability for varying operating conditions and uncertainties in the structure of the power system. The applicability of the proposed techniques is verified through simulation studies on a large-scale power system. In particular, results for the system are considered for a wide range of uncertainties of operating conditions. Specifically, the developed technique is used to estimate the effect of variations in the parameters of a major system inter-tie on the nominal stability of a critical inter-area mode. (Author)

  5. Power system stabilizers based on distributed energy resources for damping of inter-area oscillations

    Directory of Open Access Journals (Sweden)

    Stefanov Predrag Č.

    2014-01-01

    Full Text Available This paper deals with inter-area power oscillations damping enhancement by distributed energy resources contained in typical micro grid. Main idea behind this work is to use distributed generation and distributed storage, such as battery energy storage to mimic conventional power system stabilizer, but with regulating active power output, rather than reactive power, as in standard power system stabilizer realization. The analysis of the small signal stability is established for four-machine, two-area system, with inverter based micro grids in each area. Dynamic simulation results are included in this work and they show that proposed controller provides additional damping effect to this test system.

  6. Transient Stability Enhancement in Power System Using Static VAR Compensator (SVC

    Directory of Open Access Journals (Sweden)

    Youssef MOULOUDI

    2012-12-01

    Full Text Available In this paper, an indirect adaptive fuzzy excitation and static VAR (unit of reactive power, volt-ampere reactive compensator (SVC controller is proposed to enhance transient stability for the power system, which based on input-output linearization technique. A three-bus system, which contains a generator and static VAR compensator (SVC, is considered in this paper, the SVC is located at the midpoint of the transmission lines. Simulation results show that the proposed controller compared with a controller based on tradition linearization technique can enhance the transient stability of the power system under a large sudden fault, which may occur nearly at the generator bus terminal.

  7. Harmonics and voltage stability analysis in power systems including

    Indian Academy of Sciences (India)

    In this study, non-sinusoidal quantities and voltage stability, both known as power quality criteria, are examined together in detail. The widespread use of power electronics elements cause the existence of significant non-sinusoidal quantities in the system. These non-sinusoidal quantities can create serious harmonic ...

  8. A field experiment on power line stabilization by SMES system

    International Nuclear Information System (INIS)

    Irie, F.; Takeo, M.; Sato, S.; Katahira, O.; Fukui, F.; Takamatsu, M.

    1992-01-01

    In this paper field experiments on stabilization of a hydro power plant by a SMES system are reported, where a generator having a rating of 60 kW at 3.3kV is connected to a 6.6kV power distribution line. The SMES system is composed of two 30kVA GTO convertors and a superconducting magnet system with an energy of 30kJ at 100A. Experiments of stabilization for the generator fluctuation caused by a sudden insertion of inductors in the line are successfully performed for some control modes. The value of the SMES system to compensate for a short period voltage dip is also confirmed

  9. Handbook of electrical power system dynamics modeling, stability, and control

    CERN Document Server

    Eremia, Mircea

    2013-01-01

    Complete guidance for understanding electrical power system dynamics and blackouts This handbook offers a comprehensive and up-to-date treatment of power system dynamics. Addressing the full range of topics, from the fundamentals to the latest technologies in modeling, stability, and control, Handbook of Electrical Power System Dynamics provides engineers with hands-on guidance for understanding the phenomena leading to blackouts so they can design the most appropriate solutions for a cost-effective and reliable operation. Focusing on system dynamics, the book details

  10. Fast simulation of wind generation for frequency stability analysis in island power systems

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, James [EirGrid, Dublin (Ireland)

    2010-07-01

    Frequency stability is a major issue for power system planning and operation in an island power system such as Ireland. As increasing amounts of variable speed wind generation are added to the system, this issue becomes more prominent, as variable speed wind generation does not provide an inherent inertial response. This lack of an inertial response means that simplified models for variable speed wind farms can be used for investigating frequency stability. EirGrid uses DIgSILENT Power Factory (as well as other software tools) to investigate frequency stability. In PowerFactory, an automation program has been created to convert detailed wind farm representation (as necessary for other types of analysis) to negative load models for frequency stability analysis. The advantage of this approach is much-improved simulation speed without loss of accuracy. This approach can also be to study future wind energy targets, and long-term simulation of voltage stability. (orig.)

  11. Methods of computing steady-state voltage stability margins of power systems

    Science.gov (United States)

    Chow, Joe Hong; Ghiocel, Scott Gordon

    2018-03-20

    In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.

  12. 14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.

    Science.gov (United States)

    2010-01-01

    ... power-operated systems. 23.672 Section 23.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show compliance with the flight characteristics requirements of this part...

  13. Model based PI power system stabilizer design for damping low frequency oscillations in power systems.

    Science.gov (United States)

    Salgotra, Aprajita; Pan, Somnath

    2018-05-01

    This paper explores a two-level control strategy by blending local controller with centralized controller for the low frequency oscillations in a power system. The proposed control scheme provides stabilization of local modes using a local controller and minimizes the effect of inter-connection of sub-systems performance through a centralized control. For designing the local controllers in the form of proportional-integral power system stabilizer (PI-PSS), a simple and straight forward frequency domain direct synthesis method is considered that works on use of a suitable reference model which is based on the desired requirements. Several examples both on one machine infinite bus and multi-machine systems taken from the literature are illustrated to show the efficacy of the proposed PI-PSS. The effective damping of the systems is found to be increased remarkably which is reflected in the time-responses; even unstable operation has been stabilized with improved damping after applying the proposed controller. The proposed controllers give remarkable improvement in damping the oscillations in all the illustrations considered here and as for example, the value of damping factor has been increased from 0.0217 to 0.666 in Example 1. The simulation results obtained by the proposed control strategy are favourably compared with some controllers prevalent in the literature. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Impact Study of PMSG-Based Wind Power Penetration on Power System Transient Stability Using EEAC Theory

    Directory of Open Access Journals (Sweden)

    Zhongyi Liu

    2015-11-01

    Full Text Available Wind turbines with direct-driven permanent magnet synchronous generators (PMSGs are widely used in wind power generation. According to the dynamic characteristics of PMSGs, an impact analysis of PMSG-based wind power penetration on the transient stability of multi-machine power systems is carried out in this paper based on the theory of extended equal area criterion (EEAC. Considering the most severe PMSG integration situation, the changes in the system’s equivalent power-angle relationships after integrating PMSGs are studied in detail. The system’s equivalent mechanical input power and the fault period electrical output power curves are found to be mainly affected. The analysis demonstrates that the integration of PMSGs can cause either detrimental or beneficial effects on the system transient stability. It is determined by several factors, including the selection of the synchronous generators used to balance wind power, the reactive power control mode of PMSGs and the wind power penetration level. Two different simulation systems are also adopted to verify the analysis results.

  15. Tokamak power systems studies, FY 1986: A second stability power reactor

    International Nuclear Information System (INIS)

    Ehst, D.; Baker, C.; Billone, M.

    1987-03-01

    This report presents the results of the work at Argonne National Laboratory (ANL) during FY-1986 on the Tokamak Power Systems Study (TPSS). The purpose of the TPSS is to explore and develop ideas that would lead to improvements in the tokamak as a power reactor concept. The work at ANL concentrated on plasma engineering, impurity control, and the blanket/first wall/shield system. The work in FY-1986 extended these studies and focused them on a reference design point. The key features of the design point include: second stability regime with higher β and larger aspect ratio, steady-state operation with fast wave current drive, impurity control via a self-pumped slot limiter, a self-cooled liquid lithium, vanadium alloy blanket with simplified poloidal flow, and reduced reactor building volume with vertical lift maintenance. Sufficient work was carried out to report a preliminary cost estimate. In addition, reactor implications of steady-state operation in the first stability regime were also studied. 174 refs., 124 figs., 65 tabs

  16. Optimal Subinterval Selection Approach for Power System Transient Stability Simulation

    Directory of Open Access Journals (Sweden)

    Soobae Kim

    2015-10-01

    Full Text Available Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modal analysis using a single machine infinite bus (SMIB system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. The performance of the proposed method is demonstrated with the GSO 37-bus system.

  17. Intelligent Control of UPFC for Enhancing Transient Stability on Multi-Machine Power Systems

    Directory of Open Access Journals (Sweden)

    Hassan Barati

    2010-01-01

    Full Text Available One of the benefit of FACTS devices is increase of stability in power systems with control active and reactive power at during the fault in power system. Although, the power system stabilizers (PSSs have been one of the most common controls used to damp out oscillations, this device may not produce enough damping especially to inter-area mode and therefore, there is an increasing interest in using FACTS devices to aid in damping of these oscillations. In This paper, UPFC is used for damping oscillations and to enhance the transient stability performance of power systems. The controller parameters are designed using an efficient version of the Takagi-Sugeno fuzzy control scheme. The function based Takagi-Sugeno-Kang (TSK fuzzy controller uses. For optimization parameters of fuzzy PI controller, the GA, PSO and HGAPSO algorithms are used. The computer simulation results, the effect of UPFC with conventional PI controller, fuzzy PI controller and intelligent controllers (GA, PSO and HGAPSO for damping the local-mode and inter-area mode of under large and small disturbances in the four-machine two-area power system evaluated and compared.

  18. Power system stabilization by superconducting magnetic energystorage connected to rotating exciter

    OpenAIRE

    Mitani, Yasunori; Tsuji, K

    1993-01-01

    The authors describe a combination of a rotating exciter and a superconducting magnetic energy storage (SMES) system for efficient power system stabilization. A SMES system connected to an exciter rotating with a turbine-rotor shaft is proposed. The exciter is installed exclusively to supply current for the SMES. Since electrical power output from the SMES is converted into a mechanical torque of the generator directly by the exciter, it is expected that power swings of the generator will be ...

  19. Small Signal Stability Improvement of Power Systems Using Optimal Load Responses in Competitive Electricity Markets

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2011-01-01

    Since the hourly spot market price is available one day ahead in Denmark, the price could be transferred to the consumers and they may shift some of their loads from high price periods to the low price periods in order to save their energy costs. The optimal load response to an electricity price...... price is proposed. A 17-bus power system with high wind power penetrations, which resembles the Eastern Danish power system, is chosen as the study case. Simulation results show that the optimal load response to electricity prices is an effective measure to improve the small signal stability of power...... for demand side management generates different load profiles and may provide an opportunity to improve the small signal stability of power systems with high wind power penetrations. In this paper, the idea of power system small signal stability improvement by using optimal load response to the electricity...

  20. Optimized Extreme Learning Machine for Power System Transient Stability Prediction Using Synchrophasors

    Directory of Open Access Journals (Sweden)

    Yanjun Zhang

    2015-01-01

    Full Text Available A new optimized extreme learning machine- (ELM- based method for power system transient stability prediction (TSP using synchrophasors is presented in this paper. First, the input features symbolizing the transient stability of power systems are extracted from synchronized measurements. Then, an ELM classifier is employed to build the TSP model. And finally, the optimal parameters of the model are optimized by using the improved particle swarm optimization (IPSO algorithm. The novelty of the proposal is in the fact that it improves the prediction performance of the ELM-based TSP model by using IPSO to optimize the parameters of the model with synchrophasors. And finally, based on the test results on both IEEE 39-bus system and a large-scale real power system, the correctness and validity of the presented approach are verified.

  1. A Design of Power System Stabilization for SVC System Using a RVEGA

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hyeng Hwan; Hur, Dong Ryol; Lee, Jeong Phil; Wang, Yong Peel [Dong-A University, Pusan (Korea)

    2001-07-01

    In this paper, it is suggested that the selection method of parameter of Power System Stabilizer (PSS) with robustness in low frequency oscillation for Static VAR Compensator (SVC) using a Real Variable Elitism Genetic Algorithm (RVEGA). A SVE, one of the Flexible AC Transmission System (FACTS), constructed by a fixed capacitor (FC) and a thyristor controlled reactor (TCR), is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage. The proposed PSS parameters are optimized using RVEGA in order to maintain optimal operation of generator under the various operating conditions. To decrease the computational time, real variable string is adopted. To verify the robustness of the proposed method, we considered the dynamic response of generator speed deviation and generator terminal voltage by applying a power fluctuation and three-phase fault at heavy load, normal load and light load. Thus, we prove the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system. (author). 20 refs., 14 figs., 3 tabs.

  2. Robust Coordinated Design of PSS and TCSC using PSO Technique for Power System Stability Enhancement

    Directory of Open Access Journals (Sweden)

    S. Panda

    2007-06-01

    Full Text Available Power system stability improvement by coordinated design of a Power System Stabilizer (PSS and a Thyristor Controlled Series Compensator (TCSC controller is addressed in this paper. Particle Swarm Optimization (PSO technique is employed for optimization of the parameterconstrained nonlinear optimization problem implemented in a simulation environment. The proposed controllers are tested on a weakly connected power system. The non-linear simulation results are presented for wide range of loading conditions with various fault disturbances and fault clearing sequences as well as for various small disturbances. The eigenvalue analysis and simulation results show the effectiveness and robustness of proposed controllers to improve the stability performance of power system by efficient damping of low frequency oscillations under various disturbances.

  3. The Use of Nuclear Generation to Provide Power System Stability

    OpenAIRE

    Heather Wyman-Pain; Yuankai Bian; Furong Li

    2016-01-01

    The decreasing use of fossil fuel power stations has a negative effect on the stability of the electricity systems in many countries. Nuclear power stations have traditionally provided minimal ancillary services to support the system but this must change in the future as they replace fossil fuel generators. This paper explains the development of the four most popular reactor types still in regular operation across the world which have formed the basis for most reactor dev...

  4. Development of real-time voltage stability monitoring tool for power system transmission network using Synchrophasor data

    Science.gov (United States)

    Pulok, Md Kamrul Hasan

    Intelligent and effective monitoring of power system stability in control centers is one of the key issues in smart grid technology to prevent unwanted power system blackouts. Voltage stability analysis is one of the most important requirements for control center operation in smart grid era. With the advent of Phasor Measurement Unit (PMU) or Synchrophasor technology, real time monitoring of voltage stability of power system is now a reality. This work utilizes real-time PMU data to derive a voltage stability index to monitor the voltage stability related contingency situation in power systems. The developed tool uses PMU data to calculate voltage stability index that indicates relative closeness of the instability by producing numerical indices. The IEEE 39 bus, New England power system was modeled and run on a Real-time Digital Simulator that stream PMU data over the Internet using IEEE C37.118 protocol. A Phasor data concentrator (PDC) is setup that receives streaming PMU data and stores them in Microsoft SQL database server. Then the developed voltage stability monitoring (VSM) tool retrieves phasor measurement data from SQL server, performs real-time state estimation of the whole network, calculate voltage stability index, perform real-time ranking of most vulnerable transmission lines, and finally shows all the results in a graphical user interface. All these actions are done in near real-time. Control centers can easily monitor the systems condition by using this tool and can take precautionary actions if needed.

  5. Transient Dynamics of Electric Power Systems: Direct Stability Assessment and Chaotic Motions

    Science.gov (United States)

    Chu, Chia-Chi

    A power system is continuously experiencing disturbances. Analyzing, predicting, and controlling transient dynamics, which describe transient behaviors of the power system following disturbances, is a major concern in the planning and operation of a power utility. Important conclusions and decisions are made based on the result of system transient behaviors. As today's power network becomes highly interconnected and much more complex, it has become essential to enhance the fundamental understanding of transient dynamics, and to develop fast and reliable computational algorithms. In this thesis, we emphasize mathematical rigor rather than physical insight. Nonlinear dynamical system theory is applied to study two fundamental topics: direct stability assessment and chaotic motions. Conventionally, power system stability is determined by calculating the time-domain transient behaviors for a given disturbance. In contrast, direct methods identify whether or not the system will remain stable once the disturbance is removed by comparing the corresponding energy value of the post-fault system to a calculated threshold value. Direct methods not only avoid the time-consuming numerical integration of the time domain approach, but also provide a quantitative measure of the degree of system stability. We present a general framework for the theoretical foundations of direct methods. Canonical representations of network-reduction models as well as network-preserving models are proposed to facilitate the analysis and the construction of energy functions of various power system models. An advanced and practical method, called the boundary of stability region based controlling unstable equilibrium point method (BCU method), of computing the controlling unstable equilibrium point is proposed along with its theoretical foundation. Numerical solution algorithms capable of supporting on-line applications of direct methods are provided. Further possible improvements and enhancements are

  6. Stability Enhancement of a Power System Containing High-Penetration Intermittent Renewable Generation

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2015-06-01

    Full Text Available This paper considers the transient stability enhancement of a power system containing large amounts of solar and wind generation in Japan. Following the Fukushima Daiichi nuclear disaster there has been an increasing awareness on the importance of a distributed architecture, based mainly on renewable generation, for the Japanese power system. Also, the targets of CO2 emissions can now be approached without heavily depending on nuclear generation. Large amounts of renewable generation leads to a reduction in the total inertia of the system because renewable generators are connected to the grid by power converters, and transient stability becomes a significant issue. Simulation results show that sodium-sulfur batteries can keep the system in operation and stable after strong transient disturbances, especially for an isolated system. The results also show how the reduction of the inertia in the system can be mitigated by exploiting the kinetic energy of wind turbines.

  7. Effect of PID Power System Stabilizer for a Synchronous Machine in Simulink Environment

    International Nuclear Information System (INIS)

    Yi, Tan Qian; Kasilingam, Gowrishankar; Raguraman, Raman

    2013-01-01

    This paper presents the use of Proportional-Integral-Derivative (PID) Controller with power system stabilizer (PSS) in a single machine infinite bus system. A PSS is used to generate supplementary damping control signals for an excitation system in order to damp out low frequency oscillations (LFO) of an electric power system. The paper is modelled in the MATLAB Simulink Environment to analyze the performance of a synchronous machine under a wide range of operating conditions. The functional blocks of PID controller with PSS are generated and the simulation studies are conducted based on different test cases to observe the dynamic performance of the power system. Analysis in this paper reveals that the PID-PSS gives better dynamic performance as compared to that of conventional power system stabilizer and also the optimal gain settings of PID PSS obtained at normal operating condition works well to other operating condition without much deterioration of the dynamic responses.

  8. Small-Signal Stability Analysis of Inverter-Fed Power Systems Using Component Connection Method

    DEFF Research Database (Denmark)

    Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    The small time constants of power electronics devices lead to dynamic couplings with the electromagnetic transients of power networks, and thus complicate the modeling and stability analysis of power-electronics-based power systems. This paper presents a computationally-efficient approach to asse...

  9. Improving the Output Power Stability of a High Concentration Photovoltaic System with Supercapacitors: A Preliminary Evaluation

    Directory of Open Access Journals (Sweden)

    Yu-Pei Huang

    2015-01-01

    Full Text Available The output power of a high concentration photovoltaic (HCPV system is very sensitive to fluctuating tracking errors and weather patterns. To help compensate this shortcoming, supercapacitors have been successfully incorporated into photovoltaic systems to improve their output power stability. This study examined the output power stability improvement of an HCPV module with a supercapacitor integrated into its circuit. Furthermore, the equivalent model of the experimental circuit is presented and analyzed. Experimental results suggest that integrating a supercapacitor into an HCPV module could improve its output power stability and further extend its acceptance angle. This paper provides preliminary data of the improvement and its evaluation method, which could be utilized for further improvements to an HCPV system.

  10. Brief analysis of Jiangsu grid security and stability based on multi-infeed DC index in power system

    Science.gov (United States)

    Zhang, Wenjia; Wang, Quanquan; Ge, Yi; Huang, Junhui; Chen, Zhengfang

    2018-02-01

    The impact of Multi-infeed HVDC has gradually increased to security and stability operating in Jiangsu power grid. In this paper, an appraisal method of Multi-infeed HVDC power grid security and stability is raised with Multi-Infeed Effective Short Circuit Ratio, Multi-Infeed Interaction Factor and Commutation Failure Immunity Index. These indices are adopted in security and stability simulating calculation of Jiangsu Multi-infeed HVDC system. The simulation results indicate that Jiangsu power grid is operating with a strong DC system. It has high level of power grid security and stability, and meet the safety running requirements. Jinpin-Suzhou DC system is located in the receiving end with huge capacity, which is easily leading to commutation failure of the transmission line. In order to resolve this problem, dynamic reactive power compensation can be applied in power grid near Jinpin-Suzhou DC system. Simulation result shows this method is feasible to commutation failure.

  11. Power System Stabilizer Design Based on a Particle Swarm Optimization Multiobjective Function Implemented Under Graphical Interface

    Directory of Open Access Journals (Sweden)

    Ghouraf Djamel Eddine

    2016-05-01

    Full Text Available Power system stability considered a necessary condition for normal functioning of an electrical network. The role of regulation and control systems is to ensure that stability by determining the essential elements that influence it. This paper proposes a Particle Swarm Optimization (PSO based multiobjective function to tuning optimal parameters of Power System Stabilizer (PSS; this later is used as auxiliary to generator excitation system in order to damp electro mechanicals oscillations of the rotor and consequently improve Power system stability. The computer simulation results obtained by developed graphical user interface (GUI have proved the efficiency of PSS optimized by a Particle Swarm Optimization, in comparison with a conventional PSS, showing stable   system   responses   almost   insensitive   to   large parameter variations.Our present study was performed using a GUI realized under MATLAB in our work.

  12. Steam Turbine Control Valve Stiction Effect on Power System Stability

    International Nuclear Information System (INIS)

    Halimi, B.

    2010-01-01

    One of the most important problems in power system dynamic stability is low frequency oscillations. This kind of oscillation has significant effects on the stability and security of the power system. In some previous papers, a fact was introduced that a steam pressure continuous fluctuation in turbine steam inlet pipeline may lead to a kind of low frequency oscillation of power systems. Generally, in a power generation plant, steam turbine system composes of some main components, i.e. a boiler or steam generator, stop valves, control valves and turbines that are connected by piping. In the conventional system, the turbine system is composed with a lot of stop and control valves. The steam is provided by a boiler or steam generator. In an abnormal case, the stop valve shuts of the steal flow to the turbine. The steam flow to the turbine is regulated by controlling the control valves. The control valves are provided to regulate the flow of steam to the turbine for starting, increasing or decreasing the power, and also maintaining speed control with the turbine governor system. Unfortunately, the control valve has inherent static friction (stiction) nonlinearity characteristics. Industrial surveys indicated that about 20-30% of all control loops oscillate due to valve problem caused by this nonlinear characteristic. In this paper, steam turbine control valve stiction effect on power system oscillation is presented. To analyze the stiction characteristic effect, firstly a model of control valve and its stiction characteristic are derived by using Newton's laws. A complete tandem steam prime mover, including a speed governing system, a four-stage steam turbine, and a shaft with up to for masses is adopted to analyze the performance of the steam turbine. The governor system consists of some important parts, i.e. a proportional controller, speed relay, control valve with its stiction characteristic, and stem lift position of control valve controller. The steam turbine has

  13. Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines

    International Nuclear Information System (INIS)

    Derafshian, Mehdi; Amjady, Nima

    2015-01-01

    This paper presents an evolutionary algorithm-based approach for optimal design of power system stabilizer (PSS) for multi-machine power systems that include doubly fed induction generator wind turbines. The proposed evolutionary algorithm is an improved particle swarm optimization named chaotic particle swarm optimization with passive congregation (CPSO-PC) applied for finding the optimal settings of PSS parameters. Two different eigenvalue-based objectives are combined as the objective function for the optimization problem of tuning PSS parameters. The first objective function comprises the damping factor of lightly damped electro-mechanical modes and the second one includes the damping ratio of these modes. The effectiveness of the proposed method to design PSS for the power systems including DFIG (Doubly Fed Induction Generator) is extensively demonstrated through eigenvalue analysis and time-domain simulations and also by comparing its simulation results with the results of other heuristic optimization approaches. - Highlights: • A new optimization model for design of PSS in power systems including DFIG is proposed. • A detailed and realistic modeling of DFIG is presented. • A new evolutionary algorithm is suggested for solving the optimization problem of designing PSS

  14. Small-Signal Stability of Wind Power System With Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygaard; Jensen, Kim Høj

    2012-01-01

    Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants (WPP). In this paper a comprehensive analysis...... is presented which assesses the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine (WT) model with all grid relevant control functions is used in the study....... The WT is, furthermore, equipped with a park level WPP voltage controller and comparisons are presented. The WT model for this work is a validated dynamic model of the 3.6 MW Siemens Wind Power WT. The study is based on modal analysis which is complemented with time domain simulations on the nonlinear...

  15. Wind Power Plant Voltage Stability Evaluation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  16. Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller.

    Science.gov (United States)

    Niamul Islam, Naz; Hannan, M A; Mohamed, Azah; Shareef, Hussain

    2016-01-01

    Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.

  17. Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller.

    Directory of Open Access Journals (Sweden)

    Naz Niamul Islam

    Full Text Available Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS and thyristor-controlled series compensation (TCSC damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA. A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.

  18. Advanced stability control of multi-machine power system by vips apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, A [Tokyo Univ., Tokyo (Japan). Dept. of Electrical Engineering; Sekine, Y [Science Univ. of Tokyo, Tokyo (Japan). Dept. of Electrical Engineering

    1994-12-31

    New technology such as synchronized switching and power electronics will make it possible to change the configuration of transmission network, the impedances of transmission lines and the phase angles of voltage in the future power systems. This paper presents a comprehensive power system damping control by power electronics based variable impedance apparatus such as variable series capacitor and high speed phase shifter and also shows a novel switching-over control of transmission lines by synchronized switching for the first awing stability and damping enhancement. The control scheme discussed in this paper is based on an energy function of multi-machine power system and its time derivative. Its effectiveness is demonstrated by digital simulations and eigenvalue analysis in multi-machine test systems. It is demonstrated that multiple switching of transmission lines improves damping in the post-fault conditions. (author) 13 refs., 24 figs., 5 tabs.

  19. On Small-Signal Stability of Wind Power System with Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Akhmatov, Vladislav; Nielsen, Jørgen Nygård

    2010-01-01

    the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine model with all grid relevant control functions is used in the study. Furthermore is the wind power plant......Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants. In this paper an analysis is presented which assess...... (WPP) equipped with a WPP voltage controller and comparisons are presented. The models of wind turbine and WPP voltage controller are kindly provided by Siemens Wind Power A/S for this work. The study is based on modal analysis which are complemented with simulations on the nonlinear system....

  20. A hybrid superconducting fault current limiter for enhancing transient stability in Korean power systems

    Science.gov (United States)

    Seo, Sangsoo; Kim, Seog-Joo; Moon, Young-Hwan; Lee, Byongjun

    2013-11-01

    Additional power generation sites have been limited in Korea, despite the fact load demands are gradually increasing. In order to meet these increasing demands, Korea’s power system company has begun constructing new generators at existing sites. Thus, multi-unit plants can create problems in terms of transient stability when a large disturbance occurs. This paper proposes a hybrid superconducting fault current limiter (SFCL) application to enhance the transient stability of multi-unit power plants. SFCLs reduce fault currents, and limitation currents decrease the imbalance of the mechanical and electrical torque of the generators, resulting in an improvement in transient stability.

  1. Calculation and Simulation Study on Transient Stability of Power System Based on Matlab/Simulink

    Directory of Open Access Journals (Sweden)

    Shi Xiu Feng

    2016-01-01

    Full Text Available The stability of the power system is destroyed, will cause a large number of users power outage, even cause the collapse of the whole system, extremely serious consequences. Based on the analysis in single machine infinite system as an example, when at the f point two phase ground fault occurs, the fault lines on either side of the circuit breaker tripping resection at the same time,respectively by two kinds of calculation and simulation methods of system transient stability analysis, the conclusion are consistent. and the simulation analysis is superior to calculation analysis.

  2. Application of a combined superconducting fault current limiter and STATCOM to enhancement of power system transient stability

    Energy Technology Data Exchange (ETDEWEB)

    Mahdad, Belkacem, E-mail: bemahdad@mselab.org; Srairi, K.

    2013-12-15

    Highlights: •A simple interactive model SFCL–STATCOM Controller is proposed to enhance the transient stability. •The STATCOM controller is integrated in coordination with the SFCL to support the excessive reactive power during fault. •Voltage stability index based continuation power flow is used to locate the STATCOM and the SFCL. •The clearing time improved compared to other cases (with only SFCL, with only STATCOM). •The choice of the STATCOM parameters is very important to exploit efficiently the integration of STATCOM Controller. -- Abstract: Stable and reliable operation of the power system network is dependent on the dynamic equilibrium between energy production and power demand under large disturbance such as short circuit or important line tripping. This paper investigates the use of combined model based superconducting fault current limiter (SFCL) and shunt FACTS Controller (STATCOM) for assessing the transient stability of a power system considering the automatic voltage regulator. The combined model located at a specified branch based on voltage stability index using continuation power flow. The main role of the proposed combined model is to achieve simultaneously a flexible control of reactive power using STATCOM Controller and to reduce fault current using superconducting technology based SFCL. The proposed combined model has been successfully adapted within the transient stability program and applied to enhance the transient power system stability of the WSCC9-Bus system. Critical clearing time (CCT) has been used as an index to evaluate and validate the contribution of the proposed coordinated Controller. Simulation results confirm the effectiveness and perspective of this combined Controller to enhance the dynamic power system performances.

  3. Desain Power System Stabilizer Berbasis Fuzzy Tipe-2 untuk Perbaikan Stabilitas Mesin Tunggal

    Directory of Open Access Journals (Sweden)

    I Made Ginarsa

    2018-04-01

    Full Text Available The growth of type-2 fuzzy logic system is penetrating electric power system field, especially on electric power system control sub-field in order to simplify the design of power system stabilizer (PSS. Traditionally, the function of conventional PSS is to damp rotor oscillation when a disturbance occurred due to transmission configuration or/and loading changes. However, the response of conventional PSS is slow with long settling time and high peak overshoot. To cover this problem, PSS based on type-2 fuzzy logic system (PFT2 is proposed. Simulation results show that the PFT2 is able to improve the stability of a single machine with 3 scenarios on transmission configuration and loading variation. The PFT2 gives shorter settling time for all scenarios and loading variation than the settling time of conventional PSS. Also, the peak overshoot of the PFT2 is smaller than the peak overshoot of the other competing PSS.

  4. Application of a Modal Approach in Solving the Static Stability Problem for Electric Power Systems

    Science.gov (United States)

    Sharov, J. V.

    2017-12-01

    Application of a modal approach in solving the static stability problem for power systems is examined. It is proposed to use the matrix exponent norm as a generalized transition function of the power system disturbed motion. Based on the concept of a stability radius and the pseudospectrum of Jacobian matrix, the necessary and sufficient conditions for existence of the static margins were determined. The capabilities and advantages of the modal approach in designing centralized or distributed control and the prospects for the analysis of nonlinear oscillations and rendering the dynamic stability are demonstrated.

  5. Identification of voltage stability condition of a power system using measurements of bus variables

    Directory of Open Access Journals (Sweden)

    Durlav Hazarika

    2014-12-01

    Full Text Available Several online methods were proposed for investigating the voltage stability condition of an interconnected power system using the measurements of voltage and current phasors at a bus. For this purpose, phasor measurement units (PMUs are used. A PMU is a device which measures the electrical waves on an electrical network, using a common time source (reference bus for synchronisation. This study proposes a method for online monitoring of voltage stability condition of a power system using measurements of bus variables namely – (i real power, (ii reactive power and (iii bus voltage magnitude at a bus. The measurements of real power, reactive power and bus voltage magnitude could be extracted/captured from a smart energy meter. The financial involvement for implementation of the proposed method would significantly lower compared with the PMU-based method.

  6. Effects of nuclear electromagnetic pulse (EMP) on synchronous stability of the electric power system

    International Nuclear Information System (INIS)

    Manweiler, R.W.

    1975-11-01

    The effects of a nuclear electromagnetic pulse (EMP) on the synchronous stability of the electric power transmission and distribution systems are evaluated. The various modes of coupling of EMP to the power system are briefly discussed, with particular emphasis on those perturbations affecting the synchronous stability of the transmission system. A brief review of the fundamental concepts of the stability problem is given, with a discussion of the general characteristics of transient analysis. A model is developed to represent single sets as well as repetitive sets of multiple faults on the distribution systems, as might be produced by EMP. The results of many numerical stability calculations are presented to illustrate the transmission system's response from different types of perturbations. The important parameters of both multiple and repetitive faults are studied, including the dependence of the response on the size of the perturbed area, the fault density, and the effective impedance between the fault location and the transmission system. Both major load reduction and the effect of the opening of tie lines at the time of perturbation are also studied. We conclude that there is a high probability that EMP can induce perturbations on the distribution networks causing a large portion of the transmission network in the perturbed area to lose synchronism. The result would be an immediate and massive power failure

  7. Transient Stability Assessment of Power Systems With Uncertain Renewable Generation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Villegas Pico, Hugo Nestor [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Aliprantis, Dionysios C. [Purdue University; Lin, Xiaojun [Purdue University

    2017-08-09

    The transient stability of a power system depends heavily on its operational state at the moment of a fault. In systems where the penetration of renewable generation is significant, the dispatch of the conventional fleet of synchronous generators is uncertain at the time of dynamic security analysis. Hence, the assessment of transient stability requires the solution of a system of nonlinear ordinary differential equations with unknown initial conditions and inputs. To this end, we set forth a computational framework that relies on Taylor polynomials, where variables are associated with the level of renewable generation. This paper describes the details of the method and illustrates its application on a nine-bus test system.

  8. Stability and control of wind farms in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.

    2006-10-15

    The Ph.D. project 'Stability and Control of Wind Farms in Power Systems' deals with some selected problems related to wind power in power systems. With increasing wind power penetration, wind turbines substitute the power production of conventional power plants. Therefore, wind turbines also have to take over the power system stabilisation and control tasks, that were traditionally carried out by conventional power plants. Out of the many aspects related to this problem, this project focuses on transient fault ride-through and power system stabilisation. The selection of turbine types considered in this project is limited to active-stall turbines and variable speed, variable pitch turbines with gearboxes and full-scale converter-connected synchronous generators. As a basis for the project, a study into the state of the art is conducted at the beginning of the project. Grid connection requirements that were in force, or published as drafts, at the time, and scientific literature related to the topic, are studied. The project is based on simulations of wind turbines in a power system simulations tool. Some of the models used in this project were readily available prior to the project; the development of others is part of the project. The most extensive modelling work deals with the design of the electrical part of the variable speed turbine and its controls. To simulate realistic grid operation the wind turbine models are connected to an aggregated model of the Nordic power system. For that purpose the Nordic power system model, which was available prior to the project, is extended with a realistic feeder configuration. It is commonly demanded from modern wind turbines, that they must not disconnect in case of transient faults. Therefore, controllers are designed that enable the two turbine types to ride through transient faults. With these transient fault controllers the wind turbines can stay connected to the grid, such that their generation capacity is

  9. Power Stabilization Strategy of Random Access Loads in Electric Vehicles Wireless Charging System at Traffic Lights

    Directory of Open Access Journals (Sweden)

    Linlin Tan

    2016-10-01

    Full Text Available An opportunity wireless charging system for electric vehicles when they stop and wait at traffic lights is proposed in this paper. In order to solve the serious power fluctuation caused by random access loads, this study presents a power stabilization strategy based on counting the number of electric vehicles in a designated area, including counting method, power source voltage adjustment strategy and choice of counting points. Firstly, the circuit model of a wireless power system with multi-loads is built and the equation of each load is obtained. Secondly, after the counting method of electric vehicles is stated, the voltage adjustment strategy, based on the number of electric vehicles when the system is at a steady state, is set out. Then, the counting points are chosen according to power curves when the voltage adjustment strategy is adopted. Finally, an experimental prototype is implemented to verify the power stabilization strategy. The experimental results show that, with the application of this strategy, the charging power is stabilized with the fluctuation of no more than 5% when loads access randomly.

  10. Stability Enhancement of a Power System Containing High-Penetration Intermittent Renewable Generation

    OpenAIRE

    Morel, Jorge; Obara, Shin’ya; Morizane, Yuta

    2015-01-01

    This paper considers the transient stability enhancement of a power system containing large amounts of solar and wind generation in Japan. Following the Fukushima Daiichi nuclear disaster there has been an increasing awareness on the importance of a distributed architecture, based mainly on renewable generation, for the Japanese power system. Also, the targets of CO2 emissions can now be approached without heavily depending on nuclear generation. Large amounts of renewable generation leads to...

  11. Improvement of Transient Stability of Power System by System Damping Series Resistor (SDSR)

    OpenAIRE

    上里, 勝実; 千住, 智信; 当銘, 秀之; 高原, 景滋; Uezato, Katsumi; Senjyu, Tomonobu; Toume, Hideyuki; Takahara, Keiji

    1990-01-01

    The system damping resistor is one of the method for improving the transient stability of power systems. The main circuit is the simple construction so that is low cost and is few abnormal surge, and is superior in ability of economy, reliability and maintenance. Conventionally, most of all system damping resistors have adopted the paralleled resistor, whereas the series resistor is used little.In this paper, we investigate the characteristics of the series resistor by comparing with the para...

  12. Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.

    Science.gov (United States)

    Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza

    2015-11-01

    In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A fuzzy logic pitch angle controller for power system stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Cronin, Tom; Sorensen, Poul [Wind Energy Department, Riso National Laboratory, PO Box 49, DK-4000 Roskilde, (Denmark); Jensen, Birgitte Bak [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East, (Denmark)

    2006-07-12

    In this article the design of a fuzzy logic pitch angle controller for a fixed speed, active-stall wind turbine, which is used for power system stabilization, is presented. The system to be controlled, which is the wind turbine and the power system to which the turbine is connected, is described. The advantages of fuzzy logic control when applied to large-signal control of active-stall wind turbines are outlined. The general steps of the design process for a fuzzy logic controller, including definition of the controller inputs, set-up of the fuzzy rules and the method of defuzzification, are described. The performance of the controller is assessed by simulation, where the wind turbine's task is to dampen power system oscillations. In the scenario simulated for this work, the wind turbine has to ride through a transient short-circuit fault and subsequently contribute to the damping of the grid frequency oscillations that are caused by the transient fault. It is concluded that the fuzzy logic controller enables the wind turbine to dampen power system oscillations. It is also concluded that, owing to the inherent non-linearities in a wind turbine and the unpredictability of the whole system, the fuzzy logic controller is very suitable for this application. (Author).

  14. Performance Comparison of Adaptive Estimation Techniques for Power System Small-Signal Stability Assessment

    Directory of Open Access Journals (Sweden)

    E. A. Feilat

    2010-12-01

    Full Text Available This paper demonstrates the assessment of the small-signal stability of a single-machine infinite- bus power system under widely varying loading conditions using the concept of synchronizing and damping torques coefficients. The coefficients are calculated from the time responses of the rotor angle, speed, and torque of the synchronous generator. Three adaptive computation algorithms including Kalman filtering, Adaline, and recursive least squares have been compared to estimate the synchronizing and damping torque coefficients. The steady-state performance of the three adaptive techniques is compared with the conventional static least squares technique by conducting computer simulations at different loading conditions. The algorithms are compared to each other in terms of speed of convergence and accuracy. The recursive least squares estimation offers several advantages including significant reduction in computing time and computational complexity. The tendency of an unsupplemented static exciter to degrade the system damping for medium and heavy loading is verified. Consequently, a power system stabilizer whose parameters are adjusted to compensate for variations in the system loading is designed using phase compensation method. The effectiveness of the stabilizer in enhancing the dynamic stability over wide range of operating conditions is verified through the calculation of the synchronizing and damping torque coefficients using recursive least square technique.

  15. Modeling and power system stability of VSC-HVDC systems for grid-connection of large offshore windfarms

    Energy Technology Data Exchange (ETDEWEB)

    Xue Yijing [Vestas China, Beijing (China); Akhmatov, Vladislav [Technical Univ. of Denmark, Lyngby (Denmark). Centre for Electric Technology

    2009-07-01

    Utilization of Voltage Source Converter (VSC) - High Voltage Direct Current (HVDC) systems for grid-connection of large offshore windfarms becomes relevant as installed power capacities as well as distances to the connection points of on-land transmission systems increase. At the same time, the grid code requirements of the Transmission System Operators (TSO), including ancillary system services and Low-Voltage Fault-Ride-Through (LVFRT) capability of large offshore windfarms, become more demanding. This paper presents a general-level model of and a LVFRT solution for a VSC-HVDC system for grid-connection of large offshore windfarms. The VSC-HVDC model is implemented using a general approach of independent control of active and reactive power in normal operations. The on-land VSC inverter, i.e. a grid-side inverter, provides voltage support to the transmission system and comprises a LVFRT solution in short-circuit faults. The presented model, LVFRT solution and impact on the system stability are investigated as a case study of a 1,000 MW offshore windfarm grid-connected through a VSC-HVDC system. The investigation is carried out on a model of the west Danish, with some elements of the north German, 400 kV, 220 kV and 150 kV transmission systems stage 2005-2006 using the DIgSILENT PowerFactory simulation program. In the investigation, a thermal power plant just south to the Danish border has been substituted by this 1,000 MW offshore windfarm utilizing the VSC-HVDC system. The investigation has shown that the substitution of a thermal power plant by a VSC-HVDC connected offshore windfarm should not have any negative impact on the short-term stability of the west Danish transmission system. The investigation should be repeated applying updated system model stages and offshore wind power commissioning schedules in the North and Baltic Seas. (orig.)

  16. Comparison Study of Power System Small Signal Stability Improvement Using SSSC and STATCOM

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Fang, Jiakun

    2013-01-01

    the connected power system, both SSSC and STATCOM are able to participate in the power system inter-area oscillation damping by changing the compensated reactance or the provided reactive power. This paper analyses the influence of SSSC and STATCOM on power system small signal stability. The damping controller...... schemes for SSSC and STATCOM are presented and discussed. The IEEE 39-bus New England system model as the test system is built in DIgSIELNT PowerFactory, in which the damping control strategies for both SSSC and STATCOM are validated by time domain simulations and modal analysis. Furthermore, comparison......A static synchronous series compensator (SSSC) has the ability to emulate a reactance in series with the connected transmission line. A static synchronous compensator (STATCOM) is able to provide the reactive power to an electricity network. When fed with some supplementary signals from...

  17. Optimal Allocation of Wind Turbines by Considering Transmission Security Constraints and Power System Stability

    Directory of Open Access Journals (Sweden)

    Rodrigo Palma-Behnke

    2013-01-01

    Full Text Available A novel optimization methodology consisting of finding the near optimal location of wind turbines (WTs on a planned transmission network in a secure and cost-effective way is presented on this paper. While minimizing the investment costs of WTs, the algorithm allocates the turbines so that a desired wind power energy-penetration level is reached. The optimization considers both transmission security and power system stability constraints. The results of the optimization provide regulators with a support instrument to give proper signals to WT investors, in order to achieve secure and cost effective wind power network integration. The proposal is especially aimed at countries in the initial stage of wind power development, where the WT network integration process can still be influenced by policy-makers. The proposed methodology is validated with a real power system. Obtained results are compared with those generated from a business-as-usual (BAU scenario, in which the WT network allocation is made according to existing WT projects. The proposed WT network allocation scheme not only reduces the total investment costs associated with a determined wind power energy target, but also improves power system stability.

  18. Transient Stability Improvement for Combined Heat and Power System Using Load Shedding

    Directory of Open Access Journals (Sweden)

    Hung-Cheng Chen

    2014-01-01

    Full Text Available The purpose of the paper is to analyze and improve the transient stability of an industrial combined heat and power (CHP system in a high-tech science park in Taiwan. The CHP system installed two 161 kV/161 kV high-impendence transformers to connect with Taipower System (TPS for both decreasing the short-circuit fault current and increasing the fault critical clearing time. The transient stabilities of three types of operation modes in CHP units, 3G1S, 2G1S, and 1G1S, are analyzed. Under the 3G1S operation mode, the system frequency is immediately restored to 60 Hz after tie line tripping with the TPS. Under the 1G1S and 2G1S operation modes, the system frequencies will continuously decrease and eventually become unstable. A novel transient stability improvement approach using load shedding technique based on the change in frequency is proposed to improve the transient stability.

