WorldWideScience

Sample records for power system reactive

  1. Dynamic Reactive Power Compensation of Large Scale Wind Integrated Power System

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2015-01-01

    wind turbines especially wind farms with additional grid support functionalities like dynamic support (e,g dynamic reactive power support etc.) and ii) refurbishment of existing conventional central power plants to synchronous condensers could be one of the efficient, reliable and cost effective option......Due to progressive displacement of conventional power plants by wind turbines, dynamic security of large scale wind integrated power systems gets significantly compromised. In this paper we first highlight the importance of dynamic reactive power support/voltage security in large scale wind...... integrated power systems with least presence of conventional power plants. Then we propose a mixed integer dynamic optimization based method for optimal dynamic reactive power allocation in large scale wind integrated power systems. One of the important aspects of the proposed methodology is that unlike...

  2. Multiobjective clearing of reactive power market in deregulated power systems

    International Nuclear Information System (INIS)

    Rabiee, A.; Shayanfar, H.; Amjady, N.

    2009-01-01

    This paper presents a day-ahead reactive power market which is cleared in the form of multiobjective context. Total payment function (TPF) of generators, representing the payment paid to the generators for their reactive power compensation, is considered as the main objective function of reactive power market. Besides that, voltage security margin, overload index, and also voltage drop index are the other objective functions of the optimal power flow (OPF) problem to clear the reactive power market. A Multiobjective Mathematical Programming (MMP) formulation is implemented to solve the problem of reactive power market clearing using a fuzzy approach to choose the best compromise solution according to the specific preference among various non-dominated (pareto optimal) solutions. The effectiveness of the proposed method is examined based on the IEEE 24-bus reliability test system (IEEE 24-bus RTS). (author)

  3. Coupled energy and reactive power market clearing considering power system security

    International Nuclear Information System (INIS)

    Rabiee, Abdorreza; Shayanfar, Heidarali; Amjady, Nima

    2009-01-01

    In a deregulated environment, when talking about electricity markets, one usually refers to energy market, paying less attention to the reactive power market. Active and reactive powers are, however, coupled through the AC power flow equations and branch loading limits as well as the synchronous generators capability curves. However, the sequential approach for energy and reactive power markets cannot present the optimal solution due to the interactions between these markets. For instance, clearing of the reactive power market can change active power dispatch (e.g. due to a change of transmission system losses and the capability curve limitation), which can lead to degradation of the energy market clearing point. This paper presents a coupled day ahead energy and reactive power market based on the pay-at-MCP settlement mechanism. Besides, the proposed coupled framework considers voltage stability and security issues and branch loading limits. The coupled market is cleared through optimal power flow (OPF). Its objective function includes total payment of generating units for their active power production along with the total payment function (TPF) of units for their reactive power compensation. Moreover, lost opportunity cost (LOC) of the units is also considered. The effectiveness of the proposed framework is examined on the IEEE 24 bus Reliability Test System

  4. Coupled energy and reactive power market clearing considering power system security

    Energy Technology Data Exchange (ETDEWEB)

    Rabiee, Abdorreza; Shayanfar, Heidarali [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran (Iran); Amjady, Nima [Department of Electrical Engineering, Semnan University, Semnan (Iran)

    2009-04-15

    In a deregulated environment, when talking about electricity markets, one usually refers to energy market, paying less attention to the reactive power market. Active and reactive powers are, however, coupled through the AC power flow equations and branch loading limits as well as the synchronous generators capability curves. However, the sequential approach for energy and reactive power markets cannot present the optimal solution due to the interactions between these markets. For instance, clearing of the reactive power market can change active power dispatch (e.g. due to a change of transmission system losses and the capability curve limitation), which can lead to degradation of the energy market clearing point. This paper presents a coupled day ahead energy and reactive power market based on the pay-at-MCP settlement mechanism. Besides, the proposed coupled framework considers voltage stability and security issues and branch loading limits. The coupled market is cleared through optimal power flow (OPF). Its objective function includes total payment of generating units for their active power production along with the total payment function (TPF) of units for their reactive power compensation. Moreover, lost opportunity cost (LOC) of the units is also considered. The effectiveness of the proposed framework is examined on the IEEE 24 bus Reliability Test System. (author)

  5. Reactive Power Management in Electric Power Systems

    African Journals Online (AJOL)

    (Ferranti effect) would limit the power transfer and the transmission range in the absence of any compensation measures. Journal of EAEA, Vol 14, 1997. In this paper, the management of the reactive power is explored with the aim of improving the quality and the reliability of the supply in the EELPA's interconnected system ...

  6. A New Framework for Reactive Power Market Considering Power System Security

    Directory of Open Access Journals (Sweden)

    A. Rabiee

    2009-09-01

    Full Text Available This paper presents a new framework for the day-ahead reactive power market based on the uniform auction price. Voltage stability and security have been considered in the proposed framework. Total Payment Function (TPF is suggested as the objective function of the Optimal Power Flow (OPF used to clear the reactive power market. Overload, voltage drop and voltage stability margin (VSM are included in the constraints of the OPF. Another advantage of the proposed method is the exclusion of Lost Opportunity Cost (LOC concerns from the reactive power market. The effectiveness of the proposed reactive power market is studied based on the CIGRÉ-32 bus test system.

  7. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  8. APPLICATION OF MODIFIED POWER FLOW TRACING METHOD FOR REACTIVE POWER PRICING IN PRACTICAL UTILITY SYSTEM

    Directory of Open Access Journals (Sweden)

    M. SUSITHRA

    2017-01-01

    Full Text Available Competitive trend towards restructuring and unbundling of transmission services has resulted in the need to discover the impact of a particular generator to load. This paper initially presents the analysis of three different reactive power valuation methods namely, Modified Ybus , Virtual flow approach and modified power flow tracing to compute the reactive power output from a particular generator to particular load. Among these methods, the modified power flow electricity tracing method is identified as the best method to trace the reactive power contribution from various reactive power sources to loads, transmission line, etc. Also this proposed method breakdown the total reactive power loss in a transmission line into components to be allocated to individual loads. Secondly, based on this Method a novel allocation method for reactive power service for practical system is proposed. Hence, this method can be useful in providing additional insight into power system operation and can be used to modify existing tariffs of charging for reactive power transmission loss and reactive power transmission services. Simulation and comparison results are shown by taking WSCC 9 and IEEE 30 bus system as test system.

  9. REACTIVE POWER DEVICES IN SYSTEMS OF ELECTRIC TRACTION

    Directory of Open Access Journals (Sweden)

    M. O. Kostin

    2010-04-01

    Full Text Available A comparative characteristic of different concepts and expressions for determination of reactive power in the circuits with non-sinusoidal electric values has been given. For the first Ukrainian electric locomotives of DE1 type with the system of DC electric traction, the values of reactive power after Budeany, Fryze, and also the differential, integral and generalized reactive powers have been determined. Some measures on reducing its consumption by the DC electric rolling stock have been suggested.

  10. Study for reactive power on distribution system line B RSG-GAS

    International Nuclear Information System (INIS)

    Yan Bony Marsahala

    2010-01-01

    Study for reactive power on distribution system line B RSG-GA is already done. The study intended to evaluate how much inductive load need the reactive power (positive), how much power factor, and what will be done to increase the power factor. The reactive power is the losses power, can't be changed into energy, but it is need for transmission process and it is cause the energy losses. The loads on distribution system line B consist of induction motors which are used for primary cooling system and secondary cooling system, lift, blower on cooling tower, and air condition system. Due to the motors using, the power factor are falling down to low. By the calculation results give that the inductive loads on distribution line B are 850 KVA and these loads caused the low power factor 0.80. If we want to increase the power factor up to 0.95, it is need to install the reactive loads likes capacitor bank 250 KVAR. (author)

  11. A Tariff for Reactive Power

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would

  12. Active and reactive power neurocontroller for grid-connected photovoltaic generation system

    Directory of Open Access Journals (Sweden)

    I. Abadlia

    2016-03-01

    Full Text Available Many researchers have contributed to the development of a firm foundation for analysis and design of control applications in grid-connected renewable energy sources. This paper presents an intelligent control algorithm fond on artificial neural networks for active and reactive power controller in grid-connected photovoltaic generation system. The system is devices into two parts in which each part contains an inverter with control algorithm. A DC/DC converter in output voltage established by control magnitude besides maximum power point tracker algorithm always finds optimal power of the PV array in use. A DC/AC hysteresis inverter designed can synchronize a sinusoidal current output with the grid voltage and accurate an independent active and reactive power control. Simulation results confirm the validation of the purpose. Neurocontroller based active and reactive power presents an efficiency control that guarantees good response to the steps changing in active and reactive power with an acceptable current/voltage synchronism. In this paper the power circuit and the control system of the presented grid-connected photovoltaic generation system is simulated and tested by MatLab/Simulink.

  13. An OPF based approach for assessing the minimal reactive power support for generators in deregulated power systems

    International Nuclear Information System (INIS)

    Wu, H.; Yu, C.W.; Xu, N.; Lin, X.J.

    2008-01-01

    Reactive power support is an important ancillary service for secure and reliable operation in power markets. It has recently been recognized that the reactive power support for a generator has two components: one for supporting its own real power transmission and the other for supplying reactive demand, improving system security, and controlling system voltage; and that only the second part should receive financial compensation in competitive power markets. This makes the problem of separating these two components a new focus of current research. An OPF based reactive power optimization model along with a power flow tracing based method is proposed in this paper to tackle this problem. The methodology is tested on four test systems. Detailed analysis of the results of the 39-bus test system is reported. (author)

  14. Improvement of the dynamic response of the ITER Reactive Power Compensation system

    International Nuclear Information System (INIS)

    Finotti, Claudio; Gaio, Elena; Song, Inho; Tao, Jun; Benfatto, Ivone

    2015-01-01

    Highlights: • The slow response reasons of the classic ITER Reactive Power Compensation (RPC) control are explained. • The dynamic behaviors of the ac/dc converter and of the RPC are characterized. • New control concept to speed up the RPC response is developed. • Good performance of the new RPC control is verified even during fast transient conditions. - Abstract: The ITER ac/dc conversion system can absorb a total active and reactive power up to 500 MW and 950 Mvar, respectively. The Reactive Power Compensation (RPC) system is rated for a nominal power of 750 Mvar necessary to comply with the allowable reactive power limit value from the grid of 200 Mvar. This system is currently under construction and is based on Static Var Compensation technology with Thyristor Controlled Reactor (TCR) and Tuned Filters. The RPC has to minimize the demand of reactive power from the grid; its control is based on a feed-forward method, where the corrective input is the measurement of the reactive power consumption of the ac/dc converters, derived from the 50 Hz component of the Fast Fourier Transform (FFT) of the three-phase voltages and currents. The delay introduced by the FFT calculation and the slow response of the TCR could make the response speed of the RPC not sufficient to face fast variations of the reactive power demand and therefore in this paper a new controller of the RPC able to overcome this shortcoming is proposed and evaluated. It is based on the calculation of the predicted consumption of the reactive power by using the voltage reference signals coming from the Plasma Control System and the measurements of the dc current of the ac/dc converters and of the 66 kV busbar voltage, and on the speed up of the RPC control by introducing a lead–lag transfer function.

  15. Improvement of the dynamic response of the ITER Reactive Power Compensation system

    Energy Technology Data Exchange (ETDEWEB)

    Finotti, Claudio, E-mail: claudio.finotti@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Gaio, Elena [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Song, Inho; Tao, Jun; Benfatto, Ivone [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • The slow response reasons of the classic ITER Reactive Power Compensation (RPC) control are explained. • The dynamic behaviors of the ac/dc converter and of the RPC are characterized. • New control concept to speed up the RPC response is developed. • Good performance of the new RPC control is verified even during fast transient conditions. - Abstract: The ITER ac/dc conversion system can absorb a total active and reactive power up to 500 MW and 950 Mvar, respectively. The Reactive Power Compensation (RPC) system is rated for a nominal power of 750 Mvar necessary to comply with the allowable reactive power limit value from the grid of 200 Mvar. This system is currently under construction and is based on Static Var Compensation technology with Thyristor Controlled Reactor (TCR) and Tuned Filters. The RPC has to minimize the demand of reactive power from the grid; its control is based on a feed-forward method, where the corrective input is the measurement of the reactive power consumption of the ac/dc converters, derived from the 50 Hz component of the Fast Fourier Transform (FFT) of the three-phase voltages and currents. The delay introduced by the FFT calculation and the slow response of the TCR could make the response speed of the RPC not sufficient to face fast variations of the reactive power demand and therefore in this paper a new controller of the RPC able to overcome this shortcoming is proposed and evaluated. It is based on the calculation of the predicted consumption of the reactive power by using the voltage reference signals coming from the Plasma Control System and the measurements of the dc current of the ac/dc converters and of the 66 kV busbar voltage, and on the speed up of the RPC control by introducing a lead–lag transfer function.

  16. Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, F.L.; Moraes, A.J.; Guimaraes, G.C.; Sanhueza, S.M.R.; Vaz, A.R. [Federal University of Uberlandia (UFU), MG (Brazil)

    2009-07-01

    In the case of photovoltaic solar systems (PV) acting as a distributed generation (DG), the DC energy obtained is fed through the power-conditioning unit (inverter) to the grid. The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can be utilized instead of CSI, we can generate reactive power commensurate with the remaining unused capacity at any given point in time. According to the theory of instantaneous power, the reactive and active power of inverter can be regulated by changing the amplitude and the phase of the output voltage of the inverter. Based on this theory, the active power output and the reactive power compensation (RPC) of the system are realized simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of PV system can still be used to improve the utilization factor of the inverter. The MATLAB simulation results validate the feasibility of the method. (author)

  17. Dynamic Performance of the ITER Reactive Power Compensation System

    International Nuclear Information System (INIS)

    Sheng Zhicai; Fu Peng; Xu Liuwei

    2011-01-01

    Dynamic performance of a reactive power compensation (RPC) system for the international thermonuclear experimental reactor (ITER) power supply is presented. Static var compensators (SVCs) are adopted to mitigate voltage fluctuation and reduce the reactive power down to a level acceptable for the French/European 400 kV grid. A voltage feedback and load power feedforward controller for SVC is proposed, with the feedforward loop intended to guarantee short response time and the feedback loop ensuring good dynamics and steady characteristics of SVC. A mean filter was chosen to measure the control signals to improve the dynamic response. The dynamic performance of the SVC is verified by simulations using PSCAD/EMTDC codes.

  18. Multiagent voltage and reactive power control system

    Directory of Open Access Journals (Sweden)

    I. Arkhipov

    2014-12-01

    Full Text Available This paper is devoted to the research of multiagent voltage and reactive power control system development. The prototype of the system has been developed by R&D Center at FGC UES (Russia. The control system architecture is based on the innovative multiagent system theory application that leads to the achievement of several significant advantages (in comparison to traditional control systems implementation such as control system efficiency enhancement, control system survivability and cyber security.

  19. Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation

    International Nuclear Information System (INIS)

    Taghavi, Reza; Seifi, Ali Reza; Samet, Haidar

    2015-01-01

    Environmental concerns besides fuel costs are the predominant reasons for unprecedented escalating integration of wind turbine on power systems. Operation and planning of power systems are affected by this type of energy due to the intermittent nature of wind speed inputs with high uncertainty in the optimization output variables. Consequently, in order to model this high inherent uncertainty, a PRPO (probabilistic reactive power optimization) framework should be devised. Although MC (Monte-Carlo) techniques can solve the PRPO with high precision, PEMs (point estimate methods) can preserve the accuracy to attain reasonable results when diminishing the computational effort. Also, this paper introduces a methodology for optimally dispatching the reactive power in the transmission system, while minimizing the active power losses. The optimization problem is formulated as a LFP (linear fuzzy programing). The core of the problem lay on generation of 2m + 1 point estimates for solving PRPO, where n is the number of input stochastic variables. The proposed methodology is investigated using the IEEE-14 bus test system equipped with HVDC (high voltage direct current), UPFC (unified power flow controller) and DFIG (doubly fed induction generator) devices. The accuracy of the method is demonstrated in the case study. - Highlights: • This paper uses stochastic loads in optimization process. • AC–DC load flow is modified to use some advantages of DC part in optimization process. • UPFC and DFIG are simulated in a way that could be effective in optimization process. • Fuzzy set has been used as an uncertainty analysis tool in the optimization

  20. Reactive Power Compensating System.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  1. Reactive power compensator

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  2. Reactive power compensator

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  3. Simulation and study on reactivity disturbs dynamic character of HTR-10 nuclear power system

    International Nuclear Information System (INIS)

    Huang Xiaojin; Feng Yuankun

    2002-01-01

    In order to not only know 10 MW High Temperature Gas Cooled Reactor (HTR-10) nuclear power system's dynamic character more deeply but also to satisfy requirements of control system's design and analysis, the dynamic model of HTR-10 nuclear power system is established on the basis of dynamic model of HTR-10 nuclear system, which supplies turbine and generate electricity system model. Using this model, system's main variables' dynamic processes are simulated when control rod takes step reactivity disturb. The concussive progresses which is caused by reactivity disturb are analyzed. The results indicate that fuel temperature changing more slowly than nuclear power makes reactivity negative feedback not to restrain power changing, and then power concussive progress comes to being

  4. Reactive power compensation a practical guide

    CERN Document Server

    Hofmann, Wolfgang; Just, Wolfgang

    2012-01-01

    The comprehensive resource on reactive power compensation, presenting the design, application and operation of reactive power equipment and installations The area of reactive power compensation is gaining increasing importance worldwide. If suitably designed, it is capable of improving voltage quality significantly, meaning that losses in equipment and power systems are reduced, the permissible loading of equipment can be increased, and the over-all stability of system operation improved. Ultimately, energy use and CO2 emisson are reduced. This unique guide discusses the

  5. Reactive Power from Distributed Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye

    2006-12-15

    Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)

  6. Reactive Power from Distributed Energy

    International Nuclear Information System (INIS)

    Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye

    2006-01-01

    Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)

  7. Modelling and automatic reactive power control of isolated wind-diesel hybrid power systems using ANN

    International Nuclear Information System (INIS)

    Bansal, R.C.

    2008-01-01

    This paper presents an artificial neural network (ANN) based approach to tune the parameters of the static var compensator (SVC) reactive power controller over a wide range of typical load model parameters. The gains of PI (proportional integral) based SVC are optimised for typical values of the load voltage characteristics (n q ) by conventional techniques. Using the generated data, the method of multi-layer feed forward ANN with error back propagation training is employed to tune the parameters of the SVC. An ANN tuned SVC controller has been applied to control the reactive power of a variable slip/speed isolated wind-diesel hybrid power system. It is observed that the maximum deviations of all parameters are more for larger values of n q . It has been shown that initially synchronous generator supplies the reactive power required by the induction generator and/or load, and the latter reactive power is purely supplied by the SVC

  8. Modelling and automatic reactive power control of isolated wind-diesel hybrid power systems using ANN

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, R.C. [Electrical and Electronics Engineering Division, School of Engineering and Physics, The University of the South Pacific, Suva (Fiji)

    2008-02-15

    This paper presents an artificial neural network (ANN) based approach to tune the parameters of the static var compensator (SVC) reactive power controller over a wide range of typical load model parameters. The gains of PI (proportional integral) based SVC are optimised for typical values of the load voltage characteristics (n{sub q}) by conventional techniques. Using the generated data, the method of multi-layer feed forward ANN with error back propagation training is employed to tune the parameters of the SVC. An ANN tuned SVC controller has been applied to control the reactive power of a variable slip/speed isolated wind-diesel hybrid power system. It is observed that the maximum deviations of all parameters are more for larger values of n{sub q}. It has been shown that initially synchronous generator supplies the reactive power required by the induction generator and/or load, and the latter reactive power is purely supplied by the SVC. (author)

  9. Distributed Reactive Power Control based Conservation Voltage Reduction in Active Distribution Systems

    Directory of Open Access Journals (Sweden)

    EMIROGLU, S.

    2017-11-01

    Full Text Available This paper proposes a distributed reactive power control based approach to deploy Volt/VAr optimization (VVO / Conservation Voltage Reduction (CVR algorithm in a distribution network with distributed generations (DG units and distribution static synchronous compensators (D-STATCOM. A three-phase VVO/CVR problem is formulated and the reactive power references of D-STATCOMs and DGs are determined in a distributed way by decomposing the VVO/CVR problem into voltage and reactive power control. The main purpose is to determine the coordination between voltage regulator (VR and reactive power sources (Capacitors, D-STATCOMs and DGs based on VVO/CVR. The study shows that the reactive power injection capability of DG units may play an important role in VVO/CVR. In addition, it is shown that the coordination of VR and reactive power sources does not only save more energy and power but also reduces the power losses. Moreover, the proposed VVO/CVR algorithm reduces the computational burden and finds fast solutions. To illustrate the effectiveness of the proposed method, the VVO/CVR is performed on the IEEE 13-node test system feeder considering unbalanced loading and line configurations. The tests are performed taking the practical voltage-dependent load modeling and different customer types into consideration to improve accuracy.

  10. Pay-as-bid based reactive power market

    International Nuclear Information System (INIS)

    Amjady, N.; Rabiee, A.; Shayanfar, H.A.

    2010-01-01

    In energy market clearing, the offers are stacked in increasing order and the offer that intersects demand curve, determines the market clearing price (MCP). In reactive power market, the location of reactive power compensator is so important. A low cost reactive producer may not essentially be favorable if it is far from the consumer. Likewise, a high cost local reactive compensator at a heavily loaded demand center of network could be inevitably an alternative required to produce reactive power to maintain the integrity of power system. Given the background, this paper presents a day-ahead reactive power market based on pay-as-bid (PAB) mechanism. Generators expected payment function (EPF) is used to construct a bidding framework. Then, total payment function (TPF) of generators is used as the objective function of optimal power flow (OPF) problem to clear the PAB based market. The CIGRE-32 bus test system is used to examine the effectiveness of the proposed reactive power market.

  11. Pay-as-bid based reactive power market

    Energy Technology Data Exchange (ETDEWEB)

    Amjady, N. [Department of Electrical Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Rabiee, A., E-mail: Rabiee@iust.ac.i [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-02-15

    In energy market clearing, the offers are stacked in increasing order and the offer that intersects demand curve, determines the market clearing price (MCP). In reactive power market, the location of reactive power compensator is so important. A low cost reactive producer may not essentially be favorable if it is far from the consumer. Likewise, a high cost local reactive compensator at a heavily loaded demand center of network could be inevitably an alternative required to produce reactive power to maintain the integrity of power system. Given the background, this paper presents a day-ahead reactive power market based on pay-as-bid (PAB) mechanism. Generators expected payment function (EPF) is used to construct a bidding framework. Then, total payment function (TPF) of generators is used as the objective function of optimal power flow (OPF) problem to clear the PAB based market. The CIGRE-32 bus test system is used to examine the effectiveness of the proposed reactive power market.

  12. Reactive power compensating system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Timothy J. (Redondo Beach, CA); El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Seattle, WA)

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  13. Reactive power management of power networks with wind generation

    CERN Document Server

    Amaris, Hortensia; Ortega, Carlos Alvarez

    2012-01-01

    As the energy sector shifts and changes to focus on renewable technologies, the optimization of wind power becomes a key practical issue. Reactive Power Management of Power Networks with Wind Generation brings into focus the development and application of advanced optimization techniques to the study, characterization, and assessment of voltage stability in power systems. Recent advances on reactive power management are reviewed with particular emphasis on the analysis and control of wind energy conversion systems and FACTS devices. Following an introduction, distinct chapters cover the 5 key

  14. Optimal reactive power planning for distribution systems considering intermittent wind power using Markov model and genetic algorithm

    Science.gov (United States)

    Li, Cheng

    Wind farms, photovoltaic arrays, fuel cells, and micro-turbines are all considered to be Distributed Generation (DG). DG is defined as the generation of power which is dispersed throughout a utility's service territory and either connected to the utility's distribution system or isolated in a small grid. This thesis addresses modeling and economic issues pertaining to the optimal reactive power planning for distribution system with wind power generation (WPG) units. Wind farms are inclined to cause reverse power flows and voltage variations due to the random-like outputs of wind turbines. To deal with this kind of problem caused by wide spread usage of wind power generation, this thesis investigates voltage and reactive power controls in such a distribution system. Consequently static capacitors (SC) and transformer taps are introduced into the system and treated as controllers. For the purpose of getting optimum voltage and realizing reactive power control, the research proposes a proper coordination among the controllers like on-load tap changer (OLTC), feeder-switched capacitors. What's more, in order to simulate its uncertainty, the wind power generation is modeled by the Markov model. In that way, calculating the probabilities for all the scenarios is possible. Some outputs with consecutive and discrete values have been used for transition between successive time states and within state wind speeds. The thesis will describe the method to generate the wind speed time series from the transition probability matrix. After that, utilizing genetic algorithm, the optimal locations of SCs, the sizes of SCs and transformer taps are determined so as to minimize the cost or minimize the power loss, and more importantly improve voltage profiles. The applicability of the proposed method is verified through simulation on a 9-bus system and a 30-bus system respectively. At last, the simulation results indicate that as long as the available capacitors are able to sufficiently

  15. On Variable Reverse Power Flow-Part I: Active-Reactive Optimal Power Flow with Reactive Power of Wind Stations

    Directory of Open Access Journals (Sweden)

    Aouss Gabash

    2016-02-01

    Full Text Available It has recently been shown that using battery storage systems (BSSs to provide reactive power provision in a medium-voltage (MV active distribution network (ADN with embedded wind stations (WSs can lead to a huge amount of reverse power to an upstream transmission network (TN. However, unity power factors (PFs of WSs were assumed in those studies to analyze the potential of BSSs. Therefore, in this paper (Part-I, we aim to further explore the pure reactive power potential of WSs (i.e., without BSSs by investigating the issue of variable reverse power flow under different limits on PFs in an electricity market model. The main contributions of this work are summarized as follows: (1 Introducing the reactive power capability of WSs in the optimization model of the active-reactive optimal power flow (A-R-OPF and highlighting the benefits/impacts under different limits on PFs. (2 Investigating the impacts of different agreements for variable reverse power flow on the operation of an ADN under different demand scenarios. (3 Derivation of the function of reactive energy losses in the grid with an equivalent-π circuit and comparing its value with active energy losses. (4 Balancing the energy curtailment of wind generation, active-reactive energy losses in the grid and active-reactive energy import-export by a meter-based method. In Part-II, the potential of the developed model is studied through analyzing an electricity market model and a 41-bus network with different locations of WSs.

  16. A Method of Dynamic Extended Reactive Power Optimization in Distribution Network Containing Photovoltaic-Storage System

    Science.gov (United States)

    Wang, Wu; Huang, Wei; Zhang, Yongjun

    2018-03-01

    The grid-integration of Photovoltaic-Storage System brings some undefined factors to the network. In order to make full use of the adjusting ability of Photovoltaic-Storage System (PSS), this paper puts forward a reactive power optimization model, which are used to construct the objective function based on power loss and the device adjusting cost, including energy storage adjusting cost. By using Cataclysmic Genetic Algorithm to solve this optimization problem, and comparing with other optimization method, the result proved that: the method of dynamic extended reactive power optimization this article puts forward, can enhance the effect of reactive power optimization, including reducing power loss and device adjusting cost, meanwhile, it gives consideration to the safety of voltage.

  17. Reactive Power Injection Strategies for Single-Phase Photovoltaic Systems Considering Grid Requirements

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    .g. Germany and Italy. Those advanced features can be provided by next generation PV systems, and will be enhanced in the future to ensure an even efficient and reliable utilization of PV systems. In light of this, Reactive Power Injection (RPI) strategies for single-phase PV systems are explored...... in this paper. The RPI possibilities are: a) constant average active power control, b) constant active current control, c) constant peak current control and d) thermal optimized control strategy. All those strategies comply with the currently active grid codes, but are with different objectives. The proposed...... RPI strategies are demonstrated firstly by simulations and also tested experimentally on a 1 kW singe-phase grid-connected system in LVRT operation mode. Those results show the effectiveness and feasibilities of the proposed strategies with reactive power control during LVRT operation. The design...

  18. Reactive power control with CHP plants - A demonstration

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob; Andersen, Claus A.

    2010-01-01

    power rating of 7.3 MW on two synchronous generators. A closed-loop control is implemented, that remote controls the CHP plant to achieve a certain reactive power flow in a near-by substation. The solution communicates with the grid operator’s existing SCADA system to obtain measurements from...... lines to underground cables has changed the reactive power balance, and third, the TSO has introduced restrictions in the allowed exchange of reactive power between the transmission system and distribution grids (known as the Mvar-arrangement). The demonstration includes a CHP plant with an electric......In this project the potential for ancillary services provision by distributed energy resources is investigated. Specifically, the provision of reactive power control by combined heat and power plants is examined, and the application of the new standard for DER communication systems, IEC 61850...

  19. Reduced Cost of Reactive Power in Doubly Fed Induction Generator Wind Turbine System with Optimized Grid Filter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Franke, Toke

    2014-01-01

    The modern grid requirement has caused that the wind power system behaves more like conventional rotating generators and it is able to support certain amount of the reactive power. For a typical doubly-fed induction generator wind turbine system, the reactive power can be supported either through...... for the generator and the wind power converter in terms of the reactive power done by the rotor-side converter or the grid-side converter with various grid filters. Afterwards, the annual energy loss is also estimated based on yearly wind profile. Finally, experimental results of the loss distribution are performed...... the rotor-side converter or the grid-side converter. This paper firstly compares the current ripples and supportive reactive power ranges between the conventional L and optimized LCL filter, if the reactive power is injected from the grid-side converter. Then, the loss distribution is evaluated both...

  20. Reduced Cost of Reactive Power in Doubly Fed Induction Generator Wind Turbine System With Optimized Grid Filter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Franke, Toke

    2015-01-01

    The modern grid requirement has caused that the wind power system behaves more like conventional rotating generators, and it is able to support certain amount of the reactive power. For a typical doubly fed induction generator (DFIG) wind turbine system, the reactive power can be supported either...... for the generator and the wind power converter in terms of the reactive power done by the rotor-side converter or the grid-side converter with various grid filters. Afterward, the annual energy loss is also estimated based on yearly wind profile. Finally, experimental results of the loss distribution are performed...... through the rotor-side converter or the grid-side converter. This paper first compares the current ripples and supportive reactive power ranges between the conventional L and optimized LCL filter, if the reactive power is injected from the grid-side converter. Then, the loss distribution is evaluated both...

  1. Secure provision of reactive power ancillary services in competitive electricity markets

    Science.gov (United States)

    El-Samahy, Ismael

    The research work presented in this thesis discusses various complex issues associated with reactive power management and pricing in the context of new operating paradigms in deregulated power systems, proposing appropriate policy solutions. An integrated two-level framework for reactive power management is set forth, which is both suitable for a competitive market and ensures a secure and reliable operation of the associated power system. The framework is generic in nature and can be adopted for any electricity market structure. The proposed hierarchical reactive power market structure comprises two stages: procurement of reactive power resources on a seasonal basis, and real-time reactive power dispatch. The main objective of the proposed framework is to provide appropriate reactive power support from service providers at least cost, while ensuring a secure operation of the power system. The proposed procurement procedure is based on a two-step optimization model. First, the marginal benefits of reactive power supply from each provider, with respect to system security, are obtained by solving a loadability-maximization problem subject to transmission security constraints imposed by voltage and thermal limits. Second, the selected set of generators is determined by solving an optimal power flow (OPF)-based auction. This auction maximizes a societal advantage function comprising generators' offers and their corresponding marginal benefits with respect to system security, and considering all transmission system constraints. The proposed procedure yields the selected set of generators and zonal price components, which would form the basis for seasonal contracts between the system operator and the selected reactive power service providers. The main objective of the proposed reactive power dispatch model is to minimize the total payment burden on the Independent System Operator (ISO), which is associated with reactive power dispatch. The real power generation is

  2. Coordination of baseload power plant group control with static reactive power compensator control

    Directory of Open Access Journals (Sweden)

    Zbigniew Szczerba

    2012-06-01

    Full Text Available Reactive power sources in power system nodes: generators and static reactive power compensators, are controlled by control systems. Generators – by generator node group controllers, compensators – by voltage controllers. The paper presents issues of these control systems’ coordination and proposals for its implementation.

  3. Application of Newton's optimal power flow in voltage/reactive power control

    Energy Technology Data Exchange (ETDEWEB)

    Bjelogrlic, M.; Babic, B.S. (Electric Power Board of Serbia, Belgrade (YU)); Calovic, M.S. (Dept. of Electrical Engineering, University of Belgrade, Belgrade (YU)); Ristanovic, P. (Institute Nikola Tesla, Belgrade (YU))

    1990-11-01

    This paper considers an application of Newton's optimal power flow to the solution of the secondary voltage/reactive power control in transmission networks. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. It is characterized by good robustness, accuracy and speed. A combined objective function appropriate for various system load levels with suitable constraints, for treatment of the power system security and economy is also proposed. For the real-time voltage/reactive power control, a suboptimal power flow procedure has been derived by using the reduced set of control variables. This procedure is based on the sensitivity theory applied to the determination of zones for the secondary voltage/reactive power control and corresponding reduced set of regulating sources, whose reactive outputs represent control variables in the optimal power flow program. As a result, the optimal power flow program output becomes a schedule to be used by operators in the process of the real-time voltage/reactive power control in both normal and emergency operating states.

  4. Guidelines for Distribution System Operators on Reactive Power Provision by Electric Vehicles in Low Voltage Grids

    DEFF Research Database (Denmark)

    Zecchino, Antonio; Marinelli, Mattia; Træholt, Chresten

    2017-01-01

    The increasing success of electric vehicles is bringing new technical challenges to power system operators. This work intends to provide guidelines for distribution system operators in terms of reactive power requirements when evaluating and authorizing electric vehicles supply equipment with fast...... the amount of reactive power that an individual electric vehicle is expected to provide when connected to a low voltage feeder, in order to benefit of the desired voltage rise effect in comparison to the case of unitary power factor....

  5. Combination of AC Transmission Expansion Planning and Reactive Power Planning in the restructured power system

    International Nuclear Information System (INIS)

    Hooshmand, Rahmat-Allah; Hemmati, Reza; Parastegari, Moein

    2012-01-01

    Highlights: ► To overcome the disadvantages of DC model in Transmission Expansion Planning, AC model should be used. ► The Transmission Expansion Planning associated with Reactive Power Planning results in fewer new transmission lines. ► Electricity market concepts should be considered in Transmission Expansion Planning problem. ► Reliability aspects should be considered in Transmission Expansion Planning problem. ► Particle Swarm Optimization is a suitable optimization method to solve Transmission Expansion Planning problem. - Abstract: Transmission Expansion Planning (TEP) is an important issue in power system studies. It involves decisions on location and number of new transmission lines. Before deregulation of the power system, the goal of TEP problem was investment cost minimization. But in the restructured power system, nodal prices, congestion management, congestion surplus and so on, have been considered too. In this paper, an AC model of TEP problem (AC-TEP) associated with Reactive Power Planning (RPP) is presented. The goals of the proposed planning problem are to minimize investment cost and maximize social benefit at the same time. In the proposed planning problem, in order to improve the reliability of the system the Expected Energy Not Supplied (EENS) index of the system is limited by a constraint. For this purpose, Monte Carlo simulation method is used to determine the EENS. Particle Swarm Optimization (PSO) method is used to solve the proposed planning problem which is a nonlinear mixed integer optimization problem. Simulation results on Garver and RTS systems verify the effectiveness of the proposed planning problem for reduction of the total investment cost, EENS index and also increasing social welfare of the system.

  6. Simplified reactive power management strategy for complex power grids under stochastic operation and incomplete information

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John)

    2009-01-01

    grids is a major issue for system operators. Under these circumstances an online reactive power management strategy with minimum risk concerning all uncertain and stochastic parameters is proposed. Therefore, new concepts such as reactive power-weighted node-to-node linking and reactive power control......In the current released energy market, the large-scale complex transmission networks and the distribution ones with dispersed energy sources and "intelligent" components operate under uncertainties, stochastic and prior incomplete information. A safe and reliable operation of such complex power...... capability are introduced. A distributed and interconnected stochastic learning automata system is implemented to manage, in a unified and unique way, the reactive power in complex power grids with stochastic reactive power demand and detect the vulnerable part. The proposed simplified strategy can also...

  7. Simplified reactive power management strategy for complex power grids under stochastic operation and incomplete information

    International Nuclear Information System (INIS)

    Vlachogiannis, John G.

    2009-01-01

    In the current released energy market, the large-scale complex transmission networks and the distribution ones with dispersed energy sources and 'intelligent' components operate under uncertainties, stochastic and prior incomplete information. A safe and reliable operation of such complex power grids is a major issue for system operators. Under these circumstances an online reactive power management strategy with minimum risk concerning all uncertain and stochastic parameters is proposed. Therefore, new concepts such as reactive power-weighted node-to-node linking and reactive power control capability are introduced. A distributed and interconnected stochastic learning automata system is implemented to manage, in a unified and unique way, the reactive power in complex power grids with stochastic reactive power demand and detect the vulnerable part. The proposed simplified strategy can also consider more stochastic aspects such as variable grid's topology. Results of the proposed strategy obtained on the networks of IEEE 30-bus and IEEE 118-bus systems demonstrate the effectiveness of the proposed strategy.

  8. The Large Customer Reactive Power Control Possibilities

    Directory of Open Access Journals (Sweden)

    Robert Małkowski

    2014-03-01

    Full Text Available In this paper the authors wish to draw attention to the rationale for, and the possibility of, the use of local reactive power sources by the Transmission Node Master Controller (TNMC. Large Customers (LC are one of the possible reactive power sources. The paper presents the issues related to the need for coordination between the control systems installed in the LC network, and coordination between control systems of the LC as well as master control systems in the network.

  9. Economic-environmental active and reactive power scheduling of modern distribution systems in presence of wind generations: A distribution market-based approach

    International Nuclear Information System (INIS)

    Samimi, Abouzar; Kazemi, Ahad; Siano, Pierluigi

    2015-01-01

    Highlights: • A new market-based approach is proposed to schedule active and reactive powers. • Multi-component reactive power bidding structures for DERs is introduced. • A new economical/environmental operational scheduling method is proposed. • At distribution level, a reactive power market is developed in presence of DERs. - Abstract: Distribution System Operator (DSO) is responsible for active and reactive power scheduling in a distribution system. DSO purchases its active and reactive power requirements from Distributed Energy Resources (DERs) as well as the wholesale electricity market. In this paper, a new economical/environmental operational scheduling method based on sequential day-ahead active and reactive power markets at distribution level is proposed to dispatch active and reactive powers in distribution systems with high penetration of DERs. In the proposed model, after day-ahead active power market was cleared the participants submit their reactive power bids and then the reactive power market will be settled. At distribution level, developing a Var market, in which DERs like synchronous machine-based Distributed Generation (DG) units and Wind Turbines (WTs) could offer their reactive power prices, DERs are motivated to actively participate in the Volt/VAr Control (VVC) problem. To achieve this purpose, based on the capability curves of considered DERs, innovative multi-component reactive power bidding structures for DERs are introduced. Moreover, the effect of reactive power market clearing on the active power scheduling is explicitly considered into the proposed model by rescheduling of active power by usage of energy-balance service bids. On the other hand, environmental concerns that arise from the operation of fossil fuel fired electric generators are included in the proposed model by employing CO_2 emission penalty cost. The suggested reactive power market is cleared through a mixed-integer nonlinear optimization program. The

  10. Coordinated Volt/Var Control in Distribution Systems with Distributed Generations Based on Joint Active and Reactive Powers Dispatch

    Directory of Open Access Journals (Sweden)

    Abouzar Samimi

    2016-01-01

    Full Text Available One of the most significant control schemes in optimal operation of distribution networks is Volt/Var control (VVC. Owing to the radial structure of distribution systems and distribution lines with a small X/R ratio, the active power scheduling affects the VVC issue. A Distribution System Operator (DSO procures its active and reactive power requirements from Distributed Generations (DGs along with the wholesale electricity market. This paper proposes a new operational scheduling method based on a joint day-ahead active/reactive power market at the distribution level. To this end, based on the capability curve, a generic reactive power cost model for DGs is developed. The joint active/reactive power dispatch model presented in this paper motivates DGs to actively participate not only in the energy markets, but also in the VVC scheme through a competitive market. The proposed method which will be performed in an offline manner aims to optimally determine (i the scheduled active and reactive power values of generation units; (ii reactive power values of switched capacitor banks; and (iii tap positions of transformers for the next day. The joint active/reactive power dispatch model for daily VVC is modeled in GAMS and solved with the DICOPT solver. Finally, the plausibility of the proposed scheduling framework is examined on a typical 22-bus distribution test network over a 24-h period.

  11. Stochastic reactive power market with volatility of wind power considering voltage security

    International Nuclear Information System (INIS)

    Kargarian, A.; Raoofat, M.

    2011-01-01

    While wind power generation is growing rapidly around the globe; its stochastic nature affects the system operation in many different aspects. In this paper, the impact of wind power volatility on the reactive power market is taken into account. The paper presents a novel stochastic method for optimal reactive power market clearing considering voltage security and volatile nature of the wind. The proposed optimization algorithm uses a multiobjective nonlinear programming technique to minimize market payment and simultaneously maximize voltage security margin. Considering a set of probable wind speeds, in the first stage, the proposed algorithm seeks to minimize expected system payment which is summation of reactive power payment and transmission loss cost. The object of the second stage is maximization of expected voltage security margin to increase the system loadability and security. Finally, in the last stage, a multiobjective function is presented to schedule the stochastic reactive power market using results of two previous stages. The proposed algorithm is applied to IEEE 14-bus test system. As a benchmark, Monte Carlo Simulation method is utilized to simulate the actual market of given period of time to evaluate results of the proposed algorithm, and satisfactory results are achieved. -- Highlights: →The paper proposes a new algorithm for stochastic reactive power market clearing. →The stochastic nature of the wind which impacts the system operation and market clearing process, is taken into account. →The paper suggests an expected voltage stability margin and optimizes it in conjunction with expected total market payment. →To clear the market with two mentioned objective functions, a three-stage multiobjective nonlinear programming is implemented. →Also, a simple method is suggested to determine a suitable priority coefficient between two individual objective functions.

  12. Power and reactive power simultaneous control by 0.5 MJ superconducting magnet energy storage

    International Nuclear Information System (INIS)

    Ise, Toshifumi; Tsuji, Kiichiro; Murakami, Yoshishige

    1984-01-01

    Superconducting magnet energy storage (SMES) is expected to be widely applied to the pulsed sources for fusion reactor research and to the energy storage substituting for pumping-up power stations, because of its fast energy storing and discharging and very high efficiency. Some results have been obtained so far. In this paper, however, the simultaneous control of power and reactive power is considered for an energy storage composed of two sets of thyristorized power conversion system and superconducting magnets in series connection, and a direct digital control system is described on the principle, design and configuration including the compensator, and on the experiment using the 0.5 MJ superconducting magnet energy storage installed in the Superconduction Engineering Experiment Center, Osaka University. The results obtained are as follows: (1) P control priority mode and Q control priority mode (in which power and reactive power control has priority, respectively) were proposed as the countermeasures when the simultaneous control of power and reactive power became impossible; (2) the design method was established, by which power and reactive power control loops can independently be designed as a result of simulation; (3) the achievement of the simultaneous control of power and reactive power was confirmed by using P-control priority mode and Q-control priority mode, in the experiment using the control system designed by simulation. The validity of simulation model was also confirmed by actual response waveforms. (Wakatsuki, Y.)

  13. Agent-based reactive power management of power distribution networks with distributed energy generation

    International Nuclear Information System (INIS)

    Rahman, M.S.; Mahmud, M.A.; Oo, A.M.T.; Pota, H.R.; Hossain, M.J.

    2016-01-01

    Highlights: • A coordinated multi-agent system is proposed for reactive power management. • A linear quadratic regulator with a proportional integral controller is designed. • Proposed multi-agent scheme provides accurate estimation and control of the system. • Voltage stability is improved with proper power management for different scenarios. • Results obtained from the proposed scheme is compared to the traditional approach. - Abstract: In this paper, a new agent-based distributed reactive power management scheme is proposed to improve the voltage stability of energy distribution systems with distributed generation units. Three types of agents – distribution system agent, estimator agent, and control agent are developed within the multi-agent framework. The agents simultaneously coordinated their activities through the online information and energy flow. The overall achievement of the proposed scheme depends on the coordination between two tasks – (i) estimation of reactive power using voltage variation formula and (ii) necessary control actions to provide the estimated reactive power to the distribution networks through the distributed static synchronous compensators. A linear quadratic regulator with a proportional integrator is designed for the control agent in order to control the reactive component of the current and the DC voltage of the compensators. The performance of the proposed scheme is tested on a 10-bus power distribution network under various scenarios. The effectiveness is validated by comparing the proposed approach to the conventional proportional integral control approach. It is found that, the agent-based scheme provides excellent robust performance under various operating conditions of the power distribution network.

  14. Advanced Reactive Power Reserve Management Scheme to Enhance LVRT Capability

    Directory of Open Access Journals (Sweden)

    Hwanik Lee

    2017-10-01

    Full Text Available Abstract: To increase the utilization of wind power in the power system, grid integration standards have been proposed for the stable integration of large-scale wind power plants. In particular, fault-ride-through capability, especially Low-Voltage-Ride-Through (LVRT, has been emphasized, as it is related to tripping in wind farms. Therefore, this paper proposes the Wind power plant applicable-Effective Reactive power Reserve (Wa-ERPR, which combines both wind power plants and conventional generators at the Point of Interconnection (POI. The reactive power capability of the doubly-fed induction generator wind farm was considered to compute the total Wa-ERPR at the POI with reactive power capability of existing generators. By using the Wa-ERPR management algorithm, in case of a violation of the LVRT standards, the amount of reactive power compensation is computed using the Wa-ERPR management scheme. The proposed scheme calculates the Wa-ERPR and computes the required reactive power, reflecting the change of the system topology pre- and post-contingency, to satisfy the LVRT criterion when LVRT regulation is not satisfied at the POI. The static synchronous compensator (STATCOM with the capacity corresponding to calculated amount of reactive power through the Wa-ERPR management scheme is applied to the POI. Therefore, it is confirmed that the wind power plant satisfies the LVRT criteria by securing the appropriate reactive power at the POI, by applying of the proposed algorithm.

  15. Multi-objective optimal reactive power dispatch to maximize power system social welfare in the presence of generalized unified power flow controller

    Directory of Open Access Journals (Sweden)

    Suresh Chintalapudi Venkata

    2015-09-01

    Full Text Available In this paper a novel non-linear optimization problem is formulated to maximize the social welfare in restructured environment with generalized unified power flow controller (GUPFC. This paper presents a methodology to optimally allocate the reactive power by minimizing voltage deviation at load buses and total transmission power losses so as to maximize the social welfare. The conventional active power generation cost function is modified by combining costs of reactive power generated by the generators, shunt capacitors and total power losses to it. The formulated objectives are optimized individually and simultaneously as multi-objective optimization problem, while satisfying equality, in-equality, practical and device operational constraints. A new optimization method, based on two stage initialization and random distribution processes is proposed to test the effectiveness of the proposed approach on IEEE-30 bus system, and the detailed analysis is carried out.

  16. Investigation of the behavior of a three phase grid-connected photovoltaic system to control active and reactive power

    Energy Technology Data Exchange (ETDEWEB)

    Tsengenes, Georgios; Adamidis, Georgios [Department of Electrical Engineering and Computer Engineering, Democritus University of Thrace, University Campus Kimmeria, 67100 Xanthi (Greece)

    2011-01-15

    In this paper, a photovoltaic (PV) system, with maximum power point tracking (MPPT), connected to a three phase grid is presented. The connection of photovoltaic system on the grid takes place in one stage using voltage source inverter (VSI). For a better utilization of the photovoltaic system, the control strategy applied is based on p-q theory. According to this strategy during sunlight the system sends active power to the grid and at the same time compensates the reactive power of the load. In case there is no sunlight (during the night for instance), the inverter only compensates the reactive power of the load. In this paper the use of p-q theory to supply the grid with active power and compensate the reactive power of the load is investigated. The advantage of this control strategy is that the photovoltaic system is operated the whole day. Furthermore, the p-q theory uses simple algebraic calculations without demanding the use of PLL to synchronize the inverter with the grid. (author)

  17. An Optimal Reactive Power Control Strategy for a DFIG-Based Wind Farm to Damp the Sub-Synchronous Oscillation of a Power System

    Directory of Open Access Journals (Sweden)

    Bin Zhao

    2014-05-01

    Full Text Available This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capacitive compensation transmission system. First, the damping effect of the reactive power control of the DFIG-based wind farms was theoretically analyzed, and a transfer function between turbogenerator speed and the output reactive power of the wind farms was introduced to derive the analytical expression of the damping coefficient. The phase range to obtain positive damping was determined. Second, the PID phase compensation parameters of the auxiliary damping controller were optimized by a genetic algorithm to obtain the optimum damping in the entire subsynchronous frequency band. Finally, the validity and effectiveness of the proposed auxiliary damping control were demonstrated on a modified version of the IEEE first benchmark model by time domain simulation analysis with the use of DigSILENT/PowerFactory. Theoretical analysis and simulation results show that this derived damping factor expression and the condition of the positive damping can effectively analyze their impact on the system sub-synchronous oscillations, the proposed wind farms reactive power additional damping control strategy can provide the optimal damping effect over the whole sub-synchronous frequency band, and the control effect is better than the active power additional damping control strategy based on the power system stabilizator.

  18. Ant colony search algorithm for optimal reactive power optimization

    Directory of Open Access Journals (Sweden)

    Lenin K.

    2006-01-01

    Full Text Available The paper presents an (ACSA Ant colony search Algorithm for Optimal Reactive Power Optimization and voltage control of power systems. ACSA is a new co-operative agents’ approach, which is inspired by the observation of the behavior of real ant colonies on the topic of ant trial formation and foraging methods. Hence, in the ACSA a set of co-operative agents called "Ants" co-operates to find good solution for Reactive Power Optimization problem. The ACSA is applied for optimal reactive power optimization is evaluated on standard IEEE, 30, 57, 191 (practical test bus system. The proposed approach is tested and compared to genetic algorithm (GA, Adaptive Genetic Algorithm (AGA.

  19. Framework for the analysis of reactive power dispatch in energy pools

    International Nuclear Information System (INIS)

    Salgado, R.S.; Irving, M.R.

    2004-01-01

    This paper proposes a framework for the simulation and analysis of the reactive power distribution in electric energy markets of the pool type. Firstly, the analytical formulation of the OPF problem, with three optional performance indexes for the reactive power dispatch, is discussed. These OPF objectives are used to determine the reactive power distribution for a given active power dispatch (obtained through merit-order strategy, for instance). An allocation strategy is used to assess the participation of each power system agent in the loss/reactive power distribution. This strategy uses the premise of co-operative game theory. Numerical results obtained with the Ward-Hale 6-bus test system illustrate the main aspects of the proposed methodology. (author)

  20. A heuristic technique to determine corrective control actions for reactive power flows

    Energy Technology Data Exchange (ETDEWEB)

    Trigo, Angel L.; Martinez, Jose L.; Riquelme, Jesus; Romero, Esther [Department of Electrical Engineering, University of Sevilla (Spain)

    2011-01-15

    This paper presents a sensitivity-based heuristic tool designed to help the system operator in the reactive power flow control problem. The objective of the proposed technique is to determine control actions to ensure that reactive power flows in transmission-subtransmission boundary transformers remain within specified limits, satisfying the new regulatory constraints imposed in most of deregulated markets. With this new constraint the utilities want to guarantee that the utility is able to satisfy its own reactive power requirements, avoiding reactive power flows through long distances in order to reduce the well known disadvantages that reactive power circulation has in the system. A 5-bus tutorial system is used to present the proposed algorithm. The results of the application of the proposed technique to the IEEE 118 buses system and to a regional subtransmission network of the South of Spain are reported and analyzed. In this last actual case, the aim is to maintain reactive power flows in transmission/distribution transformers between those limits set by the Spanish Regulation. A comparison between the proposed tool and a conventional OPF is discussed. (author)

  1. Reactive power compensation. System service - line quality. 2. ed.; Blindleistungskompensation. Systemdienstleistung - Netzqualitaet

    Energy Technology Data Exchange (ETDEWEB)

    Grosse-Gehling, Martin; Just, Wolfgang; Reese, Juergen; Schlabbach, Juergen

    2013-11-01

    Reactive power compensation is playing an increasingly important role as the need for an efficient use of operating equipment and power grids continues to grow. This book presents the fundamentals of reactive power compensation in low and medium voltage grids, offering a wealth of application and calculation examples that will further the reader's understanding of the following topics: 1. design, dimensioning and operation of capacitors and capacitor installations; 2. long-term stability and ageing of capacitor installations; 3. use of passive and active filters; 4. improvement of voltage quality by means of filters and capacitor installations; 5. provision of reactive power compensation by means of power electronics; 6. costs and economic efficiency of reactive power compensation and filter equipment; 7. considerations from the viewpoint of the power supply industry; price regulations; 8. information requirements concerning PCB-containing capacitors; 9. climate protection and energy efficiency through reactive power compensation; 10. technical connection requirements and guidelines; 11. special technical issues concerning the use of reactive power compensation installations. [German] Die Blindleistungskompensation gewinnt angesichts der Notwendigkeit zur erhoehten Ausnutzung der Betriebsmittel und Netze zunehmend an Bedeutung. In diesem Buch werden die Grundlagen der Blindleistungskompensation in Nieder- und Mittelspannungsnetzen beschrieben und folgende Themen anhand zahlreicher Anwendungs- und Berechnungsbeispiele vertieft: 1. Aufbau, Auslegung und Betrieb von Kondensatoren und Kondensatoranlagen, 2. Langzeitstabilitaet und Alterung von Kondensatoranlagen, 3. Einsatz passiver und aktiver Filter, 4. Verbesserung der Spannungsqualitaet durch Filter und Kondensatoranlagen, 5. Blindleistungsbereitstellung mit Leistungselektronik, 6. Kosten und Wirtschaftlichkeit von Kompensations- und Filteranlagen, 7. Elektrizitaetswirtschaftliche Betrachtungen

  2. A New Approach to Optimal Allocation of Reactive Power Ancillary Service in Distribution Systems in the Presence of Distributed Energy Resources

    Directory of Open Access Journals (Sweden)

    Abouzar Samimi

    2015-11-01

    Full Text Available One of the most important Distribution System Operators (DSO schemes addresses the Volt/Var control (VVC problem. Developing a cost-based reactive power dispatch model for distribution systems, in which the reactive powers are appropriately priced, can motivate Distributed Energy Resources (DERs to participate actively in VVC. In this paper, new reactive power cost models for DERs, including synchronous machine-based DGs and wind turbines (WTs, are formulated based on their capability curves. To address VVC in the context of competitive electricity markets in distribution systems, first, in a day-ahead active power market, the initial active power dispatch of generation units is estimated considering environmental and economic aspects. Based on the results of the initial active power dispatch, the proposed VVC model is executed to optimally allocate reactive power support among all providers. Another novelty of this paper lies in the pricing scheme that rewards transformers and capacitors for tap and step changing, respectively, while incorporating the reactive power dispatch model. A Benders decomposition algorithm is employed as a solution method to solve the proposed reactive power dispatch, which is a mixed integer non-linear programming (MINLP problem. Finally, a typical 22-bus distribution network is used to verify the efficiency of the proposed method.