  19. Nonlinear Synergetic Governor Controllers for Steam Turbine Generators to Enhance Power System Stability

    Directory of Open Access Journals (Sweden)

    Xingbao Ju

    2017-07-01

    Full Text Available This paper proposes a decentralized nonlinear synergetic governor controller (NSGC for turbine generators to enhance power system stability by using synergetic control theory and the feedback linearization technique. The precise feedback linearization model of a turbine-generator with a steam valve control is obtained, at first, by using a feedback linearization technique. Then based on this model, a manifold is defined as a linear combination of the deviation of the rotor angle, speed deviation, and speed derivative. The control law of the proposed NSGC is deduced and the stability condition of the whole closed-loop system is subsequently analyzed. According to the requirement of the primary frequency regulation, an additional proportional integral (PI controller is designed to dynamically track the steady-state value of the rotor angle. Case studies are undertaken based on a single-machine infinite-bus system and the New England system, respectively. Simulation results show that the proposed NSGC can suppress the power oscillations and improve transient stability more effectively in comparison with the conventional proportional-integral-derivative (PID governor controller. Moreover, the proposed NSGC is robust to the variations of the system operating conditions.

  20. SIMULATION OF THE TRANSITIONAL REGIME OF THE MOLDOVAN POWER UNDER STATIC STABILITY

    Directory of Open Access Journals (Sweden)

    Postolaty V.M.

    2013-04-01

    Full Text Available The paper presents the outcome of the Moldovan power system static stability modeling and analysis, considering the operation in parallel with the Ukrainian power system and the established operation regimes. The analysis includes verification of the reserve of static stability and definition of the static stability limits for a given operation mode, and the determination of the power system stability domain of the controlled system nodes. Parameters used for the analysis are the active power flows via controlled sections and the voltage levels at the controlled system nodes. Two options of Moldovan power system scheme are considered: a single-circuit transit Dniester HPP - Balti - Straseni – Chisinau 330kV and a double-circuit transit. Studies have shown that the implementation of the double-circuit transit would lead to better static stability parameters and lower power system losses. The analysis has been carried out based on the power system stability.

  1. A Multifeature Fusion Approach for Power System Transient Stability Assessment Using PMU Data

    Directory of Open Access Journals (Sweden)

    Yang Li

    2015-01-01

    Full Text Available Taking full advantage of synchrophasors provided by GPS-based wide-area measurement system (WAMS, a novel VBpMKL-based transient stability assessment (TSA method through multifeature fusion is proposed in this paper. First, a group of classification features reflecting the transient stability characteristics of power systems are extracted from synchrophasors, and according to the different stages of the disturbance process they are broken into three nonoverlapped subsets; then a VBpMKL-based TSA model is built using multifeature fusion through combining feature spaces corresponding to each feature subset; and finally application of the proposed model to the IEEE 39-bus system and a real-world power system is demonstrated. The novelty of the proposed approach is that it improves the classification accuracy and reliability of TSA using multifeature fusion with synchrophasors. The application results on the test systems verify the effectiveness of the proposal.

  2. Dynamic influences of wind power on the power system

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, Pedro

    2003-03-01

    The thesis first presents the basics influences of wind power on the power system stability and quality by pointing out the main power quality issues of wind power in a small-scale case and following, the expected large-scale problems are introduced. Secondly, a dynamic wind turbine model that supports power quality assessment of wind turbines is presented. Thirdly, an aggregate wind farm model that support power quality and stability analysis from large wind farms is presented. The aggregate wind farm model includes the smoothing of the relative power fluctuation from a wind farm compared to a single wind turbine. Finally, applications of the aggregate wind farm model to the power systems are presented. The power quality and stability characteristics influenced by large-scale wind power are illustrated with three cases. In this thesis, special emphasis has been given to appropriate models to represent the wind acting on wind farms. The wind speed model to a single wind turbine includes turbulence and tower shadow effects from the wind and the rotational sampling turbulence due to the rotation of the blades. In a park scale, the wind speed model to the wind farm includes the spatial coherence between different wind turbines. Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suitable to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power system quality and stability. The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates on the voltage stability and on the power system oscillations. From the cases studied, voltage and the frequency variations were smaller than expected from the large-scale wind power integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting large

  3. On-line transient stability assessment of large-scale power systems by using ball vector machines

    International Nuclear Information System (INIS)

    Mohammadi, M.; Gharehpetian, G.B.

    2010-01-01

    In this paper ball vector machine (BVM) has been used for on-line transient stability assessment of large-scale power systems. To classify the system transient security status, a BVM has been trained for all contingencies. The proposed BVM based security assessment algorithm has very small training time and space in comparison with artificial neural networks (ANN), support vector machines (SVM) and other machine learning based algorithms. In addition, the proposed algorithm has less support vectors (SV) and therefore is faster than existing algorithms for on-line applications. One of the main points, to apply a machine learning method is feature selection. In this paper, a new Decision Tree (DT) based feature selection technique has been presented. The proposed BVM based algorithm has been applied to New England 39-bus power system. The simulation results show the effectiveness and the stability of the proposed method for on-line transient stability assessment procedure of large-scale power system. The proposed feature selection algorithm has been compared with different feature selection algorithms. The simulation results demonstrate the effectiveness of the proposed feature algorithm.

  4. Power system voltage stability and agent based distribution automation in smart grid

    Science.gov (United States)

    Nguyen, Cuong Phuc

    2011-12-01

    Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems including voltage instability, widespread blackouts, slow control response, among others. These problems have created an urgent need to transform the present electric power system to a highly stable, reliable, efficient, and self-healing electric power system of the future, which has been termed "smart grid". This dissertation begins with an investigation of voltage stability in bulk transmission networks. A new continuation power flow tool for studying the impacts of generator merit order based dispatch on inter-area transfer capability and static voltage stability is presented. The load demands are represented by lumped load models on the transmission system. While this representation is acceptable in traditional power system analysis, it may not be valid in the future smart grid where the distribution system will be integrated with intelligent and quick control capabilities to mitigate voltage problems before they propagate into the entire system. Therefore, before analyzing the operation of the whole smart grid, it is important to understand the distribution system first. The second part of this dissertation presents a new platform for studying and testing emerging technologies in advanced Distribution Automation (DA) within smart grids. Due to the key benefits over the traditional centralized approach, namely flexible deployment, scalability, and avoidance of single-point-of-failure, a new distributed approach is employed to design and develop all elements of the platform. A multi-agent system (MAS), which has the three key characteristics of autonomy, local view, and decentralization, is selected to implement the advanced DA functions. The intelligent agents utilize a communication network for cooperation and

  5. Optimal design and tuning of novel fractional order PID power system stabilizer using a new metaheuristic Bat algorithm

    Directory of Open Access Journals (Sweden)

    Lakhdar Chaib

    2017-06-01

    Full Text Available This paper proposes a novel robust power system stabilizer (PSS, based on hybridization of fractional order PID controller (PIλDμ and PSS for optimal stabilizer (FOPID-PSS for the first time, using a new metaheuristic optimization Bat algorithm (BA inspired by the echolocation behavior to improve power system stability. The problem of FOPID-PSS design is transformed as an optimization problem based on performance indices (PI, including Integral Absolute Error (IAE, Integral Squared Error (ISE, Integral of the Time-Weighted Absolute Error (ITAE and Integral of Time multiplied by the Squared Error (ITSE, where, BA is employed to obtain the optimal stabilizer parameters. In order to examine the robustness of FOPID-PSS, it has been tested on a Single Machine Infinite Bus (SMIB power system under different disturbances and operating conditions. The performance of the system with FOPID-PSS controller is compared with a PID-PSS and PSS. Further, the simulation results obtained with the proposed BA based FOPID-PSS are compared with those obtained with FireFly algorithm (FFA based FOPID-PSS. Simulation results show the effectiveness of BA for FOPID-PSS design, and superior robust performance for enhancement power system stability compared to other with different cases.

  6. Power stores and power electronics. Elements for a stable and reliable vehicle power supply system; Energiespeicher und Leistungselektronik. Elemente fuer ein stabiles und zuverlaessiges Bordnetz

    Energy Technology Data Exchange (ETDEWEB)

    Nalbach, Marc; Hoff, Carsten; Olk, Joachim; Schoellmann, Matthias [Hella KGaA Hueck und Co., Lippstadt (Germany); Schick, Detlef [Atmel, Garching (Germany)

    2008-07-01

    The demand for fuel efficient technologies in automotive applications is driven by the ongoing and increased CO{sub 2} discussion respective the upcoming tightening of the law as well as by the exhaustion of the worldwide oil resources. Today, micro-hybrid cars using idle stop, micro-regenerative braking and/or electrification of auxiliary components deliver a cost efficient approach within the 14V E/E energy system. Furthermore, the optimization of the components themselves like turbo-charging of the combustion engine, tyres with a low rolling friction as well as weight reduction and LED lighting has a significant impact on the car efficiency. But the implementations of idle stop plus additional innovations like electrical power steering are able to jeopardize the stability of the vehicle electrical power system by its amount of electrical energy and power consumption. Contrary, these mechatronics and actuators need a reliable power supply especially if they are safety critical. To ensure the stability of the power supply the ratio of energy storage and power resources has to be balanced within the E/E system. Within this paper the optimization of energy and power resources is shown using an exemplary application and how this approach could be extrapolated to the whole automobile power system. (orig.)

  7. Toluene stability Space Station Rankine power system

    Science.gov (United States)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  8. Simultaneous Robust Coordinated Damping Control of Power System Stabilizers (PSSs, Static Var Compensator (SVC and Doubly-Fed Induction Generator Power Oscillation Dampers (DFIG PODs in Multimachine Power Systems

    Directory of Open Access Journals (Sweden)

    Jian Zuo

    2017-04-01

    Full Text Available The potential of utilizing doubly-fed induction generator (DFIG-based wind farms to improve power system damping performance and to enhance small signal stability has been proposed by many researchers. However, the simultaneous coordinated tuning of a DFIG power oscillation damper (POD with other damping controllers is rarely involved. A simultaneous robust coordinated multiple damping controller design strategy for a power system incorporating power system stabilizer (PSS, static var compensator (SVC POD and DFIG POD is presented in this paper. This coordinated damping control design strategy is addressed as an eigenvalue-based optimization problem to increase the damping ratios of oscillation modes. Both local and inter-area electromechanical oscillation modes are intended in the optimization design process. Wide-area phasor measurement unit (PMU signals, selected by the joint modal controllability/ observability index, are utilized as SVC and DFIG POD feedback modulation signals to suppress inter-area oscillation modes. The robustness of the proposed coordinated design strategy is achieved by simultaneously considering multiple power flow situations and operating conditions. The recently proposed Grey Wolf optimizer (GWO algorithm is adopted to efficiently optimize the parameter values of multiple damping controllers. The feasibility and effectiveness of the proposed coordinated design strategy are demonstrated through frequency-domain eigenvalue analysis and nonlinear time-domain simulation studies in two modified benchmark test systems. Moreover, the dynamic response simulation results also validate the robustness of the recommended coordinated multiple damping controllers under various system operating conditions.

  9. Monitoring the power system stability; Monitoramento da estabilidade dos sistemas de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Bretas, Newton G [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia

    1994-12-31

    This work presents a method to monitor the stability of a power system, after a major disturbance, using of adaptive time series approach. The model parameters are updated every time the prediction stage is completed. Besides, according to the values of the parameters, one may conclude the system will be unstable, will go to be a damped sine wave or even a damped exponential. (author) 29 refs., 12 figs., 3 tabs.

  10. Power stability methods for parallel systems

    International Nuclear Information System (INIS)

    Wallach, Y.

    1988-01-01

    Parallel-Processing Systems are already commercially available. This paper shows that if one of them - the Alternating Sequential Parallel, or ASP system - is applied to network stability calculations it will lead to a higher speed of solution. The ASP system is first described and is then shown to be cheaper, more reliable and available than other parallel systems. Also, no deadlock need be feared and the speedup is normally very high. A number of ASP systems were already assembled (the SMS systems, Topps, DIRMU etc.). At present, an IBM Local Area Network is being modified so that it too can work in the ASP mode. Existing ASP systems were programmed in Fortran or assembly language. Since newer systems (e.g. DIRMU) are programmed in Modula-2, this language can be used. Stability analysis is based on solving nonlinear differential and algebraic equations. The algorithm for solving the nonlinear differential equations on ASP, is described and programmed in Modula-2. The speedup is computed and is shown to be almost optimal

  11. Improvement of small-signal stability of power system by controlling doubly fed induction generators of a large-capacity wind farm

    Directory of Open Access Journals (Sweden)

    Tomohiro Adachi

    2016-01-01

    Full Text Available Many wind turbine generations have been installed into power systems around the world, where in recent years doubly fed induction generator (DFIG attracts a lot of attentions because of its efficiency and controllability. However, the DFIG is connected to the power system through inverters and originally does not have an ability to release the kinetic energy of the rotor or resorb the surplus power of the power system as the kinetic energy. Therefore, it has not been made clear how the DFIGs have an influence on small-signal stability in power systems. In this paper, we propose a control scheme of the DFIG and analyse its effect on the small-signal stability of the power system by eigenvalue calculations and time-domain simulations.

  12. Wide area stability analysis and control of interconnected power systems with HVDC and FACTS devices

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong

    2012-11-01

    In order to damp low-frequency oscillations and improve the overall stability of large-scale interconnected power systems, this book investigates the wide-area stability analysis and control methods from different perspectives. The flexible and fast control capability of high-voltage (FACTS) is investigated in detail to implement a wide-area measurement based damping control. A sequential and global mixed optimization method is proposed to simultaneously optimize local and wide area damping controllers. A wide-area robust coordination method is presented to coordinate multiple wide-area damping controllers (WADC). A delay-dependent robust design method is also proposed to handle time-varying delays commonly existing in wide-area signal communication. A closed-loop hardware experiment is used to validate the damping performance. The research activities of this book include power system stability analysis and control, wide-area damping control as well as HVDC and FACTS technologies.

  13. Power System Analysis

    Science.gov (United States)

    Taniguchi, Haruhito

    Electric power generation that relies on various sources as the primary sources of energy is expected to bring down CO2 emissions levels to support the overall strategy to curb global warming. Accordingly, utilities are moving towards integrating more renewable sources for generation, mostly dispersed, and adopting Smart Grid Technologies for system control. In order to construct, operate, and maintain power systems stably and economically in such background, thorough understanding about the characteristics of power systems and their components is essential. This paper presents modeling and simulation techniques available for the analysis of critical aspects such as thermal capacity, stability, voltage stability, and frequency dynamics, vital for the stable operation of power systems.

  14. Modelling, stability and control of voltage behaviour in power supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David J [Sydney Univ., NSW (Australia). Dept. of Electrical Engineering; Hisken, Ian A [Newcastle Univ., NSW (Australia). Dept. of Electrical and Computer Engineering

    1994-12-31

    This paper gives an overview of a line of work on mid to long term voltages stability analysis and control in power systems. The results are based on use of a novel approach to dynamic load modelling using aggregate nonlinear structures. In general, the model for the transmission network and supply end dynamics is of the hybrid differential - algebraic - discrete kind. Various stability questions are precisely formulated and analysed in terms of network and load characteristics (steady-state and transient). The results are shown to be a useful framework for deriving criteria of the where, when and how much kind for various control actions such as load Thedding and tap-blocking. (author) 47 refs., 15 figs., 1 tab.

  15. Ajuste de Estabilizadores de Potencia en generadores utilizando el paquete Power Systems Analysis Toolbox PSAT; Setting of Power System Stabilizers based in PSAT free package calculations

    Directory of Open Access Journals (Sweden)

    Antonio A. Martínez García

    2015-04-01

    Full Text Available La regulación de la tensión es el modo más elemental de control de los Sistemas Eléctricos de Potencia que mejora la estabilidad y la estabilidad transitoria. La introducción de reguladores de tensión muy rápidos facilita la capacidad del sistema de generar acciones que conserven su estabilidad (incremento del torque sincronizante. No obstante, estos dispositivos disminuyen el amortiguamiento del sistema. La forma más económica de mejorar el amortiguamiento de las oscilaciones mecánicas de las unidades generadoras se logra con la adición de un control suplementario agregado en el sistema de excitación, que se conoce como estabilizador de potencia (PSS, por sus siglas en inglés Power System Stabilizer. En el presente trabajo se utilizan las posibilidades del paquete PSAT para seleccionar la mejor ubicación y ajustar PSS en un sistema longitudinal sencillo de dos áreas, similar al caso del Sistema Eléctrico de la República de Cuba. Normally, voltage regulation is the primary mode of control, which improves voltage and transient stability. The introduction of generator´s fast voltage regulators improves Electrical Power Systems ability to generate synchronizing torque to maintain stability. These control devices have a negative effect in damping system oscillations. Supplementary control in generator’s voltage regulators (PSS is the most economic solution to improve system damping. This supplementary control is obtained using power system dampers. PSAT abilities are used in order to obtain setting of this supplementary control in a simple longitudinal two areas system, similar to Cuban Electric Power System.

  16. Design and experimental investigation of a decentralized GA-optimized neuro-fuzzy power system stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Talaat, Hossam E.A.; Abdennour, Adel; Al-Sulaiman, Abdulaziz A. [Electrical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421 (Saudi Arabia)

    2010-09-15

    The aim of this research is the design and implementation of a decentralized power system stabilizer (PSS) capable of performing well for a wide range of variations in system parameters and/or loading conditions. The framework of the design is based on Fuzzy Logic Control (FLC). In particular, the neuro-fuzzy control rules are derived from training three classical PSSs; each is tuned using GA so as to perform optimally at one operating point. The effectiveness and robustness of the designed stabilizer, after implementing it to the laboratory model, is investigated. The results of real-time implementation prove that the proposed PSS offers a superior performance in comparison with the conventional stabilizer. (author)

  17. Stability region for a prompt power variation of a coupled-core system with positive prompt feedback

    International Nuclear Information System (INIS)

    Watanabe, S.; Nishina, K.

    1984-01-01

    A stability analysis using a one-group model is presented for a coupled-core system. Positive prompt feedback of a γp /SUB j/ form is assumed, where p /SUB j/ is the fractional power variation of core j. Prompt power variations over a range of a few milliseconds after a disturbance are analyzed. The analysis combines Lapunov's method, prompt jump approximation, and the eigenfunction expansion of coupling region response flux. The last is treated as a pseudo-delayed neutron precursor. An asymptotic stability region is found for p /SUB j/. For an asymmetric flux variation over a system of two coupled cores, either p /SUB I/ or p /SUB II/ can slightly exceed, by virtue of the coupling effect, the critical value (β/γ-1) of a single-core case. Such a stability region is increased by additional inclusion of the coupling region fundamental mode in the treatment. The coupling region contributes to stability through its delayed response and coupling. An optimum core separation distance for stability is found

  18. New challenge for the Norwegian electric power market: A free market of power creates stability problems

    International Nuclear Information System (INIS)

    Gjengedal, T.; Rabbe, O.; Ongstad, E.; Uhlen, K.; Hauger, B.; Vormedal, L.; Lysheim, D.

    1997-01-01

    The article relates to problems of grid stability as a consequence of market-based power turnover. In combination with special hydrologic conditions, new approaches are formed concerning power production and transmission. Efficient counter-acting efforts must be initiated at an early stage for power system stabilization also concerning future innovations from the year of 2000. Examples on the development of systems of static magnetization and damping, problems concerning dampers, power grid testing, digital regulators, faults in high voltage 3-phase systems, and evaluation of measures of improvement are discussed. 10 figs

  19. Microprocessor supervised stability control system for the united power system of Middle Volga in fault conditions

    Energy Technology Data Exchange (ETDEWEB)

    Berdnikov, V I; Birgel, E R; Kovalev, V D; Kuznestov, A N

    1994-12-31

    The development of the 500 kV UPS of Middle Volga, the complication of its configuration and operating conditions particularly in connection with concentration of the generating power at Balakovo NPS have aggravated the problem of stability of the Middle Volga UPS when high power is transmitted along the 500 kV transient system. In this case the necessity for improving control actions` dosage accuracy has also appeared. This work discusses solution to the above mentioned issue. (author) 3 figs.

  20. Wavelength and power stability measurements of the Stanford SCA/FEL

    International Nuclear Information System (INIS)

    van der Geer, B.; de Loos, M.J.; Conde, M.E.; Leemans, W.P.

    1994-08-01

    Wavelength and power stability of the Stanford infrared SCA/FEL operating with the TRW wiggler have been measured using a high-resolution spectrometer and an image dissector system. The image dissector is capable of reading the spectrum of every single micropulse at 12 MHz throughout a macropulse of up to 2 ms duration. The intrinsic wavelength and power stability of the SCA/FEL are found to be δλ/λ=0.035% and δP/P=18%. The use of a feedback control system to stabilize the wavelength, and an acousto-optic modulator for output power smoothing, improves the performance to δλ/λ=0.012% and δP/P=7%

  1. Power system observability and dynamic state estimation for stability monitoring using synchrophasor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kai; Qi, Junjian; Kang, Wei

    2016-08-01

    Growing penetration of intermittent resources such as renewable generations increases the risk of instability in a power grid. This paper introduces the concept of observability and its computational algorithms for a power grid monitored by the wide-area measurement system (WAMS) based on synchrophasors, e.g. phasor measurement units (PMUs). The goal is to estimate real-time states of generators, especially for potentially unstable trajectories, the information that is critical for the detection of rotor angle instability of the grid. The paper studies the number and siting of synchrophasors in a power grid so that the state of the system can be accurately estimated in the presence of instability. An unscented Kalman filter (UKF) is adopted as a tool to estimate the dynamic states that are not directly measured by synchrophasors. The theory and its computational algorithms are illustrated in detail by using a 9-bus 3-generator power system model and then tested on a 140-bus 48-generator Northeast Power Coordinating Council power grid model. Case studies on those two systems demonstrate the performance of the proposed approach using a limited number of synchrophasors for dynamic state estimation for stability assessment and its robustness against moderate inaccuracies in model parameters.

  2. Simulation of beam pointing stability on targeting plane of high power excimer laser system

    International Nuclear Information System (INIS)

    Wang Dahui; Zhao Xueqing; Zhang Yongsheng; Zheng Guoxin; Hu Yun; Zhao Jun

    2011-01-01

    Based on characteristics of image-relaying structure in high power excimer MOPA laser system, simulation and analysis software of targeting beam's barycenter stability was designed by using LABVIEW and MATLAB. Simulation was made to measured results of every optical component in laboratory environment. Simulation and validation of budget values for optical components was and optimization of error budget of system was accomplished via post-allocation for several times. It is shown that targeting beam's barycenter stability in the condition of current laboratory environment can't satisfy needs and index of high demand optical components can be allotted to 1.7 μrad when index of low demand optical components have some stability margin. These results can provide a guide to construction of system and design and machining of optical components and optimization of system. Optical components of laboratory on work can satisfy optimized distributed index, which reduce the demand of structure to some extent. (authors)

  3. Control of power plants and power systems. Proceedings

    International Nuclear Information System (INIS)

    Canales-Ruiz, R.

    1996-01-01

    The 88 papers in this volume constitute the proceedings of the International Federation of Automatic Control Symposium held in Mexico in 1995. The broad areas which they cover are: self tuning control; power plant operations; dynamic stability; fuzzy logic applications; power plants modelling; artificial intelligence applications; power plants simulation; voltage control; control of hydro electric units; state estimation; fault diagnosis and monitoring systems; system expansion and operation planning; security assessment; economic dispatch and optimal load flow; adaptive control; distribution; transient stability and preventive control; modelling and control of nuclear plant; knowledge data bases for automatic learning methods applied to power system dynamic security assessment; control of combined cycle units; power control centres. Separate abstracts have been prepared for the three papers relating to nuclear power plants. (UK)

  4. Improving Power System Stability Using Transfer Function: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    G. Shahgholian

    2017-10-01

    Full Text Available In this paper, a small-signal dynamic model of a single-machine infinite-bus (SMIB power system that includes IEEE type-ST1 excitation system and PSS based on transfer fu¬n¬c¬¬tion structure is presented. The changes in the operating co¬n¬dition of a power system on dynamic performance have been exa¬m¬ined. The dynamic performance of the closed-loop system is ana¬lyzed base on its eigenvalues. The effectiveness of the par¬a¬m¬e¬t¬ers changes on dynamic stability is verified by simulation res¬u¬l¬ts. Three types of PSS have been considered for analysis: (a the derivative PSS, (b the lead-lag PSS or conventional PSS, and (c the proportional-integral-derivative PSS. The objective fu¬nc¬t¬i¬o¬n is formulated to increase the dam¬¬ping ratio of the electromechanical mode eigenvalues. Simu¬la¬tion results show that the PID-PSS performs better for less ov¬e¬r¬shoot and less settling time comp¬ared with the CPSS and DPSS un¬der different load ope¬ration and the significant system pa¬r¬am¬eter variation conditions.

  5. Power system relaying

    CERN Document Server

    Horowitz, Stanley H; Niemira, James K

    2013-01-01

    The previous three editions of Power System Relaying offer comprehensive and accessible coverage of the theory and fundamentals of relaying and have been widely adopted on university and industry courses worldwide. With the third edition, the authors have added new and detailed descriptions of power system phenomena such as stability, system-wide protection concepts and discussion of historic outages. Power System Relaying, 4th Edition continues its role as an outstanding textbook on power system protection for senior and graduate students in the field of electric power engineering and a refer

  6. New image-stabilizing system

    Science.gov (United States)

    Zhao, Yuejin

    1996-06-01

    In this paper, a new method for image stabilization with a three-axis image- stabilizing reflecting prism assembly is presented, and the principle of image stabilization in this prism assembly, formulae for image stabilization and working formulae with an approximation up to the third power are given in detail. In this image-stabilizing system, a single chip microcomputer is used to calculate value of compensating angles and thus to control the prism assembly. Two gyroscopes act as sensors from which information of angular perturbation is obtained, three stepping motors drive the prism assembly to compensate for the movement of image produced by angular perturbation. The image-stabilizing device so established is a multifold system which involves optics, mechanics, electronics and computer.

  7. Nonlinear Slewing Spacecraft Control Based on Exergy, Power Flow, and Static and Dynamic Stability

    Science.gov (United States)

    Robinett, Rush D.; Wilson, David G.

    2009-10-01

    This paper presents a new nonlinear control methodology for slewing spacecraft, which provides both necessary and sufficient conditions for stability by identifying the stability boundaries, rigid body modes, and limit cycles. Conservative Hamiltonian system concepts, which are equivalent to static stability of airplanes, are used to find and deal with the static stability boundaries: rigid body modes. The application of exergy and entropy thermodynamic concepts to the work-rate principle provides a natural partitioning through the second law of thermodynamics of power flows into exergy generator, dissipator, and storage for Hamiltonian systems that is employed to find the dynamic stability boundaries: limit cycles. This partitioning process enables the control system designer to directly evaluate and enhance the stability and performance of the system by balancing the power flowing into versus the power dissipated within the system subject to the Hamiltonian surface (power storage). Relationships are developed between exergy, power flow, static and dynamic stability, and Lyapunov analysis. The methodology is demonstrated with two illustrative examples: (1) a nonlinear oscillator with sinusoidal damping and (2) a multi-input-multi-output three-axis slewing spacecraft that employs proportional-integral-derivative tracking control with numerical simulation results.

  8. Stabilization of gas turbine unit power

    Science.gov (United States)

    Dolotovskii, I.; Larin, E.

    2017-11-01

    We propose a new cycle air preparation unit which helps increasing energy power of gas turbine units (GTU) operating as a part of combined cycle gas turbine (CCGT) units of thermal power stations and energy and water supply systems of industrial enterprises as well as reducing power loss of gas turbine engines of process blowers resulting from variable ambient air temperatures. Installation of GTU power stabilizer at CCGT unit with electric and thermal power of 192 and 163 MW, respectively, has resulted in reduction of produced electrical energy production costs by 2.4% and thermal energy production costs by 1.6% while capital expenditures after installation of this equipment increased insignificantly.

  9. The design of delay-dependent wide-area DOFC with prescribed degree of stability α for damping inter-area low-frequency oscillations in power system.

    Science.gov (United States)

    Sun, Miaoping; Nian, Xiaohong; Dai, Liqiong; Guo, Hua

    2017-05-01

    In this paper, the delay-dependent wide-area dynamic output feedback controller (DOFC) with prescribed degree of stability is proposed for interconnected power system to damp inter-area low-frequency oscillations. Here, the prescribed degree of stability α is used to maintain all the poles on the left of s=-α in the s-plane. Firstly, residue approach is adopted to select input-output control signals and the schur balanced truncation model reduction method is utilized to obtain the reduced power system model. Secondly, based on Lyapunov stability theory and transformation operation in complex plane, the sufficient condition of asymptotic stability for closed-loop power system with prescribed degree of stability α is derived. Then, a novel method based on linear matrix inequalities (LMIs) is presented to obtain the parameters of DOFC and calculate delay margin of the closed-loop system considering the prescribed degree of stability α. Finally, case studies are carried out on the two-area four-machine system, which is controlled by classical wide-area power system stabilizer (WAPSS) in reported reference and our proposed DOFC respectively. The effectiveness and advantages of the proposed method are verified by the simulation results under different operating conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Willke, B; Danzmann, K; Fallnich, C; Frede, M; Heurs, M; King, P; Kracht, D; Kwee, P; Savage, R; Seifert, F; Wilhelm, R

    2006-01-01

    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requirements and new results (RIN ≤ 4x10 -9 /√Hz) will be presented

  11. Power, stability of power, and creativity

    NARCIS (Netherlands)

    Sligte, Daniel J.; de Dreu, Carsten K. W.; Nijstad, Bernard A.

    Power hierarchies are an essential aspect of social organization, create stability and social order, and provide individuals with incentives to climb the hierarchical ladder. Extending previous work on power and creativity, we put forward that this relationship critically depends on both the

  12. Power, stability of power, and creativity

    NARCIS (Netherlands)

    Sligte, D.J.; de Dreu, C.K.W.; Nijstad, B.A.

    2011-01-01

    Power hierarchies are an essential aspect of social organization, create stability and social order, and provide individuals with incentives to climb the hierarchical ladder. Extending previous work on power and creativity, we put forward that this relationship critically depends on both the

  13. Optimization of AVR Parameters of a Multi-machine Power System ...

    African Journals Online (AJOL)

    user1

    Keywords: multi-machine power system stability, AVR system, power system stabilizer, PID controller ... The proposed controller was a fuzzy-logic-based stabilizer that has the capability to ..... Computer methods in power system analysis.

  14. Solar cell power source system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoichi; Toma, Kunio; Fukuwa, Shinji

    1988-05-14

    This invention aims to supply a power source system with stable power output by reducing the power loss due to switching in the voltage stabilization even when the power source is a solar cell with frequent voltage variation. For this purpose, in a solar cell power source system consisting of a solar cell, a storage battery, a switching regulator placed between the storage cell and the load, and a load, arrangement was made that, by judging the input voltage from the storage battery, switch-acting the transistor of the switching regulator, if the input voltage is higher than the specified voltage; is the input voltage is lower than the specified voltage, the transistor is put in a full-on state. By this, the supply voltage can be stabilized even when the voltage fluctuates, and system gets more efficient as the switching loss decreases in the voltage stabilizing means. (1 fig)

  15. Developing a stability assessment method for power electronics-based microgrids

    Science.gov (United States)

    Austin, Peter M.

    Modern microgrids with microsources and energy storage are dependent on power electronics for control and regulation. Under certain circumstances power electronics can be destabilizing to the system due to an effect called negative incremental impedance. A careful review of the theory and literature on the subject is presented. This includes stability criteria for both AC and DC systems, as well as a discussion on the limitations posed by the analysis. A method to integrate stability assessment with higher-level microgrid architectural design is proposed. Crucial to this is impedance characterization of individual components, which was accomplished through simulation. DC and AC impedance measurement blocks were created in Matlab simulink to automate the process. A detailed switching-level model of a DC microgrid was implemented in simulink, including wind turbine microsource, battery storage, and three phase inverter. Maximum power point tracking (MPPT) was included to maximize the efficiency of the turbine and was implemented through three rectifier alternatives and control schemes. The stability characteristics of each was compared in the final analysis. Impedance data was collected individually from the components and used to assess stability in the system as a whole. The results included the assessment of stability, margin, and unstable operating points to demonstrate the feasibility of the proposed approach.

  16. High stability, high current DC-power supplies

    International Nuclear Information System (INIS)

    Hosono, K.; Hatanaka, K.; Itahashi, T.

    1995-01-01

    Improvements of the power supplies and the control system of the AVF cyclotron which is used as an injector to the ring cyclotron and of the transport system to the ring cyclotron were done in order to get more high quality and more stable beam. The power supply of the main coil of the AVF cyclotron was exchanged to new one. The old DCCTs (zero-flux current transformers) used for the power supplies of the trim coils of the AVF cyclotron were changed to new DCCTs to get more stability. The potentiometers used for the reference voltages in the other power supplies of the AVF cyclotron and the transport system were changed to the temperature controlled DAC method for numerical-value settings. This paper presents the results of the improvements. (author)

  17. Modular Online Uninterruptible Power System Plug’n’Play Control and Stability Analysis

    DEFF Research Database (Denmark)

    Zhang, Chi; Coelho, Ernane A. A.; Guerrero, Josep M.

    2016-01-01

    In this paper, a plug`n'play control strategy proposed for modular online UPS system is presented, which allows to plug the UPS modules in or out randomly. This provides a less difficulty for the maintenance of the whole system. A two-level control scheme was proposed, including local controllers...... to achieve active and reactive power sharing and central controllers to maintain synchronization capability, which allows the online UPS modular system having faster dynamic performance according to the Standard IEC 62040-3. A detailed small signal mathematical model was developed in order to analyze...... the proposed modular online UPS system. Experimental results and data are presented to validate the stability analysis and support the proposed plug`n'play control feasibility....

  18. A pragmatic approach to voltage stability analysis of large power systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, H.G.; Pampin, G. [Inst. de Investigaciones Electricas, Morelos (Mexico); Diaz de Leon, J.A. [American Superconductor, Middleton, WI (United States)

    2008-07-01

    A methodology for performing voltage stability analyses for large power systems was presented. Modal and time-domain analyses were used for selection and siting solutions for potential voltage instability and collapse. Steady state systems were used to compute the smallest eigenvalues and associated eigenvalues of a reduced Jacobean matrix. The eigenvalues were used to provide a relative measure of proximity to voltage instability. The analysis was applied to provide an indication of a network's proximity to voltage collapse. Negative eigenvalues were representative of voltage instability conditions, while small positive values indicated proximity to voltage instability. The analysis technique was used to identify buses, lines, and generators prone to voltage instabilities for a 10-node network. A comparative analysis of results obtained from modal and time domain analyses were used to identify areas vulnerable to voltage instability conditions. Pre-fault, fault, and post-fault conditions were analyzed statically and dynamically. Results of the study showed that the combined method can be used to identify and place reactive power compensation solutions for voltage collapses in electric networks. 20 refs., 5 tabs., 7 figs.

  19. Interval stability for complex systems

    Science.gov (United States)

    Klinshov, Vladimir V.; Kirillov, Sergey; Kurths, Jürgen; Nekorkin, Vladimir I.

    2018-04-01

    Stability of dynamical systems against strong perturbations is an important problem of nonlinear dynamics relevant to many applications in various areas. Here, we develop a novel concept of interval stability, referring to the behavior of the perturbed system during a finite time interval. Based on this concept, we suggest new measures of stability, namely interval basin stability (IBS) and interval stability threshold (IST). IBS characterizes the likelihood that the perturbed system returns to the stable regime (attractor) in a given time. IST provides the minimal magnitude of the perturbation capable to disrupt the stable regime for a given interval of time. The suggested measures provide important information about the system susceptibility to external perturbations which may be useful for practical applications. Moreover, from a theoretical viewpoint the interval stability measures are shown to bridge the gap between linear and asymptotic stability. We also suggest numerical algorithms for quantification of the interval stability characteristics and demonstrate their potential for several dynamical systems of various nature, such as power grids and neural networks.

  20. Wavelength stabilized multi-kW diode laser systems

    Science.gov (United States)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  1. On Aggregation Requirements for Harmonic Stability Analysis in Wind Power Plants

    DEFF Research Database (Denmark)

    Dowlatabadi, Mohammadkazem Bakhshizadeh; Hjerrild, Jesper; Kocewiak, Łukasz

    2017-01-01

    In harmonic stability studies, stable operation of a power system must be ensured at any possible configuration. This leads to a large number of cases due to the high number of components in a power system. An aggregated model can be used to lower the complexity and to reduce the number...... of different cases. In other words, several similar converters (e.g. Wind Turbine Generators) can be replaced by a converter with larger ratings. In most cases, aggregated models work well for stability studies, however, in some cases the aggregation might result in a wrong evaluation of stability...

  2. Multi-machine power system stabilizers design using chaotic optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)

    2010-07-15

    In this paper, a multiobjective design of the multi-machine power system stabilizers (PSSs) using chaotic optimization algorithm (COA) is proposed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The PSSs parameters tuning problem is converted to an optimization problem which is solved by a chaotic optimization algorithm based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Two different objective functions are proposed in this study for the PSSs design problem. The first objective function is the eigenvalues based comprising the damping factor, and the damping ratio of the lightly damped electro-mechanical modes, while the second is the time domain-based multi-objective function. The robustness of the proposed COA-based PSSs (COAPSS) is verified on a multi-machine power system under different operating conditions and disturbances. The results of the proposed COAPSS are demonstrated through eigenvalue analysis, nonlinear time-domain simulation and some performance indices. In addition, the potential and superiority of the proposed method over the classical approach and genetic algorithm is demonstrated.

  3. Stability investigation for InP DHBT mm‐wave power amplifier

    DEFF Research Database (Denmark)

    Yan, Lei; Johansen, Tom Keinicke; Kammersgaard, Jacob

    2013-01-01

    microwave integrated circuit power amplifier. Experimental results from a redesigned power amplifier with improved stability are presented to confirm that the previously detected oscillation loop is removed using odd‐mode stabilization resistors with the correct choice of values and locations. © 2012 Wiley......In this article, we discuss stability issues for mm‐wave monolithic integrated power amplifiers using InP double heterojunction bipolar transistor (DHBT) technology targeting E‐band applications at 71–76 GHz and 81–86 GHz. Different stability detection methods based on the classical two‐port K......‐Δs pair, linear three‐port graphical analysis, system identifications, circuit modal analysis, and normalized determinant function are all reviewed. The corresponding techniques are employed to predict the occurrence of instability at 15 GHz observed during measurements on a fabricated monolithic...

  4. Transient stability enhancement of wind farms connected to a multi-machine power system by using an adaptive ANN-controlled SMES

    International Nuclear Information System (INIS)

    Muyeen, S.M.; Hasanien, Hany M.; Al-Durra, Ahmed

    2014-01-01

    Highlights: • We present an ANN-controlled SMES in this paper. • The objective is to enhance transient stability of WF connected to power system. • The control strategy depends on a PWM VSC and DC–DC converter. • The effectiveness of proposed controller is compared with PI controller. • The validity of the proposed system is verified by simulation results. - Abstract: This paper presents a novel adaptive artificial neural network (ANN)-controlled superconducting magnetic energy storage (SMES) system to enhance the transient stability of wind farms connected to a multi-machine power system during network disturbances. The control strategy of SMES depends mainly on a sinusoidal pulse width modulation (PWM) voltage source converter (VSC) and an adaptive ANN-controlled DC–DC converter using insulated gate bipolar transistors (IGBTs). The effectiveness of the proposed adaptive ANN-controlled SMES is then compared with that of proportional-integral (PI)-controlled SMES optimized by response surface methodology and genetic algorithm (RSM–GA) considering both of symmetrical and unsymmetrical faults. For realistic responses, real wind speed data and two-mass drive train model of wind turbine generator system is considered in the analyses. The validity of the proposed system is verified by the simulation results which are performed using the laboratory standard dynamic power system simulator PSCAD/EMTDC. Notably, the proposed adaptive ANN-controlled SMES enhances the transient stability of wind farms connected to a multi-machine power system

  5. Optimal robust stabilizer design based on UPFC for interconnected power systems considering time delay

    Directory of Open Access Journals (Sweden)

    Koofigar Hamid Reza

    2017-09-01

    Full Text Available A robust auxiliary wide area damping controller is proposed for a unified power flow controller (UPFC. The mixed H2 / H∞ problem with regional pole placement, resolved by linear matrix inequality (LMI, is applied for controller design. Based on modal analysis, the optimal wide area input signals for the controller are selected. The time delay of input signals, due to electrical distance from the UPFC location is taken into account in the design procedure. The proposed controller is applied to a multi-machine interconnected power system from the IRAN power grid. It is shown that the both transient and dynamic stability are significantly improved despite different disturbances and loading conditions.

  6. Generic dynamic wind turbine models for power system stability analysis: A comprehensive review

    DEFF Research Database (Denmark)

    Honrubia-Escribano, A.; Gómez-Lázaro, E.; Fortmann, J.

    2018-01-01

    In recent years, international working groups, mainly from the International Electrotechnical Commission (IEC) and the Western Electricity Coordinating Council (WECC), have made a major effort to develop generic —also known as simplified or standard— dynamic wind turbine models to be used for power...... system stability analysis. These models are required by power system operators to conduct the planning and operation activities of their networks since the use of detailed manufacturer models is not practical. This paper presents a comprehensive review of the work done in this field, based on the results...... obtained by IEC and WECC working groups in the course of their research, which have motivated the publication of the IEC 61400-27 in February 2015. The final published versions of the generic models developed according to the existing four wind turbine technology types are detailed, highlighting...

  7. Impact of Load Behavior on Transient Stability and Power Transfer Limitations

    DEFF Research Database (Denmark)

    Gordon, Mark

    2009-01-01

    This paper presents utility based load modeling practices and explores the interaction between loads and the power system and the effect of the interaction on transient stability and power transfer limitations. The effect of load composition is investigated at major load centers together with the......This paper presents utility based load modeling practices and explores the interaction between loads and the power system and the effect of the interaction on transient stability and power transfer limitations. The effect of load composition is investigated at major load centers together...... with the impact on rotor angle excursions of large scale generators during the transient and post-transient period. Responses of multi-induction motor stalling are also considered for different fault clearances in the system. Findings of the investigations carried out on the Eastern Australian interconnected...

  8. Ring power balance observing plasma stability constraints

    International Nuclear Information System (INIS)

    Campbell, R.B.; Logan, B.G.

    1982-01-01

    Ring power balance is performed for an E-ring stabilized tandem mirror reactor, taking into account constraints imposed by plasma stability. The two most important criteria are the stability of the core interchange and hot electron interchange modes. The former determines the ring thickness, the latter determines the minimum hot electron temperature; both quantities are important for power balance. The combination of the hot electron interchange constraint and the fact that the barrier density is low places the operating point on the synchrotron dominated branch of power balance. The reference case considered here requires a reasonable 34 MW of heating power deposited in the rings. We also have examined the sensitivity of the required ring power on uncertainties in the numerical coefficients of the stability constraints. We have found that the heating power is strongly affected

  9. Stability analysis of transmission system with high penetration of distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Reza, M.

    2006-12-21

    Nowadays, interest in generating electricity using decentralized generators of relatively small scale ('distributed generation', DG) is increasing. This work deals with the impact of implementing DG on the transmission system transient stability, with the emphasis on a potential transition from a 'vertical power system' to a 'horizontal power system. A problem in power systems is maintaining synchronous operation of all (centralized) synchronous machines. This stability problem associated is called rotor angle stability. In this work, the impact of the DG implementation on this is investigated. The impact of DG levels on the system transient stability when the increasing DG level is followed by a reduction of centralized generators in service resulting in a 'vertical to horizontal' transformation of the power system is also investigated. Furthermore, a stochastic analysis is used to study the transient stability of the power systems. The results show that including the stochastic behavior of DG leads to a more complete and detailed view of the system performance. Finally, the situation when the power system is pushed towards a scenario, where DG penetration reaches a level that covers the total load of the original power system (100% DG level) is investigated. The research performed in this work indicates that from the transmission system stability point of view, if higher DG penetration levels are coming up, sufficient inertia and voltage support must be installed. Furthermore, one should be aware of the fact that the system behaves stochastically, especially with DG. To a certain extent regional balancing of power can be performed by local voltage control.

  10. The electric power engineering handbook power systems

    CERN Document Server

    2012-01-01

    Power Systems, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) covers all aspects of power system protection, dynamics, stability, operation, and control. Under the editorial guidance of L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Andrew Hanson, Pritindra Chowdhuri, Gerry Sheble, and Mark Nelms, this carefully crafted reference includes substantial new and revised contributions from worldwide leaders in the field. This content provides convenient access to overviews and detailed information on a diverse arr

  11. Governor stability simulations of Svartisen power plant verified by the installed monitoring system on site

    International Nuclear Information System (INIS)

    Nielsen, T K; Kjeldsen, M

    2010-01-01

    Many Norwegian hydro power plants have complex lay-out with several reservoirs, broke intakes, surge shafts and even air cushion chambers. There are kilometers of excavated tunnels as well as long tail water systems. The stations are often equipped by multiple of turbines, both in series and parallel. A number of operation modes are therefore possible. Doing transient simulations and simulations of governor stability in the design phase, the problem is to find the worst case scenario regarding these operating modes. Svartisen power plant has been of particular interest these days. The power plant is originally designed for two 350 MW Francis turbines, however, only one turbine was installed. When designed, governor stability was regarded as problematic due to the long penstock. A long penstock will give a too high time constant for the hydraulic inertia. The main problem here is, however, the water hammer frequency that interferes with the governor performance. The frequency is in the same range as the cross frequency. Therefore the governor will react on these water hammer waves, which in its nature is notoriously unstable. The common solution is to build an air cushion and thereby increase the water hammer frequency above the cross frequency. The expenses were, however, deemed too high, and it was necessary to seek for other solutions. A pressure feedback on the governor was introduced in order to have stable operation at least for two turbines. With only one turbine installed, the pressure feedback has not been activated because, based on the simulations, it was regarded unnecessary. Even if the original simulations shows good stability margins when only one turbine is running, there has been some indications that the aggregate has suffered from instability. In 2004 Svartisen Power Plant was equipped with a comprehensive monitoring system. Both the turbine and the generator performance have been observed. This gives valuable information on how the hydropower

  12. Governor stability simulations of Svartisen power plant verified by the installed monitoring system on site

    Science.gov (United States)

    Nielsen, T. K.; Kjeldsen, M.

    2010-08-01

    Many Norwegian hydro power plants have complex lay-out with several reservoirs, broke intakes, surge shafts and even air cushion chambers. There are kilometers of excavated tunnels as well as long tail water systems. The stations are often equipped by multiple of turbines, both in series and parallel. A number of operation modes are therefore possible. Doing transient simulations and simulations of governor stability in the design phase, the problem is to find the worst case scenario regarding these operating modes. Svartisen power plant has been of particular interest these days. The power plant is originally designed for two 350 MW Francis turbines, however, only one turbine was installed. When designed, governor stability was regarded as problematic due to the long penstock. A long penstock will give a too high time constant for the hydraulic inertia. The main problem here is, however, the water hammer frequency that interferes with the governor performance. The frequency is in the same range as the cross frequency. Therefore the governor will react on these water hammer waves, which in its nature is notoriously unstable. The common solution is to build an air cushion and thereby increase the water hammer frequency above the cross frequency. The expenses were, however, deemed too high, and it was necessary to seek for other solutions. A pressure feedback on the governor was introduced in order to have stable operation at least for two turbines. With only one turbine installed, the pressure feedback has not been activated because, based on the simulations, it was regarded unnecessary. Even if the original simulations shows good stability margins when only one turbine is running, there has been some indications that the aggregate has suffered from instability. In 2004 Svartisen Power Plant was equipped with a comprehensive monitoring system. Both the turbine and the generator performance have been observed. This gives valuable information on how the hydropower

  13. Dynamic Voltage Stability Studies using a Modified IEEE 30-Bus System

    Directory of Open Access Journals (Sweden)

    Oluwafemi Emmanuel Oni

    2016-09-01

    Full Text Available Power System stability is an essential study in the planning and operation of an efficient, economic, reliable and secure electric power system because it encompasses all the facet of power systems operations, from planning, to conceptual design stages of the project as well as during the systems operating life span. This paper presents different scenario of power system stability studies on a modified IEEE 30-bus system which is subjected to different faults conditions. A scenario whereby the longest high voltage alternating current (HVAC line is replaced with a high voltage direct current (HVDC line was implemented. The results obtained show that the HVDC line enhances system stability more compared to the contemporary HVAC line. Dynamic analysis using RMS simulation tool was used on DigSILENT PowerFactory.

  14. Stability of a slotted ALOHA system with capture effect

    Science.gov (United States)

    Onozato, Yoshikuni; Liu, Jin; Noguchi, Shoichi

    1989-02-01

    The stability of a slotted ALOHA system with capture effect is investigated under a general communication environment where terminals are divided into two groups (low-power and high-power) and the capture effect is modeled by capture probabilities. An approximate analysis is developed using catastrophe theory, in which the effects of system and user parameters on the stability are characterized by the cusp catastrophe. Particular attention is given to the low-power group, since it must bear the strain under the capture effect. The stability conditions of the two groups are given explicitly by bifurcation sets.

  15. Power System for Intelligent House

    Directory of Open Access Journals (Sweden)

    Michal Jahelka

    2010-01-01

    Full Text Available Power supply of intelligent houses or house phones is possible to do with standard transformer with voltage stabilizer or with intelligent power supply. Standard solution can has as a result of failure fuse blown or fire occurrence. Intelligent power supply switch off power and tests with little current whether short circuit is removed. After it resume system power supply. At the same time it cares of system backup with accumulator, informs control system about short circuit or failure net power supply, or can switch off all system power after command from control system.

  16. Method of effecting fast turbine valving for improvement of power system stability

    International Nuclear Information System (INIS)

    Park, R.H.

    1981-01-01

    As a improved way of effecting fast valving of turbines of power system steam-electric generating units for the purpose of improving the stability of power transmission over transmission circuits to which their generators make connection, when stability is threatened by line faults and certain other stability endangering events, the heretofore employed and/or advocated practice of automatically closing intercept valves at fastest available closing speed in response to a fast valving signal, and thereafter automatically fully reopening them in a matter of seconds, is modified by providing to reopen the valves only partially to and thereafter retain them at a preset partially open position. For best results the process of what can be termed sustained partial reopening is so effected as to result in its completion within a fraction of a second following the peak of the first forward swing of the generator rotor. Control valves may be either held open, or automatically fully or partly closed and thereafter fully opened in a preprogrammed manner, or automatically moved to and thereafter held in a partly closed position, by means of a preprogrammed process of repositioning in which the valves may optionally be first fully or partly closed and thereafter partly reopened. Avoidance of discharge of steam through high pressure safety valves can be had with use of suitably controlled power operated valves that discharge steam to the condenser or to atmosphere. Where there is an intermediate pressure turbine that is supplied with superheated steam, use of sustained partial control valve closure, if employed, is supplemented by provision for reduction of rate of heat release within the steam generator in order to protect the reheater from overheating. As a way to restrict increase of reheat pressure of fossil fuel installations, and to minimize increase in the msr (Moisture separator-reheater) pressure of nuclear units, provision is optionally made of normally closed by-pass v

  17. Resource rents, power, and political stability

    OpenAIRE

    Kjetil Bjorvatn; Mohammad Reza Farzanegan

    2014-01-01

    We study the association between resource rents and political stability, highlighting the importance of the distribution of political power as a mediating factor. We present a simple theoretical model showing that increased rents are likely to be positively associated with the stability of a powerful incumbent while destabilizing a less powerful incumbent. Our empirical analysis confirms this prediction: Using panel data for more than 120 countries from 1984-2009, our results show that rents ...

  18. An optimization of robust SMES with specified structure H∞ controller for power system stabilization considering superconducting magnetic coil size

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai

    2011-01-01

    Even the superconducting magnetic energy storage (SMES) is the smart stabilizing device in electric power systems, the installation cost of SMES is very high. Especially, the superconducting magnetic coil size which is the critical part of SMES, must be well designed. On the contrary, various system operating conditions result in system uncertainties. The power controller of SMES designed without taking such uncertainties into account, may fail to stabilize the system. By considering both coil size and system uncertainties, this paper copes with the optimization of robust SMES controller. No need of exact mathematic equations, the normalized coprime factorization is applied to model system uncertainties. Based on the normalized integral square error index of inter-area rotor angle difference and specified structured H ∞ loop shaping optimization, the robust SMES controller with the smallest coil size, can be achieved by the genetic algorithm. The robustness of the proposed SMES with the smallest coil size can be confirmed by simulation study.

  19. Hybrid algorithm for rotor angle security assessment in power systems

    Directory of Open Access Journals (Sweden)

    D. Prasad Wadduwage

    2015-08-01

    Full Text Available Transient rotor angle stability assessment and oscillatory rotor angle stability assessment subsequent to a contingency are integral components of dynamic security assessment (DSA in power systems. This study proposes a hybrid algorithm to determine whether the post-fault power system is secure due to both transient rotor angle stability and oscillatory rotor angle stability subsequent to a set of known contingencies. The hybrid algorithm first uses a new security measure developed based on the concept of Lyapunov exponents (LEs to determine the transient security of the post-fault power system. Later, the transient secure power swing curves are analysed using an improved Prony algorithm which extracts the dominant oscillatory modes and estimates their damping ratios. The damping ratio is a security measure about the oscillatory security of the post-fault power system subsequent to the contingency. The suitability of the proposed hybrid algorithm for DSA in power systems is illustrated using different contingencies of a 16-generator 68-bus test system and a 50-generator 470-bus test system. The accuracy of the stability conclusions and the acceptable computational burden indicate that the proposed hybrid algorithm is suitable for real-time security assessment with respect to both transient rotor angle stability and oscillatory rotor angle stability under multiple contingencies of the power system.

  20. A study of offshore wind HVDC system stability and control

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hanchao; Sun, Jian [Rensselaer Polytechnic Institute, Troy, NY (United States). Dept. of Electrical, Computer and Systems Engineering

    2011-07-01

    This work is concerned with the stability and control of ac power collection buses in offshore wind farms with high-voltage dc (HVDC) transmission connection to onshore power grid. The focus of the work is high-frequency interactions among the wind turbines, the ac collection bus and the filters, as well as the HVDC rectifier. Both voltage-source converter and line-commutated converter based HVDC systems are considered. To study high-frequency stability, particularly harmonic resonance in the ac bus, small-signal impedance models are developed for the wind inverters and the HVDC rectifier by using harmonic linearization techniques. An impedance-based stability criterion is applied to assess system stability in both positive- and negative-sequence domain. Small-signal stability conditions and requirements are developed from analytical impedance models. Detailed system-level simulation is used to validated the small-signal analysis. The goal of the study is to develop system design and control techniques that minimize the cost of the offshore infrastructure while guaranteeing system stability and power quality. (orig.)

  1. Improvement of Transient Stability in a Hybrid Power Multi-System Using a Designed NIDC (Novel Intelligent Damping Controller

    Directory of Open Access Journals (Sweden)

    Ting-Chia Ou

    2017-04-01

    Full Text Available This paper endeavors to apply a novel intelligent damping controller (NIDC for the static synchronous compensator (STATCOM to reduce the power fluctuations, voltage support and damping in a hybrid power multi-system. In this paper, we discuss the integration of an offshore wind farm (OWF and a seashore wave power farm (SWPF via a high-voltage, alternating current (HVAC electric power transmission line that connects the STATCOM and the 12-bus hybrid power multi-system. The hybrid multi-system consists of a battery energy storage system (BESS and a micro-turbine generation (MTG. The proposed NIDC consists of a designed proportional–integral–derivative (PID linear controller, an adaptive critic network and a proposed functional link-based novel recurrent fuzzy neural network (FLNRFNN. Test results show that the proposed controller can achieve better damping characteristics and effectively stabilize the network under unstable conditions.

  2. Robust Power Management Control for Stand-Alone Hybrid Power Generation System

    International Nuclear Information System (INIS)

    Kamal, Elkhatib; Adouane, Lounis; Aitouche, Abdel; Mohammed, Walaa

    2017-01-01

    This paper presents a new robust fuzzy control of energy management strategy for the stand-alone hybrid power systems. It consists of two levels named centralized fuzzy supervisory control which generates the power references for each decentralized robust fuzzy control. Hybrid power systems comprises: a photovoltaic panel and wind turbine as renewable sources, a micro turbine generator and a battery storage system. The proposed control strategy is able to satisfy the load requirements based on a fuzzy supervisor controller and manage power flows between the different energy sources and the storage unit by respecting the state of charge and the variation of wind speed and irradiance. Centralized controller is designed based on If-Then fuzzy rules to manage and optimize the hybrid power system production by generating the reference power for photovoltaic panel and wind turbine. Decentralized controller is based on the Takagi-Sugeno fuzzy model and permits us to stabilize each photovoltaic panel and wind turbine in presence of disturbances and parametric uncertainties and to optimize the tracking reference which is given by the centralized controller level. The sufficient conditions stability are formulated in the format of linear matrix inequalities using the Lyapunov stability theory. The effectiveness of the proposed Strategy is finally demonstrated through a SAHPS (stand-alone hybrid power systems) to illustrate the effectiveness of the overall proposed method. (paper)

  3. Dynamic State Estimation for Multi-Machine Power System by Unscented Kalman Filter With Enhanced Numerical Stability

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Junjian; Sun, Kai; Wang, Jianhui; Liu, Hui

    2018-03-01

    In this paper, in order to enhance the numerical stability of the unscented Kalman filter (UKF) used for power system dynamic state estimation, a new UKF with guaranteed positive semidifinite estimation error covariance (UKFGPS) is proposed and compared with five existing approaches, including UKFschol, UKF-kappa, UKFmodified, UKF-Delta Q, and the squareroot UKF (SRUKF). These methods and the extended Kalman filter (EKF) are tested by performing dynamic state estimation on WSCC 3-machine 9-bus system and NPCC 48-machine 140-bus system. For WSCC system, all methods obtain good estimates. However, for NPCC system, both EKF and the classic UKF fail. It is found that UKFschol, UKF-kappa, and UKF-Delta Q do not work well in some estimations while UKFGPS works well in most cases. UKFmodified and SRUKF can always work well, indicating their better scalability mainly due to the enhanced numerical stability.

  4. Improving power grid transient stability by plug-in electric vehicles

    International Nuclear Information System (INIS)

    Gajduk, Andrej; Kocarev, Ljupco; Todorovski, Mirko; Kurths, Juergen

    2014-01-01

    Plug-in electric vehicles (PEVs) can serve in discharge mode as distributed energy and power resources operating as vehicle-to-grid (V2G) devices and in charge mode as loads or grid-to-vehicle devices. It has been documented that PEVs serving as V2G systems can offer possible backup for renewable power sources, can provide reactive power support, active power regulation, load balancing, peak load shaving, can reduce utility operating costs and can generate revenue. Here we show that PEVs can even improve power grid transient stability, that is, stability when the power grid is subjected to large disturbances, including bus faults, generator and branch tripping, and sudden large load changes. A control strategy that regulates the power output of a fleet of PEVs based on the speed of generator turbines is proposed and tested on the New England 10-unit 39-bus power system. By regulating the power output of the PEVs we show that (1) speed and voltage fluctuations resulting from large disturbances can be significantly reduced up to five times, and (2) the critical clearing time can be extended by 20–40%. Overall, the PEVs control strategy makes the power grid more robust. (paper)

  5. Stability and control of wind farms in power systems

    DEFF Research Database (Denmark)

    Jauch, Clemens

    is part of the project. The mostextensive modelling work deals with the design of the electrical part of the variable speed turbine and its controls. To simulate realistic grid operation the wind turbine models are connected to an aggregated model of the Nordic power system. For thatpurpose the Nordic...... through transient faults. With these transient fault controllers the wind turbines can stay connected to the grid, such that their generation capacity is sustained, and normal gridoperation can resume, after the fault is cleared. Transient faults in the transmission system often cause power system...... oscillations. To further support the grid, a situation is assumed, where in future, wind turbines will be required to contribute to thedamping of these power system oscillations. Power system oscillations are counteracted with a controlled injection of oscillating active power. With an active-stall turbine...

  6. The conditions for attaining the greatest degree of system stability with strict generator excitation control

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, I.A.; Ekimova, M.M.; Truspekova, G.A.

    1982-01-01

    Expressions are derived for an idealized model of a complex electric power system; these expressions define the greatest level of stability of an electric power system and the optimum combination of stabilization factors with automatic excitation control in a single power system. The possibility of increasing the level of stability of an electric power system with simultaneous strict automatic excitation control of the synychronous generators in several power systems is analyzed.

  7. Stability analysis of a power system made up of an intermittent renewable energy source directly tied to a conventional rotating power generator

    International Nuclear Information System (INIS)

    Coiante, D.

    1997-02-01

    A simple power system made up of a conventional rotating power generator in direct connection to an intermittent renewable energy source (with energy or photovoltaic) is modelled on the base of respective functional schemes. The relative variations of the voltage frequency are calculated as an output to an abrupt variation of intermittent tied power and in function of electro-mechanical parameters of the rotating generator (dumping coefficient and inertial rotor coefficient). The stability conditions and the tolerance allowed on the frequency variations are considered in relation to toad service requires. As a consequence, the maximum intermittent power amount, which can be accepted in direct connection, is obtained. For usual conventional rotating machines, the resulting limit is placed in the range of (12-19)% of nominal capacity of power generator

  8. Thermofluid-neutronic stability of the rotating, fluidized bed, space-power reactor

    International Nuclear Information System (INIS)

    Lee, C.C.; Jones, O.C.; Becker, M.

    1993-01-01

    A rotating fluidized bed nuclear reactor has the potential of being a vary attractive option for ultra-high power space systems, especially for propulsion. Research has already examined fuel bed expansion due to variations in state variables, propellant flow rate, and rotational speed, and has also considered problems related to thermal stress. This paper describes the results of a coupled thermofluid-neutronic analysis where perturbations in fuel bed height caused by maneuvering changes in operating conditions alter power levels due to varying absorption of neutrons which would otherwise leak from the system, mainly through the nozzle. This first analysis was not a detailed stability analysis. Rather, it utilized simplified neutronic methods, and was intended to provide an order-of-magnitude assessment of the stability of the reactor with the intention to determine whether or not stability might be a 'concept killer'. Stability was compared with a fixed-fuel-bed reactor of identical geometry for three different cases comprising a set of small, medium and large sizes/powers from 250 MW to 5 GW. It was found that power fluctuations in the fluidized bed reactor were larger by 100 db or more than expected in a packed bed reactor of the same geometry, but never resulted in power excursions. Margins to unit gain in some cases, however, were sufficiently small that the approximations in this quasi-2-dimensional model may not be sufficiently accurate to preclude significant excursions. (orig.)

  9. System identification on two-phase flow stability

    International Nuclear Information System (INIS)

    Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei

    1996-01-01

    The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system

  10. Influencing Power Flow and Transient Stability by Static Synchronous Series Compensator

    Directory of Open Access Journals (Sweden)

    Md. Imran Azim

    2015-04-01

    Full Text Available In the present world, modern power system networks, being a complicated combination of generators, transmission lines, transformers, circuit breakers and other devices, are more vulnerable to various types of faults causing stability problems. Among these faults, transient fault is believed to be a major disturbance as it causes large damage to a sound system within a certain period of time. Therefore, the protection against transient faults, better known as transient stability control is one of the major considerations for the power system engineers. This paper presents the control approach in the transmission line during transient faults by means of Static Synchronous Series Compensator (SSSC in order to stabilize Single Machine Infinite Bus (SMIB system.  In this paper, SSSC is represented by variable voltage injection associated with the transformer leakage reactance and the voltage source. The comparative results depict that the swing curve of a system increases monotonically after the occurrence of transient faults However, SSSC is effective enough to make it stable after a while.

  11. Studies on the power systems stability; Estudios de estabilidad en sistemas de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Inda Ruiz, Adrian; Calderon Guizar, Jorge Guillermo; Friaga Vargas, Jose Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    One of the everyday problems that the electric power systems (EPS), is related to the dynamic response of these in face of the occurrence of disturbs. The computer tool needed to perform studies of this kind in the current EPS, requires the efficient conjunction of advanced modeling, simulation and programming techniques to make its use practical and useful. In this article are presented the advances achieved by the Power Nets Analysis Department in the development of a digital package for the stability analysis of the electric power systems [Espanol] Uno de los problemas cotidianos que el ingeniero de potencia debe enfrentar tanto en la fase de planeacion como en la de operacion de los sistemas electricos de potencia (SEP) es el relacionado con la respuesta dinamica de estos ante la ocurrencia de disturbios. La herramienta computacional necesaria para realizar estudios de esta naturaleza en los actuales SEP requiere de la conjugacion eficiente de tecnicas avanzadas de modelacion, simulacion y programacion para hacer su empleo practico y util. En este articulo se presentan los avances logrados por el Departamento de Analisis de Redes en el desarrollo de un paquete digital para el analisis de estabilidad en los sistemas electricos de potencia.

  12. Studies on the power systems stability; Estudios de estabilidad en sistemas de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Inda Ruiz, Adrian; Calderon Guizar, Jorge Guillermo; Friaga Vargas, Jose Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    One of the everyday problems that the electric power systems (EPS), is related to the dynamic response of these in face of the occurrence of disturbs. The computer tool needed to perform studies of this kind in the current EPS, requires the efficient conjunction of advanced modeling, simulation and programming techniques to make its use practical and useful. In this article are presented the advances achieved by the Power Nets Analysis Department in the development of a digital package for the stability analysis of the electric power systems [Espanol] Uno de los problemas cotidianos que el ingeniero de potencia debe enfrentar tanto en la fase de planeacion como en la de operacion de los sistemas electricos de potencia (SEP) es el relacionado con la respuesta dinamica de estos ante la ocurrencia de disturbios. La herramienta computacional necesaria para realizar estudios de esta naturaleza en los actuales SEP requiere de la conjugacion eficiente de tecnicas avanzadas de modelacion, simulacion y programacion para hacer su empleo practico y util. En este articulo se presentan los avances logrados por el Departamento de Analisis de Redes en el desarrollo de un paquete digital para el analisis de estabilidad en los sistemas electricos de potencia.

  13. Smart power systems and renewable energy system integration

    CERN Document Server

    2016-01-01

    This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage. .

  14. Power fluctuation reduction methodology for the grid-connected renewable power systems

    Science.gov (United States)

    Aula, Fadhil T.; Lee, Samuel C.

    2013-04-01

    This paper presents a new methodology for eliminating the influence of the power fluctuations of the renewable power systems. The renewable energy, which is to be considered an uncertain and uncontrollable resource, can only provide irregular electrical power to the power grid. This irregularity creates fluctuations of the generated power from the renewable power systems. These fluctuations cause instability to the power system and influence the operation of conventional power plants. Overall, the power system is vulnerable to collapse if necessary actions are not taken to reduce the impact of these fluctuations. This methodology aims at reducing these fluctuations and makes the generated power capability for covering the power consumption. This requires a prediction tool for estimating the generated power in advance to provide the range and the time of occurrence of the fluctuations. Since most of the renewable energies are weather based, as a result a weather forecast technique will be used for predicting the generated power. The reduction of the fluctuation also requires stabilizing facilities to maintain the output power at a desired level. In this study, a wind farm and a photovoltaic array as renewable power systems and a pumped-storage and batteries as stabilizing facilities are used, since they are best suitable for compensating the fluctuations of these types of power suppliers. As an illustrative example, a model of wind and photovoltaic power systems with battery energy and pumped hydro storage facilities for power fluctuation reduction is included, and its power fluctuation reduction is verified through simulation.

  15. Use of power system stabilizers for damping inter-area oscillations in the south systems of the Mexican electrical grid

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos B., R.; Calderon G., J.G.; Sarmiento U., H. [Instituto de Investigaciones Electricas, IIE,Cuernavaca, Mor. 62580 (Mexico); Olguin S., D. [Instituto Politecnico Nacional, Mexico D.F. 07300 (Mexico); Messina, A.R. [Graduate Program in Electrical Engineering, Cinvestav, P.O. Box 31-438, Plaza La Luna, Guadalajara, Jal. 44550 (Mexico)

    2006-01-15

    This paper documents research conducted to investigate the use and tuning of power system stabilizers (PSSs) to improve small-signal dynamic performance of the Mexican interconnected system (MIS). The analysis focuses on the control of a critical inter-area mode associated with the interaction between the southeastern and western regions of the system and a critical local mode. Study results include the determination of critical system modes more controllable by existing PSSs and the use of supplementary control actions to damp low-frequency inter-area modes of oscillation. Results for both, small and large perturbations are presented to illustrate the placement and tuning of PSSs at several appropriate locations throughout the system. (author)

  16. A Hierarchical Method for Transient Stability Prediction of Power Systems Using the Confidence of a SVM-Based Ensemble Classifier

    Directory of Open Access Journals (Sweden)

    Yanzhen Zhou

    2016-09-01

    Full Text Available Machine learning techniques have been widely used in transient stability prediction of power systems. When using the post-fault dynamic responses, it is difficult to draw a definite conclusion about how long the duration of response data used should be in order to balance the accuracy and speed. Besides, previous studies have the problem of lacking consideration for the confidence level. To solve these problems, a hierarchical method for transient stability prediction based on the confidence of ensemble classifier using multiple support vector machines (SVMs is proposed. Firstly, multiple datasets are generated by bootstrap sampling, then features are randomly picked up to compress the datasets. Secondly, the confidence indices are defined and multiple SVMs are built based on these generated datasets. By synthesizing the probabilistic outputs of multiple SVMs, the prediction results and confidence of the ensemble classifier will be obtained. Finally, different ensemble classifiers with different response times are built to construct different layers of the proposed hierarchical scheme. The simulation results show that the proposed hierarchical method can balance the accuracy and rapidity of the transient stability prediction. Moreover, the hierarchical method can reduce the misjudgments of unstable instances and cooperate with the time domain simulation to insure the security and stability of power systems.

  17. Stabilized power constant alimentation

    International Nuclear Information System (INIS)

    Roussel, L.

    1968-06-01

    The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [fr

  18. Power distribution effects on boiling water reactor stability

    International Nuclear Information System (INIS)

    Damiano, B.; March-Leuba, J.

    1989-01-01

    The work presented in this paper deals with the effects of spatial power distributions on the stability of boiling water reactors (BWRs). It is shown that a conservative power distribution exists for which the stability is minimal. These results are relevant because they imply that bounding stability calculations are possible and, thus, a worst-possible scenario may be defined for a particular BWR geometry. These bounding calculations may, then, be used to determine the maximum expected limit-cycle peak powers

  19. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...... affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated...

  20. A digital intensity stabilization system for HeNe laser

    Science.gov (United States)

    Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun

    2012-02-01

    A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.

  1. Multi-Objective Differential Evolution for Voltage Security Constrained Optimal Power Flow in Deregulated Power Systems

    Science.gov (United States)

    Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar

    2013-11-01

    Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal

  2. Advanced controls for stability assessment of solar dynamics space power generation

    Science.gov (United States)

    Momoh, James A.; Anwah, Nnamdi A.

    1995-01-01

    In support of the power requirements for the Space Station Alpha (SSA), a joint program by the U.S. and Russia for a permanently manned space station to be launched into orbit by 1998, a robust control scheme is needed to assure the stability of the rotating machines that will be integrated into the power subsystem. A framework design and systems studies for modeling and analysis is presented. It employs classical d-q axes machine model with voltage/frequency dependent loads. To guarantee that design requirements and necessary trade studies are done, a functional analysis tool CORE is used for the study. This provides us with different control options for stability assessment. Initial studies and recommendations using advanced simulation tools are also presented. The benefits of the stability/control scheme for evaluating future designs and power management are discussed.

  3. Application of superconducting magnet energy storage to improve power system dynamic performance

    International Nuclear Information System (INIS)

    Mitani, Y.; Tsuji, K.; Murakami, Y.

    1988-01-01

    The application of Superconducting Magnet Energy Storage (SMES) to the stabilization of a power system with long distance bulk power transmission lines which has the problem of poorly damped power oscillations, is presented. Control schemes for stabilization using SMES which is capable of controlling active and reactive power simultaneously in four quadrant ranges, is proposed. The effective locations and the necessary capacities of SMES for power system stabilizing control are discussed in detail. Results of numerical analysis and experiments in an artificial power transmission system demonstrate the significant effect of the control by SMES on the improvement of power system oscillatory performance

  4. Dynamic Influences of Wind Power on The Power System

    DEFF Research Database (Denmark)

    Rosas, Pedro Andrè Carvalho

    2004-01-01

    between different wind turbines.Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suit-able to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power systemquality and stability...... integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting largeamount of wind power showed very small voltage variations. The frequency variations analysed from the Nordel showed also small varia...

  5. Integrated analysis software for bulk power system stability

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Nagao, T; Takahashi, K [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1994-12-31

    This paper presents Central Research Inst.of Electric Power Industry - CRIEPI`s - own developed three softwares for bulk power network analysis and the user support system which arranges tremendous data necessary for these softwares with easy and high reliability. (author) 3 refs., 7 figs., 2 tabs.

  6. A New Framework for Reactive Power Market Considering Power System Security

    Directory of Open Access Journals (Sweden)

    A. Rabiee

    2009-09-01

    Full Text Available This paper presents a new framework for the day-ahead reactive power market based on the uniform auction price. Voltage stability and security have been considered in the proposed framework. Total Payment Function (TPF is suggested as the objective function of the Optimal Power Flow (OPF used to clear the reactive power market. Overload, voltage drop and voltage stability margin (VSM are included in the constraints of the OPF. Another advantage of the proposed method is the exclusion of Lost Opportunity Cost (LOC concerns from the reactive power market. The effectiveness of the proposed reactive power market is studied based on the CIGRÉ-32 bus test system.

  7. Microprocessor system for temperature regulation and stabilization

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Rodionov, K.G.

    1989-01-01

    Microprocessor based system for temperature regulation and stabilization of an operation external object is described. The system has the direct current amplifier working according to modulator-demodulator principle. The overal gain is 100, 1000, 2000. The maximum output signal is ±10 V. The power amplifier is a thyristor one and its line voltage is 220 V, 50 Hz. The output power is 0-2 kVA. The microcontroller has a remote display terminal. Data input is 8 and data output is one. Input and output voltage is ±(0-10) V. The preselection time for stabilization is within 1 s - 18 h. The program algorithm is given. 5 figs.; 1 tab

  8. Impact of Wind Power Plants on Voltage Control of Power System

    DEFF Research Database (Denmark)

    Sarkar, Moumita; Altin, Müfit; Hansen, Anca Daniela

    High penetration of renewable energy sources poses numerous challenges on stability and security of power systems. Wind power plants (WPPs) of considerable size when connected to a weak grid by long transmission line results in low short circuit ratio at the point of connection. This may result...... control, during transient voltage dips. Steady-state analysis is performed for stressed system conditions. Results are validated through simulation in a detailed power system model....

  9. Frequency Stability Improvement of Low Inertia Systems Using Synchronous Condensers

    DEFF Research Database (Denmark)

    Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde

    2016-01-01

    of converter interfaced components (wind turbine, HVDC, and Photovoltaic) may have negative effects on the stability of the power system. These components do not have enough inertia response to control frequency excursion, so the power grid can depend on few synchronous machines for frequency regulation...... and reduce the system inertia. Consequently, the frequency stability of the system will be easily jeopardized. To address these issues, the paper studies frequency characteristics of future Western Danish renewable-based system that uses a majority of wind turbine generators. Different scenarios of wind...

  10. An improved direct feedback linearization technique for transient stability enhancement and voltage regulation of power generators

    Energy Technology Data Exchange (ETDEWEB)

    Kenne, Godpromesse [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun, Cameroun; Goma, Raphael; Lamnabhi-Lagarrigue, Francoise [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere [Departement GEII, Universite Paris XIII, IUT Villetaneuse, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Arzande, Amir; Vannier, Jean Claude [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)

    2010-09-15

    In this paper, a simple improved direct feedback linearization design method for transient stability and voltage regulation of power systems is discussed. Starting with the classical direct feedback linearization technique currently applied to power systems, an adaptive nonlinear excitation control of synchronous generators is proposed, which is new and effective for engineering. The power angle and mechanical power input are not assumed to be available. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of angular speed, active electric power and generator terminal voltage. Experimental results of a practical power system show that fast response, robustness, damping, steady-state and transient stability as well as voltage regulation are all achieved satisfactorily. (author)

  11. Enhancement of small signal stability of a DFIG-based wind power ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... logic controllers for enhancing the small signal stability of DFIG-based wind integrated power system. ... state space model, eigenvalue analysis, fuzzy logic based tuning circuits ...

  12. Power stabilized CO2 gas transport laser

    International Nuclear Information System (INIS)

    Foster, J.D.; Kirk, R.F.; Moreno, F.E.; Ahmed, S.A.

    1975-01-01

    The output power of a high power (1 kW or more) CO 2 gas transport laser is stabilized by flowing the gas mixture over copper plated baffles in the gas channel during operation of the laser. Several other metals may be used instead of copper, for example, nickel, manganese, palladium, platinum, silver and gold. The presence of copper in the laser gas circuit stabilizes output power by what is believed to be a compensation of the chemical changes in the gas due to the cracking action of the electrical discharge which has the effect of diminishing the capactiy of the carbon dioxide gas mixture to maintain the rated power output of the laser. (U.S.)

  13. Methods for improving power system security by certifying dynamic stability in island operation

    Energy Technology Data Exchange (ETDEWEB)

    Granfors, S.; Krantz, N. [Solvina, Goteborg (Sweden)

    2007-07-01

    In response to concerns regarding the vulnerability of power systems around the world to major blackouts, a study was conducted to test island operation capability at power plants. Island operation refers to cases where one or more generators are connected to a limited power grid where there is no external voltage or frequency reference. In island operation, each generator is large enough to have a significant impact on the frequency and voltage in the grid. The ability to operate an isolated island grid can be beneficial for industries or hospitals, as well as for different rural areas. This study identified control parameters and evaluated power plant processes through step responses and frequency analysis. A hardware-in-the-loop (HWIL) simulation technique was proposed for island operation/power restoration testing. The proposed method made it possible to perform safe field studies of power stations that were synchronized to the main grid. More than 40 frequency control tests were conducted on different kinds of power plants in Sweden during normal operation. Most errors were found to be caused by improper operation and unstable conditions. Nearly all machines were stabilized after tuning. It was shown that newly built, identically designed and tuned turbines behave differently due to individual components. This paper addressed issues such as mechanical backlash, unsatisfying calibration of measuring equipment and improper tuning of controllers. In order to tune and optimize frequency control the choice of control algorithm is critical. Several different implementations were used during the tests, but the most successful was based on a separate control mode for island operation including gate-opening feedback for calculating droop. 4 refs., 8 figs.

  14. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use - Demonstrative research on photovoltaic power generation system (Research on multi-hybrid photovoltaic power generation system); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden system no jissho kenkyu (taiyoko hatsuden multi hybrid system no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A multi-hybrid system integrating photovoltaic and wind power generation systems with the existing diesel engine power generation system was assumed for installation in power systems in islands. System analyzing simulation and economic performance analyses were performed to consider system configurations suitable for islands from the viewpoints of system stability and economic performance. The work was progressed by dividing the subject into (1) research on the system configurations, and (2) studies on the economic performance. In performing either work, the power demand was classified as large (in Miyako Island), medium (in Kume Island) and small (in Tarama Island), and the introduction years into 1997, 2000, and 2005. In Item (1), the system parameter specifications were put into order, and the system analyzing simulation was performed, wherein it was verified that the system will be stabilized by introducing a system stabilizing equipment (batteries and an inverter) and by limiting the output from the wind power generation. In Item (2), it was made clear that the power generation cost is equivalent to or lower than the present cost, making reduction in fuel consumption possible. It was also disclosed that the introduction is most effective in small islands, and drop in the power generation amount due to limiting the output from the wind power generation is small. (NEDO)

  15. Analysis of power system collapse risk

    International Nuclear Information System (INIS)

    Eleschova, Z.; Belan, A.; Cintula, B.; Smitkova, M.

    2012-01-01

    In this paper are analysed the initialization events with considering different scenarios and their impact on the power system transient stability. As an initialization event is considered a short circuit at various places of power line. In each scenario are considered protection failures (backup protection), circuit-breaker failures (breaker failure relay activation). The individual states are analysed and the power system collapse risk assessed based on the simulation experiments results (Authors)

  16. Damping of Low Frequency Oscillation in Power System using Robust Control of Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Lee, Jung Pil; Kim, Han Gun

    2012-01-01

    In this paper, the robust superconductor flywheel energy storage system(SFESS) controller using H control theory was designed to damp low frequency oscillation of power system. The main advantage of the controller is that uncertainties of power system can be included at the stage of controller design. Both disturbance attenuation and robust stability for the power system were treated simultaneously by using mixed sensitivity problem. The robust stability and the performance for uncertainties of power system were represented by frequency weighted transfer function. To verify control performance of proposed SFESS controller using control, the closed loop eigenvalue and the damping ratio in dominant oscillation mode of power system were analyzed and nonlinear simulation for one-machine infinite bus system was performed under disturbance for various operating conditions. The results showed that the proposed SFESS controller was more robust than conventional power system stabilizer (PSS).

  17. Optimal pole shifting controller for interconnected power system

    International Nuclear Information System (INIS)

    Yousef, Ali M.; Kassem, Ahmed M.

    2011-01-01

    Research highlights: → Mathematical model represents a power system which consists of synchronous machine connected to infinite bus through transmission line. → Power system stabilizer was designed based on optimal pole shifting controller. → The system performances was tested through load disturbances at different operating conditions. → The system performance with the proposed optimal pole shifting controller is compared with the conventional pole placement controller. → The digital simulation results indicated that the proposed controller has a superior performance. -- Abstract: Power system stabilizer based on optimal pole shifting is proposed. An approach for shifting the real parts of the open-loop poles to any desired positions while preserving the imaginary parts is presented. In each step of this approach, it is required to solve a first-order or a second-order linear matrix Lyapunov equation for shifting one real pole or two complex conjugate poles, respectively. This presented method yields a solution, which is optimal with respect to a quadratic performance index. The attractive feature of this method is that it enables solutions of the complex problem to be easily found without solving any non-linear algebraic Riccati equation. The present power system stabilizer is based on Riccati equation approach. The control law depends on finding the feedback gain matrix, and then the control signal is synthesized by multiplying the state variables of the power system with determined gain matrix. The gain matrix is calculated one time only, and it works over wide range of operating conditions. To validate the power of the proposed PSS, a linearized model of a simple power system consisted of a single synchronous machine connected to infinite bus bar through transmission line is simulated. The studied power system is subjected to various operating points and power system parameters changes.

  18. Optimal pole shifting controller for interconnected power system

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, Ali M., E-mail: drali_yousef@yahoo.co [Electrical Eng. Dept., Faculty of Engineering, Assiut University (Egypt); Kassem, Ahmed M., E-mail: kassem_ahmed53@hotmail.co [Control Technology Dep., Industrial Education College, Beni-Suef University (Egypt)

    2011-05-15

    Research highlights: {yields} Mathematical model represents a power system which consists of synchronous machine connected to infinite bus through transmission line. {yields} Power system stabilizer was designed based on optimal pole shifting controller. {yields} The system performances was tested through load disturbances at different operating conditions. {yields} The system performance with the proposed optimal pole shifting controller is compared with the conventional pole placement controller. {yields} The digital simulation results indicated that the proposed controller has a superior performance. -- Abstract: Power system stabilizer based on optimal pole shifting is proposed. An approach for shifting the real parts of the open-loop poles to any desired positions while preserving the imaginary parts is presented. In each step of this approach, it is required to solve a first-order or a second-order linear matrix Lyapunov equation for shifting one real pole or two complex conjugate poles, respectively. This presented method yields a solution, which is optimal with respect to a quadratic performance index. The attractive feature of this method is that it enables solutions of the complex problem to be easily found without solving any non-linear algebraic Riccati equation. The present power system stabilizer is based on Riccati equation approach. The control law depends on finding the feedback gain matrix, and then the control signal is synthesized by multiplying the state variables of the power system with determined gain matrix. The gain matrix is calculated one time only, and it works over wide range of operating conditions. To validate the power of the proposed PSS, a linearized model of a simple power system consisted of a single synchronous machine connected to infinite bus bar through transmission line is simulated. The studied power system is subjected to various operating points and power system parameters changes.

  19. Application of electrolyzer system to enhance frequency stabilization effect of microturbine in a microgrid system

    Energy Technology Data Exchange (ETDEWEB)

    Vachirasricirikul, Sitthidet [Department of Electrical Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Ngamroo, Issarachai; Kaitwanidvilai, Somyot [Center of Excellence for Innovative Energy Systems, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2009-09-15

    It is well known that the power output of microturbine can be controlled to compensate for load change and alleviate the system frequency fluctuations. Nevertheless, the microturbine may not adequately compensate rapid load change due to its slow dynamic response. Moreover, when the intermittent power generations from wind power and photovoltaic are integrated into the system, they may cause severe frequency fluctuation. In order to study the fast dynamic response, this paper applies electrolyzer system to absorb these power fluctuations and enhance the frequency control effect of microturbine in the microgrid system. The robust coordinated controller of electrolyzer and microturbine for frequency stabilization is designed based on a fixed-structure H{sub {infinity}} loop shaping control. Simulation results exhibit the robustness and stabilizing effects of the proposed coordinated electrolyzer and microturbine controllers against system parameters variation and various operating conditions. (author)

  20. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  1. Modeling and analysis of harmonic resonance in a power electronics based AC power system

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2013-01-01

    The dynamic interactions among the interconnected power converters may bring in harmonic resonance in a power electronics based power system. This paper addresses this issue in a power system dominated by multiple current- and voltage-controlled inverters with LCL- and LC-filters. The impedance...... stability criterion. To validate the theoretical analysis, the time domain simulations and experimental tests on a three-inverter-based system are presented....

  2. Analysis and damping control of power system low-frequency oscillations

    CERN Document Server

    Wang, Haifeng

    2016-01-01

    This book presents the research and development results on power systems oscillations in three categories of analytical methods. First is damping torque analysis which was proposed in 1960’s, further developed between 1980-1990, and widely used in industry. Second is modal analysis which developed between the 1980’s and 1990’s as the most powerful method. Finally the linearized equal-area criterion analysis that is proposed and developed recently. The book covers three main types of controllers: Power System Stabilizer (PSS), FACTS (Flexible AC Transmission Systems) stabilizer, and ESS (Energy Storage Systems) stabilizer. The book provides a systematic and detailed introduction on the subject as the reference for industry applications and academic research.

  3. Designing control of a power system

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, A.; Nemeth, A.

    1980-01-01

    With the development of Hungary's electric power system (EES) the problems of the EROTERV Institute in designing mode regulation systems grew. These systems determine the balance between the production and demand for electric power, which supports not only the maintenance of the frequency and level of voltage in the electrical grid, but also determines the stability of the operation of the electric power system as a whole. A review is cited of the design solutions to control systems in a chronological order. Certain characteristic problems in contemporary control of operational modes of the electric power system are examined and their the trends in their future improvement are determined. The structural layout of mode control systems are cited.

  4. Coordinated Control of Multiterminal DC Grid Power Injections for Improved Rotor-Angle Stability Based on Lyapunov Theory

    DEFF Research Database (Denmark)

    Eriksson, Robert

    2014-01-01

    The stability of an interconnected ac/dc system is affected by disturbances occurring in the system. Disturbances, such as three-phase faults, may jeopardize the rotor-angle stability and, thus, the generators fall out of synchronism. The possibility of fast change of the injected powers...... by the multiterminal dc grid can, by proper control action, enhance this stability. This paper proposes a new time optimal control strategy for the injected power of multiterminal dc grids to enhance the rotor-angle stability. The controller is time optimal, since it reduces the impact of a disturbance as fast...

  5. Interplay Between Energy-Market Dynamics and Physical Stability of a Smart Power Grid

    Science.gov (United States)

    Picozzi, Sergio; Mammoli, Andrea; Sorrentino, Francesco

    2013-03-01

    A smart power grid is being envisioned for the future which, among other features, should enable users to play the dual role of consumers as well as producers and traders of energy, thanks to emerging renewable energy production and energy storage technologies. As a complex dynamical system, any power grid is subject to physical instabilities. With existing grids, such instabilities tend to be caused by natural disasters, human errors, or weather-related peaks in demand. In this work we analyze the impact, upon the stability of a smart grid, of the energy-market dynamics arising from users' ability to buy from and sell energy to other users. The stability analysis of the resulting dynamical system is performed assuming different proposed models for this market of the future, and the corresponding stability regions in parameter space are identified. We test our theoretical findings by comparing them with data collected from some existing prototype systems.

  6. Real-time stability monitoring method for boiling water reactor nuclear power plants

    International Nuclear Information System (INIS)

    Fukunishi, K.; Suzuki, S.