  3. Reactive power supply by distributed generators

    OpenAIRE

    Braun, M.

    2008-01-01

    Distributed reactive power supply is necessary in distribution networks for an optimized network operation. This paper presents first the reactive power supply capabilities of generators connected to the distribution network (distributed generators). In a second step an approach is proposed of determining the energy losses resulting from reactive power supply by distributed generators. The costs for compensating these losses represent the operational costs of reactive power supply. These cost...

  4. A Hybrid Estimator for Active/Reactive Power Control of Single-Phase Distributed Generation Systems with Energy Storage

    DEFF Research Database (Denmark)

    Pahlevani, Majid; Eren, Suzan; Guerrero, Josep M.

    2016-01-01

    This paper presents a new active/reactive power closed-loop control system for a hybrid renewable energy generation system used for single-phase residential/commercial applications. The proposed active/reactive control method includes a hybrid estimator, which is able to quickly and accurately es...

  5. Index-based reactive power compensation scheme for voltage regulation

    Science.gov (United States)

    Dike, Damian Obioma

    2008-10-01

    Increasing demand for electrical power arising from deregulation and the restrictions posed to the construction of new transmission lines by environment, socioeconomic, and political issues had led to higher grid loading. Consequently, voltage instability has become a major concern, and reactive power support is vital to enhance transmission grid performance. Improved reactive power support to distressed grid is possible through the application of relatively unfamiliar emerging technologies of "Flexible AC Transmission Systems (FACTS)" devices and "Distributed Energy Resources (DERS)." In addition to these infrastructure issues, a lack of situational awareness by system operators can cause major power outages as evidenced by the August 14, 2003 widespread North American blackout. This and many other recent major outages have highlighted the inadequacies of existing power system indexes. In this work, a novel "Index-based reactive compensation scheme" appropriate for both on-line and off-line computation of grid status has been developed. A new voltage stability index (Ls-index) suitable for long transmission lines was developed, simulated, and compared to the existing two-machine modeled L-index. This showed the effect of long distance power wheeling amongst regional transmission organizations. The dissertation further provided models for index modulated voltage source converters (VSC) and index-based load flow analysis of both FACTS and microgrid interconnected power systems using the Newton-Raphson's load flow model incorporated with multi-FACTS devices. The developed package has been made user-friendly through the embodiment of interactive graphical user interface and implemented on the IEEE 14, 30, and 300 bus systems. The results showed reactive compensation has system wide-effect, provided readily accessible system status indicators, ensured seamless DERs interconnection through new islanding modes and enhanced VSC utilization. These outcomes may contribute

  6. Substation Reactive Power Regulation Strategy

    Science.gov (United States)

    Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing

    2018-01-01

    With the increasing requirements on the power supply quality and reliability of distribution network, voltage and reactive power regulation of substations has become one of the indispensable ways to ensure voltage quality and reactive power balance and to improve the economy and reliability of distribution network. Therefore, it is a general concern of the current power workers and operators that what kind of flexible and effective control method should be used to adjust the on-load tap-changer (OLTC) transformer and shunt compensation capacitor in a substation to achieve reactive power balance in situ, improve voltage pass rate, increase power factor and reduce active power loss. In this paper, based on the traditional nine-zone diagram and combining with the characteristics of substation, a fuzzy variable-center nine-zone diagram control method is proposed and used to make a comprehensive regulation of substation voltage and reactive power. Through the calculation and simulation of the example, this method is proved to have satisfactorily reconciled the contradiction between reactive power and voltage in real-time control and achieved the basic goal of real-time control of the substation, providing a reference value to the practical application of the substation real-time control method.

  7. Dynamic Reactive Power Control in Offshore HVDC Connected Wind Power Plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Cutululis, Nicolaos Antonio; Rather, Zakir Hussain

    2016-01-01

    This paper presents a coordinated reactive power control for a HVDC connected cluster of offshore wind power plants (WPPs). The reactive power reference for the WPP cluster is estimated by an optimization algorithm aiming at minimum active power losses in the offshore AC Grid. For each optimal......, such as wind turbine (WT) terminal, collector cable, and export cable, on the dynamic voltage profile of the offshore grid is investigated. Furthermore, the dynamic reactive power contribution from WTs from different WPPs of the cluster for such faults has also been studied....... reactive power set point, the OWPP cluster controller generates reactive power references for each WPP which further sends the AC voltage/ reactive power references to the associated WTs based on their available reactive power margin. The impact of faults at different locations in the offshore grid...

  8. Distribution factors for reactive power in the presence of bilateral transactions

    International Nuclear Information System (INIS)

    De Tuglie, E.; Torelli, F.

    2004-01-01

    The twin factors of limited investment in electric transmission systems and the overexploitation of electrical resources results in an increase in the need for reactive power to support system voltage profile and to supply loads. It is reasonable to expect that generators and compensators, heavily involved in reactive support on a voluntary basis, will be remunerated for their service by market transactions. This remuneration will depend on the network topology, i.e. of buyers, sellers and reactive injection locations, on the active power exchanged and the reactive power required by loads. All these aspects are taken into account in developing a methodology based on circuit considerations. Using this approach, at a given system operating point characterised by a predefined set of transactions, reactive responsibilities can be formulated as the sum of two terms: one strictly related to transactions and the other dependent on electric network parameters. Test results demonstrate the efficacy of the proposed methodology in sharing reactive power responsibilities in a fair way among market participants. (author)

  9. A new computational method for reactive power market clearing

    International Nuclear Information System (INIS)

    Zhang, T.; Elkasrawy, A.; Venkatesh, B.

    2009-01-01

    After deregulation of electricity markets, ancillary services such as reactive power supply are priced separately. However, unlike real power supply, procedures for costing and pricing reactive power supply are still evolving and spot markets for reactive power do not exist as of now. Further, traditional formulations proposed for clearing reactive power markets use a non-linear mixed integer programming formulation that are difficult to solve. This paper proposes a new reactive power supply market clearing scheme. Novelty of this formulation lies in the pricing scheme that rewards transformers for tap shifting while participating in this market. The proposed model is a non-linear mixed integer challenge. A significant portion of the manuscript is devoted towards the development of a new successive mixed integer linear programming (MILP) technique to solve this formulation. The successive MILP method is computationally robust and fast. The IEEE 6-bus and 300-bus systems are used to test the proposed method. These tests serve to demonstrate computational speed and rigor of the proposed method. (author)

  10. Reactive power management and voltage control in deregulated power markets

    Science.gov (United States)

    Spangler, Robert G.

    The research that is the subject of this dissertation is about the management of reactive power and voltage support in the wholesale open access power markets in the United States (US). The purpose of this research is to place decisions about open access market structures, as they relate to reactive power and voltage control, on a logical and consistent economic basis, given the engineering needs of a commercial electric power system. An examination of the electricity markets operating in the US today reveals that current approaches to reactive power management and voltage support are extensions of those based on historical, regulated monopoly electric service. A case for change is built by first looking at the subject of reactive power from an engineering viewpoint and then from an economic perspective. Ultimately, a set of market rules for managing reactive power and voltage support is proposed. The proposal suggests that cost recovery for static and dynamic VARs is appropriately accomplished through the regulated transmission cost of service. Static VAR cost recovery should follow traditional rate recovery methodologies. In the case of dynamic VARs, this work provides a methodology based on the microeconomic theory of the firm for determining such cost. It further suggests that an operational strategy that reduces and limits the use of dynamic VARs, during normal operations, is appropriate. This latter point leads to an increase in the fixed cost of the transmission network but prevents price spikes and short supply situations from affecting, or being affected by, the reactive capability limitations associated with dynamic VARs supplied from synchronous generators. The rules are consistent with a market structure that includes competitive generation and their application will result in the communication of a clear understanding of the responsibilities, related to voltage control, of each type of market entity. In this sense, their application will contribute to

  11. Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Savaghebi, Mehdi

    2015-01-01

    Electrical vehicles (EVs) are presenting increasingly potential to replace the conventional fossil fuel based vehicles due to environmental friendly characteristic. Accordingly, Charging Stations (CS), as an intermediate between grid and large numbers of EVs, are supposed to have more critical...... influence on future smart transportation network. This paper explores an off-board charging station upgraded with flywheel energy storage system that could provide a reactive power support to the grid utility. A supervisory control scheme based on distributed bus signaling is proposed to coordinate...... the operation of each component in the system. As a result, the charging station could supply the reactive power support to the utility grid without compromising the charging algorithm and preserve the battery’s lifetime. Finally, the real-time simulation results based on dSPACE1006 verifies the proposed...

  12. Ancillary reactive power service allocation cost in deregulated markets: a methodology

    International Nuclear Information System (INIS)

    Hernandez, J. Horacio Tovar; Jimenez-Guzman, Miguel; Gutierrez-Alcaraz, Guillermo

    2005-01-01

    This paper presents a methodology to allocate reactive power costs in deregulated markets. Reactive power supply service is decomposed into voltage regulation and reactive power spinning reserve. The proposed methodology is based on sensitivities and the postage-stamp method in order to allocate the total costs service among all participants. With the purpose of achieving this goal, the system operator identifies voltage support and/or reactive power requirements, and looks out for suitable providers. One case study is presented here to illustrate the methodology over a simplified southeastern Mexican grid. (Author)

  13. Reactivity control in HTR power plants with respect to passive safety system. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Barnert, H; Kugeler, K [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Sicherheitsforschung und Reaktortechnik

    1996-12-01

    The R and D and Demonstration of the High Temperature Reactor (HTR) is described in overview. The HTR-MODULE power plant, as the most advanced concept, is taken for the description of the reactivity control in general. The idea of the ``modularization of the core`` of the HTR has been developed as the answer on the experiences of the core melt accident at Three Miles Island. The HTR module has two shutdown systems: The ``6 rods``-system for hot shutdown at the ``18 small absorber pebbles units`` - system for cold shutdown. With respect to the definition of ``Passive Systems`` of IAEA-TECDOC-626 the total reactivity control system of the HTR-MODULE is a passive system of category D, because it is an emergency reactor shutdown system based on gravity driven rods, and devices, activated by fail-safe trip logic. But reactivity control of the HTR does not only consist of these engineered safety system but does have a self-acting stabilization by the negative temperature coefficient of the reactivity, being rather effective in reactivity control. Examples from computer calculations are presented, and, in addition, experimental results from the ``Stuck Rod Experiment`` at the AVR reactor in Juelich. On the basis of this the proposal is made that ``self-acting stabilization as a quality of the function`` should be discussed as a new category in addition to the active and passive engineered safety systems, structures and components of IAEA-TECDOC-626. The requirements for a future ``catastrophe-free`` nuclear technology are presented. In the appendix the 7th amendment of the atomic energy act of the Federal Republic of Germany, effective 28 July 94, is given. (author).

  14. Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids

    DEFF Research Database (Denmark)

    Han, Yang; Li, Hong; Shen, Pan

    2017-01-01

    Microgrids consist of multiple parallel-connected distributed generation (DG) units with coordinated control strategies, which are able to operate in both grid-connected and islanded mode. Microgrids are attracting more and more attention since they can alleviate the stress of main transmission...... systems, reduce feeder losses, and improve system power quality. When the islanded microgrids are concerned, it is important to maintain system stability and achieve load power sharing among the multiple parallel-connected DG units. However, the poor active and reactive power sharing problems due...... in this paper for active power sharing. Moreover, nonlinear and unbalanced loads could further affect the reactive power sharing when regulating the active power, and it is difficult to share the reactive power accurately only by using the enhanced virtual impedance method. Therefore, the hierarchical control...

  15. Reactive power balance in a distribution network with wind farms and CHPS

    DEFF Research Database (Denmark)

    Lund, Torsten; Nielsen, John Eli; Hylle, Per

    2007-01-01

    In Denmark, a large part of the electricity is generated by wind turbines and combined heat and power plants. Most of them are connected to the distribution systems. In periods with high wind speeds, large flows of reactive power have been observed between the 150kV and the 60 kV systems. The tra......In Denmark, a large part of the electricity is generated by wind turbines and combined heat and power plants. Most of them are connected to the distribution systems. In periods with high wind speeds, large flows of reactive power have been observed between the 150kV and the 60 kV systems....... The transfer of reactive power reduces the capacity of the lines, causes thermal losses and can in some cases reduce the voltage stability margin of the system. To identify the origin of the problem, an actual distribution system with a high penetration of wind power and distributed generation has been...

  16. Reactive power planning with FACTS devices using gravitational search algorithm

    Directory of Open Access Journals (Sweden)

    Biplab Bhattacharyya

    2015-09-01

    Full Text Available In this paper, Gravitational Search Algorithm (GSA is used as optimization method in reactive power planning using FACTS (Flexible AC transmission system devices. The planning problem is formulated as a single objective optimization problem where the real power loss and bus voltage deviations are minimized under different loading conditions. GSA based optimization algorithm and particle swarm optimization techniques (PSO are applied on IEEE 30 bus system. Results show that GSA can also be a very effective tool for reactive power planning.

  17. A stochastic framework for clearing of reactive power market

    International Nuclear Information System (INIS)

    Amjady, N.; Rabiee, A.; Shayanfar, H.A.

    2010-01-01

    This paper presents a new stochastic framework for clearing of day-ahead reactive power market. The uncertainty of generating units in the form of system contingencies are considered in the reactive power market-clearing procedure by the stochastic model in two steps. The Monte-Carlo Simulation (MCS) is first used to generate random scenarios. Then, in the second step, the stochastic market-clearing procedure is implemented as a series of deterministic optimization problems (scenarios) including non-contingent scenario and different post-contingency states. In each of these deterministic optimization problems, the objective function is total payment function (TPF) of generators which refers to the payment paid to the generators for their reactive power compensation. The effectiveness of the proposed model is examined based on the IEEE 24-bus Reliability Test System (IEEE 24-bus RTS). (author)

  18. EVALUATING DEGREE OF ACTIVE POWER LOSSES REDUCTION IN THE ELECTRIC POWER LINES WITH REACTIVE POWER COMPENSATION

    Directory of Open Access Journals (Sweden)

    V. N. Radkevich

    2016-01-01

    Full Text Available The paper considers evaluation procedure for the degree of active power losses reduction in the power transmission lines under 1 kV and 6–10 kV of the systems of electric power supply of industrial enterprises with compensating installations mounted at the side of the customer. The capacitor installations conform to the applied voltage level and factor in dielectric losses in the capacitors. The voltage at the compensating device terminal changes from 0.95 to 1.05 of the capacitors nominal voltage. The study did not account for reactive power losses in the line, nor did it for its charge capacity, conditioned by relative shortness of the cable lines generally operating in the mains of industrial enterprises. For this reason, the quantities of reactive power being consumed and generated by the transmission line are negligible and do not significantly affect the reactive power flux. The researchers obtain functional relations that allow estimating the degree of power loss reduction in the transmission line factoring in its explicit initial data. They perform mathematical analysis of the obtained functional relations and study the function by means of derivatives. The function extremum points are found as well as the intervals of its increment and decrement. A graphical research of the obtained functional relation is performed. It is ascertained that reduction of the active power losses is contingent on the line and the capacitor-installation engineering factors, the electrical energy consumer reactive load value as well as the voltage applied to the capacitor installation. The functional relations presented in the article can be employed in scoping calculation necessary for decision making on the reactive power compensation in systems of the industrial facilities electric power supply. Their account will allow a more accurate estimate of technical and economic effect of the capacitor bank installation in the electrical mains under 1 kV and 6

  19. Reactive Power Pricing Model Considering the Randomness of Wind Power Output

    Science.gov (United States)

    Dai, Zhong; Wu, Zhou

    2018-01-01

    With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.

  20. Electrical engineering unit for the reactive power control of the load bus at the voltage instability

    Science.gov (United States)

    Kotenev, A. V.; Kotenev, V. I.; Kochetkov, V. V.; Elkin, D. A.

    2018-01-01

    For the purpose of reactive power control error reduction and decrease of the voltage sags in the electric power system caused by the asynchronous motors started the mathematical model of the load bus was developed. The model was built up of the sub-models of the following elements: a transformer, a transmission line, a synchronous and an asynchronous loads and a capacitor bank load, and represents the automatic reactive power control system taking into account electromagnetic processes of the asynchronous motors started and reactive power changing of the electric power system elements caused by the voltage fluctuation. The active power/time and reactive power/time characteristics based on the recommended procedure of the equivalent electric circuit parameters calculation were obtained. The derived automatic reactive power control system was shown to eliminate the voltage sags in the electric power system caused by the asynchronous motors started.

  1. Basic study on dynamic reactive-power control method with PV output prediction for solar inverter

    Directory of Open Access Journals (Sweden)

    Ryunosuke Miyoshi

    2016-01-01

    Full Text Available To effectively utilize a photovoltaic (PV system, reactive-power control methods for solar inverters have been considered. Among the various methods, the constant-voltage control outputs less reactive power compared with the other methods. We have developed a constant-voltage control to reduce the reactive-power output. However, the developed constant-voltage control still outputs unnecessary reactive power because the control parameter is constant in every waveform of the PV output. To reduce the reactive-power output, we propose a dynamic reactive-power control method with a PV output prediction. In the proposed method, the control parameter is varied according to the properties of the predicted PV waveform. In this study, we performed numerical simulations using a distribution system model, and we confirmed that the proposed method reduces the reactive-power output within the voltage constraint.

  2. Identification of fast power reactivity effect in nuclear power reactor

    International Nuclear Information System (INIS)

    Efanov, A.I.; Kaminskas, V.A.; Lavrukhin, V.S.; Rimidis, A.P.; Yanitskene, D.Yu.

    1987-01-01

    A nuclear power reactor is an object of control with distributed parameters, characteristics of which vary during operation time. At the same time the reactor as the object of control has internal feedback circuits, which are formed as a result of the effects of fuel parameters and a coolant (pressure, temperature, steam content) on the reactor breeding properties. The problem of internal feedback circuit identification in a nuclear power reactor is considered. Conditions for a point reactor identification are obtained and algorithms of parametric identification are constructed. Examples of identification of fast power reactivity effect for the RBMK-1000 reactor are given. Results of experimental testing have shown that the developed method of fast power reactivity effect identification permits according to the data of normal operation to construct adaptive models for the point nuclear reactor, designed for its behaviour prediction in stationary and transition operational conditions. Therefore, the models considered can be used for creating control systems of nuclear power reactor thermal capacity (of RBMK type reactor, in particular) which can be adapted to the change in the internal feedback circuit characteristics

  3. Optimal Control of Wind Farms for Coordinated TSO-DSO Reactive Power Management

    Directory of Open Access Journals (Sweden)

    David Sebastian Stock

    2018-01-01

    Full Text Available The growing importance of renewable generation connected to distribution grids requires an increased coordination between transmission system operators (TSOs and distribution system operators (DSOs for reactive power management. This work proposes a practical and effective interaction method based on sequential optimizations to evaluate the reactive flexibility potential of distribution networks and to dispatch them along with traditional synchronous generators, keeping to a minimum the information exchange. A modular optimal power flow (OPF tool featuring multi-objective optimization is developed for this purpose. The proposed method is evaluated for a model of a real German 110 kV grid with 1.6 GW of installed wind power capacity and a reduced order model of the surrounding transmission system. Simulations show the benefit of involving wind farms in reactive power support reducing losses both at distribution and transmission level. Different types of setpoints are investigated, showing the feasibility for the DSO to fulfill also individual voltage and reactive power targets over multiple connection points. Finally, some suggestions are presented to achieve a fair coordination, combining both TSO and DSO requirements.

  4. Coordination of voltage and reactive power control in the extra high voltage substations based on the example of solutions applied in the national power system

    Directory of Open Access Journals (Sweden)

    Dariusz Kołodziej

    2012-06-01

    Full Text Available This paper presents examples of coordination between automatic voltage and reactive power control systems (ARST covering adjacent and strongly related extra high voltage substations. Included are conclusions resulting from the use of these solutions. The Institute of Power Engineering, Gdańsk Division has developed and deployed ARST systems in the national power system for a dozen or so years.

  5. Advanced configuration of hybrid passive filter for reactive power and harmonic compensation.

    Science.gov (United States)

    Kececioglu, O Fatih; Acikgoz, Hakan; Sekkeli, Mustafa

    2016-01-01

    Harmonics is one of the major power quality problems for power systems. The harmonics can be eliminated by power filters such as passive, active, and hybrid. In this study, a new passive filter configuration has been improved in addition to the existing passive filter configurations. Conventional hybrid passive filters are not successful to compensate rapidly changing reactive power demand. The proposed configure are capable of compensating both harmonics and reactive power at the same time. Simulation results show that performance of reactive power and harmonic compensation with advanced hybrid passive filter is better than conventional hybrid passive filters.

  6. Local Dynamic Reactive Power for Correction of System Voltage Problems

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John D [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Xu, Yan [ORNL; Li, Huijuan [University of Tennessee, Knoxville (UTK); Adhikari, Sarina [ORNL; Irminger, Philip [ORNL

    2008-12-01

    Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results

  7. Multiagent-Based Reactive Power Sharing and Control Model for Islanded Microgrids

    DEFF Research Database (Denmark)

    Chen, Feixiong; Chen, Minyou; Li, Qiang

    2016-01-01

    of the control model, in which the uncertainty of intermittent DGs, variations in load demands, as well as impacts of time delays are considered. The simulation results demonstrate the eectiveness of the control model in proportional reactive power sharing, and the plug and play capability of the control model......In islanded microgrids (MGs), the reactive power cannot be shared proportionally among distributed generators (DGs) with conventional droop control, due to the mismatch in feeder impedances. For the purpose of proportional reactive power sharing, a multiagent system (MAS) based distributed control...

  8. Application of the ant colony search algorithm to reactive power pricing in an open electricity market

    International Nuclear Information System (INIS)

    Ketabi, Abbas; Alibabaee, Ahmad; Feuillet, R.

    2010-01-01

    Reactive power management is essential to transfer real energy and support power system security. Developing an accurate and feasible method for reactive power pricing is important in the electricity market. In conventional optimal power flow models the production cost of reactive power was ignored. In this paper, the production cost of reactive power and investment cost of capacitor banks were included into the objective function of the OPF problem. Then, using ant colony search algorithm, the optimal problem was solved. Marginal price theory was used for calculation of the cost of active and reactive power at each bus in competitive electric markets. Application of the proposed method on IEEE 14-bus system confirms its validity and effectiveness. Results from several case studies show clearly the effects of various factors on reactive power price. (author)

  9. Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Jason (General Electric, Schenectady, NY); Walling, Reigh (General Electric, Schenectady, NY); Peter, William (SunPower, Richmond, CA); Von Engeln, Edi (NV Energy, Reno, NV); Seymour, Eric (AEI, Fort Collins, CO); Nelson, Robert (Siemens Wind Turbines, Orlando, FL); Casey, Leo (Satcon, Boston, MA); Ellis, Abraham; Barker, Chris. (SunPower, Richmond, CA)

    2012-02-01

    Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

  10. Advanced configuration of hybrid passive filter for reactive power and harmonic compensation

    OpenAIRE

    Kececioglu, O. Fatih; Acikgoz, Hakan; Sekkeli, Mustafa

    2016-01-01

    Harmonics is one of the major power quality problems for power systems. The harmonics can be eliminated by power filters such as passive, active, and hybrid. In this study, a new passive filter configuration has been improved in addition to the existing passive filter configurations. Conventional hybrid passive filters are not successful to compensate rapidly changing reactive power demand. The proposed configure are capable of compensating both harmonics and reactive power at the same time. ...

  11. Voltage sensitivity based reactive power control on VSC-HVDC in a wind farm connected hybrid multi-infeed HVDC system

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2013-01-01

    With increasing application of both Line Commutated Converter based High Voltage Direct Current (LCC-HVDC) systems and Voltage Source Converter based HVDC (VSC-HVDC) links, a new type of system structure named Hybrid Multi-Infeed HVDC (HMIDC) system is formed in the modern power systems. This paper...... presents the operation and control method of the wind farm connected HMIDC system. The wind power fluctuation takes large influence to the system voltages. In order to reduce the voltage fluctuation of LCC-HVDC infeed bus caused by the wind power variation, a voltage sensitivity-based reactive power...

  12. Compensation of Reactive Power from Wind Turbines with Power Electronics Equipment

    DEFF Research Database (Denmark)

    Pedersen, Jørgen Kaas

    1996-01-01

    Wind turbines with induction generators consume reactive power. Apart from the no load consumption, which is nearing constant and is being compensated for using capacitors, the consumption of reactive power varies almost proportional with the power production, which can vary immensely. Except tha...

  13. A DFIG Islanding Detection Scheme Based on Reactive Power Infusion

    Science.gov (United States)

    Wang, M.; Liu, C.; He, G. Q.; Li, G. H.; Feng, K. H.; Sun, W. W.

    2017-07-01

    A lot of research has been done on photovoltaic (the “PV”) power system islanding detection in recent years. As a comparison, much less attention has been paid to islanding in wind turbines. Meanwhile, wind turbines can work in islanding conditions for quite a long period, which can be harmful to equipments and cause safety hazards. This paper presents and examines a double fed introduction generation (the “DFIG”) islanding detection scheme based on feedback of reactive power and frequency and uses a trigger signal of reactive power infusion which can be obtained by dividing the voltage total harmonic distortion (the "THD") by the voltage THD of last cycle to avoid the deterioration of power quality. This DFIG islanding detection scheme uses feedback of reactive power current loop to amplify the frequency differences in islanding and normal conditions. Simulation results show that the DFIG islanding detection scheme is effective.

  14. Multi-objective Reactive Power Optimization Based on Improved Particle Swarm Algorithm

    Science.gov (United States)

    Cui, Xue; Gao, Jian; Feng, Yunbin; Zou, Chenlu; Liu, Huanlei

    2018-01-01

    In this paper, an optimization model with the minimum active power loss and minimum voltage deviation of node and maximum static voltage stability margin as the optimization objective is proposed for the reactive power optimization problems. By defining the index value of reactive power compensation, the optimal reactive power compensation node was selected. The particle swarm optimization algorithm was improved, and the selection pool of global optimal and the global optimal of probability (p-gbest) were introduced. A set of Pareto optimal solution sets is obtained by this algorithm. And by calculating the fuzzy membership value of the pareto optimal solution sets, individuals with the smallest fuzzy membership value were selected as the final optimization results. The above improved algorithm is used to optimize the reactive power of IEEE14 standard node system. Through the comparison and analysis of the results, it has been proven that the optimization effect of this algorithm was very good.

  15. Characteristics of a reactor with power reactivity feedback

    International Nuclear Information System (INIS)

    Li Fengyu; Zhang Yusheng; Zhang Guangfu; Liu Ying

    2008-01-01

    The point-reactor model with power reactivity feedback becomes a nonlinear system. Its dynamic characteristic shows great complexity. According to the mathematic definition of stability in differential equation qualitative theory, the model of a reactor with power reactivity feedback is judged unstable. The equilibrium point is a saddle-node point. A portion of the trajectory in the neighborhood of the equilibrium point is parabolic fan curve, and the other is hyperbolic fan curve. Based on phase locus near the equilibrium point, it is pointed out that the model is still stable within physical limits. The difference between stabilities in the mathematical sense and in the physical sense is indicated. (authors)

  16. An introduction to reactive power compensation for wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Nigim, K.A. [Waterloo Univ., Ont. (Canada). Dept. of Electrical and Computer Engineering; Cairo Univ., Giza (Egypt). Faculty of Engineering; Zobaa, A.F.; El Amin, I. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Electrical Engineering

    2005-07-01

    The paper summarises the refereed contributions of seven articles reviewed for publication in the IJETP - Special Issue on 'Reactive compensation for wind farms'. The main goal of the special issue is to provide a forum to exchange information on the reactive power compensation requirements for wind farms and introducing possible price mechanisms for today's deregulated power industry. Uncompensated reactive power causes stress on the hosting utility grid as well as added expenses, which create in difficulties for power purchasing agreements from independent wind energy producers. Wind power producers need to comply with the hosting utility grid interconnection standards, e.g., voltage and frequency, as well as to provide controllable active and reactive sources of power. Active power supply is mainly dependent on the potential of wind power produced and the turbine design. Reactive power demand on the other hand depends on the conversion devices and the recovered power quantity fed to the grid. Static Var Compensators (SVC), Unified Power Quality Conditioners (UPQC), Unified Power Flow Controllers (UPFC), and the Distributed Static Synchronous Compensators (DSTATCOM) are all new emerging devices aimed at regulating the reactive power requirements. The excellent controllability of these devices has paved the way to flexible and dynamic controllers that are capable of regulating the flow of active and reactive power components. These devices are now suggested for the control of the reactive power requirement of wind generators. Studies have demonstrated acceptable voltage stabilisation results. This has increased the penetration level of wind power into existing distribution networks in many countries. (Author)

  17. An introduction to reactive power compensation for wind farms

    International Nuclear Information System (INIS)

    Nigim, K.A.; Cairo Univ., Giza; Zobaa, A.F.; El Amin, I.

    2005-01-01

    The paper summarises the refereed contributions of seven articles reviewed for publication in the IJETP - Special Issue on 'Reactive compensation for wind farms'. The main goal of the special issue is to provide a forum to exchange information on the reactive power compensation requirements for wind farms and introducing possible price mechanisms for today's deregulated power industry. Uncompensated reactive power causes stress on the hosting utility grid as well as added expenses, which create in difficulties for power purchasing agreements from independent wind energy producers. Wind power producers need to comply with the hosting utility grid interconnection standards, e.g., voltage and frequency, as well as to provide controllable active and reactive sources of power. Active power supply is mainly dependent on the potential of wind power produced and the turbine design. Reactive power demand on the other hand depends on the conversion devices and the recovered power quantity fed to the grid. Static Var Compensators (SVC), Unified Power Quality Conditioners (UPQC), Unified Power Flow Controllers (UPFC), and the Distributed Static Synchronous Compensators (DSTATCOM) are all new emerging devices aimed at regulating the reactive power requirements. The excellent controllability of these devices has paved the way to flexible and dynamic controllers that are capable of regulating the flow of active and reactive power components. These devices are now suggested for the control of the reactive power requirement of wind generators. Studies have demonstrated acceptable voltage stabilisation results. This has increased the penetration level of wind power into existing distribution networks in many countries. (Author)

  18. Active and reactive power support of MV distribution systems using battery energy storage

    DEFF Research Database (Denmark)

    Wang, Jiawei; Hashemi Toghroljerdi, Seyedmostafa; You, Shi

    2017-01-01

    shaving and voltage support service from the perspective of Distribution System Operators (DSOs). An active power support algorithm is implemented and the effects of various load profiles as well as different Photovoltaic (PV) penetration scenarios on the operation of BESS and the optimal BESS converter......Adoption of Battery Energy Storage Systems (BESSs) for provision of grid services is increasing. This paper investigates the applications of BESS for the grid upgrade deferral and voltage support of Medium Voltage (MV) distribution systems. A BESS is modelled in Matlab/Simulink to perform peak load...... size for peak load shaving are investigated. The BESS annual lifetime degradation is also estimated using a rainflow counting algorithm. A reactive power support algorithm embedded with Q-U droop control is proposed in order to reduce the voltage drop in a part of 10 kV distribution network of Nordhavn...

  19. Comprehensive Reactive Power Support of DFIG Adapted to Different Depth of Voltage Sags

    Directory of Open Access Journals (Sweden)

    Yangwu Shen

    2017-06-01

    Full Text Available The low voltage ride-through (LVRT capability of the doubly-fed induction generator (DFIG significantly impacts upon the integration of wind power into the power grid. This paper develops a novel comprehensive control strategy to enhance the LVRT and reactive power support capacities of the DFIG by installing the energy storage system (ESS. The ESS is connected to the DC-link capacitor of the DFIG and used to regulate the DC-link voltage during normal or fault operations. The unbalanced power between the captured wind power and the power injected to the grid during the transient process is absorbed or compensated by the ESS. The rotor-side converter (RSC is used to control the maximum power production and the grid-side converter (GSC is used to control the reactive power before participating in the voltage support. When the supply voltage continues to drop, the rotor speed is increased by controlling the RSC to realize the LVRT capability and help the GSC further enhance the reactive power support capability. The capacity of the GSC is dedicated to injecting the reactive power to the grid. An auxiliary transient pitch angle controller is proposed to protect the generator’s over speed. Both RSC and GSC act as reactive power sources to further enhance the voltage support capability with serious voltage sags. Simulations based on a single-machine infinite-bus power system verify the effectiveness of the developed comprehensive control strategy.

  20. Loss Minimizing Operation of Doubly Fed Induction Generator Based Wind Generation Systems Considering Reactive Power Provision

    DEFF Research Database (Denmark)

    Baohua, Zhang; Hu, Weihao; Chen, Zhe

    2014-01-01

    The paper deals with control techniques for minimizing the operating loss of doubly fed induction generator based wind generation systems when providing reactive power. The proposed method achieves its goal through controlling the rotor side q-axis current in the synchronous reference frame...

  1. Reactive power influence on the thermal cycling of multi-MW wind power inverter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2012-01-01

    converter system are first presented at different wind speeds. Furthermore, the interaction between paralleled converter systems in a wind park is also considered and analyzed. By controlling the reactive power circulated among paralleled converters, a new concept is then proposed to stabilize the thermal...

  2. An iterative method for controlling reactive power flow in boundary transformers

    Energy Technology Data Exchange (ETDEWEB)

    Trigo, Angel L.; Martinez, Jose L.; Riquelme, Jesus; Romero, Esther [Department of Electrical Engineering, University of Seville (Spain)

    2011-02-15

    This paper presents an operational tool designed to help the system operator to control the reactive power flow in transmission-subtransmission boundary transformers. The main objective is to determine the minimum number of control actions necessary to ensure that reactive power flows in transmission/subtransmission transformers remain within limits. The proposed iterative procedure combines the use of a linear programming problem and a load flow tool. The linear programming assumes a linear behaviour between dependent and control variables around an operating point, modelled with sensitivities. Experimental results regarding IEEE systems are provided comparing the performance of the proposed approach with that of a conventional optimal power flow. (author)

  3. A Hybrid Optimization Method for Reactive Power and Voltage Control Considering Power Loss Minimization

    DEFF Research Database (Denmark)

    Liu, Chengxi; Qin, Nan; Bak, Claus Leth

    2015-01-01

    This paper proposes a hybrid optimization method to optimally control the voltage and reactive power with minimum power loss in transmission grid. This approach is used for the Danish automatic voltage control (AVC) system which is typically a non-linear non-convex problem mixed with both...

  4. THE IMPACT OF POWER COEFFICIENT OF REACTIVITY ON CANDU 6 REACTORS

    Directory of Open Access Journals (Sweden)

    D. KASTANYA

    2013-10-01

    Full Text Available The combined effects of reactivity coefficients, along with other core nuclear characteristics, determine reactor core behavior in normal operation and accident conditions. The Power Coefficient of Reactivity (PCR is an aggregate indicator representing the change in reactor core reactivity per unit change in reactor power. It is an integral quantity which captures the contributions of the fuel temperature, coolant void, and coolant temperature reactivity feedbacks. All nuclear reactor designs provide a balance between their inherent nuclear characteristics and the engineered reactivity control features, to ensure that changes in reactivity under all operating conditions are maintained within a safe range. The CANDU® reactor design takes advantage of its inherent nuclear characteristics, namely a small magnitude of reactivity coefficients, minimal excess reactivity, and very long prompt neutron lifetime, to mitigate the demand on the engineered systems for controlling reactivity and responding to accidents. In particular, CANDU reactors have always taken advantage of the small value of the PCR associated with their design characteristics, such that the overall design and safety characteristics of the reactor are not sensitive to the value of the PCR. For other reactor design concepts a PCR which is both large and negative is an important aspect in the design of their engineered systems for controlling reactivity. It will be demonstrated that during Loss of Regulation Control (LORC and Large Break Loss of Coolant Accident (LBLOCA events, the impact of variations in power coefficient, including a hypothesized larger than estimated PCR, has no safety-significance for CANDU reactor design. Since the CANDU 6 PCR is small, variations in the range of values for PCR on the performance or safety of the reactor are not significant.

  5. Reactive power compensation and loss reduction in large industrial enterprises

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S; Gajic, B; Mijailovic, S [Institute Nikola Tesla, Beograd (Yugoslavia)

    1991-12-01

    This paper considers the reactive power compensation and the active power and energy loss reduction of large radial power networks in the Serbian mine and smelting industry. It gives an efficient optimization procedure for positioning and sizing capacitors in large industrial systems integrated with a simple network analysis method. (Author).

  6. Design of reactive power procurement in deregulated electricity market

    African Journals Online (AJOL)

    Reactive power management is different in the deregulated electricity market of various countries. In this paper, a novel reactive power procurement model is proposed, which ensure secure and reliable operation of deregulated electricity market. Various issues of reactive power management in the deregulated electricity ...

  7. Transient Control of Synchronous Machine Active and Reactive Power in Micro-grid Power Systems

    Science.gov (United States)

    Weber, Luke G.

    There are two main topics associated with this dissertation. The first is to investigate phase-to-neutral fault current magnitude occurring in generators with multiple zero-sequence current sources. The second is to design, model, and tune a linear control system for operating a micro-grid in the event of a separation from the electric power system. In the former case, detailed generator, AC8B excitation system, and four-wire electric power system models are constructed. Where available, manufacturers data is used to validate the generator and exciter models. A gain-delay with frequency droop control is used to model an internal combustion engine and governor. The four wire system is connected through a transformer impedance to an infinite bus. Phase-to-neutral faults are imposed on the system, and fault magnitudes analyzed against three-phase faults to gauge their severity. In the latter case, a balanced three-phase system is assumed. The model structure from the former case - but using data for a different generator - is incorporated with a model for an energy storage device and a net load model to form a micro-grid. The primary control model for the energy storage device has a high level of detail, as does the energy storage device plant model in describing the LC filter and transformer. A gain-delay battery and inverter model is used at the front end. The net load model is intended to be the difference between renewable energy sources and load within a micro-grid system that has separated from the grid. Given the variability of both renewable generation and load, frequency and voltage stability are not guaranteed. This work is an attempt to model components of a proposed micro-grid system at the University of Wisconsin Milwaukee, and design, model, and tune a linear control system for operation in the event of a separation from the electric power system. The control module is responsible for management of frequency and active power, and voltage and reactive

  8. Joint excitation and reactive power control in thermal power plant

    Directory of Open Access Journals (Sweden)

    Dragosavac Jasna

    2013-01-01

    Full Text Available The coordinated voltage and reactive power controller, designed for the thermal power plant, is presented in the paper. A brief explanation of the need for such device is given and justification for commissioning of such equipment is outlined. After short description of the theoretical background of the proposed control design, the achieved features of the commissioned equipment are fully given. Achieved performances are illustrated by recorded reactive power and bus voltage responses after commissioning of the described equipment into the largest thermal power plant in Serbia. As it can be seen in presented records, all design targets are met.

  9. Operational experience with reactive power control methods optimized for tokamak power supplies

    International Nuclear Information System (INIS)

    Sihler, C.; Huart, M.; Kaesemann, C.-P.; Streibl, B.

    2003-01-01

    The power and energy of the ASDEX Upgrade (AUG) tokamak are provided by two separate 10.5 kV, 110-85 Hz networks based on the flywheel generators EZ3-EZ4 in addition to the generator EZ2 dedicated to the toroidal field coil. The 10.5 kV networks supply the thyristor converters allowing fast control of the DC currents in the AUG poloidal field coils. Two methods for improving the load power factor in the present experimental campaign of AUG have been investigated, namely the control of the phase-to-neutral voltage in thyristor converters fitted with neutral thyristors, such as the new 145 MVA modular thyristor converter system (Group 6), and reactive power control achieved by means of static VAr compensators (SVC). The paper shows that reliable compensation up to 90 MVAr was regularly achieved and that electrical transients in SVC modules can be kept at an acceptable level. The paper will discuss the results from the reactive power reduction by SVC and neutral thyristor control and draw a comparative conclusion

  10. Continuous reactivity calculation for subcritical system

    International Nuclear Information System (INIS)

    Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da

    2011-01-01

    With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)

  11. Continuous reactivity calculation for subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da, E-mail: cristiano@herzeleid.net, E-mail: aquilino@lmp.ufrj.br, E-mail: fernando@con.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)

  12. MILP Approach for Bilevel Transmission and Reactive Power Planning Considering Wind Curtailment

    DEFF Research Database (Denmark)

    Ugranli, Faruk; Karatepe, Engin; Nielsen, Arne Hejde

    2017-01-01

    In this study, two important planning problems in power systems that are transmission expansion and reactive power are formulated as a mixed-integer linear programming taking into account the bilevel structure due to the consideration of market clearing under several load-wind scenarios....... The objective of the proposed method is to minimize the installation cost of transmission lines, reactive power sources, and the annual operation costs of conventional generators corresponding to the curtailed wind energy while maintaining the reliable system operation. Lower level problems of the bilevel...... structure are designated for the market clearing which is formulated by using the linearized optimal power flow equations. In order to obtain mixed-integer linear programming formulation, the so-called lower level problems are represented by using primal-dual formulation. By using the proposed method, power...

  13. Design of power control system using SMES and SVC for fusion power plant

    International Nuclear Information System (INIS)

    Niiyama, K; Yagai, T; Tsuda, M; Hamajima, T

    2008-01-01

    A SMES (Superconducting Magnetic Energy Storage System) system with converter composed of self-commutated valve devices such as GTO and IGBT is available to control active and reactive power simultaneously. A SVC (Static Var Compensators) or STATCOM (Static Synchronous Compensator) is widely employed to reduce reactive power in power plants and substations. Owing to progress of power electronics technology using GTO and IGBT devices, power converters in the SMES system and the SVC can easily control power flow in few milliseconds. Moreover, since the valve devices for the SMES are equivalent to those for the SVC, the device cost must be reduced. In this paper the basic control system combined with the SMES and SVC is designed for large pulsed loads of a nuclear fusion power plant. This combined system largely expands the reactive power control region as well as the active one. The simulation results show that the combined system is effective and prospective for the nuclear fusion power plant

  14. Reactive Power Control of Single-Stage Three-Phase Photovoltaic System during Grid Faults Using Recurrent Fuzzy Cerebellar Model Articulation Neural Network

    Directory of Open Access Journals (Sweden)

    Faa-Jeng Lin

    2014-01-01

    Full Text Available This study presents a new active and reactive power control scheme for a single-stage three-phase grid-connected photovoltaic (PV system during grid faults. The presented PV system utilizes a single-stage three-phase current-controlled voltage-source inverter to achieve the maximum power point tracking (MPPT control of the PV panel with the function of low voltage ride through (LVRT. Moreover, a formula based on positive sequence voltage for evaluating the percentage of voltage sag is derived to determine the ratio of the injected reactive current to satisfy the LVRT regulations. To reduce the risk of overcurrent during LVRT operation, a current limit is predefined for the injection of reactive current. Furthermore, the control of active and reactive power is designed using a two-dimensional recurrent fuzzy cerebellar model articulation neural network (2D-RFCMANN. In addition, the online learning laws of 2D-RFCMANN are derived according to gradient descent method with varied learning-rate coefficients for network parameters to assure the convergence of the tracking error. Finally, some experimental tests are realized to validate the effectiveness of the proposed control scheme.

  15. Active and reactive power control of a current-source PWM-rectifier using space vectors

    Energy Technology Data Exchange (ETDEWEB)

    Salo, M.; Tuusa, H. [Tampere University of Technology (Finland). Department of Electrical Engineering, Power Electronics

    1997-12-31

    In this paper the current-source PWM-rectifier with active and reactive power control is presented. The control system is realized using space vector methods. Also, compensation of the reactive power drawn by the line filter is discussed. Some simulation results are shown. (orig.) 8 refs.

  16. Real-Time Control of Active and Reactive Power for Doubly Fed Induction Generator (DFIG-Based Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Aman Abdulla Tanvir

    2015-09-01

    Full Text Available This paper presents the modeling, rapid control prototyping, and hardware-in-the-loop testing for real-time simulation and control of a grid-connected doubly fed induction generator (DFIG in a laboratory-size wind turbine emulator for wind energy conversation systems. The generator is modeled using the direct-quadrature rotating reference frame circuit along with the aligned stator flux, and the field-oriented control approach is applied for independent control of the active and reactive power and the DC-link voltage at the grid side. The control of the active, reactive power and the DC-link voltage are performed using a back-to-back converter at sub- and super-synchronous as well as at variable speeds. The control strategy is experimentally validated on an emulated wind turbine driven by the Opal-RT real-time simulator (OP5600 for simultaneous control of the DC-link voltage, active and reactive power.

  17. A Preliminary Analysis of the Economics of Using Distributed Energy as a Source of Reactive Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangxing [ORNL; Kueck, John D [ORNL; Rizy, D Tom [ORNL; King, Thomas F [ORNL

    2006-04-01

    operation in response to local or system operators. There are no known distributed energy asset owners currently receiving compensation for reactive power supply or capability. However, there are some cases where small generators on the generation and transmission side of electricity supply have been tested and have installed the capability to be dispatched for reactive power support. Several concerns need to be met for distributed energy to become widely integrated as a reactive power resource. The overall costs of retrofitting distributed energy devices to absorb or produce reactive power need to be reduced. There needs to be a mechanism in place for ISOs/RTOs to procure reactive power from the customer side of the meter where distributed energy resides. Novel compensation methods should be introduced to encourage the dispatch of dynamic resources close to areas with critical voltage issues. The next phase of this research will investigate in detail how different options of reactive power producing DE can compare both economically and functionally with shunt capacitor banks. Shunt capacitor banks, which are typically used for compensating reactive power consumption of loads on distribution systems, are very commonly used because they are very cost effective in terms of capital costs. However, capacitor banks can require extensive maintenance especially due to their exposure to lightning at the top of utility poles. Also, it can be problematic to find failed capacitor banks and their maintenance can be expensive, requiring crews and bucket trucks which often requires total replacement. Another shortcoming of capacitor banks is the fact that they usually have one size at a location (typically sized as 300, 600, 900 or 1200kVAr) and thus don't have variable range as do reactive power producing DE, and cannot respond to dynamic reactive power needs. Additional future work is to find a detailed methodology to identify the hidden benefit of DE for providing reactive power

  18. An Enhanced Islanding Microgrid Reactive Power, Imbalance Power, and Harmonic Power Sharing Scheme

    DEFF Research Database (Denmark)

    He, Jinwei; Lin, Yun Wei; Blaabjerg, Frede

    2015-01-01

    To address inaccurate power sharing problems in autonomous islanding microgrids, an enhanced droop control method through online virtual impedance adjustment is proposed. First, a term associated with DG reactive power, imbalance power, or harmonic power is added to the conventional real power...

  19. Opposition-Based Improved PSO for Optimal Reactive Power Dispatch and Voltage Control

    Directory of Open Access Journals (Sweden)

    Shengrang Cao

    2015-01-01

    Full Text Available An opposition-based improved particle swarm optimization algorithm (OIPSO is presented for solving multiobjective reactive power optimization problem. OIPSO uses the opposition learning to improve search efficiency, adopts inertia weight factors to balance global and local exploration, and takes crossover and mutation and neighborhood model strategy to enhance population diversity. Then, a new multiobjective model is built, which includes system network loss, voltage dissatisfaction, and switching operation. Based on the market cost prices, objective functions are converted to least-cost model. In modeling process, switching operation cost is described according to the life cycle cost of transformer, and voltage dissatisfaction penalty is developed considering different voltage quality requirements of customers. The experiment is done on the new mathematical model. Through the simulation of IEEE 30-, 118-bus power systems, the results prove that OIPSO is more efficient to solve reactive power optimization problems and the model is more accurate to reflect the real power system operation.

  20. An accurate autonomous islanding microgrid reactive power, imbalance power and harmonic power sharing scheme

    DEFF Research Database (Denmark)

    He, Jinwei; Li, Yun Wei; Blaabjerg, Frede

    2013-01-01

    To address inaccurate power sharing problems in autonomous islanding microgrids, an enhanced droop control method through adaptive virtual impedance adjustment is proposed. First, a term associated with DG reactive power, imbalance power or harmonic power is added to the conventional real power...

  1. Calculation methods of reactivity using derivatives of nuclear power and Filter fir

    International Nuclear Information System (INIS)

    Diaz, Daniel Suescun

    2007-01-01

    This work presents two new methods for the solution of the inverse point kinetics equation. The first method is based on the integration by parts of the integral of the inverse point kinetics equation, which results in a power series in terms of the nuclear power in time dependence. Applying some conditions to the nuclear power, the reactivity is represented as first and second derivatives of this nuclear power. This new calculation method for reactivity has special characteristics, amongst which the possibility of using different sampling periods, and the possibility of restarting the calculation, after its interruption associated it with a possible equipment malfunction, allowing the calculation of reactivity in a non-continuous way. Apart from this reactivity can be obtained with or without dependency on the nuclear power memory. The second method is based on the Laplace transform of the point kinetics equations, resulting in an expression equivalent to the inverse kinetics equation as a function of the power history. The reactivity can be written in terms of the summation of convolution with response to impulse, characteristic of a linear system. For its digital form the Z-transform is used, which is the discrete version of the Laplace transform. In this method it can be pointed out that the linear part is equivalent to a filter named Finite Impulse Response (Fir). The Fir filter will always be, stable and non-varying in time, and, apart from this, it can be implemented in the non-recursive way. This type of implementation does not require feedback, allowing the calculation of reactivity in a continuous way. The proposed methods were validated using signals with random noise and showing the relationship between the reactivity difference and the degree of the random noise. (author)

  2. Reactivity calculation with reduction of the nuclear power fluctuations

    International Nuclear Information System (INIS)

    Suescun Diaz, Daniel; Senra Martinez, Aquilino

    2009-01-01

    A new formulation is presented in this paper for the calculation of reactivity, which is simpler than the formulation that uses the Laplace and Z transforms. A treatment is also made to reduce the intensity of the noise found in the nuclear power signal used in the calculation of reactivity. Two classes of different filters are used for that. This treatment is based on the fact that the reactivity can be written by using the compose Simpson's rule resulting in a sum of two convolution terms with response to the impulse that is characteristic of a linear system. The linear part is calculated by using the filter named finite impulse response filter (FIR). The non-linear part is calculated using the filter exponentially adjusted by the least squares method, which does not cause attenuation in the reactivity calculation.

  3. Reactivity calculation with reduction of the nuclear power fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Suescun Diaz, Daniel [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914 RJ (Brazil)], E-mail: dsuescun@hotmail.com; Senra Martinez, Aquilino [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914 RJ (Brazil)

    2009-05-15

    A new formulation is presented in this paper for the calculation of reactivity, which is simpler than the formulation that uses the Laplace and Z transforms. A treatment is also made to reduce the intensity of the noise found in the nuclear power signal used in the calculation of reactivity. Two classes of different filters are used for that. This treatment is based on the fact that the reactivity can be written by using the compose Simpson's rule resulting in a sum of two convolution terms with response to the impulse that is characteristic of a linear system. The linear part is calculated by using the filter named finite impulse response filter (FIR). The non-linear part is calculated using the filter exponentially adjusted by the least squares method, which does not cause attenuation in the reactivity calculation.

  4. An accurate reactive power control study in virtual flux droop control

    Science.gov (United States)

    Wang, Aimeng; Zhang, Jia

    2017-12-01

    This paper investigates the problem of reactive power sharing based on virtual flux droop method. Firstly, flux droop control method is derived, where complicated multiple feedback loops and parameter regulation are avoided. Then, the reasons for inaccurate reactive power sharing are theoretically analyzed. Further, a novel reactive power control scheme is proposed which consists of three parts: compensation control, voltage recovery control and flux droop control. Finally, the proposed reactive power control strategy is verified in a simplified microgrid model with two parallel DGs. The simulation results show that the proposed control scheme can achieve accurate reactive power sharing and zero deviation of voltage. Meanwhile, it has some advantages of simple control and excellent dynamic and static performance.

  5. Formation for the calculation of reactivity without nuclear power history

    International Nuclear Information System (INIS)

    Suescun Diaz, Daniel; Senra Martinez, Aquilino; Carvalho Da Silva, Fernando

    2007-01-01

    This paper presents a new method for the solution of the inverse point kinetics equation. This method is based on the integration by parts of the integral of the inverse point kinetics equation, which results in a power series in terms of the nuclear power in time dependence. With the imposition of conditions to the nuclear power, the reactivity is represented as first and second derivatives of this nuclear power. This new calculation method for reactivity has very special characteristics, amongst which the possibility of using longer sampling period, and the possibility of restarting the calculation, after its interruption, allowing the calculation of reactivity in a non-continuous way. Beside that, the reactivity can be obtained independent of the nuclear power memory. (author)

  6. Power oscillation suppression by robust SMES in power system with large wind power penetration

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai; Cuk Supriyadi, A.N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions

  7. Power oscillation suppression by robust SMES in power system with large wind power penetration

    Science.gov (United States)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  8. Reactive power control methods for improved reliability of wind power inverters under wind speed variations

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2012-01-01

    method to relieve the thermal cycling of power switching devices under severe wind speed variations, by circulating reactive power among the parallel power converters in a WTS or among the WTS's in a wind park. The amount of reactive power is adjusted to limit the junction temperature fluctuation...

  9. Consensus-based Distributed Control for Accurate Reactive, Harmonic and Imbalance Power Sharing in Microgrids

    DEFF Research Database (Denmark)

    Zhou, Jianguo; Kim, Sunghyok; Zhang, Huaguang

    2018-01-01

    This paper investigates the issue of accurate reactive, harmonic and imbalance power sharing in a microgrid. Harmonic and imbalance droop controllers are developed to proportionally share the harmonic power and the imbalance power among distributed generation (DG) units and improve the voltage...... voltage. With the proposed methods, the microgrid system reliability and flexibility can be enhanced and the knowledge of the line impedance is not required. And the reactive, harmonic and imbalance power can be proportionally shared among the DG units. Moreover, the quality of the voltage at PCC can...

  10. Neutron density fluctuations in point reactor systems with dichotomic reactivity noise

    International Nuclear Information System (INIS)

    Sako, Okitsugu

    1984-01-01

    The exactly solvable stochastic point reactor model systems are analyzed through the stochastic Liouville equation. Three kinds of model systems are treated: (1) linear system without delayed neutrons, (2) linear system with one-group of delayed neutrons, and (3) nonlinear system with direct power feedback. The exact expressions for the fluctuations of neutron density, such as the moments, autocorrelation function and power spectral density, are derived in the case where the colored reactivity noise is described by the dichotomic, or two state, Markov process with arbitrary correlation time and intensity, and the effects of the finite correlation time and intensity of the noise on the neutron density fluctuations are investigated. The influence of presence of delayed neutrons and the effect of nonlinearity of system on the neutron density fluctuations are also elucidated. When the reactivity correlation time is very short, the correlation time has almost no effect on the power spectral density, and the relative fluctuation of neutron density in the stationary state is not affected very much by the presence of delayed neutrons and also by the nonlinearity of system. On the other hand, if the reactivity correlation time is very long, the effect of the reactivity noise on the power spectral density appears at very low frequency, and the presence of delayed neutrons has an effect of reducing the neutron density fluctuations. (author)

  11. Reactive power control of wind farm using facts devices

    International Nuclear Information System (INIS)

    Ashfaq, S.; Arif, A.; Shakeel, A.; Mahmood, T.

    2014-01-01

    Wind energy is an attainable option to complement other types of pollution-free green generation Grid connections of renewable energy resources are vital if they are to be effectively exploited, but grid connection brings problems of voltage fluctuation and harmonic distortion. FACTs devices are one of the power electronics revolutions to improve voltage profile, system stability, and reactive power control and to reduce transmission losses. The studied system here is a variable speed wind generation system based on Induction Generator (IG) with integration of different FACTs controllers in the wind farm. To harness the wind power efficiently the most reliable and expensive system in the present era is grid connected doubly fed induction generator. Induction generator with FACTs devices is a suitable economical replacement. The suggested scheme is implemented in MATLAB Simulink with real time parameters of GHARO wind power plant in Sind, and corresponding results and output waveforms proves the potential strength of proposed methodology. (author)

  12. Voltage Control of Distribution Grids with Multi-Microgrids Using Reactive Power Management

    Directory of Open Access Journals (Sweden)

    WLODARCZYK, P.

    2015-02-01

    Full Text Available Low-voltage Microgrids can be valuable sources of ancillary services for the Distribution System Operators (DSOs. The aim of this paper was to study if and how multi-microgrids can contribute to Voltage Control (VC in medium-voltage distribution grids by means of reactive power generation and/or absorption. The hierarchical control strategy was proposed with the main focus on the tertiary control which was defined as optimal power flow problem. The interior-point algorithm was applied to optimise experimental benchmark grid with the presence of Distributed Energy Resources (DERs. Moreover, two primary objectives were formulated: active power losses and amount of reactive power used to reach the voltage profile. As a result the active power losses were minimised to the high extent achieving the savings around 22% during entire day.

  13. Electric power system applications of optimization

    CERN Document Server

    Momoh, James A

    2008-01-01

    Introduction Structure of a Generic Electric Power System  Power System Models  Power System Control Power System Security Assessment  Power System Optimization as a Function of Time  Review of Optimization Techniques Applicable to Power Systems Electric Power System Models  Complex Power Concepts Three-Phase Systems Per Unit Representation  Synchronous Machine Modeling Reactive Capability Limits Prime Movers and Governing Systems  Automatic Gain Control Transmission Subsystems  Y-Bus Incorporating the Transformer Effect  Load Models  Available Transfer Capability  Illustrative Examples  Power

  14. Review of reactive power dispatch strategies for loss minimization in a DFIG-based wind farm

    DEFF Research Database (Denmark)

    Zhang, Baohua; Hu, Weihao; Hou, Peng

    2017-01-01

    power control strategies are investigated. All of the combined strategies are formulated based on the comprehensive loss models of WFs, including the loss models of DFIGs, converters, filters, transformers, and cables of the collection system. Optimization problems are solved by a Modified Particle......This paper reviews and compares the performance of reactive power dispatch strategies for the loss minimization of Doubly Fed Induction Generator (DFIG)-based Wind Farms (WFs). Twelve possible combinations of three WF level reactive power dispatch strategies and fourWind Turbine (WT) level reactive...... Swarm Optimization (MPSO) algorithm. The effectiveness of these strategies is evaluated by simulations on a carefully designed WF under a series of cases with different wind speeds and reactive power requirements of the WF. The wind speed at each WT inside the WF is calculated using the Jensen wake...

  15. Optimized Reactive Power Flow of DFIG Power Converters for Better Reliability Performance Considering Grid Codes

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2015-01-01

    . In order to fulfill the modern grid codes, over-excited reactive power injection will further reduce the lifetime of the rotor-side converter. In this paper, the additional stress of the power semiconductor due to the reactive power injection is firstly evaluated in terms of modulation index...

  16. Remuneration of the reactive power in the Argentinean supply market; Remuneracao da potencia reativa no mercado de suprimento argentino

    Energy Technology Data Exchange (ETDEWEB)

    Kerszberg, Ernesto M; Dravnovsky, Mario Carlos [Administradora del Mercado Mayorista Eletrico S.A. (Argentina)

    1996-05-01

    This work presents the standards and legislation about power reactive consumption by involved agents in the market electric power supply. It discusses how to remunerate this reactive and the compromises among the actors of the power electric system

  17. Power and power-to-flow reactivity transfer functions in EBR-II [Experimental Breeder Reactor II] fuel

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1989-01-01

    Reactivity transfer functions are important in determining the reactivity history during a power transient. Overall nodal transfer functions have been calculated for different subassembly types in the Experimental Breeder Reactor II (EBR-II). Steady-state calculations for temperature changes and, hence, reactivities for power changes have been separated into power and power-to-flow-dependent terms. Axial nodal transfer functions separated into power and power-to-flow-dependent components are reported in this paper for a typical EBR-II fuel pin. This provides an improved understanding of the time dependence of these components in transient situations

  18. Computation, measurement and analysis of the reactivity-to-power-transfer-function for the sodium cooled nuclear power plant KNK I

    International Nuclear Information System (INIS)

    Hoppe, P.; Mitzel, F.

    1977-02-01

    The Reactivity-to-Power-Transfer-Function for the sodium cooled nuclear power plant KNK I (Kompakte Natriumgekuehlte Kernenergieanlage) has been measured and compared with theoretical results. The measurements have been performed with the help of pseudostochastic reactivity perturbations. The transfer function has been determined by computing the auto- and cross-power-spectral-densities for the reactivity- and neutron flux signals. The agreement between the experimental and theoretical transfer function could be improved by adjusting the reactivity coefficients. The applications of these measurements with respect to reactor diagnosis and malfunction detection are discussed. For this purpose the accuracy of the measured transfer function is of great importance. Therefore an extensive error analysis has been performed. It turned out, that the inherent instability of the reactor without control system and the feedback by the primary coolant system were the reasons for comparatively big systematical errors. The conditions have been derived under which these types of errors can be considerably reduced. The conclusions can also be applied to analogical measurements at fast sodium cooled reactors. Because of their inherent stability the systematical errors will be reduced. (orig.) [de

  19. Modelling of power-reactivity coefficient measurement

    International Nuclear Information System (INIS)

    Strmensky, C.; Petenyi, V.; Jagrik, J.; Minarcin, M.; Hascik, R.; Toth, L.

    2005-01-01

    Report describes results of modeling of power-reactivity coefficient analysis on power-level. In paper we calculate values of discrepancies arisen during transient process. These discrepancies can be arisen as result of experiment evaluation and can be caused by disregard of 3D effects on neutron distribution. The results are critically discussed (Authors)

  20. Reactive Power Control for Improving Wind Turbine System Behavior Under Grid Faults

    DEFF Research Database (Denmark)

    Rodriguez, P.; Timbus, A.; Teodorescu, Remus

    2009-01-01

    This letter aims to present a generalized vector-based formulation for calculating the grid-side current reference to control reactive power delivered to the grid. Strategies for current reference generation were implemented on the abc stationary reference frame, and their effectivenesswas...... demonstrated experimentally, perhaps validating the theoretical analysis even under grid fault conditions....

  1. Wolf Search Algorithm for Solving Optimal Reactive Power Dispatch Problem

    Directory of Open Access Journals (Sweden)

    Kanagasabai Lenin

    2015-03-01

    Full Text Available This paper presents a new bio-inspired heuristic optimization algorithm called the Wolf Search Algorithm (WSA for solving the multi-objective reactive power dispatch problem. Wolf Search algorithm is a new bio – inspired heuristic algorithm which based on wolf preying behaviour. The way wolves search for food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the reactive power dispatches. And the speciality  of wolf is  possessing  both individual local searching ability and autonomous flocking movement and this special property has been utilized to formulate the search algorithm .The proposed (WSA algorithm has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the good performance of the proposed algorithm .

  2. Reactive Power Impact on Lifetime Prediction of Two-level Wind Power Converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, M.

    2013-01-01

    The influence of reactive power injection on the dominating two-level wind power converter is investigated and compared in terms of power loss and thermal behavior. Then the lifetime of both the partial-scale and full-scale power converter is estimated based on the widely used Coffin-Manson model...

  3. Real-Time Reactive Power Distribution in Microgrids by Dynamic Programing

    DEFF Research Database (Denmark)

    Levron, Yoash; Beck, Yuval; Katzir, Liran

    2017-01-01

    In this paper a new real-time optimization method for reactive power distribution in microgrids is proposed. The method enables location of a globally optimal distribution of reactive power under normal operating conditions. The method exploits the typical compact structure of microgrids to obtain...... combination of reactive powers, by means of dynamic programming. Since every single step involves a one-dimensional problem, the complexity of the solution is only linear with the number of clusters, and as a result, a globally optimal solution may be obtained in real time. The paper includes the results...

  4. Thermal Performance and Reliability Analysis of Single-Phase PV Inverters with Reactive Power Injection Outside Feed-In Operating Hours

    DEFF Research Database (Denmark)

    Anurag, Anup; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    Reactive power support by photovoltaic (PV) systems is of increasingly interest, when compared to the conventional reactive power compensation devices. PV inverters can exchange reactive power with the utility grid in a decentralized manner even outside feed-in operation, especially at nights when...... there is no solar irradiance. However, reactive power injection causes additional power losses in the switching components leading to a temperature rise in the devices. Thus, this paper analyses the impact of reactive power injection by PV inverters outside feed-in operation on the thermal performance...... of their power switching components. A thermal analysis based on the mission profile (i.e., solar irradiance and ambient temperature) has been incorporated, so as to determine the additional temperature rise in the components induced by the operation outside feed-in hours. An analytical lifetime model has been...

  5. Settlement of reactive power compensation in the light of white certificates

    Directory of Open Access Journals (Sweden)

    Zajkowski Konrad

    2017-01-01

    The detailed method and an estimation method proposed for the determination of savings on active energy as a result of the reactive power compensation carried out possess some errors and inconvenience. The detailed method requires knowledge of the network topology and a determination of reactive power Q at each point of the network. The estimation method of analysis is easy in execution, especially if the consumer of energy is the main or the most significant purchaser of electricity in the network. Unfortunately, this latter method can be used only for activities that do not require high computational accuracy. The results obtained by this method are approximate values that can be used for the calculation of economic indicators. The estimation method is suitable for determining the number of white certificates when a power audit concerns a recipient of electricity, the structure of which is a large number of divisions scattered at many different locations in the power system.

  6. Reduction of DC-link Capacitor in Case of Cascade Multilevel Converters by means of Reactive Power Control

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Wang, Huai; Liserre, Marco

    2014-01-01

    A method to selectively control the amount of dc link voltage ripple by processing desired reactive power by a DC/DC converter in isolated AC/DC or AC/DC/AC system is proposed. The concept can reduce the dc link capacitors used for balancing the input and output power and thereby limiting...... the voltage ripple. It allows the use of smaller dc link capacitor and hence a longer lifetime and at the same time high power density and low cost can be achieved. The isolated DC/DC converter is controlled to process the desired reactive power in addition to the active power. The control system to achieve...

  7. Induction generator-induction motor wind-powered pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R. [CPDEE - UFMG, Belo Horizonte (Brazil)

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  8. Optimal Coordinated EV Charging with Reactive Power Support in Constrained Distribution Grids

    Energy Technology Data Exchange (ETDEWEB)

    Paudyal, Sumit; Ceylan, Oğuzhan; Bhattarai, Bishnu P.; Myers, Kurt S.

    2017-07-01

    Electric vehicle (EV) charging/discharging can take place in any P-Q quadrants, which means EVs could support reactive power to the grid while charging the battery. In controlled charging schemes, distribution system operator (DSO) coordinates with the charging of EV fleets to ensure grid’s operating constraints are not violated. In fact, this refers to DSO setting upper bounds on power limits for EV charging. In this work, we demonstrate that if EVs inject reactive power into the grid while charging, DSO could issue higher upper bounds on the active power limits for the EVs for the same set of grid constraints. We demonstrate the concept in an 33-node test feeder with 1,500 EVs. Case studies show that in constrained distribution grids in coordinated charging, average costs of EV charging could be reduced if the charging takes place in the fourth P-Q quadrant compared to charging with unity power factor.

  9. Power system stabilization by SMES using current-fed pwm power conditioner

    International Nuclear Information System (INIS)

    Ishikawa, T.; Akita, S.; Taniguchi, H.; Kosho, S.; Tanaka, T.

    1988-01-01

    A superconducting magnetic energy storage (SMES) unit, consisted of superconducting coil and AC/DC power conditioner, can be used to suppress various kinds of instability that may cause service interruption in electric power system as it has high controllability of input/output electric power. Power system stabilizing ability of SMES has been examined experimentally by using model power system and small SMES unit. Current-fed PWM power conditioner was used to obtain maximum stabilizing effect by controlling active and reactive power simultaneously and independently. Power conditioner configuration, operating characteristics and control scheme for power system stabilization are also described. Results from experiments show the effectiveness of SMES on power system stabilization

  10. Wind Power Impact to Transient and Voltage Stability of the Power System in Eastern Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Joana; Jørgensen, Preben; Palsson, Magni Thor

    2005-01-01

    Voltage stability, transient stability and reactive power compensation are extremely important issues for largescale integration of wind power in areas distant from the main transmission system in Eastern Denmark. This paper describes the application of a dynamic wind farm model in simulation...... studies for assessments of a large wind power penetration. The simulation results reveal problems with voltage stability due to the characteristic of wind turbine generation as well as the inability of the power system to meet the reactive power demand. Furthermore, the established model is applied...

  11. Broadband and High power Reactive Jamming Resilient Wireless Communication

    Science.gov (United States)

    2017-10-21

    Broadband and High -power Reactive Jamming Resilient Wireless Communication The views, opinions and/or findings contained in this report are those of... available in extremely hostile environments, where FHSS and DSSS are completely defeated by a broadband and high -power reactive jammer. b. Wireless...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS

  12. High efficiency H6 single-phase transformerless grid-tied PV inverter with proposed modulation for reactive power generation

    Science.gov (United States)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2017-08-01

    Implementation of transformerless inverters in PV grid-tied system offer great benefits such as high efficiency, light weight, low cost, etc. Most of the proposed transformerless inverters in literature are verified for only real power application. Currently, international standards such as VDE-AR-N 4105 has demanded that PV grid-tied inverters should have the ability of controlling a specific amount of reactive power. Generation of reactive power cannot be accomplished in single phase transformerless inverter topologies because the existing modulation techniques are not adopted for a freewheeling path in the negative power region. This paper enhances a previous high efficiency proposed H6 trnasformerless inverter with SiC MOSFETs and demonstrates new operating modes for the generation of reactive power. A proposed pulse width modulation (PWM) technique is applied to achieve bidirectional current flow through freewheeling state. A comparison of the proposed H6 transformerless inverter using SiC MOSFETs and Si MOSFTEs is presented in terms of power losses and efficiency. The results show that reactive power control is attained without adding any additional active devices or modification to the inverter structure. Also, the proposed modulation maintains a constant common mode voltage (CM) during every operating mode and has low leakage current. The performance of the proposed system verifies its effectiveness in the next generation PV system.

  13. Estimation of reactive power sources dynamic limits for Volt / VAr control

    International Nuclear Information System (INIS)

    Orozco Alvarado, Juan Jose

    2013-01-01

    A generic model of capacity curves is obtained from the theoretical capacity curves of the distribution generators and reactive compensation elements. The obtained generic model is structured in a simplified method of points, taking eight strategic points of two detailed curves of a generator and through a series of interpolations, achieving the estimation of limits of capacity of delivery / consumption of the generator. The theory of electric generation elements and reactive power compensation is reviewed. The curves of capacity 'Reactive Power / Active Power' are achieved for different values of tension: from wind generators with complete converter and doubly fed, photovoltaic generators with inverter and synchronous generators. The 'Reactive Power / Line Tension' capacity curves are acquired from static var compensators (SVC). The generic limits of generators and SVC are estimated from the capacity curves [es

  14. Settlement of reactive power compensation in the light of white certificates

    Science.gov (United States)

    Zajkowski, Konrad

    2017-10-01

    The article discusses the problem of the determination of savings on active energy as a result of a reactive power compensation. Statutory guidance on the required energy audit to obtain white certificates in the European Union was followed. The analysis was made on the basis of the Polish Law. The paper presents a detailed analytical method and an estimation method taking into account the impact on the line, the transformer and the generator. According to the relevant guidelines in the European Union, the reduction of CO2 emissions by calculating the saving of active power should be determined. The detailed method and an estimation method proposed for the determination of savings on active energy as a result of the reactive power compensation carried out possess some errors and inconvenience. The detailed method requires knowledge of the network topology and a determination of reactive power Q at each point of the network. The estimation method of analysis is easy in execution, especially if the consumer of energy is the main or the most significant purchaser of electricity in the network. Unfortunately, this latter method can be used only for activities that do not require high computational accuracy. The results obtained by this method are approximate values that can be used for the calculation of economic indicators. The estimation method is suitable for determining the number of white certificates when a power audit concerns a recipient of electricity, the structure of which is a large number of divisions scattered at many different locations in the power system.

  15. Design of reactive power procurement in deregulated electricity market

    African Journals Online (AJOL)

    user

    novel reactive power procurement model is proposed, which ensure secure and ..... The simulation is performed in the Matlab. .... focus of this paper is a reactive procurement market model, which is a basically two-step optimization process.

  16. Adaptive Reactive Power Control of PV Power Plants for Improved Power Transfer Capability under Ultra-Weak Grid Conditions

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wang, Xiongfei; Liu, Fangcheng

    2018-01-01

    with the unity power factor. Then, considering the reactive power compensation from PV inverters, the minimum SCR in respect to Power Factor (PF) is derived, and the optimized coordination of the active and reactive power is exploited. It is revealed that the power transfer capability of PV power plant under...... of a 200 MW PV power plant demonstrate that the proposed method can ensure the rated power transfer of PV power plant with the SCR of 1.25, provided that the PV inverters are operated with the minimal PF=0.9.......This paper analyzes the power transfer limitation of the PV power plant under the ultra-weak grid condition, i.e., when the Short-Circuit Ratio (SCR) is close to 1. It explicitly identifies that a minimum SCR of 2 is required for the PV power plant to deliver the rated active power when operating...

  17. Implementation of New Reactivity Measurement System and New Reactor Noise Analysis Equipment in a VVER-440 Nuclear Power Plant

    Science.gov (United States)

    Vegh, János; Kiss, Sándor; Lipcsei, Sándor; Horvath, Csaba; Pos, István; Kiss, Gábor

    2010-10-01

    The paper deals with two recently developed, high-precision nuclear measurement systems installed at the VVER-440 units of the Hungarian Paks NPP. Both developments were motivated by the reactor power increase to 108%, and by the planned plant service time extension. The first part describes the RMR start-up reactivity measurement system with advanced services. High-precision picoampere meters were installed at each reactor unit and measured ionization chamber current signals are handled by a portable computer providing data acquisition and online reactivity calculation service. Detailed offline evaluation and analysis of reactor start-up measurements can be performed on the portable unit, too. The second part of the paper describes a new reactor noise diagnostics system using state-of-the-art data acquisition hardware and signal processing methods. Details of the new reactor noise measurement evaluation software are also outlined. Noise diagnostics at Paks NPP is a standard tool for core anomaly detection and for long-term noise trend monitoring. Regular application of these systems is illustrated by real plant data, e.g., results of standard reactivity measurements during a reactor startup session are given. Noise applications are also illustrated by real plant measurements; results of core anomaly detection are presented.

  18. An islanding microgrid reactive power sharing scheme enhanced by programmed virtual impedances

    DEFF Research Database (Denmark)

    He, Jinwei; Li, Yun Wei; Guerrero, Josep M.

    2012-01-01

    harmonic currents. With the knowledge of feeder impedances, reactive power sharing performance can be enhanced by the regulation of DG unit output virtual impedance. The proposed method realizes accurate real and reactive power sharing in proportion to DG unit rated power. Simulated and experimental...

  19. Solar pv fed stand-alone excitation system of a synchronous machine for reactive power generation

    Science.gov (United States)

    Sudhakar, N.; Jain, Siddhartha; Jyotheeswara Reddy, K.

    2017-11-01

    This paper presents a model of a stand-alone solar energy conversion system based on synchronous machine working as a synchronous condenser in overexcited state. The proposed model consists of a Synchronous Condenser, a DC/DC boost converter whose output is fed to the field of the SC. The boost converter is supplied by the modelled solar panel and a day time variable irradiance is fed to the panel during the simulation time. The model also has one alternate source of rechargeable batteries for the time when irradiance falls below a threshold value. Also the excess power produced when there is ample irradiance is divided in two parts and one is fed to the boost converter while other is utilized to recharge the batteries. A simulation is done in MATLAB-SIMULINK and the obtained results show the utility of such modelling for supplying reactive power is feasible.

  20. An improved AVC strategy applied in distributed wind power system

    Science.gov (United States)

    Zhao, Y. N.; Liu, Q. H.; Song, S. Y.; Mao, W.

    2016-08-01

    Traditional AVC strategy is mainly used in wind farm and only concerns about grid connection point, which is not suitable for distributed wind power system. Therefore, this paper comes up with an improved AVC strategy applied in distributed wind power system. The strategy takes all nodes of distribution network into consideration and chooses the node having the most serious voltage deviation as control point to calculate the reactive power reference. In addition, distribution principles can be divided into two conditions: when wind generators access to network on single node, the reactive power reference is distributed according to reactive power capacity; when wind generators access to network on multi-node, the reference is distributed according to sensitivity. Simulation results show the correctness and reliability of the strategy. Compared with traditional control strategy, the strategy described in this paper can make full use of generators reactive power output ability according to the distribution network voltage condition and improve the distribution network voltage level effectively.

  1. Reactive power generation in high speed induction machines by continuously occurring space-transients

    Science.gov (United States)

    Laithwaite, E. R.; Kuznetsov, S. B.

    1980-09-01

    A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.

  2. Extended reactivity trace curves for nuclear power control with no power shooting

    Energy Technology Data Exchange (ETDEWEB)

    Ratemi, W M; Elbuni, M S [Faculty of engineering, Al Fateh universty Tripoli (Libyan Arab Jamahiriya)

    1995-10-01

    This paper introduces a new concept of reactivity trace curve (RTC) for nuclear power control with no power shooting. The concept is based on recent work of bernard et al. on the dynamic period of nuclear reactors. RTC-method is simulated for both a static effective decay constant corresponding to a one-group delayed neutrons model, and a dynamic effective decay constant corresponding to a six-group delayed neutrons model. A fitting to the RTC of a six-group reactor model resulted in a closed from formula for the RTC that couples the effect of both static and dynamic decay constants. Hence, introducing two `fingerprints` for the reactor in concern to identify a closed from RTC formula capable of controlling the reactor power. Integration of the RTC with control rod integral curves results in the {rho}-z-t diagram. This diagram relates the amount of recommended reactivity (RTC), the position of control rod, and the time required for power control. 8 figs.

  3. Extended reactivity trace curves for nuclear power control with no power shooting

    International Nuclear Information System (INIS)

    Ratemi, W. M.; Elbuni, M. S.

    1995-01-01

    This paper introduces a new concept of reactivity trace curve (RTC) for nuclear power control with no power shooting. The concept is based on recent work of bernard et al. on the dynamic period of nuclear reactors. RTC-method is simulated for both a static effective decay constant corresponding to a one-group delayed neutrons model, and a dynamic effective decay constant corresponding to a six-group delayed neutrons model. A fitting to the RTC of a six-group reactor model resulted in a closed from formula for the RTC that couples the effect of both static and dynamic decay constants. Hence, introducing two 'fingerprints' for the reactor in concern to identify a closed from RTC formula capable of controlling the reactor power. Integration of the RTC with control rod integral curves results in the ρ-z-t diagram. This diagram relates the amount of recommended reactivity (RTC), the position of control rod, and the time required for power control. 8 figs

  4. Efficient Reactive Power Compensation Algorithm for Distribution Network

    Directory of Open Access Journals (Sweden)

    J. Jerome

    2017-12-01

    Full Text Available The use of automation and energy efficient equipment with electronic control would greatly improve industrial production.  These new devices are more sensitive to supply voltage deviation and the characteristics of the power system that was previously ignored are now very important. Hence the benefits of distribution automation have been widely acknowledged in recent years. This paper proposes an efficient load flow solution technique extended to find optimum location for reactive power compensation and network reconfiguration for planning and day-to-day operation of distribution networks.  This is required as a part of the distribution automation system (DAS for taking various control and operation decisions.  The method exploits the radial nature of the network and uses forward and backward propagation technique to calculate branch currents and node voltages.  The proposed method has been tested to analyze several practical distribution networks of various voltage levels and also having high R/X ratio.

  5. Blind spot in free power market debate. Reactive power problems are unavoidable

    International Nuclear Information System (INIS)

    Maessen, T.

    2002-01-01

    Import restrictions, switching problems, remotely readable meters appear to be temporary problems in a liberalised power market, according to statement of the Dutch the government. However, the issues surrounding reactive power management in the Dutch transmission and distribution networks are of a far more fundamental nature. The import of cheap foreign electricity could overload the domestic power grid sufficiently to compromise the security of supply [nl

  6. Optimum Arrangement of Reactive Power Sources While Using Genetic Algori

    Directory of Open Access Journals (Sweden)

    A. M. Gashimov

    2010-01-01

    Full Text Available Reduction of total losses in distribution electricity supply network is considered as an important measure which serves for improvement of efficiency of electric power supply systems. This objective can be achieved by optimum distribution of reactive power sources in proper places of distribution electricity supply network. The proposed methodology is based on application of a genetic algorithm. Total expenses for installation of capacitor banks, their operation and also expenses related to electric power losses are considered as an efficiency function which is used for determination of places with optimum values of capacitor bank power. The methodology is the most efficient for selection of optimum places in the network where it is necessary to install capacitor banks with due account of their power control depending on a switched-on load value in the units.

  7. Modified Monkey Optimization Algorithm for Solving Optimal Reactive Power Dispatch Problem

    Directory of Open Access Journals (Sweden)

    Kanagasabai Lenin

    2015-04-01

    Full Text Available In this paper, a novel approach Modified Monkey optimization (MMO algorithm for solving optimal reactive power dispatch problem has been presented. MMO is a population based stochastic meta-heuristic algorithm and it is inspired by intelligent foraging behaviour of monkeys. This paper improves both local leader and global leader phases.  The proposed (MMO algorithm has been tested in standard IEEE 30 bus test system and simulation results show the worthy performance of the proposed algorithm in reducing the real power loss.

  8. What makes ecological systems reactive?

    Science.gov (United States)

    Snyder, Robin E

    2010-06-01

    Although perturbations from a stable equilibrium must ultimately vanish, they can grow initially, and the maximum initial growth rate is called reactivity. Reactivity thus identifies systems that may undergo transient population surges or drops in response to perturbations; however, we lack biological and mathematical intuition about what makes a system reactive. This paper presents upper and lower bounds on reactivity for an arbitrary linearized model, explores their strictness, and discusses their biological implications. I find that less stable systems (i.e. systems with long transients) have a smaller possible range of reactivities for which no perturbations grow. Systems with more species have a higher capacity to be reactive, assuming species interactions do not weaken too rapidly as the number of species increases. Finally, I find that in discrete time, reactivity is determined largely by mean interaction strength and neither discrete nor continuous time reactivity are sensitive to food web topology. 2010 Elsevier Inc. All rights reserved.

  9. Local Reactive Power Control Methods for Overvoltage Prevention of Distributed Solar Inverters in Low-Voltage Grids

    DEFF Research Database (Denmark)

    Demirok, Erhan; Gonzalez, Pablo Casado; Frederiksen, Kenn H. B.

    2011-01-01

    on sensitivity analysis. The sensitivity analysis shows that the same amount of reactive power becomes more effective for grid voltage support if the solar inverter is located at the end of a feeder. Based on this fundamental knowledge, a location-dependent power factor set value can be assigned to each inverter......voltage (LV) grids by means of solar inverters with reactive power control capability. This paper underlines weak points of standard reactive power strategies which are already imposed by certain grid codes, and then, the study introduces a new reactive power control method that is based......, and the grid voltage support can be achieved with less total reactive power consumption. In order to prevent unnecessary reactive power absorption from the grid during admissible voltage range or to increase reactive power contribution from the inverters that are closest to the transformer during grid...

  10. A Modular Cascaded Multilevel Inverter Based Shunt Hybrid Active Power Filter for Selective Harmonic and Reactive Power Compensation Under Distorted/Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    T. Demirdelen

    2016-10-01

    Full Text Available In recent years, shunt hybrid active power filters are being increasingly considered as a viable alternative to both passive filters and active power filters for compensating harmonics. In literature, their applications are restricted to balanced systems and low voltage applications and therefore not for industrial applications. This paper investigates the performance of a modular cascaded multilevel inverter based Shunt Hybrid Active Power Filter (SHAPF for reactive power compensation and selective harmonics elimination under distorted/unbalanced grid voltage conditions in medium voltage levels. In the proposed control method, reactive power compensation is achieved successfully with a perceptible amount and the performance results of harmonic compensation are satisfactory. Theoretical analysis and simulation results are obtained from an actual industrial network model in PSCAD. The simulation results are presented for a proposed system in order to demonstrate that the harmonic compensation performance meets the IEEE-519 standard.

  11. An Improved Droop Control Strategy for Reactive Power Sharing in Islanded Microgrid

    DEFF Research Database (Denmark)

    Han, Hua; Liu, Yao; Sun, Yao

    2015-01-01

    For microgrid in islanded operation, due to the effects of mismatched line impedance, the reactive power could not be shared accurately with the conventional droop method. To improve the reactive power sharing accuracy, this paper proposes an improved droop control method. The proposed method...... in output voltage amplitude. Therefore, the voltage recovery operation is proposed to compensate the decrease. The needed communication in this method is very simple, and the plug-and-play is reserved. Simulations and experimental results show that the improved droop controller can share load active...... and reactive power, improve the power quality of the microgrid, and also have a good dynamic performance....

  12. A simple reactivity-meter system

    International Nuclear Information System (INIS)

    Ferreira, P.S.B.

    1992-01-01

    This paper describes a new version of a reactivity meter developed at the Institute of Nuclear Energy Research (IPEN) (Brazil). The reactivity meter computes the reactor reactivity utilizing a programmable electrometer that performs the data aquisition. The software commands the main functions of the electrometer, the data acquisition, data transfer, and reactivity calculation. The necessary hardware for this reactivity meter are a programmable electrometer, a microcomputer, and interfaces for the microcomputer to communicate with the electrometer. If it is necessary, it is possible to connect a graphic register to the microcomputer. With this conventional hardware, available in any nuclear reactor facility, one can build a powerful reactivity meter. Adding to these advantages, one can use the microcomputer on-line to analyze the data, store the data on diskettes, or create graphics

  13. Measurement based analysis of active and reactive power losses in a distribution network with wind farms and CHPs

    DEFF Research Database (Denmark)

    Lund, Torsten

    2007-01-01

    The paper presents an investigation of the active and reactive power losses in a distribution network with wind turbines and combined heat and power plants. The investigation is based on 15 min average power measurements and load flow calculations in the power system simulation tool PowerFactory...

  14. Combined Active and Reactive Power Control of Wind Farms based on Model Predictive Control

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Wang, Jianhui

    2017-01-01

    This paper proposes a combined wind farm controller based on Model Predictive Control (MPC). Compared with the conventional decoupled active and reactive power control, the proposed control scheme considers the significant impact of active power on voltage variations due to the low X=R ratio...... of wind farm collector systems. The voltage control is improved. Besides, by coordination of active and reactive power, the Var capacity is optimized to prevent potential failures due to Var shortage, especially when the wind farm operates close to its full load. An analytical method is used to calculate...... the sensitivity coefficients to improve the computation efficiency and overcome the convergence problem. Two control modes are designed for both normal and emergency conditions. A wind farm with 20 wind turbines was used to verify the proposed combined control scheme....

  15. Single-point reactive power control method on voltage rise mitigation in residential networks with high PV penetration

    DEFF Research Database (Denmark)

    Hasheminamin, Maryam; Agelidis, Vassilios; Ahmadi, Abdollah

    2018-01-01

    Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise by ...... system with high r/x ratio. Efficacy, effectiveness and cost study of SPRPC is compared to droop control to evaluate its advantages.......Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise...... by absorbing adequate reactive power from one selected point. The proposed index utilizes short circuit analysis to select the best point to apply this Volt/Var control method. SPRPC is supported technically and financially by distribution network operator that makes it cost effective, simple and efficient...

  16. Reactivity changes in hybrid thermal-fast reactor systems during fast core flooding

    International Nuclear Information System (INIS)

    Pesic, M.

    1994-09-01

    A new space-dependent kinetic model in adiabatic approximation with local feedback reactivity parameters for reactivity determination in the coupled systems is proposed in this thesis. It is applied in the accident calculation of the 'HERBE' fast-thermal reactor system and compared to usual point kinetics model with core-averaged parameters. Advantages of the new model - more realistic picture of the reactor kinetics and dynamics during local large reactivity perturbation, under the same heat transfer conditions, are underlined. Calculated reactivity parameters of the new model are verified in the experiments performed at the 'HERBE' coupled core. The model has shown that the 'HERBE' safety system can shutdown reactor safely and fast even in the case of highly set power trip and even under conditions of big partial failure of the reactor safety system (author)

  17. Design and Development of Virtual Reactivity System for PWR

    International Nuclear Information System (INIS)

    Anwar, M. I.

    2012-01-01

    The reactivity monitoring and investigation is an important mean to ensure the safety operation of a nuclear power plant. But the reactivity of the nuclear reactor usually cannot be directly measured. It should be computed with certain estimation method. In this thesis, an effort has been made using an artificial neural network and highly fluctuating experimental data for predicting the total reactivity of the nuclear reactor based on all components of net reactivity. This virtual reactivity system is designed by taking advantage of neural network's nonlinear mapping capability. Based on analysis of the reactivity contributing factors, several neural network models are built separately for control rod, boron, poisons, fuel Doppler Effect and moderator effect. Extensive simulation and validation tests for PWR show that satisfied results have been obtained with the proposed approach. It presents a new idea to estimate the PWR's reactivity using artificial intelligence. All the design and simulation work is carried out in MATLAB and a real time programming environment is chosen for the computation and prediction of reactivity. (author)

  18. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems......, the need for mathematically based formal methodology is increasingly important. There are many books that look at particular methodologies for such systems. This book offers a more balanced introduction for graduate students and describes the various approaches, their strengths and weaknesses, and when...... they are best used. Milner's CCS and its operational semantics are introduced, together with the notions of behavioural equivalences based on bisimulation techniques and with recursive extensions of Hennessy-Milner logic. In the second part of the book, the presented theories are extended to take timing issues...

  19. Power conditioning unit for photovoltaic power systems

    Science.gov (United States)

    Beghin, G.; Nguyen Phuoc, V. T.

    Operational features and components of a power conditioning unit for interconnecting solar cell module powers with a utility grid are outlined. The two-stage unit first modifies the voltage to desired levels on an internal dc link, then inverts the current in 2 power transformers connected to a vector summation control to neutralize harmonic distortion up to the 11th harmonic. The system operates in parallel with the grid with extra inductors to absorb line-to-line voltage and phase differences, and permits peak power use from the PV array. Reactive power is gained internally, and a power system controller monitors voltages, frequencies, and currents. A booster preregulator adjusts the input voltage from the array to provide voltage regulation for the inverter, and can commutate 450 amps. A total harmonic distortion of less than 5 percent is claimed, with a rating of 5 kVA, 50/60 Hz, 3-phase, and 4-wire.

  20. Research Reactor Power Control System Design by MATLAB/SIMULINK

    International Nuclear Information System (INIS)

    Baang, Dane; Suh, Yong Suk; Kim, Young Ki; Im, Ki Hong

    2013-01-01

    In this study it is presented that MATLAB/SIMULINK can be efficiently used for modeling and power control system design for research reactors. The presented power control system deals with various functions including reactivity control, signals processing, reactivity calculation, alarm request generation, etc., thus it is required to test all the software logic using proper model for reactor, control rods, and field instruments. In MATLAB/SIMULINK tool, point kinetics, thermal model, control absorber rod model, and other instrument models were developed based on reactor parameters and known properties of each component or system. The software for power control system was invented and linked to the model to test each function. From the simulation result it is shown that the power control performance and other functions of the system can be easily tested and analyzed in the proposed simulation structure

  1. Reactive Power Compensation Using an Energy Management System

    Science.gov (United States)

    2014-09-01

    compiled to VHDL code using Xilinx System Generator software [12], which is used by the FPGA to command the EMS. The FPGA development board is the middle...controller was implemented in the lab to correct iems because the EMS hardware currently does not have a sensor on the source current. Adding a...shown in Figure 13 as φsource changes over time. 20 The function of the power factor correction diagram shown in Figure 14 is to implement the power

  2. Recursive Pyramid Algorithm-Based Discrete Wavelet Transform for Reactive Power Measurement in Smart Meters

    Directory of Open Access Journals (Sweden)

    Mahin K. Atiq

    2013-09-01

    Full Text Available Measurement of the active, reactive, and apparent power is one of the most fundamental tasks of smart meters in energy systems. Recently, a number of studies have employed the discrete wavelet transform (DWT for power measurement in smart meters. The most common way to implement DWT is the pyramid algorithm; however, this is not feasible for practical DWT computation because it requires either a log N cascaded filter or O (N word size memory storage for an input signal of the N-point. Both solutions are too expensive for practical applications of smart meters. It is proposed that the recursive pyramid algorithm is more suitable for smart meter implementation because it requires only word size storage of L × Log (N-L, where L is the length of filter. We also investigated the effect of varying different system parameters, such as the sampling rate, dc offset, phase offset, linearity error in current and voltage sensors, analog to digital converter resolution, and number of harmonics in a non-sinusoidal system, on the reactive energy measurement using DWT. The error analysis is depicted in the form of the absolute difference between the measured and the true value of the reactive energy.

  3. A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter......This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components...

  4. Optimal Design of TCR/FC in Electric Arc Furnaces for Power Quality Improvement in Power Systems

    Directory of Open Access Journals (Sweden)

    Mahdi TORABIAN ESFAHANI

    2009-12-01

    Full Text Available Electric Arc Furnaces (EAFs are unbalanced, nonlinear and time varying loads, which can cause many problems in the power system quality. As the use of arc furnace loads increases in industry, the importance of the power quality problems also increase. So in order to optimize the usages of electric power in EAFs, it is necessary to minimize the effects of arc furnace loads on power quality in power systems as much as possible. Therefore, in this paper, design and simulation of an electric plant supplying an arc furnace is considered. For this purpose, a three phase arc furnace model, which can simulate all the mentioned power quality indices, is developed based on Hyperbolic -Exponential model (V-I model. Then by considering the high changes of reactive power and voltage flicker of nonlinear furnace load, a thyristor controlled reactor compensation with fixed capacitor (TCR/FC are designed and simulated. In this procedure, the reactive power is measured so that maximum speed and accuracy are achieved. Finally, simulation results verify the accuracy of the load modelling and show the effectiveness of the proposed TCR/FC model for reactive compensating of the EAF.

  5. Power flattening and reactivity suppression strategies for the Canadian supercritical water reactor concept

    International Nuclear Information System (INIS)

    McDonald, M.; Colton, A.; Pencer, J.

    2015-01-01

    The Canadian supercritical water-cooled reactor (SCWR) is a conceptual heavy water moderated, supercritical light water cooled pressure tube reactor. In contrast to current heavy water power reactors, the Canadian SCWR will be a batch fuelled reactor. Associated with batch fuelling is a large beginning-of-cycle excess reactivity. Furthermore, radial power peaking arising as a consequence of batch refuelling must be mitigated in some way. In this paper, burnable neutron absorber (BNA) added to fuel and absorbing rods inserted into the core are considered for reactivity management and power flattening. A combination of approaches appears adequate to reduce the core radial power peaking, while also providing reactivity suppression. (author)

  6. Reactive adsorption: A cleaner technology in nuclear power plants

    International Nuclear Information System (INIS)

    Marton, G.; Szanya, T.; Hanak, L.

    1996-01-01

    Cleaner technology prefers work with minimal loss and the wastes cause the less environmental damages. In the spirit of the previous sentence in the present paper reactive adsorption is investigated for the removal of radioactive nuclides from nuclear power plant decontamination solutions. During alkaline, oxidative decontamination of nuclear power plant equipment a radioactive solution is produced. Owing to the storing difficulties of radioactive solutions it is necessary to develop a method for the in situ treatment of radioactive, alkaline, oxidative decontamination solutions, and for the concentration of radioactive components. Reactive adsorption seems to be promising for this purpose. 3 refs., 8 figs., 1 tab

  7. ACCOUNTING OF REACTIVE POWER COMPENSATION LEVEL AT PAYMENT CALCULATION OF TECHNOLOGICAL CONSUMPTION (LOSSES OF ELECTRIC POWER FOR ITS TRANSMISSION IN POWER NETWORK

    Directory of Open Access Journals (Sweden)

    E. P. Zabello

    2005-01-01

    Full Text Available The method is proposed to make a correction in payment for consumption of reactive energy and power which is attributed to deviation of actual activation energy losses for reactive power compensation from their standard value. It is recommended to calculate standard loss values for every voltage level and actual loss values are to be determined with the help of application of remote electronic accounting means in the current mode of power consumption.

  8. A New Power Calculation Method for Single-Phase Grid-Connected Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    A new method to calculate average active power and reactive power for single-phase systems is proposed in this paper. It can be used in different applications where the output active power and reactive power need to be calculated accurately and fast. For example, a grid-connected photovoltaic...... system in low voltage ride through operation mode requires a power feedback for the power control loop. Commonly, a Discrete Fourier Transform (DFT) based power calculation method can be adopted in such systems. However, the DFT method introduces at least a one-cycle time delay. The new power calculation...... method, which is based on the adaptive filtering technique, can achieve a faster response. The performance of the proposed method is verified by experiments and demonstrated in a 1 kW single-phase grid-connected system operating under different conditions.Experimental results show the effectiveness...

  9. Process stabilization by peak current regulation in reactive high-power impulse magnetron sputtering of hafnium nitride

    International Nuclear Information System (INIS)

    Shimizu, T; Villamayor, M; Helmersson, U; Lundin, D

    2016-01-01

    A simple and cost effective approach to stabilize the sputtering process in the transition zone during reactive high-power impulse magnetron sputtering (HiPIMS) is proposed. The method is based on real-time monitoring and control of the discharge current waveforms. To stabilize the process conditions at a given set point, a feedback control system was implemented that automatically regulates the pulse frequency, and thereby the average sputtering power, to maintain a constant maximum discharge current. In the present study, the variation of the pulse current waveforms over a wide range of reactive gas flows and pulse frequencies during a reactive HiPIMS process of Hf-N in an Ar–N 2 atmosphere illustrates that the discharge current waveform is a an excellent indicator of the process conditions. Activating the reactive HiPIMS peak current regulation, stable process conditions were maintained when varying the N 2 flow from 2.1 to 3.5 sccm by an automatic adjustment of the pulse frequency from 600 Hz to 1150 Hz and consequently an increase of the average power from 110 to 270 W. Hf–N films deposited using peak current regulation exhibited a stable stoichiometry, a nearly constant power-normalized deposition rate, and a polycrystalline cubic phase Hf-N with (1 1 1)-preferred orientation over the entire reactive gas flow range investigated. The physical reasons for the change in the current pulse waveform for different process conditions are discussed in some detail. (paper)

  10. Experimental evaluation of reactivity constraints for the closed-loop control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.; Lanning, D.D.; Ray, A.

    1984-01-01

    General principles for the closed-loop, digital control of reactor power have been identified, quantitatively enumerated, and experimentally demonstrated on the 5 MWt Research Reactor, MITR-II. The basic concept is to restrict the net reactivity so that it is always possible to make the reactor period infinite at the desired termination point of a transient by reversing the direction of motion of whatever control mechanism is associated with the controller. This capability is formally referred to as ''feasibility of control''. A series of ten experiments have been conducted over a period of eighteen months to demonstrate the efficacy of this property for the automatic control of reactor power. It has been shown that a controller which possesses this property is capable of both raising and lowering power in a safe, efficient manner while using a control rod of varying differential worth, that the reactivity constraints are a sufficient condition for the automatic control of reactor power, and that the use of a controller based on reactivity constraints can prevent overshoots either due to attempts to control a transient with a control rod of insufficient differential worth or due to failure to properly estimate when to commence rod insertion. Details of several of the more significant tests are presented together with a discussion of the rationale for the development of closed-loop control in large commercial power systems. Specific consideration is given to the motivation for designing a controller based on feasibility of control and the associated licensing issues

  11. Power management of a wind energy conversion system equipped by DFIG

    Directory of Open Access Journals (Sweden)

    Iman Zangiabadi

    2016-06-01

    Full Text Available Today wind is one of the attractive points of energy area which has got the noticeable amount of investment and studies in this field. Considering the importance of the wind energy and its potentials as one of the renewable energy sources, in this paper managing the production of active and reactive powers of a wind energy conversion system equipped with DFIG has been studied. In this regard, a structure based on vector control is offered to achieve an independent control of active and reactive powers. The strategy of managing the production of active and reactive power is applied to network by rotor side converter of a DFIG. The production of active power according to the maximum power point taking (MPPT strategy to get a maximum power of the wind energy has been done and also improvement of power quality based on strategies of power factor correction and harmonics reduction have been arranged for a power network. In order to evaluate the performance of the proposed method, a DFIG connected with a power network in different conditions of the reactive load has been simulated by MATLAB software.Obviously, the results state the proper operation of the power control of wind energy converting system , improvement of the network power factor, and Reduction of harmonic current of network based on the proposed method.

  12. Coordinated Reactive Power and Voltage Management for Offshore Wind Farms with AC-connection

    DEFF Research Database (Denmark)

    Heussen, Kai

    2008-01-01

    This paper analyzes voltage and reactive power in a wind farm in dependence on switchable shunt and tap-changer settings in connection with the control ranges of flexible reactive power sources. Attention is paid to their interdependent effects on central control variables, such as voltage...... in the collection grid, reactive power exported to the grid and internal active power losses. An aggregated steady-state model of an offshore wind farm is presented and a reduced mathematical representation suitable for symbolic analysis is developed. A coordination scheme is proposed to coordinate fast continuous...... control inputs with slow tap-changing devices using a short-term prediction. The proposed scheme is aimed at balancing cost factors such as wear of switching components, active power loss within the wind farm and STATCOM capacity....

  13. Making real-time reactive systems reliable

    Science.gov (United States)

    Marzullo, Keith; Wood, Mark

    1990-01-01

    A reactive system is characterized by a control program that interacts with an environment (or controlled program). The control program monitors the environment and reacts to significant events by sending commands to the environment. This structure is quite general. Not only are most embedded real time systems reactive systems, but so are monitoring and debugging systems and distributed application management systems. Since reactive systems are usually long running and may control physical equipment, fault tolerance is vital. The research tries to understand the principal issues of fault tolerance in real time reactive systems and to build tools that allow a programmer to design reliable, real time reactive systems. In order to make real time reactive systems reliable, several issues must be addressed: (1) How can a control program be built to tolerate failures of sensors and actuators. To achieve this, a methodology was developed for transforming a control program that references physical value into one that tolerates sensors that can fail and can return inaccurate values; (2) How can the real time reactive system be built to tolerate failures of the control program. Towards this goal, whether the techniques presented can be extended to real time reactive systems is investigated; and (3) How can the environment be specified in a way that is useful for writing a control program. Towards this goal, whether a system with real time constraints can be expressed as an equivalent system without such constraints is also investigated.

  14. Event-Based Modularization of Reactive Systems

    NARCIS (Netherlands)

    Malakuti Khah Olun Abadi, Somayeh; Aksit, Mehmet

    2014-01-01

    There is a large number of complex software systems that have reactive behavior. As for any other software system, reactive systems are subject to evolution demands. This paper defines a set requirements that must be fulfilled so that reuse of reactive software systems can be increased. Detailed

  15. Demand response strategy management with active and reactive power incentive in the smart grid: a two-level optimization approach

    Directory of Open Access Journals (Sweden)

    Ryuto Shigenobu

    2017-05-01

    Full Text Available High penetration of distributed generators (DGs using renewable energy sources (RESs is raising some important issues in the operation of modern po­wer system. The output power of RESs fluctuates very steeply, and that include uncertainty with weather conditions. This situation causes voltage deviation and reverse power flow. Several methods have been proposed for solving these problems. Fundamentally, these methods involve reactive power control for voltage deviation and/or the installation of large battery energy storage system (BESS at the interconnection point for reverse power flow. In order to reduce the installation cost of static var compensator (SVC, Distribution Company (DisCo gives reactive power incentive to the cooperating customers. On the other hand, photovoltaic (PV generator, energy storage and electric vehicle (EV are introduced in customer side with the aim of achieving zero net energy homes (ZEHs. This paper proposes not only reactive power control but also active power flow control using house BESS and EV. Moreover, incentive method is proposed to promote participation of customers in the control operation. Demand response (DR system is verified with several DR menu. To create profit for both side of DisCo and customer, two level optimization approach is executed in this research. Mathematical modeling of price elasticity and detailed simulations are executed by case study. The effectiveness of the proposed incentive menu is demonstrated by using heuristic optimization method.

  16. A new algorithm for optimum voltage and reactive power control for minimizing transmission lines losses

    International Nuclear Information System (INIS)

    Ghoudjehbaklou, H.; Danai, B.

    2001-01-01

    Reactive power dispatch for voltage profile modification has been of interest to power utilities. Usually local bus voltages can be altered by changing generator voltages, reactive shunts, ULTC transformers and SVCs. Determination of optimum values for control parameters, however, is not simple for modern power system networks. Heuristic and rather intelligent algorithms have to be sought. In this paper a new algorithm is proposed that is based on a variant of a genetic algorithm combined with simulated annealing updates. In this algorithm a fuzzy multi-objective a approach is used for the fitness function of the genetic algorithm. This fuzzy multi-objective function can efficiently modify the voltage profile in order to minimize transmission lines losses, thus reducing the operating costs. The reason for such a combination is to utilize the best characteristics of each method and overcome their deficiencies. The proposed algorithm is much faster than the classical genetic algorithm and cna be easily integrated into existing power utilities software. The proposed algorithm is tested on an actual system model of 1284 buses, 799 lines, 1175 fixed and ULTC transformers, 86 generators, 181 controllable shunts and 425 loads

  17. Reliability Analysis of Single-Phase PV Inverters with Reactive Power Injection at Night Considering Mission Profiles

    DEFF Research Database (Denmark)

    Anurag, Anup; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    loading, considering the operation outside active feed-in hours. An analytical lifetime model is then employed for lifetime quantization based on the Palgrem Miner rule. Thereafter, considering the lifetime reduction of the PV inverter under different mission profiles with reactive power injection......The widespread adoption of mixed renewables urgently require reactive power exchange at various feed-in points of the utility grid. Photovoltaic (PV) inverters are able to provide reactive power in a decentralized manner at the grid-connection points even outside active power feed-in operation......, especially at night when there is no solar irradiance. This serves as a motivation for utilizing the PV inverters at night for reactive power compensation. Thus, an analysis on the impact of reactive power injection by PV inverters outside feed-in operation on the thermal performance and the reliability has...

  18. Regarding KUR Reactivity Measurement System

    International Nuclear Information System (INIS)

    Nakamori, Akira; Hasegawa, Kei; Tsuchiyama, Tatsuo; Yamamoto, Toshihiro; Okumura, Ryo; Sano, Tadafumi

    2012-01-01

    This article reported: (1) the outline of the reactivity measurement system of Kyoto University Research Reactor (KUR), (2) the calibration data of control rod, (3) the problems and the countermeasures for range switching of linear output meter. For the laptop PC for the reactivity measurement system, there are four input signals: (1) linear output meter, (2) logarithmic output meter, (3) core temperature gauge, and (4) control rod position. The hardware of reactivity measurement system is controlled with Labview installed on the laptop. Output, reactivity, reactor period, and the change in reactivity due to temperature effect or Xenon effect are internally calculated and displayed in real-time with Labview based on the four signals above. Calculation results are recorded in the form of a spreadsheet. At KUR, the reactor core arrangement was changed, so the control rod was re-calibrated. At this time, calculated and experimental values of reactivity based on the reactivity measurement system were compared, and it was confirmed that the reactivity calculation by Labview was accurate. The range switching of linear output meter in the nuclear instrumentation should automatically change within the laptop, however sometimes this did not function properly in the early stage. It was speculated that undefined percent values during the transition of percent value were included in the calculation and caused calculation errors. The range switching started working properly after fixing this issue. (S.K.)