    1987-01-01

    A method for real-time stability monitoring is developed for supervising the steady-state operation of a boiling water reactor core. The decay ratio of the reactor power fluctuation is determined by measuring only the output neutron noise. The concept of an inverse system is introduced to identify the dynamic characteristics of the reactor core. The adoption of an adaptive digital filter is useful in real-time identification. A feasibility test that used measured output noise as an indication of reactor power suggests that this method is useful in a real-time stability monitoring system. Using this method, the tedious and difficult work for modeling reactor core dynamics can be reduced. The method employs a simple algorithm that eliminates the need for stochastic computation, thus making the method suitable for real-time computation with a simple microprocessor. In addition, there is no need to disturb the reactor core during operation. Real-time stability monitoring using the proposed algorithm may allow operation under less stable margins

  7. ANALYSIS OF MONTE CARLO SIMULATION SAMPLING TECHNIQUES ON SMALL SIGNAL STABILITY OF WIND GENERATOR- CONNECTED POWER SYSTEM

    Directory of Open Access Journals (Sweden)

    TEMITOPE RAPHAEL AYODELE

    2016-04-01

    Full Text Available Monte Carlo simulation using Simple Random Sampling (SRS technique is popularly known for its ability to handle complex uncertainty problems. However, to produce a reasonable result, it requires huge sample size. This makes it to be computationally expensive, time consuming and unfit for online power system applications. In this article, the performance of Latin Hypercube Sampling (LHS technique is explored and compared with SRS in term of accuracy, robustness and speed for small signal stability application in a wind generator-connected power system. The analysis is performed using probabilistic techniques via eigenvalue analysis on two standard networks (Single Machine Infinite Bus and IEEE 16–machine 68 bus test system. The accuracy of the two sampling techniques is determined by comparing their different sample sizes with the IDEAL (conventional. The robustness is determined based on a significant variance reduction when the experiment is repeated 100 times with different sample sizes using the two sampling techniques in turn. Some of the results show that sample sizes generated from LHS for small signal stability application produces the same result as that of the IDEAL values starting from 100 sample size. This shows that about 100 sample size of random variable generated using LHS method is good enough to produce reasonable results for practical purpose in small signal stability application. It is also revealed that LHS has the least variance when the experiment is repeated 100 times compared to SRS techniques. This signifies the robustness of LHS over that of SRS techniques. 100 sample size of LHS produces the same result as that of the conventional method consisting of 50000 sample size. The reduced sample size required by LHS gives it computational speed advantage (about six times over the conventional method.

  8. Voltage Stability Bifurcation Analysis for AC/DC Systems with VSC-HVDC

    Directory of Open Access Journals (Sweden)

    Yanfang Wei

    2013-01-01

    Full Text Available A voltage stability bifurcation analysis approach for modeling AC/DC systems with VSC-HVDC is presented. The steady power model and control modes of VSC-HVDC are briefly presented firstly. Based on the steady model of VSC-HVDC, a new improved sequential iterative power flow algorithm is proposed. Then, by use of continuation power flow algorithm with the new sequential method, the voltage stability bifurcation of the system is discussed. The trace of the P-V curves and the computation of the saddle node bifurcation point of the system can be obtained. At last, the modified IEEE test systems are adopted to illustrate the effectiveness of the proposed method.

  9. Small-signal stability analysis for two-area interconnected power system with load frequency controller in coordination with FACTS and energy storage device

    Directory of Open Access Journals (Sweden)

    Ravi Shankar

    2016-06-01

    Full Text Available This paper deals with the modelling and small signal stability analysis for the two areas interconnected power system using a load frequency controller. The eigenvalues and the participation factor analysis are used to examine the small signal stability and contribution of different states in a particular eigenvalue of the system, respectively. A load frequency controller is designed to stabilize the frequency deviations which occur due to the small perturbation in the system. In this paper, the proposed control scheme consists of an integral controller in coordination with the Redox Flow Energy Storage System (RFESS and the Static Synchronous Series Compensator (SSSC. The dynamic responses of the overall system have been improved by the proposed controller, which is also verified with the help of eigenvalue and participation factor analysis. This analysis shows that overall system oscillation has been reduced through a proposed controller.

  10. Nonlinear power flow feedback control for improved stability and performance of airfoil sections

    Science.gov (United States)

    Wilson, David G.; Robinett, III, Rush D.

    2013-09-03

    A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.

  11. APSCOM - 97. Fourth international conference on advances in power system control, operation and management. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The sessions covered are: FALTS devices; intelligent computing advances; protection; voltage security; local forecasting; modelling techniques; security applications; distribution; alternative generation and control; power system analysis; transient stability; substation equipment; genetic algorithm application; a.c. drives; dynamic stability; power flow; new techniques; open access; power developments in China; system stability; protection techniques and devices; harmonics; monitoring and simulation; security assessment; computational techniques; generating costing and control; power control; operation experiences; machines and traction; electrical installations; Hong Kong power systems; power equipment and modelling; control algorithms and operations; and power systems in buildings.

  12. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    . As an example, the latest published grid codes stress the ability of distributed generators, especially wind turbines, to stay connected during short grid disturbances and in addition to provide active/reactive power control at the point of common coupling. Based on the above facts, the need for improving...... reported in some countries creating concerns about power system stability. This leads to a continuous evolution of grid interconnection requirements towards a better controllability of generated power and an enhanced contribution of distributed power generation systems to power system stability...... and adding more features to the control of distributed power generation systems (DPGS) arises. As a consequence, this thesis focuses on grid monitoring methods and possible approaches in control in order to obtain a more reliable and  exible power generation system during normal and faulty grid conditions...

  13. A unifying energy-based approach to stability of power grids with market dynamics

    NARCIS (Netherlands)

    Stegink, Tjerk; De Persis, Claudio; van der Schaft, Arjan

    2017-01-01

    In this paper a unifying energy-based approach is provided to the modeling and stability analysis of power systems coupled with market dynamics. We consider a standard model of the power network with a third-order model for the synchronous generators involving voltage dynamics. By applying the

  14. HVDC transmission power conversion applications in power systems

    CERN Document Server

    Kim, Chan-Ki; Jang, Gil-Soo; Lim, Seong-Joo; Lee, Seok-Jin

    2009-01-01

    HVDC is a critical solution to several major problems encountered when trying to maintain systemic links and quality in large-scale renewable energy environments. HDVC can resolve a number of issues, including voltage stability of AC power networks, reducing fault current, and optimal management of electric power, ensuring the technology will play an increasingly important role in the electric power industry. To address the pressing need for an up-to-date and comprehensive treatment of the subject, Kim, Sood, Jang, Lim and Lee have collaborated to produce this key text and reference.  Combin

  15. A Simulation of Energy Storage System for Improving the Power System Stability with Grid-Connected PV using MCA Analysis and LabVIEW Tool

    Directory of Open Access Journals (Sweden)

    Jindrich Stuchly

    2015-01-01

    Full Text Available The large-scale penetration of distributed, Renewable power plants require transfers of large amounts of energy. This, in turn, puts a high strain on the energy delivery infrastructure. In particular, photovoltaic power plants supply energy with high intermittency, possibly affecting the stability of the grid by changing the voltage at the plant connection point. In this contribution, we summarize the main negative effects of selected and real-operated grid connected photovoltaic plant. Thereafter a review of suitable Energy storage systems to mitigate the negative effects has been carried out, compared and evaluated using Multi-criterion analysis. Based on this analysis, data collected at the plant and the grid, are used to design the energy storage systems to support connection of the plant to the grid. The cooperation of these systems is then analysed and evaluated using simulation tools created in LabVIEW for this purpose. The simulation results demonstrate the capability of energy storage system solutions to significantly reduce the negative feedback effects of Photovoltaic Power Plan to the low voltage grid.

  16. Power oscillation suppression by robust SMES in power system with large wind power penetration

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai; Cuk Supriyadi, A.N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions

  17. Power oscillation suppression by robust SMES in power system with large wind power penetration

    Science.gov (United States)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  18. Temperature Stabilized Characterization of High Voltage Power Supplies

    CERN Document Server

    Krarup, Ole

    2017-01-01

    High precision measurements of the masses of nuclear ions in the ISOLTRAP experiment relies on an MR-ToF. A major source of noise and drift is the instability of the high voltage power supplies employed. Electrical noise and temperature changes can broaden peaks in time-of-flight spectra and shift the position of peaks between runs. In this report we investigate how the noise and drift of high-voltage power supplies can be characterized. Results indicate that analog power supplies generally have better relative stability than digitally controlled ones, and that the high temperature coefficients of all power supplies merit efforts to stabilize them.

  19. Optimizing real power loss and voltage stability limit of a large transmission network using firefly algorithm

    Directory of Open Access Journals (Sweden)

    P. Balachennaiah

    2016-06-01

    Full Text Available This paper proposes a Firefly algorithm based technique to optimize the control variables for simultaneous optimization of real power loss and voltage stability limit of the transmission system. Mathematically, this issue can be formulated as nonlinear equality and inequality constrained optimization problem with an objective function integrating both real power loss and voltage stability limit. Transformers taps, unified power flow controller and its parameters have been included as control variables in the problem formulation. The effectiveness of the proposed algorithm has been tested on New England 39-bus system. Simulation results obtained with the proposed algorithm are compared with the real coded genetic algorithm for single objective of real power loss minimization and multi-objective of real power loss minimization and voltage stability limit maximization. Also, a classical optimization method known as interior point successive linear programming technique is considered here to compare the results of firefly algorithm for single objective of real power loss minimization. Simulation results confirm the potentiality of the proposed algorithm in solving optimization problems.

  20. High stabilized power sources for bending and quadrupole magnets of TRISTAN project

    International Nuclear Information System (INIS)

    Kumagai, Noritaka; Ogawa, Shin-ichi; Koseki, Shoichiro; Nagasaka, Saburo.

    1984-01-01

    In the power source exciting the electro-magnets for the electron ring of TRISTAN project being advanced in the National Laboratory for High Energy Physics, the performance as strict as 10 -4 is required for its long hour stability and pulsating rate of DC output current in order to maintain beam stably. For satisfying such specification, the structure of power source using a high accuracy current detector, an active filter and so on was adopted. In order to verify the performance of this power source, the trial manufacture was carried out independently, and the test combining with actual magnets was performed. As the results, it was confirmed that the power source had the sufficient performance about its output stability, pulsating rate, current-following property and so on. At present, the manufacture of 80 actual power sources is in progress. In this paper, the power source system and the results of performance test of the power source made for trial are reported. The power sources are divide into B power sources for exciting deflecting electro-magnets and Q power sources for exciting quadrupole electro-magnets. (Kako, I.)

  1. Transient stability enhancement of modern power grid using predictive Wide-Area Monitoring and Control

    Science.gov (United States)

    Yousefian, Reza

    This dissertation presents a real-time Wide-Area Control (WAC) designed based on artificial intelligence for large scale modern power systems transient stability enhancement. The WAC using the measurements available from Phasor Measurement Units (PMUs) at generator buses, monitors the global oscillations in the system and optimally augments the local excitation system of the synchronous generators. The complexity of the power system stability problem along with uncertainties and nonlinearities makes the conventional modeling non-practical or inaccurate. In this work Reinforcement Learning (RL) algorithm on the benchmark of Neural Networks (NNs) is used to map the nonlinearities of the system in real-time. This method different from both the centralized and the decentralized control schemes, employs a number of semi-autonomous agents to collaborate with each other to perform optimal control theory well-suited for WAC applications. Also, to handle the delays in Wide-Area Monitoring (WAM) and adapt the RL toward the robust control design, Temporal Difference (TD) is proposed as a solver for RL problem or optimal cost function. However, the main drawback of such WAC design is that it is challenging to determine if an offline trained network is valid to assess the stability of the power system once the system is evolved to a different operating state or network topology. In order to address the generality issue of NNs, a value priority scheme is proposed in this work to design a hybrid linear and nonlinear controllers. The algorithm so-called supervised RL is based on mixture of experts, where it is initialized by linear controller and as the performance and identification of the RL controller improves in real-time switches to the other controller. This work also focuses on transient stability and develops Lyapunov energy functions for synchronous generators to monitor the stability stress of the system. Using such energies as a cost function guarantees the convergence

  2. The impact of turbulent renewable energy production on power grid stability and quality

    Science.gov (United States)

    Schmietendorf, Katrin; Peinke, Joachim; Kamps, Oliver

    2017-11-01

    Feed-in fluctuations induced by renewables are one of the key challenges to the stability and quality of electrical power grids. In particular short-term fluctuations disturb the system on a time scale, on which load balancing does not operate yet and the system is intrinsically governed by self-organized synchronization. Wind and solar power are known to be strongly non-Gaussian with intermittent increment statistics in these time scales. We investigate the impact of short-term wind fluctuations on the basis of a Kuramoto-like power grid model considering stability in terms of desynchronization and frequency and voltage quality aspects. We present a procedure to generate realistic feed-in fluctuations with temporal correlations, Kolmogorov power spectrum and intermittent increments. By comparison to correlated Gaussian noise of the same spectrum and Gaussian white noise, we found out that while the correlations are essential to capture the likelihood of severe outages, the intermittent nature of wind power has significant consequences on power quality: intermittency is directly transferred into frequency and voltage fluctuations yielding a novel type of fluctuations, which is beyond engineering status of knowledge.

  3. Nonlinear control synthesis for electrical power systems using controllable series capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Manjarekar, N.S.; Banavar, Ravi N. [Indian Institute of Technology Bombay, Mumbai (India). Systems and Control Engineering

    2012-07-01

    In this work we derive asymptotically stabilizing control laws for electrical power systems using two nonlinear control synthesis techniques. For this transient stabilization problem the actuator considered is a power electronic device, a controllable series capacitor (CSC). The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model. To start with, the CSC is modeled by the injection model which is based on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector g(x) in the open loop system takes a complex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC) methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system. Further, IDA-PBC is used to derive stabilizing controllers for power systems, where the CSC dynamics are included as a first order system. Next, we consider a different control methodology, immersion and invariance (I and I), to synthesize an asymptotically stabilizing control law for the SMIB system with a CSC. The CSC is described by a first order system. As a generalization of I and I, we incorporate the power balance algebraic constraints in the load bus to the SMIB swing equation, and extend the design philosophy to a class of differential algebraic systems. The proposed result is then demonstrated on another example: a two-machine system with two load buses and a CSC. The controller performances are validated through simulations for all cases.

  4. An Improved On-line Contingency Screening for Power System Transient Stability Assessment

    DEFF Research Database (Denmark)

    Weckesser, Johannes Tilman Gabriel; Jóhannsson, Hjörtur; Glavic, Mevludin

    2017-01-01

    This paper presents a contingency screening method and a framework for its on-line implementation. The proposed method carries out contingency screening and on-line stability assessment with respect to first-swing transient stability. For that purpose, it utilizes the single machine equivalent...... method and aims at improving the prior developed contingency screening approaches. In order to determine vulnerability of the system with respect to a particular contingency, only one time-domain simulation needs to be performed. An early stop criteria is proposed so that in a majority of the cases...... the simulation can be terminated after a few hundred milliseconds of simulated system response. The method's outcome is an assessment of the system's stability and a classification of each considered contingency. The contingencies are categorized by exploiting parameters of an equivalent one machine infinite bus...

  5. Effects of HVDC on power systems small signal angle stability

    Energy Technology Data Exchange (ETDEWEB)

    Custodio, D.T.; Paccini, R.O.; Kopcak, I.; Costa, V.F. da [State University of Campinas (UNICAMP), SP (Brazil). School of Electrical and Computer Engineering. Power Systems Dept.], Emails: totti@dsee.fee.unicamp.br, rodrigo@dsee.fee.unicamp.br, kopcak@dsee.fee.unicamp.br, vivaldo@dsee.fee.unicamp.br

    2009-07-01

    In this paper, a didactic method for parameters tuning of the Power Oscillation Damper (POD) coupled to the HVDC constant current controller is proposed utilizing the MATLAB package with a control system toolbox. First, modal analysis is done from the system state matrix to determine the critical mode and oscillation natural frequency. Input and output linearized matrixes are built to single-input and single-output (SISO) control systems. The phase to be compensated between the active power flow in the parallel AC inter-tie and the current reference signal of the HVDC constant current controller is obtained from the Nyquist theorem. Following, the POD time constants are obtained. Finally, the static gain of the POD is tuned based on the root locus method of the classical control theory. Simulations results prove that the DC power modulation is efficient to damp the AC power oscillations. This method is straightforward because only involves matrix operation. (author)

  6. High stability power sources for bending and quadrupole magnets of TRISTAN project

    International Nuclear Information System (INIS)

    Kumagai, Noritaka; Ogawa, Shin-ichi; Koseki, Shoichiro; Nagasaka, Saburo.

    1985-01-01

    The excitation power sources for the main ring magnets of the TRISTAN project of the Ministry of Educations's National Laboratory for High Energy Physics requires strict performances of 10 -4 for both long time stability and the ripple factor of the DC output current to obtain a stable beam. To satisfy such specifications, a precision current detector, and active filter, and other such technologies are used for the power source. To verify the performance of this power source, a prototype was manufactured and a combined test was done with the magnets actually used at the National Laboratory. The results have proved that the output stability, ripple factor, current tracking, and other specifications are quite satisfactory and, at present, 80 sets have been manufactured for the TRISTAN project. This paper describes the project's power supply system and reports the results of performance tests on the prototype. (author)

  7. Power system stability modelling, analysis and control

    CERN Document Server

    Sallam, Abdelhay A

    2015-01-01

    This book provides a comprehensive treatment of the subject from both a physical and mathematical perspective and covers a range of topics including modelling, computation of load flow in the transmission grid, stability analysis under both steady-state and disturbed conditions, and appropriate controls to enhance stability.

  8. Power system stabilising features from wind power plants augmented with energy storage

    DEFF Research Database (Denmark)

    Tarnowski, Germán C.; Kjær, Philip C; Lærke, Rasmus

    2014-01-01

    This paper describes a wind power plant augmented with energy storage, configured to provide ancillary services (primary reserve, inertial response, power oscillation damping) for enhancement of power system stability. Energy storage can complement wind power plants thus reducing the need for any...... overload or curtailment to allow active power modulation. A 12MW + 1.6MW augmented plant is used for demonstration of representative performance of the particular ancillary service control algorithms...

  9. Control Architecture for Future Power Systems

    DEFF Research Database (Denmark)

    Heussen, Kai

    for assessment of control architecture of electric power systems with a means-ends perspective. Given this purpose-oriented understanding of a power system, the increasingly stochastic nature of this problem shall be addressed and approaches for robust, distributed control will be proposed and analyzed....... The introduction of close-to-real-time markets is envisioned to enable fast distributed resource allocation while guaranteeing system stability. Electric vehicles will be studied as a means of distributed reversible energy storage and a flexible power electronic interface, with application to the case......This project looks at control of future electric power grids with a high proportion of wind power and a large number of decentralized power generation, consumption and storage units participating to form a reliable supply of electrical energy. The first objective is developing a method...

  10. Analysis of eddy current loss in high-Tc superconducting power cables with respect to various structure of stabilizer

    International Nuclear Information System (INIS)

    Choi, S. J.; Song, M. K.; Lee, S. J.; Cho, J. W.; Sim, K. D.

    2005-01-01

    The High-Tc superconducting power cable consists of a multi-layer high-Tc superconducting cable core and a stabilizer which is used to bypass the current at fault time. Eddy current loss is generated in the stabilizer in normal operating condition and affects the whole system. In this paper, the eddy current losses are analyzed with respect to various structure of stabilizer by using opera-3d. Moreover, optimal conditions of the stabilizer are derived to minimize the eddy current losses from the analyzed results. The obtained results could be applied to the design and manufacture of the high-Tc superconducting power cable system.

  11. Observability and Decision Support for Supervision of Distributed Power System Control

    DEFF Research Database (Denmark)

    Pertl, Michael

    approach for real-time voltage estimation in active distribution grids, and a modeling approach to harness the flexibility of an aggregation of electric vehicles. For improved monitoring and maintaining power system stability, a decision support tool for transient stability preventive control, based...... stability margin is presented. The approach delivers a near optimal solution in terms of cost minimization due to its sequential nature and shows to be robust when applied to larger power systems. The general problem of low distribution grid observability is addressed by proposing a data-driven approach...... results in additional demand for charging which will require large investments in power distribution, transmission, and generation. However, this demand is often also flexible in time and can be actively managed to reduce the required investments and to enhance power system operation. Harnessing...

  12. Stabilization of switched nonlinear systems with unstable modes

    CERN Document Server

    Yang, Hao; Cocquempot, Vincent

    2014-01-01

    This book provides its reader with a good understanding of the stabilization of switched nonlinear systems (SNS), systems that are of practical use in diverse situations: design of fault-tolerant systems in space- and aircraft; traffic control; and heat propagation control of semiconductor power chips. The practical background is emphasized throughout the book; interesting practical examples frequently illustrate the theoretical results with aircraft and spacecraft given particular prominence. Stabilization of Switched Nonlinear Systems with Unstable Modes treats several different subclasses of SNS according to the characteristics of the individual system (time-varying and distributed parameters, for example), the state composition of individual modes and the degree and distribution of instability in its various modes. Achievement and maintenance of stability across the system as a whole is bolstered by trading off between individual modes which may be either stable or unstable, or by exploiting areas of part...

  13. Fault Tolerant Emergency Control to Preserve Power System Stability

    DEFF Research Database (Denmark)

    Pedersen, Andreas Søndergaard; Richter, Jan H.; Tabatabaeipour, Mojtaba

    2016-01-01

    This paper introduces a method for fault-masking and system reconfiguration in power transmission systems. The paper demonstrates how faults are handled by reconfiguring remaining controls through utilisation of wide-area measurement in real time. It is shown how reconfiguration can be obtained u...

  14. Transient Angle Stability Analysis of Grid-Connected Converters with the First-order Active Power Loop

    DEFF Research Database (Denmark)

    Wu, Heng; Wang, Xiongfei

    2018-01-01

    . To tackle this challenge, this paper employs the phase portrait to analyze the transient stability of power converters, and it is found that the better transient stability performance can be achieved if the grid-connected converters are controlled as the first-order nonlinear system. Simulations...

  15. Stability Enhancement Based on Virtual Impedance for DC Microgrids with Constant Power Loads

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.

    2015-01-01

    In this paper, a converter-based DC microgrid is studied. By considering the impact of each component in DC microgrids on system stability, a multi-stage configuration is employed, which includes the source stage, interface converter stage between buses and common load stage. In order to study th....... It can be seen that by using the proposed stabilizers, the unstable poles induced by the CPLs are forced to move into the stable region. The proposed method is verified by the MATLAB/Simulink model of multi-stage DC microgrids with three distributed power generation units.......In this paper, a converter-based DC microgrid is studied. By considering the impact of each component in DC microgrids on system stability, a multi-stage configuration is employed, which includes the source stage, interface converter stage between buses and common load stage. In order to study...... the overall stability of the above DC microgrid with constant power loads (CPLs), a comprehensive small-signal model is derived by analyzing the interface converters in each stage. The instability issue induced by the CPLs is revealed by using the criteria of impedance matching. Meanwhile, virtual...

  16. Stability Constrained Efficiency Optimization for Droop Controlled DC-DC Conversion System

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.

    2013-01-01

    implementing tertiary regulation. Moreover, system dynamic is affected when shifting VRs. Therefore, the stability is considered in optimization by constraining the eigenvalues arising from dynamic state space model of the system. Genetic algorithm is used in searching for global efficiency optimum while....... As the efficiency of each converter changes with output power, virtual resistances (VRs) are set as decision variables for adjusting power sharing proportion among converters. It is noteworthy that apart from restoring the voltage deviation, secondary control plays an important role to stabilize dc bus voltage when...

  17. Optical power of VCSELs stabilized to 35 ppm/°C without a TEC

    Science.gov (United States)

    Downing, John

    2015-03-01

    This paper reports a method and system comprising a light source, an electronic method, and a calibration procedure for stabilizing the optical power of vertical-cavity surface-emitting lasers (VCSELs) and laser diodes (LDs) without the use thermoelectric coolers (TECs). The system eliminates the needs for custom interference coatings, polarization adjustments, and the exact alignment required by the optical method reported in 2013 [1]. It can precisely compensate for the effects of temperature and wavelength drift on photodiode responsivity as well as changes in VCSEL beam quality and polarization angle over a 50°C temperature range. Data obtained from light sources built with single-mode polarization-locked VCSELs demonstrate that 30 ppm/°C stability can be readily obtained. The system has advantages over TECstabilized laser modules that include: 1) 90% lower relative RMS optical power and temperature sensitivity, 2) a five-fold enhancement of wall-plug efficiency, 3) less component testing and sorting, 4) lower manufacturing costs, and 5) automated calibration in batches at time of manufacture is practical. The system is ideally suited for battery-powered environmental and in-home medical monitoring applications.

  18. Optimization of a pressure control valve for high power automatic transmission considering stability

    Science.gov (United States)

    Jian, Hongchao; Wei, Wei; Li, Hongcai; Yan, Qingdong

    2018-02-01

    The pilot-operated electrohydraulic clutch-actuator system is widely utilized by high power automatic transmission because of the demand of large flowrate and the excellent pressure regulating capability. However, a self-excited vibration induced by the inherent non-linear characteristics of valve spool motion coupled with the fluid dynamics can be generated during the working state of hydraulic systems due to inappropriate system parameters, which causes sustaining instability in the system and leads to unexpected performance deterioration and hardware damage. To ensure a stable and fast response performance of the clutch actuator system, an optimal design method for the pressure control valve considering stability is proposed in this paper. A non-linear dynamic model of the clutch actuator system is established based on the motion of the valve spool and coupling fluid dynamics in the system. The stability boundary in the parameter space is obtained by numerical stability analysis. Sensitivity of the stability boundary and output pressure response time corresponding to the valve parameters are identified using design of experiment (DOE) approach. The pressure control valve is optimized using particle swarm optimization (PSO) algorithm with the stability boundary as constraint. The simulation and experimental results reveal that the optimization method proposed in this paper helps in improving the response characteristics while ensuring the stability of the clutch actuator system during the entire gear shift process.

  19. Study of toluene stability for an Organic Rankine Cycle (ORC) space-based power system

    Science.gov (United States)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    The design, fabrication, assembly, and endurance operation of a dynamic test loop, built to evaluate the thermal stability of a proposed Organic Rankine Cycle (ORC) working fluid, is discussed. The test fluid, toluene, was circulated through a heater, simulated turbine, regenerator, condenser and pump to duplicate an actual ORC system. The maximum nominal fluid temperature, 750 F, was at the turbine simulator inlet. Samples of noncondensible gases and liquid toluene were taken periodically during the test. The samples were analyzed to identify the degradation products formed and the quantity of these products. From these data it was possible to determine the degradation rate of the working fluid and the generation rate of noncondensible gases. A further goal of this work was to relate the degradation observed in the dynamic operating loop to degradation obtained in isothermal capsule tests. This relationship was the basis for estimating the power loop degradation in the Space Station Organic Rankine Cycle system.

  20. Detailed Equivalent VSC-HVDC Modelling for Time Domain Harmonic Stability Studies in Wind Power Plants

    DEFF Research Database (Denmark)

    Glasdam, Jakob Bærholm; Bak, Claus Leth; Kocewiak, Lukasz Hubert

    2018-01-01

    system with 201 voltage levels, without loss of accuracy compared to conventional modelling of the converter. Harmonic stability is a core concern for both existing and future offshore wind power plants (OWPPs). A harmonic stability study will be undertaken with focus on the number of wind turbine...

  1. Method of determining remedial control actions for a power system in an insecure state

    DEFF Research Database (Denmark)

    2013-01-01

    A method of determining remedial control actions for a power system in an insecure and unstable operating condition is provided. The power system has a plurality of generators injecting power into a network and each generator has a generator injection impedance and a stability boundary in the inj......A method of determining remedial control actions for a power system in an insecure and unstable operating condition is provided. The power system has a plurality of generators injecting power into a network and each generator has a generator injection impedance and a stability boundary...

  2. LAPUR5 BWR stability analysis in Kuosheng nuclear power plant

    International Nuclear Information System (INIS)

    Kunlung Wu; Chunkuan Shih; Wang, J.R.; Kao, L.S.

    2005-01-01

    Full text of publication follows: Unstable oscillation of a nuclear power reactor core is one of the main reasons that causes minor core damage. Stability analysis needs to be performed to predict the potential problem as early as possible and to prevent core instability events from happening. Nuclear Regulatory Commission (NRC) requests all BWR licensees to examine each core reload and to impose operating limitations, as appropriate, to ensure compliance with GDC 10 and 12. GDC 10 requires that the reactor core be designed with appropriate margin to assure that specified acceptable fuel design limits will not be exceeded during any condition of normal operation, including anticipated operational occurrences. GDC 12 requires assurance that power oscillations which can result in conditions exceeding specified acceptable fuel design limits are either not possible or can be reliably and readily detected and suppressed. Therefore, the core instability is directly related to the fuel design limits. The core and channel DR (decay ratio) calculation are commonly performed to determine system's stability when new fuel designs are introduced in the core. In order to establish the independent analysis technology for BWR licensees and verifications, the Institute of Nuclear Energy Research (INER) has obtained agreement from NRC and implemented the 'Methodology and Procedure for Calculation of Core and Channel Decay Ratios with LAPUR', which was developed by the IBERINCO in 2001. LAPUR5 uses a multi-nodal description of the neutron dynamics, together with a distributed parameter model of the core thermal hydrodynamics to produce a space-dependent representation of the dynamics of a BWR in the frequency domain for small perturbations around a steady state condition. From the output of LAPUR5, the following results are obtained: global core decay ratio, out-of phase core decay ratio, and channel decay ratio. They are key parameters in the determination of BWR core stability

  3. Competition and system stability -- The reward and the penalty

    International Nuclear Information System (INIS)

    Mansour, Y.

    2000-01-01

    The business protocols and rules of the competitive electricity market are resulting in fragmentation of the historical vertically integrated structures. Electric services are offered at either cost or market-based prices depending on their type and the level of competition in a particular product. System stabilizing measures are essential for maintaining system security, yet their value is either underestimated or not understood. This paper describes practical methods to quantify the value of some of the stabilizing measures and ways to ensure maintaining the dynamic security of the power systems through business procedures and monetary sanctions

  4. Stabilized Acoustic Levitation of Dense Materials Using a High-Powered Siren

    Science.gov (United States)

    Gammell, P. M.; Croonquist, A.; Wang, T. G.

    1982-01-01

    Stabilized acoustic levitation and manipulation of dense (e.g., steel) objects of 1 cm diameter, using a high powered siren, was demonstrated in trials that investigated the harmonic content and spatial distribution of the acoustic field, as well as the effect of sample position and reflector geometries on the acoustic field. Although further optimization is possible, the most stable operation achieved is expected to be adequate for most containerless processing applications. Best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper one. Operation slightly below resonance enhances stability as this minimizes the second harmonic, which is suspected of being a particularly destabilizing influence.

  5. Neural-net based calculation of voltage dips at maximum angular swing in direct transient stability analysis [of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Sobajic, D J; Pao, Yohhan [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Applied Physics Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Computer Engineering and Science AI WARE inc., Cleveland, OH (United States)

    1992-10-01

    In heavily stressed power systems, post-fault transient voltage dips can lead to undesired tripping of industrial drives and large induction motors. The lowest transient voltage dips occur when fault clearing times are less than critical ones. In this paper, we propose a new iterative analytical methodology to obtain more accurate estimates of voltage dips at maximum angular swing in direct transient stability analysis. We also propose and demonstrate the possibility of storing the results of these computations in the associative memory (AM) system, which exhibits remarkable generalization capabilities. Feature-based models stored in the AM can be utilized for fast and accurate prediction of the location, duration and the amount of the worst voltage dips, thereby avoiding the need and cost for lengthy time-domain simulations. Numerical results obtained using the example of the New England power system are presented to illustrate our approach. (Author)

  6. Implementation of IEC Standard Models for Power System Stability Studies

    DEFF Research Database (Denmark)

    Margaris, Ioannis; Hansen, Anca Daniela; Bech, John

    2012-01-01

    , namely a model for a variable speed wind turbine with full scale power converter WTG including a 2- mass mechanical model. The generic models for fixed and variable speed WTGs models are suitable for fundamental frequency positive sequence response simulations during short events in the power system...

  7. Power system control experiments using 1 MJ SMES

    International Nuclear Information System (INIS)

    Sugimoto, Shigeyuki

    1993-01-01

    Chubu Electric Power Co. Inc., developed a 1 MJ Superconducting Magnetic Energy Storage (SMES) system composed of a pulsive superconducting magnet (1000 A, 2 H) and experimental researches connecting this system to a simulated power system composed of four generators, fluctuating load and some transmission lines were carried out in the laboratory of Chubu Electric Power Co. Inc., since 1989. The purpose of this experimental researches are to investigate the effects of SMES adapting in power system control use. This paper describes the results and confirmed effects of four kinds of experiments as the following, cut-off peak demand, load leveling effect for fluctuating load, improvement of dynamic stability and frequency control effect in isolated power system. (orig.)

  8. Application of Coordinated SOFC and SMES Robust Control for Stabilizing Tie-Line Power

    Energy Technology Data Exchange (ETDEWEB)

    Ning Zhang; Wei Gu; Haojun Yu; Wei Liu [School of Electrical Engineering, Southeast University, Nanjing (China)

    2013-04-15

    Wind power causes fluctuations in power systems and introduces issues concerning system stability and power quality because of the lack of controllability of its discontinuous and intermittent resources. This paper presents a coordinated control strategy for solid oxide fuel cells (SOFCs) and superconducting magnetic energy storage (SMES) to match the intermittent wind power generation and compensate for the rapid load changes. An optimal H{sub {infinity}}control method, where the weighting function selection is expressed as an optimization problem, is proposed to mitigate tie-line power fluctuations and the mixed-sensitivity approach is used to deal with the interference suppression. Simulation results show that the proposed method significantly improves the smoothing effect of wind power fluctuations. Compared with the conventional control method, the proposed method has better anti-interference performance in various operating situations.

  9. Application of Coordinated SOFC and SMES Robust Control for Stabilizing Tie-Line Power

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2013-04-01

    Full Text Available Wind power causes fluctuations in power systems and introduces issues concerning system stability and power quality because of the lack of controllability of its discontinuous and intermittent resources. This paper presents a coordinated control strategy for solid oxide fuel cells (SOFCs and superconducting magnetic energy storage (SMES to match the intermittent wind power generation and compensate for the rapid load changes. An optimal H∞ control method, where the weighting function selection is expressed as an optimization problem, is proposed to mitigate tie-line power fluctuations and the mixed-sensitivity approach is used to deal with the interference suppression. Simulation results show that the proposed method significantly improves the smoothing effect of wind power fluctuations. Compared with the conventional control method, the proposed method has better anti-interference performance in various operating situations.

  10. Analysis of different power grid segmentation and transmission schemes for power system security improvement

    International Nuclear Information System (INIS)

    Shami, U.T.; Chaudhary, M.S.

    2015-01-01

    This paper explores the power grid segmentation concept for power system stability improvement in detail. First, the firewall property of grid segmentation is investigated for a two area network. Then two HVDC technologies, LCC and VSC, are compared for the same network. A two area VSC-AC segmented network is then compared with two area VSC segmented network. Suitable segmentation topology and suitable number of VSC segmented areas are then investigated. Simulation results show that grid segmentation offers network stability during fault conditions and VSC is the most suitable choice for segmentation over LCC. Results further show that having large number of DC segmented areas and using the radial segmentation topology improves the stability of the overall system. All the simulations were carried out in PSS at the rate E software provided by SIEMENS discussed. Section IV discusses the test systems under study in this research. Section V compares and analyzes the simulation results. Section VI contains the conclusion. (author)

  11. High stability vector-based direct power control for DFIG-based wind turbine

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Wu, Xiaojie

    2015-01-01

    This paper proposes an improved vector-based direct power control (DPC) strategy for the doubly-fed induction generator (DFIG)-based wind energy conversion system. Based on the small signal model, the proposed DPC improves the stability of the DFIG, and avoids the DFIG operating in the marginal...

  12. High-power density miniscale power generation and energy harvesting systems

    International Nuclear Information System (INIS)

    Lyshevski, Sergey Edward

    2011-01-01

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro (∼100 μW) to medium (∼100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems.

  13. Computer simulation of a 20-kHz power system for advanced launch systems

    Science.gov (United States)

    Sudhoff, S. D.; Wasynczuk, O.; Krause, P. C.; Kenny, B. H.

    1993-01-01

    The performance of two 20-kHz actuator power systems being built for an advanced launch system are evaluated for typical launch senario using an end-to-end system simulation. Aspects of system performance ranging from the switching of the power electronic devices to the vehicle aerodynamics are represented in the simulation. It is shown that both systems adequately stabilize the vehicle against a wind gust during launch. However, it is also shown that in both cases there are bus voltage and current fluctuations which make system power quality a concern.

  14. Nonlinear Control Synthesis for Electrical Power Systems Using Controllable Series Capacitors

    CERN Document Server

    Manjarekar, N S

    2012-01-01

    In this work we derive asymptotically stabilizing control laws for electrical power systems using two nonlinear control synthesis techniques. For this transient stabilization problem the actuator considered is a power electronic device, a controllable series capacitor (CSC). The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model. To start with, the CSC is modeled by the injection model which is based on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector $g(x)$ in the open loop system takes a complex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC) methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system. Further, IDA-PBC is used to derive stab...

  15. Needs and Possibility of Involving Nuclear Power Plant in the Macedonian Power System

    International Nuclear Information System (INIS)

    Bosevski, T.; Causevski, A.

    1998-01-01

    The Macedonian Power System (MPS) used to be a part of the former Yugoslav Power System, and it was connected to the European system by 400 kV transmission lines. At the present time, the MPS works isolated from the UCPTE, only connected to the Yugoslav and Greek power systems. The connections with the Bulgarian and Albanian power systems are on a lower voltage level. The reliability and stability of the MPS needs to be improved. Macedonia is located in the central area of the Balkan, where the transmission systems from other Balkan countries are crossing. in the near future, the Macedonian Power System needs to be linked to the European system. To prepare for the energy demand at the beginning of the 21-st century, when the local coal reserves get exhausted, Macedonia needs to start with activities for substitution of the existing coal-fired thermal power plants with nuclear plants. This paper discusses the activities for global development solutions in the area of power generation. (author)

  16. Critical Clearing Time and Wind Power in Small Isolated Power Systems Considering Inertia Emulation

    Directory of Open Access Journals (Sweden)

    Elías Jesús Medina-Domínguez

    2015-11-01

    Full Text Available The stability and security of small and isolated power systems can be compromised when large amounts of wind power enter them. Wind power integration depends on such factors as power generation capacity, conventional generation technology or grid topology. Another issue that can be considered is critical clearing time (CCT. In this paper, wind power and CCT are studied in a small isolated power system. Two types of wind turbines are considered: a squirrel cage induction generator (SCIG and a full converter. Moreover, the full converter wind turbine’s inertia emulation capability is considered, and its impact on CCT is discussed. Voltage is taken into account because of its importance in power systems of this kind. The study focuses on the small, isolated Lanzarote-Fuerteventura power system, which is expected to be in operation by 2020.

  17. Dynamic market behaviour of autonomous network based power systems

    NARCIS (Netherlands)

    Jokic, A.; Wittebol, E.H.M.; Bosch, van den P.P.J.

    2006-01-01

    Dynamic models of real-time markets are important since they lead to additional insights of the behavior and stability of power system markets. The main topic of this paper is the analysis of real-time market dynamics in a novel power system structure that is based on the concept of autonomous

  18. Finite-Time Stability and Controller Design of Continuous-Time Polynomial Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Xiaoxing Chen

    2017-01-01

    Full Text Available Finite-time stability and stabilization problem is first investigated for continuous-time polynomial fuzzy systems. The concept of finite-time stability and stabilization is given for polynomial fuzzy systems based on the idea of classical references. A sum-of-squares- (SOS- based approach is used to obtain the finite-time stability and stabilization conditions, which include some classical results as special cases. The proposed conditions can be solved with the help of powerful Matlab toolbox SOSTOOLS and a semidefinite-program (SDP solver. Finally, two numerical examples and one practical example are employed to illustrate the validity and effectiveness of the provided conditions.

  19. Congestion management considering voltage security of power systems

    International Nuclear Information System (INIS)

    Esmaili, Masoud; Shayanfar, Heidar Ali; Amjady, Nima

    2009-01-01

    Congestion in a power network is turned up due to system operating limits. To relieve congestion in a deregulated power market, the system operator pays to market participants, GENCOs and DISCOs, to alter their active powers considering their bids. After performing congestion management, the network may be operated with a low security level because of hitting some flows their upper limit and some voltages their lower limit. In this paper, a novel congestion management method based on the voltage stability margin sensitivities is introduced. Using the proposed method, the system operator so alleviates the congestion that the network can more retain its security. The proposed method not only makes the system more secure after congestion management than other methods already presented for this purpose but also its cost of providing security is lower than the earlier methods. Test results of the proposed method along with the earlier ones on the New-England test system elaborate the efficiency of the proposed method from the viewpoint of providing a better voltage stability margin and voltage profile as well as a lower security cost. (author)

  20. Stability of synchrony against local intermittent fluctuations in tree-like power grids

    Science.gov (United States)

    Auer, Sabine; Hellmann, Frank; Krause, Marie; Kurths, Jürgen

    2017-12-01

    90% of all Renewable Energy Power in Germany is installed in tree-like distribution grids. Intermittent power fluctuations from such sources introduce new dynamics into the lower grid layers. At the same time, distributed resources will have to contribute to stabilize the grid against these fluctuations in the future. In this paper, we model a system of distributed resources as oscillators on a tree-like, lossy power grid and its ability to withstand desynchronization from localized intermittent renewable infeed. We find a remarkable interplay of the network structure and the position of the node at which the fluctuations are fed in. An important precondition for our findings is the presence of losses in distribution grids. Then, the most network central node splits the network into branches with different influence on network stability. Troublemakers, i.e., nodes at which fluctuations are especially exciting the grid, tend to be downstream branches with high net power outflow. For low coupling strength, we also find branches of nodes vulnerable to fluctuations anywhere in the network. These network regions can be predicted at high confidence using an eigenvector based network measure taking the turbulent nature of perturbations into account. While we focus here on tree-like networks, the observed effects also appear, albeit less pronounced, for weakly meshed grids. On the other hand, the observed effects disappear for lossless power grids often studied in the complex system literature.

  1. Joint Design of Control and Power Efficiency in Wireless Networked Control System

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2014-01-01

    Full Text Available This paper presents a joint design method for wireless networked control system (WNCS to balance both the demands of network service and the control performance. Since the problems of power consumption, communication reliability, and system stability exist simultaneously and interdependently in WNCS, most of the achieved results in the wireless network and wired networked control system cannot be used directly. To coordinate the three problems, sampling period is found to be the linking bridge. An adaptive sampling power efficiency algorithm is proposed to manage the power consumption such that it can meet the demands of network life span. The sampling period is designed to update periodically on the constraints of network schedulability and system stability. The convergence of the power efficiency algorithm is further proved. The sampling period is no longer a fixed value, however; thus, increasing the difficulty in modeling and controlling such a complicated time-varying system remains. In this work, a switched control system scheme is applied to model such a WNCS, and the effect of network-induced delay is considered. Switched feedback controllers are introduced to stabilize the WNCS, and some considerations on stability condition and the bounds of the update circle for renewing sampling period are discussed. A numerical example shows the effectiveness of the proposed method.

  2. Generic 12-Bus Test System for Wind Power Integration Studies

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Altin, Müfit; Göksu, Ömer

    2012-01-01

    , inertial response, frequency control, damping of electromechanical oscillations, balanced and unbalanced fault management, etc. Hence, the power system components: conventional power plants with controls, transmission lines, transformers and loads should be represented accurately to achieve realistic power......High wind power penetration levels into power systems requires an appropriate power system model when assessing impact on the overall system stability. The model should capture the wide range of dynamics related to the wind integration studies, such as voltage control, synchronizing power control...... system characteristics. Additionally, the power system model should be simple and computationally manageable in order to simulate multiple scenarios with different control parameters in a reasonable time. In this paper, a generic power system model is presented in order to comprehend the wind integration...