  19. Modelling of electrical power systems for power flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The industry systems in Brazil are responsible for a consumption of over 50% (fifty per cent) of the total electrical power generated: therefore, they are import loads in power flow studies, and their modeling should be as much the best. Usually, in power flow studies, the industry systems are modeled by taking the influence of the power (active and reactive) and of the current on the voltage into account. Since the inducting motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversize, it is proposed to represent the industry systems as a function of the characteristic of power on shaft versus voltage into account. Since the induction motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversized, it is proposed to represent the industry systems as a function of the characteristics of power on shaft versus voltage for the analysis of power systems, aiming a load flow study. Thereafter, a model of an equivalent motor which has a basis the typical performance curve of an induction motor is present. This model is obtained from empirical parameters, surveyed from a population of over 1000 motors. (author) 3 refs., 1 fig., 4 tabs.

  20. Voltage Sag Mitigation and Load Reactive Power Compensation by UPQC

    OpenAIRE

    Ajitha, P; Jananisri, D

    2014-01-01

    This paper presents Unified Power Quality Conditioner(UPQC) that consist of series inverter and shunt inverter in back to back configuration which simultaneously compensate the power quality(PQ) problems of both voltage sag and load reactive power compensation . In this paper ,Neural network is tool which is considered for solving power quality problems. The simulation results from MATLAB/SIMULINK are discussed to validate the proposed method.

  1. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DEFF Research Database (Denmark)

    Ding, Tao; Li, Cheng; Huang, Can

    2018-01-01

    –slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master...... optimality. Numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods....

  2. An optimal reactive power control strategy for a DFIG-based wind farm to damp the sub-synchronous oscillation of a power system

    DEFF Research Database (Denmark)

    Zhao, Bin; Li, Hui; Wang, Mingyu

    2014-01-01

    This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG)-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capaciti...

  3. Optimal distribution of reactivity excess in a system of reactors operating at a variable loading schedule

    International Nuclear Information System (INIS)

    Bolsunov, A.A.; Zagrebaev, A.M.; Naumov, V.I.

    1979-01-01

    Considered is the task of reactivity excess distribution optimization in the system of reactors for the purpose of minimazing the summary power production losses at the fixed loading schedule. Mathematical formulation of the task is presented. Given are the curves, characterizing the dependence of possible degree of the reactor power drop on reactivity excees for non-stationary Xe poisoning at different nominal density of neutron flux. Analyzing the results, it is concluded that in case, when the reactors differ only in neutron flux density the reactor with lower neutron flux density should be involved in the variable operation schedule first as the poisoning of this reactor will be less, and therefore, the losses of the system power production will be less. It is advisable to reserve the reactivity excess in the reactor with greater power or in the reactor with higher burnup rate. It is stressed that the obtained results of the optimization task solution point out the possibility of obtaining the certain ecomonic effect and permit to correct the requirements on mobility of separate power units at system approach to NPP operation in a variable loading schedule

  4. Reactive programming in eventsourcing systems

    OpenAIRE

    Kučinskas, Žilvinas

    2017-01-01

    Eventsourcing describes current state as series of events that occurred in a system. Events hold all information that is needed to recreate current state. This method allows to achieve high volume of transactions, and enables efficient replication. Whereas reactive programming lets implement reactive systems in declarative style, decomposing logic into smaller, easier to understand components. Thesis aims to create reactive programming program interface, incorporating both principles. Applyin...

  5. Methods for the reactivity evaluation in subcritical systems analysis: a review

    International Nuclear Information System (INIS)

    Dulla, S.; Picca, P.; Carta, M.

    2011-01-01

    The assessment of the subcritical source-driven system technology for waste incineration and power production requires the development of reliable and efficient techniques for the reactivity evaluation and monitoring. Starting from the standard methods developed for close-to-criticality systems, extensive research activities have been carried out to analyze the behavior of subcritical assembly in time-dependent condition and to infer the subcriticality level from local flux values. In the present work, a review of some key aspects in the method development for ADS analysis is proposed, with special attention to the techniques for reactivity evaluation. (author)

  6. Solving multiobjective optimal reactive power dispatch using modified NSGA-II

    Energy Technology Data Exchange (ETDEWEB)

    Jeyadevi, S.; Baskar, S.; Babulal, C.K.; Willjuice Iruthayarajan, M. [Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai, Tamilnadu 625 015 (India)

    2011-02-15

    This paper addresses an application of modified NSGA-II (MNSGA-II) by incorporating controlled elitism and dynamic crowding distance (DCD) strategies in NSGA-II to multiobjective optimal reactive power dispatch (ORPD) problem by minimizing real power loss and maximizing the system voltage stability. To validate the Pareto-front obtained using MNSGA-II, reference Pareto-front is generated using multiple runs of single objective optimization with weighted sum of objectives. For simulation purposes, IEEE 30 and IEEE 118 bus test systems are considered. The performance of MNSGA-II, NSGA-II and multiobjective particle swarm optimization (MOPSO) approaches are compared with respect to multiobjective performance measures. TOPSIS technique is applied on obtained non-dominated solutions to determine best compromise solution (BCS). Karush-Kuhn-Tucker (KKT) conditions are also applied on the obtained non-dominated solutions to substantiate a claim on optimality. Simulation results are quite promising and the MNSGA-II performs better than NSGA-II in maintaining diversity and authenticates its potential to solve multiobjective ORPD effectively. (author)

  7. Impact of Reactive Power Injection Outside Feed-In Hours on the Reliability of Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Anurag, Anup; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    , the analysis enables the translation from long-term mission profiles to device thermal loading, considering the operation at night. An analytical lifetime model is then used for lifetime quantization based on the Palgrem Miner rule. Thereafter, considering the lifetime reduction of the PV inverter......Current energy paradigm of mixed renewables seems to urgently require reactive power provision at various feed-in points of the utility grid. Photovoltaic (PV) inverters are able to provide reactive power in a decentralized manner at the grid-connection point even outside active power feed......-in operation, especially at night. This serves as a motivation for utilizing the PV inverters at night for reactive power compensation. Thus, a detailed analysis on the impact of reactive power injection by PV inverters outside feed-in operation on the thermal performance and also the reliability is performed...

  8. Reactivity and Power Distribution Management in LEU-loaded Linear B and BR

    International Nuclear Information System (INIS)

    Hartanto, Donny; Kim, Yonghee

    2013-01-01

    In this paper, the relatively high excess reactivity issue during the initial transitional period was addressed. The design target is to achieve a maximum excess reactivity of about 1.0 dollar to prevent the possibility of the prompt jump critical accident. The initial core is divided into 2 radial Zr-zones in order to reduce the excess reactivity. By doing this, the power profile at the BOC can also be flattened. After the optimum initial core configuration has been found, the blanket region is also divided into 2 radial Zr-zones in order to flatten the power distribution at EOC. The neutronic analyses were all performed using the Monte Carlo code McCARD with ENDF-B/VII.0 library. It was found that by using the concave Zr-zoning in the initial core of B and BR, the maximum excess reactivity can be effectively lowered. The radial power profile can also be successfully flattened by using the Zr-zoning and concave initial core. The concave concept deserves more investigations for better performances of the B and BR core

  9. Economic analysis of reactive power compensation in a wind farm: Influence of Spanish energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E.; Daroca, F. [Grupo Eolicas Riojanas, Carretera de Laguardia, 91-93, 26006 Logrono, La Rioja (Spain); Sanz, F.; Blanco, J. [Department of Mechanical Engineering, University of La Rioja, Logrono, La Rioja (Spain); Jimenez, E. [Department of Electrical Engineering, University of La Rioja, Logrono, La Rioja (Spain)

    2008-08-15

    Presently, renewable energies and especially wind energy are gaining a special relevance in the electrical market worldwide. This current rate of growth brings with it the need for the various wind farms to not limit themselves to producing energy but also provide stability to the network within its capabilities. So, the actual objective is to adapt the installations that produce wind energy in such a way that they give a maximum amount of support in any given moment to the electrical network. For this purpose, there are governing techno-economic parameters that influence the economic behavior of commercial wind farms. A complete cost-benefit analysis model is developed, focused on incorporating automatic capacitor banks into wind farms for the compensation of reactive power. This economic analysis is about doubly fed induction generator (DFIG) wind turbines. Although this kind of wind turbines have a certain capability in terms of modulating reactive power, this capacity is not enough to achieve the new requirements of reactive power regulation in Spain and it is necessary to invest in systems of external compensation. In this paper, we have studied the case of DFIG wind turbine and capacitor banks, although the used methodology can be applied to other technologies as well by simply amplifying the algorithms according to the specific characteristics of the option elected. Following this premise, a detailed analysis of the specific needs of a wind farm has been carried out, as well as a search for the optimum performance for the compensation of reactive power. (author)

  10. Economic analysis of reactive power compensation in a wind farm: Influence of Spanish energy policy

    International Nuclear Information System (INIS)

    Martinez, E.; Daroca, F.; Sanz, F.; Blanco, J.; Jimenez, E.

    2008-01-01

    Presently, renewable energies and especially wind energy are gaining a special relevance in the electrical market worldwide. This current rate of growth brings with it the need for the various wind farms to not limit themselves to producing energy but also provide stability to the network within its capabilities. So, the actual objective is to adapt the installations that produce wind energy in such a way that they give a maximum amount of support in any given moment to the electrical network. For this purpose, there are governing techno-economic parameters that influence the economic behavior of commercial wind farms. A complete cost-benefit analysis model is developed, focused on incorporating automatic capacitor banks into wind farms for the compensation of reactive power. This economic analysis is about doubly fed induction generator (DFIG) wind turbines. Although this kind of wind turbines have a certain capability in terms of modulating reactive power, this capacity is not enough to achieve the new requirements of reactive power regulation in Spain and it is necessary to invest in systems of external compensation. In this paper, we have studied the case of DFIG wind turbine and capacitor banks, although the used methodology can be applied to other technologies as well by simply amplifying the algorithms according to the specific characteristics of the option elected. Following this premise, a detailed analysis of the specific needs of a wind farm has been carried out, as well as a search for the optimum performance for the compensation of reactive power. (author)

  11. Transient Stability Enhancement in Power System Using Static VAR Compensator (SVC

    Directory of Open Access Journals (Sweden)

    Youssef MOULOUDI

    2012-12-01

    Full Text Available In this paper, an indirect adaptive fuzzy excitation and static VAR (unit of reactive power, volt-ampere reactive compensator (SVC controller is proposed to enhance transient stability for the power system, which based on input-output linearization technique. A three-bus system, which contains a generator and static VAR compensator (SVC, is considered in this paper, the SVC is located at the midpoint of the transmission lines. Simulation results show that the proposed controller compared with a controller based on tradition linearization technique can enhance the transient stability of the power system under a large sudden fault, which may occur nearly at the generator bus terminal.

  12. Single-Phase Boost Inverter-Based Electric Vehicle Charger With Integrated Vehicle to Grid Reactive Power Compensation

    DEFF Research Database (Denmark)

    Wickramasinghe Abeywardana, Damith Buddika; Acuna, Pablo; Hredzak, Branislav

    2018-01-01

    Vehicle to grid (V2G) reactive power compensation using electric vehicle (EV) onboard chargers helps to ensure grid power quality by achieving unity power factor operation. However, the use of EVs for V2G reactive power compensation increases the second-order harmonic ripple current component...... from the grid, exposes the EV battery to these undesirable ripple current components for a longer period and discharges the battery due to power conversion losses. This paper presents a way to provide V2G reactive power compensation through a boost inverter-based single stage EV charger and a DC...

  13. On the Construction of Sorted Reactive Systems

    DEFF Research Database (Denmark)

    Birkedal, Lars; Debois, Søren; Hildebrandt, Thomas

    2008-01-01

    We develop a theory of sorted bigraphical reactive systems. Every application of bigraphs in the literature has required an extension, a sorting, of pure bigraphs. In turn, every such application has required a redevelopment of the theory of pure bigraphical reactive systems for the sorting at hand...... bigraphs. Technically, we give our construction for ordinary reactive systems, then lift it to bigraphical reactive systems. As such, we give also a construction of sortings for ordinary reactive systems. This construction is an improvement over previous attempts in that it produces smaller and much more...

  14. A new islanding detection technique for multiple mini hydro based on rate of change of reactive power and load connecting strategy

    International Nuclear Information System (INIS)

    Laghari, J.A.; Mokhlis, H.; Bakar, A.H.A.; Karimi, M.

    2013-01-01

    Highlights: • The requirement of DG interconnection with existing power system is discussed. • Various islanding detection techniques are discussed with their merits and demerits. • New islanding detection strategy is proposed for multiple mini hydro type DGs. • The proposed strategy is based on dq/dt and load connecting strategy. • The effectiveness of strategy is verified on various other cases. - Abstract: The interconnection of distributed generation (DG) into distribution networks is undergoing a rapid global expansion. It enhances the system’s reliability, while simultaneously reduces pollution problems related to the generation of electrical power. To fully utilize the benefits of DGs, certain technical issues need to be addressed. One of the most important issues in this context is islanding detection. This paper presents a new islanding detection technique that is suitable for multiple mini-hydro type DG units. The proposed strategy is based on the rate of change of reactive power and load connecting strategy to detect islanding within the system. For a large power mismatch, islanding is detected by rate of change of reactive power only. However, for a close power mismatch, the rate of change of reactive power initiates a load connecting strategy, which in turn alters the load on the distribution network. This load variation in the distribution network causes a variation in the rate of change of reactive power, which is utilized to distinguish islanding and other events. The simulation results show that the proposed strategy is effective in detecting islanding occurrence in a distribution network

  15. TPX power systems design overview

    International Nuclear Information System (INIS)

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1993-01-01

    The power systems for the Tokamak Physics Experiment (TPX) supply the Toroidal Field (TF). Poloidal Field (PF), Field Error Correction (FEC), and Fast Vertical Position Control (FVPC) coil systems, the Neutral Beam (NB), Ion Cyclotron (IC), Lower Hybrid (LH) and Electron Cyclotron (EC) heating and current drive systems, and all balance of plant loads. Existing equipment from the Tokamak Fusion Test Reactor (TFTR), including the motor-generator (MG) sets and the rectifiers, can be adapted for the supply of the TPX PF systems. A new TF power supply is required. A new substation is required for the heating and current drive systems (NB, IC, LH, and EC). The baseline TPX load can be taken directly from the grid without special provision, whereas if all upgrade options are undertaken, a modest amount of reactive compensation will be required. This paper describes the conceptual design of the power systems, with emphasis on the AC, TF, and PF Systems, and the quench protection of the superconducting coils

  16. Static compensators (STATCOMs) in power systems

    CERN Document Server

    Shahnia, Farhad; Ghosh, Arindam

    2014-01-01

    A static compensator (STATCOM), also known as static synchronous compensator, is a member of the flexible alternating current transmission system (FACTS) devices. It is a power-electronics based regulating device which is composed of a voltage source converter (VSC) and is shunt-connected to alternating current electricity transmission and distribution networks. The voltage source is created from a DC capacitor and the STATCOM can exchange reactive power with the network. It can also supply some active power to the network, if a DC source of power is connected across the capacitor. A STATCOM

  17. Power quality in electric distribution systems

    International Nuclear Information System (INIS)

    Mohamed, A.A.S.

    2005-01-01

    the power quality of the electric system is defined by the constant values of the voltage and frequency, the good value of the power factor close to unity, and balanced three phase voltages and currents. capacitors are widely installed in distribution systems for reactive power compensation to achieve power and energy loss reduction, voltage regulation and system capacity release. the extent of these benefits depends greatly on low the capacitors are placed on the system . the problem of how to place capacitors on the system such that these benefits are achieved and / or maximized against the cost associated with the capacitor placement is termed the general capacitor placement problem.the presented mathematical model has been developed to determine the size, number, and location of fixed capacitor banks that will maximize the saving derived from reduction in peak power and energy loss, and that will minimize the capital and installation costs of capacitors

  18. Fuzzy-TLBO optimal reactive power control variables planning for energy loss minimization

    International Nuclear Information System (INIS)

    Moghadam, Ahmad; Seifi, Ali Reza

    2014-01-01

    Highlights: • A new approach to the problem of optimal reactive power control variables planning is proposed. • The energy loss minimization problem has been formulated by modeling the load of system as a Load Duration Curve. • To solving the energy loss problem, the classic methods and the evolutionary methods are used. • A new proposed fuzzy teaching–learning based algorithm is applied to energy loss problem. • Simulations are done to show the effectiveness and superiority of the proposed algorithm compared with other methods. - Abstract: This paper offers a new approach to the problem of optimal reactive power control variables planning (ORPVCP). The basic idea is division of Load Duration Curve (LDC) into several time intervals with constant active power demand in each interval and then solving the energy loss minimization (ELM) problem to obtain an optimal initial set of control variables of the system so that is valid for all time intervals and can be used as an initial operating condition of the system. In this paper, the ELM problem has been solved by the linear programming (LP) and fuzzy linear programming (Fuzzy-LP) and evolutionary algorithms i.e. MHBMO and TLBO and the results are compared with the proposed Fuzzy-TLBO method. In the proposed method both objective function and constraints are evaluated by membership functions. The inequality constraints are embedded into the fitness function by the membership function of the fuzzy decision and the problem is modeled by fuzzy set theory. The proposed Fuzzy-TLBO method is performed on the IEEE 30 bus test system by considering two different LDC; and it is shown that using this method has further minimized objective function than original TLBO and other optimization techniques and confirms its potential to solve the ORPCVP problem with considering ELM as the objective function

  19. Control Architecture for Parallel-Connected Inverters in Uninterruptible Power Systems

    DEFF Research Database (Denmark)

    Zhang, Chi; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2016-01-01

    bus. The proposed control scheme comprises two layers: (i) a local layer that contains a “reactive power-to-phase droop” in order to synchronize the phase angle of each inverter and a virtual resistance loop that guarantees equal power sharing among inverters; and (ii) a central controller...... that guarantees synchronization with an external real/fictitious utility, and critical bus voltage amplitude restoration. Improved transient and steady-state frequency, active, reactive and harmonic power sharing, and global phase-locked loop resynchronization capability are achieved. Detailed system topology...

  20. Harmonic Resonance Damping with a Hybrid Compensation System in Power Systems with Dispersed Generation

    DEFF Research Database (Denmark)

    Chen, Zhe; Pedersen, John Kim; Blaabjerg, Frede

    2004-01-01

    A hybrid compensation system consisting of an active filter and a group of distributed passive filters has been studied previously. The passive filters are used for each distorting load or Dispersed Generation (DG) unit to remove major harmonics and provide reactive power compensation. The active...... filter is connected in parallel with the distributed passive filters and loads/DGs to correct the system unbalance and remove the remaining harmonic components. The effectiveness of the presented compensation system has also been demonstrated. This paper studies the performance of the hybrid compensation...... demonstrated that the harmonic resonance can be damped effectively. The hybrid filter system is an effective compensation system for dispersed generation systems. In the compensation system, the passive filters are mainly responsible for main harmonic and reactive power compensation of each individual load/ DG...

  1. Device for measuring active, reactive and apparent power

    Energy Technology Data Exchange (ETDEWEB)

    Bartosinski, E.; Wieland, J.

    1982-09-30

    The plan consists of a traditional electrodynamic mechanism for measuring power (IM) supplemented by three switches, two rectifiers, resistor, included in parallel, and phaseshifting throttle included in series with the voltage coil of the IM. This makes it possible by selection to perform three types of measurements: active power of alternating current or power of direct current, only the voltage coils and the IM current are engaged; reactive power, the resistor and the throttle are additionally engaged by the aforementioned method; complete (apparent) power--the current and the voltage are supplied directly to the IM coils, but in contrast to the first case, through rectifiers. The influence of the highest harmonic components of voltage and current which are not significant for industrial measurements can be eliminated in necessary cases using filtering devices.

  2. Towards a Reactive Power Oscillation Damping Controller for Wind Power Plant Based on Full Converter Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Kumar, Sathess; Thuring, Patrik

    2012-01-01

    In this paper a power oscillation damping controller (POD) based on modulation of reactive power (Q POD) is analyzed where the modular and distributed characteristics of the wind power plant (WPP) are considered. For a Q POD it is essential that the phase of the modulated output is tightly...... contributes to a collective response. This ability is shown with a 150 wind turbine (WT) WPP with all WTs represented, and it is demonstrated that the WPP contributes to the inter-area damping. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power WT....... controlled to achieve a positive damping contribution. It is investigated how a park level voltage, reactive power, and power factor control at different grid strengths interact with the Q POD in terms of a resulting phase shift. A WPP is modular and distributed and a WPP Q POD necessitate that each WT...

  3. Analysis of static safety of power systems: a study about contingencies selection criteria in the reactive subproblem; Analise de seguranca estatica de sistemas de potencia: um estudo sobre criterios de selecao de contingencias no subproblema reativo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jose Vicente Canto dos

    1993-12-01

    The main objective of static safety's analysis in power systems is the determination of the level of gravity of the different contingencies that can occur in a system. Habitually, static safety's analysis is divided in two parts: selection and analysis of contingencies. In this work, they are studied several criteria of selection of applicable contingencies to the sub-problem reactive and are introduced comparisons among results provided by different criteria. They are also studied several forms of evaluation of the impact caused by contingencies on the power systems reactive profile.

  4. Analysis of static safety of power systems: a study about contingencies selection criteria in the reactive subproblem; Analise de seguranca estatica de sistemas de potencia: um estudo sobre criterios de selecao de contingencias no subproblema reativo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jose Vicente Canto dos

    1993-12-01

    The main objective of static safety's analysis in power systems is the determination of the level of gravity of the different contingencies that can occur in a system. Habitually, static safety's analysis is divided in two parts: selection and analysis of contingencies. In this work, they are studied several criteria of selection of applicable contingencies to the sub-problem reactive and are introduced comparisons among results provided by different criteria. They are also studied several forms of evaluation of the impact caused by contingencies on the power systems reactive profile.

  5. Coupling/Tradeoff Analysis and Novel Containment Control for Reactive Power, Output Voltage in Islanded Micro-Grid

    DEFF Research Database (Denmark)

    Han, Renke; Meng, Lexuan; Guerrero, Josep M.

    2016-01-01

    Based on the hierarchical control structure in islanded Micro-Grid (MG) systems, the coupling/tradeoff effects in different control levels are analyzed in details. In the primary level, analyses of the coupling effects among droop control gains, line impedance differences, output reactive power...

  6. Comparison Study of Power System Small Signal Stability Improvement Using SSSC and STATCOM

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Fang, Jiakun

    2013-01-01

    the connected power system, both SSSC and STATCOM are able to participate in the power system inter-area oscillation damping by changing the compensated reactance or the provided reactive power. This paper analyses the influence of SSSC and STATCOM on power system small signal stability. The damping controller...... schemes for SSSC and STATCOM are presented and discussed. The IEEE 39-bus New England system model as the test system is built in DIgSIELNT PowerFactory, in which the damping control strategies for both SSSC and STATCOM are validated by time domain simulations and modal analysis. Furthermore, comparison......A static synchronous series compensator (SSSC) has the ability to emulate a reactance in series with the connected transmission line. A static synchronous compensator (STATCOM) is able to provide the reactive power to an electricity network. When fed with some supplementary signals from...

  7. Rated power factor and excitation system of large turbine generator

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Watanabe, Takashi; Banjou, Minoru.

    1979-01-01

    As for the rated power factor of turbine generators for thermal power stations, 90% has been adopted since around 1960. On the other hand, power transmission system has entered 500 kV age, and 1,000 kV transmission is expected in the near future. As for the supply of reactive power from thermal and nuclear turbine generators, the necessity of supplying leading reactive power has rather increased. Now, the operating power factor of thermal and nuclear generators becomes 96 to 100% actually. As for the excess stability of turbine generators owing to the strengthening of transmission system and the adoption of super-high voltage, the demand of strict conditions can be dealt with by the adoption of super-fast response excitation system of thyristor shunt winding self exciting type. The adoption of the turbine generators with 90 to 95% power factor and the adoption of the thyristor shunt winding self exciting system were examined and evaluated. The rated power factor of generators, excitation system and economy of adopting these systems are explained. When the power factor of generators is increased from 0.9 to 0.95, about 6% of saving can be obtained in the installation cost. When the thyristor shunt winding self excitation is adopted, it is about 10% more economical than AC excitation. (Kako, I.)

  8. A heuristic model for planning problem solution of reactive in electric power systems; Um modelo heuristico para solucao do problema de planejamento de reativos em sistemas de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, Jose Roberto Sanches

    1995-02-01

    This work introduces a model to solve the planning problem of reactive in electric power systems. The proposed method uses mixed integer linear programming and is solved using implicit enumeration (binary search). The special heuristics to reduce candidates' initial set and to obtain discreet solutions are adopted. They were going accomplished two algorithm implementations, one sequential and other parallel. The implementation parallel uses an asynchronous programming model and is adjusted for distributed memory computer. Defined a bars candidates set for the new reactive sources allocation, the developed program supplies the location and the reactive sources magnitude that must be allocated in the system, considering safety and operation restrictions. The implementation parallel performance is evaluated for three real systems of 309, 725 and 810 bars. The results for the test systems IEEE30 and IEEE118, and the three real systems used in the implementation parallel evaluation are also presented.

  9. A heuristic model for planning problem solution of reactive in electric power systems; Um modelo heuristico para solucao do problema de planejamento de reativos em sistemas de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, Jose Roberto Sanches

    1995-02-01

    This work introduces a model to solve the planning problem of reactive in electric power systems. The proposed method uses mixed integer linear programming and is solved using implicit enumeration (binary search). The special heuristics to reduce candidates' initial set and to obtain discreet solutions are adopted. They were going accomplished two algorithm implementations, one sequential and other parallel. The implementation parallel uses an asynchronous programming model and is adjusted for distributed memory computer. Defined a bars candidates set for the new reactive sources allocation, the developed program supplies the location and the reactive sources magnitude that must be allocated in the system, considering safety and operation restrictions. The implementation parallel performance is evaluated for three real systems of 309, 725 and 810 bars. The results for the test systems IEEE30 and IEEE118, and the three real systems used in the implementation parallel evaluation are also presented.

  10. The effect of reactive emotions expressed in response to another's anger on inferences of social power.

    Science.gov (United States)

    Hareli, Shlomo; David, Shlomo

    2017-06-01

    Social perception of emotions is influenced by the context in which it occurs. One such context is a social interaction involving an exchange of emotions. The way parties to the interaction are perceived is shaped by the combination of emotions exchanged. This idea was examined by assessing the extent to which expressions of anger toward a target-which, in isolation, are perceived as signals of high social power-are influenced by the target's emotional reaction to it (i.e., reactive emotions). Three studies show that the angry person was perceived as having a higher level of social power when this anger was responded by fear or sadness than when it was responded by neutrality or anger. Study 1 indicated that reactive emotions have a stronger effect on perceived social power when emotions were incongruent with gender stereotypes. Study 2 indicated that these effects are a result of these emotions serving as reactive emotions rather than a benchmark against which the angry person's power is assessed. Study 3 showed that reactive emotions affect perceived social power by serving as signals of the level to which the high social power suggested by the first person's expression is confirmed by its target. Comparing effects of reactive emotions to anger with reactive emotions to sadness, showed that perceived social power of the expresser is determined by the nature of the expression, with some adjustment caused by the reactive emotions. This underscores the importance of social interaction as a context for the social perception of emotions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Design and Optimisation of a Simple Filter Group for Reactive Power Distribution

    Directory of Open Access Journals (Sweden)

    Ryszard Klempka

    2016-01-01

    Full Text Available Basic methods are presented to design a simple filter group and a method of shaping the resultant of the filter group’s impedance characteristics (distribution of the characteristics’ extremes and then project equations were transformed into a uniform, common form that addresses issues of the reactive power distribution between component filters. The analysis also takes into account the filters’ detuning from the reduced harmonics and quality factors of passive elements. Another important factor of the analysis considered was the power grid equivalent impedance affecting the filtration effectiveness. A criterion for the filter group’s filtration effectiveness evaluation was proposed and optimisation was completed for the reactive power distribution between separate filters in the function of the power grid’s equivalent inductance.

  12. Distributed control of hybrid AC microgrids with dynamic active and reactive power capacity tuning

    DEFF Research Database (Denmark)

    Nutkani, Inam Ullah; Loh, Poh Chiang; Blaabjerg, Frede

    2012-01-01

    Microgrids comprise of emerging generation technologies such as fuel cell, solar PV, wind turbine generator, storage and loads. They can, in principle, operate at different voltages and frequencies. Tying them either to the mains grid or among themselves would certainly require some interlinking...... power converters, whose control should preferably be done autonomously without demanding communication links. This paper proposes distributed control for power management between two Microgrids interlinked through inverters. The control scheme aims to reduce the reactive power loading stress on DERs...... and also allows active power transfer from overloaded grid to under- loaded grid. The performance of proposed control has been verified in simulation and through a scaled-down experimental system....

  13. Enhanced power quality based single phase photovoltaic distributed generation system

    Science.gov (United States)

    Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.

    2016-08-01

    This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.

  14. Facing the challenges of distribution systems operation with high wind power penetration

    DEFF Research Database (Denmark)

    Das, Kaushik; Altin, Müfit; Hansen, Anca Daniela

    2017-01-01

    power flow in 60kV distribution networks through controlling the ability of wind power plants (WPPs) to generate or absorb reactive power. This paper aims to understand the characteristics of a distribution network with high penetration of distributed generation. A detailed analysis of the active...... and reactive power flows in a real distribution network under different wind and load conditions based on actual measurements is performed in order to understand the correlation between the consumption, wind power production, and the network losses. Conclusive remarks are presented, briefly expressing......This paper addresses the challenges associated with the operation of a distribution system with high penetration of wind power. The paper presents some preliminary investigations of an ongoing Danish research work, which has as main objective to reduce the network losses by optimizing the reactive...

  15. Power quality improvement of a stand-alone power system subjected to various disturbances

    Science.gov (United States)

    Lone, Shameem Ahmad; Mufti, Mairaj Ud-Din

    In wind-diesel stand-alone power systems, the disturbances like random nature of wind power, turbulent wind, sudden changes in load demand and the wind park disconnection effect continuously the system voltage and frequency. The satisfactory operation of such a system is not an easy task and the control design has to take in to account all these subtleties. For maintaining the power quality, generally, a short-term energy storage device is used. In this paper, the performance of a wind-diesel system associated with a superconducting magnetic energy storage (SMES) system is studied. The effect of installing SMES at wind park bus/load bus, on the system performance is investigated. To control the exchange of real and reactive powers between the SMES unit and the wind-diesel system, a control strategy based on fuzzy logic is proposed. The dynamic models of the hybrid power system for most common scenarios are developed and the results presented.

  16. Sensitivity analysis of power excursion in RSG-GAS reactor due to reactivity insertion

    International Nuclear Information System (INIS)

    Pinem, Surian; Sembiring, Tagor Malem

    2002-01-01

    Reactor kinetics has a very important role in reactor operation safety and nuclear reactor control. One of the important aspects in reactor kinetics is power behavior as function of time due to chain reaction in the core. The calculation was performed using kinetic equation and feedback reactivity and evaluated using static power coefficient. Analysis was performed for oxide 250 g, silicide 250 g and silicide 300 g fuel elements with insertion of positive reactivity, negative reactivity and reactivity close to delay neutron fraction. The calculation of power excursion sensitivity showed that the insertion of 0,5 % Δk/k, in the fuel element of silicide 300 g is bigger 5 % than the one of oxide 250 g or silicide 250 g. If inserted by - 1,2 % Δk/k, there is no change among three fuel elements. Therefore, in kinetic point of view, it is showed there is no significant influence in the RSG-GAS reactor operation safety is the current core of oxide 250 g is converted to silicide 250 g or to silicide 300 g

  17. Use of reactivity constraints for the automatic control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.; Lanning, D.D.; Ray, A.

    1985-01-01

    A theoretical framework for the automatic control of reactor power has been developed and experimentally evaluated on the 5 MWt Research Reactor that is operated by the Massachusetts Institute of Technology. The controller functions by restricting the net reactivity so that it is always possible to make the reactor period infinite at the desired termination point of a transient by reversing the direction of motion of whatever control mechanism is associated with the controller. This capability is formally designated as ''feasibility of control''. It has been shown experimentally that maintenance of feasibility of control is a sufficient condition for the automatic control of reactor power. This research should be of value in the design of closed-loop controllers, in the creation of reactivity displays, in the provision of guidance to operators regarding the timing of reactivity changes, and as an experimental envelope within which alternate control strategies can be evaluated

  18. Reactive power and voltage control strategy based on dynamic and adaptive segment for DG inverter

    Science.gov (United States)

    Zhai, Jianwei; Lin, Xiaoming; Zhang, Yongjun

    2018-03-01

    The inverter of distributed generation (DG) can support reactive power to help solve the problem of out-of-limit voltage in active distribution network (ADN). Therefore, a reactive voltage control strategy based on dynamic and adaptive segment for DG inverter is put forward to actively control voltage in this paper. The proposed strategy adjusts the segmented voltage threshold of Q(U) droop curve dynamically and adaptively according to the voltage of grid-connected point and the power direction of adjacent downstream line. And then the reactive power reference of DG inverter can be got through modified Q(U) control strategy. The reactive power of inverter is controlled to trace the reference value. The proposed control strategy can not only control the local voltage of grid-connected point but also help to maintain voltage within qualified range considering the terminal voltage of distribution feeder and the reactive support for adjacent downstream DG. The scheme using the proposed strategy is compared with the scheme without the reactive support of DG inverter and the scheme using the Q(U) control strategy with constant segmented voltage threshold. The simulation results suggest that the proposed method has a significant improvement on solving the problem of out-of-limit voltage, restraining voltage variation and improving voltage quality.

  19. Reactive power dispatch considering voltage stability with seeker optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Chaohua; Chen, Weirong; Zhang, Xuexia [The School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhu, Yunfang [Department of Computer and Communication Engineering, E' mei Campus, Southwest Jiaotong University, E' mei 614202 (China)

    2009-10-15

    Optimal reactive power dispatch (ORPD) has a growing impact on secure and economical operation of power systems. This issue is well known as a non-linear, multi-modal and multi-objective optimization problem where global optimization techniques are required in order to avoid local minima. In the last decades, computation intelligence-based techniques such as genetic algorithms (GAs), differential evolution (DE) algorithms and particle swarm optimization (PSO) algorithms, etc., have often been used for this aim. In this work, a seeker optimization algorithm (SOA) based method is proposed for ORPD considering static voltage stability and voltage deviation. The SOA is based on the concept of simulating the act of human searching where search direction is based on the empirical gradient by evaluating the response to the position changes and step length is based on uncertainty reasoning by using a simple Fuzzy rule. The algorithm's performance is studied with comparisons of two versions of GAs, three versions of DE algorithms and four versions of PSO algorithms on the IEEE 57 and 118-bus power systems. The simulation results show that the proposed approach performed better than the other listed algorithms and can be efficiently used for the ORPD problem. (author)

  20. A taxonomical review on impact assessment of optimally placed DGs and FACTS controllers in power systems

    Directory of Open Access Journals (Sweden)

    Bindeshwar Singh

    2017-11-01

    Full Text Available In the present scenario of all over the world like develops and undeveloped countries are fastly used Distributed Generations (DGs and Flexible Alternating Current Transmission Systems (FACTS controllers in power systems for reactive power supports so that the overall power system performances are improved such as minimization of real and reactive power losses, environmental pollutions and maximization of loadability of system, power system stability, the short circuit capacity of the line and also enhancement of voltage profile, available power transfer capacity of the system, reliability as well as security of the system and more flexible operations of the system. This survey paper presents a taxonomical review on impact assessment of DGs and FACTS controllers in power systems from different power system performance viewpoints and reveals the current status of research work in this field.

  1. Advanced Control of Photovoltaic and Wind Turbines Power Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Chen, Wenjie; Blaabjerg, Frede

    2014-01-01

    Much more efforts have been made on the integration of renewable energies into the grid in order to meet the imperative demand of a clean and reliable electricity generation. In this case, the grid stability and robustness may be violated due to the intermittency and interaction of the solar...... and wind renewables. Thus, in this chapter, advanced control strategies, which can enable the power conversion efficiently and reliably, for both photovoltaic (PV) and wind turbines power systems are addressed in order to enhance the integration of those technologies. Related grid demands have been...... presented firstly, where much more attention has been paid on specific requirements, like Low Voltage Ride-Through (LVRT) and reactive power injection capability. To perform the functions of those systems, advanced control strategies are presented with much more emphasis on the LVRT operation with reactive...

  2. A novel islanding detection scheme for synchronous distributed generation using rate of change of exciter voltage over reactive power at DG-Side

    DEFF Research Database (Denmark)

    Rostami, Ali; Bagheri, Marzieh; Naderi, Seyed Behzad

    2017-01-01

    , the reactive power at DG-side and exciter voltage parameters are selected. The performance of the proposed method is investigated in MATLAB/Simulink software on a sample network in the presence of synchronous diesel-generator. The simulation results indicate that the proposed method is capable to detect all......Penetration of distributed generation (DG) in distribution networks is rapidly increasing. DGs' application enhances system's reliability and power quality. However, along their benefits, there are some issues. One of the most important issues of DGs' application is the islanding. This paper...... of the synchronous generator. Therefore, due to lack of inertia, response of these parameters to small changes is faster than the other passive parameters such as frequency. However, the sensitivity of reactive power at the DG-side and the exciter voltage is much more than reactive power and voltage of the load. So...

  3. Calculation of research reactor RA power at uncontrolled reactivity changes

    International Nuclear Information System (INIS)

    Cupac, S.

    1978-01-01

    The safety analysis of research reactor RA involves also the calculation of reactor power at uncontrolled reactivity changes. The corresponding computer code, based on Point Kinetics Model has been made. The short review of method applied for solving kinetic equations is given and several examples illustrating the reactor behaviour at various reactivity changes are presented. The results already obtained are giving rather rough picture of reactor behaviour in considered situations. This is the consequence of using simplified feed back and reactor cooling models, as well as temperature reactivity coefficients, which do not correspond to the actual reactor RA structure (which is now only partly fulfilled with 80% enriched uranium fuel). (author) [sr

  4. Modified artificial bee colony algorithm for reactive power optimization

    Science.gov (United States)

    Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani

    2015-05-01

    Bio-inspired algorithms (BIAs) implemented to solve various optimization problems have shown promising results which are very important in this severely complex real-world. Artificial Bee Colony (ABC) algorithm, a kind of BIAs has demonstrated tremendous results as compared to other optimization algorithms. This paper presents a new modified ABC algorithm referred to as JA-ABC3 with the aim to enhance convergence speed and avoid premature convergence. The proposed algorithm has been simulated on ten commonly used benchmarks functions. Its performance has also been compared with other existing ABC variants. To justify its robust applicability, the proposed algorithm has been tested to solve Reactive Power Optimization problem. The results have shown that the proposed algorithm has superior performance to other existing ABC variants e.g. GABC, BABC1, BABC2, BsfABC dan IABC in terms of convergence speed. Furthermore, the proposed algorithm has also demonstrated excellence performance in solving Reactive Power Optimization problem.

  5. Investigation of Reactive Power Control Effects on Flicker and Harmonics Emission of a DFIG Wind Turbine

    Directory of Open Access Journals (Sweden)

    Amir Nagizadeh Ghoogdareh

    2013-01-01

    Full Text Available One of the most important power quality aspects in wind farms is voltage fluctuation or flicker which should be investigated due to the nature of wind speed variations. These variations result in power and voltage fluctuations at the load bus. Moreover, the wind generation systems may be assumed as a harmonics source because of their power electronic converters. There are numerous factors that affect flicker and harmonic emission of grid-connected wind turbines during continuous operation, such as wind characteristics (e.g. mean wind speed, turbulence intensity, type of generator and grid conditions (e.g. short circuit capacity, grid impedance angle. In this paper, an IEC based flickermeter is first modeled and then a variable speed wind turbine has been simulated by Matlab/Simulink software. The flicker and harmonics emissions of wind turbines equipped with DFIG during continuous operation and using output reactive control are investigated. The simulation results show that control of wind turbine output reactive power is an effective means for flicker mitigation during continuous operation. However, there should be a compromise between flicker reduction and harmonics level increase to enhance the whole power quality of wind turbine.

  6. Grid Converters for Photovoltaic and Wind Power Systems

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Liserre, Marco; Rodriguez, Pedro

    power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition...... to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: Modern grid...... inverter topologies for photovoltaic and wind turbines Islanding detection methods for photovoltaic systems Synchronization techniques based on second order generalized integrators (SOGI) Advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active...

  7. Enhancement of the power system efficiency using the hybrid-type harmonic filters for a KSTAR nuclear fusion experimental system

    International Nuclear Information System (INIS)

    Yoon, Dong-Hee; Lee, Hansang; Park, Byungju; Jang, Gilsoo

    2011-01-01

    Highlights: → The low power factor and power quality problems are occurred by the operation of the PF facility in KSTAR system. We model the power system of KSTAR system including the PF facility. We show a method of the filter insertion to improve the problem and conduct the simulations to verify our method. - Abstract: The KSTAR system, which includes a large amount of nonlinear load, is a relatively high reactive power consumption load which injects harmonic currents into the power system which could result in the possibility for a power system perturbation to occur in the transmission lines, affecting nearby customers. In order to maintain the power quality and power factor in the inner system of the KSTAR system and the adjacent distribution lines, the assessment of the effect of the DC power supply in the KSTAR system is required for appropriate countermeasures to be put in place. In this paper, on the basis of a preliminary inspection of the power system near a KSTAR system, the simulation of a compensating device is performed for the prevention of abnormal voltage variations caused by a large amount of reactive and nonlinear load. In addition, through the comparison of the pre- and post-application of compensation devices in the actual power system, it is verified that a stable operation of the KSTAR nuclear fusion experimental system can be achieved.

  8. Optimal stochastic reactive power scheduling in a microgrid considering voltage droop scheme of DGs and uncertainty of wind farms

    International Nuclear Information System (INIS)

    Khorramdel, Benyamin; Raoofat, Mahdi

    2012-01-01

    Distributed Generators (DGs) in a microgrid may operate in three different reactive power control strategies, including PV, PQ and voltage droop schemes. This paper proposes a new stochastic programming approach for reactive power scheduling of a microgrid, considering the uncertainty of wind farms. The proposed algorithm firstly finds the expected optimal operating point of each DG in V-Q plane while the wind speed is a probabilistic variable. A multi-objective function with goals of loss minimization, reactive power reserve maximization and voltage security margin maximization is optimized using a four-stage multi-objective nonlinear programming. Then, using Monte Carlo simulation enhanced by scenario reduction technique, the proposed algorithm simulates actual condition and finds optimal operating strategy of DGs. Also, if any DGs are scheduled to operate in voltage droop scheme, the optimum droop is determined. Also, in the second part of the research, to enhance the optimality of the results, PSO algorithm is used for the multi-objective optimization problem. Numerical examples on IEEE 34-bus test system including two wind turbines are studied. The results show the benefits of voltage droop scheme for mitigating the impacts of the uncertainty of wind. Also, the results show preference of PSO method in the proposed approach. -- Highlights: ► Reactive power scheduling in a microgrid considering loss and voltage security. ► Stochastic nature of wind farms affects reactive power scheduling and is considered. ► Advantages of using the voltage droop characteristics of DGs in voltage security are shown. ► Power loss, voltage security and VAR reserve are three goals of a multi-objective optimization. ► Monte Carlo method with scenario reduction is used to determine optimal control strategy of DGs.

  9. A Fast Reactive Power Optimization in Distribution Network Based on Large Random Matrix Theory and Data Analysis

    Directory of Open Access Journals (Sweden)

    Wanxing Sheng

    2016-05-01

    Full Text Available In this paper, a reactive power optimization method based on historical data is investigated to solve the dynamic reactive power optimization problem in distribution network. In order to reflect the variation of loads, network loads are represented in a form of random matrix. Load similarity (LS is defined to measure the degree of similarity between the loads in different days and the calculation method of the load similarity of load random matrix (LRM is presented. By calculating the load similarity between the forecasting random matrix and the random matrix of historical load, the historical reactive power optimization dispatching scheme that most matches the forecasting load can be found for reactive power control usage. The differences of daily load curves between working days and weekends in different seasons are considered in the proposed method. The proposed method is tested on a standard 14 nodes distribution network with three different types of load. The computational result demonstrates that the proposed method for reactive power optimization is fast, feasible and effective in distribution network.

  10. Reactive Power Control in Eight Bus System Using FC-TCR

    Directory of Open Access Journals (Sweden)

    Thangavelu Vijayakumar

    2010-02-01

    Full Text Available This paper deals with the simulation of eight bus system having fixed capacitor and thyristor controlled reactor. The system is modeled and simulated using MATLAB.The simulation results are presented. The power and control circuits are simulated. The current drawn by the TCR varies with the variation in the firing angle. The simulation results are compared with the theoretical results.

  11. Loss of Excitation Detection in Doubly Fed Induction Generator by Voltage and Reactive Power Rate

    Directory of Open Access Journals (Sweden)

    M. J. Abbasi

    2016-12-01

    Full Text Available The doubly fed induction generator (DFIG is one of the most popular technologies used in wind power systems. With the growing use of DFIGs and increasing power system dependence on them in recent years, protecting of these generators against internal faults is more considered. Loss of excitation (LOE event is among the most frequent failures in electric generators. However, LOE detection studies heretofore were usually confined to synchronous generators. Common LOE detection methods are based on impedance trajectory which makes the system slow and also prone to interpret a stable power swing (SPS as a LOE fault. This paper suggests a new method to detect the LOE based on the measured variables from the DFIG terminal. In this combined method for LOE detection, the rate of change of both the terminal voltage and the output reactive power are utilized and for SPS detection, the fast Fourier transform (FFT analysis of the output instantaneous active power has been used. The performance of the proposed method was evaluated using Matlab/Simulink interface for various power capacities and operating conditions. The results proved the method's quickness, simplicity and security.

  12. Robust Adaptive Reactive Power Control for Doubly Fed Induction Generator

    Directory of Open Access Journals (Sweden)

    Huabin Wen

    2014-01-01

    Full Text Available The problem of reactive power control for mains-side inverter (MSI in doubly fed induction generator (DFIG is studied in this paper. To accommodate the modelling nonlinearities and inherent uncertainties, a novel robust adaptive control algorithm for MSI is proposed by utilizing Lyapunov theory that ensures asymptotic stability of the system under unpredictable external disturbances and significant parametric uncertainties. The distinguishing benefit of the aforementioned scheme consists in its capabilities to maintain satisfactory performance under varying operation conditions without the need for manually redesigning or reprogramming the control gains in contrast to the commonly used PI/PID control. Simulations are also built to confirm the correctness and benefits of the control scheme.

  13. A new power supply for superconductive magnetic energy storage system

    International Nuclear Information System (INIS)

    Karady, G.G.; Han, B.M.

    1992-01-01

    In this paper a new power supply for a superconductive magnetic energy storage system, which permits a fast independent regulation of the active and reactive power, is presented. The power supply is built with several units connected in parallel. Each unit consists of a 24-pulse bridge converter, thyristor-switched tap-changing transformer, and thyristor-switched capacitor bank. Its system operation is analyzed by computer simulation and a feasible system realization is shown. A superconductive magnetic energy storage system with the proposed power supply has the capability of leveling the load variation, damping the low-frequency oscillation, and improving the transient stability in the power system. This power supply can be built with commercially available components using well-proven technologies

  14. Dynamic influences of wind power on the power system

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, Pedro

    2003-03-01

    amount of wind power showed very small voltage variations. The frequency variations analysed from the Nordel showed also small variations in the frequency but it also showed that the wind turbines excites the power system in the electromechanical modes. Concerning the stability analysis, the study cases showed that large-scale wind power modifies the voltage stability of the power system and can cause power oscillations. It is showed here that the reactive power from the wind farms is the key factor on the voltage stability problem. During continuous operation, the distributed wind power variations did not give any problems to the power system stability concerning the power oscillations. (au)

  15. Application of superconducting magnet energy storage to improve power system dynamic performance

    International Nuclear Information System (INIS)

    Mitani, Y.; Tsuji, K.; Murakami, Y.

    1988-01-01

    The application of Superconducting Magnet Energy Storage (SMES) to the stabilization of a power system with long distance bulk power transmission lines which has the problem of poorly damped power oscillations, is presented. Control schemes for stabilization using SMES which is capable of controlling active and reactive power simultaneously in four quadrant ranges, is proposed. The effective locations and the necessary capacities of SMES for power system stabilizing control are discussed in detail. Results of numerical analysis and experiments in an artificial power transmission system demonstrate the significant effect of the control by SMES on the improvement of power system oscillatory performance

  16. Autonomous Active and Reactive Power Distribution Strategy in Islanded Microgrids

    DEFF Research Database (Denmark)

    Wu, Dan; Tang, Fen; Guerrero, Josep M.

    2014-01-01

    This paper proposes an autonomous active and reactive power distribution strategy that can be applied directly on current control mode (CCM) inverters, being compatible as well with conventional droop-controlled voltage control mode (VCM) converters. In a microgrid, since renewable energy sources...

  17. Active and reactive power sharing and frequency restoration in a distributed power system consisting of two UPS units

    Energy Technology Data Exchange (ETDEWEB)

    Parlak, Koray Sener; Oezdemir, Mehmet [Dept. of Electrical and Electronic Engineering, Firat University, Elazig, 23119 (Turkey); Aydemir, M. Timur [Dept. of Electrical and Electronic Engineering, Gazi University, Maltepe-Ankara 06570 (Turkey)

    2009-06-15

    A distributed power system consisting of two uninterrupted power supplies (UPS) is investigated in this paper. Parallel operation of the two sources increases the established power rating of the system. One of the sources can supply the system even when the other system is disconnected due to some faults, and this is an important feature. The control algorithm makes sure that the total load is shared between the supplies in accordance with their rated power levels, and the frequency of the supplies are restored to the rated values after the transitions. As the UPSs operate at an optimum power level, losses and faults due to overloading are prevented. The units safely operate without any means of communication between each other. The focus of the work is on the inverter stages of the UPSs. Simulations performed in Matlab Simulink environment have been verified with experimental work via DS1103 controller card. (author)

  18. Distributed multi-agent scheme for reactive power management with renewable energy

    International Nuclear Information System (INIS)

    Rahman, M.S.; Mahmud, M.A.; Pota, H.R.; Hossain, M.J.

    2014-01-01

    Highlights: • A distributed multi-agent scheme is proposed to enhance the dynamic voltage stability. • A control agent is designed where control actions are performed through PI controller. • Proposed scheme is compared with the conventional approach with DSTATCOM. • Proposed scheme adapts the capability of estimation and control under various operating conditions. - Abstract: This paper presents a new distributed multi-agent scheme for reactive power management in smart coordinated distribution networks with renewable energy sources (RESs) to enhance the dynamic voltage stability, which is mainly based on controlling distributed static synchronous compensators (DSTATCOMs). The proposed control scheme is incorporated in a multi-agent framework where the intelligent agents simultaneously coordinate with each other and represent various physical models to provide information and energy flow among different physical processes. The reactive power is estimated from the topology of distribution networks and with this information, necessary control actions are performed through the proposed proportional integral (PI) controller. The performance of the proposed scheme is evaluated on a 8-bus distribution network under various operating conditions. The performance of the proposed scheme is validated through simulation results and these results are compared to that of conventional PI-based DSTATCOM control scheme. From simulation results, it is found that the distributed MAS provides excellence performance for improving voltage profiles by managing reactive power in a smarter way

  19. Modeling and Control of Grid Side Converter in Wind Power Generation System Based on Synchronous VFDPC with PLL

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2011-01-01

    Virtual flux oriented direct power control (VFDPC) is combined space vector modulation (SVM) with PI of DC-link voltage, active power and reactive power to control the grid side converter in wind power generation system in this paper. VFDPC has reached good performances with PLL (phase lock loop......, LCL filter, transformer grid, and control parts, such as PI controllers of DC-link voltage, active power, reactive power, and SVM, and so on. The simulation results have verified that the control strategy is feasible to fit for control of gird currents, active power, reactive power and DC-link voltage...

  20. Active and reactive power control schemes for distributed generation systems under voltage dips

    NARCIS (Netherlands)

    Wang, F.; Duarte, J.L.; Hendrix, M.A.M.

    2009-01-01

    During voltage dips continuous power delivery from distributed generation systems to the grid is desirable for the purpose of grid support. In order to facilitate the control of distributed generation systems adapted to the expected change of grid requirements, generalized power control schemes

  1. Literature Survey on Operational Voltage Control and Reactive Power Management on Transmission and Sub-Transmission Networks

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo, Marcelo A.; Samaan, Nader A.; Makarov, Yuri V.; Holzer, Jesse T.; Vallem, Mallikarjuna R.; Huang, Renke; Vyakaranam, Bharat GNVSR; Ke, Xinda; Pan, Feng

    2017-10-02

    Voltage and reactive power system control is generally performed following usual patterns of loads, based on off-line studies for daily and seasonal operations. This practice is currently challenged by the inclusion of distributed renewable generation, such as solar. There has been focus on resolving this problem at the distribution level; however, the transmission and sub-transmission levels have received less attention. This paper provides a literature review of proposed methods and solution approaches to coordinate and optimize voltage control and reactive power management, with an emphasis on applications at transmission and sub-transmission level. The conclusion drawn from the survey is that additional research is needed in the areas of optimizing switch shunt actions and coordinating all available resources to deal with uncertain patterns from increasing distributed renewable generation in the operational time frame. These topics are not deeply explored in the literature.

  2. Methods of computing steady-state voltage stability margins of power systems

    Science.gov (United States)

    Chow, Joe Hong; Ghiocel, Scott Gordon

    2018-03-20

    In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.

  3. Security region-based small signal stability analysis of power systems with FSIG based wind farm

    Science.gov (United States)

    Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong

    2018-02-01

    Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.

  4. Reactive documentation system

    Science.gov (United States)

    Boehnlein, Thomas R.; Kramb, Victoria

    2018-04-01

    Proper formal documentation of computer acquired NDE experimental data generated during research is critical to the longevity and usefulness of the data. Without documentation describing how and why the data was acquired, NDE research teams lose capability such as their ability to generate new information from previously collected data or provide adequate information so that their work can be replicated by others seeking to validate their research. Despite the critical nature of this issue, NDE data is still being generated in research labs without appropriate documentation. By generating documentation in series with data, equal priority is given to both activities during the research process. One way to achieve this is to use a reactive documentation system (RDS). RDS prompts an operator to document the data as it is generated rather than relying on the operator to decide when and what to document. This paper discusses how such a system can be implemented in a dynamic environment made up of in-house and third party NDE data acquisition systems without creating additional burden on the operator. The reactive documentation approach presented here is agnostic enough that the principles can be applied to any operator controlled, computer based, data acquisition system.

  5. Long term storage effects of irradiated fuel elements on power distribution and reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni Filho, P.; Sato, Sadakatu; Santos, Teresinha Ipojuca Cardoso T.I.C.; Fernandes Vanderlei Borba [FURNAS, Rio de Janeiro, RJ (Brazil); Fetterman, R.J. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-12-31

    The ALPHA/PHOENIX-P/ANC (APA) code package was used to calculate the pin by pin power distribution and reactivity for Angra 1 Power Plant, Cycle 5. The Angra 1 Cycle 5 core was loaded with several irradiated fuel elements which were stored in the Spent Fuel Pool (SFP) for more than 8 years. Generally, neutronic codes take into account the buildup and depletion of just a few key fission, products such as Sm-149. In this paper it is shown that the buildup effects of other fission products must be considered for fuel which has been out of the core for significant periods of time. Impacts of these other fission products can change core reactivity and power distribution. (author). 3 refs, 4 figs, 4 tabs.

  6. Long term storage effects of irradiated fuel elements on power distribution and reactivity

    International Nuclear Information System (INIS)

    Ponzoni Filho, P.; Sato, Sadakatu; Santos, Teresinha Ipojuca Cardoso T.I.C.; Fernandes Vanderlei Borba; Fetterman, R.J.

    1995-01-01

    The ALPHA/PHOENIX-P/ANC (APA) code package was used to calculate the pin by pin power distribution and reactivity for Angra 1 Power Plant, Cycle 5. The Angra 1 Cycle 5 core was loaded with several irradiated fuel elements which were stored in the Spent Fuel Pool (SFP) for more than 8 years. Generally, neutronic codes take into account the buildup and depletion of just a few key fission, products such as Sm-149. In this paper it is shown that the buildup effects of other fission products must be considered for fuel which has been out of the core for significant periods of time. Impacts of these other fission products can change core reactivity and power distribution. (author). 3 refs, 4 figs, 4 tabs

  7. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    . As an example, the latest published grid codes stress the ability of distributed generators, especially wind turbines, to stay connected during short grid disturbances and in addition to provide active/reactive power control at the point of common coupling. Based on the above facts, the need for improving...... reported in some countries creating concerns about power system stability. This leads to a continuous evolution of grid interconnection requirements towards a better controllability of generated power and an enhanced contribution of distributed power generation systems to power system stability...... and adding more features to the control of distributed power generation systems (DPGS) arises. As a consequence, this thesis focuses on grid monitoring methods and possible approaches in control in order to obtain a more reliable and  exible power generation system during normal and faulty grid conditions...

  8. Change in CANDU-6 reactivity following a power reduction at low PHT purity

    International Nuclear Information System (INIS)

    Whitlock, J.J.; Soulard, M.R.; Baudouin, A.

    1995-01-01

    The reactivity effect of a power reduction in CANDU-6 is examined using a three-dimensional, steady-state, coupled neutronics/thermalhydraulics methodology, starting from a global irradiation distribution matched to site data. The power reduction is sufficient to suppress coolant boiling in the fuel channels, and thus the significant parameters affecting reactivity are an increase in coolant density and a decrease in fuel temperature. These individual components are estimated using infinite-lattice-cell methodology. The effect of using newer methodology, particularly for the thermalhydraulic analysis, is examined by comparison with previous simulations. (author). 10 refs., 7 tabs., 1 fig

  9. The impact of fuel temperature reactivity coefficient on loss of reactivity control accident

    International Nuclear Information System (INIS)

    Park, J. H.; Ryu, E. H.; Song, Y. M.; Jung, J. Y.

    2012-01-01

    Nuclear reactors experience small power fluctuations or anticipated operational transients during even normal power operation. During normal operation, the reactivity is mainly controlled by liquid zone controllers, adjuster rods, mechanical control absorbers, and moderator poison. Even when the reactor power is increased abruptly and largely from an accident and when reactor control systems cannot be actuated quickly due to a fast transient, the reactor should be controlled and stabilized by its inherent safety parameter, such as a negative PCR (Power Coefficient of Reactivity) feedback. A PWR (Pressurized Water Reactor), it is well designed for the reactor to have a negative PCR so that the reactor can be safely shut down or stabilized whenever an abrupt reactivity insertion into the reactor core occurs or the reactor power is abruptly increased. However, it is known that a CANDU reactor has a small amount of PCR, as either negative or positive, because of the different design basis and safety concepts from a PWR. CNSC's regulatory and safety regime has stated that; The PCR of CANDU reactors does not pose a significant risk. Consistent with Canadian nuclear safety requirements, nuclear power plants must have an appropriate combination of inherent and engineered safety features incorporated into the design of the reactor safety and control systems. A reactor design that has a PCR is quite acceptable provided that the reactor is stable against power fluctuations, and that the probability and consequences of any potential accidents that would be aggravated by a positive reactivity feedback are maintained within CNSCprescribed limits. Recently, it was issued licensing the refurbished Wolsong unit 1 in Korea to be operated continuously after its design lifetime in which the calculated PCR was shown to have a small positive value by applying the recent physics code systems, which are composed of WIMS IST, DRAGON IST, and RFSP IST. These code systems were transferred

  10. Robustness Area Technique Developing Guidelines for Power System Restoration

    Directory of Open Access Journals (Sweden)

    Paulo Murinelli Pesoti

    2017-01-01

    Full Text Available This paper proposes a novel energy based technique called the Robustness Area (RA technique that measures power system robustness levels, as a helper for planning Power System Restorations (PSRs. The motivation is on account of the latest blackouts in Brazil, where the local Independent System Operator (ISO encountered difficulties related to circuit disconnections during the restoration. The technique identifies vulnerable and robust buses, pointing out system areas that should be firstly reinforced during PSR, in order to enhance system stability. A Brazilian power system restoration area is used to compare the guidelines adopted by the ISO with a more suitable new plan indicated by the RA tool. Active power and reactive power load margin and standing phase angle show the method efficiency as a result of a well balanced system configuration, enhancing the restoration performance. Time domain simulations for loop closures and severe events also show the positive impact that the proposed tool brings to PSRs.

  11. Performance of FACTS Devices for Power System Stability

    Directory of Open Access Journals (Sweden)

    Bhupendra Sehgal

    2015-09-01

    Full Text Available When a power grid is connected to an induction type wind electric generator (WEG, when there is variation in load and wind speed, grid voltage also vary. In this paper, we study what is the impact when there is a variation of load and wind by variation of real power and reactive power consumed by WEG effect of load and wind speed variations on real power supplied and reactive power consumed by the WEG as well as voltage on the grid are studied. The voltage variation in the grid is controlled by reactive power compensation using shunt connected Static VAR Compensator (SVC comprising Thyristor Controlled Reactor (TCR and Fixed Capacitor (FC. With the help of Fuzzy Logic Controller (FLC, TCR is operated automatically.

  12. 77 FR 21555 - Reactive Power Resources; Supplemental Notice of Technical Conference

    Science.gov (United States)

    2012-04-10

    .... This panel will discuss: Methods used to determine the reactive power requirements for a transmission... Jenkins, Director--Utility Interconnection, First Solar Kris Zadlo, Vice President, Invenergy Richard..., Director--Utility Interconnection, First Solar Michael Jacobs, Director Market and Regulatory Policy...

  13. Enhanced GSA-Based Optimization for Minimization of Power Losses in Power System

    Directory of Open Access Journals (Sweden)

    Gonggui Chen

    2015-01-01

    Full Text Available Gravitational Search Algorithm (GSA is a heuristic method based on Newton’s law of gravitational attraction and law of motion. In this paper, to further improve the optimization performance of GSA, the memory characteristic of Particle Swarm Optimization (PSO is employed in GSAPSO for searching a better solution. Besides, to testify the prominent strength of GSAPSO, GSA, PSO, and GSAPSO are applied for the solution of optimal reactive power dispatch (ORPD of power system. Conventionally, ORPD is defined as a problem of minimizing the total active power transmission losses by setting control variables while satisfying numerous constraints. Therefore ORPD is a complicated mixed integer nonlinear optimization problem including many constraints. IEEE14-bus, IEEE30-bus, and IEEE57-bus test power systems are used to implement this study, respectively. The obtained results of simulation experiments using GSAPSO method, especially the power loss reduction rates, are compared to those yielded by the other modern artificial intelligence-based techniques including the conventional GSA and PSO methods. The results presented in this paper reveal the potential and effectiveness of the proposed method for solving ORPD problem of power system.

  14. Positioning strategies for decentralized energy resources providing reactive power voltage control; Anlagenauswahl und -positionierung zur Spannungsstuetzung mittels Blindleistungsmanagement dezentraler Erzeugungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Matrose, Claas; Goedde, Markus; Cramer, Moritz; Potratz, Fabian; Pollok, Thomas; Schnettler, Armin [RWTH Aachen Univ. (Germany). Inst. fuer Hochspannungstechnik

    2012-07-01

    The integration of decentralized generation into power distribution grids in Germany has reached a level at which more and more grid reinforcement is required in order to keep voltages within the given limits. The consumption of reactive power by decentralized generation systems can reduce the voltage rise, which is caused by active power in-feed of such systems. Caused by different characteristics of overhead lines and cables, this effect significantly varies. Parameter studies of four commonly used types of lines, of different power ratings of decentralized generation systems as well as different lengths of lines can quantify the effects. It can be shown that - depending on the characteristics of a specific grid - the grid capacity for power in-feed can be increased by factors between 1.5 and 10. (orig.)

  15. Nonlinear control of voltage source converters in AC-DC power system.

    Science.gov (United States)

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Identification of voltage stability condition of a power system using measurements of bus variables

    Directory of Open Access Journals (Sweden)

    Durlav Hazarika

    2014-12-01

    Full Text Available Several online methods were proposed for investigating the voltage stability condition of an interconnected power system using the measurements of voltage and current phasors at a bus. For this purpose, phasor measurement units (PMUs are used. A PMU is a device which measures the electrical waves on an electrical network, using a common time source (reference bus for synchronisation. This study proposes a method for online monitoring of voltage stability condition of a power system using measurements of bus variables namely – (i real power, (ii reactive power and (iii bus voltage magnitude at a bus. The measurements of real power, reactive power and bus voltage magnitude could be extracted/captured from a smart energy meter. The financial involvement for implementation of the proposed method would significantly lower compared with the PMU-based method.

  17. Photovoltaic Hosting Capacity of Feeders with Reactive Power Control and Tap Changers

    Energy Technology Data Exchange (ETDEWEB)

    Ceylan, Oğuzhan; Paudyal, Sumit; Bhattarai, Bishnu P.; Myers, Kurt S.

    2017-06-01

    This paper proposes an algorithm to determine photovoltaic (PV) hosting capacity of power distribution networks as a function of number of PV injection nodes, reactive power support from the PVs, and the sub-station load tap changers (LTCs). In the proposed method, several minute by minute simulations are run based on randomly chosen PV injection nodes, daily PV output profiles, and daily load profiles from a pool of high-resolution realistic data set. The simulation setup is built using OpenDSS and MATLAB. The performance of the proposed method is investigated in the IEEE 123-node distribution feeder for multiple scenarios. The case studies are performed particularly for one, two, five and ten PV injection nodes, and looking at the maximum voltage deviations. Case studies show that the PV hosting capacity of the 123-node feeder greatly differs with the number of PV injection nodes. We have also observed that the PV hosting capacity increases with reactive power support and higher tap position of sub-station LTC.

  18. Assessment of CANDU-6 reactivity devices for DUPIC fuel

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    1998-11-01

    Reactivity device characteristics for a CANDU 6 reactor loaded with DUPIC fuel have been assessed. The lattice parameters were generated by WIMS-AECL code and the core calculations were performed by RFSP code with a 3-dimensional full core model. The reactivity devices studied are the zone controller, adjusters, mechanical control absorber and shutoff rods. For the zone controller system, damping capability for spatial oscillation was investigated. For the adjusters, the restart capability was investigated. For the adjusters, the restart capability was investigated. The shin operation and power stepback calculation were also performed to confirm the compatibility of the current adjuster system. The mechanical control absorber was assessed for the function of compensating temperature reactivity feedback following a power reduction. And shutoff rods were also assessed to investigate the following a power reduction. And shutoff rods were also assessed to investigate the static reactivity worth. This study has shown that the current reactivity device system of CANDU-6 core with the DUPIC fuel. (author). 9 refs., 17 tabs., 7 figs

  19. Photovoltaic-STATCOM with Low Voltage Ride through Strategy and Power Quality Enhancement in a Grid Integrated Wind-PV System

    Directory of Open Access Journals (Sweden)

    Lakshman Naik Popavath

    2018-04-01

    Full Text Available The traditional configurations of power systems are changing due to the greater penetration of renewable energy sources (solar and wind, resulting in reliability issues. At present, the most severe power quality problems in distribution systems are current harmonics, reactive power demands, and the islanding of renewables caused by severe voltage variations (voltage sag and swell. Current harmonics and voltage sag strongly affect the performance of renewable-based power systems. Various conventional methods (passive filters, capacitor bank, and UPS are not able to mitigate harmonics and voltage sag completely. Based on several studies, custom power devices can mitigate harmonics completely and slightly mitigate voltage sags with reactive power supplies. To ensure the generating units remain grid-connected during voltage sags and to improve system operation during abnormal conditions, efficient and reliable utilization of PV solar farm inverter as STATCOMs is needed. This paper elaborates the dynamic performance of a VSC-based PV-STATCOM for power quality enhancement in a grid integrated system and low voltage ride through (LVRT capability. LVRT requirements suggest that the injection of real and reactive power supports grid voltage during abnormal grid conditions. The proposed strategy was demonstrated with MATLAB simulations.

  20. OPF-Based Optimal Location of Two Systems Two Terminal HVDC to Power System Optimal Operation

    Directory of Open Access Journals (Sweden)

    Mehdi Abolfazli

    2013-04-01

    Full Text Available In this paper a suitable mathematical model of the two terminal HVDC system is provided for optimal power flow (OPF and optimal location based on OPF such power injection model. The ability of voltage source converter (VSC-based HVDC to independently control active and reactive power is well represented by the model. The model is used to develop an OPF-based optimal location algorithm of two systems two terminal HVDC to minimize the total fuel cost and active power losses as objective function. The optimization framework is modeled as non-linear programming (NLP and solved by Matlab and GAMS softwares. The proposed algorithm is implemented on the IEEE 14- and 30-bus test systems. The simulation results show ability of two systems two terminal HVDC in improving the power system operation. Furthermore, two systems two terminal HVDC is compared by PST and OUPFC in the power system operation from economical and technical aspects.

  1. Two-frequency, one-detector reactivity system (TFODRS)

    International Nuclear Information System (INIS)

    Sachs, R.D.; Woodall, D.M.

    1985-01-01

    A two-frequency, one-detector reactivity system (TFODRS) was experimentally verified on the University of New Mexico (UNM) AGN-201M thermal reactor. That system was used to obtain the absolute steady-state reactivity and to demonstrate the feasibility of acquiring the transient reactivity. A detailed description of TFODRS hardware and software is given in this paper. The TFODRS obtains the absolute and net reactivity by computing the frequency spectrum of the reactor neutron-detector signal. The ratio of the high-frequency to the low-frequency components about an empirical break point is used to determine the reactivity. The TFODRS was successfully used to measure a known AGN-201M steady-state reactivity, with a relative error of 18%. TFODRS transient curves as a function of reactivity were shown to be different from the steady-state curves. The transient curves appear to be a function of the rate of reactivity insertion. The authors speculate that a modified TFODRS, using state-of-the-art microprocessors, could be used for fast reactors. The TFODRS is not presently a practicable reactimeter. However, with more research and development, it is felt it could be used in near-term nuclear industry applications, such as monitoring fuel storage pools

  2. Neutron and thermo - hydraulic model of a reactivity transient in a nuclear power plant fuel element

    International Nuclear Information System (INIS)

    Oliva, Jose de Jesus Rivero

    2012-01-01

    A reactivity transient without reactor scram was modeled and calculated using analytical expressions for the space distributions of the temperature fields, combined with discrete numerical calculations for the time dependences of thermal power and temperatures. The transient analysis covered the time dependencies of reactivity, global thermal power, fuel heat flux and temperatures in fuel, cladding and cooling water. The model was implemented in Microsoft Office Excel, dividing the Excel file in several separated worksheets for input data, initial steady-state calculations, calculation of parameters non-depending on eigenvalues, eigenvalues determination, calculation of parameters depending on eigenvalues, transient calculation and graphical representation of intermediate and final results. The results show how the thermal power reaches a new equilibrium state due to the negative reactivity feedback derived from the fuel temperature increment. Nevertheless, the reactor mean power increases 40% during the first second and, in the hottest channel, the maximum fuel temperature goes to a significantly high value, slightly above 2100 deg C, after 8 seconds of transient. Consequently, the results confirm that certain degree of fuel damage could be expected in case of a reactor scram failure. Once the basic model has being established the scope of accidents for future analyses can be extended, modifying the nuclear power behavior (reactivity) during transient and the boundary conditions for coolant temperature. A more complex model is underway for an annular fuel element. (author)

  3. Digital reactivity meter

    International Nuclear Information System (INIS)

    Copie, M.; Valantic, B.

    1978-01-01

    Digital reactivity meters (DRM) are mostly used as measuring instruments, e.g. for calibration of control rods, and there are only a few cases of their incorporation into the control systems of the reactors. To move in this direction there is more development work needed. First of all, fast algorithms are needed for inverse kinetics equations to relieve the computer for more important tasks of reactor model solving in real time. The next problem, currently under investigation, is the incorporation of the reactor thermal-hydraulic model into the DRM so that it can be used in the power range. Such an extension of DHM allows presentation not only of the instantaneous reactivity of the system, but also the inserted reactivity can be estimated from the temperature reactivity feed-backs. One of the applications of this concept is the anomalous digital reactivity monitor (ADRN) as part of the reactor protection system. As a solution of the first problem, a fast algorithm for solving the inverse kinetics equations has been implemented in the off-line program RODCAL on CDC 1700 computer and tested for its accuracy by performing different control rod calibrations on the reactor TRIGA

  4. Nash equilibrium strategies of generating companies (Gencos) in the simultaneous operation of active and reactive power market, with considering voltage stability margin

    International Nuclear Information System (INIS)

    Soleymani, S.

    2013-01-01

    Highlights: ► We model the behavior of Gencos in the active and reactive power markets. ► Genco’s strategy is modeled as a bi-level optimization problem. ► The ISO’s market clearing model is modified with applying generator APFs. ► Good forecast of Genco’s information will increase the accuracy of proposed method. ► Obtained profit of Gencos depend on their bidding strategy. - Abstract: As Gencos are responsible for providing active and reactive power generation, they should devise good bidding strategies for energy and reactive power market. The paper describes a method for analyzing the competition among transmission-constrained Gencos with incomplete information. The proposed methodology employs the Supply Function Equilibrium (SFE) for modeling a Genco’s bidding strategy in energy market and uses Expected Payment Function (EPF) to construct a bidding framework in the reactive power market. The problem of finding the optimum strategy of Gencos is modeled as a bi-level optimization problem, where the upper sub-problem represents individual Genco’s payoff and the lower sub-problem solves the ISO’s market clearing problem. The ISO’s market clearing model is modified with applying generator Active Participation Factors to improve the voltage stability margin. The IEEE 39 bus test system is used to verify the effectiveness of the proposed method.

  5. Description of a 20 Kilohertz power distribution system

    Science.gov (United States)

    Hansen, I. G.

    1986-01-01

    A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution link; mulitphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.

  6. Assessment of reactivity devices for CANDU-6 with DUPIC fuel

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    1998-01-01

    Reactivity device characteristics for a CANDU-6 reactor loaded with DUPIC fuel have been assessed. A transport code WIMS-AECL and a three-dimensional diffusion code RFSP were used for the lattice parameter generation and the core calculation, respectively. Three major reactivity devices have been assessed for their inherent functions. For the zone controller system, damping capability for spatial oscillation was investigated. The restart capability of the adjuster system was investigated. The shim operation and power stepback calculation were also performed to confirm the compatibility of the current adjuster rod system. The mechanical control absorber was assessed for the capability to compensate the temperature reactivity feedback following a power reduction. This study has shown that the current reactivity device systems retain their functions when used in a DUPIC fuel CANDU reactor

  7. Impact Study of PMSG-Based Wind Power Penetration on Power System Transient Stability Using EEAC Theory

    Directory of Open Access Journals (Sweden)

    Zhongyi Liu

    2015-11-01

    Full Text Available Wind turbines with direct-driven permanent magnet synchronous generators (PMSGs are widely used in wind power generation. According to the dynamic characteristics of PMSGs, an impact analysis of PMSG-based wind power penetration on the transient stability of multi-machine power systems is carried out in this paper based on the theory of extended equal area criterion (EEAC. Considering the most severe PMSG integration situation, the changes in the system’s equivalent power-angle relationships after integrating PMSGs are studied in detail. The system’s equivalent mechanical input power and the fault period electrical output power curves are found to be mainly affected. The analysis demonstrates that the integration of PMSGs can cause either detrimental or beneficial effects on the system transient stability. It is determined by several factors, including the selection of the synchronous generators used to balance wind power, the reactive power control mode of PMSGs and the wind power penetration level. Two different simulation systems are also adopted to verify the analysis results.

  8. Study on A Control Method of PAPF for Resonance Damping and Harmonics Compensation in Power System

    DEFF Research Database (Denmark)

    Zhou, Fang; Wu, Longhui; Chen, Zhe

    2009-01-01

    In power system, capacitors are widely used to compensate reactive power, which generally cause resonance problems in harmonic distorted network. In this paper, A method of using a parallel active power filter (PAPF) to damp the resonances is proposed. The proposed method is compound with traditi......In power system, capacitors are widely used to compensate reactive power, which generally cause resonance problems in harmonic distorted network. In this paper, A method of using a parallel active power filter (PAPF) to damp the resonances is proposed. The proposed method is compound...... with traditional method, it shows that whether the capacitor current is included in the detecting current of PAPF or not. Also the PAPF with proposed method has strong ability in harmonic compensation. Finally, the experiment results are presented to verify the analysis....

  9. Compensación de potencia reactiva mediante bancos asimétricos de capacitores; Reactive Power Compensation by Unbalanced Capacitor Banks

    Directory of Open Access Journals (Sweden)

    Ignacio Pérez Abril

    2011-02-01

    Full Text Available A pesar de que los sistemas de distribución primaria y secundaria son desbalanceados por naturaleza, lacompensación de potencia reactiva en estos sistemas, se realiza comúnmente mediante bancos decondensadores trifásicos balanceados. En este trabajo se presenta la formulación general para el problemade compensación de potencia reactiva en sistemas desbalanceados mediante bancos de condensadoresdesbalanceados. Se presentan cuatro ejemplos de compensación en el secundario de bancos desbalanceadosde transformadores monofásicos. Todos los ejemplos muestran que la compensación por bancosdesbalanceados de capacitores incrementa los beneficios con respecto al uso de bancos balanceados  In spite of the fact that primary and secondary distribution systems are unbalanced by nature, thereactive power compensation on these systems is commonly developed by the use of balanced capacitorbanks. In this paper, the general formulation for the reactive power compensation problem onunbalanced systems with unbalanced capacitor banks is developed. Four examples of reactive powercompensation on the secondary of unbalanced three-phase transformers banks are presented. All theexamples show that the compensation by unbalanced capacitor banks increases the active power lossessaving as well as reduce the transformer’s load and contributes to balance the line currents when the loadis unbalanced.

  10. Core concept of fast power reactor with zero sodium void reactivity

    International Nuclear Information System (INIS)

    Matveev, V.I.; Chebeskov, A.N.; Krivitsky, I.Y.

    1991-01-01

    The paper presents a core concept of BN-800 - type fast power reactor with zero sodium void reactivity (SVR). Consideration is given to the layout-and some design features of such a core. Some considerations on the determination of the required SVR value as one of the fast reactor safety criteria in accidents with coolant boiling are presented. Some methodical considerations an the development of calculation models that give a correct description of the new core features are stated. The results of the integral SVR calculation studies are included. reactivity excursions under different scenarios of sodium boiling are estimated, some corrections into the calculated SVR value are discussed. (author)

  11. Influence of void effects on reactivity of coupled fast-thermal system HERBE

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milovanovic, S.; Milovanovic, T.; Cuknic, O.

    1997-01-01

    Coupled fast-thermal system HERBE at the experimental zero power heavy water reactor RB is a system with the significant effects of the neutron leakage and neutron absorption. Presence of a coolant void introduces a new structure in an extremely heterogeneous core. In those conditions satisfactory results of the calculation are acquired only using specified space-energy homogenization procedure. In order to analyze transient appearances and accidental cases of the reactor systems, a procedure for modeling of influence of moderator and coolant loss on reactivity ('void effect') is developed. Reduction of the moderator volume fraction in some fuel channels due to air gaps or steam generation during the accidental moderator boiling, restricts validity of the diffusion approximation in the reactor calculations. In cases of high neutron flux gradients, which are consequence of high neutron absorption, application of diffusion approximation is questionable too. The problem may be solved using transport or Monte Carlo methods, but they are not acceptable in the routine applications. Applying new techniques based on space-energy core homogenization, such as the SPH method or the discontinuity factor method, diffusion calculations become acceptable. Calculations based on the described model show that loss of part of moderator medium introduce negative reactivity in the HERBE system. Calculated local void reactivity coefficients are used in safety analysis of hypothetical accidents

  12. Modeling of unified power quality conditioner (UPQC) in distribution systems load flow

    International Nuclear Information System (INIS)

    Hosseini, M.; Shayanfar, H.A.; Fotuhi-Firuzabad, M.

    2009-01-01

    This paper presents modeling of unified power quality conditioner (UPQC) in load flow calculations for steady-state voltage compensation. An accurate model for this device is derived to use in load flow calculations. The rating of this device as well as direction of reactive power injection required to compensate voltage to the desired value (1 p.u.) is derived and discussed analytically and mathematically using phasor diagram method. Since performance of the compensator varies when it reaches to its maximum capacity, modeling of UPQC in its maximum rating of reactive power injection is derived. The validity of the proposed model is examined using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of UPQC for under voltage problem mitigation in the distribution network is determined. The results show the validity of the proposed model for UPQC in large distribution systems.

  13. Modeling of unified power quality conditioner (UPQC) in distribution systems load flow

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, M.; Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran); Fotuhi-Firuzabad, M. [Department of Electrical Engineering, Sharif University of Technology, Tehran (Iran)

    2009-06-15

    This paper presents modeling of unified power quality conditioner (UPQC) in load flow calculations for steady-state voltage compensation. An accurate model for this device is derived to use in load flow calculations. The rating of this device as well as direction of reactive power injection required to compensate voltage to the desired value (1 p.u.) is derived and discussed analytically and mathematically using phasor diagram method. Since performance of the compensator varies when it reaches to its maximum capacity, modeling of UPQC in its maximum rating of reactive power injection is derived. The validity of the proposed model is examined using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of UPQC for under voltage problem mitigation in the distribution network is determined. The results show the validity of the proposed model for UPQC in large distribution systems. (author)

  14. Development of automated controller system for controlling reactivity by using FPGA in research reactor application

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Mohd Idris Taib

    2012-01-01

    The scope for this research paper is to produce a detail design for Development of Automated Controller System for Controlling Reactivity by using FPGA in Research Reactor Application for high safety nuclear operation. The development of this project including design, purchasing, fabrication, installation, testing and validation and verification for one prototype automated controller system for controlling reactivity in industry local technology for human capacity and capability development towards the first Nuclear Power Programme (NPP) in Malaysia. The specific objectives of this research paper are to Development of Automated Controller System for Controlling Reactivity (ACSCR) in Research Reactor Application (PUSPATI TRIGA Reactor) by using simultaneous movement method; To design, fabricate and produce the accuracy of Control Rods Drive Mechanism to 0.1 mm resolution using a stepper motor as an actuator; To design, install and produce the system response to be more faster by using Field Programmable Gate Array (FPGA) and High Speed Computer; and to improve the Safety Level of the Research Reactor in high safety nuclear operation condition. (author)

  15. Dynamic control modeling and simulation of a UPFC–SMES compensator in power systems

    Directory of Open Access Journals (Sweden)

    Saravanan Kandasamy

    2015-12-01

    Full Text Available Flexible AC Transmission Systems (FACTS is granting a new group of advanced power electronic devices emerging for the enhancement of the power system performance. Unified Power Flow Controller (UPFC is a recent version of FACTS devices for power system applications. The back-up energy supply system incorporated with UPFC is providing a complete control of real and reactive power at the same time and hence is competent to improve the performance of an electrical power system. In this article, backup energy supply units such as superconducting magnetic energy storage (SMES are integrated with UPFC. In addition, comparative exploration of UPFC–battery, UPFC–UC and UPFC–SMES performance is evaluated through the vibrant simulation by using MATLAB/Simulink software.

  16. Power system reliability enhancement by using PowerformerTM

    Directory of Open Access Journals (Sweden)

    Rahmat-Allah Hooshmand

    2009-01-01

    Full Text Available A high-voltage generator PowerformerTM is a new generation of the AC generators. The most significant advantages of these PowerformerTM are their direct connection to high-voltage grid, higher availability, and more reactive power margin, short term overloading capacity and removing the power transformer from the structure of the power plant. In this paper, the installation effect of these generators on the power system reliability is investigated. The amount of the effects depends on the type and location of the power plant, location of the PowerformerTM, the size of load and network topology. For this purpose, in the 6-bus IEEE RBTS system, the conventional generators are replaced by these new PowerformerTM and then, the reliability indices are evaluated. The simulation results show that the reliability indices such as the expected duration of load curtailment (EDLC and the expected energy not served (EENS are improved. .

  17. Radial distribution of power starting from the reactivity using nodal schemes of second and third order

    International Nuclear Information System (INIS)

    Delfin L, A.; Alonso V, G.; Valle G, E. del

    2003-01-01

    In this work two nodal schemes of finite element are presented, one of second and the other of third order of accurate that allow to determine the radial distribution of power starting from the corresponding reactivities.The schemes here developed were obtained taking as starting point the equation developed by Driscoll et al, the one which is based on the diffusion approach of 1-1/2 energy groups. This equation relates the power fraction of an assemble with their reactivity and with the power fractions and reactivities of the assemblies that its surround it. Driscoll and collaborators they solve in form approximate such equation supposing that the reactivity of each assemble it is but a lineal function of the burnt one of the fuel. The spatial approach carries out it with the classic technique of finite differences centered in mesh. Nevertheless that the algebraic system to which its arrive it can be solved without more considerations introduce some additional suppositions and adjustment parameters that it allows them to predict results comparable to those contributed by three dimensions analysis and this way to reduce the one obtained error when its compare their results with those of a production code like CASMO. Also in the two schemes that here are presented the same approaches of Driscoll were used being obtained errors of the one 10% and of 5% for the second schemes and third order respectively for a test case that it was built starting from data of the Cycle 1 of the Unit 1 of the Laguna Verde Nucleo electric plant. These errors its were obtained when comparing with a computer program based on the matrix response method. It is sought to have this way a quick and efficient tool for the multicycle analysis in the fuel management. However, this model presents problems in the appropriate prediction of the average burnt of the nucleus and of the burnt one by lot. (Author)

  18. Microcomputer-based equipment-control and data-acquisition system for fission-reactor reactivity-worth measurements

    International Nuclear Information System (INIS)

    McDowell, W.P.; Bucher, R.G.

    1980-01-01

    Material reactivity-worth measurements are one of the major classes of experiments conducted on the Zero Power research reactors (ZPR) at Argonne National Laboratory. These measurements require the monitoring of the position of a servo control element as a sample material is positioned at various locations in a critical reactor configuration. In order to guarantee operational reliability and increase experimental flexibility for these measurements, the obsolete hardware-based control unit has been replaced with a microcomputer based equipment control and data acquisition system. This system is based on an S-100 bus, dual floppy disk computer with custom built cards to interface with the experimental system. To measure reactivity worths, the system accurately positions samples in the reactor core and acquires data on the position of the servo control element. The data are then analyzed to determine statistical adequacy. The paper covers both the hardware and software aspects of the design

  19. Microcomputer-based equipment-control and data-acquisition system for fission-reactor reactivity-worth measurements

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, W.P.; Bucher, R.G.

    1980-01-01

    Material reactivity-worth measurements are one of the major classes of experiments conducted on the Zero Power research reactors (ZPR) at Argonne National Laboratory. These measurements require the monitoring of the position of a servo control element as a sample material is positioned at various locations in a critical reactor configuration. In order to guarantee operational reliability and increase experimental flexibility for these measurements, the obsolete hardware-based control unit has been replaced with a microcomputer based equipment control and data acquisition system. This system is based on an S-100 bus, dual floppy disk computer with custom built cards to interface with the experimental system. To measure reactivity worths, the system accurately positions samples in the reactor core and acquires data on the position of the servo control element. The data are then analyzed to determine statistical adequacy. The paper covers both the hardware and software aspects of the design.

  20. Calculation methods of reactivity using derivatives of nuclear power and Filter fir; Metodos para o calculo da reatividade usando derivadas da potencia nuclear e o filtro FIR

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Daniel Suescun

    2007-07-01

    This work presents two new methods for the solution of the inverse point kinetics equation. The first method is based on the integration by parts of the integral of the inverse point kinetics equation, which results in a power series in terms of the nuclear power in time dependence. Applying some conditions to the nuclear power, the reactivity is represented as first and second derivatives of this nuclear power. This new calculation method for reactivity has special characteristics, amongst which the possibility of using different sampling periods, and the possibility of restarting the calculation, after its interruption associated it with a possible equipment malfunction, allowing the calculation of reactivity in a non-continuous way. Apart from this reactivity can be obtained with or without dependency on the nuclear power memory. The second method is based on the Laplace transform of the point kinetics equations, resulting in an expression equivalent to the inverse kinetics equation as a function of the power history. The reactivity can be written in terms of the summation of convolution with response to impulse, characteristic of a linear system. For its digital form the Z-transform is used, which is the discrete version of the Laplace transform. In this method it can be pointed out that the linear part is equivalent to a filter named Finite Impulse Response (Fir). The Fir filter will always be, stable and non-varying in time, and, apart from this, it can be implemented in the non-recursive way. This type of implementation does not require feedback, allowing the calculation of reactivity in a continuous way. The proposed methods were validated using signals with random noise and showing the relationship between the reactivity difference and the degree of the random noise. (author)

  1. Strategies for reactive power control in wind farms with STATCOM

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Gonzalez, Francisco [Catalonia Institute for Energy Research (IREC), Barcelona (Spain); Martinez-Rojas, Marcela [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Barcelona (Spain). Dept. d' Enginyeria Electrica; Sumper, Andreas; Gomis-Bellmunt, Oriol [Catalonia Institute for Energy Research (IREC), Barcelona (Spain); Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Barcelona (Spain). Dept. d' Enginyeria Electrica

    2010-07-01

    This paper presents two strategies for reactive current control in wind farms with STATCOM under fault ride-through (FRT) situations. First, the technical requirements of the Spanish and German grid codes related to the reactive current under FRT situations are presented. Second, STATCOM and its control system are introduced. Third, the modeling done of the wind farm, the STATCOM, and the network are presented. Finally, control strategies for reactive current delivered by the park to the network under FRT situations are shown. The result of the implementation of each control strategy is shown by simulation. (orig.)

  2. EBRPOCO - a program to calculate detailed contributions of power reactivity components of EBR-II

    International Nuclear Information System (INIS)

    Meneghetti, D.; Kucera, D.A.

    1981-01-01

    The EBRPOCO program has been developed to facilitate the calculations of the power coefficients of reactivity of EBR-II loadings. The program enables contributions of various components of the power coefficient to be delineated axially for every subassembly. The program computes the reactivity contributions of the power coefficients resulting from: density reduction of sodium coolant due to temperature; displacement of sodium coolant by thermal expansions of cladding, structural rods, subassembly cans, and lower and upper axial reflectors; density reductions of these steel components due to temperature; displacement of bond-sodium (if present) in gaps by differential thermal expansions of fuel and cladding; density reduction of bond-sodium (if present) in gaps due to temperature; free axial expansion of fuel if unrestricted by cladding or restricted axial expansion of fuel determined by axial expansion of cladding. Isotopic spatial contributions to the Doppler component my also be obtained. (orig.) [de

  3. Power system stabilizers based on distributed energy resources for damping of inter-area oscillations

    Directory of Open Access Journals (Sweden)

    Stefanov Predrag Č.

    2014-01-01

    Full Text Available This paper deals with inter-area power oscillations damping enhancement by distributed energy resources contained in typical micro grid. Main idea behind this work is to use distributed generation and distributed storage, such as battery energy storage to mimic conventional power system stabilizer, but with regulating active power output, rather than reactive power, as in standard power system stabilizer realization. The analysis of the small signal stability is established for four-machine, two-area system, with inverter based micro grids in each area. Dynamic simulation results are included in this work and they show that proposed controller provides additional damping effect to this test system.

  4. High Voltage AC underground cable systems for power transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2016-01-01

    researching electrical engineering topics related to using underground cables for power transmission at EHV level and including the 420 kV level. The research topics were laid down by ET/AAU and Energinet.dk in the DANPAC (DANish Power systems with AC Cables) research project. The main topics are discussed...... on the basis of 39 references published by ET/AAU and Energinet.dk. Part I of the paper explains the events that lead to the research project, reactive power compensation, modelling for transient studies, including field measurements and improvements to the existing models, and temporary overvoltages due...... to resonances. Part II covers transient phenomena, harmonics in cables, system modelling for different phenomena, main and backup protections in cable-based networks, online fault detection and future trends....

  5. High Voltage AC underground cable systems for power transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2016-01-01

    researching electrical engineering topics related to using underground cables for power transmission at EHV level and including the 420 kV level. The research topics were laid down by ET/AAU and Energinet.dk in the DANPAC (DANish Power systems with Ac Cables) research project. The main topics are discussed...... on the basis of 39 references published by ET/AAU and Energinet.dk. Part I of the paper explains the events that lead to the research project, reactive power compensation, modelling for transient studies, including field measurements and improvements to the existing models, and temporary overvoltages due...... to resonances. Part II covers transient phenomena, harmonics in cables, system modelling for different phenomena, main and backup protections in cable-based networks, online fault detection and future trends....

  6. Verifying Temporal Properties of Reactive Systems by Transformation

    OpenAIRE

    Hamilton, Geoff

    2015-01-01

    We show how program transformation techniques can be used for the verification of both safety and liveness properties of reactive systems. In particular, we show how the program transformation technique distillation can be used to transform reactive systems specified in a functional language into a simplified form that can subsequently be analysed to verify temporal properties of the systems. Example systems which are intended to model mutual exclusion are analysed using these techniques with...

  7. VAr reserve concept applied to a wind power plant

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Philip C.; Rodriguez, Pedro

    2011-01-01

    to wind power plants. This paper proposes two different VAr reserve control strategies for a wind power plant. The amount of dynamic VAr available most of the operation time, makes the wind power plant (WPP) a good candidate to include a VAr reserve management system. Two different ways of implementing...... a VAr management system are proposed and analyzed. Such a reactive power reserve may be provided by the wind power plant since the amount of reactive power installed for most active power working points exceeds the demand required by the grid operator. Basically, this overrated reactive power capacity...... is a consequence of sizing wind turbine facilities for maximum active power level. The reactive power losses, due to active power transportation inside the plant (normally two transformers), and P-Q wind turbine characteristics define the P-Q reserve chart. By utilizing the intrinsic overrated reactive power...

  8. Parametric identification of an asynchronous machine by the reactive power method; Identificacao parametrica de uma maquina assincrona pelo metodo da potencia reativa

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandre Alves Sampaio e

    1996-07-01

    The obtention of the electrical and mechanical parameters of a squirrel-cage induction motor is investigated. Two methods of identification are studied: the reactive power method, used to determine the electrical parameters and an acceleration method on a startup test used to to find the mechanical ones. The method of reactive power is developed by analysing the machine steady state operation. In this analysis, a relationship between the electrical parameters and the reactive power is obtained. A minimization algorithm is used to determine the parameters based on this relationship. The acceleration method uses an acquisition of the transient variables, which is used in a recursive least square method furnishing the mechanical parameters. Both of methods are implemented on a special hardware and software system, consisting of sensors and A/D boards that make a digital acquisition of voltage, current and speed values. The validation procedures for the method and parameters are based on comparing between the real and simulated evaluation of the dynamical behavior of the motor in a startup test. The skin-effect influence over some of the motor parameters was also discussed. (author)

  9. Comprehensive Cost Minimization in Distribution Networks Using Segmented-time Feeder Reconfiguration and Reactive Power Control of Distributed Generators

    DEFF Research Database (Denmark)

    Chen, Shuheng; Hu, Weihao; Chen, Zhe

    2016-01-01

    In this paper, an efficient methodology is proposed to deal with segmented-time reconfiguration problem of distribution networks coupled with segmented-time reactive power control of distributed generators. The target is to find the optimal dispatching schedule of all controllable switches...... and distributed generators’ reactive powers in order to minimize comprehensive cost. Corresponding constraints, including voltage profile, maximum allowable daily switching operation numbers (MADSON), reactive power limits, and so on, are considered. The strategy of grouping branches is used to simplify...... (FAHPSO) is implemented in VC++ 6.0 program language. A modified version of the typical 70-node distribution network and several real distribution networks are used to test the performance of the proposed method. Numerical results show that the proposed methodology is an efficient method for comprehensive...

  10. An Optimized Reactive Power Control of Distributed Solar Inverters in Low Voltage Networks

    DEFF Research Database (Denmark)

    Demirok, Erhan; Sera, Dezso; Teodorescu, Remus

    2011-01-01

    This study examines the reactive power ancillary services of solar inverters which are connected to low voltage (LV) distribution networks by giving attention to the grid voltage support service and grid losses. Two typical reference LV distribution network models as suburban and farm...... are introduced from the literature in order to evaluate contribution of two static droop strategies cosφ(P) and Q(U) on the grid voltage. Photovoltaic (PV) hosting capacities of the suburban and farm networks are estimated and the most predominant limitations of connecting more solar inverters are emphasized...... for each network type. Regarding the overloading of MV/LV distribution transformers, overloading of lines and the grid overvoltage limitations, new local grid voltage support methods (cosφ(P,U) and Q(U,P)) are also proposed. Resulting maximum allowable penetration levels with different reactive power...

  11. Reactivity control of nuclear power reactors: new options

    International Nuclear Information System (INIS)

    Alcala, F.

    1984-01-01

    Some actual aspects (referring to economy, non-proliferation and environmental impact) of nuclear power reactors has been analyzed from the point of view of the reactivity control physics. Specially studied have been the physical mechanisms related with the spectral shift control method and their general positive effects on those aspects. The analysis carried out suggested the application of the above method of control to reactors with non-hydrogenous fuel cells, which are mainly characterized by their high moderator/fuel ratio. Finally three different types of such fuel cells are presented and some results about one of them (belonging to a PHWR controlled by graphite rods) are given. (author)

  12. BN600 reactivity definition

    International Nuclear Information System (INIS)

    Zheltyshev, V.; Ivanov, A.

    2000-01-01

    Since 1980, the fast BN600 reactor with sodium coolant has been operated at Beloyarsk Nuclear Power Plant. The periodic monitoring of the reactivity modifications should be implemented in compliance with the standards and regulations applied in nuclear power engineering. The reactivity measurements are carried out in order to confirm the basic neutronic features of a BN600 reactor. The reactivity measurements are aimed to justify that nuclear safety is provided in course of the in-reactor installation of the experimental core components. Two reactivity meters are to be used on BN600 operation: 1. Digital on-line reactivity calculated under stationary reactor operation on power (approximation of the point-wise kinetics is applied). 2. Second reactivity meter used to define the reactor control rod operating components efficiency under reactor startup and take account of the changing efficiency of the sensor, however, this is more time-consumptive than the on-line reactivity meter. The application of two reactivity meters allows for the monitoring of the reactor reactivity under every operating mode. (authors)

  13. Investigation of extra power loss sharing among photovoltaic inverters caused by reactive power management in distribution networks

    DEFF Research Database (Denmark)

    Demirok, Erhan; Sera, Dezso; Teodorescu, Remus

    2014-01-01

    load and power loss on the feeders and individual inverters. Simplified energy loss evaluation is carried out here by using analytical average loss modeling of 2-level full bridge inverter coupled with network load flow analysis simulating one month period. The study shows that whatever Q control......Grid-connected photovoltaic (PV) inverters tailored with reactive power management feature can support the grid voltage especially when the voltage fluctuates near its admissible limits. Although Q control allows reducing the grid voltage elevation along the distribution feeder, it brings extra...... is selected, extra power loss is not a substantial amount to take into consideration. Similarly, loss difference among the inverters located at the various points is negligible....

  14. Actinide and Xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D.L.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  15. Actinide and xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D. L.; Sailor, W. C.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  16. Actinide and Xenon reactivity effects in ATW high flux systems

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, M. [Univ. of Virginia, Charlottesville, VA (United States); Olson, K.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1995-10-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides.

  17. Impact of PSS and SVC on the Power System Transient Stability

    Directory of Open Access Journals (Sweden)

    Mohammed Omar Benaissa

    2017-06-01

    Full Text Available The Static Var Compensator (SVC is used to improve the stability of the power system because of its role in injecting or absorbing the reactive power in the electrical transmission lines. The Power System Stabilizer (PSS is also a control device which ensures maximum power transfer and thus the stability of the power system enhancement. The PSS has been widely used to damp electromechanical oscillations occur in power systems. If no adequate damping is available, the oscillations will increase leading to instability. The present work is an original contribution to the problem of transient stability in the electrical power system, the authors have made some efforts to illustrate the flexibility and the importance of inserting the SVC alone or with the PSS the fact that maintain the characteristics of the system within acceptable limits in a very short time. The results show that the system has been developed successfully in terms of transient stability in a bi-machine transmission system only with the presence of PSS when a single-phase fault has been occurred, while the presence of SVC is more than essential when a three-phase fault is occurred.

  18. СURRENT FILTERING IN A THREE-PHASE THREE-WIRE POWER SYSTEM AT ASYMMETRIC SINUSOIDAL VOLTAGES

    Directory of Open Access Journals (Sweden)

    M. Yu. Artemenko

    2018-04-01

    Full Text Available Purpose. Investigation of the optimal current distribution between source, shunt active filter and reactive compensator of a three-phase three-wire system that provides consumption of a sinusoidal symmetric current under asymmetric source voltages with minimal power losses was provided. Methodology. The tasks were solved by conducting theoretical and experimental studies. The main provisions of the theory of electrical circuits, the apparatus of mathematical analysis, methods for solving linear differential and algebraic equations, elements of matrix and complex calculus and vector algebra are used. During the development, modern methods and software of computer simulation of electrical engineering complexes and dynamic systems were applied: Matlab-Simulink, MATHCAD. Originality. The principle of compensating current distribution between PAF and reactive compensator of a three-phase three-wire power system with asymmetric sinusoidal voltage was proposed at which the input current is equal to the positive-sequence active current and rms value of PAF current is minimal. The feasibility to compensate the inactive sinusoidal Fryze current by reactive elements under arbitrary combination of load and source parameters was proved and expression for direct calculation of the reactive compensator parameters for generation of inactive Fryze current in the source unbalanced mode was obtained. Practical value. The simulative example for transmission line load showed that combined application of PAF and reactive compensator with the specified distribution of compensating currents ensured a reduction of power losses in 3.273 times and rms value of the SAF current is 12.9 % of rms value total compensation current.

  19. Measurements of the Reactivity Properties of the Aagesta Nuclear Power Reactor at Zero Power

    Energy Technology Data Exchange (ETDEWEB)

    Bernander, G

    1967-07-15

    The moderator level and temperature coefficients of reactivity and control rod differential reactivity worths have been determined at zero power by means of period measurements. The moderator level coefficient and the corresponding critical level have been measured for the 32, 68 and 136 fuel assembly cores at room temperature for cores with and without control rods. From these results the worths of control rods have been derived. HETERO calculations give up to 15 % lower values than the experimental results. The cold fresh core has an excess reactivity of 9.0 {+-} 0.2 %. The temperature coefficient and differential control rod worths were measured for the fully loaded core with filled tank in the temperature range between 30 and 210 deg C. Critical positions as a function of temperature were obtained for the corresponding control rod groups. No relevant calculations of the temperature coefficient for comparison with the experimental values have yet been made, but the experimental results together with measured critical control rod positions give good opportunities to check calculational programs. HETERO has been shown in these cases to reproduce differential control rod worths and critical positions fairly well. However, a certain underestimation of the rod effectiveness is quite noticeable. The relative increase in control rod effectiveness with a temperature change from 20 to 220 deg C has been estimated to be 0.29 {+-} 0.06.

  20. Reactivation of nuclear power plant construction projects. Plant status, policy issues and regulatory options

    International Nuclear Information System (INIS)

    Spangler, M.B.

    1986-07-01

    Prior to the TMI-2 accident on March 28, 1979, four nuclear power plant units that had previously been issued a construction permit were cancelled, principally because of reduced projections of regional power demand. Since that time, an additional 31 units with CPs have been cancelled and eight units deferred. On December 23, 1985 one of the deferred units (Limerick-2) was reactivated and construction resumed. The primary objective of this policy study is to identify the principal issues requiring office-level consideration in the event of reactivation of the construction of one or more of the nuclear power plants falling into two categories: (1) LWR units issued a construction permit whose construction has been cancelled, and (2) LWR units whose construction has been deferred. The study scope is limited to identifying regulatory issues or questions deserving analysis rather than providing, at this time, answers or recommended actions. Five tasks are addressed: a tabulation and discussion of the status of all cancelled and deferred LWR units; and identification of potential safety and environmental issues; an identification of regulatory or policy issues and needed information to determine the desirability of revising certain rules and policies; and identification of regulatory options and decision criteria; and an identification of decision considerations in determining staff requirements and organizational coordination of LWR reactivation policy and implementation efforts. 41 refs

  1. Transient voltage control of a DFIG-based wind power plant for suppressing overvoltage using a reactive current reduction loop

    Directory of Open Access Journals (Sweden)

    Geon Park

    2016-01-01

    Full Text Available This paper proposes a transient voltage control scheme of a doubly fed induction generator (DFIG-based wind power plant (WPP using a reactive current reduction loop to suppress the overvoltage at a point of interconnection (POI and DFIG terminal after a fault clearance. The change of terminal voltage of a DFIG is monitored at every predefined time period to detect the fault clearance. If the voltage change exceeds a set value, then the reactive current reduction loop reduces the reactive current reference in the DFIG controller using the step function. The reactive current injection of DFIGs in a WPP is rapidly reduced, and a WPP can rapidly suppress the overvoltage at a fault clearance because the reactive current reference is reduced. Using an electromagnetic transients program–released version (EMTP–RV simulator, the performance of the proposed scheme was validated for a model system comprising 20 units of a 5-MW DFIG considering various scenarios, such as fault and wind conditions. Test results show that the proposed scheme enables a WPP to suppress the overvoltage at the POI and DFIG terminal within a short time under grid fault conditions.

  2. Structural materials challenges for fusion power systems

    International Nuclear Information System (INIS)

    Kurtz, Richard J.

    2009-01-01

    Full text: Structural materials in a fusion power system must function in an extraordinarily demanding environment that includes various combinations of high temperatures, reactive chemicals, time-dependent thermal and mechanical stresses, and intense damaging radiation. The fusion neutron environment produces displacement damage equivalent to displacing every atom in the material about 150 times during its expected service life, and changes in chemical composition by transmutation reactions, which includes creation of reactive and insoluble gases. Fundamental materials challenges that must be resolved to effectively harness fusion power include (1) understanding the relationships between material strength, ductility and resistance to cracking, (2) development of materials with extraordinary phase stability, high-temperature strength and resistance to radiation damage, (3) establishment of the means to control corrosion of materials exposed to aggressive environments, (4) development of technologies for large-scale fabrication and joining, and (5) design of structural materials that provide for an economically attractive fusion power system while simultaneously achieving safety and environmental acceptability goals. The most effective approach to solve these challenges is a science-based effort that couples development of physics-based, predictive models of materials behavior with key experiments to validate the models. The U.S. Fusion Materials Sciences program is engaged in an integrated effort of theory, modeling and experiments to develop structural materials that will enable fusion to reach its safety, environmental and economic competitiveness goals. In this presentation, an overview of recent progress on reduced activation ferritic/martensitic steels, nanocomposited ferritic alloys, and silicon carbide fiber reinforced composites for fusion applications will be given

  3. Impact of seasonal forcing on reactive ecological systems.

    Science.gov (United States)

    Vesipa, Riccardo; Ridolfi, Luca

    2017-04-21

    Our focus is on the short-term dynamics of reactive ecological systems which are stable in the long term. In these systems, perturbations can exhibit significant transient amplifications before asymptotically decaying. This peculiar behavior has attracted increasing attention. However, reactive systems have so far been investigated assuming that external environmental characteristics remain constant, although environmental conditions (e.g., temperature, moisture, water availability, etc.) can undergo substantial changes due to seasonal cycles. In order to fill this gap, we propose applying the adjoint non-modal analysis to study the impact of seasonal variations of environmental conditions on reactive systems. This tool allows the transient dynamics of a perturbation affecting non-autonomous ecological systems to be described. To show the potential of this approach, a seasonally forced prey-predator model with a Holling II type functional response is studied as an exemplifying case. We demonstrate that seasonalities can greatly affect the transient dynamics of the system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 10 KWe dual-mode space nuclear power system for military and scientific applications

    International Nuclear Information System (INIS)

    Malloy, J.; Westerman, K.; Rochow, R.; Scoles, S.