  3. Stability Enhancement of Multi machine AC Systems by Synchronverter HVDC control

    Directory of Open Access Journals (Sweden)

    Raouia Aouini

    2016-06-01

    Full Text Available This paper investigates the impact of the Synchronverter based HVDC control on power system stability. The study considers multi machine power systems, with realistic parameters. A specific tuning method of the parameters of the regulators is used. The proposed control scheme is based on the sensitivity of the poles of the HVDC neighbor zone to the control parameters, and next, on their placement using residues. The transient stability of the HVDC neighbor zone is a priori taken into account at the design stage. The new tuning method is evaluated in comparison with the standard vector control via simulation tests. Extensive tests are performed using Matlab/Simulink implementation of the IEEE 9 bus/3 machines test system. The results prove the superiority of the proposed control to the classic vector control. The synchronverter control allows to improve not only the local performances of the HVDC link, but also the overall transient stability of the AC zone in which the HVDC is inserted. (where

  4. Transient stability index for online stability assessment and contingency evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ribbens-Pavella, M; Murthy, P G; Horward, J L; Carpentier, J L

    1982-04-01

    An on-line methodology is proposed for assessing the robustness of a power system from the point of view of transient stability, and a scalar expression, the transient stability index, is accordingly derived. The reliability and sensitivity of this index are tested by means of simulations for a number of power system cases. The index is shown to be appropriate for online stability assessment, contingency evaluation and preventive control. 14 refs.

  5. High-power density miniscale power generation and energy harvesting systems

    Energy Technology Data Exchange (ETDEWEB)

    Lyshevski, Sergey Edward [Department of Electrical and Microelectronics Engineering, Rochester Institute of Technology, Rochester, NY 14623-5603 (United States)

    2011-01-15

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro ({proportional_to}100 {mu}W) to medium ({proportional_to}100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems. (author)

  6. Determination of SMES capacity to enhance the dynamic stability of power system

    International Nuclear Information System (INIS)

    Shi, J.; Tang, Y.; Dai, T.; Ren, L.; Li, J.; Cheng, S.

    2010-01-01

    This paper proposes the principle of SMES capacity determination for power system stable operation. Adopting the energy function method, the mechanism of SMES damping power oscillation in the classical single-machine infinite-bus (SMIB) system is analyzed. The released kinetic energy during disturbance is the original of power system oscillation, which is taken as the principle of SMES capacity determination. Then, the influence of fault type, fault position, and fault clearing time on the SMES capacity determination are discussed. Using MATLAB simulation, the principle of SMES capacity determination is evaluated.

  7. A real-time control system architecture for industrial power amplifiers

    NARCIS (Netherlands)

    Qureshi, F.; Spinu, V.; Wijnands, C.G.E.; Lazar, M.

    2013-01-01

    Power amplifiers are a highly important component in a range of industrial applications, such as, servo-drives, magnetic resonance imaging, energy systems, and audio. The control system for power amplifiers should satisfy a range of requirements, e.g., offset free tracking, stability margins, and

  8. Supervision functions - Secure operation of sustainable power systems

    DEFF Research Database (Denmark)

    Morais, Hugo; Zhang, Xinxin; Lind, Morten

    2013-01-01

    of power systems operation control. The use of PMUs allows more penetration of DG mainly, with technologies based on renewable resources with intermittent and unpredictable operation such a wind power. This paper introduces the Secure Operation of Sustainable Power Systems (SOSPO) project. The SOSPO...... project tries to respond to the question "How to ensure a secure operation of the future power system where the operating point is heavily is fluctuating?" focusing in the Supervision module architecture and in the power system operation states. The main goal of Supervision module is to determine...... the power system operation state based on new stability and security parameters derived from PMUs measurement and coordinate the use of automatic and manual control actions. The coordination of the control action is based not only in the static indicators but also in the performance evaluation of control...

  9. DC microgrids providing frequency regulation in electrical power system - imperfect communication issues

    DEFF Research Database (Denmark)

    Bašić, Hrvoje; Dragicevic, Tomislav; Pandžić, Hrvoje

    2017-01-01

    This paper presents a model of multiple DC microgrids with battery energy storage systems and demand response capability, taking part in primary frequency regulation of electrical power system. Although DC microgrids can contribute to stability and efficiency of frequency regulation, these complex...... systems may cause serious stability issues due to the imperfect communication. This work presents possible scenarios of unstable primary frequency regulation in a simplified model of electrical power system with DC microgrids, which are controlled through communication network....

  10. Partial analysis of wind power limit in an electric micro system using continuation power flow

    International Nuclear Information System (INIS)

    Fiallo Guerrero, Jandry; Santos Fuentefria, Ariel; Castro Fernández, Miguel

    2013-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit that can insert in an electric grid without losing stability is a very important matter. Existing in bibliography a few methods for calculation of wind power limit, some of them are based in static constrains, an example is a method based in a continuation power flow analysis. In the present work the method is applied in an electric micro system formed when the system is disconnected of the man grid, the main goal was prove the method in a weak and island network. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  11. A PSO based unified power flow controller for damping of power system oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H. [Technical Engineering Dept., Univ. of Mohaghegh Ardabili, Daneshgah Street, P.O. Box 179, Ardabil (Iran); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Dept., Iran Univ. of Science and Technology, Tehran (Iran); Jalilzadeh, S.; Safari, A. [Technical Engineering Dept., Zanjan Univ., Zanjan (Iran)

    2009-10-15

    On the basis of the linearized Phillips-Herffron model of a single-machine power system, we approach the problem of select the best input control signal of the unified power flow controller (UPFC) and design optimal UPFC based damping controller in order to enhance the damping of the power system low frequency oscillations. The potential of the UPFC supplementary controllers to enhance the dynamic stability is evaluated. This controller is tuned to simultaneously shift the undamped electromechanical modes to a prescribed zone in the s-plane. The problem of robustly UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multiobjective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using particle swarm optimization technique (PSO) that has a strong ability to find the most optimistic results. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller is demonstrated through eigenvalue analysis, nonlinear time-domain simulation and some performance indices studies. The results analysis reveals that the tuned PSO based UPFC controller using the proposed multiobjective function has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions show that the {delta}{sub E} based controller is superior to the m{sub B} based controller. (author)

  12. Task 3.0 - Advanced power systems. Subtask 3.18 - Ash behavior in power systems

    International Nuclear Information System (INIS)

    Zygarlicke, Christopher J.; Mccollor, Donald P.; Kay, John P.; Swanson, Michael L.

    1998-01-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. Identify the relationship between the temperature of critical viscosity (T cv ) as measured in a viscometer and the crystallization occurring in the melt. Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. Evaluate corrosion for alloys being used in supercritical combustion systems

  13. SELECTIVE MODAL ANALYSIS OF POWER FLOW OSCILLATION IN LARGE SCALE LONGITUDINAL POWER SYSTEMS

    Directory of Open Access Journals (Sweden)

    Wirindi -

    2009-06-01

    Full Text Available Novel selective modal analysis for the determination of low frequency power flow oscillation behaviour based on eigenvalues with corresponding damping ratio, cumulative damping index, and participation factors is proposed. The power system being investigated consists of three large longitudinally interconnected areas with some weak tie lines. Different modes, such as exciter modes, inter area modes, and local modes of the dominant poles are fully studied to find out the significant level of system damping and other factors producing power flow instability. The nature of the energy exchange between area is determined and strategic power flow stability improvement is developed and tested.

  14. To Stabilize Power Systems from Various Kind of Oscillations using a State Feedback Controller

    International Nuclear Information System (INIS)

    Afridi, M. A.

    2012-01-01

    Damping of electromechanical oscillations in power systems is one of the major concerns in the operation of power system since many years. These oscillations cause improper of the power system incorporating losses. This thesis work presents the coordinated AVR+PSS structure, called the Desensitized four loops Regulator, designed to damp these oscillations in the power system. It is shown here that it is possible to transform the structure of this controller into any standard IEEE AVR+PSS structure. The AVR+PSS structure obtained through this structure is efficient to damp out many types of oscillations present in the Power system. These models are to be incorporated with the generator models to get a power system model with state feedback control. On simulating the system in Simulink with the controllers we have obtained the power system model with state feedback control and observed that how these controllers are helpful in damping the oscillations. (author)

  15. Nonlinear control of voltage source converters in AC-DC power system.

    Science.gov (United States)

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Thermal and stability considerations for a supercritical water-cooled fast reactor during power-raising phase of plant startup

    International Nuclear Information System (INIS)

    Cai, Jiejin; Ishiwatari, Yuki; Oka, Yoshiaki; Ikejiri, Satoshi

    2009-01-01

    This paper describes thermal analyses and linear stability analyses of the Supercritical Water-cooled Fast Reactor with 'two-path' flow scheme during the power-raising phase of plant startup. For thermal consideration, the same criterion of the maximum cladding surface temperature (MCST) as applied to the normal operating condition is used. For thermal-hydraulic stability consideration, the decay ratio of 0.5 is applied, which is taken from BWRs. Firstly, we calculated the flow rate distribution among the parallel flow paths from the reactor vessel inlet nozzles to the mixing plenum below the core using a system analysis code. The parallel flow paths consist of the seed fuel assemblies cooled by downward flow, the blanket fuel assemblies cooled by downward flow and the downcomer. Then, the MCSTs are estimated for various reactor powers and feedwater flow rates with system analyses. The decay ratios are estimated with linear stability analyses. The available range of the reactor power and feedwater flow rate to satisfy the thermal and stability criteria is obtained. (author)

  17. Stability Assessment of a System Comprising a Single Machine and Inverter with Scalable Ratings

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Yashen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Purba, Victor [University of Minnesota; Dhople, Sairaj [University of Minnesota

    2017-09-28

    From the inception of power systems, synchronous machines have acted as the foundation of large-scale electrical infrastructures and their physical properties have formed the cornerstone of system operations. However, power electronics interfaces are playing a growing role as they are the primary interface for several types of renewable energy sources and storage technologies. As the role of power electronics in systems continues to grow, it is crucial to investigate the properties of bulk power systems in low inertia settings. In this paper, we assess the properties of coupled machine-inverter systems by studying an elementary system comprised of a synchronous generator, three-phase inverter, and a load. Furthermore, the inverter model is formulated such that its power rating can be scaled continuously across power levels while preserving its closed-loop response. Accordingly, the properties of the machine-inverter system can be assessed for varying ratios of machine-to-inverter power ratings and, hence, differing levels of inertia. After linearizing the model and assessing its eigenvalues, we show that system stability is highly dependent on the interaction between the inverter current controller and machine exciter, thus uncovering a key concern with mixed machine-inverter systems and motivating the need for next-generation grid-stabilizing inverter controls.

  18. Sliding Mode Controller and Lyapunov Redesign Controller to Improve Microgrid Stability: A Comparative Analysis with CPL Power Variation

    Directory of Open Access Journals (Sweden)

    Eklas Hossain

    2017-11-01

    Full Text Available To mitigate the microgrid instability despite the presence of dense Constant Power Load (CPL loads in the system, a number of compensation techniques have already been gone through extensive research, proposed, and implemented around the world. In this paper, a storage based load side compensation technique is used to enhance stability of microgrids. Besides adopting this technique here, Sliding Mode Controller (SMC and Lyapunov Redesign Controller (LRC, two of the most prominent nonlinear control techniques, are individually implemented to control microgrid system stability with desired robustness. CPL power is then varied to compare robustness of these two control techniques. This investigation revealed the better performance of the LRC system compared to SMC to retain stability in microgrid with dense CPL load. All the necessary results are simulated in Matlab/Simulink platform for authentic verification. Reasons behind inferior SMC performance and ways to mitigate that are also discussed. Finally, the effectiveness of SMC and LRC systems to attain stability in real microgrids is verified by numerical analysis.

  19. Models for the transient stability of conventional power generating stations connected to low inertia systems

    Science.gov (United States)

    Zarifakis, Marios; Coffey, William T.; Kalmykov, Yuri P.; Titov, Sergei V.

    2017-06-01

    An ever-increasing requirement to integrate greater amounts of electrical energy from renewable sources especially from wind turbines and solar photo-voltaic installations exists and recent experience in the island of Ireland demonstrates that this requirement influences the behaviour of conventional generating stations. One observation is the change in the electrical power output of synchronous generators following a transient disturbance especially their oscillatory behaviour accompanied by similar oscillatory behaviour of the grid frequency, both becoming more pronounced with reducing grid inertia. This behaviour cannot be reproduced with existing mathematical models indicating that an understanding of the behaviour of synchronous generators, subjected to various disturbances especially in a system with low inertia requires a new modelling technique. Thus two models of a generating station based on a double pendulum described by a system of coupled nonlinear differential equations and suitable for analysis of its stability corresponding to infinite or finite grid inertia are presented. Formal analytic solutions of the equations of motion are given and compared with numerical solutions. In particular the new finite grid model will allow one to identify limitations to the operational range of the synchronous generators used in conventional power generation and also to identify limits, such as the allowable Rate of Change of Frequency which is currently set to ± 0.5 Hz/s and is a major factor in describing the volatility of a grid as well as identifying requirements to the total inertia necessary, which is currently provided by conventional power generators only, thus allowing one to maximise the usage of grid connected non-synchronous generators, e.g., wind turbines and solar photo-voltaic installations.

  20. Analysis, control and optimal operations in hybrid power systems advanced techniques and applications for linear and nonlinear systems

    CERN Document Server

    Bizon, Nicu; Mahdavi Tabatabaei, Naser

    2014-01-01

    This book explains and analyzes the dynamic performance of linear and nonlinear systems, particularly for Power Systems including Hybrid Power Sources. Offers a detailed description of system stability using state space energy conservation principle, and more.

  1. Aggregated Wind Park Models for Analysing Power System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Poeller, Markus; Achilles, Sebastian [DIgSILENT GmbH, Gomaringen (Germany)

    2003-11-01

    The increasing amount of wind power generation in European power systems requires stability analysis considering interaction between wind-farms and transmission systems. Dynamics introduced by dispersed wind generators at the distribution level can usually be neglected. However, large on- and offshore wind farms have a considerable influence to power system dynamics and must definitely be considered for analyzing power system dynamics. Compared to conventional power stations, wind power plants consist of a large number of generators of small size. Therefore, representing every wind generator individually increases the calculation time of dynamic simulations considerably. Therefore, model aggregation techniques should be applied for reducing calculation times. This paper presents aggregated models for wind parks consisting of fixed or variable speed wind generators.

  2. Development of high-stability magnet power supply

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W.S.; Kim, M.J.; Jeong, I.W. [Graduate School of Wind Energy, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 (Korea, Republic of); Kim, D.E. [Pohang Accelerator Laboratory, Pohang University of Science and Technology, 80 Jigokro-127-beongil, Nam-gu, Pohang, Gyeongbuk 37673 (Korea, Republic of); Park, H.C. [Graduate School of Wind Energy, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 (Korea, Republic of); Park, K.H. [Pohang Accelerator Laboratory, Pohang University of Science and Technology, 80 Jigokro-127-beongil, Nam-gu, Pohang, Gyeongbuk 37673 (Korea, Republic of)

    2016-06-21

    A very stable (≤10 ppm) magnet power supply (MPS) is required in an accelerator to achieve acceptable beam dynamics. Many factors affect the stability of an MPS, so design of the MPS requires much attention to noise-reduction schemes and to good processing of the signals from the feedback stage. This paper describes some design considerations for an MPS installed and operated in the Pohang Accelerator Laboratory: (1) control method, (2) oversampling technology, (3) ground isolation between hardware modules and (4) low-pass filter design to reduce the switching noise and rectifier ripple components, and shows the stability of three designed devices. The MPS design considerations were verified and validated in simulations and experiments. This paper also shows the relationship between stability and measurement aperture time of digital voltage meter 3458 A to measure stability of a current.

  3. Comparison among nonlinear excitation control strategies used for damping power system oscillations

    International Nuclear Information System (INIS)

    Leon, A.E.; Solsona, J.A.; Valla, M.I.

    2012-01-01

    Highlights: ► A description and comparison of nonlinear control strategies for synchronous generators are presented. ► Advantages of using nonlinear controllers are emphasized against the use of classical PSSs. ► We find that a particular selection of IDA gains achieve the same performance that FL controllers. - Abstract: This work is focused on the problem of power system stability. A thorough description of nonlinear control strategies for synchronous generator excitation, which are designed for damping oscillations and improving transient stability on power systems, is presented along with a detailed comparison among these modern strategies and current solutions based on power system stabilizers. The performance related to damping injection in each controller, critical time enhancement, robustness against parametric uncertainties, and control signal energy consumption is analyzed. Several tests are presented to validate discussions on various advantages and disadvantages of each control strategy.

  4. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2011-01-01

    presents a simulation model of a variable speed wind farm with permanent magnet synchronous generators (PMSGs) and fullscale back-to-back converters in the simulation tool of DIgSILENT/PowerFactory. In this paper, the impacts of wind shear and tower shadow effects on the small signal stability of power......Grid connected wind turbines are fluctuating power sources due to wind speed variations, the wind shear and the tower shadow effects. The fluctuating power may be able to excite the power system oscillation at a frequency close to the natural oscillation frequency of a power system. This paper...... systems with large scale wind power penetrations are investigated during continuous operation based on the wind turbine model and the power system model....

  5. Making the Spoon: Analyzing and Employing Stability Power in Counterinsurgency Operations

    Science.gov (United States)

    2007-05-11

    GWOT then organizations that are best suited to 115On a Maslow’s Scale of Physiological, Safety, Love, Esteem , and Self Actualization essential services...Economic Effects of 9/11:A Retrospective Assessment. Report to Congress: Specialist in Economic Policy, 2002. Maslow , Abraham H., and Robert Frager...Stability Power: The Requirement of Self Securing Elements of National Introducing Stability Power

  6. Grid synchronization for advanced power processing and FACTS in wind power systems

    DEFF Research Database (Denmark)

    Luna, A.; Rocabert, J.; Vazquez, G.

    2010-01-01

    The high penetration of wind power systems in the electrical network has introduced new issues in the stability and transient operation of the grid. By means of providing advanced functionalities to the existing power converters of such power plants it is possible to enhance their performance...... and also to support the grid operation, as the new grid codes demand. The connection of FACTS based on power converters, such as STATCOMs, are also contributing to the integration of renewable energies improving their behavior under contingencies. However, in both cases it is needed to have a grid voltage...

  7. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    International Nuclear Information System (INIS)

    Chen Junjie; Li Guoqiang; Qian Jinping; Liu Zixi

    2012-01-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta β N limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power P t increases as the toroidal magnetic field B T or the normalized beta β N is increased. (magnetically confined plasma)

  8. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    Science.gov (United States)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  9. Uniform stability for time-varying infinite-dimensional discrete linear systems

    International Nuclear Information System (INIS)

    Kubrusly, C.S.

    1988-09-01

    Stability for time-varying discrete linear systems in a Banach space is investigated. On the one hand, it established a fairly complete collection of necessary and sufficient conditions for uniform asymptotic equistability for input-free systems. This includes uniform and strong power equistability, and uniform and strong l p -equistability, among other technical conditions which also play essential role in stability theory. On other hand, it is shown that uniform asymptotic equistability for input-free systems is equivalent to each of the following concepts of uniform stability for forced systems: l p -input l p -state, c o -input c o -state, bounded-input bounded-state, l p>1 -input bounded-state, c sub (o)-input bounded-state, and convergent-input bounded-state; which are also equivalent to their nonuniform counterparts. For time-varying convergent systems, the above is also equivalent to convergent-input convergent-state stability. The proofs presented here are all ''elementary'' in the sense that they are based essentially only on the Banach-Steinhaus theorem. (autor) [pt

  10. PSS and TCSC damping controller coordinated design using PSO in multi-machine power system

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Safari, A.; Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-12-15

    The paper develops a new design procedure for simultaneous coordinated designing of the thyristor controlled series capacitor (TCSC) damping controller and power system stabilizer (PSS) in multi-machine power system. The coordinated design problem of PSS and TCSC damping controllers over a wide range of loading conditions is converted to an optimization problem with the time domain-based objective function that is solved by a particle swarm optimization (PSO) technique which has a strong ability to find the most optimistic results. By minimizing the proposed fitness function in which oscillatory characteristics between areas are included and thus the interactions among the TCSC controller and PSS under transient conditions in the multi-machine power system are improved. To ensure the robustness of the proposed stabilizers, the design process takes a wide range of operating conditions into account. The effectiveness of the proposed controller is demonstrated through the nonlinear time-domain simulation and some performance indices studies. The results of these studies show that the proposed coordinated controllers have an excellent capability in damping power system inter-area oscillations and enhance greatly the dynamic stability of the power system. Moreover, it is superior to both the uncoordinated designed stabilizers of the PSS and the TCSC damping controller.

  11. A new approach for optimum DG placement and sizing based on voltage stability maximization and minimization of power losses

    International Nuclear Information System (INIS)

    Aman, M.M.; Jasmon, G.B.; Bakar, A.H.A.; Mokhlis, H.

    2013-01-01

    Highlights: • A new algorithm is proposed for optimum DG placement and sizing.• I 2 R losses minimization and voltage stability maximization is considered in fitness function.• Bus voltage stability and line stability is considered in voltage stability maximization.• Multi-objective PSO is used to solve the problem.• Proposed method is compared with analytical and grid search algorithm. - Abstract: Distributed Generation (DG) placement on the basis of minimization of losses and maximization of system voltage stability are two different approaches, discussed in research. In the new proposed algorithm, a multi-objective approach is used to combine the both approaches together. Minimization of power losses and maximization of voltage stability due to finding weakest voltage bus as well as due to weakest link in the system are considered in the fitness function. Particle Swarm Optimization (PSO) algorithm is used in this paper to solve the multi-objective problem. This paper will also compare the propose method with existing DG placement methods. From results, the proposed method is found more advantageous than the previous work in terms of voltage profile improvement, maximization of system loadability, reduction in power system losses and maximization of bus and line voltage stability. The results are validated on 12-bus, 30-bus, 33-bus and 69-bus radial distribution networks and also discussed in detailed

  12. A self-adaptive thermal switch array for rapid temperature stabilization under various thermal power inputs

    International Nuclear Information System (INIS)

    Geng, Xiaobao; Patel, Pragnesh; Narain, Amitabh; Meng, Dennis Desheng

    2011-01-01

    A self-adaptive thermal switch array (TSA) based on actuation by low-melting-point alloy droplets is reported to stabilize the temperature of a heat-generating microelectromechanical system (MEMS) device at a predetermined range (i.e. the optimal working temperature of the device) with neither a control circuit nor electrical power consumption. When the temperature is below this range, the TSA stays off and works as a thermal insulator. Therefore, the MEMS device can quickly heat itself up to its optimal working temperature during startup. Once this temperature is reached, TSA is automatically turned on to increase the thermal conductance, working as an effective thermal spreader. As a result, the MEMS device tends to stay at its optimal working temperature without complex thermal management components and the associated parasitic power loss. A prototype TSA was fabricated and characterized to prove the concept. The stabilization temperatures under various power inputs have been studied both experimentally and theoretically. Under the increment of power input from 3.8 to 5.8 W, the temperature of the device increased only by 2.5 °C due to the stabilization effect of TSA

  13. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.

    Science.gov (United States)

    Karra, Udayarka; Huang, Guoxian; Umaz, Ridvan; Tenaglier, Christopher; Wang, Lei; Li, Baikun

    2013-09-01

    A novel and robust distributed benthic microbial fuel cell (DBMFC) was developed to address the energy supply issues for oceanographic sensor network applications, especially under scouring and bioturbation by aquatic life. Multi-anode/cathode configuration was employed in the DBMFC system for enhanced robustness and stability in the harsh ocean environment. The results showed that the DBMFC system achieved peak power and current densities of 190mW/m(2) and 125mA/m(2) respectively. Stability characterization tests indicated the DBMFC with multiple anodes achieved higher power generation over the systems with single anode. A computational model that integrated physical, electrochemical and biological factors of MFCs was developed to validate the overall performance of the DBMFC system. The model simulation well corresponded with the experimental results, and confirmed the hypothesis that using a multi anode/cathode MFC configuration results in reliable and robust power generation. Published by Elsevier Ltd.

  14. Transient phenomena in electrical power systems

    CERN Document Server

    Venikov, V A; Higinbotham, W

    1964-01-01

    Electronics and Instrumentation, Volume 24: Transient Phenomena in Electrical Power Systems presents the methods for calculating the stability and the transient behavior of systems with forced excitation control. This book provides information pertinent to the analysis of transient phenomena in electro-mechanical systems.Organized into five chapters, this volume begins with an overview of the principal requirements in an excitation system. This text then explains the electromagnetic and electro-mechanical phenomena, taking into account the mutual action between the components of the system. Ot

  15. A new power supply for superconductive magnetic energy storage system

    International Nuclear Information System (INIS)

    Karady, G.G.; Han, B.M.

    1992-01-01

    In this paper a new power supply for a superconductive magnetic energy storage system, which permits a fast independent regulation of the active and reactive power, is presented. The power supply is built with several units connected in parallel. Each unit consists of a 24-pulse bridge converter, thyristor-switched tap-changing transformer, and thyristor-switched capacitor bank. Its system operation is analyzed by computer simulation and a feasible system realization is shown. A superconductive magnetic energy storage system with the proposed power supply has the capability of leveling the load variation, damping the low-frequency oscillation, and improving the transient stability in the power system. This power supply can be built with commercially available components using well-proven technologies

  16. Impacts of large-scale offshore wind farm integration on power systems through VSC-HVDC

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe

    2013-01-01

    The potential of offshore wind energy has been commonly recognized and explored globally. Many countries have implemented and planned offshore wind farms to meet their increasing electricity demands and public environmental appeals, especially in Europe. With relatively less space limitation......, an offshore wind farm could have a capacity rating to hundreds of MWs or even GWs that is large enough to compete with conventional power plants. Thus the impacts of a large offshore wind farm on power system operation and security should be thoroughly studied and understood. This paper investigates...... the impacts of integrating a large-scale offshore wind farm into the transmission system of a power grid through VSC-HVDC connection. The concerns are focused on steady-state voltage stability, dynamic voltage stability and transient angle stability. Simulation results based on an exemplary power system...

  17. Power system integration and control of variable speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Eek, Jarle

    2009-12-15

    A wind power plant is a highly dynamic system that dependent on the type of technology requires a number of automatic control loops. This research deals with modelling, control and analysis related to power system integration of variable speed, pitch controlled wind turbines. All turbine components have been modelled and implemented in the power system simulation program SIMPOW, and a description of the modelling approach for each component is given. The level of model detail relates to the classical modelling of power system components for power system stability studies, where low frequency oscillations are of special importance. The wind turbine model includes a simplified representation of the developed rotor torque and the thrust force based on C{sub p-} and C{sub t} characteristic curves. The mechanical system model represents the fundamental torsional mode and the first mode of blades and tower movements. Two generator technologies have been investigated. The doubly fed induction generator (DFIG) and the stator converter interfaced permanent magnet synchronous generator (PMSG). A simplified model of a 2 level voltage source converter is used for both machine types. The generator converter controllers have been given special attention. All model components are linearized for the purpose of control system design and power system interaction related to small signal stability analysis. Different control strategies discussed in the literature have been investigated with regard to power system interaction aspects. All control parameters are identified using the internal model control approach. The analysis is focused on three main areas: 1. Identification of low damped oscillatory modes. This is carried out by the establishment and discussion of wind turbine modelling. 2. Interaction between control loops. A systematic approach is presented in order to analyse the influence of control loops used in variable speed wind turbines. 3.Impact on power system performance

  18. Real-time transient stabilization and voltage regulation of power generators with unknown mechanical power input

    International Nuclear Information System (INIS)

    Kenne, Godpromesse; Goma, Raphael; Nkwawo, Homere; Lamnabhi-Lagarrigue, Francoise; Arzande, Amir; Vannier, Jean Claude

    2010-01-01

    A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.

  19. Real-time transient stabilization and voltage regulation of power generators with unknown mechanical power input

    Energy Technology Data Exchange (ETDEWEB)

    Kenne, Godpromesse, E-mail: gokenne@yahoo.co [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun (Cameroon); Goma, Raphael, E-mail: raphael.goma@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere, E-mail: homere.nkwawo@iutv.univ-paris13.f [Departement GEII, Universite Paris XIII, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Lamnabhi-Lagarrigue, Francoise, E-mail: lamnabhi@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Arzande, Amir, E-mail: Amir.arzande@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Vannier, Jean Claude, E-mail: Jean-claude.vannier@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)

    2010-01-15

    A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.

  20. Development of the Technologies for Stabilization Treatment of the Water of the Recycling Cooling Systems at Thermal Power Plants

    Science.gov (United States)

    Vlasov, S. M.; Chichirova, N. D.; Chichirov, A. A.; Vlasova, A. Yu.; Filimonova, A. A.; Prosvirnina, D. V.

    2018-02-01

    A turbine-condensate cooling system is one of the less stable and most hard-to-control systems of maintaining optimal water chemistry. A laboratory recycling cooling water test facility, UVO-0.3, was developed for physical simulation of innovative zero-discharge water chemistry conditions and improvement of technological flowcharts of stabilization treatment of the initial and circulating water of the recycling cooling systems at thermal power plants. Experiments were conducted in the UVO-0.3 facility to investigate the processes that occur in the recycling water supply system and master new technologies of stabilization of the initial and circulating water. It is shown that, when using untreated initial water, scaling cannot be prevented even under low concentration levels. The main reason for the activation of scale depositing is the desorption of carbon dioxide that results in alkalization of the circulating water and, as a consequence, a displacement of the chemical reaction equilibrium towards the formation of slightly soluble hardness ions. Some techniques, viz., liming and alkalization of the initial water and the by-pass treatment of the circulating water, are considered. New engineering solutions have been developed for reducing the amount of scale-forming substances in the initial and circulating water. The best results were obtained by pretreating the initial water with alkalizing agents and simultaneously bypassing and treating part of the circulating water. The obtained experimental data underlie the process flowcharts of stabilization treatment of the initial and circulating TPP water that ensure scale-free and noncorrosive operation and meet the corresponding environmental requirements. Under the bypassing, the specific rates of the agents and the residual hardness are reduced compared with the conventional pretreatment.

  1. Robust SMES controller design for stabilization of inter-area oscillation considering coil size and system uncertainties

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai

    2010-01-01

    It is well known that the superconducting magnetic energy storage (SMES) is able to quickly exchange active and reactive power with the power system. The SMES is expected to be the smart storage device for power system stabilization. Although the stabilizing effect of SMES is significant, the SMES is quite costly. Particularly, the superconducting magnetic coil size which is the essence of the SMES, must be carefully selected. On the other hand, various generation and load changes, unpredictable network structure, etc., cause system uncertainties. The power controller of SMES which is designed without considering such uncertainties, may not tolerate and loses stabilizing effect. To overcome these problems, this paper proposes the new design of robust SMES controller taking coil size and system uncertainties into account. The structure of the active and reactive power controllers is the 1st-order lead-lag compensator. No need for the exact mathematical representation, system uncertainties are modeled by the inverse input multiplicative perturbation. Without the difficulty of the trade-off of damping performance and robustness, the optimization problem of control parameters is formulated. The particle swarm optimization is used for solving the optimal parameters at each coil size automatically. Based on the normalized integral square error index and the consideration of coil current constraint, the robust SMES with the smallest coil size which still provides the satisfactory stabilizing effect, can be achieved. Simulation studies in the two-area four-machine interconnected power system show the superior robustness of the proposed robust SMES with the smallest coil size under various operating conditions over the non-robust SMES with large coil size.

  2. Robust SMES controller design for stabilization of inter-area oscillation considering coil size and system uncertainties

    Science.gov (United States)

    Ngamroo, Issarachai

    2010-12-01

    It is well known that the superconducting magnetic energy storage (SMES) is able to quickly exchange active and reactive power with the power system. The SMES is expected to be the smart storage device for power system stabilization. Although the stabilizing effect of SMES is significant, the SMES is quite costly. Particularly, the superconducting magnetic coil size which is the essence of the SMES, must be carefully selected. On the other hand, various generation and load changes, unpredictable network structure, etc., cause system uncertainties. The power controller of SMES which is designed without considering such uncertainties, may not tolerate and loses stabilizing effect. To overcome these problems, this paper proposes the new design of robust SMES controller taking coil size and system uncertainties into account. The structure of the active and reactive power controllers is the 1st-order lead-lag compensator. No need for the exact mathematical representation, system uncertainties are modeled by the inverse input multiplicative perturbation. Without the difficulty of the trade-off of damping performance and robustness, the optimization problem of control parameters is formulated. The particle swarm optimization is used for solving the optimal parameters at each coil size automatically. Based on the normalized integral square error index and the consideration of coil current constraint, the robust SMES with the smallest coil size which still provides the satisfactory stabilizing effect, can be achieved. Simulation studies in the two-area four-machine interconnected power system show the superior robustness of the proposed robust SMES with the smallest coil size under various operating conditions over the non-robust SMES with large coil size.

  3. Contingency management of power system with Interline Power Flow Controller using Real Power Performance Index and Line Stability Index

    Directory of Open Access Journals (Sweden)

    Akanksha Mishra

    2016-03-01

    Full Text Available As a result of privatization of the electrical industry the power transmission lines have to transfer power at their maximum transmission limits because of the competitive scenario of the electrical market. Hence, secured operation of power system has become one of the most important issues of modern era. In this paper, a probability of severity based placement strategy for Interline Power Flow Controller (IPFC has been proposed based on Composite Severity Index (CSI. The composite severity index provides an exact measure of stress in the line in terms of mega watt overloading and voltage instability. IPFC is placed on the line which has the highest probability of severity during the occurrence of different outages. The IPFC has been tuned for a multi-objective function using Differential Evolution (DE and the results have been compared with genetic Algorithm (GA. To verify the proposed method, it has been tested and implemented on IEEE 14 and 57 bus systems.

  4. High-Performance Constant Power Generation in Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    An advanced power control strategy by limiting the maximum feed-in power of PV systems has been proposed, which can ensure a fast and smooth transition between maximum power point tracking and Constant Power Generation (CPG). Regardless of the solar irradiance levels, high-performance and stable...... operation are always achieved by the proposed control strategy. It can regulate the PV output power according to any set-point, and force the PV systems to operate at the left side of the maximum power point without stability problems. Experimental results have verified the effectiveness of the proposed CPG...

  5. Observability and Decision Support for Supervision of Distributed Power System Control

    DEFF Research Database (Denmark)

    Pertl, Michael

    in NorthernCalifornia. Two possible applications of the model are presented: peak reduction compared to uncontrolled charging, and an energy arbitrage scenario. Overall, it is shown that a combination of classical and innovative approaches can contribute to improved situation awareness of control room...... operational information, relevant to the current grid condition, need to be developed. This dissertation covers three areas where specific challenges for improved observability and decision support in future control rooms are addressed: Classical large power system stability issues, innovative data......-network-based approach for real-time voltage estimation in active distribution grids, and a modeling approach to harness the flexibility of an aggregation of electric vehicles. For improved monitoring and maintaining power system stability, a decision support tool for transient stability preventive control, based...

  6. On Stability Enhancement in AC/DC Power Systems through Multi-terminal HVDC Controllers

    NARCIS (Netherlands)

    Kotb, O.

    2018-01-01

    Due to the increasing share of renewable energy sources in modern power systems and electricity market deregulation, heavy inter-regional and cross-border power flows are becoming a commonplace in system operation. Moreover, largescale integration of renewable energy sources is expected to pace up,

  7. Integrated systems for power plant cooling and wastewater management

    International Nuclear Information System (INIS)

    Haith, D.A.

    1975-01-01

    The concept of integrated management of energy and water resources, demonstrated in hydropower development, may be applicable to steam-generated power, also. For steam plants water is a means of disposing of a waste product, which is unutilized energy in the form of heat. One framework for the evolution of integrated systems is the consideration of possible technical linkages between power plant cooling and municipal wastewater management. Such linkages include the use of waste heat as a mechanism for enhancing wastewater treatment, the use of treated wastewater as make-up for evaporative cooling structures, and the use of a pond or reservoir for both cooling and waste stabilization. This chapter reports the results of a systematic evaluation of possible integrated systems for power plant cooling and waste water management. Alternatives were analyzed for each of three components of the system--power plant cooling (condenser heat rejection), thermally enhanced waste water treatment, and waste water disposal. Four cooling options considered were evaporative tower, open cycle, spray pond, and cooling pond. Three treatment alternatives considered were barometric condenser-activated sludge, sectionalized condenser-activated sludge, and cooling/stabilization pond. Three disposal alternatives considered were ocean discharge, land application (spray irrigation), and make-up (for evaporative cooling). To facilitate system comparisons, an 1100-MW nuclear power plant was selected. 31 references

  8. Added values of photovoltaic power systems

    International Nuclear Information System (INIS)

    2001-03-01

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20 th century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  9. Added values of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-15

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20{sup th} century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  10. Coupled energy and reactive power market clearing considering power system security

    International Nuclear Information System (INIS)

    Rabiee, Abdorreza; Shayanfar, Heidarali; Amjady, Nima

    2009-01-01

    In a deregulated environment, when talking about electricity markets, one usually refers to energy market, paying less attention to the reactive power market. Active and reactive powers are, however, coupled through the AC power flow equations and branch loading limits as well as the synchronous generators capability curves. However, the sequential approach for energy and reactive power markets cannot present the optimal solution due to the interactions between these markets. For instance, clearing of the reactive power market can change active power dispatch (e.g. due to a change of transmission system losses and the capability curve limitation), which can lead to degradation of the energy market clearing point. This paper presents a coupled day ahead energy and reactive power market based on the pay-at-MCP settlement mechanism. Besides, the proposed coupled framework considers voltage stability and security issues and branch loading limits. The coupled market is cleared through optimal power flow (OPF). Its objective function includes total payment of generating units for their active power production along with the total payment function (TPF) of units for their reactive power compensation. Moreover, lost opportunity cost (LOC) of the units is also considered. The effectiveness of the proposed framework is examined on the IEEE 24 bus Reliability Test System

  11. Coupled energy and reactive power market clearing considering power system security

    Energy Technology Data Exchange (ETDEWEB)

    Rabiee, Abdorreza; Shayanfar, Heidarali [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran (Iran); Amjady, Nima [Department of Electrical Engineering, Semnan University, Semnan (Iran)

    2009-04-15

    In a deregulated environment, when talking about electricity markets, one usually refers to energy market, paying less attention to the reactive power market. Active and reactive powers are, however, coupled through the AC power flow equations and branch loading limits as well as the synchronous generators capability curves. However, the sequential approach for energy and reactive power markets cannot present the optimal solution due to the interactions between these markets. For instance, clearing of the reactive power market can change active power dispatch (e.g. due to a change of transmission system losses and the capability curve limitation), which can lead to degradation of the energy market clearing point. This paper presents a coupled day ahead energy and reactive power market based on the pay-at-MCP settlement mechanism. Besides, the proposed coupled framework considers voltage stability and security issues and branch loading limits. The coupled market is cleared through optimal power flow (OPF). Its objective function includes total payment of generating units for their active power production along with the total payment function (TPF) of units for their reactive power compensation. Moreover, lost opportunity cost (LOC) of the units is also considered. The effectiveness of the proposed framework is examined on the IEEE 24 bus Reliability Test System. (author)

  12. Trapped particle stability for the kinetic stabilizer

    Science.gov (United States)

    Berk, H. L.; Pratt, J.

    2011-08-01

    A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favourable field-line curvature exists. The window of operation is determined for achieving magnetohydrodynamic (MHD) stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analysed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic-stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore, a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabilizer to the central region.

  13. Power system distributed oscilation detection based on Synchrophasor data

    Science.gov (United States)

    Ning, Jiawei

    Along with increasing demand for electricity, integration of renewable energy and deregulation of power market, power industry is facing unprecedented challenges nowadays. Within the last couple of decades, several serious blackouts have been taking place in United States. As an effective approach to prevent that, power system small signal stability monitoring has been drawing more interests and attentions from researchers. With wide-spread implementation of Synchrophasors around the world in the last decade, power systems real-time online monitoring becomes much more feasible. Comparing with planning study analysis, real-time online monitoring would benefit control room operators immediately and directly. Among all online monitoring methods, Oscillation Modal Analysis (OMA), a modal identification method based on routine measurement data where the input is unmeasured ambient excitation, is a great tool to evaluate and monitor power system small signal stability. Indeed, high sampling Synchrophasor data around power system is fitted perfectly as inputs to OMA. Existing methods in OMA for power systems are all based on centralized algorithms applying at control centers only; however, with rapid growing number of online Synchrophasors the computation burden at control centers is and will be continually exponentially expanded. The increasing computation time at control center compromises the real-time feature of online monitoring. The communication efforts between substation and control center will also be out of reach. Meanwhile, it is difficult or even impossible for centralized algorithms to detect some poorly damped local modes. In order to avert previous shortcomings of centralized OMA methods and embrace the new changes in the power systems, two new distributed oscillation detection methods with two new decentralized structures are presented in this dissertation. Since the new schemes brought substations into the big oscillation detection picture, the proposed

  14. Electrical Grid Stability Enhancement using Smart Home Frequency-response Grid -Friendly Appliance System

    Directory of Open Access Journals (Sweden)

    Muawiya A. Kaigama

    2016-03-01

    Full Text Available Load shedding is a powerful scheme used for corrective and preventive measures; corrective to restore system’s stability and preventive to avoid catastrophic failure. However, the affected end users are deprived of power supply absolutely with no choice. This paper presents the design, development, feasibility and merits of Frequency-response Grid -Friendly Appliance System (FRGFAS in a smart home. FRGFAS is a decentralized Adaptive Load Shaving(ALS device that supports grid’s system stability by sensing grid’s frequency deterioration level and turns ON/OFF loads accordingly. The FRGFAS permits end users to carry out load shaving at their scale of preference in smart homes via flexible demand responses and automates outdoor lighting to optimum operational hours. FRGFAS obviate load shedding by shaving loads whenever the system is in distress and reset loads supply to the normal state when it stabilizes, this Consequently increases the end user comfort zone and averts a blackout.

  15. POWER STABILITY MONITORING BASED ON VOLTAGE INSTABILITY PREDICTION APPROACH THROUGH WIDE AREA SYSTEM

    OpenAIRE

    H. H. Goh; Q. S. Chua; S. W. Lee; B. C. Kok; K. C. Goh; K. T.K. Teo

    2014-01-01

    Nowadays, power systems are being forced to operate closer to its security limit due to current economic growth and the difficulties to upgrade the existing grid infrastructure. With the sudden increment of power demand, voltage instability problem has become a main concern to the power system operator because voltage instability has led or crucially contributed to some major blackouts throughout the world. Hence, methods for early warning and early prevention are required to prevent the powe...

  16. Electrohydrodynamic stability of two stratified power law liquid in couette flow

    International Nuclear Information System (INIS)

    Eldabe, N.T.

    1988-01-01

    Consideration is given to the stability of the flow of two power law liquids under the influence of normal electric field between two infinite parallel planes when one of the planes moves with constant velocity in its own plane. It is found that the electric fields have a dramatic effect and can be chosen to stabilize or destabilize the flow. The effects of the power law parameters on the problem are examinated

  17. Dynamic multi-stage dispatch of isolated wind–diesel power systems

    DEFF Research Database (Denmark)

    Hu, Yu; Morales González, Juan Miguel; Pineda, Salvador

    2015-01-01

    -stage decision-making model is proposed to determine the diesel power output that minimizes the cost of running and maintaining the wind–diesel power system. Optimized operational decisions for each time period are generated dynamically considering the path-dependent nature of the optimal dispatch policy, given......An optimal dispatch strategy is crucial for an isolated wind–diesel power system to save diesel fuel and maintain the system stability. The uncertainty associated with the stochastic character of the wind is, though, a challenging problem for this optimization. In this paper, a dynamic multi...

  18. Finite-time output feedback stabilization of high-order uncertain nonlinear systems

    Science.gov (United States)

    Jiang, Meng-Meng; Xie, Xue-Jun; Zhang, Kemei

    2018-06-01

    This paper studies the problem of finite-time output feedback stabilization for a class of high-order nonlinear systems with the unknown output function and control coefficients. Under the weaker assumption that output function is only continuous, by using homogeneous domination method together with adding a power integrator method, introducing a new analysis method, the maximal open sector Ω of output function is given. As long as output function belongs to any closed sector included in Ω, an output feedback controller can be developed to guarantee global finite-time stability of the closed-loop system.

  19. Robustness Area Technique Developing Guidelines for Power System Restoration

    Directory of Open Access Journals (Sweden)

    Paulo Murinelli Pesoti

    2017-01-01

    Full Text Available This paper proposes a novel energy based technique called the Robustness Area (RA technique that measures power system robustness levels, as a helper for planning Power System Restorations (PSRs. The motivation is on account of the latest blackouts in Brazil, where the local Independent System Operator (ISO encountered difficulties related to circuit disconnections during the restoration. The technique identifies vulnerable and robust buses, pointing out system areas that should be firstly reinforced during PSR, in order to enhance system stability. A Brazilian power system restoration area is used to compare the guidelines adopted by the ISO with a more suitable new plan indicated by the RA tool. Active power and reactive power load margin and standing phase angle show the method efficiency as a result of a well balanced system configuration, enhancing the restoration performance. Time domain simulations for loop closures and severe events also show the positive impact that the proposed tool brings to PSRs.