    1992-01-01

    This paper discusses a 10 KWe dual-mode space power system concept which has been identified and is based on INEL's Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) concept. This power system will enhance user capabilities by providing reliable electric power and by providing two propulsion systems; electric power for an arc-jet electric propulsion system and direct thrust by heating hydrogen propellant inside the reactor. The low thrust electric thrusters allow efficient station keeping and long-term maneuvering. This paper will focus on the nuclear power system design, including: the reactor with its UO 2 fuel in tungsten clad, 36 thermionic heat pipe modules (THPMs) which produce electricity within the reactor and remove waste heat, radiation shielding, waste heat radiators, and reactivity control systems. The use of non-vented fuel elements for short lifetime missions (under five years) will be described

  5. Integral Plus Resonant Sliding Mode Direct Power Control for VSC-HVDC Systems under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Weipeng Yang

    2017-10-01

    Full Text Available An integral plus resonant sliding mode direct power control (IRSMC DPC strategy for voltage source converter high voltage direct current (VSC-HVDC systems under unbalanced grid voltage conditions is proposed in this paper. Through detailed instantaneous power flow analysis, a generalized power compensation method, by which the ratio between the amplitude of active and reactive power ripples can be controlled continuously, is obtained. This enables the system to provide flexible power control, so that the desired performance of the system on both the ac and dc sides can be attained under different operating conditions. When the grid voltage is unbalanced, one or both of the active and reactive power terms contain ripples, oscillating at twice the grid frequency, to obtain non-distorted ac current. A power controller consisting of the proportional, integral and resonant control laws is designed using the sliding mode control approach, to achieve accurate power control objective. Simulation studies on a two-terminal VSC-HVDC system using MATLAB/SIMULINK (R2013b, Mathworks, Natick, MA, USA are conducted to verify the effectiveness of the IRSMC DPC strategy. The results show that this strategy ensures satisfactory performance of the system over a wide range of operating conditions.

  6. Development of an Optimal Power Control Scheme for Wave-Offshore Hybrid Generation Systems

    Directory of Open Access Journals (Sweden)

    Seungmin Jung

    2015-08-01

    Full Text Available Integration technology of various distribution systems for improving renewable energy utilization has been receiving attention in the power system industry. The wave-offshore hybrid generation system (HGS, which has a capacity of over 10 MW, was recently developed by adopting several voltage source converters (VSC, while a control method for adopted power conversion systems has not yet been configured in spite of the unique system characteristics of the designated structure. This paper deals with a reactive power assignment method for the developed hybrid system to improve the power transfer efficiency of the entire system. Through the development and application processes for an optimization algorithm utilizing the real-time active power profiles of each generator, a feasibility confirmation of power transmission loss reduction was implemented. To find the practical effect of the proposed control scheme, the real system information regarding the demonstration process was applied from case studies. Also, an evaluation for the loss of the improvement rate was calculated.

  7. A method for on-line reactivity monitoring in nuclear reactors

    International Nuclear Information System (INIS)

    Dulla, S.; Nervo, M.; Ravetto, P.

    2014-01-01

    Highlights: • The problem of the on-line monitoring of reactivity in a source-free nuclear reactor is considered. • A relationship between the system stable period and the power, its derivative and its integral is derived. • The reactivity can be reconstructed at each time instant from the measured power-related quantities. • A study on the sensitivity of the reactivity to the uncertainty on the values of the integral parameters is performed. • The spatial effects are investigated by applying the method to the interpretation of flux signals. - Abstract: In the present work the problem of the on-line monitoring of the reactivity in a source-free nuclear reactor is considered. The method is based on the classic point kinetic model of reactor physics. A relationship between the instantaneous value of the system stable period and the values of the neutron flux amplitude (or the power), of its derivative and of the integral convolution term determining the instantaneous value of the effective delayed neutron concentration is derived. The reactivity can then be evaluated through the application of the inhour equation, assuming the effective delayed neutron fraction and prompt generation time are known from independent measurements. Since the power related quantities can be assumed to be experimental observables at each instant, the reactivity can be easily reconstructed. The method is tested at first through the interpretation of power histories simulated by the solution of the point kinetic equations; the effect of the time interval between power detections on the accuracy is studied, proving the excellent performance of the procedure. The work includes also a study on the sensitivity of the reactivity forecast to the uncertainty on the values of the effective delayed neutron fraction and prompt generation time. The spatial effects are investigated by applying the method to the interpretation of flux evolution histories generated by a numerical code solving

  8. An architecture for object-oriented intelligent control of power systems in space

    Science.gov (United States)

    Holmquist, Sven G.; Jayaram, Prakash; Jansen, Ben H.

    1993-01-01

    A control system for autonomous distribution and control of electrical power during space missions is being developed. This system should free the astronauts from localizing faults and reconfiguring loads if problems with the power distribution and generation components occur. The control system uses an object-oriented simulation model of the power system and first principle knowledge to detect, identify, and isolate faults. Each power system component is represented as a separate object with knowledge of its normal behavior. The reasoning process takes place at three different levels of abstraction: the Physical Component Model (PCM) level, the Electrical Equivalent Model (EEM) level, and the Functional System Model (FSM) level, with the PCM the lowest level of abstraction and the FSM the highest. At the EEM level the power system components are reasoned about as their electrical equivalents, e.g, a resistive load is thought of as a resistor. However, at the PCM level detailed knowledge about the component's specific characteristics is taken into account. The FSM level models the system at the subsystem level, a level appropriate for reconfiguration and scheduling. The control system operates in two modes, a reactive and a proactive mode, simultaneously. In the reactive mode the control system receives measurement data from the power system and compares these values with values determined through simulation to detect the existence of a fault. The nature of the fault is then identified through a model-based reasoning process using mainly the EEM. Compound component models are constructed at the EEM level and used in the fault identification process. In the proactive mode the reasoning takes place at the PCM level. Individual components determine their future health status using a physical model and measured historical data. In case changes in the health status seem imminent the component warns the control system about its impending failure. The fault isolation

  9. Power conditioning system topology for grid integration of wind and fuell cell energy

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2006-12-01

    Full Text Available This paper shows the topology of the hybrid grid-connected power system and the performances of the front-end three-phase power inverter. The renewable sources of the hybrid power system consist of a solid oxide fuel cell and a wind-turbine. This type of combination is the most efficient one. The proposed topology benefits of the one common DC-AC inverter which injects the generated power into the grid. The architecture diminishes the cost of the power conditioning system. Moreover, due to the power balance control of the entire power conditioning system the bulk dc link electrolytic capacitor is replaced with a small plastic film one. The final power conditioning system has the following advantages: independent control of the reactive power, minimize harmonic current distortion offering a nearly unity power factor operation (0,998 operation capability, dc link voltage regulation (up to 5% ripple in the dc-link voltage in any operated conditions, fast disturbance compensation capability, high reliability, and low cost. The experimental test has been performed and the performances of the grid power inverter are shown.

  10. High-Performance Control of Paralleled Three-Phase Inverters for Residential Microgrid Architectures Based on Online Uninterruptable Power Systems

    DEFF Research Database (Denmark)

    Zhang, Chi; Guerrero, Josep M.; Vasquez, Juan Carlos

    2015-01-01

    In this paper, a control strategy for the parallel operation of three-phase inverters forming an online uninterruptible power system (UPS) is presented. The UPS system consists of a cluster of paralleled inverters with LC filters directly connected to an AC critical bus and an AC/DC forming a DC...... bus. The proposed control scheme is performed on two layers: (i) a local layer that contains a “reactive power vs phase” in order to synchronize the phase angle of each inverter and a virtual resistance loop that guarantees equal power sharing among inverters; (ii) a central controller that guarantees...... synchronization with an external real/fictitious utility, and critical bus voltage restoration. Constant transient and steady-state frequency, active, reactive and harmonic power sharing, and global phase-locked loop resynchronization capability are achieved. Detailed system topology and control architecture...

  11. Design and synthesis of reactive separation systems

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, M.F.

    1992-01-01

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  12. Object-Oriented Economic Power Dispatch of Electrical Power System with minimum pollution using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    T. Bouktir

    2005-06-01

    Full Text Available This paper presents solution of optimal power flow (OPF problem of electrical power system via a genetic algorithm of real type. The objective is to minimize the total fuel cost of generation and environmental pollution caused by fossil based thermal generating units and also maintain an acceptable system performance in terms of limits on generator real and reactive power outputs, bus voltages, shunt capacitors/reactors, transformers tap-setting and power flow of transmission lines. CPU times can be reduced by decomposing the optimization constraints to active constraints that affect directly the cost function manipulated directly the GA, and passive constraints such as generator bus voltages and transformer tap setting maintained in their soft limits using a conventional constraint load flow. The algorithm was developed in an Object Oriented fashion, in the C++ programming language. This option satisfies the requirements of flexibility, extensibility, maintainability and data integrity. The economic power dispatch is applied to IEEE 30-bus model system (6-generator, 41-line and 20-load. The numerical results have demonstrate the effectiveness of the stochastic search algorithms because its can provide accurate dispatch solutions with reasonable time. Further analyses indicate that this method is effective for large-scale power systems.

  13. Voltage and reactive power in the 380/220 kV power network of the new German Laender - state and prospects. Spannung und Blindleistung im 380/220-kV-Verbundnetz der neuen Bundeslaender - Stand und Ausblick

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, M; Luettig, K; Radtke, H [Verbundnetz Elektroenergie AG, Berlin (Germany)

    1991-01-01

    With the preparation for restoring a German power network after nearly 40 years of separate development of the EES of the former DDR, the voltage/reactive power regulation must be examined and evaluated in the conditions of: - parting the connections to the present VES partners Poland and Czechoslovakia with the option of rectification - taking up parallel operation with the adjacent network undertakings of the old West German Laender (Preussen Elektra AG and Bayernwerke AG), ie: combined operation with DVG (superregional network of old West German Laender) and UCPTE (European electrical energy union). The aim is to configure this in the 380/220 kV network of the new German Laender, so that with a regionally compensated reactive power system, the voltage can be kept steady much better at times of heavy and light load, and the network losses can be reduced. (orig./GL).

  14. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    OpenAIRE

    Yoo, Cheol-Hee; Chung, Il-Yop; Yoo, Hyun-Jae; Hong, Sung-Soo

    2014-01-01

    Grid codes in many countries require low-voltage ride-through (LVRT) capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (P...

  15. Development of a faulty reactivity detection system applying a digital H∞ estimator

    International Nuclear Information System (INIS)

    Suzuki, Katsuo; Suzudo, Tomoaki; Nabeshima, Kunihiko

    2004-01-01

    This paper concerns an application of digital optimal H ∞ estimator to the detection of faulty reactivity in real-time. The detection system, fundamentally based on the reactivity balance method, is composed of three modules, i.e. the net reactivity estimator, the feedback reactivity estimator and the reactivity balance circuit. H ∞ optimal filters are used for these two reactivity estimators, and the nonlinear neutronics are taken into consideration especially for the design of the net reactivity estimator. A series of performance test of the detection system are conducted by using numerical simulations of reactor dynamics with the insertion of a faulty reactivity for an experimental fast breeder reactor JOYO. The system detects the typical artificial reactivity insertions during a few seconds with no stationary offset and the accuracy of 0.1 cent, and is satisfactory for its practical use. (author)

  16. Reactivity considerations for the on-line refuelling of a pebble bed modular reactor—Illustrating safety for the most reactive core fuel load

    International Nuclear Information System (INIS)

    Reitsma, Frederik

    2012-01-01

    In the multi-pass fuel management scheme employed for the pebble bed modular reactor the fuel pebbles are re-circulated until they reach the target burn-up. The rate at which fresh fuel is loaded and burned fuel is discharged is a result of the core neutronics cycle analysis but in practice (on the plant) this has to be controlled and managed by the fuel handling and storage system and use of the burnup measurement system. The excess reactivity is the additional reactivity available in the core during operating conditions that is the result of loading a fuel mixture in the core that is more reactive (less burned) than what is required to keep the reactor critical at full power operational conditions. The excess reactivity is balanced by the insertion of the control rods to keep the reactor critical. The excess reactivity allows flexibility in operations, for example to overcome the xenon build up when power is decreased as part of load follow. In order to limit reactivity excursions and to ensure safe shutdown the excess reactivity and thus the insertion depth of the control rods at normal operating conditions has to be managed. One way to do this is by operational procedures. The reactivity effect of long-term operation with the control rods inserted deeper than the design point is investigated and a control rod insertion limit is proposed that will not limit normal operations. The effects of other phenomena that can increase the power defect, such as higher-than-expected fuel temperatures, are also introduced. All of these cases are then evaluated by ensuring cold shutdown is still achievable and where appropriate by reactivity insertion accident analysis. These aspects are investigated on the PBMR 400 MW design.

  17. Optimal and Modular Configuration of Wind Integrated Hybrid Power Plants for Off-Grid Systems

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin; Tarnowski, German Claudio

    2018-01-01

    This paper focusses on the system configuration of offgrid hybrid power plants including wind power generation. First, a modular and scalable system topology is proposed. Secondly, an optimal sizing algorithm is developed in order to determine the installed capacities of wind turbines, PV system......, battery energy storage system and generator sets. The novelty of this work lies in a robust sizing algorithm with respect to the required resolution of resource data in order to account for intra-hour power variations. Moreover, the involvement of the electrical infrastructure enables a precise estimation...... of power losses within the hybrid power plant as well as the consideration of both active and reactive power load demand for optimally sizing the plant components. The main outcome of this study is a methodology to determine feasible system configurations of modular and scalable wind integrated hybrid...

  18. Dispatching power system for preventive and corrective voltage collapse problem in a deregulated power system

    Science.gov (United States)

    Alemadi, Nasser Ahmed

    Deregulation has brought opportunities for increasing efficiency of production and delivery and reduced costs to customers. Deregulation has also bought great challenges to provide the reliability and security customers have come to expect and demand from the electrical delivery system. One of the challenges in the deregulated power system is voltage instability. Voltage instability has become the principal constraint on power system operation for many utilities. Voltage instability is a unique problem because it can produce an uncontrollable, cascading instability that results in blackout for a large region or an entire country. In this work we define a system of advanced analytical methods and tools for secure and efficient operation of the power system in the deregulated environment. The work consists of two modules; (a) contingency selection module and (b) a Security Constrained Optimization module. The contingency selection module to be used for voltage instability is the Voltage Stability Security Assessment and Diagnosis (VSSAD). VSSAD shows that each voltage control area and its reactive reserve basin describe a subsystem or agent that has a unique voltage instability problem. VSSAD identifies each such agent. VS SAD is to assess proximity to voltage instability for each agent and rank voltage instability agents for each contingency simulated. Contingency selection and ranking for each agent is also performed. Diagnosis of where, why, when, and what can be done to cure voltage instability for each equipment outage and transaction change combination that has no load flow solution is also performed. A security constrained optimization module developed solves a minimum control solvability problem. A minimum control solvability problem obtains the reactive reserves through action of voltage control devices that VSSAD determines are needed in each agent to obtain solution of the load flow. VSSAD makes a physically impossible recommendation of adding reactive

  19. Dependence of RF power on the content and configuration of hydrogen in amorphous hydrogenated silicon by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Imura, T; Ushita, K; Mogi, K; Hiraki, A [Osaka Univ., Suita (Japan). Faculty of Engineering

    1981-06-01

    Infrared absorption spectra at stretching bands of Si-H were investigated in hydrogenated amorphous silicon fabricated by reactive sputtering in the atmosphere of Ar and H/sub 2/ (10 mole%) at various input rf powers in the range from 0.8 to 3.8 W/cm/sup 2/. Hydrogen content mainly due to the configuration of Si=H/sub 2/ in the film increased with the decreasing rf power, as the deposition rate was decreased. On the other hand, the quantity of the monohydride (Si-H) configuration depended less on the power. Attachment of hydrogen molecules onto the fresh and reactive surface of silicon deposited successively was proposed for possible process of hydrogen incusion into amorphous silicon resulting in Si=H/sub 2/ configuration. The photoconductivity increased as the input power became higher, when the deposition rate also increased linearly with the power.

  20. Reactivity Monitoring of Accelerator-Driven Nuclear Reactor Systems

    NARCIS (Netherlands)

    Uyttenhove, W.

    2016-01-01

    This thesis provides a methodology and set-up of a reactivity monitoring tool for Accelerator-Driven Systems (ADS). The reactivity monitoring tool should guarantee the operation of an ADS at a safe margin from criticality. Robustness is assured in different aspects of the monitoring tool: the choice

  1. A Hierarchical Control Scheme for Reactive Power and Harmonic Current Sharing in Islanded Microgrids

    DEFF Research Database (Denmark)

    Lorzadeh, Iman; Firoozabadi, Mehdi Savaghebi; Askarian Abyaneh, Hossein

    2015-01-01

    In this paper, a hierarchical control scheme consisting of primary and secondary levels is proposed for achieving accurate reactive power and harmonic currents sharing among interface inverters of distributed generators (DGs) in islanded microgrids. Firstly, fundamental and main harmonic componen...

  2. Development of Power Controller System based on Model Reference Adaptive Control for a Nuclear Reactor

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Ridzuan Abdul Mutalib

    2014-01-01

    The Reactor TRIGA PUSPATI (RTP)-type TRIGA Mark II was installed in the year 1982. The Power Controller System (PCS) or Automated Power Controller System (APCS) is very important for reactor operation and safety reasons. It is a function of controlled reactivity and reactor power. The existing power controller system is under development and due to slow response, low accuracy and low stability on reactor power control affecting the reactor safety. The nuclear reactor is a nonlinear system in nature, and it is power increases continuously with time. The reactor parameters vary as a function of power, fuel burnup and control rod worth. The output power value given by the power control system is not exactly as real value of reactor power. Therefore, controller system design is very important, an adaptive controller seems to be inevitable. The method chooses is a linear controller by using feedback linearization, for example Model Reference Adaptive Control. The developed APCS for RTP will be design by using Model Reference Adaptive Control (MRAC). The structured of RTP model to produce the dynamic behaviour of RTP on entire operating power range from 0 to 1MWatt. The dynamic behavior of RTP model is produced by coupling of neutronic and thermal-hydraulics. It will be developed by using software MATLAB/Simulink and hardware module card to handle analog input signal. A new algorithm for APCS is developed to control the movement of control rods with uniformity and orderly for RTP. Before APCS test to real plant, simulation results shall be obtained from RTP model on reactor power, reactivity, period, control rod positions, fuel and coolant temperatures. Those data are comparable with the real data for validation. After completing the RTP model, APCS will be tested to real plant on power control system performance by using real signal from RTP including fail-safe operation, system reliable, fast response, stability and accuracy. The new algorithm shall be a satisfied

  3. Modelling and Simulation of Grid Connected SPV System with Active Power Filtering Features

    Science.gov (United States)

    Saroha, Jaipal; Pandove, Gitanjali; Singh, Mukhtiar

    2017-09-01

    In this paper, the detailed simulation studies for a grid connected solar photovoltaic system (SPV) have been presented. The power electronics devices like DC-DC boost converter and grid interfacing inverter are most important components of proposed system. Here, the DC-DC boost converter is controlled to extract maximum power out of SPV under different irradiation levels, while the grid interfacing inverter is utilized to evacuate the active power and feed it into grid at synchronized voltage and frequency. Moreover, the grid interfacing inverter is also controlled to sort out the issues related to power quality by compensating the reactive power and harmonics current component of nearby load at point of common coupling. Besides, detailed modeling of various component utilized in proposed system is also presented. Finally, extensive simulations have been performed under different irradiation levels with various kinds of load to validate the aforementioned claims. The overall system design and simulation have been performed by using Sim Power System toolbox available in the library of MATLAB.

  4. Generating units performances: power system requirements

    Energy Technology Data Exchange (ETDEWEB)

    Fourment, C; Girard, N; Lefebvre, H

    1994-08-01

    The part of generating units within the power system is more than providing power and energy. Their performance are not only measured by their energy efficiency and availability. Namely, there is a strong interaction between the generating units and the power system. The units are essential components of the system: for a given load profile the frequency variation follows directly from the behaviour of the units and their ability to adapt their power output. In the same way, the voltage at the units terminals are the key points to which the voltage profile at each node of the network is linked through the active and especially the reactive power flows. Therefore, the customer will experience the frequency and voltage variations induced by the units behaviour. Moreover, in case of adverse conditions, if the units do not operate as well as expected or trip, a portion of the system, may be the whole system, may collapse. The limitation of the performance of a unit has two kinds of consequences. Firstly, it may result in an increased amount of not supplied energy or loss of load probability: for example if the primary reserve is not sufficient, a generator tripping may lead to an abnormal frequency deviation, and load may have to be shed to restore the balance. Secondly, the limitation of a unit performance results in an economic over-cost for the system: for instance, if not enough `cheap` units are able to load-following, other units with higher operating costs have to be started up. We would like to stress the interest for the operators and design teams of the units on the one hand, and the operators and design teams of the system on the other hand, of dialog and information exchange, in operation but also at the conception stage, in order to find a satisfactory compromise between the system requirements and the consequences for the generating units. (authors). 11 refs., 4 figs.

  5. Low Voltage Ride-Through of Two-Stage Grid-Connected Photovoltaic Systems Through the Inherent Linear Power-Voltage Characteristic

    DEFF Research Database (Denmark)

    Yang, Yongheng; Sangwongwanich, Ariya; Liu, Hongpeng

    2017-01-01

    In this paper, a cost-effective control scheme for two-stage grid-connected PhotoVoltaic (PV) systems in Low Voltage Ride-Through (LVRT) operation is proposed. In the case of LVRT, the active power injection by PV panels should be limited to prevent from inverter over-current and also energy...... aggregation at the dc-link, which will challenge the dc-link capacitor lifetime if remains uncontrolled. At the same time, reactive currents should be injected upon any demand imposed by the system operators. In the proposed scheme, the two objectives can be feasibly achieved. The active power is regulated...... point tracking controller without significant hardware or software modifications. In this way, the PV system will not operate at the maximum power point, whereas the inverter will not face any over-current challenge but can provide reactive power support in response to the grid voltage fault...

  6. Pragmatic power

    CERN Document Server

    Eccles, William

    2008-01-01

    Pragmatic Power is focused on just three aspects of the AC electrical power system that supplies and moves the vast majority of electrical energy nearly everywhere in the world: three-phase power systems, transformers, and induction motors. The reader needs to have had an introduction to electrical circuits and AC power, although the text begins with a review of the basics of AC power. Balanced three-phase systems are studied by developing their single-phase equivalents. The study includes a look at how the cost of ""power"" is affected by reactive power and power factor. Transformers are cons

  7. Active and Reactive Power Control Strategy for Grid-Connected Six-Phase Generator by Using Multi-Modular Matrix Converters

    Directory of Open Access Journals (Sweden)

    David Caballero

    2016-12-01

    Full Text Available This paper proposes an active and reactive power control strategy based on predictive control approaches applied to gridconnected renewable energy systems. To accomplish this a multi-modular matrix converter topologies are used in combination with a simple but efficient grid synchronization strategy. The theoretical performance analysis is performed considering a six-phase wind energy generator system interconnected with the grid. Results based on a MATLAB/Simulink simulation environment are discussed and the most relevant characteristics of the proposed control technique are highlighted considering the total harmonic distortion and the mean squared error as a parameters of performance.

  8. Automatic determination of pressurized water reactor core loading patterns that maximize beginning-of-cycle reactivity within power-peaking and burnup constraints

    International Nuclear Information System (INIS)

    Hobson, G.H.; Turinsky, P.J.

    1986-01-01

    Computational capability has been developed to automatically determine a good estimate of the core loading pattern, which minimizes fuel cycle costs for a pressurized water reactor (PWR). Equating fuel cycle cost minimization with core reactivity maximization, the objective is to determine the loading pattern that maximizes core reactivity while satisfying power peaking, discharge burnup, and other constraints. The method utilizes a two-dimensional, coarse-mesh, finite difference scheme to evaluate core reactivity and fluxes for an initial reference loading pattern. First-order perturbation theory is applied to determine the effects of assembly shuffling on reactivity, power distribution, end-of-cycle burnup. Monte Carlo integer programming is then used to determine a near-optimal loading pattern within a range of loading patterns near the reference pattern. The process then repeats with the new loading pattern as the reference loading pattern and terminates when no better loading pattern can be determined. The process was applied with both reactivity maximization and radial power-peaking minimization as objectives. Results on a typical large PWR indicate that the cost of obtaining an 8% improvement in radial power-peaking margin is ≅2% in fuel cycle costs, for the reload core loaded without burnable poisons that was studied

  9. Compensación de potencia reactiva en sistemas desbalanceados utilizando algoritmos genéticos Reactive power compensation in unbalanced systems using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Davel Borges Vasconcellos

    2012-12-01

    Full Text Available La eficiencia energética de un sistema eléctrico depende en gran medida del factor de potencia con que opera y de una eficaz compensación de potencia reactiva si esta es necesaria. Una de las vías más utilizadas para efectuar la compensación del reactivo es el empleo de bancos de capacitores. La óptima aplicación de estos presupone tres aspectos: la selección de la capacidad más adecuada de los bancos, el tipo de compensador a utilizar, fijo o variable, así como la ubicación en el sistema de suministro eléctrico. En determinadas publicaciones, estos aspectos se tratan de forma independiente. Sin embargo, desde el punto de vista técnico ellos están mutuamente vinculados y todos poseen una implicación económica, lo que obliga a la necesidad de considerarlos en conjunto para un problema de optimización dado. Existen referencias de otros trabajos que desarrollan métodos que consideran estos aspectos de manera conjunta, pero presentan limitantes para ser aplicados en los sistemas de suministro eléctrico del sector terciario y donde predominan condiciones de desbalance. En este trabajo se presenta un método con el empleo de los algoritmos genéticos que posibilita una formulación más exacta del problema arrojando soluciones de mayor calidad. El programa desarrollado se soporta sobre software MATLAB, versión 7.8 (R2009a, utilizando las estructuras de programación de Genetic Algorithm and Direct Search Toolbox. La efectividad de su aplicación se muestra en casos de estudio correspondientes a sistemas de suministro eléctrico de dos hoteles pertenecientes al sector terciario en la provincia de Camagüey, Cuba.The energy efficiency of an electric system depends in great extent of the reactive power compensation that is carried out. One of the ways most used for reactive is power of capacitor banks. A good selection of these, presupposes three aspects: the selection of the banks capacity, the compensator type to be used and the

  10. [Effects of Reactive Jump Training in Handball Players Regarding Jump Height and Power Development in the Triceps Surae Muscle].

    Science.gov (United States)

    Rensing, N; Westermann, A; Möller, D; von Piekartz, H

    2015-12-01

    Studies have shown changes in the technical and physical demands in modern handball. The game has increased considerably in speed, power and dynamics. Jump training has, therefore, become ever more important in the training of the athletes. These developments contribute to the fact that handball is now one of the most injury-prone types of sport, with the lower extremities being most frequently affected. Reactive jump training is not only used in training by now, but also increasingly in injury prevention. The aim of this study was to investigate the effectiveness of reactive jump training with handball players. 21 regional league handball players were randomly divided into an intervention group (n = 12) and a control group (n = 9). The intervention group completed a six-week reactive jump training programme while the control group went through a non-specific training programme. Jump height (squat and counter movement jump), isokinetic and isometric maximum power as well as muscle activity served as measuring parameters. A comparison of the intervention and control groups revealed that the reactive jump training led to significant improvements in jump height. The isometric and isokinetic maximum power measurements and the electromyographic activities of the triceps surae muscle demonstrated an improvement in the values within the intervention group. However, this improvement was not significant compared with the control group. Likewise both jumps correlated with the muscle activity of the soleus muscle as shown by electromyography. A moderate correlation was noticed between the isokinetic maximum power measurement and the electromyographic activity of the soleus and gastrocnemius medialis muscles. Furthermore, the correlations of the isometric and isokinetic maximum power meas-urements resulted in a strong correlation coefficient. This study revealed a significant increase in jump height after reactive jump training. There was no significant difference in

  11. Design, Specification, and Synthesis of Aircraft Electric Power Systems Control Logic

    Science.gov (United States)

    Xu, Huan

    Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, actuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based specifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considerations for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area. This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller. The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and

  12. Design of reactive power regulator of synchronous generators by considering grid impedance angle for characteristic index objectives

    DEFF Research Database (Denmark)

    Raboni, Pietro; Chaudhary, Sanjay K.; Chen, Zhe

    2016-01-01

    functions are formulated on the basis of the integral of an error. This difference makes them suitable for the cases where the entire step-response data series are unavailable. The performances of differently tuned regulators are compared considering a test system including a 100 kW Diesel Generator Set......Effects of low reactance to resistance ratio in distribution networks are widely studied but little work dealing with the tuning of voltage and reactive power regulators of small synchronous generators has been reported. This study endeavours the design of a proportional integral controller...

  13. Backup passive reactivity shutdown systems

    International Nuclear Information System (INIS)

    Ashurko, Yu.M.; Kuznetsov, L.A.

    1996-01-01

    The paper reviews self-actuated shutdown systems (SASSs) for liquid metal-cooled fast reactors (LMFRs). Principles of operation are described, advantages and drawbacks analyzed, and prospects for application in advanced fast reactors examined. Ways to improve reactor self-protection via reactivity feedback amplification and related problems are discussed. (author). 9 refs, 12 figs

  14. Backup passive reactivity shutdown systems

    Energy Technology Data Exchange (ETDEWEB)

    Ashurko, Yu M; Kuznetsov, L A [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1996-12-01

    The paper reviews self-actuated shutdown systems (SASSs) for liquid metal-cooled fast reactors (LMFRs). Principles of operation are described, advantages and drawbacks analyzed, and prospects for application in advanced fast reactors examined. Ways to improve reactor self-protection via reactivity feedback amplification and related problems are discussed. (author). 9 refs, 12 figs.

  15. PROBABILISTIC FLOW DISTRIBUTION AS A REACTION TO THE STOCHASTICITY OF THE LOAD IN THE POWER SYSTEM

    Directory of Open Access Journals (Sweden)

    A. M. Hashimov

    2016-01-01

    Full Text Available For the analysis and control of power systems deterministic approaches that are implemented in the form of well-known methods and models of calculation of steady-state and transient modes are mostly use in current practice. With the use of these methods it is possible to obtain solutions only for fixed circuit parameters of the system scheme and assuming that active and reactive powers as well as generation in nodal points of the network remain the same. In reality the stochastic character of power consumption cause the casual fluctuations of voltages at the nodes and power flows in electric power lines of the power system. Such casual fluctuations of operation can be estimated with the use of probabilistic simulation of the power flows. In the article the results of research of the influence of depth of casual fluctuations of the load power of the system on the probability distribution of voltage at nodes as well as on the flows of active and reactive power in the lines are presented. Probabilistic modeling of flow under stochastic load change is performed for different levels of fluctuations and under loading of the mode of the system up to peak load power. Test study to quantify the effect of stochastic variability of loads on the probabilistic distribution parameters of the modes was carried out on behalf of the electrical network of the real power system. The results of the simulation of the probability flow distribution for these fluctuations of the load, represented in the form of discrete sample values of the active power obtained with the use of the analytical Monte-Carlo method, and real data measurements of their values in the network under examination were compared.

  16. 78 FR 63177 - Order on Voluntary Remand and Clarifying Policy on Filing of Reactive Power Service Rate...

    Science.gov (United States)

    2013-10-23

    ... the obligation to follow a voltage schedule.'' \\19\\ The Commission distinguished Hot Spring Power Co..., to explore the mechanics of public utilities filing reactive power rate schedules for which there is...'' jurisdictional service and, accordingly, must be filed for Commission review); Sulphur Springs Valley Elec. Coop...

  17. SMART core power control method by coolant temperature variation

    International Nuclear Information System (INIS)

    Lee, Chung Chan; Cho, Byung Oh

    2001-08-01

    SMART is a soluble boron-free integral type pressurized water reactor. Its moderator temperature coefficient (MTC) is strongly negative throughout the cycle. The purpose of this report is how to utilize the primary coolant temperature as a second reactivity control system using the strong negative MTC. The reactivity components associated with reactor power change are Doppler reactivity due to fuel temperature change, moderator temperature reactivity and xenon reactivity. Doppler reactivity and moderator temperature reactivity take effects almost as soon as reactor power changes. On the other hand, xenon reactivity change takes more than several hours to reach an equilibrium state. Therefore, coolant temperature at equilibrium state is chosen as the reference temperature. The power dependent reference temperature line is limited above 50% power not to affect adversely in reactor safety. To compensate transient xenon reactivity, coolant temperature operating range is expanded. The suggested coolant temperature operation range requires minimum control rod motion for 50% power change. For smaller power changes such as 25% power change, it is not necessary to move control rods to assure that fuel design limits are not exceeded

  18. Comparisons of PRD [power-reactivity-decrements] components for various EBR-II configurations

    International Nuclear Information System (INIS)

    Meneghetti, D.; Kucera, D.A.

    1986-01-01

    Comparison of detailed calculations of contributions by region and component of the power-reactivity-decrements (PRD) for four differing loading configurations of the Experimental Breeder Reactor-II (EBR-II) are given. The linear components and Doppler components are calculated. The non-linear (primarily subassembly bowing) components are deduced by differences relative to measured total PRD values. Variations in linear components range from about 10% to as much as about 100% depending upon the component. The deduced non-linear components differ both in magnitude and sign as functions of reactor power. Effects of differing assumptions of the nature of the fuel-to-clad interactions upon the PRD components are also calculated

  19. Smoothing of Grid-connected Wind-Diesel Power Output Using Energy Capacitor System

    Directory of Open Access Journals (Sweden)

    Adel A. Elbaset

    2014-06-01

    Full Text Available This paper presents a small hybrid power system consists of two types of power generation; wind turbine and diesel generation, DG connected to power distribution system. The fluctuations like random nature of wind power, turbulent wind, and sudden changes in load demand create imbalances in power distribution that can affect the frequency and the voltage in the power system. So, addition of Energy capacitor System, ECS is useful for compensation of fluctuating power, since it is capable of controlling both active and reactive power simultaneously and can smooth the output power flow. Hence, this paper proposes herein a dynamic model and simulation of a grid connected wind/DG based-ECS with power flow controllers between load and generation. Moreover, the paper presents a study to analyze the leveling of output fluctuation of wind power with the installation of ECS. To control the power exchanged between the ECS system and the AC grid, a load Following Control, LFC based supervisor is proposed with the aim to minimize variations of the power generated by the diesel generator. The interesting performance of the proposed supervisor is shown with the help of simulations. The computer simulation program is confirmed on a realistic circuit model which implemented in the Simulink environment of Matlab and works as if on line.

  20. Power System Decomposition for Practical Implementation of Bulk-Grid Voltage Control Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.; Elizondo, Marcelo A.; Samaan, Nader A.

    2017-10-19

    Power system algorithms such as AC optimal power flow and coordinated volt/var control of the bulk power system are computationally intensive and become difficult to solve in operational time frames. The computational time required to run these algorithms increases exponentially as the size of the power system increases. The solution time for multiple subsystems is less than that for solving the entire system simultaneously, and the local nature of the voltage problem lends itself to such decomposition. This paper describes an algorithm that can be used to perform power system decomposition from the point of view of the voltage control problem. Our approach takes advantage of the dominant localized effect of voltage control and is based on clustering buses according to the electrical distances between them. One of the contributions of the paper is to use multidimensional scaling to compute n-dimensional Euclidean coordinates for each bus based on electrical distance to perform algorithms like K-means clustering. A simple coordinated reactive power control of photovoltaic inverters for voltage regulation is used to demonstrate the effectiveness of the proposed decomposition algorithm and its components. The proposed decomposition method is demonstrated on the IEEE 118-bus system.

  1. Measurements and calculation of reactivity in the IEA-R1 nuclear reactor

    International Nuclear Information System (INIS)

    Ferreira, P.S.B.

    1988-01-01

    Techniques and experimentals procedures utilized in the measurement of some nuclear parameters related to reactivity are presented. Measurements of reactivity coefficients, such as void, temperature and power, and control rod worth were made in the IEA-R1 Research Reactor. The techniques used to perform the measurements were: i) stable period (control rod calibration), ii) inverse kinetics (digital reactivity meter), iii) aluminium slab insertion in the fuel element coolant channels (void reactivity), iv) nuclear reactor core temperature changes by means of the changes in the coolant systems of reactor core (isothermal reactivity coefficient) and v) by making perturbation in the core through the control rod motions (power reactivity coefficient and control rod calibration). By using the computer codes HAMMER, HAMMER-TECHNION and CITATION, the experiments realized in the IEA-R1 reactor were simulated. From this simulation, the theoretical reactivity parameters were estimated and compared with the respective experimental results. Furthermore, in the second fuel load of Angra-1 Nuclear Power Station, the IPEN-CNEN/SP digital reactivity - meter were used in the lower power test with the aim to assess the equipment performance. Among several tests, the reacticity-meter were used in parallel with a Westinghouse analogic reativimeter-meter) to measure the heat additiona point, critical boron concentration, control rod calibration, isothermal and moderator reactivity coefficient. These tests, and the results obtained by the digital reactivity-meter are described. The results were compared with those obtained by Westinghouse analogic reactivity meter, showing excellent agreement. (author) [pt

  2. Development of a robust model-based reactivity control system

    International Nuclear Information System (INIS)

    Rovere, L.A.; Otaduy, P.J.; Brittain, C.R.

    1990-01-01

    This paper describes the development and implementation of a digital model-based reactivity control system that incorporates a knowledge of the plant physics into the control algorithm to improve system performance. This controller is composed of a model-based module and modified proportional-integral-derivative (PID) module. The model-based module has an estimation component to synthesize unmeasurable process variables that are necessary for the control action computation. These estimated variables, besides being used within the control algorithm, will be used for diagnostic purposes by a supervisory control system under development. The PID module compensates for inaccuracies in model coefficients by supplementing the model-based output with a correction term that eliminates any demand tracking or steady state errors. This control algorithm has been applied to develop controllers for a simulation of liquid metal reactors in a multimodular plant. It has shown its capability to track demands in neutron power much more accurately than conventional controllers, reducing overshoots to almost negligible value while providing a good degree of robustness to unmodeled dynamics. 10 refs., 4 figs

  3. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    Directory of Open Access Journals (Sweden)

    Cheol-Hee Yoo

    2014-11-01

    Full Text Available Grid codes in many countries require low-voltage ride-through (LVRT capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (PMSG wind power systems. Fast fault detection can help the wind power systems maintain the DC-link voltage in a safe region. The proposed fault detection method is based on on-line adaptive parameter estimation. The performance of the proposed method is verified in comparison to the conventional voltage measurement method defined in the IEC 61400-21 standard.

  4. A proposed strategy for power optimization of a wind energy conversion system connected to the grid

    International Nuclear Information System (INIS)

    Taraft, S.; Rekioua, D.; Aouzellag, D.; Bacha, S.

    2015-01-01

    Highlights: • Wind energy conversion based doubly fed induction generator controlled by matrix converter. • Operation at both sub and super-synchronous regions is possible with the proposed drive system. • Double the power generated by the DFIG at a twice of speed rated. • Sliding mode control is used to achieve active and reactive power control. - Abstract: Many strategies have been developed in last decade to optimize power extracted from wind energy conversion system where many of them can produce only 30% more than the rated power. With the considered strategy, the generated wind power can reach twice its nominal value using a fast and reliable fully rugged electrical control. Indeed, by employing a suitable control technique where the produced power in super-synchronous mode is derived from both the stator and the rotor. Also, the rotor provided power in this case grows up 100% comparing to stator rated power. However, this solution permits to maintain the wind energy conversion system operation in its stable area. The considered system consists of a double fed induction generator whose stator is connected directly to the grid and its rotor is supplied by matrix converter. In this paper, the sliding mode approach to achieve active and reactive power control is used. This latter is combined with de Perturbation and Observation Maximum Power Point Tracking used in the second operation zone. The obtained simulations results are assessed and carried out using Matlab/Simulink package and show the performance and the effectiveness of the proposed control

  5. A digital real-time reactivity meter for PFR

    International Nuclear Information System (INIS)

    McWilliams, D.

    1975-08-01

    A digital reactivity meter has been prpduced which is believed to constitute a significant advance over others reported in the literature. The main advantage of this system is its versatility which is brought about by the high degree of interactive operator control which is provided. The reactivity and power are continuously displayed in both graphical and alpha-numeric form on a TV-type of display unit. Data output is by means of an incremental graph plotter, a typewriter, or a high speed paper tape punch. The system has been extensively tested on the Prototype Fast Reactor at Dounreay and is now the standard reactivity measuring method for reactor experiments there. (author)

  6. Study on offshore wind farm integration mode and reactive power compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Xiaoyan; Hong, Lijun; Fu, Yang [Shanghai Univ. of Electrical Power (China). Power and Automation Engineering Dept.

    2013-07-01

    Two typical offshore wind farm grid-connected modes are introduced and dynamic characteristics under their modes are compared from the simulation by PSS/E. The result shows that offshore wind farm with VSC-HVDC has better dynamic characteristics on fault isolation, reactive power compensation, and fault ride through ability. In addition, STATCOM has been applied to the offshore wind farm, the simulation results indicates that it can improve the bus voltage stability in fault and maintain the voltage level under a small perturbation.

  7. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use - Demonstrative research on photovoltaic power generation system (Study on grid interconnection technique for dispersed photovoltaic systems under high-density connection); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden system no jissho kenkyu (komitsudo renkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Interconnecting photovoltaic systems with power transmission systems under high density affects power quality, protection, maintenance and stability of the transmission lines. As measures to deal with this issue, investigations are being made on (1) elucidation of effects imposed on transmission lines, (2) establishment of countermeasure technologies, and (3) technological options leading to higher value addition. In Item (1), with an objective to identify the current status, evaluations were given on prevention of independent operation of commercially available inverters, and on their stabilizing performance against system fluctuation. The evaluations were performed by conducting a test for multiple unit operation in parallel and a single unit performance test. The test result indicated that, while the prevention performance can be satisfied, maloperation has occurred frequently due to the system fluctuation, and that voltage rise due to the inverter was suppressed effectively by using the simultaneous control of active and reactive powers. In Item (2), a demonstration test was launched on an inverter incorporating a new prevention device. The effective means to suppress voltage rise in the high-voltage power transmission lines is the discrete voltage suppression by controlling reactive power. In addition, a proposal was made on a new voltage and phase detection method that can be used at short circuit of the high-voltage transmission lines. In Item (3), having a photovoltaic system contain a small size batteries was found effective in suppressing the power generation output variation, and in smoothing the loads. (NEDO)

  8. The Application of Stationary VOC-PR with PLL for Grid side Converter-based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2010-01-01

    Voltage oriented control PR is combined with space vector modulation and phase locked loop to control the grid side converter in wind power generation system in this paper. First the mathematical models of grid side converter and LCL filter as well as grid are given. Then the control strategy...... of grid side converter-based wind power generation system is given in detail. Finally the simulation model consisting of the grid side converter wind power generation system is set up. The simulation results have verified that the control strategy is feasible to be used for control of gird currents......, active power, reactive power and DC-link voltage in wind power generation system. It has laid a good basis for the real system development....

  9. Selectivity of power system protections at power swings in power system

    Directory of Open Access Journals (Sweden)

    Jan Machowski

    2012-12-01

    Full Text Available The paper discusses out-of-step protection systems such as: generator pole slip protections, out of step tripping protections, distance protections of step-up transformer, distance protections of transmission lines and transformers, power swing blocking, and special out-of-step protection. It is shown that all these protections make up a protection system, to which a setting concept uniform for the entire power system has to be applied. If a power system is inappropriately equipped with these protections, or their settings are inappropriate, they may operate unselectively, thus contributing to the development of power system blackouts. In the paper the concepts for a real power system are given for the two stages: target stage fully compliant with selectivity criteria, and transitional stage between the current and target stages.

  10. Probability of islanding in utility networks due to grid connected photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeven, B.

    2002-09-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the probability of islanding in utility networks due to grid-connected photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This report summarises the results on a study on the probability of islanding in power networks with a high penetration level of grid connected PV-systems. The results are based on measurements performed during one year in a Dutch utility network. The measurements of active and reactive power were taken every second for two years and stored in a computer for off-line analysis. The area examined and its characteristics are described, as are the test set-up and the equipment used. The ratios between load and PV-power are discussed. The general conclusion is that the probability of islanding is virtually zero for low, medium and high penetration levels of PV-systems.

  11. Instantaneous active and reactive power theory and applications; Teoria de potencia ativa e reativa instantanea e aplicacoes - filtros ativos e FACTS

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Edson H.; Aredes, Mauricio [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Eletronica de Potencia]. E-mail: watanabe@coe.ufrj.br, aredes@cce.ufrj.br

    1998-07-01

    A tutorial about the instantaneous active and reactive power theory, which is valid for balanced and unbalanced three-phase systems, with and without harmonics is presented. Based on this theory the basic concepts involving the operation and design of shunt and series active and passive filters are also discussed. The advantage of the association of active and passive filters are also discussed. The association of shunt and series active filters to form the UPQC (Universal Power Quality Conditions), which guarantees the total compensation of voltage and current harmonics is also presented. As a result of the generalization of the UPFC (Unified Power Flow Controller) associated with the UPQC, the UPLC (Universal Active Power Line Conditioner) is proposed to compensate voltage and current harmonics as well as to control the power flow in a transmission line and regulate the ac bus voltage. (author)

  12. [Reactive collisions of high-temperature systems

    International Nuclear Information System (INIS)

    Graff, M.M.

    1990-01-01

    The object of this research is to study reactivity at superthermal collision energies using a fast neutral beam that is generated by photodetachment. Systems scheduled for initial study include basic oxygen-hydrogen reactions. Unfortunately, we can not yet report realization of this goal, but during this funding period we have made advances that are anticipated to lead to successful measurements during the next year. The parameters described below refer to the model system O + H 2 → OH + H. The basic design involves the collision of fast neutrals, created by photodetachment of the corresponding negative molecular ion, with a stable reactant gas in a collision cell. Products are detected by ionization and mass analysis. We are equipped to study rotational effects on reactivity by comparing results for rotational levels J = 0 and 1 of H 2 . Highlights during the funding period are given in this report

  13. Containment and Consensus-based Distributed Coordination Control for Voltage Bound and Reactive Power Sharing in AC Microgrid

    DEFF Research Database (Denmark)

    Han, Renke; Meng, Lexuan; Ferrari-Trecate, Giancarlo

    2017-01-01

    This paper offers a highly flexible and reliable control strategy to achieve voltage bounded regulation and accurate reactive power sharing coordinately in AC Micro-Grids. A containment and consensus-based distributed coordination controller is proposed, by which each output voltage magnitude can...... be bounded within a reasonable range and the accurate reactive power sharing among distributed generators can be also achieved. Combined with the two proposed controllers and electrical part of the AC Micro-Grid, a small signal model is fully developed to analyze the sensitivity of different control...... parameters. The effectiveness of the proposed controller in case of load variation, communication failure, plug-and-play capability are verified by the experimental setup as an islanded Micro-Grid....

  14. A coupled 3-D kinetics/system thermal-hydraulic analysis of main steam line break accident for Optimized Power Reactor 1000

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yung Kwon; Choi, Chul Jin; Kim, Eun Kee; Lee, Sang Yong [Korea Power Engineering Company, Inc, 150 Deokjin-dong, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2006-07-01

    This paper presents the results of the coupled 3-D neutronics/thermal-hydraulic analysis of hypothetical main steam line break (MSLB) accident for Optimized Power Reactor 1000. One of the major concerns of this accident is a return-to-power occurrence accompanied with extremely large radial peaking near the stuck Control Element Assembly (CEA). The conventional point kinetics application does not properly account for this kind of asymmetric and local core behavior. Therefore, the current licensing method of point kinetics application introduces some uncertainties and conservatisms in the physics parameters generation, e.g., the static net scram rod worth, moderator cooldown reactivity, Doppler reactivity, and a 3-D peaking factor. The recently developed UNICORN-TM code system is applied for the 3-D coupled calculation, where neutronics code MASTER is coupled with the best-estimate system transient code RETRAN. The 3-D coupled results were assessed in comparison with those by point kinetics application using stand-alone RETRAN application. To quantify the 3-D reactivity benefits over point kinetics, both calculations assumed the accidents to be initiated from the same core state, e.g., end of cycle burnup, fuel and CEA configuration with the same initial moderator and Doppler temperature coefficient, and with initial system thermal-hydraulic condition. The core physics parameters required for point kinetics application were produced using MASTER with the method and procedure consistent with the current licensing application. The occurrence of return-to-power was simulated by intentionally reducing the net CEA worth in order to assess the spatial power distribution and local T-H effect on the dynamic reactivity feedback. The results have demonstrated that the 3-D analysis removes some of the conservatisms inherent in point kinetics analysis mainly caused by the inability to properly account for local reactivity feedback effects during return-to-power transient

  15. A coupled 3-D kinetics/system thermal-hydraulic analysis of main steam line break accident for Optimized Power Reactor 1000

    International Nuclear Information System (INIS)

    Jin, Yung Kwon; Choi, Chul Jin; Kim, Eun Kee; Lee, Sang Yong

    2006-01-01

    This paper presents the results of the coupled 3-D neutronics/thermal-hydraulic analysis of hypothetical main steam line break (MSLB) accident for Optimized Power Reactor 1000. One of the major concerns of this accident is a return-to-power occurrence accompanied with extremely large radial peaking near the stuck Control Element Assembly (CEA). The conventional point kinetics application does not properly account for this kind of asymmetric and local core behavior. Therefore, the current licensing method of point kinetics application introduces some uncertainties and conservatisms in the physics parameters generation, e.g., the static net scram rod worth, moderator cooldown reactivity, Doppler reactivity, and a 3-D peaking factor. The recently developed UNICORN-TM code system is applied for the 3-D coupled calculation, where neutronics code MASTER is coupled with the best-estimate system transient code RETRAN. The 3-D coupled results were assessed in comparison with those by point kinetics application using stand-alone RETRAN application. To quantify the 3-D reactivity benefits over point kinetics, both calculations assumed the accidents to be initiated from the same core state, e.g., end of cycle burnup, fuel and CEA configuration with the same initial moderator and Doppler temperature coefficient, and with initial system thermal-hydraulic condition. The core physics parameters required for point kinetics application were produced using MASTER with the method and procedure consistent with the current licensing application. The occurrence of return-to-power was simulated by intentionally reducing the net CEA worth in order to assess the spatial power distribution and local T-H effect on the dynamic reactivity feedback. The results have demonstrated that the 3-D analysis removes some of the conservatisms inherent in point kinetics analysis mainly caused by the inability to properly account for local reactivity feedback effects during return-to-power transient

  16. Portable digital reactivity meter for power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, G [Nuklear-Ingenieur Service G.m.b.H., Hanau (Germany, F.R.)

    1977-07-01

    A digital reactivity meter has been developed, which can be used for all kinds of kinetic reactivity measurements in PWR's and BWR's. The input signals may be supplied by standard neutron detectors of the reactor. The hardware configuration consists of a minicomputer with ADC and DAC, a 'Silent' terminal and a high speed paper tape reader/punch. It is easily transportable. The reactivity meter solves the inverse kinetics equations for 6 delayed neutron groups, simultaneously for up to 8 logarithmic or linear neutron flux signals. It has been successfully tested at Biblis A PWR and the KRB BWR.

  17. Congestion management of deregulated power systems by optimal setting of Interline Power Flow Controller using Gravitational Search algorithm

    Directory of Open Access Journals (Sweden)

    Akanksha Mishra

    2017-05-01

    Full Text Available In a deregulated electricity market it may at times become difficult to dispatch all the required power that is scheduled to flow due to congestion in transmission lines. An Interline Power Flow Controller (IPFC can be used to reduce the system loss and power flow in the heavily loaded line, improve stability and loadability of the system. This paper proposes a Disparity Line Utilization Factor for the optimal placement and Gravitational Search algorithm based optimal tuning of IPFC to control the congestion in transmission lines. DLUF ranks the transmission lines in terms of relative line congestion. The IPFC is accordingly placed in the most congested and the least congested line connected to the same bus. Optimal sizing of IPFC is carried using Gravitational Search algorithm. A multi-objective function has been chosen for tuning the parameters of the IPFC. The proposed method is implemented on an IEEE-30 bus test system. Graphical representations have been included in the paper showing reduction in LUF of the transmission lines after the placement of an IPFC. A reduction in active power and reactive power loss of the system by about 6% is observed after an optimally tuned IPFC has been included in the power system. The effectiveness of the proposed tuning method has also been shown in the paper through the reduction in the values of the objective functions.

  18. A Data-Driven Stochastic Reactive Power Optimization Considering Uncertainties in Active Distribution Networks and Decomposition Method

    DEFF Research Database (Denmark)

    Ding, Tao; Yang, Qingrun; Yang, Yongheng

    2018-01-01

    To address the uncertain output of distributed generators (DGs) for reactive power optimization in active distribution networks, the stochastic programming model is widely used. The model is employed to find an optimal control strategy with minimum expected network loss while satisfying all......, in this paper, a data-driven modeling approach is introduced to assume that the probability distribution from the historical data is uncertain within a confidence set. Furthermore, a data-driven stochastic programming model is formulated as a two-stage problem, where the first-stage variables find the optimal...... control for discrete reactive power compensation equipment under the worst probability distribution of the second stage recourse. The second-stage variables are adjusted to uncertain probability distribution. In particular, this two-stage problem has a special structure so that the second-stage problem...

  19. Voltage stability in low voltage microgrids in aspects of active and reactive power demand

    Directory of Open Access Journals (Sweden)

    Parol Mirosław

    2016-03-01

    Full Text Available Low voltage microgrids are autonomous subsystems, in which generation, storage and power and electrical energy consumption appear. In the paper the main attention has been paid to the voltage stability issue in low voltage microgrid for different variants of its operation. In the introduction a notion of microgrid has been presented, and also the issue of influence of active and reactive power balance on node voltage level has been described. Then description of voltage stability issue has been presented. The conditions of voltage stability and indicators used to determine voltage stability margin in the microgrid have been described. Description of the low voltage test microgrid, as well as research methodology along with definition of considered variants of its operation have been presented further. The results of exemplary calculations carried out for the daily changes in node load of the active and reactive power, i.e. the voltage and the voltage stability margin indexes in nodes have been presented. Furthermore, the changes of voltage stability margin indexes depending on the variant of the microgrid operation have been presented. Summary and formulation of conclusions related to the issue of voltage stability in microgrids have been included at the end of the paper.

  20. Impact of integrating wind power in the Norwegian power system

    International Nuclear Information System (INIS)

    Tande, John Olav

    2006-04-01

    Wind power may in the future constitute a significant part of the Norwegian electricity supply. 20 TWh annual wind generation is a realistic goal for 2020 assuming wind farms on-land and offshore. The development of grid codes for wind farms is sound. It is recognising that large wind farms are basically power plants and may participate in securing efficient and stable power system operation. Modern wind farms may control the reactive power or voltage as any other power plant, and may also control active power or frequency as long as wind conditions permits. Grid code requirements must however be carefully assessed and possibly adjusted over time aiming for overall least cost solutions. Development of wind farms are today to some degree hindered by conservative assumptions being made on operation of wind farms in areas with limited power transfer capacity. By accepting temporary grid congestions, however, a large increase installed wind power is viable. For grid congestion that appears a few hours per year only, the cost of lost generation will be modest and may be economic over the alternatives of limiting wind farm capacities or increasing the grid transfer capacity. Wind generation impact on power system operation and adequacy will be overall positive. Combining wind and hydro provides for a more stable annual energy supply than hydro alone, and wind generation will generally be higher in the winter period than in the summer. Wind will replace the generation with the highest operating cost, and reduce the average Nord Pool spot market price. 20 TWh wind will reduce price with about 3 oere/kWh and CO 2 emissions by 12-14 million tons for the case of replacing coal, and about 6 million tons for replacing natural gas. Wind impact on need for balancing power is small, i.e. the extra balancing cost is about 0,8 oere per kWh wind, and about half if investment in new reserve capacity is not needed. In summary this report demonstrates options for large scale integration

  1. Adaptive Hysteresis Band Current Control (AHB) with PLL of Grid Side Converter-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2011-01-01

    Adaptive hysteresis band current control(AHB CC) is used to control the three-phase grid currents by means of grid side converter in wind power generation system in this paper. AHB has reached the good purpose with PLL (Lock phase loop). First the mathematical models of each part are given......, transformer and grid, and control parts, etc. The simulation results have verified that the control strategy is feasible to fit for control of gird currents, active power, reactive power and DC-link voltage in wind power generation system....

  2. WAMS Based Intelligent Operation and Control of Modern Power System with large Scale Renewable Energy Penetration

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain

    security limits. Under such scenario, progressive displacement of conventional generation by wind generation is expected to eventually lead a complex power system with least presence of central power plants. Consequently the support from conventional power plants is expected to reach its all-time low...... system voltage control responsibility from conventional power plants to wind turbines. With increased wind penetration and displaced conventional central power plants, dynamic voltage security has been identified as one of the challenging issue for large scale wind integration. To address the dynamic...... security issue, a WAMS based systematic voltage control scheme for large scale wind integrated power system has been proposed. Along with the optimal reactive power compensation, the proposed scheme considers voltage support from wind farms (equipped with voltage support functionality) and refurbished...

  3. A Comprehensive Strategy for Accurate Reactive Power Distribution, Stability Improvement, and Harmonic Suppression of Multi-Inverter-Based Micro-Grid

    Directory of Open Access Journals (Sweden)

    Henan Dong

    2018-03-01

    Full Text Available Among the issues of accurate power distribution, stability improvement, and harmonic suppression in micro-grid, each has been well studied as an individual, and most of the strategies about these issues aim at one inverter-based micro-grid, hence there is a need to establish a model to achieve these functions as a whole, aiming at a multi-inverter-based micro-grid. This paper proposes a comprehensive strategy which achieves this goal successfully; since the output voltage and frequency of micro-grid all consist of fundamental and harmonic components, the strategy contains two parts accordingly. On one hand, a fundamental control strategy is proposed upon the conventional droop control. The virtual impedance is introduced to solve the problem of accurate allocation of reactive power between inverters. Meanwhile, a secondary power balance controller is added to improve the stability of voltage and frequency while considering the aggravating problem of stability because of introducing virtual impedance. On the other hand, the fractional frequency harmonic control strategy is proposed. It can solve the influence of nonlinear loads, micro-grid inverters, and the distribution network on output voltage of inverters, which is focused on eliminating specific harmonics caused by the nonlinear loads, micro-grid converters, and the distribution network so that the power quality of micro-grid can be improved effectively. Finally, small signal analysis is used to analyze the stability of the multi-converter parallel system after introducing the whole control strategy. The simulation results show that the strategy proposed in this paper has a great performance on distributing reactive power, regulating and stabilizing output voltage of inverters and frequency, eliminating harmonic components, and improving the power quality of multi-inverter-based micro-grid.

  4. IMPROVEMENT OF POWER SYSTEM QUALITY USING VSC ...

    African Journals Online (AJOL)

    The HVDC technology can be represented by the combination of a Direct Current (DC) circuit with two power electronics converters, each one at a link terminal, for AC/DC and DC/AC conversion The principal characteristic of VSC-HVDC transmission is its ability to independently control the reactive and real power flow at ...

  5. Application of the optimum reactive power dispatch to the cost establishment for the support voltage in a power electrical system for generalized dispatch; Aplicacion del despacho optimo de potencia reactiva al establecimiento del costo por el soporte de voltaje en un sistema electrico de potencia con despacho centralizado

    Energy Technology Data Exchange (ETDEWEB)

    Barragan Gomez, Sergio Baruch

    2004-05-15

    The changes in the structures of the electric systems of vertical schemes to horizontal schemes have caused systems to be formed by four segments: generation, transmission, distribution and commercialization. Under this scheme the system operator is the one in charge of guaranteeing an economic and secure administration-operation. One of the main tasks of this organization together with the transmission net is achieving the movement of power from the generation centers until the consumption points, however in order to make this activity possible, a group of auxiliary service is needed. In a horizontal scheme, the voltage support of the generators is considered as an auxiliary service, which is necessary for the operation of the system. Although compensation of reactive power should be achieved in a local way through shunt compensation, static compensators, synchronous condensers and transformers with under load tap changer, because transmitting reactive power flow from generators causes an increment in the transmission system losses, however although the main function of the synchronous generators is the production of active power, in an implicit way these generate reactive power under certain operation conditions. Therefore the need of determining a cost for the voltage support of the generators exists, since this action is considered as an auxiliary service and it is rewarded in an independent way. In this work, the gradient method is used to solve the reactive power dispatch and determine the cost for voltage support of each participant generator in the system. The reactive power dispatch is subject to equality restrictions that represent the balance equations of active and reactive power of each node and to inequality restrictions that correspond to limits in the voltage profiles of all the system nodes. The equality restrictions are considered with the Lagrange multipliers method and the inequality restrictions with quadratic penalty functions. The total cost

  6. Software Development Technologies for Reactive, Real-Time, and Hybrid Systems: Summary of Research

    Science.gov (United States)

    Manna, Zohar

    1998-01-01

    This research is directed towards the implementation of a comprehensive deductive-algorithmic environment (toolkit) for the development and verification of high assurance reactive systems, especially concurrent, real-time, and hybrid systems. For this, we have designed and implemented the STCP (Stanford Temporal Prover) verification system. Reactive systems have an ongoing interaction with their environment, and their computations are infinite sequences of states. A large number of systems can be seen as reactive systems, including hardware, concurrent programs, network protocols, and embedded systems. Temporal logic provides a convenient language for expressing properties of reactive systems. A temporal verification methodology provides procedures for proving that a given system satisfies a given temporal property. The research covered necessary theoretical foundations as well as implementation and application issues.

  7. Reactivity estimation during a reactivity-initiated accident using the extended Kalman filter

    International Nuclear Information System (INIS)

    Busquim e Silva, R.; Marques, A.L.F.; Cruz, J.J.; Shirvan, K.; Kazimi, M.S.

    2015-01-01

    Highlights: • The EKF is modeled using sophisticate strategies to make the algorithm robust and accurate. • For a supercritical reactor under RIA, the EKF presents better results compared to IPK method independent of magnitude of the noise loads. • A sensitivity for five distinct carry-over effects indicates that the EKF is less sensitive to the different set of noise. • Although the P3D/R5 simulates the reactivity using a spatial kinetics method, the use of PKRE to model the EKF provides accurate results. • The reactivity’s standard deviation is higher for the IKF method. • Under HZP (slow power response) the IPK reactivity varies widely from positive to negative values (add extra difficulty to controlling the supercritical reactor): the EKF method does not have similar behavior under the same conditions (better controlling the operation). - Abstract: This study implements the extended Kalman filter (EKF) to estimate the nuclear reactor reactivity behavior under a reactivity-initiated accident (RIA). A coupled neutronics/thermal hydraulics code PARCS/RELAP5 (P3D/R5) simulates a control rod assembly ejection (CRE) on a traditional 2272 MWt PWR to generate the reactor power profile. A MATLAB script adds random noise to the simulated reactor power. For comparison, the inverse point kinetics (IPK) deterministic method is also implemented. Three different cases of CRE are simulated and the EKF, IPK and the P3D/R5 reactivity are compared. It was found that the EKF method presents better results compared to the IPK method. Furthermore, under a RIA due to small reactivity insertion and slow power response, the IPK reactivity varies widely from positive to negative, which may add extra difficulty to the task of controlling a supercritical reactor. This feature is also confirmed by a sensitivity analysis for five different noise loads and three distinct noise measurements standard deviations (SD)

  8. Multi-Objective Differential Evolution for Voltage Security Constrained Optimal Power Flow in Deregulated Power Systems

    Science.gov (United States)

    Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar

    2013-11-01

    Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal

  9. Analysis of pressurized water reactor accidents in reactivity disturbances. II

    International Nuclear Information System (INIS)

    Tinka, I.

    1978-01-01

    The logic structure of program FATRAP is described. The time course of reactivity temporal and spatial distributions of neutron flux density and power, characteristic temperatures of the individual reactor zones and the heat flux density from cladding to the coolant can be obtained as the main results. The basic program funcitons were tested for a point and a one-dimensional model. In the basic test the absorption rod was removed uncontrollably at a preset speed for 0.5 s with the reactivity feedback operative. A second test simulated the action of the accident protection system with a delay of 0.1 s started when the 7500 MW power had been obtained. The last test consisted in simulating a start-up accident with an initial power of 2.25 MW. For the said chosen accident models reactivity feedback is responsible for the formation of the appropriate power peak while the accident protection attendance alone can considerably reduce temperatures during the process. (J.F.)

  10. Optimal Placement and Sizing of PV-STATCOM in Power Systems Using Empirical Data and Adaptive Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Reza Sirjani

    2018-03-01

    Full Text Available Solar energy is a source of free, clean energy which avoids the destructive effects on the environment that have long been caused by power generation. Solar energy technology rivals fossil fuels, and its development has increased recently. Photovoltaic (PV solar farms can only produce active power during the day, while at night, they are completely idle. At the same time, though, active power should be supported by reactive power. Reactive power compensation in power systems improves power quality and stability. The use during the night of a PV solar farm inverter as a static synchronous compensator (or PV-STATCOM device has recently been proposed which can improve system performance and increase the utility of a PV solar farm. In this paper, a method for optimal PV-STATCOM placement and sizing is proposed using empirical data. Considering the objectives of power loss and cost minimization as well as voltage improvement, two sub-problems of placement and sizing, respectively, are solved by a power loss index and adaptive particle swarm optimization (APSO. Test results show that APSO not only performs better in finding optimal solutions but also converges faster compared with bee colony optimization (BCO and lightening search algorithm (LSA. Installation of a PV solar farm, STATCOM, and PV-STATCOM in a system are each evaluated in terms of efficiency and cost.

  11. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  12. Effect of reactivity insertion rate on peak power and temperatures in swimming pool type research reactor

    International Nuclear Information System (INIS)

    Khan, L.A.; Jabbar, A.; Anwar, A.R.; Ahmad, N.

    1998-01-01

    It is essential to study the reactor behavior under different accidental conditions and take proper measures for its safe operation. We have studied the effect of reactivity insertion, with and without scram conditions, on peak power and temperatures of fuel, cladding and coolant in typical swimming pool type research reactor. The reactivity ranging from 1 $ to 2 $ and insertion times from 0.25 to 1 second have been considered. The computer code PARET has been used and results are presented in this article. (author)

  13. Effects of Radial Reflector Composition on Core Reactivity and Peak Power

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Lee, Kyung Hoon; Song, Jae Seung

    2007-10-01

    The effects of radial SA-240 alloy shroud on core reactivity and peak power are evaluated. The existence of radial SA-240 alloy shroud makes reflector water volume decrease, so the thermal absorption cross section of radial reflector is lower than without SA-240 alloy shroud case. Finally, the cycle length is increased from 788 EFPD to 845 EFPD and the peak power is decreased from 1.66 to 1.49. In the case of without SA-240 alloy shroud, a new core loading pattern search has been performed. For the guarantee of the same equivalent cycle length of with SA-240 alloy shroud case, the enrichment of U-235 should be increased from 4.22 w/o to 4.68 w/o. The nuclear key safety parameters of new core loading pattern have been calculated and recorded for the future

  14. Effects of Radial Reflector Composition on Core Reactivity and Peak Power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Lee, Kyung Hoon; Song, Jae Seung

    2007-10-15

    The effects of radial SA-240 alloy shroud on core reactivity and peak power are evaluated. The existence of radial SA-240 alloy shroud makes reflector water volume decrease, so the thermal absorption cross section of radial reflector is lower than without SA-240 alloy shroud case. Finally, the cycle length is increased from 788 EFPD to 845 EFPD and the peak power is decreased from 1.66 to 1.49. In the case of without SA-240 alloy shroud, a new core loading pattern search has been performed. For the guarantee of the same equivalent cycle length of with SA-240 alloy shroud case, the enrichment of U-235 should be increased from 4.22 w/o to 4.68 w/o. The nuclear key safety parameters of new core loading pattern have been calculated and recorded for the future.

  15. Power system stabilizer control for wind power to enhance power system stability

    OpenAIRE

    Domínguez García, José Luís; Gomis Bellmunt, Oriol; Bianchi, Fernando Daniel; Sumper, Andreas

    2011-01-01

    The paper presents a small signal stability analysis for power systems with wind farm interaction. Power systems have damping oscillation modes that can be excited by disturbance or fault in the grid. The power converters of the wind farms can be used to reduce these oscillations and make the system more stable. These ideas are explored to design a power system stabilized (PSS) for a network with conventional generators and a wind farm in order to increase the damping of the oscillation...

  16. Gas-cooled reactor for space power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Pearson, J.S.

    1987-05-01

    Reactor characteristics based on extensive development work on the 500-MWt reactor for the Pluto nuclear ramjet are described for space power systems useful in the range of 2 to 20 MWe for operating times of 1 y. The modest pressure drop through the prismatic ceramic core is supported at the outlet end by a ceramic dome which also serves as a neutron reflector. Three core materials are considered which are useful at temperatures up to about 2000 K. Most of the calculations are based on a beryllium oxide with uranium dioxide core. Reactor control is accomplished by use of a burnable poison, a variable-leakage reflector, and internal control rods. Reactivity swings of 20% are obtained with a dozen internal boron-10 rods for the size cores studied. Criticality calculations were performed using the ALICE Monte Carlo code. The inherent high-temperature capability of the reactor design removes the reactor as a limiting condition on system performance. The low fuel inventories required, particularly for beryllium oxide reactors, make space power systems based on gas-cooled near-thermal reactors a lesser safeguard risk than those based on fast reactors

  17. Suggested Grid Code Modifications to Ensure Wide-Scale Adoption of Photovoltaic Energy in Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Enjeti, Prasad; Blaabjerg, Frede

    2013-01-01

    Current grid standards seem to largely require low power (e.g. several kilowatts) single-phase photovoltaic (PV) systems to operate at unity power factor with maximum power point tracking, and disconnect from the grid under grid faults. However, in case of a wide-scale penetration of single......-phase PV systems in the distributed grid, the disconnection under grid faults can contribute to: a) voltage flickers, b) power outages, and c) system instability. In this paper, grid code modifications are explored for wide-scale adoption of PV systems in the distribution grid. More recently, Italy...... and Japan, have undertaken a major review of standards for PV power conversion systems connected to low voltage networks. In view of this, the importance of low voltage ride-through for single-phase PV power systems under grid faults along with reactive power injection is studied in this paper. Three...

  18. Application of a combined superconducting fault current limiter and STATCOM to enhancement of power system transient stability

    Energy Technology Data Exchange (ETDEWEB)

    Mahdad, Belkacem, E-mail: bemahdad@mselab.org; Srairi, K.

    2013-12-15

    Highlights: •A simple interactive model SFCL–STATCOM Controller is proposed to enhance the transient stability. •The STATCOM controller is integrated in coordination with the SFCL to support the excessive reactive power during fault. •Voltage stability index based continuation power flow is used to locate the STATCOM and the SFCL. •The clearing time improved compared to other cases (with only SFCL, with only STATCOM). •The choice of the STATCOM parameters is very important to exploit efficiently the integration of STATCOM Controller. -- Abstract: Stable and reliable operation of the power system network is dependent on the dynamic equilibrium between energy production and power demand under large disturbance such as short circuit or important line tripping. This paper investigates the use of combined model based superconducting fault current limiter (SFCL) and shunt FACTS Controller (STATCOM) for assessing the transient stability of a power system considering the automatic voltage regulator. The combined model located at a specified branch based on voltage stability index using continuation power flow. The main role of the proposed combined model is to achieve simultaneously a flexible control of reactive power using STATCOM Controller and to reduce fault current using superconducting technology based SFCL. The proposed combined model has been successfully adapted within the transient stability program and applied to enhance the transient power system stability of the WSCC9-Bus system. Critical clearing time (CCT) has been used as an index to evaluate and validate the contribution of the proposed coordinated Controller. Simulation results confirm the effectiveness and perspective of this combined Controller to enhance the dynamic power system performances.

  19. Robust Power Control of Microgrid based on Hybrid Renewable Power Generation Systems

    Directory of Open Access Journals (Sweden)

    A. Hajizadeh

    2013-03-01

    Full Text Available This paper presents modeling and control of a hybrid distributed energy sources including photovoltaic (PV, fuel cell (FC and battery energy storage (BES in a microgrid which provides both real and reactive power to support an unbalanced utility grid. The overall configuration of the microgrid including dynamic models for the PV, FC, BES and its power electronic interfacing are briefly described. Then controller design methodologies for the power conditioning units to control the power flow from the hybrid power plant to the unbalanced utility grid are presented. In order to distribute the power between power sources, the neuro-fuzzy power controller has been developed. Simulation results are presented to demonstrate the effectiveness and capability of proposed control strategy.

  20. Validation of the U.S. NRC coupled code system TRITON/TRACE/PARCS with the special power excursion reactor test III (SPERT III)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R. C.; Xu, Y.; Downar, T. [Dept. of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, Ann Arbor, MI 48104 (United States); Hudson, N. [RES Div., U.S. NRC, Rockville, MD (United States)

    2012-07-01

    The Special Power Excursion Reactor Test III (SPERT III) was a series of reactivity insertion experiments conducted in the 1950's. This paper describes the validation of the U.S. NRC Coupled Code system TRITON/PARCS/TRACE to simulate reactivity insertion accidents (RIA) by using several of the SPERT III tests. The work here used the SPERT III E-core configuration tests in which the RIA was initiated by ejecting a control rod. The resulting super-prompt reactivity excursion and negative reactivity feedback produced the familiar bell shaped power increase and decrease. The energy deposition during such a power peak has important safety consequences and provides validation basis for core coupled multi-physics codes. The transients of five separate tests are used to benchmark the PARCS/TRACE coupled code. The models were thoroughly validated using the original experiment documentation. (authors)

  1. Mitigating Space Weather Impacts on the Power Grid in Real-Time: Applying 3-D EarthScope Magnetotelluric Data to Forecasting Reactive Power Loss in Power Transformers

    Science.gov (United States)

    Schultz, A.; Bonner, L. R., IV

    2017-12-01

    Current efforts to assess risk to the power grid from geomagnetic disturbances (GMDs) that result in geomagnetically induced currents (GICs) seek to identify potential "hotspots," based on statistical models of GMD storm scenarios and power distribution grounding models that assume that the electrical conductivity of the Earth's crust and mantle varies only with depth. The NSF-supported EarthScope Magnetotelluric (MT) Program operated by Oregon State University has mapped 3-D ground electrical conductivity structure across more than half of the continental US. MT data, the naturally occurring time variations in the Earth's vector electric and magnetic fields at ground level, are used to determine the MT impedance tensor for each site (the ratio of horizontal vector electric and magnetic fields at ground level expressed as a complex-valued frequency domain quantity). The impedance provides information on the 3-D electrical conductivity structure of the Earth's crust and mantle. We demonstrate that use of 3-D ground conductivity information significantly improves the fidelity of GIC predictions over existing 1-D approaches. We project real-time magnetic field data streams from US Geological Survey magnetic observatories into a set of linear filters that employ the impedance data and that generate estimates of ground level electric fields at the locations of MT stations. The resulting ground electric fields are projected to and integrated along the path of power transmission lines. This serves as inputs to power flow models that represent the power transmission grid, yielding a time-varying set of quasi-real-time estimates of reactive power loss at the power transformers that are critical infrastructure for power distribution. We demonstrate that peak reactive power loss and hence peak risk for transformer damage from GICs does not necessarily occur during peak GMD storm times, but rather depends on the time-evolution of the polarization of the GMD's inducing fields

  2. Intelligent Control of UPFC for Enhancing Transient Stability on Multi-Machine Power Systems

    Directory of Open Access Journals (Sweden)

    Hassan Barati

    2010-01-01

    Full Text Available One of the benefit of FACTS devices is increase of stability in power systems with control active and reactive power at during the fault in power system. Although, the power system stabilizers (PSSs have been one of the most common controls used to damp out oscillations, this device may not produce enough damping especially to inter-area mode and therefore, there is an increasing interest in using FACTS devices to aid in damping of these oscillations. In This paper, UPFC is used for damping oscillations and to enhance the transient stability performance of power systems. The controller parameters are designed using an efficient version of the Takagi-Sugeno fuzzy control scheme. The function based Takagi-Sugeno-Kang (TSK fuzzy controller uses. For optimization parameters of fuzzy PI controller, the GA, PSO and HGAPSO algorithms are used. The computer simulation results, the effect of UPFC with conventional PI controller, fuzzy PI controller and intelligent controllers (GA, PSO and HGAPSO for damping the local-mode and inter-area mode of under large and small disturbances in the four-machine two-area power system evaluated and compared.

  3. Optimal reactive power and voltage control in distribution networks with distributed generators by fuzzy adaptive hybrid particle swarm optimisation method

    DEFF Research Database (Denmark)

    Chen, Shuheng; Hu, Weihao; Su, Chi

    2015-01-01

    A new and efficient methodology for optimal reactive power and voltage control of distribution networks with distributed generators based on fuzzy adaptive hybrid PSO (FAHPSO) is proposed. The objective is to minimize comprehensive cost, consisting of power loss and operation cost of transformers...... that the proposed method can search a more promising control schedule of all transformers, all capacitors and all distributed generators with less time consumption, compared with other listed artificial intelligent methods....... algorithm is implemented in VC++ 6.0 program language and the corresponding numerical experiments are finished on the modified version of the IEEE 33-node distribution system with two newly installed distributed generators and eight newly installed capacitors banks. The numerical results prove...

  4. Stockholm Power Tech. Power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The proceedings from this symposium is presented in six volumes: Invited speakers` sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  5. Stockholm Power Tech. Power systems

    International Nuclear Information System (INIS)

    1995-01-01

    The proceedings from this symposium is presented in six volumes: Invited speakers' sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  6. On test results of the superconducting magnetic energy storage (SMES) system in Ariuragawa Power Station

    International Nuclear Information System (INIS)

    Katahira, Osamu; Fukui, Fumihiko; Karano, Koichi; Irie, Fujio; Takeo, Masakatsu; Okada, Hidehiko; Shimojo, Toshikazu.

    1991-01-01

    SMES system is that for storing electric energy in the form of magnetic energy by flowing DC current through a superconducting coil by utilizing the characteristics of its superconductivity. It comprises a superconducting coil for storing energy, an AC-DC converter, the cooling system for maintaining extremely low temperature and so on. The features of SMES are the high efficiency of storing electric energy (more than 90 % in the large scale system), the fast response to store and release electric power, and effective power and reactive power can be independently and arbitrarily controlled. It is expected that SMES can be applied to the stabilization of electric power system, the adjustment of system voltage, the adjustment of varying load and so on. In order to verify the results of the laboratory research in actual power system, the system test was carried out in Ariuragawa Power Station on November 20-22, 1990. The outline of the test, the method of controlling SMES, the test results and the examination of the results are reported. (K.I.)

  7. Automated reactivity anomaly surveillance in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Knutson, B.J.; Harris, R.A.; Honeyman, D.J.; Shook, A.T.; Krohn, C.N.

    1985-01-01

    The automated technique for monitoring core reactivity during power operation used at the Fast Flux Test Facility (FFTF) is described. This technique relies on comparing predicted to measured rod positions to detect any anomalous (or unpredicted) core reactivity changes. It is implemented on the Plant Data System (PDS) computer and, thus, provides rapid indication of any abnormal core conditions. The prediction algorithms use thermal-hydraulic, control rod position and neutron flux sensor information to predict the core reactivity state

  8. Use of appliances in stand-alone PV power supply systems: problems and solutions. Task 3 use of photovoltaic power systems in stand-alone and island applications

    Energy Technology Data Exchange (ETDEWEB)

    Vallve, X.; Gafas, G. [IEA PVPS, Task 3 (Spain); Villoz, M. [IEA PVPS, Task 3 (Switzerland); Wilshaw, A. [IEA PVPS, Task 3 (United Kingdom); Jacquin, P. [IEA PVPS, Task 3 (France)

    2002-09-15

    In Stand-Alone Photovoltaic Systems (SAPV systems), special attention must be paid to the used appliances and loads. Inappropriate loads are very often the origin of PV system malfunction or failure. Start-up power peaks, or reactive power and harmonic distortion can cause system signal instability and protective devices will close the system down. A well-matched load together with a carefully selected choice of appliances can lead to significant savings in terms of reduced need for PV and electricity storage capacity. Conversely, inefficient appliances and processes, standby loads and inappropriate loads will increase the requirement for expensive PV and storage capacity. This paper presents a survey of real cases with load related problems in worldwide applications, their effect on quality and cost of the service and the solutions that were adopted and suggested alternative solutions. One of the main conclusions of the work is the importance to integrate the choice of the appliance while designing the SAPV system. (author)

  9. Model-Based Testing of a Reactive System with Coloured Petri Nets

    DEFF Research Database (Denmark)

    Tjell, Simon

    2006-01-01

    In this paper, a reactive and nondeterministic system is tested. This is doneby applying a generic model that has been specified as a configurable Coloured PetriNet. In this way, model-based testing is possible for a wide class of reactive system atthe level of discrete events. Concurrently...

  10. DNA repair in B. subtilis: an inducible dimer-specific W-reactivation system

    International Nuclear Information System (INIS)

    Fields, P.I.; Yasbin, R.E.

    1982-01-01

    The W-reactivation system of Bacillus subtilis can repair pyrimidine dimers in bacteriophage DNA. This inducible repair system can be activated by treatment of the bacteria with uv, alkylating agents, cross-linking agents and gamma irradiation. However, bacteriophage treated with agents other than those that cause pyrimidine dimers to be produced was not repaired by this unique form of W-reactivation. In contrast, the W-reactivation system of Escherichia coli can repair a variety of damages placed in the bacteriophage DNA

  11. Electric power system / emergency power supply

    International Nuclear Information System (INIS)

    Dorn, P.G.

    1980-01-01

    One factor of reliability of reactor safety systems is the integrity of the power supply. The purpose of this paper is a review and a discussion of the safety objectives required for the planning, licensing, manufacture and erection of electrical power systems and components. The safety aspects and the technical background of the systems for - the electric auxiliary power supply system and - the emergency power supply system are outlined. These requirements result specially from the safety standards which are the framework for the studies of safety analysis. The overall and specific requirements for the electrical power supply of the safety systems are demonstrated on a 1300 MW standard nuclear power station with a pressurized water reactor. (orig.)

  12. Development of a computer-aided digital reactivity computer system for PWRs

    International Nuclear Information System (INIS)

    Chung, S.-K.; Sung, K.-Y.; Kim, D.; Cho, D.-Y.

    1993-01-01

    Reactor physics tests at initial startup and after reloading are performed to verify nuclear design and to ensure safety operation. Two kinds of reactivity computers, analog and digital, have been widely used in the pressurized water reactor (PWR) core physics test. The test data of both reactivity computers are displayed only on the strip chart recorder, and these data are managed by hand so that the accuracy of the test results depends on operator expertise and experiences. This paper describes the development of the computer-aided digital reactivity computer system (DRCS), which is enhanced by system management software and an improved system for the application of the PWR core physics test

  13. Control voltage and power fluctuations when connecting wind farms

    Science.gov (United States)

    Berinde, Ioan; Bǎlan, Horia; Oros Pop, Teodora Susana

    2015-12-01

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  14. Control voltage and power fluctuations when connecting wind farms

    International Nuclear Information System (INIS)

    Berinde, Ioan; Bălan, Horia; Oros, Teodora Susana

    2015-01-01

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve

  15. Control voltage and power fluctuations when connecting wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Berinde, Ioan, E-mail: ioan-berinde@yahoo.com; Bălan, Horia, E-mail: hbalan@mail.utcluj.ro; Oros, Teodora Susana, E-mail: teodoraoros-87@yahoo.com [Technical University of Cluj-Napoca, Romania, Faculty of Electrical Engineering, Department of Power Engineering and Management (Romania)

    2015-12-23

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  16. Techniques for reactive system design: the tools in TRADE

    NARCIS (Netherlands)

    Wieringa, Roelf J.; Jansen, D.N.; Dittrich, K.R.; Geppert, A.; Norrie, M.C.

    Reactive systems are systems whose purpose is to maintain a certain desirable state of affairs in their environment, and include information systems, groupware, workflow systems, and control software. The current generation of information system design methods cannot cope with the high demands that

  17. Reactivity control system of a passively safe thorium breeder pebble bed reactor

    International Nuclear Information System (INIS)

    Wols, F.J.; Kloosterman, J.L.; Lathouwers, D.; Hagen, T.H.J.J. van der

    2014-01-01

    Highlights: • A worth of over 15,000 pcm ensures achieving long-term cold shutdown in thorium PBR. • Control rod worth in side reflector is insufficient due to low-power breeder zone. • 20 control rods, just outside the driver zone, can achieve long-term cold shutdown. • BF 3 gas can be inserted for reactor shutdown, but only in case of emergency. • Perturbation theory accurately predicts absorber gas worth for many concentrations. - Abstract: This work investigates the neutronic design of the reactivity control system for a 100 MW th passively safe thorium breeder pebble bed reactor (PBR), a conceptual design introduced previously by the authors. The thorium PBR consists of a central driver zone of 100 cm radius, surrounded by a breeder zone with 300 cm outer radius. The fissile content of the breeder zone is low, leading to low fluxes in the radial reflector region. Therefore, a significant decrease of the control rod worth at this position is anticipated. The reactivity worth of control rods in the side reflector and at alternative in-core positions is calculated using different techniques, being 2D neutron diffusion, perturbation theory and more accurate 3D Monte Carlo models. Sensitivity coefficients from perturbation theory provide a first indication of effective control rod positions, while the 2D diffusion models provide an upper limit on the reactivity worth achievable at a certain radial position due to the homogeneous spreading of the absorber material over the azimuthal domain. Three dimensional forward calculations, e.g. in KENO, are needed for an accurate calculation of the total control rod worth. The two dimensional homogeneous calculations indicate that the reactivity worth in the radial reflector is by far insufficient to achieve cold reactor shutdown, which requires a control rod worth of over 15 000 pcm. Three dimensional heterogeneous KENO calculations show that placing 20 control rods just outside the driver channel, between 100 cm

  18. Reactivity control system of a passively safe thorium breeder pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wols, F.J., E-mail: f.j.wols@tudelft.nl; Kloosterman, J.L.; Lathouwers, D.; Hagen, T.H.J.J. van der

    2014-12-15

    Highlights: • A worth of over 15,000 pcm ensures achieving long-term cold shutdown in thorium PBR. • Control rod worth in side reflector is insufficient due to low-power breeder zone. • 20 control rods, just outside the driver zone, can achieve long-term cold shutdown. • BF{sub 3} gas can be inserted for reactor shutdown, but only in case of emergency. • Perturbation theory accurately predicts absorber gas worth for many concentrations. - Abstract: This work investigates the neutronic design of the reactivity control system for a 100 MW{sub th} passively safe thorium breeder pebble bed reactor (PBR), a conceptual design introduced previously by the authors. The thorium PBR consists of a central driver zone of 100 cm radius, surrounded by a breeder zone with 300 cm outer radius. The fissile content of the breeder zone is low, leading to low fluxes in the radial reflector region. Therefore, a significant decrease of the control rod worth at this position is anticipated. The reactivity worth of control rods in the side reflector and at alternative in-core positions is calculated using different techniques, being 2D neutron diffusion, perturbation theory and more accurate 3D Monte Carlo models. Sensitivity coefficients from perturbation theory provide a first indication of effective control rod positions, while the 2D diffusion models provide an upper limit on the reactivity worth achievable at a certain radial position due to the homogeneous spreading of the absorber material over the azimuthal domain. Three dimensional forward calculations, e.g. in KENO, are needed for an accurate calculation of the total control rod worth. The two dimensional homogeneous calculations indicate that the reactivity worth in the radial reflector is by far insufficient to achieve cold reactor shutdown, which requires a control rod worth of over 15 000 pcm. Three dimensional heterogeneous KENO calculations show that placing 20 control rods just outside the driver channel

  19. Power System Observation by using Synchronized Phasor Measurements as a Smart Device

    Science.gov (United States)

    Mitani, Yasunori

    Phasor Measurement Unit (PMU) is an apparatus which detects the absolute value of phase angle in sinusoidal signal. When more than two units are located distantly apart from each other, and they are synchronized with GPS signal which tells us the information on exact time, it becomes ready to get phase differences between two distant places. Thus, PMU with GPS receiver is applied to the monitoring of AC power system dynamics and usually installed at substations of transmission lines. The states of power network are uniquely determined by the active and reactive power and the magnitude and phase angle of voltage in each node. Among these values the phase angle had not been easily obtained until the scheme of time synchronism with GPS appeared. In this report, the history of GPS and PMU, and the current status of the applications in power systems in the world are presented. In Japan we are developing a power system monitoring system with PMUs installed at University's campuses with 100V outlets, which is called Campus WAMS. This report also introduces some results from the Campus WAMS briefly.

  20. Novel concept of a PV power generation system adding the function of shunt active filter

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.G.; Park, M.; Yu, I.K. [Changwon National Univ., Changwon City (Korea, Republic of). Dept. of Electrical Engineering

    2005-07-01

    A new photovoltaics (PV) power generation system that used an active filter (AF) function was proposed. The AF was installed to condition reactive power and harmonic compensation as well as flicker and voltage regulation. A maximum point power tracking (MPPT) control system was used to stabilize the voltage source inverter (VSI) output current. A general dq transformation was used to compensate the negative components and the harmonics component. The output terminal of the PV array was connected to a smoothing capacitor interfacing the PV-AF inverter. A voltage source PWM converter was controlled with feedback loops of the output current of the inverter. Optimal values of the power inverter gains and filter constants were tuned to obtain responses. The PV system was simulated using real weather conditions. Results of the study demonstrated the stability and effectiveness of the proposed system. It was concluded that the PV-AF can also be used to provide harmonic damping throughout power distribution systems. 12 refs., 3 tabs., 9 figs.

  1. Optimal location of shunt FACTS devices in a power system with high wind feeding

    Energy Technology Data Exchange (ETDEWEB)

    Shakib, Arefeh Danesh; Balzer, Gerd [Technische Univ. Darmstadt (Germany). Inst. of Electrical Power Systems

    2009-07-01

    Connections of large offshore wind farms, which will be placed in the North Sea, will lead to several problems in Germany's power system. One of these is the occurance of undervoltage at weak nodes due to the reduction of reactive power generation. This paper is covering several singular analyses of the system Jacobin matrix whose results are applied to identify sensors and weak places in power systems with high wind feeding. This allows for the solution of optimal location of shunt FACTS devices for example static var compensators (SVC) for voltage control. The optimizations are made on two parameters: the location of the devices and their sizes. Simulations are performed on a IEEE 57-bus system for several wind feeding scenarios. It can be shown that by use of optimal placed FACTS devices the voltage stability of the power system in the case of high wind feeding can be guaranteed. (orig.)

  2. Cost on Reliability and Production Loss for Power Converters in the Doubly Fed Induction Generator to Support Modern Grid Codes

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2016-01-01

    As wind farms are normally located in remote areas, many grid codes have been issued especially related to the reactive power support. Although the Doubly-Fed Induction Generator (DFIG) based power converter is able to control the active power and reactive power independently, the effects...... of providing reactive power on the lifetime of the power converter and the cost-of-energy of the whole system are seldom evaluated, even though it is an important topic. In this paper, the loss models of the DFIG system are established at various conditions of the reactive power injection. If the mission...... profile is taken into account, the lifespan of the power semiconductors as well as the cost of the reactive power can be calculated. It is concluded that an over-excited reactive power injection significantly reduces the power converter lifetime, only 1/4 of the case that there is no reactive power...

  3. System Protection Schemes in Eastern Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Joana

    outages in the southern part of the 132-kV system introduce further stress in the power system, eventually leading to a voltage collapse. The local System Protection Scheme against voltage collapse is designed as a response-based scheme, which is dependent on local indication of reactive and active power...... effective measures, because they are associated with large reactive power losses in the transmission system. Ordered reduction of wind generation is considered an effective measure to maintain voltage stability in the system. Reactive power in the system is released due to tripping of a significant amount...... system. In that way, the power system capability could be extended beyond normal limits....

  4. Coordinated control of active and reactive power of distribution network with distributed PV cluster via model predictive control

    Science.gov (United States)

    Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng

    2018-02-01

    A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method

  5. Phase rule calculations and the thermodynamics of reactive systems under chemical equilibrium

    Directory of Open Access Journals (Sweden)

    PLATT G. M.

    1999-01-01

    Full Text Available In this paper, we examine the resolution of some phase rule problems within the context of multiple chemical equilibrium reactions, using cubic equations of state and an activity coefficient model. Bubble and dew reactive surfaces, reactive azeotropic loci and reactive critical loci are generated and presented in graphical form. Also isobaric bubble and dew reactive enthalpy loci, which may be useful in the modeling of reactive distillation operations, are depicted. All the formalism here employed is developed within the coordinate transformation of Ung and Doherty, which is appropriate for equilibrium reactive or multireactive systems. The major contribution of this work is the determination of critical loci for reactive or multireactive equilibrium systems. Since it is known that for some class of chemical reactions the kinetics and product distribution exhibit high sensitivity to pressure near criticality, the present study may be useful as a predicting tool in these cases if the chemical equilibrium condition is not too far from the real phenomenon.

  6. Structural and optical properties of zirconia thin films deposited by reactive high-power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaoli; Jin, Jie [Tianjin University, School of Electronic Information Engineering, Tianjin (China); Cheng, Jui-Ching, E-mail: juiching@ntut.edu.tw [Chang-Gung University, Department of Electronics, Taoyuan, Taiwan (China); Lee, Jyh-Wei [Ming Chi University of Technology, College of Materials Engineering, New Taipei City, Taiwan (China); Wu, Kuo-Hong [Chang-Gung University, Department of Electronics, Taoyuan, Taiwan (China); Lin, Kuo-Cheng; Tsai, Jung-Ruey [Asia University, Department of Photonics and Communication Engineering, Taichung, Taiwan (China); Liu, Kou-Chen, E-mail: jacobliu@mail.cgu.edu.tw [Chang-Gung University, Department of Electronics, Taoyuan, Taiwan (China)

    2014-11-03

    Zirconia films are deposited by reactive high power impulse magnetron sputtering (HiPIMS) technology on glass and indium-tin-oxide (ITO)/glass substrates. Preparation, microstructure and optical characteristics of the films have been studied. During deposition, the influence of the target power and duty cycle on the peak current–voltage and power density has been observed in oxide mode. Transparent thin films under different oxygen proportions are obtained on the two substrates. Atomic force microscopy measurements showed that the surface roughness of the films was lower by reactive HiPIMS than DC sputtering for all oxygen contents. The transmission and reflectance properties of differently grown zirconia films were also investigated using an ultraviolet–visible spectrophotometer. The optical transmittance of films grown on glass substrates by HiPIMS reached maximum values above 90%, which exceeded that by DC sputtering. The band edge near 5.86 eV shifted to a lower wavelength for zirconia films prepared with oxygen flow rates lower than 4.5 sccm. For the films prepared on ITO/glass substrates, the transmittance and the band gap of zirconia films were limited by ITO films; a maximum average transmittance of 84% was obtained at 4.5 sccm O{sub 2} and the energy band gap was in the range of 3.7–3.8 eV for oxygen flow rates ranging from 3.5 to 5.0 sccm. Finally, the electrical properties of zirconia films have also been discussed. - Highlights: • Zirconia films are deposited by reactive high power impulse magnetron sputtering. • Low roughness films are obtained. • Films show a high transmittance (> 90%). • Films prepared on glass have a band gap of 5.9 eV.

  7. Nuclear power history calculation for subcritical systems using Euler-MacLaurin formula

    International Nuclear Information System (INIS)

    Henrice Junior, Edson; Goncalves, Alessandro da Cruz

    2013-01-01

    This paper presents an efficient method for calculating the reactivity using inverse point kinetic equation for subcritical systems by applying the Euler-MacLaurin summation formula to calculate the nuclear power history. In accordance with the accuracy of the numerical results, this method does not require a large number of points for calculation, providing accurate results with low computational cost. (author)

  8. Design and synthesis of reactive separation systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, M.F.

    1992-12-31

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  9. Development of an Active Power Reserve Management Method for DC Applied Wave-Wind Combined Generation Systems

    Directory of Open Access Journals (Sweden)

    Seungmin Jung

    2015-11-01

    Full Text Available A system that combines a wind turbine and a wave generator can share the off-shore platform and therefore mix the advantages of the transmission system construction and the power conversion system. The current hybrid generation system considers output limitation according to the instructions of the transmission system operator (TSO, and controls the profile using wind turbine pitch control. However, the integrated wave generation system utilizing a DC network does not adapt a power limitation scheme due to its mechanical constraints. In this paper, a control plan focusing on the electrical section of wave generators is formed in order to effectively manage the output profile of the hybrid generation system. The plan pays attention to power reserve flexibility for the utility grid using the analysis of the controllable elements. Comparison with the existing system is performed based on real offshore conditions. With the help of power system computer aided design (PSCAD simulation, the ability of the novel technique is estimated by proposing the real power control based on the reference signal of TSO and the reactive power capacity it produces.

  10. Combined short and long term rating of static Var system components for steady state and transient voltage support in a 500 kV power grid

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, L; Silva, A; Thorvaldsson, B [ABB Power Systems AB, Vaesteraas (Sweden); Gonzalez, R [Northern States Power Co., Minneapolis, MN (United States)

    1994-12-31

    One efficient way to improve the power transmission performance is to provide appropriate reactive power balance and control in the network. Reactive power compensation by means of static var compensation (SVC) and series compensation (SC) are well established ways to achieve such improvement. The SVC, which is a relatively new concept, has now been used successfully for more than 15 years in EHV systems. This paper discusses a more general type of shunt compensation, designated Static var System (SVS), which may include breaker switched capacitor banks and other special features besides conventional SVC technology. (author) 4 figs.

  11. RELAP5-3D code validation of RBMK-1500 reactor reactivity measurement transients

    International Nuclear Information System (INIS)

    Kaliatka, Algirdas; Bubelis, Evaldas; Uspuras, Eugenijus

    2003-01-01

    This paper deals with the modeling of transients taking place during the measurements of the void and fast power reactivity coefficients performed at Ignalina NPP. The simulation of these transients was performed using RELAP5-3D code model of RBMK-1500 reactor. At the Ignalina NPP void and fast power reactivity coefficients are measured on a regular basis and, based on the total reactor power, reactivity, control and protection system control rods positions and the main circulation circuit parameter changes during the experiments, the actual values of these reactivity coefficients are determined. Following the simulation of the two above mentioned transients with RELAP5-3D code, a conclusion was made that the obtained calculation results demonstrate reasonable agreement with Ignalina NPP measured data. Behaviors of the separate MCC thermal-hydraulic parameters as well as physical processes are predicted reasonably well to the real processes, occurring in the primary circuit of RBMK-1500 reactor. The calculated reactivity and the total reactor core power behavior in time are also in reasonable agreement with the measured plant data. Despite of the small differences, RELAP5-3D code predicts reactivity and the total reactor core power behavior during the transients in a reasonable manner. Reasonable agreement of the measured and the calculated total reactor power change in time demonstrates the correct modeling of the neutronic processes taking place in RBMK-1500 reactor core

  12. Assessment Studies regarding the Optimal Sizing of Wind Integrated Hybrid Power Plants for Off-Grid Systems

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin; Tarnowski, German Claudio

    2018-01-01

    The paper focusses on the optimal sizing of off-grid hybrid power plants including wind power generation. A modular and scalable system topology as well as an optimal sizing algorithm for the HPP has been presented in a previous publication. In this paper, the sizing process is evaluated by means...... of assessment studies. The aim is to address the impact of renewable resource data, the required power supply availability and reactive power load demand on the optimal sizing of wind integrated off-grid HPPs....

  13. Analytical Modelling of Wireless Power Transfer (WPT) Systems for Electric Vehicle Application

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Madhu Sudhan [ORNL; Campbell, Steven L [ORNL

    2016-01-01

    This paper presents an analytical model for wireless power transfer system used in electric vehicle application. The equivalent circuit model for each major component of the system is described, including the input voltage source, resonant network, transformer, nonlinear diode rectifier load, etc. Based on the circuit model, the primary side compensation capacitance, equivalent input impedance, active / reactive power are calculated, which provides a guideline for parameter selection. Moreover, the voltage gain curve from dc output to dc input is derived as well. A hardware prototype with series-parallel resonant stage is built to verify the developed model. The experimental results from the hardware are compared with the model predicted results to show the validity of the model.

  14. Electric power systems

    CERN Document Server

    Weedy, B M; Jenkins, N; Ekanayake, J B; Strbac, G

    2012-01-01

    The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now e

  15. Reactivity anomaly surveillance in the Fast Flux Test Facility through cycle 3

    International Nuclear Information System (INIS)

    Knutson, B.J.; Harris, R.A.

    1984-08-01

    The technique for monitoring core reactivity during power operation used at the Fast Flux Test Facility (FFTF) is described. This technique relies on comparing predicted to measured rod positions to detect any anomalous (or unpredicted) core reactivity changes. It is implemented on the Plant Data System (PDS) computer and thus provides rapid indication of any abnormal core conditions. The prediction algorithms use thermal-hydraulic, control rod position and neutron flux sensor information to predict the core reactivity state. Initial results of using this technique based mainly on theoretical formulations is presented. The results show that the reactivity changes due to increasing reactor power (power defect) and burnup of the fuel were within approx. 16% of predicted values. To increase the sensitivity and accuracy of this technique, the prediction algorithms were calibrated to actual operating data. The work of calibrating this technique and the results of using the calibrated technique up through the third full operating cycle are summarized

  16. Performance of Doubly-Fed Wind Power Generators During Voltage Dips

    DEFF Research Database (Denmark)

    Aparicio, N.; Chen, Zhe; Beltran, H.

    The growing of wind generation in Spain has forced its Transmission System Operator (TSO) to release new requirements that establish the amount of reactive power that a wind turbine has to supply to the grid during a voltage dip. Wind turbines equipped with doubly-fed induction generators (DFIG......) can regulate easily the reactive power generated in steady state. However, difficulties appear when reactive power has to be generated during voltage dips. Simulations have been carried out in order to check whether DFIG wind turbines can fulfill the reactive power requirements. Protection system...... commonly employed with DFIG in order to achieve ride-through capabilities including crowbar plays an important role to meet the requirements together with grid-side converter. Resistance associated with the crowbar and its connection duration are crucial at the beginning of the fault. Grid-side converter...

  17. Analysis and Research on the effect of the Operation of Small Hydropower in the Regional Power Grid

    Science.gov (United States)

    Ang, Fu; Guangde, Dong; Xiaojun, Zhu; Ruimiao, Wang; Shengyi, Zhu

    2018-03-01

    The analysis of reactive power balance and voltage of power network not only affects the system voltage quality, but also affects the economic operation of power grid. In the calculation of reactive power balance and voltage analysis in the past, the problem of low power and low system voltage has been the concern of people. When small hydropower stations in the wet period of low load, the analysis of reactive power surplus and high voltage for the system, if small hydropower unit the capability of running in phase is considered, it can effectively solve the system low operation voltage of the key point on the high side.

  18. Reactors Dynamic analysis Due to Reactivity of The RSG-Gas at One Line Cooling Mode

    International Nuclear Information System (INIS)

    Hastuti, Endiah Puji

    2003-01-01

    In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor power has been determined and steady state and LOFA transient analysis have also been done. To complete those analyses, the reactivity analysis was done by means of a core dynamic and thermal hydraulic code, PARET-ANL. Accident simulation was done. by a ramp reactivity accident due to control rod withdrawal. Reactivity analysis was carried out at two power range i.e. low and high power level, by imposing one line mode reactor protection limits. The results show that technically, the RSG-Gas can be operated safely using one line mode

  19. Isothermal temperature reactivity coefficient measurement in TRIGA reactor

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Trkov, A.

    2002-01-01

    Direct measurement of an isothermal temperature reactivity coefficient at room temperatures in TRIGA Mark II research reactor at Jozef Stefan Institute in Ljubljana is presented. Temperature reactivity coefficient was measured in the temperature range between 15 o C and 25 o C. All reactivity measurements were performed at almost zero reactor power to reduce or completely eliminate nuclear heating. Slow and steady temperature decrease was controlled using the reactor tank cooling system. In this way the temperatures of fuel, of moderator and of coolant were kept in equilibrium throughout the measurements. It was found out that TRIGA reactor core loaded with standard fuel elements with stainless steel cladding has small positive isothermal temperature reactivity coefficient in this temperature range.(author)

  20. Fracture Characterization in Reactive Fluid-Fractured Rock Systems Using Tracer Transport Data

    Science.gov (United States)

    Mukhopadhyay, S.

    2014-12-01

    Fractures, whether natural or engineered, exert significant controls over resource exploitation from contemporary energy sources including enhanced geothermal systems and unconventional oil and gas reserves. Consequently, fracture characterization, i.e., estimating the permeability, connectivity, and spacing of the fractures is of critical importance for determining the viability of any energy recovery program. While some progress has recently been made towards estimating these critical fracture parameters, significant uncertainties still remain. A review of tracer technology, which has a long history in fracture characterization, reveals that uncertainties exist in the estimated parameters not only because of paucity of scale-specific data but also because of knowledge gaps in the interpretation methods, particularly in interpretation of tracer data in reactive fluid-rock systems. We have recently demonstrated that the transient tracer evolution signatures in reactive fluid-rock systems are significantly different from those in non-reactive systems (Mukhopadhyay et al., 2013, 2014). For example, the tracer breakthrough curves in reactive fluid-fractured rock systems are expected to exhibit a long pseudo-state condition, during which tracer concentration does not change by any appreciable amount with passage of time. Such a pseudo-steady state condition is not observed in a non-reactive system. In this paper, we show that the presence of this pseudo-steady state condition in tracer breakthrough patterns in reactive fluid-rock systems can have important connotations for fracture characterization. We show that the time of onset of the pseudo-steady state condition and the value of tracer concentration in the pseudo-state condition can be used to reliably estimate fracture spacing and fracture-matrix interface areas.

  1. Impacts of the turbogenerator reactive operation in the nuclear fuel burnup

    International Nuclear Information System (INIS)

    Oliveira, Helio Ricardo V. de; Martinez, Aquilino S.

    2002-01-01

    The parameterization of the losses in a turbogenerator in function of an operation with the electrical system reactive allowed to model in a simple and exact way the equations that define and they quantify the additional of nuclear potency that it should be generated by a reactor, in order to maintain the commitment with the national system operator, that is, the electric active power contracted. starting from this additional of nuclear power it was modeled the additional burn up of the fuel elements, as well as the numbers of effective days to full power wasted. it was promoted a safety analysis and some limitations due to the reactive operation of the electrical system. inside of this context it was made a financial evaluation in which we ask some questions to companies and government organs in order to define what losses are acceptable and also the reason why we don't use other technician resources such as: increase of the electrical mesh, electrical power injection in strategic points, capacitor banks and increase of the number the electrical plants. (author)

  2. Power conversion and quality of the Santa Clara 2 MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); Abueg, R.Z. [Basic Measuring Instruments, Santa Clara, CA (United States); Schwartz, P. [Fluor Daniel, Inc., Irvine, CA (United States)] [and others

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is the first application of a commercial-scale carbonate fuel cell power plant on a US electric utility system. It is also the largest fuel cell power plant ever operated in the United States. The 2MW plant, located in Santa Clara, California, utilizes carbonate fuel cell technology developed by Energy Research Corporation (ERC) of Danbury, Connecticut. The ultimate goal of a fuel cell power plant is to deliver usable power into an electrical distribution system. The power conversion sub-system does this for the Santa Clara Demonstration Plant. A description of this sub-system and its capabilities follows. The sub-system has demonstrated the capability to deliver real power, reactive power and to absorb reactive power on a utility grid. The sub-system can be operated in the same manner as a conventional rotating generator except with enhanced capabilities for reactive power. Measurements demonstrated the power quality from the plant in various operating modes was high quality utility grade power.

  3. Modeling and power system stability of VSC-HVDC systems for grid-connection of large offshore windfarms

    Energy Technology Data Exchange (ETDEWEB)

    Xue Yijing [Vestas China, Beijing (China); Akhmatov, Vladislav [Technical Univ. of Denmark, Lyngby (Denmark). Centre for Electric Technology

    2009-07-01

    Utilization of Voltage Source Converter (VSC) - High Voltage Direct Current (HVDC) systems for grid-connection of large offshore windfarms becomes relevant as installed power capacities as well as distances to the connection points of on-land transmission systems increase. At the same time, the grid code requirements of the Transmission System Operators (TSO), including ancillary system services and Low-Voltage Fault-Ride-Through (LVFRT) capability of large offshore windfarms, become more demanding. This paper presents a general-level model of and a LVFRT solution for a VSC-HVDC system for grid-connection of large offshore windfarms. The VSC-HVDC model is implemented using a general approach of independent control of active and reactive power in normal operations. The on-land VSC inverter, i.e. a grid-side inverter, provides voltage support to the transmission system and comprises a LVFRT solution in short-circuit faults. The presented model, LVFRT solution and impact on the system stability are investigated as a case study of a 1,000 MW offshore windfarm grid-connected through a VSC-HVDC system. The investigation is carried out on a model of the west Danish, with some elements of the north German, 400 kV, 220 kV and 150 kV transmission systems stage 2005-2006 using the DIgSILENT PowerFactory simulation program. In the investigation, a thermal power plant just south to the Danish border has been substituted by this 1,000 MW offshore windfarm utilizing the VSC-HVDC system. The investigation has shown that the substitution of a thermal power plant by a VSC-HVDC connected offshore windfarm should not have any negative impact on the short-term stability of the west Danish transmission system. The investigation should be repeated applying updated system model stages and offshore wind power commissioning schedules in the North and Baltic Seas. (orig.)