  20. Design of a powered elevator control system. [powered elevator system for modified C-8A aircraft for STOL operation

    Science.gov (United States)

    Glende, W. L. B.

    1974-01-01

    The design, fabrication and flight testing of a powered elevator system for the Augmentor Wing Jet STOL Research Aircraft (AWJSRA or Mod C-8A) are discussed. The system replaces a manual spring tab elevator control system that was unsatisfactory in the STOL flight regime. Pitch control in the AWJSRA is by means of a single elevator control surface. The elevator is used for both maneuver and trim control as the stabilizer is fixed. A fully powered, irreversible flight control system powered by dual hydraulic sources was designed. The existing control columns and single mechanical cable system of the AWJSRA have been retained as has been the basic elevator surface, except that the elevator spring tab is modified into a geared balance tab. The control surface is directly actuated by a dual tandem moving body actuator. Control signals are transmitted from the elevator aft quadrant to the actuator by a linkage system that includes a limited authority series servo actuator.

  1. High-powered, solid-state rf systems

    International Nuclear Information System (INIS)

    Reid, D.W.

    1987-01-01

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at uhf and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency ranges from 3000 to 10,000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10,000 MHz. Information regarding power levels, size, weight, and cost will be given. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture will be discussed. Solid-stage rf amplifier susceptibility to radiation damage will also be examined

  2. Primary frequency regulation supported by battery storage systems in power systems dominated by renewable energy sources

    DEFF Research Database (Denmark)

    Turk, Ana; Sandelic, Monika; Noto, Giancarlo

    2018-01-01

    replaced by intermittent renewable generators. Therefore, maintaining system quality and stability in terms of power system frequency control is one of the major challenges that requires new resources and their system integration. Battery energy storage systems (BESS), as fast-acting energy storage systems...

  3. Comparative study of popular objective functions for damping power system oscillations in multimachine system.

    Science.gov (United States)

    Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A

    2014-01-01

    Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.

  4. Power control method on VSC-HVDC in a hybrid multi-infeed HVDC system

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2012-01-01

    Multi-infeed HVDC (MIDC) system connected with VSC-HVDC links and LCC-HVDC links is a new structure in modern power systems, which can be called hybrid multi-infeed HVDC (HMIDC) system. The paper presents the voltage stability analysis of a HMIDC system modeled from a possible future Danish power...

  5. Stabilization and control of tie-line power flow of microgrid including wind generation by distributed energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Molina, M.G.; Mercado, P.E. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste 1109, J5400ARL San Juan (Argentina)

    2010-06-15

    High penetration of wind generation in electrical microgrids causes fluctuations of tie-line power flow and significantly affects the power system operation. This can lead to severe problems, such as system frequency oscillations, and/or violations of power lines capability. With proper control, a distribution static synchronous compensator (DSTATCOM) integrated with superconducting magnetic energy storage (SMES) is able to significantly enhance the dynamic security of the power system. This paper proposes the use of a SMES system in combination with a DSTATCOM as effective distributed energy storage (DES) for stabilization and control of the tie-line power flow of microgrids incorporating wind generation. A new detailed model of the integrated DSTATCOM-SMES device is derived and a novel three-level control scheme is designed. The dynamic performance of the proposed control schemes is fully validated using MATLAB/Simulink. (author)

  6. Quantifying Stability in Complex Networks: From Linear to Basin Stability

    Science.gov (United States)

    Kurths, Jürgen

    The human brain, power grids, arrays of coupled lasers and the Amazon rainforest are all characterized by multistability. The likelihood that these systems will remain in the most desirable of their many stable states depends on their stability against significant perturbations, particularly in a state space populated by undesirable states. Here we claim that the traditional linearization-based approach to stability is in several cases too local to adequately assess how stable a state is. Instead, we quantify it in terms of basin stability, a new measure related to the volume of the basin of attraction. Basin stability is non-local, nonlinear and easily applicable, even to high-dimensional systems. It provides a long-sought-after explanation for the surprisingly regular topologies of neural networks and power grids, which have eluded theoretical description based solely on linear stability. Specifically, we employ a component-wise version of basin stability, a nonlinear inspection scheme, to investigate how a grid's degree of stability is influenced by certain patterns in the wiring topology. Various statistics from our ensemble simulations all support one main finding: The widespread and cheapest of all connection schemes, namely dead ends and dead trees, strongly diminish stability. For the Northern European power system we demonstrate that the inverse is also true: `Healing' dead ends by addition of transmission lines substantially enhances stability. This indicates a crucial smart-design principle for tomorrow's sustainable power grids: add just a few more lines to avoid dead ends. Further, we analyse the particular function of certain network motifs to promote the stability of the system. Here we uncover the impact of so-called detour motifs on the appearance of nodes with a poor stability score and discuss the implications for power grid design. Moreover, it will be shown that basin stability enables uncovering the mechanism for explosive synchronization and

  7. A simple levitation system using wireless power supply system and Lorentz force

    International Nuclear Information System (INIS)

    Oka, Koichi; Tanaka, Masako

    2016-01-01

    A new type of magnetic levitation mechanism has been proposed. The feature of this mechanism is using wireless power supply system and Lorentz forces for levitation. The stability of levitation is performed by passive control by magnetic flux configuration between permanent magnets and active control of electromagnets. In this paper, the concept of levitation mechanism is introduced, FEM analyses for levitation force and wireless power supply performance is examined. In concept two types of levitation systems which are different on the point of active control directions are introduced. In FEM analyses, the required current for levitation and the directions of generating forces are calculated. In the study of wireless power supply system, the required voltage for the levitation is expected. Finally the feasibility of the proposed levitation system will be verified. (paper)

  8. DSP control of photovoltaic power generation system adding the function of shunt active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Seo, H.-R.; Kim, K.-H.; Park, Y.-G.; Park, M.; Yu, I.-K. [Changwon National Univ., SarimDong (Korea, Republic of). Dept. of Electrical Engineering

    2007-07-01

    The growing number of power electronics-based equipment has created a problem on the quality of electric power supply since both high power industrial loads and domestic loads cause harmonics in the network voltage. Power quality problems can occur in the system or can be caused by the consumer. Active filter (AF) is widely used to compensate current harmonics and/or current imbalance of harmonic-producing loads. The power output of a photovoltaic (PV) system is directly affected by weather conditions. When alternating current (AC) power supply is required, power conversion by an inverter and an MPPT control is necessary. The proliferation of nonlinear loads such as inverter of PV power generation system can be treated as a harmonic source for the power distribution system. As such, the PV system combined with the function of the active filter system can be useful for the application in power distribution systems. This paper described a PV-AF system using DSP to prove that it is possible to combine AF theory to the three phase PV system connected to utility and verify it through experimental results. The paper described the control method of the PV-AF system, with reference to the photovoltaic power generation system, shunt active filter and PV-AF system. The experimental set-up was also presented. A laboratory system was designed and constructed to confirm the viability of the proposed PV-AF system. The test results revealed the stability and effectiveness of the proposed PV-AF system. 12 refs., 1 tabs., 12 figs.

  9. Evaluation and tuning of control algorithms for power system stabilizers; Evaluacion y sintonizacion de algoritmos de control para el estabilizador de sistemas de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Gonzalez, Miguel

    1998-08-01

    A procedure based on the phase compensation technique for tuning satisfactorily lead-lag power system stabilizers (PSS) is presented in this work. This procedure can be applied to standard models of PSS`s (with two phase compensation stages) where rotor speed deviation or an equivalent rotor speed signal is used as input. An analysis of several state of the art advanced control schemes is also presented, which are proposed for overcoming the limitations of conventional fixed parameters PSS`s. The advantages and drawbacks in designing certain types of PSS`s which are based on adaptive control, fuzzy logic and neural networks techniques are investigated. Based on this study, and taking into account the highly complex and non-linear nature of power systems, a fuzzy logic PSS is designed. In order to have good damping characteristics, speed deviation ({Delta}{omega}) of a machine and its acceleration ({Delta}{omega}) are chosen as the input signals to the fuzzy stabilizer of that particular machine. The performance of the lead-lag PSS and fuzzy stabilizer are validated through the simulation of two case studies: a single machine-infinite bus system, and a multimachine power system. All simulations were performed using a tool based on algorithms developed in MATLAB for the study of power system stability. [Espanol] Se presenta un procedimiento basado en la tecnica de compensacion de fase para ajustar en forma satisfactoria los parametros de los estabilizadores de sistemas de potencia (ESP) del tipo de adelanto-atraso. Este procedimiento es aplicable a modelos estandar de ESP`s (con dos redes de compensacion de fase) que utilizan como senal de entrada la velocidad del rotor del generador en cuestion, o una senal de velocidad equivalente. Por otra parte, se realiza un estudio de diversos esquemas de control avanzado del ESP que se proponen en la literatura actual para superar las limitantes de los estabilizadores convencionales. Basicamente, se analizan las ventajas y

  10. Stability and Control of Large-Scale Dynamical Systems A Vector Dissipative Systems Approach

    CERN Document Server

    Haddad, Wassim M

    2011-01-01

    Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of physical, technological, environmental, and social phenomena, including aerospace, power, communications, and network systems, to name just a few. This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, and presents the most complete treatment on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. Large-scale dynami

  11. Improving the Stability and Accuracy of Power Hardware-in-the-Loop Simulation Using Virtual Impedance Method

    Directory of Open Access Journals (Sweden)

    Xiaoming Zha

    2016-11-01

    Full Text Available Power hardware-in-the-loop (PHIL systems are advanced, real-time platforms for combined software and hardware testing. Two paramount issues in PHIL simulations are the closed-loop stability and simulation accuracy. This paper presents a virtual impedance (VI method for PHIL simulations that improves the simulation’s stability and accuracy. Through the establishment of an impedance model for a PHIL simulation circuit, which is composed of a voltage-source converter and a simple network, the stability and accuracy of the PHIL system are analyzed. Then, the proposed VI method is implemented in a digital real-time simulator and used to correct the combined impedance in the impedance model, achieving higher stability and accuracy of the results. The validity of the VI method is verified through the PHIL simulation of two typical PHIL examples.

  12. Performance of FACTS Devices for Power System Stability

    Directory of Open Access Journals (Sweden)

    Bhupendra Sehgal

    2015-09-01

    Full Text Available When a power grid is connected to an induction type wind electric generator (WEG, when there is variation in load and wind speed, grid voltage also vary. In this paper, we study what is the impact when there is a variation of load and wind by variation of real power and reactive power consumed by WEG effect of load and wind speed variations on real power supplied and reactive power consumed by the WEG as well as voltage on the grid are studied. The voltage variation in the grid is controlled by reactive power compensation using shunt connected Static VAR Compensator (SVC comprising Thyristor Controlled Reactor (TCR and Fixed Capacitor (FC. With the help of Fuzzy Logic Controller (FLC, TCR is operated automatically.

  13. An Efficient Approach for Fast and Accurate Voltage Stability Margin Computation in Large Power Grids

    Directory of Open Access Journals (Sweden)

    Heng-Yi Su

    2016-11-01

    Full Text Available This paper proposes an efficient approach for the computation of voltage stability margin (VSM in a large-scale power grid. The objective is to accurately and rapidly determine the load power margin which corresponds to voltage collapse phenomena. The proposed approach is based on the impedance match-based technique and the model-based technique. It combines the Thevenin equivalent (TE network method with cubic spline extrapolation technique and the continuation technique to achieve fast and accurate VSM computation for a bulk power grid. Moreover, the generator Q limits are taken into account for practical applications. Extensive case studies carried out on Institute of Electrical and Electronics Engineers (IEEE benchmark systems and the Taiwan Power Company (Taipower, Taipei, Taiwan system are used to demonstrate the effectiveness of the proposed approach.

  14. On Stability of Sustainable Power Systems : Network Fault Response of Transmission Systems with Very High Penetration of Distributed Generation

    NARCIS (Netherlands)

    Boemer, J.

    2016-01-01

    Power systems are undergoing a historic structural and technological transformation. The increase of distributed generation (DG), recently mostly wind power park modules (WPPMs) and photovoltaic power park modules (PVPPMs), is already changing the way power systems are structured and operated.

  15. Study of LANs access technologies in wind power system

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    2010-01-01

    Due to the energy challenges in the world, new types of generation technologies, such as renewable energy based generators, attract great attention and are being quickly developed, which results in the dramatic developments and changes in modern power systems, the communication technologies play...... a increasingly important role in guaranteeing the power system’s stability, reliability, and security. In this paper the necessity of communication technologies employed in wind power system are introduced. According the International Standards Organization (ISO) reference 7-layered model, the communication...... power environment are explained and discussed. Furthermore the simulation of application of Ethernet in an offshore wind farm communication network by a software, OPNET, is elaborated. With the investigation of the communication technologies in this paper, the offshore wind farm SCADA system can...

  16. Implementation of IEC standard models for power system stability studies

    Energy Technology Data Exchange (ETDEWEB)

    Margaris, Ioannis D.; Hansen, Anca D.; Soerensen, Poul [Technical Univ. of Denmark, Roskilde (Denmark). Dept. of Wind Energy; Bech, John; Andresen, Bjoern [Siemens Wind Power A/S, Brande (Denmark)

    2012-07-01

    This paper presents the implementation of the generic wind turbine generator (WTG) electrical simulation models proposed in the IEC 61400-27 standard which is currently in preparation. A general overview of the different WTG types is given while the main focus is on Type 4B WTG standard model, namely a model for a variable speed wind turbine with full scale power converter WTG including a 2-mass mechanical model. The generic models for fixed and variable speed WTGs models are suitable for fundamental frequency positive sequence response simulations during short events in the power system such as voltage dips. The general configuration of the models is presented and discussed; model implementation in the simulation software platform DIgSILENT PowerFactory is presented in order to illustrate the range of applicability of the generic models under discussion. A typical voltage dip is simulated and results from the basic electrical variables of the WTG are presented and discussed. (orig.)

  17. Frequency Monitoring and Control during Power System Restoration Based on Wide Area Measurement System

    Directory of Open Access Journals (Sweden)

    Saber Nourizadeh

    2011-01-01

    Full Text Available Frequency control during power system restoration has not been strongly addressed. Operators are often concerned with the offline sizing of load and generation steps, but, nowadays, the introduction of Wide Area Measurement System (WAMS makes it possible to monitor the stability of power system online. The constraints of WAMS operation result in some changes in power system frequency control. This paper proposes a novel methodology for frequency control and monitoring during the early steps of power system restoration based on WAMS. Detailed load modeling is achieved based on the static load modeling approach. Power generators' modeling is also accomplished utilizing the single machine equivalent of the power system based on PMU measurements. Simulation results of the presented methodology on the 39 bus New England power system clearly show the effectiveness and applicability of the proposed method. The simulation results show that the presented approach has a completely acceptable precision and an outstanding speed with less than 0.05% error. The outstanding speed of the presented approach along with the result precision will result in a great promotion in power system restoration methodologies.

  18. Advanced hybrid transient stability and EMT simulation for VSC-HVDC systems

    NARCIS (Netherlands)

    Van Der Meer, A.A.; Gibescu, M.; Van Der Meijden, M.A.M.M.; Kling, W.L.; Ferreira, J.A.

    2015-01-01

    This paper deals with advanced hybrid transient stability and electromagnetic-transient (EMT) simulation of combined ac/dc power systems containing large amounts of renewable energy sources interfaced through voltage-source converter-high-voltage direct current (VSC-HVDC). The concerning transient

  19. Stabilized power constant alimentation; Alimentation regulee a puissance constante

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [French] On decrit l'etude et la realisation d'une alimentation a puissance constante reglable dans une gamme de 5 a 100 watts. Prevue pour le drift a puissance constante des diodes compensees au lithium, l'etude a ete menee en vue d'obtenir une precision de regulation de 1 pour cent et un temps de reponse inferieur a la seconde. Des systemes recents tels que multiplicateurs a effet Hall et circuits integres ont permis d'atteindre ce but tout en facilitant l'emploi de modules interchangeables. (auteur)

  20. Stabilized power constant alimentation; Alimentation regulee a puissance constante

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [French] On decrit l'etude et la realisation d'une alimentation a puissance constante reglable dans une gamme de 5 a 100 watts. Prevue pour le drift a puissance constante des diodes compensees au lithium, l'etude a ete menee en vue d'obtenir une precision de regulation de 1 pour cent et un temps de reponse inferieur a la seconde. Des systemes recents tels que multiplicateurs a effet Hall et circuits integres ont permis d'atteindre ce but tout en facilitant l'emploi de modules interchangeables. (auteur)

  1. Stabiliser Fault Emergency Control using Reconfiguration to Preserve Power System Stability

    DEFF Research Database (Denmark)

    Pedersen, Andreas Søndergaard; Richter, Jan H.; Tabatabaeipour, Mojtaba

    2014-01-01

    Stabiliser faults in multi-machine power systems are examined in this paper where fault-masking and system reconguration of the nonlinear system is obtained using a virtual actuator approach. Phasor Measurement Units, which can be integrated in wide-area transmission grids to improve the performa...

  2. Conceptual study of superconducting urban area power systems

    International Nuclear Information System (INIS)

    Noe, Mathias; Gold-acker, Wilfried; Bach, Robert; Prusseit, Werner; Willen, Dag; Poelchau, Juri; Linke, Christian

    2010-01-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  3. Control system of power supply for resistance welding machine

    Directory of Open Access Journals (Sweden)

    Світлана Костянтинівна Поднебенна

    2017-06-01

    Full Text Available This article describes the existing methods of heat energy stabilizing, which are realized in thyristor power supplies for resistance welding machines. The advantages and features of thyristor power supplies have been described. A control system of power supply for resistance welding machine with stabilization of heat energy in a welding spot has been developed. Measurements are performed in primary winding of a welding transformer. Weld spot heating energy is calculated as the difference between the energy, consumed from the mains, and the energy losses in the primary and secondary circuits of the welding transformer as well as the energy losses in the transformer core. Algorithms of digital signal processing of the developed control system are described in the article. All measurements and calculations are preformed automatically in real-time. Input signals to the control system are: transformer primary voltage and current, temperature of the welding circuit. The designed control system ensures control of the welding heat energy and is not influenced by the supply voltage and impedance changes caused by insertion of the ferromagnetic mass in the welding circuit, the temperature change during the welding process. The developed control system for resistance welding machine makes it possible to improve the quality of welded joints, increase the efficiency of the resistance welding machine

  4. Reactive power dispatch considering voltage stability with seeker optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Chaohua; Chen, Weirong; Zhang, Xuexia [The School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhu, Yunfang [Department of Computer and Communication Engineering, E' mei Campus, Southwest Jiaotong University, E' mei 614202 (China)

    2009-10-15

    Optimal reactive power dispatch (ORPD) has a growing impact on secure and economical operation of power systems. This issue is well known as a non-linear, multi-modal and multi-objective optimization problem where global optimization techniques are required in order to avoid local minima. In the last decades, computation intelligence-based techniques such as genetic algorithms (GAs), differential evolution (DE) algorithms and particle swarm optimization (PSO) algorithms, etc., have often been used for this aim. In this work, a seeker optimization algorithm (SOA) based method is proposed for ORPD considering static voltage stability and voltage deviation. The SOA is based on the concept of simulating the act of human searching where search direction is based on the empirical gradient by evaluating the response to the position changes and step length is based on uncertainty reasoning by using a simple Fuzzy rule. The algorithm's performance is studied with comparisons of two versions of GAs, three versions of DE algorithms and four versions of PSO algorithms on the IEEE 57 and 118-bus power systems. The simulation results show that the proposed approach performed better than the other listed algorithms and can be efficiently used for the ORPD problem. (author)

  5. Power system dynamics and control

    CERN Document Server

    Kwatny, Harry G

    2016-01-01

    This monograph explores a consistent modeling and analytic framework that provides the tools for an improved understanding of the behavior and the building of efficient models of power systems. It covers the essential concepts for the study of static and dynamic network stability, reviews the structure and design of basic voltage and load-frequency regulators, and offers an introduction to power system optimal control with reliability constraints. A set of Mathematica tutorial notebooks providing detailed solutions of the examples worked-out in the text, as well as a package that will enable readers to work out their own examples and problems, supplements the text. A key premise of the book is that the design of successful control systems requires a deep understanding of the processes to be controlled; as such, the technical discussion begins with a concise review of the physical foundations of electricity and magnetism. This is followed by an overview of nonlinear circuits that include resistors, inductors, ...

  6. Network stability is a balancing act of personality, power, and conflict dynamics in rhesus macaque societies.

    Directory of Open Access Journals (Sweden)

    Brenda McCowan

    Full Text Available Stability in biological systems requires evolved mechanisms that promote robustness. Cohesive primate social groups represent one example of a stable biological system, which persist in spite of frequent conflict. Multiple sources of stability likely exist for any biological system and such robustness, or lack thereof, should be reflected and thus detectable in the group's network structure, and likely at multiple levels. Here we show how network structure and group stability are linked to the fundamental characteristics of the individual agents in groups and to the environmental and social contexts in which these individuals interact. Both internal factors (e.g., personality, sex and external factors (e.g., rank dynamics, sex ratio were considered from the level of the individual to that of the group to examine the effects of network structure on group stability in a nonhuman primate species. The results yielded three main findings. First, successful third-party intervention behavior is a mechanism of group stability in rhesus macaques in that successful interventions resulted in less wounding in social groups. Second, personality is the primary factor that determines which individuals perform the role of key intervener, via its effect on social power and dominance discrepancy. Finally, individuals with high social power are not only key interveners but also key players in grooming networks and receive reconciliations from a higher diversity of individuals. The results from this study provide sound evidence that individual and group characteristics such as personality and sex ratio influence network structures such as patterns of reconciliation, grooming and conflict intervention that are indicators of network robustness and consequent health and well-being in rhesus macaque societies. Utilizing this network approach has provided greater insight into how behavioral and social processes influence social stability in nonhuman primate groups.

  7. Network stability is a balancing act of personality, power, and conflict dynamics in rhesus macaque societies.

    Science.gov (United States)

    McCowan, Brenda; Beisner, Brianne A; Capitanio, John P; Jackson, Megan E; Cameron, Ashley N; Seil, Shannon; Atwill, Edward R; Fushing, Hsieh

    2011-01-01

    Stability in biological systems requires evolved mechanisms that promote robustness. Cohesive primate social groups represent one example of a stable biological system, which persist in spite of frequent conflict. Multiple sources of stability likely exist for any biological system and such robustness, or lack thereof, should be reflected and thus detectable in the group's network structure, and likely at multiple levels. Here we show how network structure and group stability are linked to the fundamental characteristics of the individual agents in groups and to the environmental and social contexts in which these individuals interact. Both internal factors (e.g., personality, sex) and external factors (e.g., rank dynamics, sex ratio) were considered from the level of the individual to that of the group to examine the effects of network structure on group stability in a nonhuman primate species. The results yielded three main findings. First, successful third-party intervention behavior is a mechanism of group stability in rhesus macaques in that successful interventions resulted in less wounding in social groups. Second, personality is the primary factor that determines which individuals perform the role of key intervener, via its effect on social power and dominance discrepancy. Finally, individuals with high social power are not only key interveners but also key players in grooming networks and receive reconciliations from a higher diversity of individuals. The results from this study provide sound evidence that individual and group characteristics such as personality and sex ratio influence network structures such as patterns of reconciliation, grooming and conflict intervention that are indicators of network robustness and consequent health and well-being in rhesus macaque societies. Utilizing this network approach has provided greater insight into how behavioral and social processes influence social stability in nonhuman primate groups.

  8. Parallel combination of FC and UC for vehicular power systems using a multi-input converter-based power interface

    Energy Technology Data Exchange (ETDEWEB)

    Vural, B.; Erdinc, O.; Uzunoglu, M. [Department of Electrical Engineering, Yildiz Technical University, Istanbul 34349 (Turkey)

    2010-12-15

    Fuel cells (FC) are widely recognized as one of the most promising technologies to meet future power requirements of vehicular applications. However, a FC system combined with an energy storage system (ESS) can perform better for vehicle propulsion as considering several points. As the additional ESS can fulfill the transient power demand fluctuations, the FC system can be downsized to fit the base power demand without facing peak loads. Besides, braking energy can be recovered by the ESS. Interfacing of traction drive requirements with characteristics and modes of operation of on-board generation units and ESSs calls for suitable power electronic converter configuration. In this paper, a FC/UC hybrid vehicular power system using a multi-input converter-based power interface is proposed. The applied power interface topology ensures the active power sharing and DC link voltage stabilization for the hybrid vehicular system. The mathematical and electrical models of the hybrid vehicular system are developed in detail and simulated using MATLAB registered, Simulink registered and SimPowerSystems registered environments. (author)

  9. Parallel combination of FC and UC for vehicular power systems using a multi-input converter-based power interface

    International Nuclear Information System (INIS)

    Vural, B.; Erdinc, O.; Uzunoglu, M.

    2010-01-01

    Fuel cells (FC) are widely recognized as one of the most promising technologies to meet future power requirements of vehicular applications. However, a FC system combined with an energy storage system (ESS) can perform better for vehicle propulsion as considering several points. As the additional ESS can fulfill the transient power demand fluctuations, the FC system can be downsized to fit the base power demand without facing peak loads. Besides, braking energy can be recovered by the ESS. Interfacing of traction drive requirements with characteristics and modes of operation of on-board generation units and ESSs calls for suitable power electronic converter configuration. In this paper, a FC/UC hybrid vehicular power system using a multi-input converter-based power interface is proposed. The applied power interface topology ensures the active power sharing and DC link voltage stabilization for the hybrid vehicular system. The mathematical and electrical models of the hybrid vehicular system are developed in detail and simulated using MATLAB (registered) , Simulink (registered) and SimPowerSystems (registered) environments.

  10. Distributed-Order Dynamic Systems Stability, Simulation, Applications and Perspectives

    CERN Document Server

    Jiao, Zhuang; Podlubny, Igor

    2012-01-01

    Distributed-order differential equations, a generalization of fractional calculus, are of increasing importance in many fields of science and engineering from the behaviour of complex dielectric media to the modelling of nonlinear systems. This Brief will broaden the toolbox available to researchers interested in modeling, analysis, control and filtering. It contains contextual material outlining the progression from integer-order, through fractional-order to distributed-order systems. Stability issues are addressed with graphical and numerical results highlighting the fundamental differences between constant-, integer-, and distributed-order treatments. The power of the distributed-order model is demonstrated with work on the stability of noncommensurate-order linear time-invariant systems. Generic applications of the distributed-order operator follow: signal processing and viscoelastic damping of a mass–spring set up. A new general approach to discretization of distributed-order derivatives and integrals ...

  11. STS/DBS power subsystem end-to-end stability margin

    Science.gov (United States)

    Devaux, R. N.; Vattimo, R. J.; Peck, S. R.; Baker, W. E.

    Attention is given to a full-up end-to-end subsystem stability test which was performed with a flight solar array providing power to a fully operational spacecraft. The solar array simulator is described, and a comparison is made between test results obtained with the simulator and those obtained with the actual array. It is concluded that stability testing with a fully integrated spacecraft is necessary to ensure that all elements have been adequately modeled.

  12. Phasor Measurement Unit Test and Applications for Small Signal Stability Assessment and Improvement of Power System

    DEFF Research Database (Denmark)

    Ghiga, Radu

    to be less predictable. Therefore, the methods used for stability and security assessment will most likely use information from the wide-area measurements systems (WAMS). The work presented in this thesis deals on one hand with the development of test methods and validation of phasor measurement units (PMUs......) which are considered to be one of the key technologies in WAMS, and on the other hand with the possibility of using PMU measurements together with large wind power plants (WPPs) to help improve the damping of inter area oscillations. To validate the PMUs, a laboratory test setup is assembled....... The hardware components are capable of generating, with the required accuracy, the test signals injected in the PMUs. The signals are created according to the requirements defined in the current IEEE C37.118.1-2011 standard, to test the steady-state and dynamic compliance of the PMUs. The performance...

  13. PMU Measurement-Based Intelligent Strategy for Power System Controlled Islanding

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2018-01-01

    Full Text Available Controlled islanding is an effective remedy to prevent large-area blackouts in a power system under a critically unstable condition. When and where to separate the power system are the essential issues facing controlled islanding. In this paper, both tasks are studied to ensure higher time efficiency and a better post-splitting restoration effect. A transient stability assessment model based on extreme learning machine (ELM and trajectory fitting (TF is constructed to determine the start-up criterion for controlled islanding. This model works through prompt stability status judgment with ELM and selective result amendment with TF to ensure that the assessment is both efficient and accurate. Moreover, a splitting surface searching algorithm, subject to minimal power disruption, is proposed for determination of the controlled islanding implementing locations. A highlight of this algorithm is a proposed modified electrical distance concept defined by active power magnitude and reactance on transmission lines that realize a computational burden reduction without feasible solution loss. Finally, the simulation results and comparison analysis based on the New England 39-bus test system validates the implementation effects of the proposed controlled islanding strategy.

  14. Study of the dynamic operational characteristics of the Taiwan Power Company system - a nuclear majority system

    International Nuclear Information System (INIS)

    Yu, I.H.

    1982-01-01

    All conclusions drawn in this dissertation are based on the results of about six hundred study cases. The dynamic characteristics of the present Taiwan Power Company system are very different not only from the characteristics of any other power system in the world but also from Taipower's own history characteristics. Based on the engineers' knowledge, this dissertation takes a calculation risk approach to deal with the problems in the energy systems. Chapter I introduces the information related with the stability of the present Taipower system. Taipower operating engineers are facing the problem of committing a large amount of nuclear generation at a low base load level. The general introduction of the stability program developed for this study is described in Chapter II. In Chapter III, the processes of performing the transient stability study are explained to show how this study was performed. Critical tie flows were suggested in Chapter IV, which might help balance the nuclear generation and thermal generation at the base load level and plan the unit maintenance schedule. Several operation modes which may increase the degree of stability or minimize the number unit trippings were discussed in Chapter V. In Chapter VI, how to adjust the load shedding policy to improve the stability are discussed. The remote tripping scheme which is effective in preventing massive system blackout was studied in Chapter VII. Some broader concepts in load management are presented in Chapter VII for Taipower's management decision

  15. Stability assessment of a multi-port power electronic interface for hybrid micro-grid applications

    Science.gov (United States)

    Shamsi, Pourya

    Migration to an industrial society increases the demand for electrical energy. Meanwhile, social causes for preserving the environment and reducing pollutions seek cleaner forms of energy sources. Therefore, there has been a growth in distributed generation from renewable sources in the past decade. Existing regulations and power system coordination does not allow for massive integration of distributed generation throughout the grid. Moreover, the current infrastructures are not designed for interfacing distributed and deregulated generation. In order to remedy this problem, a hybrid micro-grid based on nano-grids is introduced. This system consists of a reliable micro-grid structure that provides a smooth transition from the current distribution networks to smart micro-grid systems. Multi-port power electronic interfaces are introduced to manage the local generation, storage, and consumption. Afterwards, a model for this micro-grid is derived. Using this model, the stability of the system under a variety of source and load induced disturbances is studied. Moreover, pole-zero study of the micro-grid is performed under various loading conditions. An experimental setup of this micro-grid is developed, and the validity of the model in emulating the dynamic behavior of the system is verified. This study provides a theory for a novel hybrid micro-grid as well as models for stability assessment of the proposed micro-grid.

  16. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    Directory of Open Access Journals (Sweden)

    Bogdan Sobczak

    2014-03-01

    Full Text Available Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power system, newly connected large thermal units and delaying of building new transmission lines. The principle of fast-valving and advantages of applying this technique in large steam turbine units was presented in the paper. Effectiveness of fast-valving in enhancing the stability of the Polish Power Grid was analyzed. The feasibility study of fast-valving application in the 560 MW unit in Kozienice Power Station (EW SA was discussed.

  17. Proceedings of AsiaPES 2007 : Asian power and energy systems conference

    Energy Technology Data Exchange (ETDEWEB)

    Ongsakul, W. [Asian Inst. of Technology, Pathumthani (Thailand)] (ed.)

    2007-07-01

    This energy and power systems conference provided a forum for international researchers and power industry members to discuss recent technological innovations related to power systems. New technologies and modelling strategies for power systems were identified along with issues related to artificial intelligence and design optimization. The role of renewable energy sources such as solar, wind and biomass energy in interconnected power systems were also reviewed. The conference was divided into 8 sessions entitled: (1) control, protection, power flow and design, (2) planning and operation, (3) alternative energy, (4) stability, reliability, forecasting and load shedding, (5) phasor measurement and power quality, (6) distribution, analysis, technology and policy (7) energy efficiency, storage and pricing, and (8) a special session on the application of phasor measurement units to monitor wide area power system dynamics. The conference featured 88 presentations, of which 63 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  18. A study of the status and future of superconducting magnetic energy storage in power systems

    International Nuclear Information System (INIS)

    Xue, X D; Cheng, K W E; Sutanto, D

    2006-01-01

    Superconducting magnetic energy storage (SMES) systems offering flexible, reliable, and fast acting power compensation are applicable to power systems to improve power system stabilities and to advance power qualities. The authors have summarized researches on SMES applications to power systems. Furthermore, various SMES applications to power systems have been described briefly and some crucial schematic diagrams and equations are given. In addition, this study presents valuable suggestions for future studies of SMES applications to power systems. Hence, this paper is helpful for co-researchers who want to know about the status of SMES applications to power systems. (topical review)

  19. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    Science.gov (United States)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  20. Application of wireless power transmission systems in wireless capsule endoscopy: an overview.

    Science.gov (United States)

    Basar, Md Rubel; Ahmad, Mohd Yazed; Cho, Jongman; Ibrahim, Fatimah

    2014-06-19

    Wireless capsule endoscopy (WCE) is a promising technology for direct diagnosis of the entire small bowel to detect lethal diseases, including cancer and obscure gastrointestinal bleeding (OGIB). To improve the quality of diagnosis, some vital specifications of WCE such as image resolution, frame rate and working time need to be improved. Additionally, future multi-functioning robotic capsule endoscopy (RCE) units may utilize advanced features such as active system control over capsule motion, drug delivery systems, semi-surgical tools and biopsy. However, the inclusion of the above advanced features demands additional power that make conventional power source methods impractical. In this regards, wireless power transmission (WPT) system has received attention among researchers to overcome this problem. Systematic reviews on techniques of using WPT for WCE are limited, especially when involving the recent technological advancements. This paper aims to fill that gap by providing a systematic review with emphasis on the aspects related to the amount of transmitted power, the power transmission efficiency, the system stability and patient safety. It is noted that, thus far the development of WPT system for this WCE application is still in initial stage and there is room for improvements, especially involving system efficiency, stability, and the patient safety aspects.

  1. Optical power calibrator based on a stabilized green He-Ne laser and a cryogenic absolute radiometer

    International Nuclear Information System (INIS)

    Varpula, T.; Seppa, H.; Saari, J.M.

    1989-01-01

    This paper describes an optical power calibrator whose overall calibration uncertainty is less than 10 -4 for an optical power of 0.13 mW. The laser light source of the system operates at a wavelength of 543.5 nm, being close to the wavelength at which the candela is defined, 555 nm. A stable optical power is achieved by stabilizing the intensity and the frequency of a green He-Ne laser. The optical power is detected by a cryogenic absolute radiometer based on the principle of electrical substitution radiometry. It can be employed to measure optical power up to 0.5 mW in the visible and near infrared region

  2. Voltage stability issues for a benchmark grid model including large scale wind power

    DEFF Research Database (Denmark)

    Eek, J.; Lund, T.; Marzio, G. Di

    2006-01-01

    The objective of the paper is to investigate how the voltage stability of a relatively weak network after a grid fault is affected by the connection of a large wind park. A theoretical discussion of the stationary and dynamic characteristics of the Short Circuit Induction Generator and the Doubly...... Fed Induction Generator is given. Further, a case study of a wind park connected to the transmission system through an existing regional 132 kV regional distribution line is presented. For the SCIG it is concluded that a stationary torque curve calculated under consideration of the impedance...... of the network and saturation of the external reactive power compensation units provides a good basis for evaluation of the voltage stability. For the DFIG it is concluded that the speed stability limit is mainly determined by the voltage limitation of the rotor converter...

  3. Convergent systems vs. incremental stability

    NARCIS (Netherlands)

    Rüffer, B.S.; Wouw, van de N.; Mueller, M.

    2013-01-01

    Two similar stability notions are considered; one is the long established notion of convergent systems, the other is the younger notion of incremental stability. Both notions require that any two solutions of a system converge to each other. Yet these stability concepts are different, in the sense

  4. The prediction and prevention of voltage collapse in the Finnish power system

    Energy Technology Data Exchange (ETDEWEB)

    Bastman, J; Lakervi, E [Tampere Univ. of Tech. (Finland); Hirvonen, R; Kuronen, P; Hagman, E [IVO Group (Finland)

    1994-12-31

    The Finnish power system is a part of the Nordic power system (NORDEL), which includes Finland, Sweden, Norway and the eastern part of Denmark. In NORDEL the transmission distances are long, which implies that the power transmission capacities are determined by stability criteria . The methods to prevent and predict the voltage collapse during severe disturbances are studied using advances simulation program. Results are presented. (author) 10 figs., 1 tab.

  5. Radar Waveform Pulse Analysis Measurement System for High-Power GaN Amplifiers

    Science.gov (United States)

    Thrivikraman, Tushar; Perkovic-Martin, Dragana; Jenabi, Masud; Hoffman, James

    2012-01-01

    This work presents a measurement system to characterize the pulsed response of high-power GaN amplifiers for use in space-based SAR platforms that require very strict amplitude and phase stability. The measurement system is able to record and analyze data on three different time scales: fast, slow, and long, which allows for greater detail of the mechanisms that impact amplitude and phase stability. The system is fully automated through MATLAB, which offers both instrument control capability and in-situ data processing. To validate this system, a high-power GaN HEMT amplifier operated in saturation was characterized. The fast time results show that variations to the amplitude and phase are correlated to DC supply transients, while long time characteristics are correlated to temperature changes.

  6. Exploration of a radiation hardening stabilized voltage power supply

    International Nuclear Information System (INIS)

    Xie Zeyuan; Xu Xianguo

    2014-01-01

    This paper mainly introduces the design method of radiation hardening stabilized voltage power supply that makes use of commercial radiation resistant electronic devices and the test results of radiation performance of the power supply and devices are presented in detail. The experiment results show that the hardened power supply can normally work until 1000 Gy (Si) total dose and 1 × 10 14 n/cm 2 neutron radiation, and it doesn't latchup at about 1 × l0 9 Gy (Si)/s gamma transient dose rate. (authors)

  7. Proceedings of the 4. IASTED Asian conference on power and energy systems : AsiaPES 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nor, K.M. [Technological Univ. of Malaysia, Kuala Lumpur (Malaysia)] (ed.)

    2008-07-01

    Recent technological innovations related to power systems were presented at this international energy and power systems conference. New technologies and modelling strategies for power systems were identified along with issues related to artificial intelligence and design optimization. The role of renewable energy sources such as solar, wind and biomass energy in interconnected power systems were also reviewed. The conference was divided into 9 sessions entitled: (1) distribution systems, (2) electromagnetic fields, (3) power quality, (4) power system operations, (5) power system planning, (6) power system protection, (7) power system stability, (8) renewable energy, and (9); thermal systems. All 68 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  8. A 500-600 MHz GaN power amplifier with RC-LC stability network

    Science.gov (United States)

    Ma, Xinyu; Duan, Baoxing; Yang, Yintang

    2017-08-01

    A 500-600 MHz high-efficiency, high-power GaN power amplifier is designed and realized on the basis of the push-pull structure. The RC-LC stability network is proposed and applied to the power amplifier circuit for the first time. The RC-LC stability network can significantly reduce the high gain out the band, which eliminates the instability of the power amplifier circuit. The developed power amplifier exhibits 58.5 dBm (700 W) output power with a 17 dB gain and 85% PAE at 500-600 MHz, 300 μs, 20% duty cycle. It has the highest PAE in P-band among the products at home and abroad. Project supported by the National Key Basic Research Program of China (No. 2014CB339901).

  9. Energy Management and Simulation of Photovoltaic/Hydrogen /Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Tariq Kamal

    2016-06-01

    Full Text Available This manuscript focuses on a hybrid power system combining a solar photovoltaic array and energy storage system based on hydrogen technology (fuel cell, hydrogen tank and electrolyzer and battery. The complete architecture is connected to the national grid through power converters to increase the continuity of power. The proposed a hybrid power system is designed to work under classical-based energy management algorithm. According to the proposed algorithm, the PV has the priority in meeting the load demands. The hydrogen technology is utilized to ensure long-term energy balance. The battery is used as a backup and/or high power device to take care of the load following problems of hydrogen technology during transient. The dynamic performance of a hybrid power system is tested under different solar radiation, temperature and load conditions for the simulation of 24 Hrs. The effectiveness of the proposed system in terms of power sharing, grid stability, power quality and voltage regulation is verified by Matlab simulation results.

  10. A Rotating Speed Controller Design Method for Power Levelling by Means of Inertia Energy in Wind Power Systems

    DEFF Research Database (Denmark)

    Qin, Zian; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    Power fluctuation caused by wind speed variations may be harmful for the stability of the power system as well as the reliability of the wind power converter, since it may induce thermal excursions in the solder joints of the power modules. Using the wind turbine rotor inertia energy for power...... in the frequency domain for power leveling. Moreover, the impact of other parameters on power leveling, including the time constant of maximum power point tracking (MPPT) and the rotor inertia, are also studied. With the proposed optimal design, the power fluctuations are mitigated as much as possible, while...

  11. Intelligent Control and Protection Methods for Modern Power Systems Based on WAMS

    DEFF Research Database (Denmark)

    Liu, Leo

    Continuously growing demand for electricity, driven by deregulated power markets, has forced power systems to operate closer to their security operation limits. Meanwhile, the increasing penetration of large scale renewable energy may impact the operation of power systems by bringing more...... vulnerability indices i.e. structural vulnerability index (SVI), contingency vulnerability index (CVI) and operational vulnerability index (OVI) are proposed to evaluate the impact of distributed generation (DG) on power system vulnerability. The assessment shows that DG units are able to shorten the electrical...... influencing factors to power system transient stability are also evaluated, e.g. power output of generators in central power plants (CPP), load consumption level and the power exchange in high voltage direct current (HVDC) links. Both structural and dynamic vulnerability assessment, aiming at providing...

  12. A stability identification system for boiling water nuclear reactors

    International Nuclear Information System (INIS)

    Belblidia, L.A.; Chevrier, A.

    1994-01-01

    Boiling water reactors are subject to instabilities under low-flow, high-power operating conditions. These instabilities are a safety concern and it is therefore important to determine stability margins. This paper describes a method to estimate a measure of stability margin, called the decay ratio, from autoregressive modelling of time series data. A phenomenological model of a boiling water reactor with known stability characteristics is used to generate time series to validate the program. The program is then applied to signals from local power range monitors from the cycle 7 stability tests at the Leibstadt plant. (author) 7 figs., 2 tabs., 12 refs

  13. Novel concept of a PV power generation system adding the function of shunt active filter

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.G.; Park, M.; Yu, I.K. [Changwon National Univ., Changwon City (Korea, Republic of). Dept. of Electrical Engineering

    2005-07-01

    A new photovoltaics (PV) power generation system that used an active filter (AF) function was proposed. The AF was installed to condition reactive power and harmonic compensation as well as flicker and voltage regulation. A maximum point power tracking (MPPT) control system was used to stabilize the voltage source inverter (VSI) output current. A general dq transformation was used to compensate the negative components and the harmonics component. The output terminal of the PV array was connected to a smoothing capacitor interfacing the PV-AF inverter. A voltage source PWM converter was controlled with feedback loops of the output current of the inverter. Optimal values of the power inverter gains and filter constants were tuned to obtain responses. The PV system was simulated using real weather conditions. Results of the study demonstrated the stability and effectiveness of the proposed system. It was concluded that the PV-AF can also be used to provide harmonic damping throughout power distribution systems. 12 refs., 3 tabs., 9 figs.

  14. Design and operation of the 30-MJ superconducting magnetic-storage system on the Bonneville Power Administration bus

    International Nuclear Information System (INIS)

    Schermer, R.I.; Barron, M.H.; Boenig, H.J.