  4. Improvement of low speed induction generator performances and reducing the power of excitation and voltage control system

    Energy Technology Data Exchange (ETDEWEB)

    Budisan, N. [Politechnica Univ. of Timisoara (Romania); Hentea, T.; Mahil, S. [Purdue Univ. Calumet, Hammond, IN (United States); Madescu, G. [Romanian Academy, Timisoara (Romania)

    1996-12-31

    In this paper we present the results of our investigations concerning the utilization of induction generators at very low speed. It is shown that, by proper design, it is possible to obtain high efficiency and high power factor values. The optimized induction generators require lower reactive power resulting in lower size and price of the excitation control system. 4 refs., 2 figs.

  5. PowerFactory applications for power system analysis

    CERN Document Server

    Gonzalez-Longatt, Francisco

    2014-01-01

    This book presents a comprehensive set of guidelines and applications of DIgSILENT PowerFactory, an advanced power system simulation software package, for different types of power systems studies. Written by specialists in the field, it combines expertise and years of experience in the use of DIgSILENT PowerFactory with a deep understanding of power systems analysis. These complementary approaches therefore provide a fresh perspective on how to model, simulate and analyse power systems. It presents methodological approaches for modelling of system components, including both classical and non-

  6. Power system relaying

    CERN Document Server

    Horowitz, Stanley H; Niemira, James K

    2013-01-01

    The previous three editions of Power System Relaying offer comprehensive and accessible coverage of the theory and fundamentals of relaying and have been widely adopted on university and industry courses worldwide. With the third edition, the authors have added new and detailed descriptions of power system phenomena such as stability, system-wide protection concepts and discussion of historic outages. Power System Relaying, 4th Edition continues its role as an outstanding textbook on power system protection for senior and graduate students in the field of electric power engineering and a refer

  7. Maximum Wind Power Tracking of Doubly Fed Wind Turbine System Based on Adaptive Gain Second-Order Sliding Mode

    Directory of Open Access Journals (Sweden)

    Hongchang Sun

    2018-01-01

    Full Text Available This paper proposes an adaptive gain second-order sliding mode control strategy to track optimal electromagnetic torque and regulate reactive power of doubly fed wind turbine system. Firstly, wind turbine aerodynamic characteristics and doubly fed induction generator (DFIG modeling are presented. Then, electromagnetic torque error and reactive power error are chosen as sliding variables, and fixed gain super-twisting sliding mode control scheme is designed. Considering that uncertainty upper bound is unknown and is hard to be estimated in actual doubly fed wind turbine system, a gain scheduled law is proposed to compel control parameters variation according to uncertainty upper bound real-time. Adaptive gain second-order sliding mode rotor voltage control method is constructed in detail and finite time stability of doubly fed wind turbine control system is strictly proved. The superiority and robustness of the proposed control scheme are finally evaluated on a 1.5 MW DFIG wind turbine system.

  8. Systems of mechanized and reactive droplets powered by multi-responsive surfactants

    Science.gov (United States)

    Yang, Zhijie; Wei, Jingjing; Sobolev, Yaroslav I.; Grzybowski, Bartosz A.

    2018-01-01

    Although ‘active’ surfactants, which are responsive to individual external stimuli such as temperature, electric or magnetic fields, light, redox processes or chemical agents, are well known, it would be interesting to combine several of these properties within one surfactant species. Such multi-responsive surfactants could provide ways of manipulating individual droplets and possibly assembling them into larger systems of dynamic reactors. Here we describe surfactants based on functionalized nanoparticle dimers that combine all of these and several other characteristics. These surfactants and therefore the droplets that they cover are simultaneously addressable by magnetic, optical and electric fields. As a result, the surfactant-covered droplets can be assembled into various hierarchical structures, including dynamic ones, in which light powers the rapid rotation of the droplets. Such rotating droplets can transfer mechanical torques to their non-nearest neighbours, thus acting like systems of mechanical gears. Furthermore, droplets of different types can be merged by applying electric fields and, owing to interfacial jamming, can form complex, non-spherical, ‘patchy’ structures with different surface regions covered with different surfactants. In systems of droplets that carry different chemicals, combinations of multiple stimuli can be used to control the orientations of the droplets, inter-droplet transport, mixing of contents and, ultimately, sequences of chemical reactions. Overall, the multi-responsive active surfactants that we describe provide an unprecedented level of flexibility with which liquid droplets can be manipulated, assembled and reacted.

  9. Wind power in modern power systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    In recent years, wind power is experiencing a rapid growth, and large-scale wind turbines/wind farms have been developed and connected to power systems. However, the traditional power system generation units are centralized located synchronous generators with different characteristics compared...... with wind turbines. This paper presents an overview of the issues about integrating large-scale wind power plants into modern power systems. Firstly, grid codes are introduced. Then, the main technical problems and challenges are presented. Finally, some possible technical solutions are discussed....

  10. Inherent reactor power controller for a metal-fueled ALMR

    International Nuclear Information System (INIS)

    Wood, R.T.; Wilson, T.L. Jr.

    1990-01-01

    Inherent power control for metal-fueled ALMR designs involves using reactivity thermal feedback effects to control reactor power. This paper describes how, using classical control design techniques, a control system for normal load following maneuvers was deigned for a pool-type ALMR. This design provides active control of power removal in the balance of plant, direct control of selected primary and intermediate loop temperatures, and passive control of reactor power. The inherent stability of the strong, fast reactivity feedback effects bring heat production in the core into balance with the heat removal system temperatures, which are controlled to meet power demand. A simulation of the control system successfully responded to a 10% step change in power demand by changing power at an acceptable rate without causing large temperature fluctuations or exceeding thermal limits

  11. PROVIDING QUALITY OF ELECTRIC POWER IN ELECTRIC POWER SYSTEM IN PARALLEL OPERATION WITH WIND TURBINE

    Directory of Open Access Journals (Sweden)

    Yu. A. Rolik

    2016-01-01

    Full Text Available The problem of providing electric power quality in the electric power systems (EPS that are equipped with sufficiently long air or cable transmission lines is under consideration. This problem proved to be of particular relevance to the EPS in which a source of electrical energy is the generator of wind turbines since the wind itself is an instable primary energy source. Determination of the degree of automation of voltage regulation in the EPS is reduced to the choice of methods and means of regulation of power quality parameters. The concept of a voltage loss and the causes of the latter are explained by the simplest power system that is presented by a single-line diagram. It is suggested to regulate voltage by means of changing parameters of the network with the use of the method of reducing loss of line voltage by reducing its reactance. The latter is achieved by longitudinal capacitive compensation of the inductive reactance of the line. The effect is illustrated by vector diagrams of currents and voltages in the equivalent circuits of transmission lines with and without the use of longitudinal capacitive compensation. The analysis of adduced formulas demonstrated that the use of this method of regulation is useful only in the systems of power supply with a relatively low power factor (cosφ < 0.7 to 0.9. This power factor is typical for the situation of inclusion the wind turbine with asynchronous generator in the network since the speed of wind is instable. The voltage regulation fulfilled with the aid of the proposed method will make it possible to provide the required quality of the consumers’ busbars voltage in this situation. In is turn, it will make possible to create the necessary conditions for the economical transmission of electric power with the lowest outlay of reactive power and the lowest outlay of active power losses.

  12. TOXIC LEADERSHIP: A SYSTEMIC APPROACH TO SHIFT FROM REACTIVE TO PROACTIVE SOLUTIONS

    Science.gov (United States)

    2017-03-01

    AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY TOXIC LEADERSHIP: A SYSTEMIC APPROACH TO SHIFT FROM REACTIVE TO PROACTIVE SOLUTIONS...DISTRIBUTION A. Approved for public release: distribution unlimited. Toxic Leadership: A Systemic Approach to Shift From Reactive to Proactive Solutions 1...US military loses valuable personnel when it is too late to implement corrective action and after those toxic Toxic Leadership: A Systemic Approach

  13. A study on the development of a expert system for diagnosing fossil power plants

    International Nuclear Information System (INIS)

    Baik, Young Min; Jeong, Hee Don; Shin, Eun Ju

    2009-01-01

    In order to analyze the causes of fossil power plant facilities due to a degradation and corrosion, artificial degraded materials composed of the facilities were manufactured. Various experiment were performed based on mechanical test, microstructure observation, hardness test, Electrochemical Potentiokinetic Reactivation test (EPR) and corrosion scale thickness measurement test. The master curves were write out using Larson-Miller parameter to evaluate the degree of degradation with the above diagnosis methods. These data were applied to materials database of fossil power plant diagnosis. Finally expert system on the fossil power plant diagnosis was developed using the master curves and diagnosis algorithms.

  14. Preliminary study on the reactivation of the WERAP small hydro power station in Bubikon

    International Nuclear Information System (INIS)

    Bretscher, A.; Gutzwiller, S.

    2003-01-01

    This study on the revitalisation of a small hydro power station belonging to old spinning mill in Bubikon, Switzerland, proposes ideas for the reactivation of an old hydropower installation that once helped power a spinning mill. Details are given on the history of the mill and the hydrological conditions to be expected at the site. Three variants are proposed for the refurbishment, including the revision of the power station's existing 44 kW Francis turbine dating from 1908, the addition of further, similar Francis turbine or its replacement with a new 61 kW Francis turbine. The costs and amortisation of the refurbishment variants are examined, the revenues that can be expected from its operation and other financial factors are discussed. Further, environmental and legal aspects of the project are examined and suggestions are made for the next steps to be taken towards the realisation of this small hydropower plant. An annex provides photographs of the location and the power station's equipment

  15. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power

    International Nuclear Information System (INIS)

    Carta, M.; Burgio, N.; D'Angelo, A.; Santagata, A.; Petrovich, C.; Schikorr, M.; Beller, D.; Felice, L. S.; Imel, G.; Salvatores, M.

    2006-01-01

    This paper provides a comparison of the performance of an electron accelerator-driven experiment, under discussion within the Reactor Accelerator Coupling Experiments (RACE) Project, being conducted within the U.S. Dept. of Energy's Advanced Fuel Cycle Initiative (AFCI), and of the proton-driven experiment TRADE (TRIGA Accelerator Driven Experiment) originally planned at ENEA-Casaccia in Italy. Both experiments foresee the coupling to sub-critical TRIGA core configurations, and are aimed to investigate the relevant kinetic and dynamic accelerator-driven systems (ADS) core behavior characteristics in the presence of thermal reactivity feedback effects. TRADE was based on the coupling of an upgraded proton cyclotron, producing neutrons via spallation reactions on a tantalum (Ta) target, with the core driven at a maximum power around 200 kW. RACE is based on the coupling of an Electron Linac accelerator, producing neutrons via photoneutron reactions on a tungsten-copper (W-Cu) or uranium (U) target, with the core driven at a maximum power around 50 kW. The paper is focused on analysis of expected dynamic power response of the RACE core following reactivity and/or source transients. TRADE and RACE target-core power coupling coefficients are compared and discussed. (authors)

  16. Performance of FACTS equipment in Meshed systems

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, E; Povh, D [Siemens AG, Berlin (Germany)

    1994-12-31

    Modern power electronic devices such as thyristors and GTOs have made it possible to design controllable network elements, which will play a considerable role in ensuring reliable economic operation of transmission systems as a result of their capability to rapidly change active and reactive power. A number of FACTS elements for high-speed active and reactive power control will be described. Control of power system fluctuations in meshed systems by modulation of active and reactive power will be demonstrated using a number of examples. (author) 7 refs., 11 figs.

  17. Software Development Technologies for Reactive, Real-Time, and Hybrid Systems

    Science.gov (United States)

    Manna, Zohar

    1996-01-01

    The research is directed towards the design and implementation of a comprehensive deductive environment for the development of high-assurance systems, especially reactive (concurrent, real-time, and hybrid) systems. Reactive systems maintain an ongoing interaction with their environment, and are among the most difficult to design and verify. The project aims to provide engineers with a wide variety of tools within a single, general, formal framework in which the tools will be most effective. The entire development process is considered, including the construction, transformation, validation, verification, debugging, and maintenance of computer systems. The goal is to automate the process as much as possible and reduce the errors that pervade hardware and software development.

  18. Damping control strategies of inter-area low-frequency oscillation for DFIG-based wind farms integrated into a power system

    DEFF Research Database (Denmark)

    Li, Hui; Liu, Shengquan; Ji, Haiting

    2014-01-01

    on the power system stabilizer (PSS) control method. Transient simulation on different damping gain coefficients are conducted for justification. Following the OTEF mechanism analysis, an additional fuzzy damping control strategy with the active/reactive power loop is proposed by identifying the oscillation......This study investigates the inter-area low-frequency damping control strategies of a doubly fed induction generator (DFIG)-based wind farm through oscillation transient energy function (OTEF) analysis. Based on the OTEF descent expressions, the feasibility of damping the inter-area low...... oscillation of the wind turbine shaft. The proposed additional fuzzy control strategy with the active/reactive power loop has better damping performance than the presented PSS control, especially for damping the inter-area low-frequency oscillation....

  19. RBMK power unit operational performance investigation while false coming into action of the emergency reactor cooling system

    International Nuclear Information System (INIS)

    Emel'yanov, I.Ya.; Aleksakov, A.N.; Vasilevskij, V.P.; Labazov, V.N.; Nikolaev, E.V.; Podlazov, L.N.; Rogov, V.D.; Shevchenko, V.V.

    1984-01-01

    Regimes of RBMK reactor operation during false coming into action of the emergency reactor cooling system (ERCS), which might occur in the case of faults in the automation systems or erroneous actions of operator have been investigated. At that, thepe exists a probability of water supply from ERCS to one half of the reactor, which results in a sharp change of boiling regime, and due to void reactivity effect it causes the neutron field disturbance. Change in flow rate and enthalpy of coolant, as well as changes of neutron flux in the left and right halves of the reactor at ERCS response and during operation of the whole system of automatic control of power and system of local automatic control of power - local emergency protection - have been studied. The investigations have been carried out for different values of vapour effect of void reactivity effect and for time ranges from 0 to 40 s. The calculations are made using a model, describing spatial dynamics of reactor in two-dimensional approximation with 54 nodes. The model describes neutron-physics and thermohydraulic processes and it is realized using the BEhSM-6 computer. It is pointed out that one system of automatic control of power or local emergency protection (i.e. without the shut-off system), is insufficient for the compensation of disturbances appearing as a result of false ERCS coming into operation

  20. [Risk Management of HBV Reactivation: Construction of Check System].

    Science.gov (United States)

    Tanaka, Yasuhito

    2015-09-01

    In recent years, reactivation of HBV in patients receiving cancer chemotherapy or immunosuppressive therapy has been a problem. Generally, HBV-DNA levels are elevated prior to HBsAg concentration, and then hepatic dysfunction is observed in the process of hepatitis by HBV reactivation. Therefore, the monitoring of HBV-DNA is useful for the prediction of hepatic dysfunction, and nucleoside/nucleoside analogue (NA) administration is able to prevent this HBV reactivation. According to these facts, "Guidelines for the Prevention of HBV Reactivation in Patients Receiving Immunosuppressive Therapy or Chemotherapy", 2009 (revised as "JSH Guidelines for the Management of Hepatitis B Virus Infection", 2013) is established, and the diagnostic algorithm of HBsAg, anti-HBc, anti-HBs, and HBV-DNA has relevant descriptions. Combination therapy with rituximab and steroid for malignant lymphoma has a high risk of leading to fulminant hepatitis and, consequently, the guidelines are widely followed in such cases. We introduced the improvement of electronic medical recording and ordering systems in collaboration with hepatologists, and such a system has been widely used. Although the monitoring of HBV-DNA levels is required every 1-3 months, the guidelines are not followed strictly in cases such as rheumatoid disease and solid tumors only with chemotherapy or steroid treatment. Since a DNA assay is complicated and expensive, cost-effective, time-saving, and highly sensitive/specific measurements are required as well. Therefore, Lumipulse HBsAg-HQ (CLIA method) with high sensitivity is expected to be used for the monitoring of HBV reactivation.

  1. Oil drilling rig diesel power-plant fuel efficiency improvement potentials through rule-based generator scheduling and utilization of battery energy storage system

    International Nuclear Information System (INIS)

    Pavković, Danijel; Sedić, Almir; Guzović, Zvonimir

    2016-01-01

    Highlights: • Isolated oil drilling rig microgrid power flows are analyzed over 30 days. • Rule-based diesel generator scheduling is proposed to reduce fuel consumption. • A battery energy storage is parameterized and used for peak load leveling. • The effectiveness of proposed hybrid microgrid is verified by simulations. • Return-of-investment might be expected within 20% of battery system lifetime. - Abstract: This paper presents the development of a rule-based energy management control strategy suitable for isolated diesel power-plants equipped with a battery energy storage system for peak load shaving. The proposed control strategy includes the generator scheduling strategy and peak load leveling scheme based on current microgrid active and reactive power requirements. In order to investigate the potentials for fuel expenditure reduction, 30 days-worth of microgrid power flow data has been collected on an isolated land-based oil drilling rig powered by a diesel generator power-plant, characterized by highly-variable active and reactive load profiles due to intermittent engagements and disengagements of high-power electric machinery such as top-drive, draw-works and mud-pump motors. The analysis has indicated that by avoiding the low-power operation of individual generators and by providing the peak power requirements (peak shaving) from a dedicated energy storage system, the power-plant fuel efficiency may be notably improved. An averaged power flow simulation model has been built, comprising the proposed rule-based power flow control strategy and the averaged model of a suitably sized battery energy storage system equipped with grid-tied power converter and state-of-charge control system. The effectiveness of the proposed rule-based strategy has been evaluated by means of computer simulation analysis based on drilling rig microgrid active and reactive power data recorded during the 30 day period. The analysis has indicated that fuel consumption of

  2. Brief analysis of Jiangsu grid security and stability based on multi-infeed DC index in power system

    Science.gov (United States)

    Zhang, Wenjia; Wang, Quanquan; Ge, Yi; Huang, Junhui; Chen, Zhengfang

    2018-02-01

    The impact of Multi-infeed HVDC has gradually increased to security and stability operating in Jiangsu power grid. In this paper, an appraisal method of Multi-infeed HVDC power grid security and stability is raised with Multi-Infeed Effective Short Circuit Ratio, Multi-Infeed Interaction Factor and Commutation Failure Immunity Index. These indices are adopted in security and stability simulating calculation of Jiangsu Multi-infeed HVDC system. The simulation results indicate that Jiangsu power grid is operating with a strong DC system. It has high level of power grid security and stability, and meet the safety running requirements. Jinpin-Suzhou DC system is located in the receiving end with huge capacity, which is easily leading to commutation failure of the transmission line. In order to resolve this problem, dynamic reactive power compensation can be applied in power grid near Jinpin-Suzhou DC system. Simulation result shows this method is feasible to commutation failure.

  3. Microgrid Reactive and Harmonic Power Sharing Using Enhanced Virtual Impedance

    DEFF Research Database (Denmark)

    He, Jinwei; Wei Li, Yun; Guerrero, Josep M.

    2013-01-01

    To address the load sharing problem in islanding microgrids, this paper proposes an improved approach which regulates the distributed generation (DG) unit interfacing virtual impedance at fundamental and selected harmonic frequencies. In contrast to the conventional virtual impedance control where...... only a line current feed-forward term is added to the DG voltage reference, the proposed virtual impedances at fundamental and harmonic frequencies are realized using DG line current and point of common coupling (PCC) voltage feed-forward terms, respectively. With this modification, the mismatched DG...... feeder impedances can be properly compensated, resulting in accurate reactive and harmonic power sharing at the same time. In addition, this paper shows that the microgrid PCC harmonic voltages can be mitigated by reducing the magnitude of DG unit equivalent harmonic impedance. Finally, an improved...

  4. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    Science.gov (United States)

    Wilches-Bernal, Felipe

    of the WTG while the second controller manipulates the reactive power control of the WTG using the current magnitude as the feedback signal. Finally, the dissertation proposes a parameter identification method for identifying and verifying the reactive power control parameters of WTGs. Using voltage and current measurements of a wind unit as an input, the proposed method estimates an optimal set of parameters such that the output current of a standalone WTG model better approximates the measured signal. Because WTG are nonlinear systems, the identification method is solved by a Gauss-Newton iteration used to calculate the solution of a nonlinear least-squares problem. The effectiveness of the proposed method is illustrated using a set of simulated data and actual PMU recordings.

  5. The influence of the reactive energy in the electric power sector planning and the need of consolidation of the hourly period for evaluation of the power factor of the loads; A influencia da energia eletrica reativa no planejamento do setor eletrico e a necessidade de consolidacao do periodo horario para avaliacao do fator de potencia das cargas

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Moacyr Trindade de Oliveira

    1993-07-01

    Among expectations of optimization of electric power systems and the national electric rating laws, there is the important factors of consumption and transmission of reactive energy which concerns the objectives of electric sector. Related to it, the DNAEE, ELETROBRAS and the concessionaires have been developing studies in order to optimize the electric system performance, and consequently the investments of concessionaires and consumers, reducing costs imposed to society due to the form of consumption and/or compensation of reactive loads. This work shows the evolution and consolidation of tariff studies and electric performance of the system, indicating the ways which attend the expectations os all segments of the society through a small adaptation of present regulations an rules related to reactive energy, making possible the system growing in supply by the minimum cost. The main objective of this work is to reinforce the real necessity of to remain intact all the new regulation of power factor, that has been consolidated by the DNAEE's document number 085/92 and your revaluation document number 613/93, including the interval of hourly integration for reactive energy at the determinate date and show the damages for the society caused by the postponement of this condition, that has been considerate in the document number 613/93, from April 1994 until April 1996, however keeping in 1994 the introduction of the new power factor reference of 0.92. (author)

  6. The influence of the reactive energy in the electric power sector planning and the need of consolidation of the hourly period for evaluation of the power factor of the loads; A influencia da energia eletrica reativa no planejamento do setor eletrico e a necessidade de consolidacao do periodo horario para avaliacao do fator de potencia das cargas

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Moacyr Trindade de Oliveira

    1993-07-01

    Among expectations of optimization of electric power systems and the national electric rating laws, there is the important factors of consumption and transmission of reactive energy which concerns the objectives of electric sector. Related to it, the DNAEE, ELETROBRAS and the concessionaires have been developing studies in order to optimize the electric system performance, and consequently the investments of concessionaires and consumers, reducing costs imposed to society due to the form of consumption and/or compensation of reactive loads. This work shows the evolution and consolidation of tariff studies and electric performance of the system, indicating the ways which attend the expectations os all segments of the society through a small adaptation of present regulations an rules related to reactive energy, making possible the system growing in supply by the minimum cost. The main objective of this work is to reinforce the real necessity of to remain intact all the new regulation of power factor, that has been consolidated by the DNAEE's document number 085/92 and your revaluation document number 613/93, including the interval of hourly integration for reactive energy at the determinate date and show the damages for the society caused by the postponement of this condition, that has been considerate in the document number 613/93, from April 1994 until April 1996, however keeping in 1994 the introduction of the new power factor reference of 0.92. (author)

  7. Inverse kinetics equations for on line measurement of reactivity using personal computer

    International Nuclear Information System (INIS)

    Ratemi, Wajdi; El Gadamsi, Walied; Beleid, Abdul Kariem

    1993-01-01

    Computer with their astonishing speed of calculations along with their easy connection to real systems, are very appropriate for digital measurements of real system variables. In the nuclear industry, such computer application will produce compact control rooms of real power plants, where information and results display can be obtained through push button concept. In our study, we use two personal computers for the purpose of simulation and measurement. One of them is used as a digital simulator to a real reactor, where we effectively simulate the reactor power through a cross talk network. The computed power is passed at certain chosen sampling time to the other computer. The purpose of the other computer is to use the inverse kinetics equations to calculate the reactivity parameter based on the received power and then it performs on line display of the power curve and the reactivity curve using color graphics. In this study, we use the one group version of the inverse kinetics algorithm which can easily be extended to larger group version. The language of programming used in Turbo BASIC, which is very comparable, in terms of efficiency, to FORTRAN language, besides its effective graphics routines. With the use of the extended version of the Inverse Kinetics algorithm, we can effectively apply this techniques of measurement for the purpose of on line display of the reactivity of the Tajoura Research Reactor. (author)

  8. Coordinated Control Strategies of VSC-HVDC-Based Wind Power Systems for Low Voltage Ride Through

    Directory of Open Access Journals (Sweden)

    Xinyin Zhang

    2015-07-01

    Full Text Available The Voltage Source Converter-HVDC (VSC-HVDC system applied to wind power generation can solve large scale wind farm grid-connection and long distance transmission problems. However, the low voltage ride through (LVRT of the VSC-HVDC connected wind farm is a key technology issue that must be solved, and it is currently lacking an economic and effective solution. In this paper, a LVRT coordinated control strategy is proposed for the VSC-HVDC-based wind power system. In this strategy, the operation and control of VSC-HVDC and wind farm during the grid fault period is improved. The VSC-HVDC system not only provides reactive power support to the grid, but also effectively maintains the power balance and DC voltage stability by reducing wind-farm power output, without increasing the equipment investment. Correspondingly, to eliminate the influence on permanent magnet synchronous generator (PMSG-based wind turbine (WT systems, a hierarchical control strategy is designed. The speed and validity of the proposed LVRT coordinated control strategy and hierarchical control strategy were verified by MATLAB/Simulink simulations.

  9. Power system integration and control of variable speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Eek, Jarle

    2009-12-15

    A wind power plant is a highly dynamic system that dependent on the type of technology requires a number of automatic control loops. This research deals with modelling, control and analysis related to power system integration of variable speed, pitch controlled wind turbines. All turbine components have been modelled and implemented in the power system simulation program SIMPOW, and a description of the modelling approach for each component is given. The level of model detail relates to the classical modelling of power system components for power system stability studies, where low frequency oscillations are of special importance. The wind turbine model includes a simplified representation of the developed rotor torque and the thrust force based on C{sub p-} and C{sub t} characteristic curves. The mechanical system model represents the fundamental torsional mode and the first mode of blades and tower movements. Two generator technologies have been investigated. The doubly fed induction generator (DFIG) and the stator converter interfaced permanent magnet synchronous generator (PMSG). A simplified model of a 2 level voltage source converter is used for both machine types. The generator converter controllers have been given special attention. All model components are linearized for the purpose of control system design and power system interaction related to small signal stability analysis. Different control strategies discussed in the literature have been investigated with regard to power system interaction aspects. All control parameters are identified using the internal model control approach. The analysis is focused on three main areas: 1. Identification of low damped oscillatory modes. This is carried out by the establishment and discussion of wind turbine modelling. 2. Interaction between control loops. A systematic approach is presented in order to analyse the influence of control loops used in variable speed wind turbines. 3.Impact on power system performance

  10. Determination of the excess of reactivity in a nuclear configuration and its influence on the power level

    International Nuclear Information System (INIS)

    Zuniga, Agustin; Tapia, Jose

    2014-01-01

    This work presents experimental results which show that the critical position of a given nuclear configuration changes with the reactor power (expressed by the current measurement). Thus, if the current is 0.6 x 10 -11 A (1 W), then the critical position is, BC1 = 0.0 % while 0.6 x 10 -9 A (100 W), BC1= 46.5 %. The difference is apparent because under a current of 10 -10 A, the reactivity is not significant. Therefore, it is recommended that for reactors like the RP-10 with a lot of neutrons at the 'background' level, the excess reactivity must be measured in current as 0.6 x 10 -9 A (100 W) not less. Finally, the excess of reactivity for the N o 42 configuration was determined, which was 3032 pcm with uncertainty less than 1 %. (authors).

  11. A new state-space model for three-phase systems for Kalman filtering with application to power quality estimation

    Science.gov (United States)

    Phan, Anh Tuan; Ho, Duc Du; Hermann, Gilles; Wira, Patrice

    2015-12-01

    For power quality issues like reducing harmonic pollution, reactive power and load unbalance, the estimation of the fundamental frequency of a power lines in a fast and precise way is essential. This paper introduces a new state-space model to be used with an extended Kalman filter (EKF) for estimating the frequency of distorted power system signals in real-time. The proposed model takes into account all the characteristics of a general three-phase power system and mainly the unbalance. Therefore, the symmetrical components of the power system, i.e., their amplitude and phase angle values, can also be deduced at each iteration from the proposed state-space model. The effectiveness of the method has been evaluated. Results and comparisons of online frequency estimation and symmetrical components identification show the efficiency of the proposed method for disturbed and time-varying signals.

  12. The active control strategy on the output power for photovoltaic-storage systems based on extended PQ-QV-PV Node

    Science.gov (United States)

    Xu, Chen; Zhou, Bao-Rong; Zhai, Jian-Wei; Zhang, Yong-Jun; Yi, Ying-Qi

    2017-05-01

    In order to solve the problem of voltage exceeding specified limits and improve the penetration of photovoltaic in distribution network, we can make full use of the active power regulation ability of energy storage(ES) and the reactive power regulation ability of grid-connected photovoltaic inverter to provide support of active power and reactive power for distribution network. A strategy of actively controlling the output power for photovoltaic-storage system based on extended PQ-QV-PV node by analyzing the voltage regulating mechanism of point of commom coupling(PCC) of photovoltaic with energy storage(PVES) by controlling photovoltaic inverter and energy storage. The strategy set a small wave range of voltage to every photovoltaic by making the type of PCC convert among PQ, PV and QV. The simulation results indicate that the active control method can provide a better solution to the problem of voltage exceeding specified limits when photovoltaic is connectted to electric distribution network.

  13. UPFC Location and Performance Analysis in Deregulated Power Systems

    Directory of Open Access Journals (Sweden)

    Seyed Abbas Taher

    2009-01-01

    Full Text Available We deal with the effect of Unified Power Flow Controller (UPFC installation on the objective function of an electricity market. Also this paper proposes a Novel UPFC modelling in OPF which facilities the consideration of the impact of four factors on power market. These include the series transformer impedance addition, the shunt reactive power injection, the in-phase component of the series voltage and the quadrature component of the series voltage. The impact of each factor on the electricity market objective function is measured and then compared with the results from a sensitivity approach. The proposed sensitivity approach is fast so it does not need to repeat OPF solutions. The total impacts of the factors are used to offer UPFC insertion candidate points. It is shown that there is a clear match between the candidate points of the sensitivity method and those proposed by the introduced UPFC modelling in our test case. Furthermore, based on the proposed method, the relation between settings of UPFC series part and active and reactive power spot prices is presented.

  14. Real-Time Load-Side Control of Electric Power Systems

    Science.gov (United States)

    Zhao, Changhong

    a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control. (2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.

  15. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    This Guide applies to nuclear power plants for which the total power supply comprises normal power supply (which is electric) and emergency power supply (which may be electric or a combination of electric and non-electric). In its present form the Guide provides general guidance for all types of emergency power systems (EPS) - electric and non-electric, and specific guidance (see Appendix A) on the design principles and the features of the emergency electric power system (EEPS). Future editions will include a second appendix giving specific guidance on non-electric power systems. Section 3 of this Safety Guide covers information on considerations that should be taken into account relative to the electric grid, the transmission lines, the on-site electrical supply system, and other alternative power sources, in order to provide high overall reliability of the power supply to the EPS. Since the nuclear power plant operator does not usually control off-site facilities, the discussion of methods of improving off-site reliability does not include requirements for facilities not under the operator's control. Sections 4 to 11 of this Guide provide information, recommendations and requirements that would apply to any emergency power system, be it electric or non-electric

  16. Load-Following Voltage Controller Design for a Static Space Nuclear Power System

    International Nuclear Information System (INIS)

    Parlos, Alexander G.; Onbasioglou, Fetiye O.; Metzger, John D.

    2000-01-01

    The reliability of static space nuclear power systems (SNPSs) could be improved through the use of backup devices in addition to shunt regulators, as currently proposed for load following. Shunt regulator failure leading to reactor shutdown is possible, as is the possible need to deliver somewhat higher power level to the load than originally expected. A backup system is proposed in SNPSs to eliminate the possibility of a single-point failure in the shunt regulators and to increase the overall system power delivery capability despite changing mission needs and component characteristics. The objective of this paper is to demonstrate the feasibility of such a backup device for voltage regulation in static SNPSs that is capable of overcoming system variations resulting from operation at different power levels. A dynamic compensator is designed using the Linear Quadratic Gaussian with Loop Transfer Recovery method. The resulting compensators are gain scheduled using the SNPS electric power as the scheduling variable, resulting in a nonlinear compensator. The performance of the gain-scheduled compensator is investigated extensively using an SNPS simulator. The simulations demonstrate the effects of the fuel temperature reactivity coefficient variations on the load-following capabilities of the SNPS. Robustness analysis results demonstrate that the proposed controller exhibits significant operational flexibility, and it can be considered for long-term space mission requiring significant levels of autonomy

  17. Power Trip Set-points of Reactor Protection System for New Research Reactor

    International Nuclear Information System (INIS)

    Lee, Byeonghee; Yang, Soohyung

    2013-01-01

    This paper deals with the trip set-point related to the reactor power considering the reactivity induced accident (RIA) of new research reactor. The possible scenarios of reactivity induced accidents were simulated and the effects of trip set-point on the critical heat flux ratio (CHFR) were calculated. The proper trip set-points which meet the acceptance criterion and guarantee sufficient margins from normal operation were then determined. The three different trip set-points related to the reactor power are determined based on the RIA of new research reactor during FP condition, over 0.1%FP and under 0.1%FP. Under various reactivity insertion rates, the CHFR are calculated and checked whether they meet the acceptance criterion. For RIA at FP condition, the acceptance criterion can be satisfied even if high power set-point is only used for reactor trip. Since the design of the reactor is still progressing and need a safety margin for possible design changes, 18 MW is recommended as a high power set-point. For RIA at 0.1%FP, high power setpoint of 18 MW and high log rate of 10%pp/s works well and acceptance criterion is satisfied. For under 0.1% FP operations, the application of high log rate is necessary for satisfying the acceptance criterion. Considering possible decrease of CHFR margin due to design changes, the high log rate is suggested to be 8%pp/s. Suggested trip set-points have been identified based on preliminary design data for new research reactor; therefore, these trip set-points will be re-established by considering design progress of the reactor. The reactor protection system (RPS) of new research reactor is designed for safe shutdown of the reactor and preventing the release of radioactive material to environment. The trip set point of RPS is essential for reactor safety, therefore should be determined to mitigate the consequences from accidents. At the same time, the trip set-point should secure margins from normal operational condition to avoid

  18. Impacts of Wind Power on Power System Stability

    NARCIS (Netherlands)

    Vittal, E.; Keane, A.; Slootweg, J.G.; Kling, W.L.; Ackermann, T.

    2012-01-01

    This chapter examines how wind power will impact the stability of power systems. It focuses on the three aspects of power system stability: voltage stability, rotor angle stability and frequency stability. It completes a detailed analysis as to how wind power in power systems will impact the

  19. National supply of reactivity control rods for Embalse nuclear power plant (CNE)

    International Nuclear Information System (INIS)

    Biondo, C.D.; Carloni, J.G.; Aba, J.A.

    1987-01-01

    The manufacture and supply on industrial scale of reactivity control rods for CNE (Embalse nuclear power plant) were developed by the National Atomic Energy Commission (CNEA) together with the private industry, as part of a program aimed to the substitution of imported supplies used in the operation of power plants by materials manufactured in Argentina. So far, the control rods were imported from Canada. In this work, the different development stages performed by CNEA and CONUAR S.A. are described, leading to the supply of a set of 21 cobalt rods to be included in a reactor of CNE in order to qualify this component. Among the main activities performed, the following stand out: specifications development, particularly those concerning to cobalt cores, evaluation of design documentation and elaboration of bidding conditions and a plan of manufacture and control. According to the results obtained during the service and the post-irradiation measurements, the design will be reviewed in order to undertake new manufacturing plans. (Author)

  20. Revised sequence components power system models for unbalanced power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Akher, M. [Tunku Abdul Rahman Univ., Kuala Lumpur (Malaysia); Nor, K.-M. [Univ. of Technology Malaysia, Johor (Malaysia); Rashid, A.H.A. [Univ. of Malaya, Kuala Lumpur (Malaysia)

    2007-07-01

    The principle method of analysis using positive, negative, and zero-sequence networks has been used to examine the balanced power system under both balanced and unbalanced loading conditions. The significant advantage of the sequence networks is that the sequence networks become entirely uncoupled in the case of balanced three-phase power systems. The uncoupled sequence networks then can be solved in independent way such as in fault calculation programs. However, the hypothesis of balanced power systems cannot be considered in many cases due to untransposed transmission lines; multiphase line segments in a distribution power system; or transformer phase shifts which cannot be incorporated in the existing models. A revised sequence decoupled power system models for analyzing unbalanced power systems based on symmetrical networks was presented in this paper. These models included synchronous machines, transformers, transmission lines, and voltage regulators. The models were derived from their counterpart's models in phase coordinates frame of reference. In these models, the three sequence networks were fully decoupled with a three-phase coordinates features such as transformer phase shifts and transmission line coupling. The proposed models were used to develop an unbalanced power-flow program for analyzing both balanced and unbalanced networks. The power flow solution was identical to results obtained from a full phase coordinate three-phase power-flow program. 11 refs., 3 tabs.

  1. Azcatl-CRP: An ant colony-based system for searching full power control rod patterns in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Juan Jose [Dpto. Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Salazar, Edo. de Mexico (Mexico)]. E-mail: jjortiz@nuclear.inin.mx; Requena, Ignacio [Dpto. Ciencias Computacion e I.A. ETSII Informatica, University of Granada, C. Daniel Saucedo Aranda s/n, 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es

    2006-01-15

    We show a new system named AZCATL-CRP to design full power control rod patterns in BWRs. Azcatl-CRP uses an ant colony system and a reactor core simulator for this purpose. Transition and equilibrium cycles of Laguna Verde Nuclear Power Plant (LVNPP) reactor core in Mexico were used to test Azcatl-CRP. LVNPP has 109 control rods grouped in four sequences and currently uses control cell core (CCC) strategy in its fuel reload design. With CCC method only one sequence is employed for reactivity control at full power operation. Several operation scenarios are considered, including core water flow variation throughout the cycle, target different axial power distributions and Haling conditions. Azcatl-CRP designs control rod patterns (CRP) taking into account safety aspects such as k {sub eff} core value and thermal limits. Axial power distributions are also adjusted to a predetermined power shape.

  2. Abstract interpretation of reactive systems : preservation of CTL*

    NARCIS (Netherlands)

    Dams, D.; Grumberg, O.; Gerth, R.

    The advent of ever more complex reactive systems in increasingly critical areas calls for the development of automated verification techniques. Model checking is one such technique, which has proven quite successful. However, the state explosion problem remains the stumbling block in many

  3. Design and Control of a Multi-Functional Energy Recovery Power Accumulator Battery Pack Testing System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Bo Long

    2014-03-01

    Full Text Available In this paper, aiming at the energy loss and harmonic problems in the conventional power accumulator battery pack testing system (PABPTS, an improved multi-functional energy recovery PABPTS (ERPABPTS for electric vehicles (EVs was proposed. The improved system has the functions of harmonic detection, suppression, reactive compensation and energy recovery. The ERPABPTS, which contains a bi-directional buck-boost direct current (DC-DC converter and a bi-directional alternating current (AC-DC converter with an inductor-capacitor-inductor (LCL type filter interfacing to the AC-grid, is proposed. System configuration and operation principle of the combined system are discussed first, then, the reactive compensation and harmonic suppression controller under balanced grid-voltage condition are presented. Design of a fourth order band-pass Butterworth filter for current harmonic detection is put forward, and the reactive compensator design procedure considering the non-linear load is also illustrated. The proposed scheme is implemented in a 175-kW prototype in the laboratory. Simulation and experimental results show that the combined configuration can effectively realize energy recovery for high accuracy current test requirement, meanwhile, can effectively achieve reactive compensation and current harmonic suppression.

  4. Measurement of the CNA I's (Atucha I nuclear power plant) control rods reactivity during its commissioning on January 8th, 1990

    International Nuclear Information System (INIS)

    Waldman, R.M.; Gomez, A.

    1990-01-01

    Measurements were made on integral and differential calibration of rod 16, fuel racks RG and R3 and extinction reactivity during Atucha I nuclear power plant's commissioning on January 8th., 1990. These were the first physical measurements performed after the first critical nuclear power plant's commissioning. (Author) [es

  5. Power transfer capability assessment of transmission interfaces with SVC and load shedding systems

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovsky, V. [DMCC-Engineering, Kiev (Ukraine). Inst. of Electrodynamics; Dolzhenitsa, Y. [DMCC Engineering, Kiev (Ukraine); Ushapovskiy, K. [National Power Co. Ukrenergo, Kiev (Ukraine)

    2009-07-01

    As a result of deregulation in the power industry, energy trade and markets are pushing transmission system operators to operate their systems closer to the edge of the power transfer capability. Voltage instability and inadequate reactive power support of generators is a key factor in most major outages around the world. The ideal way to control power systems is to avoid emergencies by reliable planning and secure operation of power systems. Therefore, the accurate calculation of the power transfer capability of transmission interfaces is an important task on the planning and operation stages. This paper discussed the issue of transfer capability assessment and monitoring for interfaces with static var compensator (SVC) and load shedding schemes. It also proposed a special measure, a distance to voltage instability point, to monitor transfer capability on-line. The distance may be observed by measurement of SVC output. The paper considered the problem of optimal SVC size selection and a new approach was proposed based on P-V curves analysis. The paper discussed the problem formulation and proposed approach. A case was also presented in order to demonstrate the proposed approach on the IPS Ukraine-Crimea interface. It was concluded that the proposed approach allows the optimal rating of SVC for increasing transfers capability of transmission corridors. 12 refs., 9 figs.

  6. A Comparative Study of the Application of FACTS Devices in Wind Power Plants of the Southeast Area of the Mexican Electric System

    Energy Technology Data Exchange (ETDEWEB)

    Beltran-Valle, Omar; Pena-Gallardo, Rafael; Segundo-Ramirez, Juan; Muljadi, Eduard

    2017-01-26

    This paper presents a comparative study of the application of Flexible AC Transmission System (FACTS) devices, as Thyristor Controlled Series Capacitor (TCSC), Static Synchronous Compensator (STATCOM) and Unified Power Controller (UPFC) on congestion management and voltage support in the area of the Istmo of Tehuantepec, Oaxaca, Mexico. The present work provides an analysis about the performance of the control of active and reactive power of the FACTS controllers applied to mentioned problems in the power system.

  7. Preliminary investigation of actinide and xenon reactivity effects in accelerator transmutation of waste high-flux systems

    International Nuclear Information System (INIS)

    Olson, K.R.; Henderson, D.L.

    1995-01-01

    The possibility of an unstable positive reactivity growth in an accelerator transmutation of waste (ATW)-type high-flux system is investigated. While it has always been clear that xenon is an important actor in the reactivity response of a system to flux changes, it has been suggested that in very high thermal flux transuranic burning systems, a positive, unstable reactivity growth could be caused by the actinides alone. Initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately. The maximum change in reactivity after a flux change caused by the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or startup. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response caused by the actinides. The capabilities and applications of both the current actinide model and the xenon model are discussed. Finally, the need for a complete dynamic model for the high-flux fluid-fueled ATW system is addressed

  8. Development of portable laser peening systems for nuclear power reactors

    International Nuclear Information System (INIS)

    Chida, Itaru; Uehara, Takuya; Yoda, Masaki; Miyasaka, Hiroyuki; Kato, Hiromi

    2009-01-01

    Stress corrosion cracking (SCC) is the major factor to reduce the reliability of aged reactor components. Toshiba has developed various laser-based maintenance and repair technologies and applied them to existing nuclear power plants. Laser-based technology is considered to be the best tool for remote processing in nuclear power plants, and particularly so for the maintenance and repair of reactor core components. Accessibility could be drastically improved by a simple handling system owing to the absence of reactive force against laser irradiation and the flexible optical fiber. For the preventive maintenance, laser peening technology was developed and applied to reactor components in operating BWRs and PWRs. Laser peening is a novel process to improve residual stress from tensile to compressive on material surface layer by irradiating focused high-power laser pulses in water without any surface preparations. Laser peening systems, which deliver laser pulses with mirrors or through an optical fiber, were developed and have been applied to preventive maintenance against SCC in nuclear power reactors since 1999. Each system was composed of laser oscillators, a beam delivery system, a laser irradiation head, remote handling equipment and a monitor/control system. Beam delivery with mirrors was accomplished through alignment/tracking functions with sufficient accuracy. Reliable fiber-delivery was attained by the development of a novel input coupling optics and an irradiation head with auto-focusing. Recently, we have developed portable laser peening (PLP) system which could employ both mirror- and fiber- delivery technologies. Size and weight of the PLP system for BWR bottom was almost 1/25 compared to the previous system. PLP system would be the applicable to both BWRs and PWRs as one of the maintenance technologies. (author)

  9. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  10. Optimization-based reactive power control in HVDC-connected wind power plants

    OpenAIRE

    Schönleber, Kevin; Collados Rodríguez, Carlos; Teixeira Pinto, Rodrigo; Ratés Palau, Sergi; Gomis Bellmunt, Oriol

    2017-01-01

    One application of high–voltage dc (HVdc) systems is the connection of remotely located offshore wind power plants (WPPs). In these systems, the offshore WPP grid and the synchronous main grid operate in decoupled mode, and the onshore HVdc converter fulfills the grid code requirements of the main grid. Thus, the offshore grid can be operated independently during normal conditions by the offshore HVdc converter and the connected wind turbines. In general, it is well known that optimized react...

  11. Insertion material for controlling reactivity

    International Nuclear Information System (INIS)

    Baba, Iwao.

    1994-01-01

    Moderators and a group of suspended materials having substantially the same density as the moderator are sealed in a hollow rod vertically inserted to a fuel assembly. Specifically, the group of suspended materials is adapted to have a density changing stepwise from density of the moderator at the exit temperature of the reactor core to that at the inlet temperature of the reactor core. Reactivity is selectively controlled for a portion of high power and a portion of high reactivity by utilizing the density of the moderator and the distribution of the density. That is, if the power distribution is flat, the density of the moderators changes at a constant rate over the vertical direction of the reactor core and the suspended materials stay at a portion of the same density, to form a uniform distribution. Further, upon reactor shutdown, since the liquid temperature of the moderators is lowered and the density is increased, all of beads are collected at the upper portion to remove water at the upper portion of the reactor core of low burnup degree thereby selectively controlling the reactivity at a portion of high power and a portion of high reactivity. (N.H.)

  12. Digital reactivity meter

    International Nuclear Information System (INIS)

    Akkus, B.; Anac, H.; Alsan, S.; Erk, S.

    1991-01-01

    Nowadays, various digital methods making use of microcomputers for neutron detector signals and determining the reactivity by numerical calculations are used in reactor control systems in place of classical reactivity meters. In this work, a calculation based on the ''The Time Dependent Transport Equation'' has been developed for determining the reactivity numerically. The reactivity values have been obtained utilizing a computer-based data acquisition and control system and compared with the analog reactivity meter values as well as the values calculated from the ''Inhour Equation''

  13. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    Science.gov (United States)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  14. Digital reactivity meter

    International Nuclear Information System (INIS)

    Jiang Zongbing

    1996-02-01

    The importance and the usual methods of reactivity measurement in a nuclear reactor are presented. Emphasis is put upon the calculation principle, software and hardware components, main specifications, application, as well as the features of the digital reactivity meter. The test results of operation in various reactors shown that the meter possess the following features: high accuracy, short response time, low output noise, high resolution, wide measuring range, simple and flexible to operate, high stability and reliability. In addition, the reactivity meter can save the measuring data automatically and have a perfect capability of self-verifying. It not only meet the requirement of the reactivity measurement in nuclear power plant, but also can be applied to various types of reactors. (1 tab.)

  15. Impact of wind power plant reactive current injection during asymmetrical grid faults

    DEFF Research Database (Denmark)

    Göksu, Ömer; Teodorescu, Remus; Bak, Claus Leth

    2013-01-01

    As more renewable energy sources, especially more wind turbines (WTs) are installed in the power system; grid codes for wind power integration are being generated to sustain stable power system operation with non-synchronous generation. Common to most of the grid codes, wind power plants (WPPs...... faults, is investigated, which was not considered in the wind power impact studies before....

  16. Modelación de los efectos de la compensación de potencia reactiva en sistemas de suministro eléctrico Modelation of effects on reactive power compensation in secondary power systems

    Directory of Open Access Journals (Sweden)

    Davel Borges Vasconcellos

    2012-08-01

    Full Text Available Se presentan los inconvenientes de la potencia reactiva y a partir de allí se realiza la modelación matemática de los efectos económicos de ésta, aplicable a sistemas de suministro eléctrico. Los efectos tomados en cuenta son: los costos de inversión de los bancos de capacitores, los gastos de amortización de los bancos, los gastos de pérdidas de energía activa de los bancos, los beneficios por la mejora del factor de potencia, incluida la reducción de pérdidas de energía activa en el sistema, así como los beneficios por la liberación de la capacidad de carga, para el caso de empresas donde este aspecto pueda representar un atractivo económico. Para el análisis de los estados de carga antes y después de la compensación se utilizan algoritmos de flujos de potencia trifásicos, con el empleo de modelos de gráficos de carga ajustados, como aspecto novedoso. Estos efectos, de acuerdo con el sistema de tarifas eléctricas de Cuba, son integrados en una función de análisis económico, en este caso el Valor Actual Neto (VAN, la cual sirve de base para el planteamiento del problema de optimización, que puede derivar en la correcta selección de los dispositivos compensadores.The inconveniences of the reactive power are presented and from this are carried out the mathematical models of its economic effects applicable to secondary power systems. The effects taken into account are: the costs of the capacitors banks, the expenses of paying-off to the banks, the expenses of power losses to the banks, the benefits for the improvement of the power factor, included the reduction of power loss in the system, as well as the benefits for the liberation of the load capacity, to the case of companies where the latest aspect can represent an economic attractiveness. For the analysis after and before compensation, are consider load flow algorithm witch load model adjust. According to electrical tariff structures in Cuba, these effects are

  17. The method of the correlation and dispersion defining of the total power components in the electric transport devices

    Directory of Open Access Journals (Sweden)

    A. V. Nikitenko

    2013-04-01

    Full Text Available Purpose. Development and theoretical ground of the analytical method for the calculation of the active, reactive and total powers in the electric traction devices, taking into consideration the non-stationary character of the stochastic processes change of the voltage and current in the elements of these systems. Methodology. The mathematical methods of the random processes theory and the “discrete electrical engineering” methods are used for solving the main problem of this paper. Findings. The Method of the Correlation and Dispersion is developed for definition of the active power, the reactive power by Fryse and the total power of the devices in the elements of the electric traction system of the main-line railways. The method is based on the well-known concepts of auto- and inter-correlation functions of the random processes which govern the feeder voltages and the currents in the traction power supply subsystem as well as the currents and voltages of the electric rolling stock. The method developed in this paper allows estimating the powers of both stationary and non-stationary processes. This method can be used for the analysis of both the traction mode and the regenerative braking mode of the electric rolling stock. The total power components were calculated for the one of the feeder areas of the Prydniprovsk railway using this method. The results show the significant flow of the reactive power in the traction power supply system. This fact is also confirmed by the high values of the reactive power coefficient. Originality. Scientific novelty of the research is consisted in the following. Firstly, for defining the active and reactive powers in elements of the traction power supply system the new method (the Method of Correlation and Dispersion is created and grounded. This method is different from other existing methods because it takes into consideration the varying non-stationary character of the chance processes of the feeder and

  18. Quantification, challenges and outlook of PV integration in the power system: a review by the European PV Technology Platform

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Baccaro, Federica; De Felice, Matteo

    2015-01-01

    Integration in the power system has become a limiting factor to the further development of photovoltaics. Proper quantification is needed to evaluate both issues and solutions; the share of annual electricity demand is widely used but we found that some of the metrics which are related to power...... rather than energy better reflect the impact on networks. Barriers to wider deployment of PV into power grids can be split between local technical issues (voltage levels, harmonics distortion, reverse power flows and transformer loading) and system-wide issues (intermittency, reduction of system...... resilience). Many of the technical solutions to these issues rely on the inverters as actuators (e.g., for control of active and reactive power) or as interfaces (e.g., for local storage). This role requires further technical standardisation and needs to be taken into account in the planning of power...

  19. Reactively sputtered TeO/sub x/ thin films for optical recording systems

    International Nuclear Information System (INIS)

    Di Giulio, M.; Micocci, G.; Rella, R.; Tepore, A.

    1988-01-01

    Tellurium suboxide (TeO/sub x/ ) thin films have been obtained by rf reactive sputtering deposition by using a Te target and an Ar--O 2 gas mixture. Different samples were prepared by changing both the rf power (80--200 W) and the oxygen concentration in the sputtering gas. The transmissivity and the reflectivity of these films change markedly by thermal treatment at critical temperatures in the range 120--150 0 C. This property makes these films suitable for optical disk recording with a low-output power laser diode

  20. Temperature reactivity coefficient of the RA reactor; Temperaturni koeficijenat reaktivnosti reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Strugar, P; Dobrosavljevic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Temperature reactivity coefficient of the RA reactor was determined as follows. Stabilization of moderator temperature and graphite reflector was achieved in the reactor operated at power levels of 20, 100, 500, 1000, 3000 and 5000 kW. Temperature change of the moderator was achieved by changing the water flow rate in the secondary cooling system. The fuel temperature was changed simultaneously. During the measurement at each power level the temperature change was between 30 - 50 deg C. Changing the position of the automated regulator is registered during moderator temperature change, and these changes were used for determining the total reactivity change by using the calibration curves for the automated regulator. In the measured temperature range the the reactivity change was linear and it was possible to determine the total temperature coefficient.