    1983-01-01

    A superconducting magnetic-energy-storage (SMES) unit is suitable for power-system stabilization because it can provide positive damping by absorbing or releasing energy with a relatively fast response time, 10 ms. In the fall of 1982, an SMES unit was installed at the Tacoma Substation of the Bonneville Power Administration as an experiment in monitoring, predicting and improving system stability. This paper reports principally on the system testing

  15. Sliding-Mode Controller for Maximum Power Point Tracking in Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Paula Andrea Ortiz Valencia

    2015-11-01

    Full Text Available The maximum power point tracking (MPPT of photovoltaic systems must be as fast and accurate as possible to increase the power production, which eventually increases the PV system profitability. This paper proposes and mathematically analyses a sliding-mode controller to provide a fast and accurate maximum power point tracking in grid-connected photovoltaic systems using a single control stage. This approach avoids the circular dependency in the design of classical cascade controllers used to optimize the photovoltaic system operation, and at the same time, it reduces the number of controllers and avoids the use of linearized models to provide global stability in all the operation range. Such a compact solution also reduces the system cost and implementation complexity. To ensure the stability of the proposed solution, detailed mathematical analyses are performed to demonstrate the fulfillment of the transversality, reachability and equivalent control conditions. Finally, the performance of the proposed solution is validated using detailed simulations, executed in the power electronics simulator PSIM, accounting for both environmental and load perturbations.

  16. Transient stability analysis in electric power systems with frequency dependent loads; Analise de estabilidade transitoria em sistemas eletricos de potencia com cargas dependentes da frequencia

    Energy Technology Data Exchange (ETDEWEB)

    Alberto, Luis F. Costa; Borelli, Jose Renato; Bretas, Newton G. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Dept. de Engenharia Eletrica

    1997-12-31

    The power system models normally used to transient stability analysis are very simplified. Damping effects such as frequency dependent loads are neglected. In order to incorporate these effects in the analysis, a frequency dependent load model is proposed, and it is shown the important influence that it causes in the critical clearing times for stability analysis beyond the first swing. this load model require the network structure preservation and the knowledge of frequency of non-generator buses. In this work, an efficient method to estimate the frequencies of non-generator buses was developed. (author) 11 refs., 5 figs., 2 tabs.; e-mail: ngbretas at sel.eesc.sc.usp.br

  17. Proposals for Enhancing Frequency Control in Weak and Isolated Power Systems: Application to the Wind-Diesel Power System of San Cristobal Island-Ecuador

    Directory of Open Access Journals (Sweden)

    Danny Ochoa

    2018-04-01

    Full Text Available Wind-diesel hybridization has been emerging as common practice for electricity generation in many isolated power systems due to its reliability and its contribution in mitigating environmental issues. However, the weakness of these kind of power systems (due to their small inertia makes the frequency regulation difficult, particularly under high wind conditions, since part of the synchronous generation has to be set offline for ensuring a suitable tracking of the power demand. This reduces the power system’s ability to absorb wind power variations, leading to pronounced grid frequency fluctuations under normal operating conditions. This paper proposes some corrective actions aimed at enhancing the frequency control capability in weak and isolated power systems: a procedure for evaluating the system stability margin intended for readjusting the diesel-generator control gains, a new wind power curtailment strategy, and an inertial control algorithm implemented in the wind turbines. These proposals are tested in the San Cristobal (Galapagos Islands-Ecuador hybrid wind-diesel power system, in which many power outages caused by frequency relays tripping were reported during the windiest season. The proposals benefits have been tested in a simulation environment by considering actual operating conditions based on measurement data recorded at the island.

  18. `Power storage system` dealing with leveling of electric power use; Denryoku riyo no heijunka ni kotaeru `denryoku chozo system`

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, M. [Meidensha Corp., Tokyo (Japan)

    1996-06-28

    An overview is given on the development situation of a Zn-Br battery as a power storage system. The system is aimed at storing excess power at night and supplying the on-load demand during daytime. The power storage technology requires a large output and capacity of MWh level, long term stability and durability, and cost as low as pumped storage power generation. Four kinds of batteries have been examined to cope with the conditions, in which development of Zn-Br batteries along with Na-S batteries is in progress towards practicability. As a power conversion method for this system, GTO has been employed for a large capacity unit and IGBT for a medium/small capacity unit. The reliability of the Zn-Br batteries against leakage was improved by laminating each cell by hot plate welding. The service life was improved by using a material with a high bromine resistance in place of the conventional electrode constituent material. Although the battery efficiency was influenced by each resistance of electrode, film and electrolytic solution, distance between electrodes, temperature, etc., these correlations were clarified so as to establish the simulation technology. At present, the system realizes 50kW and 40kWh/m{sup 3}. 1 ref., 8 figs.

  19. Stability problems for linear hyperbolic systems

    International Nuclear Information System (INIS)

    Eckhoff, K.S.

    1975-05-01

    The stability properties for the trivial solution of a general linear hyperbolic system of partial differential equations of the first order are studied. It is shown that results may be obtained by studying the stability properties of certain systems of ordinary differential equations which can be constructed from the hyperbolic system (the so-called transport equations). In some cases the associated stability problem for the transport equations can in fact be shown to be equivalent to the stability problem for the hyperbolic system, but in general the transport equations will only give the necessary conditions for stability. (Auth.)

  20. Power supply and stabilization of the supply system on board using decentralized voltage rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    Grueb, W; Wegerer, K

    1987-04-01

    The functionally redundant power supply system of the Transrapid 06 II maglev train is described; it comprises four independent, battery-buffered networks and 30 linear generators per train section. Voltage rectifiers adapt the velocity- and load-dependent linear generator voltage to the 440 V d.c. networks and assure dynamic stabilisation as well as buffer battery loading. The result is a high-reliability power supply system on board with optimum utilisation of the power supplied by the linear generators while the train is running.

  1. Power control and management of the grid containing largescale wind power systems

    Science.gov (United States)

    Aula, Fadhil Toufick

    The ever increasing demand for electricity has driven many countries toward the installation of new generation facilities. However, concerns such as environmental pollution and global warming issues, clean energy sources, high costs associated with installation of new conventional power plants, and fossil fuels depletion have created many interests in finding alternatives to conventional fossil fuels for generating electricity. Wind energy is one of the most rapidly growing renewable power sources and wind power generations have been increasingly demanded as an alternative to the conventional fossil fuels. However, wind power fluctuates due to variation of wind speed. Therefore, large-scale integration of wind energy conversion systems is a threat to the stability and reliability of utility grids containing these systems. They disturb the balance between power generation and consumption, affect the quality of the electricity, and complicate load sharing and load distribution managing and planning. Overall, wind power systems do not help in providing any services such as operating and regulating reserves to the power grid. In order to resolve these issues, research has been conducted in utilizing weather forecasting data to improve the performance of the wind power system, reduce the influence of the fluctuations, and plan power management of the grid containing large-scale wind power systems which consist of doubly-fed induction generator based energy conversion system. The aims of this research, my dissertation, are to provide new methods for: smoothing the output power of the wind power systems and reducing the influence of their fluctuations, power managing and planning of a grid containing these systems and other conventional power plants, and providing a new structure of implementing of latest microprocessor technology for controlling and managing the operation of the wind power system. In this research, in order to reduce and smooth the fluctuations, two

  2. Increase of the Integration Degree of Wind Power Plants into the Energy System Using Wind Forecasting and Power Consumption Predictor Models by Transmission System Operator

    Directory of Open Access Journals (Sweden)

    Manusov V.Z.

    2017-12-01

    Full Text Available Wind power plants’ (WPPs high penetration into the power system leads to various inconveniences in the work of system operators. This fact is associated with the unpredictable nature of wind speed and generated power, respectively. Due to these factors, such source of electricity must be connected to the power system to avoid detrimental effects on the stability and quality of electricity. The power generated by the WPPs is not regulated by the system operator. Accurate forecasting of wind speed and power, as well as power load can solve this problem, thereby making a significant contribution to improving the power supply systems reliability. The article presents a mathematical model for the wind speed prediction, which is based on autoregression and fuzzy logic derivation of Takagi-Sugeno. The new model of wavelet transform has been developed, which makes it possible to include unnecessary noise from the model, as well as to reveal the cycling of the processes and their trend. It has been proved, that the proposed combination of methods can be used simultaneously to predict the power consumption and the wind power plant potential power at any time interval, depending on the planning horizon. The proposed models support a new scientific concept for the predictive control system of wind power stations and increase their degree integration into the electric power system.

  3. Harmonic Active Filtering and Impedance-based Stability Analysis in Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Dhua, Debasish; Yang, Guangya; Zhang, Zhe

    2017-01-01

    installation and provides effectively similar functionality as passive filters. This work is focused on harmonic propagation studies in wind power plants, power quality evaluation at the point of connection and harmonic mitigation by active filtering. Finally, an impedance-based stability analysis......Nowadays, to eliminate harmonics injected by the wind turbines in offshore wind power plants there is a need to install passive filters. Moreover, the passive filters are not adaptive to harmonic profile changes due to topology changes, grid loading etc. Therefore, active filters in wind turbines...... are proposed as a flexible harmonic mitigation measure. The motivation of this study is to explore the possibility of embedding active filtering in wind turbine grid-side converters without having to change the system electrical infrastructure. The active filtering method can prevent additional equipment...

  4. Development of rapid detection system on BEPC Ⅱ magnet power supply

    International Nuclear Information System (INIS)

    Chen Suying; Zhan Mingchuan; Long Fengli; Ye Weidong

    2014-01-01

    To quickly find the causes of the accelerator unstable or lost beam caused by magnet power supply in Beijing Electron Positron Collider (BEPC Ⅱ) running, the rapid detection system for magnet power supply was developed. The stability of the system in 8 h is about 0.005%, and it can acquire over nearly 500 sets of magnet power supply current values most quickly in 0.33 ms. All data were written to the MySQL database in real time, so as to be able to quickly troubleshoot magnet power supply problem through historical data analysis and comparison. (authors)

  5. Development and Evaluation of cooperative control system for an HVDC transmission system connected with an isolated BWR power plant

    International Nuclear Information System (INIS)

    Horiuchi, Susumu; Hara, Tsukusi; Matori, Iwao; Hirayama, Kaiichirou.

    1987-01-01

    In the cooperative control system developed for an HVDC transmission system connected with an isolated BWR power plant, the equilibrium state between power plant output and DC transmission power is examined by way of the detection of the generator frequency. And, thereby start-up and shutdown of the DC system and controlling of the transmission power are made, so that the signal transmission with the power plant becomes unnecessary, enabling the easy cooperative operation. In order to investigate validity of this control system, various digital simulation and simulator test with the control system were carried out. In this way, behavior of the power plant and stability of the DC transmission system were evaluated in the connection to the DC system at power plant start-up, follow of the transmission power in change of the power plant output and in various system failures. (Mori, K.)

  6. Improvement of standards on functional reliability of electric power systems

    International Nuclear Information System (INIS)

    Barinov, V.A.; Volkov, G.A.; Kalita, V.V.; Kogan, F.L.; Makarov, S.F.; Manevich, A.S.; Mogirev, V.V.; Sin'chugov, F.I.; Skopintsev, V.A.; Khvoshchinskaya, Z.G.

    1993-01-01

    Analysis of the most principal aspects of the existing standards and requirements on assuring safety and stability of electric power systems (EPS) and effective (reliable and economical) power supply of consumers is given. The reliability is determined as ability to accomplish the assigned functions. Basic recommendations on improving the standards regulating the safety and reliability of the NPP functioning are formulated

  7. Comparison of VSC and Z-Source Converter: Power System Application Approach

    Directory of Open Access Journals (Sweden)

    Masoud Jokar Kouhanjani

    2017-01-01

    Full Text Available Application of equipment with power electronic converter interface such as distributed generation, FACTS and HVDC, is growing up intensively. On the other hand, various types of topologies have been proposed and each of them has some advantages. Therefore, appropriateness of each converter regarding to the application is a main question for designers and engineers. In this paper, a part of this challenge is responded by comparing a typical Voltage-Source Converter (VSC and Z-Source Converter (ZSC, through high power electronic-based equipment used in power systems. Dynamic response, stability margin, Total Harmonic Distortion (THD of grid current and fault tolerant are considered as assessment criteria. In order to meet this evaluation, dynamic models of two converters are presented, a proper control system is designed, a small signal stability method is applied and responses of converters to small and large perturbations are obtained and analysed by PSCAD/EMTDC.

  8. PI2 controller based coordinated control with Redox Flow Battery and Unified Power Flow Controller for improved Restoration Indices in a deregulated power system

    Directory of Open Access Journals (Sweden)

    R. Thirunavukarasu

    2016-12-01

    Full Text Available The nature of power system restoration problem involves status assessment, optimization of generation capability and load pickup. This paper proposes the evaluation of Power System Restoration Indices (PSRI based on the Automatic Generation Control (AGC assessment of interconnected power system in a deregulated environment. The PSRI are useful for system planners to prepare the power system restoration plans and to improve the efficiency of the physical operation of the power system with the increased transmission capacity in the network. The stabilization of frequency and tie-line power oscillations in an interconnected power system becomes challenging when implemented in the future competitive environment. This paper also deals with the concept of AGC in two-area reheat power system having coordinated control action with Redox Flow Battery (RFB and Unified Power Flow Controller (UPFC are capable of controlling the network performance in a very fast manner and improve power transfer limits in order to have a better restoration. In addition to that a new Proportional–Double Integral (PI2 controller is designed and implemented in AGC loop and controller parameters are optimized through Bacterial Foraging Optimization (BFO algorithm. Simulation results reveal that the proposed PI2 controller is that it has good stability during load variations, excellent transient and dynamic responses when compared with the system comprising PI controller. Moreover the AGC loop with RFB coordinated with UPFC has greatly improved the dynamic response and it reduces the control input requirements, to ensure improved PSRI in order to provide the reduced restoration time, thereby improving the system reliability.

  9. Dynamic remedial action scheme using online transient stability analysis

    Science.gov (United States)

    Shrestha, Arun

    Economic pressure and environmental factors have forced the modern power systems to operate closer to their stability limits. However, maintaining transient stability is a fundamental requirement for the operation of interconnected power systems. In North America, power systems are planned and operated to withstand the loss of any single or multiple elements without violating North American Electric Reliability Corporation (NERC) system performance criteria. For a contingency resulting in the loss of multiple elements (Category C), emergency transient stability controls may be necessary to stabilize the power system. Emergency control is designed to sense abnormal conditions and subsequently take pre-determined remedial actions to prevent instability. Commonly known as either Remedial Action Schemes (RAS) or as Special/System Protection Schemes (SPS), these emergency control approaches have been extensively adopted by utilities. RAS are designed to address specific problems, e.g. to increase power transfer, to provide reactive support, to address generator instability, to limit thermal overloads, etc. Possible remedial actions include generator tripping, load shedding, capacitor and reactor switching, static VAR control, etc. Among various RAS types, generation shedding is the most effective and widely used emergency control means for maintaining system stability. In this dissertation, an optimal power flow (OPF)-based generation-shedding RAS is proposed. This scheme uses online transient stability calculation and generator cost function to determine appropriate remedial actions. For transient stability calculation, SIngle Machine Equivalent (SIME) technique is used, which reduces the multimachine power system model to a One-Machine Infinite Bus (OMIB) equivalent and identifies critical machines. Unlike conventional RAS, which are designed using offline simulations, online stability calculations make the proposed RAS dynamic and adapting to any power system

  10. New stability and stabilization for switched neutral control systems

    International Nuclear Information System (INIS)

    Xiong Lianglin; Zhong Shouming; Ye Mao; Wu Shiliang

    2009-01-01

    This paper concerns stability and stabilization issues for switched neutral systems and presents new classes of piecewise Lyapunov functionals and multiple Lyapunov functionals, based on which, two new switching rules are introduced to stabilize the neutral systems. One switching rule is designed from the solution of the so-called Lyapunov-Metzler linear matrix inequalities. The other is based on the determination of average dwell time computed from a new class of linear matrix inequalities (LMIs). And then, state-feedback control is derived for the switched neutral control system mainly based on the state switching rules. Finally, three examples are given to demonstrate the effectiveness of the proposed method.

  11. Kilowatt isotope power system, Phase II Plan. Volume IV. Teledyne FSCD vs GDS

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-15

    This Volume contains Teledyne's input to the Kilowatt Isotope Power System Phase II Plan. Included is a description of the Flight System Heat Generation System, Flight System Radiator, Thermal Insulation Stability, GDS Heat Generation System and GDS Radiator.

  12. Evaluation of seismic stability of nuclear power plants on weathered soft rocks

    International Nuclear Information System (INIS)

    Ogata, Nobuhide; Nishi, Koichi; Honsho, Shizumitsu

    1991-01-01

    Soft rocks such as weathered rocks or low cemented sedimentary rocks spread all over the country. If it is possible to construct nuclear power plants on such soft rocks, there will be more available sites for nuclear power plants. The investigation on the following research items was carried out. (1) Geological survey and the application of test methods on soft rocks. (2) Methods and application of laboratory and in-situ tests on soft rocks. (3) Response analysis of a reactor building and foundation ground during earthquake. (4) Stability analysis of soft rock ground as the foundation of a nuclear power plant regarding both earthquake and long-term settlement. From the results of the investigation, it became evident that the seismic stability of a nuclear power plant on weathered soft rocks can be assured enough. (author)

  13. Large-scale integration of wind power into different energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2005-01-01

    The paper presents the ability of different energy systems and regulation strategies to integrate wind power. The ability is expressed by the following three factors: the degree of electricity excess production caused by fluctuations in wind and Combined Heat and Power (CHP) heat demands......, the ability to utilise wind power to reduce CO2 emission in the system, and the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system...... and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and ancillary grid stability services and investments in electric heating, heat pumps and heat storage capacity. The results...

  14. Overview of the Energy Storage Systems for the Wind Power Integration Enhancement

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Teodorescu, Remus; Rasmussen, Claus Nygaard

    2010-01-01

    intermittency, partly unpredictability and variability, wind power can put the operation of power system into risk. This can lead to problems with grid stability, reliability and the energy quality. One of the possible solutions can be an addition of energy storage into wind power plant. This paper deals...... with state of the art of the Energy Storage (ES) technologies and their possibility of accommodation for wind turbines. Overview of ES technologies is done in respect to its suitability for Wind Power Plant (WPP). Services that energy storage can offer both to WPP and power system are discussed. Moreover...

  15. Dynamic multi-stage dispatch of isolated wind–diesel power systems

    International Nuclear Information System (INIS)

    Hu, Yu; Morales, Juan M.; Pineda, Salvador; Sánchez, María Jesús; Solana, Pablo

    2015-01-01

    Highlights: • Optimal decision-making model for isolated hybrid wind–diesel power system is proposed. • Wind power uncertainty and conditional operating cost are considered. • Battery wear cost of the energy storage system is included in the model. • The results are compared with deterministic dispatch strategies. - Abstract: An optimal dispatch strategy is crucial for an isolated wind–diesel power system to save diesel fuel and maintain the system stability. The uncertainty associated with the stochastic character of the wind is, though, a challenging problem for this optimization. In this paper, a dynamic multi-stage decision-making model is proposed to determine the diesel power output that minimizes the cost of running and maintaining the wind–diesel power system. Optimized operational decisions for each time period are generated dynamically considering the path-dependent nature of the optimal dispatch policy, given the plausible future realizations of the wind power production. A numerical case study is analyzed and it is demonstrated that the proposed stochastic dynamic optimization model significantly outperforms the traditional deterministic dispatch strategies

  16. Voltage stability in low voltage microgrids in aspects of active and reactive power demand

    Directory of Open Access Journals (Sweden)

    Parol Mirosław

    2016-03-01

    Full Text Available Low voltage microgrids are autonomous subsystems, in which generation, storage and power and electrical energy consumption appear. In the paper the main attention has been paid to the voltage stability issue in low voltage microgrid for different variants of its operation. In the introduction a notion of microgrid has been presented, and also the issue of influence of active and reactive power balance on node voltage level has been described. Then description of voltage stability issue has been presented. The conditions of voltage stability and indicators used to determine voltage stability margin in the microgrid have been described. Description of the low voltage test microgrid, as well as research methodology along with definition of considered variants of its operation have been presented further. The results of exemplary calculations carried out for the daily changes in node load of the active and reactive power, i.e. the voltage and the voltage stability margin indexes in nodes have been presented. Furthermore, the changes of voltage stability margin indexes depending on the variant of the microgrid operation have been presented. Summary and formulation of conclusions related to the issue of voltage stability in microgrids have been included at the end of the paper.

  17. Influence of Wind Plant Ancillary Voltage Control on System Small Signal Stability

    DEFF Research Database (Denmark)

    Su, Chi; Chen, Zhe

    2012-01-01

    As a common tendency, large-scale wind farms are increasingly connected to the transmission system of modern power grids. This introduces some new challenges to the connected power systems, and the transmission system operators (TSOs) have to put some new requirements as part of the grid codes...... on the integration of wind farms. One common requirement to wind farms is the function of system voltage control which can be implemented in the grid-side convertor controller of a variable speed wind turbine. This ancillary voltage control provided by wind farms could have some influence on the system small signal...... stability. This paper implements an ancillary voltage control strategy on a direct-drive-full-convertor-based wind farm and studies its influence on the damping ratio values of the dominant oscillation mode within the connected power system. All the calculations and simulations are conducted in DIg...

  18. Study of the power supply topology with high stability for accelerator

    International Nuclear Information System (INIS)

    Wu Wei; Wang Yunfang; Wang Jiewei

    2005-01-01

    The requirements of the power supply for accelerator are analyzed. A few of topologies of the highly stabilized power supply are discussed. The types are listed: Auto-transformers-diode rectifier-transistor regulating current. Thyristor rectifier regulating voltage -transistor regulating current, Diode rectifier -DC-chopping. Thyristor rectifier regulating voltage -two-quadrant-chopping. The advantages and disadvantages of the topologies for power supply are discussed. The notice questions of the power supply designed for accelerator are analyzed. (authors)

  19. Investigations on hydrodynamic stability of two phase flow in a low pressure natural circulation system

    Energy Technology Data Exchange (ETDEWEB)

    Shaorong, Wu; Dazhong, Wang; Meisheng, Yao; Jinhai, Bo; Yunxian, Tong; Shengyao, Jiang; Bing, Han [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    Appropriately scaled ``Loop Stability`` tests and ``Channel Stability`` tests were performed with single heated channel system and two parallel channel system separately at the Institute of Nuclear Energy Technology (INET) of the Tsinghua University in China. A broad range of several operational parameters such as heating power, system pressure, test inlet subcooling and resistance coefficient were investigated. It was found that under certain geometric conditions and operating parameters a self-sustaining, low frequency, even amplitude mass flow oscillation may be excited at very low steam qualities and subcooling conditions. Stability maps under different conditions have been provided to assist the design of the NHR. (author). 6 refs, 15 figs.

  20. Stability of dynamical systems

    CERN Document Server

    Liao, Xiaoxin; Yu, P 0

    2007-01-01

    The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems.ʺ Presents

  1. Analytical Assessment for Transient Stability Under Stochastic Continuous Disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Ping [Hohai Univ., Nanjing (China); Li, Hongyu [Hohai Univ., Nanjing (China); Gan, Chun [The Univ. of Tennessee, Knoxville, TN (United States); Liu, Yong [The Univ. of Tennessee, Knoxville, TN (United States); Yu, Yiping [Hohai Univ., Nanjing (China); Liu, Yilu [Univ. of Tennessee, Knoxville, TN (United States)

    2017-06-28

    Here, with the growing integration of renewable power generation, plug-in electric vehicles, and other sources of uncertainty, increasing stochastic continuous disturbances are brought to power systems. The impact of stochastic continuous disturbances on power system transient stability attracts significant attention. To address this problem, this paper proposes an analytical assessment method for transient stability of multi-machine power systems under stochastic continuous disturbances. In the proposed method, a probability measure of transient stability is presented and analytically solved by stochastic averaging. Compared with the conventional method (Monte Carlo simulation), the proposed method is many orders of magnitude faster, which makes it very attractive in practice when many plans for transient stability must be compared or when transient stability must be analyzed quickly. Also, it is found that the evolution of system energy over time is almost a simple diffusion process by the proposed method, which explains the impact mechanism of stochastic continuous disturbances on transient stability in theory.

  2. Frequency Control for Island Operation of Bornholm Power System

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Wu, Qiuwei; Zhao, Haoran

    2014-01-01

    the primary frequency control and the DG units are used to provide the secondary frequency control. As such, the proposed control scheme can strike a balance of the frequency control speed and the energy used from the BESS for the frequency control support. The real-time model of the Bornholm power system......This paper presents a coordinated control strategy of a battery energy storage system (BESS) and distributed generation (DG) units for the island operation of the Danish island of Bornholm. The Bornholm power system is able to transit from the grid connected operation with the Nordic power system...... to the isolated island operation. In order to ensure the secure island operation, the coordinated control of the BESS and the DG has been proposed to stabilize the frequency of the system after the transition to the island operation. In the proposed coordinate control scheme, the BESS is used to provide...

  3. The effect of FRT behavior of VSC-HVDC-connected offshore wind power plants on AC/DC system dynamics

    NARCIS (Netherlands)

    van der Meer, A.A.; Ndreko, M.; Gibescu, M.; van der Meijden, M.A.M.M.

    2016-01-01

    Future power systems will contain more converter-based generation, among which are the voltage-source converter-high-voltage direct-current (VSC-HVDC)-connected offshore wind power plants (WPP). Their interaction with the onshore system influences power system dynamics in the transient stability

  4. Congestion management by determining optimal location of TCSC in deregulated power systems

    International Nuclear Information System (INIS)

    Besharat, Hadi; Taher, Seyed Abbas

    2008-01-01

    In a deregulated electricity market, it may always not be possible to dispatch all of the contracted power transactions due to congestion of the transmission corridors. The ongoing power system restructuring requires an opening of unused potentials of transmission system due to environmental, right-of-way and cost problems which are major hurdles for power transmission network expansion. Flexible AC transmission systems (FACTSs) devices can be an alternative to reduce the flows in heavily loaded lines, resulting in an increased loadability, low system loss, improved stability of the network, reduced cost of production and fulfilled contractual requirement by controlling the power flows in the network. A method to determine the optimal location of thyristor controlled series compensators (TCSCs) has been suggested in this paper based on real power performance index and reduction of total system VAR power losses. (author)

  5. Adaptive intelligent power systems: Active distribution networks

    International Nuclear Information System (INIS)

    McDonald, Jim

    2008-01-01

    Electricity networks are extensive and well established. They form a key part of the infrastructure that supports industrialised society. These networks are moving from a period of stability to a time of potentially major transition, driven by a need for old equipment to be replaced, by government policy commitments to cleaner and renewable sources of electricity generation, and by change in the power industry. This paper looks at moves towards active distribution networks. The novel transmission and distribution systems of the future will challenge today's system designs. They will cope with variable voltages and frequencies, and will offer more flexible, sustainable options. Intelligent power networks will need innovation in several key areas of information technology. Active control of flexible, large-scale electrical power systems is required. Protection and control systems will have to react to faults and unusual transient behaviour and ensure recovery after such events. Real-time network simulation and performance analysis will be needed to provide decision support for system operators, and the inputs to energy and distribution management systems. Advanced sensors and measurement will be used to achieve higher degrees of network automation and better system control, while pervasive communications will allow networks to be reconfigured by intelligent systems

  6. Proceedings of the 10. IASTED international conference on power and energy systems (PES 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, E. (ed.)

    2008-07-01

    This conference provided a forum to review new technologies and modelling strategies for power systems and to address issues related to artificial intelligence and power system design optimization. The role of renewable energy sources such as solar, wind and biomass energy in interconnected power systems were also reviewed. In addition, conference participants presented recent advances in distributed power generation; load shedding; fault diagnosis; energy storage; power system stability; and security of supply. The sessions of the conference were entitled: fault detection, diagnosis, protection and power quality; renewable, distributed, generation and power lines; power system analysis, operation and control; and electricity markets. The conference featured 43 presentations, of which 24 have been catalogued separately for inclusion in this database. refs., tabs. figs.

  7. Selectivity of power system protections at power swings in power system

    Directory of Open Access Journals (Sweden)

    Jan Machowski

    2012-12-01

    Full Text Available The paper discusses out-of-step protection systems such as: generator pole slip protections, out of step tripping protections, distance protections of step-up transformer, distance protections of transmission lines and transformers, power swing blocking, and special out-of-step protection. It is shown that all these protections make up a protection system, to which a setting concept uniform for the entire power system has to be applied. If a power system is inappropriately equipped with these protections, or their settings are inappropriate, they may operate unselectively, thus contributing to the development of power system blackouts. In the paper the concepts for a real power system are given for the two stages: target stage fully compliant with selectivity criteria, and transitional stage between the current and target stages.

  8. Immersion and Invariance-Based Coordinated Generator Excitation and SVC Control for Power Systems

    Directory of Open Access Journals (Sweden)

    Adirak Kanchanaharuthai

    2014-01-01

    Full Text Available A nonlinear coordinated control of excitation and SVC of an electrical power system is proposed for transient stability, and voltage regulation enhancement after the occurrence of a large disturbance and a small perturbation. Using the concept of Immersion and Invariance (I&I design methodology, the proposed nonlinear controller is used to not only achieve power angle stability, frequency and voltage regulation but also ensure that the closed-loop system is transiently and asymptotically stable. In order to show the effectiveness of the proposed controller design, the simulation results illustrate that, in spite of the case where a large perturbation occurs on the transmission line or there is a small perturbation to mechanical power inputs, the proposed controller can not only keep the system transiently stable but also simultaneously accomplish better dynamic properties of the system as compared to operation with the existing controllers designed through a coordinated passivation technique controller and a feedback linearization scheme, respectively.

  9. Dynamic Stability of Maglev Systems,

    Science.gov (United States)

    1992-04-01

    AD-A259 178 ANL-92/21 Materials and Components Dynamic Stability of Technology Division Materials and Components Maglev Systems Technology Division...of Maglev Systems Y. Cai, S. S. Chen, and T. M. Mulcahy Materials and Components Technology Division D. M. Rote Center for Transportation Research...of Maglev System with L-Shaped Guideway ......................................... 6 3 Stability of M aglev System s

  10. Power system static state estimation using Kalman filter algorithm

    Directory of Open Access Journals (Sweden)

    Saikia Anupam

    2016-01-01

    Full Text Available State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter algorithm is presented for static estimation of power system state variables. IEEE 14 bus system is employed to check the accuracy of this method. Newton Raphson load flow study is first carried out on our test system and a set of data from the output of load flow program is taken as measurement input. Measurement inputs are simulated by adding Gaussian noise of zero mean. The results of Kalman estimation are compared with traditional Weight Least Square (WLS method and it is observed that Kalman filter algorithm is numerically more efficient than traditional WLS method. Estimation accuracy is also tested for presence of parametric error in the system. In addition, numerical stability of Kalman filter algorithm is tested by considering inclusion of zero mean errors in the initial estimates.

  11. Power system security enhancement through direct non-disruptive load control

    Science.gov (United States)

    Ramanathan, Badri Narayanan

    The transition to a competitive market structure raises significant concerns regarding reliability of the power grid. A need to build tools for security assessment that produce operating limit boundaries for both static and dynamic contingencies is recognized. Besides, an increase in overall uncertainty in operating conditions makes corrective actions at times ineffective leaving the system vulnerable to instability. The tools that are in place for stability enhancement are mostly corrective and suffer from lack of robustness to operating condition changes. They often pose serious coordination challenges. With deregulation, there have also been ownership and responsibility issues associated with stability controls. However, the changing utility business model and the developments in enabling technologies such as two-way communication, metering, and control open up several new possibilities for power system security enhancement. This research proposes preventive modulation of selected loads through direct control for power system security enhancement. Two main contributions of this research are the following: development of an analysis framework and two conceptually different analysis approaches for load modulation to enhance oscillatory stability, and the development and study of algorithms for real-time modulation of thermostatic loads. The underlying analysis framework is based on the Structured Singular Value (SSV or mu) theory. Based on the above framework, two fundamentally different approaches towards analysis of the amount of load modulation for desired stability performance have been developed. Both the approaches have been tested on two different test systems: CIGRE Nordic test system and an equivalent of the Western Electric Coordinating Council test system. This research also develops algorithms for real-time modulation of thermostatic loads that use the results of the analysis. In line with some recent load management programs executed by utilities, two

  12. Simulation Results of Closed Loop Controlled Interline Power Flow Controller System

    Directory of Open Access Journals (Sweden)

    P. USHA RANI

    2016-01-01

    Full Text Available The Interline Power Flow Controller (IPFC is the latest generation of Flexible AC Transmission Systems (FACTS devices which can be used to control power flows of multiple transmission lines. A dispatch strategy is proposed for an IPFC operating at rated capacity, in which the power circulation between the two series converters is used as the parameter to optimize the voltage profile and power transfer. Voltage stability curves for test system are shown to illustrate the effectiveness of this proposed strategy. In this paper, a circuit model for IPFC is developed and simulation of interline power flow controller is done using the proposed circuit model. Simulation is done using MATLAB simulink and the results are presented.

  13. A Comprehensive Strategy for Accurate Reactive Power Distribution, Stability Improvement, and Harmonic Suppression of Multi-Inverter-Based Micro-Grid

    Directory of Open Access Journals (Sweden)

    Henan Dong

    2018-03-01

    Full Text Available Among the issues of accurate power distribution, stability improvement, and harmonic suppression in micro-grid, each has been well studied as an individual, and most of the strategies about these issues aim at one inverter-based micro-grid, hence there is a need to establish a model to achieve these functions as a whole, aiming at a multi-inverter-based micro-grid. This paper proposes a comprehensive strategy which achieves this goal successfully; since the output voltage and frequency of micro-grid all consist of fundamental and harmonic components, the strategy contains two parts accordingly. On one hand, a fundamental control strategy is proposed upon the conventional droop control. The virtual impedance is introduced to solve the problem of accurate allocation of reactive power between inverters. Meanwhile, a secondary power balance controller is added to improve the stability of voltage and frequency while considering the aggravating problem of stability because of introducing virtual impedance. On the other hand, the fractional frequency harmonic control strategy is proposed. It can solve the influence of nonlinear loads, micro-grid inverters, and the distribution network on output voltage of inverters, which is focused on eliminating specific harmonics caused by the nonlinear loads, micro-grid converters, and the distribution network so that the power quality of micro-grid can be improved effectively. Finally, small signal analysis is used to analyze the stability of the multi-converter parallel system after introducing the whole control strategy. The simulation results show that the strategy proposed in this paper has a great performance on distributing reactive power, regulating and stabilizing output voltage of inverters and frequency, eliminating harmonic components, and improving the power quality of multi-inverter-based micro-grid.

  14. Frequency Stability Enhancement for Low Inertia Systems using Synthetic Inertia of Wind Power

    DEFF Research Database (Denmark)

    Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde

    2017-01-01

    stability, this paper proposes supplementary control methods to implement synthetic inertia for doubly-fed induction generator (DFIG) based wind energy system during frequency excursions. Different control strategies and activation schemes are analyzed and implemented on the Western Danish renewable......-based system using-real time digital simulator (RTDS) to propose the best one for the synthetic inertia controller. From the comparative simulation results, it can be concluded that the method using a combination of both the frequency deviation and derivative as input signals, and the under-frequency trigger...

  15. Adaptive Fuzzy Control for Power-Frequency Characteristic Regulation in High-RES Power Systems

    Directory of Open Access Journals (Sweden)

    Evangelos Rikos

    2017-07-01

    Full Text Available Future power systems control will require large-scale activation of reserves at distribution level. Despite their high potential, distributed energy resources (DER used for frequency control pose challenges due to unpredictability, grid bottlenecks, etc. To deal with these issues, this study presents a novel strategy of power frequency characteristic dynamic adjustment based on the imbalance state. This way, the concerned operators become aware of the imbalance location but also a more accurate redistribution of responsibilities in terms of reserves activations is achieved. The proposed control is based on the concept of “cells” which are power systems with operating capabilities and responsibilities similar to control areas (CAs, but fostering the use of resources at all voltage levels, particularly distribution grids. Control autonomy of cells allows increased RES hosting. In this study, the power frequency characteristic of a cell is adjusted in real time by means of a fuzzy controller, which curtails part of the reserves, in order to avoid unnecessary deployment throughout a synchronous area, leading to a more localised activation and reducing losses, congestions and reserves exhaustion. Simulation tests in a four-cell reference power system prove that the controller significantly reduces the use of reserves without compromising the overall stability.

  16. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  17. Towards 100% renewable energy systems: Uncapping power system flexibility

    International Nuclear Information System (INIS)

    Papaefthymiou, G.; Dragoon, Ken

    2016-01-01

    Relying almost entirely on energy from variable renewable resources such as wind and solar energy will require a transformation in the way power systems are planned and operated. This paper outlines the necessary steps in creating power systems with the flexibility needed to maintain stability and reliability while relying primarily on variable energy resources. These steps are provided in the form of a comprehensive overview of policies, technical changes, and institutional systems, organized in three development phases: an initial phase (penetration up to about 10%) characterized by relatively mild changes to conventional power system operations and structures; a dynamic middle phase (up to about 50% penetration) characterized by phasing out conventional generation and a concerted effort to wring flexibility from existing infrastructure; and the high penetration phase that inevitably addresses how power systems operate over longer periods of weeks or months when variable generation will be in either short supply, or in over-abundance. Although this transition is likely a decades-long and incremental process and depends on the specifics of each system, the needed policies, research, demonstration projects and institutional changes need to start now precisely because of the complexity of the transformation. The list of policy actions presented in this paper can serve as a guideline to policy makers on effectuating the transition and on tracking the preparedness of systems. - Highlights: •100% VRES systems: combined analysis of all related technical and policy challenges. •Transition elements: classification of the complete range of challenges in 9 elements. •Development regimes: policy actions in 3 VRES penetration regimes (low-medium-high). •Policies: comprehensive guideline and detailed presentation of policies per regime. •Roadmap: lists of actions per regime act as transition roadmap to 100% VRES systems.

  18. Energy principles for linear dissipative systems with application to resistive MHD stability

    International Nuclear Information System (INIS)

    Pletzer, A.

    1997-04-01

    A formalism for the construction of energy principles for dissipative systems is presented. It is shown that dissipative systems satisfy a conservation law for the bilinear Hamiltonian provided the Lagrangian is time invariant. The energy on the other hand, differs from the Hamiltonian by being quadratic and by having a negative definite time derivative (positive power dissipation). The energy is a Lyapunov functional whose definiteness yields necessary and sufficient stability criteria. The stability problem of resistive magnetohydrodynamic (MHD) is addressed: the energy principle for ideal MHD is generalized and the stability criterion by Tasso is shown to be necessary in addition to sufficient for real growth rates. An energy principle is found for the inner layer equations that yields the resistive stability criterion D R <0 in the incompressible limit, whereas the tearing mode criterion Δ'<0 is shown to result from the conservation law of the bilinear concomitant in the resistive layer. (author) 1 fig., 25 refs

  19. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    OpenAIRE

    Bogdan Sobczak; Robert Rink; Rafał Kuczyński; Robert Trębski

    2014-01-01

    Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power syst...

  20. Study on the stability of waterpower-speed control system for hydropower station with upstream and downstream surge chambers based on regulation modes

    International Nuclear Information System (INIS)

    Chen, J P; Yang, J D; Guo, W C; Teng, Y

    2014-01-01

    In allusion to the hydropower station with upstream and downstream surge chambers, a complete mathematical model of waterpower-speed control system that includes pipeline system and turbine regulation system is established under the premise of the breakthrough of Thoma assumption in this paper. The comprehensive transfer functions and free movement equations that characterize the dynamic characteristics of system are derived when the mode of governor is respectively frequency regulation and power regulation. Then according to Routh- Hurwitz theorem, the stability domain that describes the good or bad of stability is drawn in the coordinate system with the relative areas of upstream and downstream surge chambers as abscissa and ordinate respectively. Finally, the effects of Thoma assumption, flow inertia, regulation modes, and governor parameters on the stability of waterpower-speed control system are analyzed by means of stability domain. The following conclusions have been come to: Thoma assumption made the stability worse. The flow inertia T w has unfavorable effect on the stability of the two regulation modes. The stability of power regulation mode is obviously superior to frequency regulation mode under the same condition, but the parametric variation sensibility of the former is inferior to the latter. For the governor parameters, the stability continually gets better with the increase of temporary droop b t and damping device time constant T d , while the stability of frequency regulation would get worse with the increase of temporary droop b t when the damping device time constant T d takes small value. As the increase of permanent droop b p , the stability of power regulation mode gets worse

  1. Magnet power supply system for the ISABELLE half-cell prototype

    International Nuclear Information System (INIS)

    Nawrocky, R.J.

    1977-01-01

    Due to stringent requirements on the spatial harmonic content of ISABELLE's magnetic field, the magnet power supplies for the half-cell prototype must be dynamically accurate and stable to within 0.01% of their full-scale rating. Depending on the application, the full-scale current of various units comprising the system ranges from +-50 A to 4000 A. The system, as constructed is fully controllable and programmable either manually or with a control computer. The magnet power supply system described was constructed and interconnected with the half-cell computer control equipment. A number of power supply units were tested with inductive test loads in both the manual and the computer control modes. Test results on stability and speed of response indicate that all systems perform according to specifications

  2. ASDEX Upgrade-JT-60U comparison and ECRH power requirements for NTM stabilization in ITER

    International Nuclear Information System (INIS)

    Urso, L.; Zohm, H.; Maraschek, M.; Poli, E.; Isayama, A.

    2010-01-01

    Neoclassical tearing modes (NTMs) are experimentally controlled with local electron cyclotron current drive (ECCD) and the island width decay during NTM stabilization is modelled using the so-called modified Rutherford equation (MRE). In this paper, a modelling of the MRE is carried out and simulations of the island width decay are compared with the experimentally observed ones in order to fit the two free machine-independent parameters present in the equation. A systematic study on a database of NTM stabilization discharges from ASDEX Upgrade and JT-60U is done for extrapolating the ECCD power requirements for ITER. The extrapolation to ITER of the NTM stabilization results from ASDEX Upgrade and JT-60U shows that 10 MW of ECCD power are enough to stabilize large NTMs. The 10 MW power estimate for ITER is based on the assumption that the free parameters in the MRE are machine independent. Indeed, this assumption is verified in this paper for ASDEX Upgrade and JT-60U. An interesting consequence of the relatively modest power requirement for ITER is that the installed 20 MW will suffice for simultaneous 2/1 and 3/2 NTM stabilization.

  3. Exploiting ancillary services from distributed generation - perspectives for the Danish power system

    DEFF Research Database (Denmark)

    Nyeng, Preben; Pedersen, Knud Ole Helgesen; Østergaard, Jacob

    2007-01-01

    The share of the electric power production originating from distributed energy resources has rapidly increased during the recent past. However when it comes to ancillary services necessary to ensure the stability and appropriate operation of the power system, the distributed energy resources take...... a very passive role. This paper outlines suggestions on how to activate the potential of ancillary services from distributed energy resources, thereby exploiting their ability to contribute to power system operation. Furthermore, methods for integrating the ancillary service delivery into a deregulated...

  4. On-line Dynamic Security Assessment in Power Systems

    DEFF Research Database (Denmark)

    Weckesser, Johannes Tilman Gabriel

    and solar radiation. Moreover, ongoing research suggests that demand response will be introduced to maintain power balance between generation and consumption at all times. Due to these changes the operating point of the power system will be less predictable and today’s stability and security assessment...... for early prediction of critical voltage sags is described. The method’s performance is compared to other prediction approaches. The results show that the proposed method succeeds in early, accurately and consistently predicting critically low voltage sags. An efficient on-line DSA not only identifies...

  5. Nonlinear decentralized robust governor control for hydroturbine-generator sets in multi-machine power systems

    Energy Technology Data Exchange (ETDEWEB)

    Qiang Lu; Yusong Sun; Yuanzhang Sun [Tsinghua University, Beijing (China). Dept. of Electrical Engineering; Felix F Wu; Yixin Ni [University of Hong Kong (China). Dept. of Electrical and Electronic Engineering; Yokoyama, Akihiko [University of Tokyo (Japan). Dept. of Electrical Engineering; Goto, Masuo; Konishi, Hiroo [Hitachi Ltd., Tokyo (Japan). Power System Div.

    2004-06-01

    A novel nonlinear decentralized robust governor control for hydroturbine-generator sets in multi-machine power systems is suggested in this paper. The nonelastic water hammer effect and disturbances are considered in the modeling. The advanced differential geometry theory, nonlinear robust control theory and the dynamic feedback method are combined to solve the problem. The nonlinear decentralized robust control law for the speed governor of hydroturbine-generators has been derived. The input signals to the proposed controller are all local measurements and independent to the system parameters. The derived control law guarantees the integrated system stability with disturbance attenuation, which is significant to the real power system application. Computer tests on an 8-machine, 36-bus power system show clearly the effectiveness of the new control strategy in transient stability enhancement and disturbance attenuation. The computer test results based on the suggested controller are compared favorably with those based on the conventional linear governor control. (author)

  6. Design and Analysis of the Power Control System of the Fast Zero Energy Reactor FR-0

    Energy Technology Data Exchange (ETDEWEB)

    Schuh, N J.H.

    1966-12-15

    This report describes the power control by means of the fine-control rod and the design of the control system of the fast zero energy reactor FR-0 located in Studsvik, Sweden. System requirements and some operational conditions were used as design criteria. Manual and automatic control is possible. Variable electronic end-stops for the control rod have been designed, because of the special construction of the reactor and control rod. Noise in the control system caused by the reactor, detector and electronics caused disturbances of the control system at the lower power levels. The noise power-spectrum was measured. Statistical design methods, using the measured noise power spectrum, were used to design filters, which will reduce the influence of the noise at the lower power levels. Root Loci sketches and Bode diagrams were used for stability analyses. The system was simulated on an analogue computer, taking into account even nonlinearities of the control system and noise. Typical cases of reactor operation were simulated and stability analysis performed.

  7. Design and Analysis of the Power Control System of the Fast Zero Energy Reactor FR-0

    International Nuclear Information System (INIS)

    Schuh, N.J.H.

    1966-12-01

    This report describes the power control by means of the fine-control rod and the design of the control system of the fast zero energy reactor FR-0 located in Studsvik, Sweden. System requirements and some operational conditions were used as design criteria. Manual and automatic control is possible. Variable electronic end-stops for the control rod have been designed, because of the special construction of the reactor and control rod. Noise in the control system caused by the reactor, detector and electronics caused disturbances of the control system at the lower power levels. The noise power-spectrum was measured. Statistical design methods, using the measured noise power spectrum, were used to design filters, which will reduce the influence of the noise at the lower power levels. Root Loci sketches and Bode diagrams were used for stability analyses. The system was simulated on an analogue computer, taking into account even nonlinearities of the control system and noise. Typical cases of reactor operation were simulated and stability analysis performed

  8. The robustness of the power system. What is the problem and what can be done?

    International Nuclear Information System (INIS)

    2003-01-01

    The water influx failure during the autumn of 2002 is a reminder of the vulnerability of the power system. The social costs of a major failure can be great and it is therefore reason to consider what may be done to guarantee the stability of the power system. Since the influx varies considerably from year to year it is necessary to secure sufficient flexibility at the consumer, in the production, and in the trade with other countries. The price mechanism is the prime mover that coordinates the measures of the different operators across the frontiers. The market therefore has an important stabilizing function, but it is nevertheless possible that the market does not adequately secures the power system against shock. It may thus be necessary to intervene in order to preserve and possibly strengthen the robustness of the power system. Such measures may partly aim to make the market more efficient, and partly supplement the market mechanisms.

  9. Portable wireless power transmission system for video capsule endoscopy.

    Science.gov (United States)

    Zhiwei, Jia; Guozheng, Yan; Bingquan, Zhu

    2014-10-01

    Wireless power transmission is considered a practical way of overcoming the power shortage of wireless capsule endoscopy (VCE). However, most patients cannot tolerate the long hours of lying in a fixed transmitting coil during diagnosis. To develop a portable wireless power transmission system for VCE, a compact transmitting coil and a portable inverter circuit driven by rechargeable batteries are proposed. The couple coils, optimized considering the stability and safety conditions, are 28 turns of transmitting coil and six strands of receiving coil. The driven circuit is designed according to the portable principle. Experiments show that the integrated system could continuously supply power to a dual-head VCE for more than 8 h at a frame rate of 30 frames per second with resolution of 320 × 240. The portable VCE exhibits potential for clinical applications, but requires further improvement and tests.

  10. Virtual velocity loop based on MEMS accelerometers for optical stabilization control system

    Science.gov (United States)

    Ren, Wei; Deng, Chao; Mao, Yao; Ren, Ge

    2017-08-01

    In the optical stabilization control system (OSCS) control system based on a charge-coupled device (CCD), stabilization performance of the line-of-sight is severely limited by the mechanical resonance and the low sampling rate of the CCD. An approach to improve the stabilization performance of the OSCS control system with load restriction based on three loops, including an acceleration loop, a virtual velocity loop, and a position loop, by using MEMS accelerometers and a CCD is proposed. The velocity signal is obtained by accelerators instead of gyro sensors. Its advantages are low power, low cost, small size, and wide measuring range. A detailed analysis is provided to show how to design the virtual velocity loop and correct virtual velocity loop drift. Experimental results show that the proposed multiloop feedback control method with virtual velocity loop in which the disturbance suppression performance is better than that of the dual loop control with only an acceleration loop and a position loop at low frequency.

  11. Rated power factor and excitation system of large turbine generator

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Watanabe, Takashi; Banjou, Minoru.

    1979-01-01

    As for the rated power factor of turbine generators for thermal power stations, 90% has been adopted since around 1960. On the other hand, power transmission system has entered 500 kV age, and 1,000 kV transmission is expected in the near future. As for the supply of reactive power from thermal and nuclear turbine generators, the necessity of supplying leading reactive power has rather increased. Now, the operating power factor of thermal and nuclear generators becomes 96 to 100% actually. As for the excess stability of turbine generators owing to the strengthening of transmission system and the adoption of super-high voltage, the demand of strict conditions can be dealt with by the adoption of super-fast response excitation system of thyristor shunt winding self exciting type. The adoption of the turbine generators with 90 to 95% power factor and the adoption of the thyristor shunt winding self exciting system were examined and evaluated. The rated power factor of generators, excitation system and economy of adopting these systems are explained. When the power factor of generators is increased from 0.9 to 0.95, about 6% of saving can be obtained in the installation cost. When the thyristor shunt winding self excitation is adopted, it is about 10% more economical than AC excitation. (Kako, I.)

  12. The long term plan for the integration of nuclear power plants into the Turkish Electrical Power System

    International Nuclear Information System (INIS)

    Kutukcuoglu, A.

    1974-03-01

    The report covers in detail the study of the expansion of the Turkish Electric Power System for the period 1980-1987. Load forecast is done by sectors and regions and inter-regions power balances gave the basis for the high voltage network configurations. Expansion alternatives are defined giving priority to hydroelectric projects, to local resources and nuclear power plants concurrently with conventional plants (lignite and oil). Several reactor strategies are analysed with LWR, HWR, FBR and HTGR power plants. Present worth value method is used for comparison of alternatives and sensitivity analysis is done for those ranked in the first places. Load flow, transient stability and frequency deviation studies of the power system are studied carefully by means of A.C. calculator and digital computer codes in order to see the influence of the introduction of large-sized power plants (600-750MW(e)) and their location in the power system. A 600MW(e) nuclear plant in 1983 and a second one of 750MW(e) in 1987 should, it is found, be commissioned into the system. The economic optimization was done with two computer programmes developed by KFA (Juelich): IACO for fuelling nuclear plant and RESTRAPO for power system with high hydroelectric component. The report is bound in three volumes: Volume I: Summary and Conclusions; Volume II: System Planning; Volume III: Electrical Survey

  13. Enhancement of observability and protection of smart power system

    Science.gov (United States)

    Siddique, Abdul Hasib

    It is important for a modern power grid to be smarter in order to provide reliable and sustainable supply of electricity. Traditional way of receiving data from the wired system is a very old and outdated technology. For a quicker and better response from the electric system, it is important to look at wireless systems as a feasible option. In order to enhance the observability and protection it is important to integrate wireless technology with the modern power system. In this thesis, wireless network based architecture for wide area monitoring and an alternate method for performing current measurement for protection of generators and motors, has been adopted. There are basically two part of this project. First part deals with the wide area monitoring of the power system and the second part focuses more on application of wireless technology from the protection point of view. A number of wireless method have been adopted in both the part, these includes Zigbee, analog transmission (Both AM and FM) and digital transmission. The main aim of our project was to propose a cost effective wide area monitoring and protection method which will enhance the observability and stability of power grid. A new concept of wireless integration in the power protection system has been implemented in this thesis work.

  14. Large-scale integration of wind power into the existing Chinese energy system

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    stability, the maximum feasible wind power penetration in the existing Chinese energy system is approximately 26% from both technical and economic points of view. A fuel efficiency decrease occurred when increasing wind power penetration in the system, due to its rigid power supply structure and the task......This paper presents the ability of the existing Chinese energy system to integrate wind power and explores how the Chinese energy system needs to prepare itself in order to integrate more fluctuating renewable energy in the future. With this purpose in mind, a model of the Chinese energy system has...... been constructed by using EnergyPLAN based on the year 2007, which has then been used for investigating three issues. Firstly, the accuracy of the model itself has been examined and then the maximum feasible wind power penetration in the existing energy system has been identified. Finally, barriers...

  15. 9{sup th} international workshop on large-scale integration of wind power into power systems as well as on transmission networks for offshore wind power plants. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt, Uta; Ackermann, Thomas (eds.)

    2010-07-01

    Within the 9th International Workshop on large-scale integration of wind power into power systems as well as on transmission networks for offshore wind power plants at 18th to 19th October, 2010 in Quebec (Canada), lectures and poster papers were presented to the following themes: (1) Keynote session and panel; (2) European grid integration studies; (3) Modeling; (4) Wind forecasting; (5) North American grid integration studies; (6) Voltage stability and control; (7) Grid codes and impact studies; (8) Canadian University research (WESNet); (9) Operation and dispatch; (9) Offshore wind power plants; (10) Frequency Control; (11) Methodologies to estimate wind power impacts on power systems, summaries from IEAWIND collaboration; (12) HVDC; (13) Grid codes and system impact studies; (14) Modeling and validation; (15) Regulations, markets and offshore wind energy; (16) Integration issues; (17) Wind turbine control system; (18) Energy management and IT solutions.

  16. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  17. Analysis of impact of “strong DC and weak AC” on receiving-end power system

    Science.gov (United States)

    Wang, Qiang; Li, Tianran; Yang, Pengcheng

    2018-02-01

    The rapid development of UHVDC transmission project has brought abundant power supply to the receiving-end power system area, but also many security and stability problems. This paper summarizes four elements that affect the strength of AC system, and then simulates the most basic two-terminal single-pole UHV transmission system by MATLAB/Simulink. It analyses the impact of receiving-end AC power system strength on real-time power, frequency and voltage. Finally, in view of operation risk of “strong DC and weak AC”, this paper puts forward three countermeasures.

  18. Operational margin monitoring system for boiling water reactor power plants

    International Nuclear Information System (INIS)

    Fukutomi, S.; Takigawa, Y.

    1992-01-01

    This paper reports on an on-line operational margin monitoring system which has been developed for boiling water reactor power plants to improve safety, reliability, and quality of reactor operation. The system consists of a steady-state core status prediction module, a transient analysis module, a stability analysis module, and an evaluation and guidance module. This system quantitatively evaluates the thermal margin during abnormal transients as well as the stability margin, which cannot be evaluated by direct monitoring of the plant parameters, either for the current operational state or for a predicted operating state that may be brought about by the intended operation. This system also gives operator guidance as to appropriate or alternate operations when the operating state has or will become marginless

  19. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use - international joint demonstration and development of photovoltaic power generation systems (Demonstrative research on photovoltaic power and micro hydraulic power hybrid system); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden system kokusai kyodo jissho kaihatsu (taiyoko micro suiryoku hybrid system jissho kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A photovoltaic (PV) power plant is compounded with a micro hydroelectric (MH) power plant in Vietnam, who has a dry season and a rainy season, to structure a stabilized power supply system to compensate drawbacks of the respective systems. Full load operation is being performed to advance the development of technologies to optimize and improve the performance and reliability of the system. The works include (1) site surveys, and decision on a location to execute the demonstration research, (2) design of the system, and design and fabrication of devices, and (3) the building construction thereof. In Item (1), the location was decided at Trang Village, Vietnam from such installing conditions as annual average insolation, water channels for wheel turbines, energy complementing relations, load demand amount, and difficulty of installation. In Item (2), the system consists of PV:100 kW/MH:25 kW/control system, wherein the MH is an inductive generator. The Main devices include generators, batteries, inverters, system control panels, and a meteorological data recording device. In Item (3) land survey and development were completed. (NEDO)

  20. On load flow control in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Herbig, Arnim

    2000-01-01

    This dissertation deals with the control of active power flow, or load flow in electric power systems. During the last few years, interest in the possibilities to control the active power flows in transmission systems has increased significantly. There is a number of reasons for this, coming both from the application side - that is, from power system operations - and from the technological side. where advances in power electronics and related technologies have made new system components available. Load flow control is by nature a multi-input multi-output problem, since any change of load flow in one line will be complemented by changes in other lines. Strong cross-coupling between controllable components is to be expected, and the possibility of adverse interactions between these components cannot be rejected straightaway. Interactions with dynamic phenomena in the power system are also a source of concern. Three controllable components are investigated in this thesis, namely the controlled series capacitor (CSC), the phase angle regulator (PAR), and the unified power flow controller (UPFC). Properties and characteristics of these devices axe investigated and discussed. A simple control strategy is proposed. This strategy is then analyzed extensively. Mathematical methods and physical knowledge about the pertinent phenomena are combined, and it is shown that this control strategy can be used for a fairly general class of devices. Computer simulations of the controlled system provide insight into the system behavior in a system of reasonable size. The robustness and stability of the control system are discussed as are its limits. Further, the behavior of the control strategy in a system where the modeling allows for dynamic phenomena are investigated with computer simulations. It is discussed under which circumstances the control action has beneficial or detrimental effect on the system dynamics. Finally, a graphical approach for analyzing the effect of controllers

  1. A support vector machine (SVM) based voltage stability classifier

    Energy Technology Data Exchange (ETDEWEB)

    Dosano, R.D.; Song, H. [Kunsan National Univ., Kunsan, Jeonbuk (Korea, Republic of); Lee, B. [Korea Univ., Seoul (Korea, Republic of)

    2007-07-01

    Power system stability has become even more complex and critical with the advent of deregulated energy markets and the growing desire to completely employ existing transmission and infrastructure. The economic pressure on electricity markets forces the operation of power systems and components to their limit of capacity and performance. System conditions can be more exposed to instability due to greater uncertainty in day to day system operations and increase in the number of potential components for system disturbances potentially resulting in voltage stability. This paper proposed a support vector machine (SVM) based power system voltage stability classifier using local measurements of voltage and active power of load. It described the procedure for fast classification of long-term voltage stability using the SVM algorithm. The application of the SVM based voltage stability classifier was presented with reference to the choice of input parameters; input data preconditioning; moving window for feature vector; determination of learning samples; and other considerations in SVM applications. The paper presented a case study with numerical examples of an 11-bus test system. The test results for the feasibility study demonstrated that the classifier could offer an excellent performance in classification with time-series measurements in terms of long-term voltage stability. 9 refs., 14 figs.

  2. Plutonium stabilization and packaging system

    International Nuclear Information System (INIS)

    1996-01-01

    This document describes the functional design of the Plutonium Stabilization and Packaging System (Pu SPS). The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements of the DOE standard for safe storage of these materials for 50 years. This system will support completion of stabilization and packaging campaigns of the inventory at a number of affected sites before the year 2002. The package will be standard for all sites and will provide a minimum of two uncontaminated, organics free confinement barriers for the packaged material

  3. Coordinated setting of stabilizers for synchronous generators and static var compensators in multimachine systems

    Energy Technology Data Exchange (ETDEWEB)

    Simoes Costa, A J.A.; Silva, A S; Freitas, F D [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Eletrica

    1994-12-31

    Two distinct approaches for the coordinated setting of multimachine power system controllers are presented. The first strategy is based on the re-allocation of the poles related to the electromechanical modes of the system through decentralized control. The second method is a coordinated global procedure based on structurally constrained optimal control. Both approaches considered power system stabilizers and supplementary signals for static var compensators as the controllers to be adjusted. Other types of controllers, such as FACTS devices, can also be tuned by using the proposed techniques. A 13-machine, 77-bus power system which is based on the Brazilian South-Southeast interconnected network is employed to assess the performance of the proposed methods. (author) 14 refs., 1 fig., 7 tabs.

  4. Operating modes and practical power flow analysis of bidirectional isolated power interface for distributed power systems

    International Nuclear Information System (INIS)

    Wen, Huiqing; Su, Bin

    2016-01-01

    Highlights: • Four operating modes of Dual-Phase-Shift control for Dual Active Bridge converter are presented. • Effects of “minor parameters” such as the deadtime and power device voltage drops are analyzed. • Accurate power flow models with Dual-Phase-Shift control are developed and verified with experimental results. • Optimal operating mode is determined with respect to the efficiency improvement. • Measured efficiency of the Dual Active Bridge converter is improved up to 14%. - Abstract: Due to the intermittent nature of the renewable energy sources including photovoltaic and wind energy, the energy storage systems are essential to stabilize dc bus voltage. Considering the discharge depth of super-capacitors and energy-storage batteries, the bidirectional isolated power interface will operate for a wide range of voltage and power. This study focuses on in-depth analysis of the dual-active-bridge dc–dc converter that is controlled by the dual-phase-shift scheme to improve the conversion efficiency in distributed power system. The power flow of each operating mode with dual-phase-shift control is characterized based on a detailed analysis of the effects of “minor parameters”, including the deadtime and power device voltage drops. The complete output power plane of the dual-active-bridge converter with dual-phase-shift control is obtained and compared with experimental results. The optimal operating mode is determined according to the practical output power range and the power flow characteristics. Experimental evaluation shows the effectiveness of the proposed power flow model with dual-phase-shift control and significant efficiency improvement using the optimal mode of dual-phase-shift compared with the conventional phase shift control.

  5. Dynamic analysis, controlling chaos and chaotification of a SMIB power system

    International Nuclear Information System (INIS)

    Chen, H.-K.; Lin, T.-N.; Chen, J.-H.

    2005-01-01

    The dynamic behaviors of a SMIB power system are studied in this paper. A single modal equation is used to analyze the qualitative behaviors of the system. The famous equation of motion is called 'swing equation'. The Lyapunov direct method is applied to obtain conditions of stability of the equilibrium points of the system. The bifurcation of the parameter dependent system is studied numerically. Besides, the phase portraits, the Poincare maps, and the Lyapunov exponents are presented to observe periodic and chaotic motions. Further, the addition of periodic force and the feedback control are used to control chaos effectively. Finally, the chaotification problem of the SMIB power system is also issued

  6. Impact of high level penetration of Wind Turbines on Power System Transient Stability

    DEFF Research Database (Denmark)

    Kalogiannis, Theodoros; Llano, Enrique Muller; Hoseinzadeh, Bakhtyar

    2015-01-01

    generators differ from the conventional ones in their inertial contribution to the grid, therefore, in most cases the ability of the system to maintain a stable operation is declined. To investigate this, two standard models are designed in PowerFactory software. The first is used to characterize system...

  7. Stockholm Power Tech. Power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The proceedings from this symposium is presented in six volumes: Invited speakers` sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  8. Stockholm Power Tech. Power systems

    International Nuclear Information System (INIS)

    1995-01-01

    The proceedings from this symposium is presented in six volumes: Invited speakers' sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  9. Design of Energy Storage Control Strategy to Improve the PV System Power Quality

    DEFF Research Database (Denmark)

    Lei, Mingyu; Yang, Zilong; Wang, Yibo

    2016-01-01

    Random fluctuation of PV power is becoming a more and more serious problem affecting the power quality and stability of grid as the PV penetration keeps increasing recent years. Aiming at this problem, this paper proposed a control strategy of energy storage system based on Model Predictive Contr...

  10. Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems

    International Nuclear Information System (INIS)

    Chen, Gonggui; Liu, Lilan; Song, Peizhu; Du, Yangwei

    2014-01-01

    Highlights: • New method for MOORPD problem using MOCIPSO and MOIPSO approaches. • Constrain-prior Pareto-dominance method is proposed to meet the constraints. • The limits of the apparent power flow of transmission line are considered. • MOORPD model is built up for MOORPD problem. • The achieved results by MOCIPSO and MOIPSO approaches are better than MOPSO method. - Abstract: Multi-objective optimal reactive power dispatch (MOORPD) seeks to not only minimize power losses, but also improve the stability of power system simultaneously. In this paper, the static voltage stability enhancement is achieved through incorporating L index in MOORPD problem. Chaotic improved PSO-based multi-objective optimization (MOCIPSO) and improved PSO-based multi-objective optimization (MOIPSO) approaches are proposed for solving complex multi-objective, mixed integer nonlinear problems such as minimization of power losses and L index in power systems simultaneously. In MOCIPSO and MOIPSO based optimization approaches, crossover operator is proposed to enhance PSO diversity and improve their global searching capability, and for MOCIPSO based optimization approach, chaotic sequences based on logistic map instead of random sequences is introduced to PSO for enhancing exploitation capability. In the two approaches, constrain-prior Pareto-dominance method (CPM) is proposed to meet the inequality constraints on state variables, the sorting and crowding distance methods are considered to maintain a well distributed Pareto optimal solutions, and moreover, fuzzy set theory is employed to extract the best compromise solution over the Pareto optimal curve. The proposed approaches have been examined and tested in the IEEE 30 bus and the IEEE 57 bus power systems. The performances of MOCIPSO, MOIPSO, and multi-objective PSO (MOPSO) approaches are compared with respect to multi-objective performance measures. The simulation results are promising and confirm the ability of MOCIPSO and

  11. Competition, liquidity and stability: international evidence at the bank and systemic levels

    OpenAIRE

    Nguyen, Thi Ngoc My

    2017-01-01

    This thesis investigates the impact of market power on bank liquidity; the association between competition and systemic liquidity; and whether the associations between liquidity and stability at both bank- and systemic- levels are affected by competition. The first research question is explored in the context of 101 countries over 1996-2013 while the second and the third, which require listed banks, use a smaller sample of 32 nations during 2001-2013. The Panel Least Squares and the system Ge...

  12. Power Quality Issues on Wind Power Installations in Denmark

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio; Lund, Torsten

    2007-01-01

    offshore wind farms connected at transmission level. In this perspective, the power quality issues are divided into local issues particularly related to the voltage quality in the distribution systems and global issues related to the power system control and stability. Power quality characteristics of wind...

  13. Power Management of Islanded Self-Excited Induction Generator Reinforced by Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Nachat N. Nasser

    2018-02-01

    Full Text Available Self-Excited Induction Generators (SEIGs, e.g., Small-Scale Embedded wind generation, are increasingly used in electricity distribution networks. The operational stability of stand-alone SEIG is constrained by the local load conditions: stability can be achieved by maintaining the load’s active and reactive power at optimal values. Changes in power demand are dependent on customers’ requirements, and any deviation from the pre-calculated optimum setting will affect a machine’s operating voltage and frequency. This paper presents an investigation of the operation of the SEIG in islanding mode of operation under different load conditions, with the aid of batteries as an energy storage source. In this research a current-controlled voltage-source converter is proposed to regulate the power exchange between a direct current (DC energy storage source and an alternating current (AC grid, the converter’s controller is driven by any variation between machine capability and load demand. In order to prolong the system stability when the battery reaches its operation constraints, it is recommended that an ancillary generator and a dummy local load be embedded in the system. The results show the robustness and operability of the proposed system in the islanding mode of the SEIG under different load conditions.

  14. Electric power system / emergency power supply

    International Nuclear Information System (INIS)

    Dorn, P.G.

    1980-01-01

    One factor of reliability of reactor safety systems is the integrity of the power supply. The purpose of this paper is a review and a discussion of the safety objectives required for the planning, licensing, manufacture and erection of electrical power systems and components. The safety aspects and the technical background of the systems for - the electric auxiliary power supply system and - the emergency power supply system are outlined. These requirements result specially from the safety standards which are the framework for the studies of safety analysis. The overall and specific requirements for the electrical power supply of the safety systems are demonstrated on a 1300 MW standard nuclear power station with a pressurized water reactor. (orig.)

  15. Modeling and Compensation Design for a Power Hardware-in-the-Loop Simulation of an AC Distribution System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainsworth, Nathan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pratt, Annabelle [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baggu, Murali M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hariri, Ali [Formerly NREL

    2017-10-06

    Power hardware-in-the-loop (PHIL) simulation, where actual hardware under text is coupled with a real-time digital model in closed loop, is a powerful tool for analyzing new methods of control for emerging distributed power systems. However, without careful design and compensation of the interface between the simulated and actual systems, PHIL simulations may exhibit instability and modeling inaccuracies. This paper addresses issues that arise in the PHIL simulation of a hardware battery inverter interfaced with a simulated distribution feeder. Both the stability and accuracy issues are modeled and characterized, and a methodology for design of PHIL interface compensation to ensure stability and accuracy is presented. The stability and accuracy of the resulting compensated PHIL simulation is then shown by experiment.

  16. Control of Full-Scale Converter based Wind Power Plants for damping of low frequency system oscillations

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    Damping of low frequency power oscillations is one of essential aspects of maintaining power system stability. In literature can be found publications on damping capability of Doubly Fed Induction Generator based wind turbines. This paper extends discussion on Wind Power Plant damping capability...

  17. Investigation on flow stability of supercritical water cooled systems

    International Nuclear Information System (INIS)

    Cheng, X.; Kuang, B.

    2006-01-01

    Research activities are ongoing worldwide to develop nuclear power plants with supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, the strong variation of the thermal-physical properties of water in the vicinity of the pseudo-critical line results in challenging tasks in various fields, e.g. thermal-hydraulic design of a SCWR. One of the challenging tasks is to understand and to predict the dynamic behavior of supercritical water cooled systems. Although many thermal-hydraulic research activities were carried out worldwide in the past as well as in the near present, studies on dynamic behavior and flow stability of SC water cooled systems are scare. Due to the strong density variation, flow stability is expected to be one of the key items which need to be taken into account in the design of a SCWR. In the present work, the dynamic behavior and flow stability of SC water cooled systems are investigated using both numerical and theoretical approaches. For this purpose a new computer code SASC was developed, which can be applied to analysis the dynamic behavior of systems cooled by supercritical fluids. In addition, based on the assumptions of a simplified system, a theoretical model was derived for the prediction of the onset of flow instability. A comparison was made between the results obtained using the theoretical model and those from the SASC code. A good agreement was achieved. This gives the first evidence of the reliability of both the SASC code and the theoretical model

  18. Tritium systems test assembly stabilization

    International Nuclear Information System (INIS)

    Jasen, William G.; Michelotti, Roy A.; Anast, Kurt R.; Tesch, Charles

    2004-01-01

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium technology Research and Development (R and D) primarily for future fusion power reactors. The facility was conceived in mid 1970's, operations commenced in early 1980's, stabilization and deactivation began in 2000 and were completed in 2003. The facility will remain in a Surveillance and Maintenance (S and M) mode until the Department of Energy (DOE) funds demolition of the facility, tentatively in 2009. A safe and stable end state was achieved by the TSTA Facility Stabilization Project (TFSP) in anticipation of long term S and M. At the start of the stabilization project, with an inventory of approximately 140 grams of tritium, the facility was designated a Hazard Category (HC) 2 Non-Reactor Nuclear facility as defined by US Department of Energy standard DOE-STD-1027-92 (1997). The TSTA facility comprises a laboratory area, supporting rooms, offices and associated laboratory space that included more than 20 major tritium handling systems. The project's focus was to reduce the tritium inventory by removing bulk tritium, tritiated water wastes, and tritium-contaminated high-inventory components. Any equipment that remained in the facility was stabilized in place. All of the gloveboxes and piping were rendered inoperative and vented to atmosphere. All equipment, and inventoried tritium contamination, remaining in the facility was left in a safe-and-stable state. The project used the End Points process as defined by the DOE Office of Environmental Management (web page http://www.em.doe.- gov/deact/epman.htmtlo) document and define the end state required for the stabilization of TSTA Facility. The End Points process added structure that was beneficial through virtually all phases of the project. At completion of the facility stabilization project the residual tritium inventory was approximately 3,000 curies, considerably less than the 1.6-gram threshold for a HC 3 facility. TSTA is now

  19. Modelling and control of variable speed wind turbines for power system studies

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2010-01-01

    and implemented in the power system simulation tool DIgSILENT. Important issues like the fault ride-through and grid support capabilities of these wind turbine concepts are addressed. The paper reveals that advanced control of variable speed wind turbines can improve power system stability. Finally......, it will be shown in the paper that wind parks consisting of variable speed wind turbines can help nearby connected fixed speed wind turbines to ride-through grid faults. Copyright © 2009 John Wiley & Sons, Ltd.......Modern wind turbines are predominantly variable speed wind turbines with power electronic interface. Emphasis in this paper is therefore on the modelling and control issues of these wind turbine concepts and especially on their impact on the power system. The models and control are developed...

  20. Early Prevention Method for Power Systems Instability

    DEFF Research Database (Denmark)

    Dmitrova, Evgenia

    containing no voltage sources). The main functionality of the early prevention method is to deliver control solution allowing escape from instability on the basis of data obtained by PMU measurements. The developed algorithm performs identification of the optimal node for countermeasure application...... instability was created. Utilizing synthetic PMU data, the early prevention method proposed a location and an amount of the countermeasure which will prevent instability; the prediction of the resulting stability margins corresponding to application of the suggested countermeasure was carried out....... The predicted effect of the suggested countermeasure application is in a good agreement with the results obtained by RMS dynamic simulation. Developed method enables adaptive preventive control for near real-time stability maintenance. The achieved results are opening promising perspective for power system...

  1. Development of a VxWorks-based distributed power quality monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Shin, M.J.; Kim, S.J.; Son, Y.I.; Kang, S.H. [Myongji Univ., Yongin (Korea, Republic of). Next-generation Power Technology Center

    2007-07-01

    Electric utilities are becoming increasingly concerned about power quality because end user equipment is more sensitive to disturbances within the power supply system and also within the consumer facilities. In order to improve the quality of electricity, the sources and causes of disturbances must be known. However, voltage sag and swell, wave-faults and momentary interruptions are difficult to detect and avoid unless power quality monitoring devices are installed permanently. The impact that alternative energy sources have on power quality was also discussed. When distributed generation is connected to the power grid, it can generate and supply more reliable power to the grid. For a reliable interconnection of distributed power to the grid, monitoring systems should display the status of distributed power and record power events. Lack of source stability in distributed generation such as solar-cells or wind-power creates events that should be measured and stored immediately. This paper presented a newly developed real-time power quality monitoring system for distributed power systems. The system is based on a real-time operating system (OS) and can therefore handle many events that happen simultaneously. The proposed system contains a digital signal processor (MPC7410, Motorola) and an A/D board (VMIVME3122, GE). VxWorks was used to implement the monitoring algorithm. This paper outlined the structure and the functions of the developed Distributed Power Quality Monitoring System. Some experiments were conducted to test the performance of the proposed system. According to test results, the system is compatible with standards of the Institute of Electrical and Electronics Engineers (IEEE) for power quality monitoring. 15 refs., 1 tab., 18 figs.

  2. Efficient Photovoltaic System Maximum Power Point Tracking Using a New Technique

    Directory of Open Access Journals (Sweden)

    Mehdi Seyedmahmoudian

    2016-03-01

    Full Text Available Partial shading is an unavoidable condition which significantly reduces the efficiency and stability of a photovoltaic (PV system. When partial shading occurs the system has multiple-peak output power characteristics. In order to track the global maximum power point (GMPP within an appropriate period a reliable technique is required. Conventional techniques such as hill climbing and perturbation and observation (P&O are inadequate in tracking the GMPP subject to this condition resulting in a dramatic reduction in the efficiency of the PV system. Recent artificial intelligence methods have been proposed, however they have a higher computational cost, slower processing time and increased oscillations which results in further instability at the output of the PV system. This paper proposes a fast and efficient technique based on Radial Movement Optimization (RMO for detecting the GMPP under partial shading conditions. The paper begins with a brief description of the behavior of PV systems under partial shading conditions followed by the introduction of the new RMO-based technique for GMPP tracking. Finally, results are presented to demonstration the performance of the proposed technique under different partial shading conditions. The results are compared with those of the PSO method, one of the most widely used methods in the literature. Four factors, namely convergence speed, efficiency (power loss reduction, stability (oscillation reduction and computational cost, are considered in the comparison with the PSO technique.

  3. The influence of the Itaipu 60 Hz excitation system and stabilizer in the dynamic performance of the south/southeastern interconnected system

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Filho, Xisto; Gomes, P.; Garos, I. [ELETROBRAS, Rio de Janeiro, RJ (Brazil); Pedroso, A. [Centro de Pesquisas de Energia Eletrica, Rio de Janeiro, RJ (Brazil); Jardim, J.L [FURNAS, Rio de Janeiro, RJ (Brazil); Queiroz, V. [Itaipu Binacional, Foz do Iguacu, PR (Brazil)

    1987-12-31

    This paper presents the main characteristics of Brazilian South/Southeastern interconnected system. Special attention is given to the Itaipu power plant which was considered the main basis for hydro generation expansion in the Brazilian interconnected system for the period 1982/1990. The paper also analyses the flexibility of the Itaipu 60 Hz Power System Stabilizer (PSS) for a more effective contribution to attenuate the dynamic problems, considering its influence not only for local mode oscillations, but also for the inter-area types. 7 refs., 6 figs., 6 tabs.

  4. A taxonomical review on impact assessment of optimally placed DGs and FACTS controllers in power systems

    Directory of Open Access Journals (Sweden)

    Bindeshwar Singh

    2017-11-01

    Full Text Available In the present scenario of all over the world like develops and undeveloped countries are fastly used Distributed Generations (DGs and Flexible Alternating Current Transmission Systems (FACTS controllers in power systems for reactive power supports so that the overall power system performances are improved such as minimization of real and reactive power losses, environmental pollutions and maximization of loadability of system, power system stability, the short circuit capacity of the line and also enhancement of voltage profile, available power transfer capacity of the system, reliability as well as security of the system and more flexible operations of the system. This survey paper presents a taxonomical review on impact assessment of DGs and FACTS controllers in power systems from different power system performance viewpoints and reveals the current status of research work in this field.

  5. Study on the stability of waterpower-speed control system for hydropower station with air cushion surge chamber

    International Nuclear Information System (INIS)

    Guo, W C; Yang, J D; Chen, J P; Teng, Y

    2014-01-01

    According to the fact that the effects of penstock, unit and governor on stability of water level fluctuation for hydropower station with air cushion surge chamber are neglected in previous researches, in this paper, Thoma assumption is broken through, the complete mathematical model of waterpower-speed control system for hydropower station with air cushion surge chamber is established, and the comprehensive transfer function and linear homogeneous differential equation that characterize the dynamic characteristics of system are derived. The stability domain that characterizes the good or bad of stability quantitatively is drawn by using the stability conditions. The effects of the fluid inertia in water diversion system, the air cushion surge chamber parameters, hydraulic turbine characteristics, generator characteristics, and regulation modes of governor on the stability of waterpower-speed control system are analyzed through stability domain. The main conclusions are as follows: The fluid inertia in water diversion system and hydraulic turbine characteristics have unfavorable effects on the system while generator characteristics have favorable effect. The stability keeps getting better with the increase of chamber height and basal area and the decrease of air pressure and air polytropic exponent. The stability of power regulation mode is obviously better than that of frequency regulation mode

  6. A fresh look at electron cyclotron current drive power requirements for stabilization of tearing modes in ITER

    Energy Technology Data Exchange (ETDEWEB)

    La Haye, R. J., E-mail: lahaye@fusion.gat.com [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2015-12-10

    ECCD by the presence of the island; various theories predict broadening could occur and there is experimental evidence for broadening in DIII-D. Wider than now expected ECCD in ITER would make alignment easier to do but weaken the stabilization and thus require more rf power. In addition to updated modeling for ITER, advances in the ITER-relevant DIII-D ECCD gyrotron launch mirror control system hardware and real-time plasma control system have been made [7] and there are plans for application in DIII-D ITER demonstration discharges.

  7. Recent Progress in Stability and Stabilization of Systems with Time-Delays

    Directory of Open Access Journals (Sweden)

    Magdi S. Mahmoud

    2017-01-01

    Full Text Available This paper overviews the research investigations pertaining to stability and stabilization of control systems with time-delays. The prime focus is the fundamental results and recent progress in theory and applications. The overview sheds light on the contemporary development on the linear matrix inequality (LMI techniques in deriving both delay-independent and delay-dependent stability results for time-delay systems. Particular emphases will be placed on issues concerned with the conservatism and the computational complexity of the results. Key technical bounding lemmas and slack variable introduction approaches will be presented. The results will be compared and connections of certain delay-dependent stability results are also discussed.

  8. Frequency Stabilizing Scheme for a Danish Island Grid

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Wu, Qiuwei; Østergaard, Jacob

    2012-01-01

    of wind power is necessary to avoid unwanted power oscillations, which lead to uncontrolled oscillations in the power plant control. Since this might deteriorate power quality including frequency in an island grid, a frequency stabilizing control scheme or strategies using intelligent controller......This paper describes the development of frequency stabilizing control scheme for a small Danish island of Bornholm. The Bornholm power system is able to transit from interconnected operation with the Nordic power system to isolated islanding operation. During islanding operation the shedding...... with a battery energy storage system (BESS) has been proposed. The real-time models of distribution grids of Bornholm power system were used to carry out case studies to illustrate the performance of centralized load frequency control as well as coordinated control scheme. Case study results show...

  9. ISABELLE magnet power supply system performance analysis

    International Nuclear Information System (INIS)

    Edwards, R.J.

    1981-01-01

    The power supply system that will energize the superconducting magnets in the ISABELLE 400 x 400 GeV accelerator must supply various voltages and currents. The voltages for the correction winding range from ten to one hundred twenty-five volts unipolar and bipolar with current rating of 50 to 300 amperes. The main field winding requires voltages from 90V (at flattop) to 600V during maximum ramp rate or acceleration cycle. The power supplies are programmable over their full range of output current with a reproducibility error varying from +- 10 ppM to +- 400 ppM of full scale. Included within the reproducibility error are the long and short term stability requirements of the power supplies. The purpose of this paper is to define some of the design goals and outline the approach taken in reaching these goals

  10. Design of a hybrid power system based on solar cell and vibration energy harvester

    Science.gov (United States)

    Zhang, Bin; Li, Mingxue; Zhong, Shaoxuan; He, Zhichao; Zhang, Yufeng

    2018-03-01

    Power source has become a serious restriction of wireless sensor network. High efficiency, self-energized and long-life renewable source is the optimum solution for unmanned sensor network applications. However, single renewable power source can be easily affected by ambient environment, which influences stability of the system. In this work, a hybrid power system consists of a solar panel, a vibration energy harvester and a lithium battery is demonstrated. The system is able to harvest multiple types of ambient energy, which extends its applicability and feasibility. Experiments have been conducted to verify performance of the system.

  11. Stability of the slopes around nuclear power plants in earthquake

    International Nuclear Information System (INIS)

    Ito, Hiroshi

    1983-01-01

    The evaluation of the stability of the slopes around the buildings of nuclear power plants is important especially with respect to earthquakes. In this connection, the behavior of a slope up to its destruction and the phenomena of the destruction have been examined in the case of an earthquake by both experiment and numerical analysis. The purpose is to obtain the data for the establishment of a method for evaluating the seismic stability of a slope and of the slope design standards. The following results are described: the behavior of a slope and its destruction characteristics in the slope destruction experiment simulating the seismic coefficient method; the vibration of a slope and its destruction characteristics in vibration destruction experiment; the validity of the method of numerical simulation analysis and of stability evaluation for the slope destruction and the vibration destruction experiments, and quantitative destruction mechanism; the comparison of the various stability evaluation methods and the evaluation of seismic forces. (Mori, K.)

  12. Electric power systems

    CERN Document Server

    Weedy, B M; Jenkins, N; Ekanayake, J B; Strbac, G

    2012-01-01

    The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now e

  13. A gas-cooled reactor surface power system

    International Nuclear Information System (INIS)

    Lipinski, R.J.; Wright, S.A.; Lenard, R.X.; Harms, G.A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars. copyright 1999 American Institute of Physics

  14. A gas-cooled reactor surface power system

    International Nuclear Information System (INIS)

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars

  15. A Gas-Cooled Reactor Surface Power System

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.

    1998-11-09

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  16. Large-signal stability analysis of two power converters solutions for DC shipboard microgrid

    NARCIS (Netherlands)

    Bosich, Daniele; Gibescu, Madeleine; Sulligoi, Giorgio

    2017-01-01

    Bus voltage stability is an essential requirement in DC shipboard microgrids. In presence of Constant Power Loads, voltage instability is strictly dependent on RLC filters. This paper evaluates two power converter solutions (Thyristor Converters, TCs, and diode rectifiers + DC-DC Converters, DCs)

  17. Financial stability of banking system in China

    OpenAIRE

    Jiang, B

    2014-01-01

    This thesis aims at investigating the financial stability of China's banking system. Since the banking system is one of the most important financial intermediaries in the financial systems, the financial soundness of banks could secure the stability of the whole financial system. Two of the factors that may significantly increase imbalance of the banking system, and hence affect financial stability of an economy is the accumulated non-performing loans of banks and the macro-economic turbulenc...

  18. Virtual Impedance Based Stability Improvement for DC Microgrids with Constant Power Loads

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Huang, Lipei

    2014-01-01

    DC microgrid provides an efficient way to integrate different kinds of renewable energy sources with DC couplings. In this paper, in order to improve the stability of DC microgrids with constant power loads (CPLs), a virtual impedance based method is proposed. The CPLs have inherent instability....... To validate the stability with the above stabilizers in a DC microgrid with parallel interfacing converters and CPL, the impedance matching approach is employed. The output impedance of the source converter and input impedance of the load are calculated respectively, and the influence of droop control...

  19. Wavelength stabilized high pulse power laser diodes for automotive LiDAR

    Science.gov (United States)

    Knigge, A.; Klehr, A.; Wenzel, H.; Zeghuzi, A.; Fricke, J.; Maaßdorf, A.; Liero, A.; Tränkle, G.

    2018-03-01

    Diode lasers generating optical pulses with high peak power and lengths in the nanosecond range are key components of systems for free-space communication, metrology, material processing, spectroscopy, and light detection and ranging (LiDAR) as needed for object detection and autonomous driving. Automotive LiDAR systems demand additionally a good beam quality and low wavelength shift with temperature due to the wide operating temperature span. We present here internally wavelength stabilized lasers emitting ns optical pulses from an emission aperture between 30 μm and 100 μm with peak powers of tens of Watts at wavelengths around 905 nm. The vertical structure based on AlGaAs (confinement and cladding layers) and InGaAs (active quantum well) is especially optimized for pulsed operation with respect to the implementation of a surface Bragg grating with a high reflectivity. The fabricated 6 mm long distributed Bragg reflector (DBR) broad area (BA) lasers are electrically driven by an in-house developed high-speed unit generating 3 to 10 ns long nearly rectangular shaped current pulses with amplitudes of up to 250 A. Such lasers emit optical pulses with a peak power of more than 30 W at 95 A pulse current up to a temperature of 85°C with a wavelength shift as low as 65 pm/K and a lateral beam propagation factor less than 10. The influence of the lateral aperture width and the pulse length on the beam quality will be shown. A monolithic integration of 3 DBR BA lasers on a single chip whose emission can be combined into a single beam raises the output power to more than 100 W.

  20. Advanced Control of Photovoltaic and Wind Turbines Power Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Chen, Wenjie; Blaabjerg, Frede

    2014-01-01

    Much more efforts have been made on the integration of renewable energies into the grid in order to meet the imperative demand of a clean and reliable electricity generation. In this case, the grid stability and robustness may be violated due to the intermittency and interaction of the solar...... and wind renewables. Thus, in this chapter, advanced control strategies, which can enable the power conversion efficiently and reliably, for both photovoltaic (PV) and wind turbines power systems are addressed in order to enhance the integration of those technologies. Related grid demands have been...... presented firstly, where much more attention has been paid on specific requirements, like Low Voltage Ride-Through (LVRT) and reactive power injection capability. To perform the functions of those systems, advanced control strategies are presented with much more emphasis on the LVRT operation with reactive...